[go: up one dir, main page]

WO2005073312A1 - Resin composition and optical member - Google Patents

Resin composition and optical member Download PDF

Info

Publication number
WO2005073312A1
WO2005073312A1 PCT/JP2005/001273 JP2005001273W WO2005073312A1 WO 2005073312 A1 WO2005073312 A1 WO 2005073312A1 JP 2005001273 W JP2005001273 W JP 2005001273W WO 2005073312 A1 WO2005073312 A1 WO 2005073312A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
compound
earth metal
rare earth
Prior art date
Application number
PCT/JP2005/001273
Other languages
French (fr)
Japanese (ja)
Inventor
Tomomi Ujiie
Yutaka Kobayashi
Original Assignee
Kureha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corporation filed Critical Kureha Corporation
Priority to JP2005517536A priority Critical patent/JP5087223B2/en
Publication of WO2005073312A1 publication Critical patent/WO2005073312A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4

Definitions

  • the present invention relates to a resin composition and an optical member using the same.
  • metal ions into a light-transmitting material such as glass or resin to impart specific optical characteristics to the light-transmitting material by the metal ions.
  • a metal ion a rare earth metal ion that absorbs light in a specific wavelength range and exhibits antiglare properties is known.
  • Examples of such a resin composition containing a rare-earth metal ion include a resin composition containing a rare-earth metal ion, a phosphoric acid ester-containing compound having a (meth) atalyloyl group or the like, and an acrylic resin. Things are known.
  • Examples of the optical member using the strong resin composition include, for example, an anti-glare spectacle lens, an anti-glare filter used for a television, a brightness adjustment filter of a lighting fixture, and a color tone correction filter (for example, see Patent See references 1 and 2.)
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-247985
  • Patent Document 2 JP 2001-122923 A
  • a rare earth metal ion is added to the polybiacetal resin to prepare a resin composition for forming an interlayer film for laminated glass. And that the rare earth metal ions cannot be uniformly dissolved or dispersed in the resin. For this reason, there has not yet been provided a resin composition capable of using a polybulacetal resin as a resin component, and imparting an antiglare property and a light transmitting property to an optical member such as laminated glass.
  • the present invention has been made in view of the above problems, and it is possible to use a polyvinyl acetal resin as a resin component to impart excellent antiglare properties and sufficient translucency to an optical member.
  • An object is to provide a resin composition.
  • Another object of the present invention is to provide an optical member using the resin composition.
  • the inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, the above object was achieved by combining a rare earth metal ion and a polyvinyl acetal resin with a specific phosphoric acid ester compound. The inventors have found that the present invention has been completed.
  • the resin composition of the present invention is characterized by containing a rare earth metal ion, an alkyl phosphate compound or an alkenyl phosphate compound, and a polybutylacetal resin.
  • the resin composition of the present invention may be characterized by containing a rare earth metal ion, an alkyl phosphate compound and a polybutylacetal resin.
  • the present invention excellent antiglare properties and sufficient translucency can be imparted to an optical member even with a resin composition using a polybulacetal resin as a resin component.
  • the reason that such excellent anti-glare properties can be imparted is mainly based on the fact that it contains a rare earth metal ion capable of absorbing light rays in a specific wavelength range with high efficiency. Are speculating.
  • the reason why the sufficient translucency can be imparted is mainly due to the fact that the rare earth metal ions can be uniformly dissolved or dispersed without aggregating in the polyvinyl alcohol resin. The present inventors speculate.
  • the rare earth metal ion becomes excellent in solubility and dispersibility in the polybutylacetal resin, but the rare earth metal ion and the phosphate group have an ionic bond. And / or formation of a coordination bond, and an increase in compatibility with the polybutylacetal resin based on the alkyl group of the phosphate bonded with the rare earth metal ion. Speculate. Furthermore, according to the present invention, excellent stability against light, that is, excellent light resistance can be obtained, and a decrease in light transmittance due to heating or long-term storage can be significantly suppressed. Become. As a result, the laminated glass obtained by using the resin composition of the present invention is excellent in light resistance, heat resistance and storage stability, and has extremely little deterioration even after long-term use.
  • the "polyvinyl acetal resin” in the present invention refers to a resin obtained by reacting an aldehyde with a polybutyl alcohol to form an acetal, a part of which is acetalized, and a part of which is acetalized. ) Is included.
  • Examples of such a polyvinyl acetal resin include a polyvinyl formal resin (vinylon) and a polyvinyl butyral resin.
  • the alkyl phosphate compound or the alkenyl phosphate compound is preferably a compound represented by the following general formula (la) and / or the following general formula (lb).
  • R 1 each independently represents an alkyl group having 418 carbon atoms or an olerecenyl group having 418 carbon atoms.
  • the alkyl phosphate compound is preferably an alkyl phosphate ester conjugate represented by the following general formula (la) and / or the following general formula (lb).
  • the present invention also provides an optical member characterized by using the above-described resin composition of the present invention.
  • the strong optical member is an optical member to which the above-described resin composition is applied to form an integral unit.
  • the optical member of the present invention can be excellent in absorption performance for light of a specific wavelength, that is, excellent in anti-glare properties, and can have high translucency. In addition to having excellent light resistance, the decrease in translucency due to heating or long-term storage is extremely small.
  • the optical member of the present invention is not limited to a component material of a building, and includes, for example, a member for taking in external light such as that used for a window of a moving vehicle, and more specifically,
  • a member for taking in external light such as that used for a window of a moving vehicle
  • canopies for aisles such as arcades, curtains, canopies for carports and garages
  • windows or wall materials for Sannore-me window materials for show windows and showcases
  • tents or their window materials blinds, fixed houses
  • Skylights and other window materials window materials for cars, ships, aircraft or trains (railroad) vehicles, coating materials for painted surfaces such as road signs, sunshade materials such as parasols, etc.
  • the resin composition is applied as a resin film, mixed with an adhesive resin composition, applied, or coated with a coating material.
  • a method of coating by mixing When a translucent material such as glass or plastic is used, a simple means can be used which is added to and mixed with the raw material during its preparation, molding or processing.
  • the present invention it is possible to provide a resin composition having excellent antiglare properties and sufficient translucency by using a polybutylacetal resin as a resin component. Further, by using the resin composition, it is possible to provide an optical member having excellent anti-glare properties and sufficient translucency.
  • FIG. 1 is a cross-sectional view schematically showing one example of an optical member according to the present invention.
  • FIG. 2 is a graph showing an example of a measurement result of haze of the optical member according to the example.
  • FIG. 3 is a graph showing an example of measurement results of spectral spectra of optical members according to Examples 13 and 13 and Comparative Example 1.
  • FIG. 4 is a graph showing an example of a measurement result of a spectral spectrum of the optical member according to Examples 416.
  • FIG. 5 is a graph showing an example of a measurement result of a spectrum of the optical member according to Examples 7-8.
  • FIG. 6 is a graph showing an example of the measurement result of the spectral spectrum of the optical member according to Example 9.
  • FIG. 7 is a graph showing an example of the measurement result of the spectral spectrum of the optical member according to Example 10.
  • 1 plate-like base material, 2 ... layer made of resin composition (anti-glare composition layer), 10 ... window material.
  • the resin composition contains a rare earth metal ion, an alkyl phosphate ester compound or an alkenyl phosphate ester, and a polyvinyl acetal resin.
  • Rare earth metal ions include lanthanoid ions, that is, lanthanum ion, cerium ion, praseodymium ion, neodymium ion, promethium ion, samarium ion, europium ion, gadolinium ion, terbium ion, dysprosium ion, holmium ion, erbium ion, Thulium ion, ytterbium ion, lutetium ion and the like can be exemplified. These rare earth metal ions can be supplied from metal compounds containing the respective metal ions.
  • rare earth metal salt examples include, for example, an organic acid salt with a rare earth metal, an anhydride or hydrate of an inorganic salt with a rare earth metal, Hydroxyl salts such as oxides of rare earth metals, hydroxides of rare earth metals, and hydrootaso complex salts.
  • compounds such as neodymium-1,4-pentanedionate and neodymium trifluoropentanedionate can also be exemplified.
  • the organic acid constituting the above-mentioned organic acid salt include acetic acid, benzoic acid, oxalic acid, acrylic acid, and methacrylic acid.
  • Examples of the inorganic acid constituting the inorganic acid salt include sulfuric acid. , Hydrochloric acid, nitric acid, hydrofluoric acid, and hydroxide. Of these, acetates of rare earth metals are preferred because they are easily available and easy to remove acid components by-produced during the production of the resin composition.
  • the resin composition containing such a rare earth metal ion can form an optical member having excellent antiglare property for visible light, and can emit laser light (wavelength of about 520 nm) used in medical or processing lasers. ), It is possible to form an optical member having excellent eye protection. Furthermore, since these rare earth metal ions emit fluorescence with high efficiency or emit laser light among the rare earth metal ions, the resin composition containing these rare earth metal ions has an excellent light amplification function. Can be expressed.
  • an ion of at least one metal selected from the group consisting of neodymium, praseodymium, and holmium is preferable.
  • Neodymium, praseodymium and holmium ions absorb light at wavelengths around 580 nm and 520 nm. It has excellent properties, and since these wavelength ranges match the maximum response wavelength of the visual cells of the human eye, it is possible to obtain a resin composition having more excellent antiglare properties.
  • the rare earth metal ions can be used alone or in combination of two or more.
  • the content of the rare earth metal ion is preferably 0.025% by mass, more preferably 0.02% to 20% by mass, and still more preferably 0.015% by mass, based on the total mass of the resin composition. It is. If the content of the rare earth metal ion is less than 0.02% by mass, depending on the thickness of the optical member, which will be described later, the anti-glare property may be insufficient because it is difficult to sufficiently obtain light having a specific wavelength. is there. On the other hand, if the content exceeds 25% by mass, it tends to be difficult to uniformly dissolve or disperse rare earth metal ions in the resin composition.
  • the above-described resin composition may contain a metal ion other than the rare earth metal ion.
  • other metal ions include copper ions, sodium ions, potassium ions, calcium ions, iron ions, manganese ions, cobalt ions, magnesium ions, and nickel ions.
  • copper ions in particular, have good absorption characteristics for light in the near infrared region (near infrared light).
  • the phosphate group of the alkyl phosphate compound or the alkenyl phosphate ester also binds to the copper ion through coordination bond and / or ionic bond.
  • the copper ions are dissolved or dispersed in the resin composition while being surrounded by these components. Then, near infrared light is selectively absorbed by the electronic transition of the d-orbit of the copper ion, and thus the resin composition containing such a copper ion has excellent near infrared light absorption. Therefore, by introducing copper ions according to the purpose, it is possible to obtain a resin composition having both visible light absorption characteristics and near-infrared light absorption characteristics of a wavelength specific to rare-earth metal ions.
  • the content of these other metal ions is, for example, less than 50% by mass, preferably within 30% by mass of the total amount of metal ions (the total amount of rare earth metal ions and other metal ions). It is suitable. In this case, the ratio of the rare earth metal ions to the total metal ions is 50% by mass or more, and it is possible to obtain a resin composition having sufficiently excellent antiglare properties. In addition, by mixing other metal ions, light having a wavelength characteristic of those other metal ions can also be obtained. A resin composition that can be absorbed is formed.
  • alkyl phosphate ester compound or alkenyl phosphate ester will be described.
  • an alkyl phosphate ester compound represented by the following general formula (la) and / or the following general formula (lb) is preferable, and a phosphorus compound represented by the following general formula (la) is preferable.
  • the acid diester component and the phosphoric acid monoester component represented by the following general formula (lb) can be used alone or in combination.
  • R 1 is preferably an alkyl group having a carbon number of 18 to 1, more preferably 5 to 18 carbon atoms, and still more preferably 6 to 16 carbon atoms. Particularly preferably, it has 6 to 12 carbon atoms. If the carbon number is less than 18 or more than 18, the solubility and dispersibility of the phosphate compound in the resin may be reduced, and the light transmittance of the resin composition may be insufficient.
  • a plurality of R 1 may be the same or different.
  • alkyl group examples include a linear, branched, and cyclic alkyl group. Of these, straight-chain or branched ones are preferred, for example, 2-ethylhexyl, butyl, aminole, hexyl, n-octyl, noninole, decyl, lauryl. , Hexadecyl group and octadecyl group are preferred.
  • the alkenyl phosphate compound has a monovalent hydrocarbon group substituted by a group having an unsaturated bond containing an alkenyl group, instead of the above-mentioned alkyl group. Examples of such an alkenyl group include an oleyl group.
  • the alkenyl group preferably has 418 carbon atoms.
  • the solubility and dispersibility of the phosphate compound in the resin are remarkably improved, so that a resin composition having more excellent translucency can be obtained. it can.
  • Specific examples of the alkyl phosphate ester compound include the alkyl phosphate monoester compounds represented by the following formulas (2a) to (6a) and (8a) and the following formulas (2b) to (6b) and (8b). Alkyl phosphate diester compounds.
  • alkenyl phosphate compound examples include a phosphate monoester compound represented by the following formula (9a) and a phosphate diester compound represented by the following formula (9b).
  • alkyl phosphate compound or alkenyl phosphate compound may be a commercially available compound, or may be produced by the following method G)-(m).
  • a specific alcohol is reacted with a phosphorus oxyhalide without a solvent or in an appropriate organic solvent (for example, toluene, xylene, etc.), and water is added to the obtained product to hydrolyze it.
  • a phosphorus oxyhalide for example, phosphorus oxychloride is preferably used.
  • the reaction conditions of the specific alcohol and the phosphorus oxyhalide are such that the reaction temperature is 0 to 110 ° C, preferably 40 to 80 ° C, and the reaction time is 120 hours, preferably 218 hours. is there.
  • an alkyl phosphate monoester compound or an alkenyl phosphate compound can be obtained by using a specific alcohol and oxyhalogenated phosphorus in a molar ratio of 1: 1.
  • a phosphonate ester compound is synthesized by reacting a specific alcohol with phosphorus trihalide in the absence of a solvent or in an appropriate organic solvent (eg, hexane, heptane, etc.), and thereafter And oxidizing the resulting phosphonate compound.
  • a specific alcohol for example, phosphorus trihalogenate
  • phosphorus trichloride is suitably used as the phosphorus trihalogenate.
  • the reaction conditions of the specific alcohol and phosphorus trihalide are such that the reaction temperature is 0-90 ° C, preferably 40-75 ° C. And the reaction time is 110 hours, preferably 2-5 hours.
  • a phosphorohalolidate conjugate is synthesized by reacting the phosphonate ester compound with a halogen such as chlorine gas, and the phosphorohalate conjugate is hydrolyzed.
  • a halogen such as chlorine gas
  • Means for decomposing can be used.
  • the reaction temperature between the phosphonate compound and the halogen is preferably from 0 to 40 ° C, particularly preferably from 525 to 525. C.
  • the phosphonate ester compound may be purified by distillation.
  • an alkyl phosphate diester aldehyde compound or an alkenyl phosphate compound can be obtained with high purity. Can be.
  • the alkyl phosphate compound or alkenyl phosphate compound preferably contains a phosphate monoester component and a phosphate diester component in a molar ratio of 70: 300: 100. It is more preferably 70: 30-30: 90, and even more preferably 70: 30-30: 70.
  • the alkyl phosphoric acid ester compound or alkenyl phosphate compound comprises a plurality of components, such mixtures, phosphoric acid monoester component and a phosphodiester component
  • the R 1 are identical groups (For example, the compounds represented by the above general formulas (5a) and (5b)).
  • a phosphate monoester component and a phosphate diester component in which R 1 is the same or different groups for example, the above general formulas (5a) and (5b), and the above general formulas (6a) and (6b)
  • R 1 is the same or different groups
  • the alkyl phosphate ester compound represented by the above formula (5a) and / or (5b) is preferably represented by the above formula (5b).
  • Alkyl phosphate compounds containing at a ratio of 50 are particularly preferred. Les ,.
  • the resin composition according to the present embodiment contains a rare earth metal ion and an alkyl phosphate compound or an alkeninole phosphate compound as described above.
  • An alkyl phosphate ester rare earth metal compound or an alkenyl phosphate ester rare earth metal compound obtained by reacting an alkenyl phosphate ester compound with a rare earth metal compound may be contained.
  • the rare earth metal compound the aforementioned rare earth metal salts can be used.
  • the reaction between the alkyl phosphate compound or the alkenyl phosphate and the rare earth metal salt is carried out by bringing them into contact under appropriate conditions.
  • the reaction conditions are a reaction temperature of 0 to 250 ° C, preferably 40 to 180 ° C, and a reaction time of 0.5 to 30 hours, preferably 1 to 10 hours.
  • the organic solvent include aromatic compounds such as toluene, alcohols such as methyl alcohol, glycol ethers such as methyl cellosolve, ethers such as getyl ether, ketones such as acetone, and ethyl acetate. Esters are exemplified.
  • the reaction between the alkyl phosphate compound or alkenyl phosphate and the rare earth metal salt causes an anion from the rare earth metal salt.
  • the acid component is liberated.
  • Such an acid component reduces the moisture resistance and thermal stability of the resin composition when the alkyl phosphate compound or alkenyl phosphate ester is dissolved or dispersed in a polybutylacetal resin to form a resin composition. It is preferable to remove it as necessary, since it may cause the formation.
  • the alkyl phosphate rare earth metal compound or the alkenyl phosphate dilute In the case of producing an earth metal compound, an alkyl phosphate compound or an alkenyl phosphate compound is reacted with a rare earth metal salt, and then the generated acid component (the acid component formed in the method of (Port)) is used. And organic solvents) can be removed by distillation.
  • a preferable method for removing the acid component is insoluble or hardly soluble in water.
  • the organic solvent phase and the aqueous phase in which the rare earth metal salt is dissolved or dispersed are mixed with the organic solvent phase.
  • an alkyl phosphate ester compound or an alkenyl phosphate compound is allowed to react with a rare earth metal salt, and then an organic solvent phase and an aqueous phase are separated.
  • examples of the alkali include sodium hydroxide, potassium hydroxide, and ammonia.
  • the alkali is not limited to these.
  • a water-soluble salt is formed by the acid component released from the copper salt and the alkali, and the salt is transferred to the aqueous phase, and the resulting alkyl phosphate ester rare earth metal compound or alkenyl phosphate is formed. Since the ester compound moves to the organic solvent phase, the acid component is removed by separating the aqueous layer and the organic solvent layer.
  • alkyl phosphate rare earth metal compound or the alkenyl phosphate rare earth metal compound obtained by the method (a) (c) include, for example, a compound represented by the following general formula (7a): Alkyl phosphate ester rare earth metal compound or alkenyl phosphate rare earth metal compound derived from phosphate monoester component represented, or alkyl phosphate ester derived from phosphate diester component represented by the following general formula (7b) Rare earth metal compounds or alkenyl phosphate rare earth metal compounds are exemplified.
  • the alkyl phosphate ester rare earth metal compound or the anorekeninole phosphate ester rare earth metal compound is an alkyl phosphate ester compound or an alkenyl phosphate ester compound alone or in combination of two or more, and a rare earth metal salt. It may be obtained by reaction. Therefore, for example, in the following general formula (7b), the three phosphate residues bonded to the rare earth metal ion M may be the same or different from each other.
  • R 1 independently represents an alkyl group having a carbon number power of 18 or an alkenyl group having a carbon number power of S418, and M represents a rare earth metal ion.
  • R 1 in the metal compound or the alkenyl phosphate diester rare earth metal compound (hereinafter, referred to as “phosphate rare earth compound”) is an alkyl phosphate represented by the above general formulas (1a) and (lb).
  • the same substituent as R 1 in the compound can be mentioned as a suitable substituent.
  • the phosphate rare earth metal compounds can be used alone or in combination of two or more.
  • the phosphate ester rare earth metal compound represented by the general formula (7b) is preferred, while the phosphate ester rare earth metal compound is composed of a plurality of components.
  • the phosphate ester rare earth metal compound represented by the general formula (7a) and the ester phosphate rare earth metal compound represented by the general formula (7b) are in a ratio of 50:50 (molar ratio). Is preferred.
  • the content ratio of such a phosphate rare earth metal compound varies depending on the use or purpose of use of the resin composition, but is preferably 0.1 to 90% by mass based on the total mass of the resin composition. More preferably 0.1 to 70% by mass, even more preferably 0.160% by mass
  • the alkyl phosphate compound or the alkenyl phosphate ester compound or the rare earth metal ion can be uniformly formed without precipitation. It can be dissolved or dispersed.
  • the ratio of the total amount of hydroxyl groups contained in the alkyl phosphate ester compound or alkenyl phosphate compound to the rare earth ion is preferably 0.5 to 8 in molar ratio. More preferably, it is 0.5-6, and still more preferably 0.8-14. If the ratio of the OH groups is less than 0.5, it becomes difficult to disperse the alkyl phosphate compound or the alkyl phosphate compound in the resin, and the absorption performance and the light transmittance for a specific wavelength are not good. Tends to be sufficient.
  • the ratio of ⁇ H groups exceeds 8
  • the proportion of hydroxyl groups that do not participate in coordination bonds and / or ionic bonds with rare earth ions becomes excessive, so that the composition having such a composition ratio has a hygroscopic property. They tend to be relatively large.
  • the polybutyl acetal resin can be obtained by partially or mostly acetalizing polybutyl alcohol with an aldehyde.
  • polyacetal resins polyvinyl butyral resin is preferred.
  • the resulting interlayer film has excellent transparency, weather resistance, adhesion to glass, and the like.
  • the polyvinyl acetal resin may be blended in an appropriate combination depending on the required physical properties.
  • the polyvinyl acetal obtained by combining the aldehyde with the aldehyde during the acetalization may be used. It may be resin.
  • the molecular weight, molecular weight distribution and degree of acetalization of such a polyvinyl acetal resin are not particularly limited, for example, the degree of acetalization is preferably from 40 to 85%, and more preferably the lower limit is 60%. The more preferred upper limit is 75%.
  • the polybutyl alcohol resin used in the production of the polybutyl acetal resin is obtained, for example, by converting poly (vinyl acetate), and preferably has a degree of deterioration of 8099.8 mol%. .
  • the preferred lower limit of the viscosity average degree of polymerization of the polybutyl alcohol resin is 200, and the upper limit is 3000. If the viscosity average degree of polymerization is less than 200, the resulting laminated glass tends to have reduced penetration resistance. On the other hand, if it exceeds 3,000, the moldability of the resin film becomes poor, and the rigidity of the resin film becomes too large, so that the processability tends to deteriorate.
  • the lower the viscosity average polymerization degree is more preferable.
  • the limit is 500 and the upper limit is 2000.
  • the viscosity average degree of polymerization and degree of polymerization of the polybutyl alcohol resin can be measured, for example, based on JISK 6726 “Testing method for polybutyl alcohol”.
  • aldehyde used for acetalization examples include aldehydes having 11 to 10 carbon atoms, such as propionaldehyde, n-butyraldehyde, isobutyraldehyde, 2-ethylbutyl aldehyde, n-valeraldehyde, and the like.
  • n-pentylaldehyde n-hexynoleanolaldehyde, ⁇ -octylaldehyde, n-nonylaldehyde, n-decinoleanolaldehyde, honolemunoraldehyde, acetaldehyde, benzaldehyde and the like. They may be used alone or in combination of two or more. Of these, S4 butyl aldehyde is preferred.
  • the average degree of polymerization of the polybutyl acetal resin thus obtained is preferably 500 to 3,000, and more preferably the average degree of polymerization is 1,000, 2,500.
  • Suitable polyvinyl acetal resins include, for example, polyvinyl formal resin (vinyl alcohol) obtained by partially or mostly acetalizing polybutyl alcohol with formaldehyde, and polyvinyl alcohol having 4 carbon atoms.
  • a polyvinyl butyral resin partially or mostly acetalized with butyraldehyde.
  • These resins can be used alone or in combination of two or more.
  • polyvinyl butyral resin among these resins has high adhesiveness to light-transmitting materials such as glass and plastic. , Is preferably used.
  • the content of the polybiacetal resin is the remainder obtained by removing the total mass of the rare earth metal ion, the alkyl phosphate ester compound and the optional components described below from the total mass of the resin composition.
  • the resin composition may further contain, as optional components, a benzotriazole-based, benzophenone-based or salicylic acid-based ultraviolet absorber, other antioxidants, stabilizers, and the like.
  • a benzotriazole-based, benzophenone-based or salicylic acid-based ultraviolet absorber other antioxidants, stabilizers, and the like.
  • additives such as antioxidants for preventing deterioration due to heat in the extruder, dyes and pigments for toning, surfactants, flame retardants, antistatic agents, and moisture resistance. Etc. may be added.
  • Examples of the ultraviolet absorber include benzoate compounds, salicylate compounds, and benzophene compounds.
  • Examples include non-based compounds, benzotriazole-based compounds, cyanoacrylate-based compounds, oxalic acid amide-based compounds, and triazine-based compounds.
  • Examples of the benzoate compound include 2,4_di-t_butylphenyl 3 'and 5'_di-t-butinole-1 4'-hydroxybenzoate, and examples of the salicylate compound include phenyl salicylate and p_t —Butylphenyl salicylate.
  • Benzophenone-based compounds include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-15-sulfonic acid, and 2-hydroxy-1_n.
  • Examples of the benzotriazole-based compound include 2_ (2-hydroxy-5,1-methylphenyl) benzotriazole, 2- (2,1-hydroxy_3,1t-butyl-5'-methylphenyl) -15-chlorobenzototriazole, 2 — (2'-Hydroxy-3 ', 5'-di-t-butylphenyl) -5-chloro-benzotriazole, 2_ (2'-Hydroxy-3', 5'_di-t-butylphenyl) benzotriazole, 2_ (2'-hydroxy_5_t-octylpheninole) benzotriazole, 2_ (2'-hydroxy-5-t-butylphenyl) benzotriazole, 2- [2, -hydroxy-3,-(3 ,,, 4 ", 5, ', 6''-tetrahydrophthalimidomethyl)-5'-methylphenyl] benzotriazole, 2- (2, -hydroxy
  • Examples of the cyanoacrylate compound include ethinoleate 2_cyano-13,3-diphenylacrylate relay 2_cyano_3,3-diphenylatalylate, and examples of the anilide oxalate-based compound include: 2_ethoxy_2'_bisilanilic acid bisanilide ⁇ 2_ethoxy-5_t-butyl-2'_bisilanilic acid bisanilide.
  • Examples of the triazine-based compound include 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-[(hexinole) oxy] -phenol.
  • Examples of the stabilizer that can be added to the resin composition include a light stabilizer.
  • a light stabilizer In particular, when the above-mentioned ultraviolet light absorber and this light stabilizer are used in combination, the stability to light tends to be extremely good.
  • a hindered amine light stabilizer (HALS) or a Ni compound can be used as the light stabilizer.
  • HALS includes bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6_pentamethyl-4-piperidyl) sebacate, 1- [2- [3- (3,5_t-butyl-4-hydroxyphenyl) propionyloxy] ethyl] _4_ [3_ (3,
  • Examples of the light stabilizer of the Ni-based compound include [2,2'-thio-bis (4t-octylphenolate)] _ 2-ethylhexylamine-nickel (II) and nickel dibutyldithiocarbonate. , [2,2,1-thio-bis (4-octyl phenolate)]-butylamine-nickel ( ⁇ ) and the like.
  • the resin composition may contain various plasticizers.
  • plasticizers are commonly used, and examples thereof include organic plasticizers such as monobasic organic acid esters and polybasic organic acid esters; A phosphoric acid plasticizer such as an organic phosphorous acid is preferably used. These plasticizers may be used alone or two or more types may be used in combination, depending on the type of resin to be used.
  • Examples of the monobasic organic acid ester include glycols such as triethylene glycol, tetraethylene glycol or tripropylene glycol, butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptanoic acid, and n-octanoic acid. And glycol-based esters obtained by reaction with monobasic organic acids such as 1,2-ethylhexanoic acid, pelargonic acid (n-nonylic acid) and desinoleic acid.
  • glycols such as triethylene glycol, tetraethylene glycol or tripropylene glycol, butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptanoic acid, and n-octanoic acid.
  • glycol-based esters obtained by reaction with monobasic organic acids such as 1,2-ethylhexanoic acid, pelargonic acid (n-nonylic
  • Examples include xyl adipate (DHA), tetraethylene glycol diheptanoate (4G7), tetraethylene glycol di-2-ethylhexanoate (4GO), and triethylene glycol diheptanoate (3G7).
  • DHA xyl adipate
  • 4GO tetraethylene glycol di-2-ethylhexanoate
  • 3G7 triethylene glycol diheptanoate
  • the polybasic organic acid ester is not particularly limited.
  • a polybasic organic acid such as adipic acid, sebacic acid or azelaic acid and a linear or branched alcohol having 418 carbon atoms And the like.
  • dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate and the like are preferably used.
  • plasticizers for organic acid esters include phthalic acid plasticizers such as dioctyl phthalate and dibutyl phthalate, and fatty acid plasticizers such as dibutyl sebacate, butyl ricinoleate, methyl acetinol resinolate, and butyl succinate. And butyl phthalyl butyl dalicholate and glycol-based plasticizers such as polyethylene glycol.
  • organic phosphoric acid plasticizer examples include tributoxyshethyl phosphate, isodecyl phenyl phosphate, triisopropyl phosphate, tricresyl phosphate, and triphenyl phosphate.
  • the content of the plasticizer in the resin composition is preferably 1 to 120 parts by mass with respect to 100 parts by mass of the resin material, and more preferably 1 to 100 parts by mass. More preferably, it is 80 parts by mass.
  • the content of the plasticizer is less than 1 part by mass with respect to 100 parts by mass of the resin material, the solubility of the rare earth metal ion or the phosphorus-containing compound may be reduced, and the translucency may be insufficient.
  • the resin material as the base material becomes too flexible, and for example, it is difficult to use it as an interlayer film in laminated glass.
  • the resin composition may contain an adhesion regulator as required.
  • these adhesive force adjusters may be applied to the surface of an intermediate film made of the resin composition.
  • the adhesion regulator include an alkali metal salt or an alkaline earth metal salt of an organic acid or an inorganic acid, and a modified silicone oil.
  • Examples of the organic acid include carboxylic acids such as octanoic acid, hexanoic acid, butyric acid, acetic acid, and formic acid.
  • Examples of the inorganic acid include hydrochloric acid, nitric acid and the like.
  • Alkali gold Examples of the genus salts and alkaline earth metal salts include salts of potassium, sodium, calcium, magnesium and the like.
  • alkali metal salts or alkaline earth metal salts of organic acids or inorganic acids alkali metal salts and alkaline earth metal salts of organic acids having 2 to 16 carbon atoms are more preferable, and the number of carbon atoms is more preferable.
  • 216 are potassium salts and magnesium salts of carboxylic acids.
  • the potassium salt and magnesium salt of a carboxylic acid having 2 to 16 carbon atoms are not particularly limited.
  • magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, magnesium 2-ethylbutanoate, 2_ Preferred are potassium ethylbutanoate, magnesium 2-ethylhexanoate, potassium 2-ethylhexanoate, and the like. These may be used alone or in combination of two or more.
  • the preferred lower limit of the amount of the alkali metal salt or alkaline earth metal salt of an organic acid or inorganic acid is 0.001 part by weight per 100 parts by weight of the resin, and the upper limit is 0.5 part by weight. It is. If the amount is less than 0.001 parts by weight, the adhesive strength of the peripheral portion may be reduced in a high humidity atmosphere. If the amount exceeds 0.5 parts by weight, the transparency of the film may decrease. From the viewpoint of preventing these inconveniences, the more preferred lower limit of the amount of the alkali metal salt or alkali earth metal salt of the organic acid or inorganic acid is 0.01 part by weight, and the upper limit is 0.2 part by weight. It is.
  • the modified silicone oil is not particularly limited, and examples thereof include an epoxy-modified silicone oil, an ether-modified silicone oil, an ester-modified silicone oil, an amine-modified silicone oil, and a carboxyl-modified silicone oil. These may be used alone or in combination of two or more. Note that these modified silicone oils can generally be obtained by reacting a compound to be modified with polysiloxane.
  • the preferred lower limit of the molecular weight of the modified silicone oil is 800, and the upper limit is 5,000. If the molecular weight is less than 800, localization on the surface may be insufficient. On the other hand, if it exceeds 5,000, the compatibility with the resin is reduced, and the resin bleeds out to the surface of the film, and the adhesive strength with glass may be reduced. From the viewpoint of preventing these, the more preferred lower limit of the molecular weight of the modified silicone oil is 1500, and the more preferred upper limit is 4000. [0081] When the modified silicone oil is added, the preferred lower limit of the amount is 0.01 parts by weight and the upper limit is 0.2 parts by weight based on 100 parts by weight of the resin.
  • the amount is less than 0.01 parts by weight, the effect of preventing whitening due to moisture absorption may be insufficient.
  • the amount exceeds 0.2 parts by weight the solubility of the resin in the resin may decrease, and the modified silicone oil may bleed out to the surface of the film to lower the adhesive strength between the resin and the glass.
  • a more preferred lower limit of the molecular weight of the modified silicone oil is 0.03 parts by weight, and a more preferred upper limit is 0.1 parts by weight.
  • the optical member is formed using the above-described resin composition, and the following three types are suitable.
  • First form Formed with the resin composition described above.
  • Second form a transparent substrate made of a light-transmitting material such as glass or plastic, and the above-described resin composition bonded to the transparent substrate.
  • Third form a transparent substrate made of a light-transmitting material such as glass or plastic on which a layer made of the above resin composition is formed.
  • Examples of the optical member of the first embodiment include a plate-like (including circular) lens, sheet, and film.
  • the sheet refers to a sheet obtained by melting the above resin composition and forming the sheet into a thin plate having a thickness of 250 ⁇ or more by, for example, extrusion molding.
  • film refers to a film obtained by melting the above resin composition to form a thin film having a thickness of 5 to 250 ⁇ by, for example, stretch molding.
  • a melt extrusion molding method, a calendar molding method, a press molding method, a solution casting method and the like are suitably used.
  • the plate-shaped lens can be formed by an injection molding method, a melt extrusion molding method, or the like.
  • the above-mentioned sheet or film is used as a laminated glass intermediate film, and the laminated glass intermediate film and a light-transmitting material made of glass, plastic, or the like are used. And lamination.
  • a means for bonding the laminated glass intermediate film composed of a sheet or film and the light-transmitting material means for bonding by pressurizing or depressurizing such as a press method, a multi-roll method, a depressurizing method, and autoclave are used. Means for bonding by heating or a combination of these means.
  • the interlayer for laminated glass preferably has a thickness of 0.001 to 10 mm, particularly 0.01 to 5 mm. If the thickness of the interlayer film for laminated glass is less than 0.001 mm, it may be difficult to obtain an interlayer film having a high absorbance for light of a specific wavelength, and the antiglare property may be insufficient. . On the other hand, when the thickness of the interlayer film for laminated glass exceeds 10 mm, it is difficult to obtain an interlayer film having a high visible light transmittance, and the light transmittance may be low.
  • Examples of the optical member of the third mode include a coating.
  • coating means that a solution or dispersion obtained by dissolving or dispersing the above resin composition in an appropriate solvent is applied to a required surface and the solvent is evaporated to form a part or all of the surface. Thin film, coating or thin layer.
  • a dissolution aid such as a leveling agent or various surfactants as an antifoaming agent is added to the solution or the dispersion. Is also good.
  • the optical member according to the first to thirteenth embodiments has excellent antiglare properties because it can absorb light of a specific wavelength due to the inclusion of rare earth metal ions, and Since the solubility and dispersibility of the rare earth metal ion in the resin composition are good, the light transmittance is also excellent. In addition, excellent light fastness can be obtained, and the decrease in light transmittance due to heating or long-term storage is significantly reduced. In addition, when a polyvinyl acetal resin, particularly a polybutyral resin, is contained as a resin component, the adhesiveness to a light-transmitting material becomes excellent. Furthermore, since the polybiacetal resin has thermoplasticity, molding can be easily performed.
  • an interlayer film made of a thermoplastic resin having an adhesive property is inserted between two glass plates, and the obtained laminate is pre-pressed to form air remaining between the respective layers.
  • a method is adopted in which the laminate is completely adhered by completely press-bonding after eliminating the pressure.
  • the interlayer used in this case is that the interlayers are coalesced during storage and form a lump, so-called blocking phenomenon does not occur, workability at the time of overlaying the glass and the interlayer is good, and Good deaeration in the pre-compression bonding step is required. Deaeration during pre-crimping affects the quality of the laminated glass. There is a force S that the transparency of the laminated glass deteriorates and bubbles are generated when the accelerated test is performed.
  • the overall performance of the interlayer film as described above depends on the type of thermoplastic resin as a material and physical properties such as viscoelasticity. However, when these physical properties are fixed and considered, the surface shape of the interlayer film is reduced. This is a major factor in determining its overall performance. In particular, an effect is obtained when a large number of fine irregularities called embosses are formed on the surface of the intermediate film, and an intermediate film having an embossed surface is conventionally used.
  • emboss examples include, for example, various uneven patterns composed of a large number of convex portions and a large number of concave portions corresponding to these convex portions, and various concave and convex patterns including a large number of convex portions and a large number of concave grooves corresponding to the convex portions.
  • embossed shapes that have various values for various shape factors, such as roughness, placement, size, and the like.
  • Such embosses include, for example, those in which the size of a convex portion is changed and its size and arrangement are specified as described in JP-A-6-198809, and JP-A-9-140444.
  • JP-A-9-1502755 describes a method using crosslinked PVB particles and a nucleating agent.
  • laminated glass may be required to have sound insulation.
  • sound insulation performance is indicated as a transmission loss amount according to a change in frequency. In JIS A4708, this transmission loss is specified as a constant value according to the sound insulation class at 500 Hz or higher.
  • the sound insulation performance of the glass sheet is significantly reduced in the frequency range around 2000 Hz due to the coincidence effect.
  • the coincidence effect means that when a sound wave enters a glass plate, a transverse wave propagates through the glass plate due to the rigidity and inertia of the glass plate, and the transverse wave and the incident sound resonate. As a result, sound transmission The phenomenon that occurs.
  • the reduction in sound insulation performance due to the coincidence effect is inevitable, and it is necessary to improve this point. is there.
  • Methods for imparting sound insulation to a laminated glass include a method of increasing the mass of the laminated glass, a method of compounding the glass, a method of subdividing the glass area, and a method of improving the means for supporting a glass plate. .
  • control means for example, a method using a resin film having a specific polymerization degree, a method for defining the structure of an acetal portion of a polyvinyl acetal resin as described in JP-A-4-2317443, A method for defining the amount of a plasticizer in a resin, as described in Japanese Unexamined Patent Publication No. 2001-220183, and the like.
  • the sound insulation performance of laminated glass can be improved over a wide temperature range.
  • a method of blending a plurality of types of resins as described in JP-A-2001-206742, JP-A-2001-206741, and a plurality of types of resins as described in JP-A-2001-226152 examples include a method of laminating a resin and a method of giving a bias to the amount of a plasticizer in an interlayer film as described in JP-A-2001-192243.
  • a method of increasing the heat shielding property of the laminated glass a method of including a metal or a metal oxide fine particle having a heat shielding function in an interlayer film, or a method of laminating a laminated glass structure by laminating a layer containing these materials.
  • a method of inserting an arbitrary position Specifically, for example, the methods described in JP-A-2001-206743, JP-A-2001-261383, JP-A-2001-302289 and the like can be exemplified.
  • a method of defining the particle size of the oxide fine particles Japanese Patent Application Laid-Open No. 2002-2933583
  • a method of improving dispersibility, and the like are used.
  • known fine particle dispersion techniques such as mechanically dispersing or using a dispersant can be used.
  • a method using an organic dye or pigment having a heat-shielding function as described in JP-A-7-157344 and JP-A-319271, which is not limited to metal or metal oxide fine particles, may also be used.
  • organic dye 'pigment examples include phthalocyanine, anthraquinone, naphthoquinone, cyanine, naphthalocyanine, pyrrole, immonium, dithiol, and mercaptonaphthol.
  • a method of increasing the heat shielding property of a laminated glass a method of producing a laminated glass using a glass having a heat shielding function is exemplified.
  • No. 226148 a method using a glass plate on which a metal or metal oxide is laminated, and the like.
  • a method as exemplified below can be used.
  • a method of improving the penetration resistance for example, a method of using ⁇ -olefin-modified polybutylacetal as a resin base material as described in JP-B-6-25005, and JP-A-10-25390 Examples include a method for defining the degree of polymerization of the resin and the amount of the plasticizer to be added, and a method for reducing the thickness deviation of the interlayer as described in JP-A-11-147736.
  • Japanese Patent No. 2624779 a method in which a resin is subjected to radiation graft desaturation, and a method described in JP-A-11-322378 discloses a method of adding silicone oil as described in Japanese Unexamined Patent Publication, a method of adding an alkali metal or an alkaline earth metal as described in Japanese Patent Application Laid-Open No. 2000-1238586, and Japanese Patent Application Laid-Open No. 2002-505210. And a method of adding a surface energy modifier as described in the above.
  • Japanese Patent Application Laid-Open No. 2000-128586 discloses a method for defining the amount of an alkali metal or alkaline earth metal to be added, a method for defining the oxyalkylene glycol content as described in JP-A-2001-139352
  • Japanese Patent Application Laid-Open No. 2001-163640 discloses a method using a resin having specified characteristics, and a method described in Japanese Patent Application Laid-Open No. 6-211548, in which a silane coupling material is sealed.
  • an ultraviolet absorber is added as described in JP-B-4-29697, JP-A-10-194796, and JP-A-2000-128587.
  • the antistatic method include a method of adding an alkali metal carboxylate as described in JP-A-2001-240425, and a method of using an oxyalkylene compound as described in JP-A-2001-261384. And the like.
  • Examples of the toning method include a method of adding a dye as described in JP-A-9-183638.
  • the haze of the optical member is preferably 30% or less, more preferably 20% or less, more preferably 10% or less. Is particularly preferred. When the power haze exceeds 30%, the transmittance of visible light becomes insufficient, and the light transmittance decreases.
  • the laminated glass is not only an interlayer having a property of absorbing light in the near-infrared light region as described above, but also a near-infrared light for the purpose of further improving near-infrared light blocking properties. It may further include a layer having the property of reflecting light (infrared reflective layer). Such an infrared reflective layer can be introduced at any position of the laminated glass.
  • Examples of the infrared reflective layer include transparent layers composed of metals and metal oxides. Specifically, for example, gold, silver, copper, tin, aluminum, nickel, palladium, Examples thereof include simple metals such as silicon, chromium, titanium, indium, and antimony, alloys, mixtures, and oxides. Such an infrared reflective layer can be formed, for example, by depositing a metal-metal oxide on a surface on which the layer is to be formed.
  • JP-T-09-506837 JP-T 2000-506082, JP-T 2000-506084, JP-T 2004-525403, JP-T 2003-515754, JP-A-2002-231038, JP-T 2004-503 402, etc.
  • a polymer multilayer film that reflects a specific wavelength by using light interference may be applied.
  • the adhesiveness between the infrared reflective layer and a layer adjacent thereto may be reduced.
  • the adhesiveness between the infrared reflective layer and the intermediate film is reduced, and when the laminated glass is broken, the light is transmitted. * The substrate tends to be scattered. This raises security issues.
  • a means for adjusting the adhesiveness between the infrared reflective layer and a layer adjacent thereto can be employed.
  • a layer made of polybutyl acetal having a higher acetal degree than that of the intermediate film (particularly, between them) Japanese Patent Application Laid-Open No. 7-187726, Japanese Patent Application Laid-Open No. 8-337446) can be employed.
  • a method of providing a layer made of PVB having a predetermined ratio of an acetoxyl group Japanese Patent Application Laid-Open No. 8-337445
  • a reflective layer having near-infrared light reflectivity is further provided in addition to the intermediate film having near-infrared light absorbability, so that the effect of the two layers allows the laminated glass to be laminated. Extremely excellent near-infrared light blocking characteristics.
  • a method for improving the adhesiveness between the infrared reflective layer and the intermediate film (infrared absorbing layer) as described above is employed, a laminated glass having more excellent strength in addition to the near-infrared light blocking characteristics can be obtained. It is also possible to obtain
  • FIG. 1 is a sectional view schematically showing an example of the optical member according to the present embodiment.
  • the window material 10 is provided with a layer (hereinafter, referred to as an “anti-glare composition layer”) 2 made of the above-described resin composition on a plate-shaped substrate 1 made of a light-transmitting material such as glass or plastic. It can be suitably used for a single-layer glass window or its base material, a single-layer laminated glass window, a single-layer glass window, and the like.
  • the window material 10 having such a configuration is
  • the resin composition can be formed by applying (for example, coating) the resin composition to one of the main surfaces on the base material 1. Further, it is also possible to form the above-mentioned sheet or film by laminating it on one of the main surfaces on the plate-shaped substrate 1.
  • the window material 10 shown in FIG. 1 is provided with the antiglare composition layer 2 on one of the main surfaces of the plate-shaped substrate 1, and further has the other of the main surfaces of the plate-shaped substrate 1.
  • the anti-glare composition layer 2 may also be provided. Further, in the window material 10, the antiglare composition layer 2 may be further laminated on the antiglare composition layer 2.
  • the window material having such a configuration can be suitably used for a single-layer glass window or a base material thereof, a single-layer laminated glass window, a single-layer glass window, and the like, similarly to the above-described window material 10.
  • an antiglare composition layer 2 on the plate-shaped substrate 1, and a window material in which the plate-shaped substrate 1 was sequentially laminated and integrated an anti-glare composition layer 2 on the plate-shaped substrate 1
  • An antiglare composition layer 2, a plate-like member 1, and an antiglare composition layer 2 on a window material and a plate-like member 1 in which an antiglare composition layer 2 and a plate-like substrate 1 are sequentially laminated and integrated. are laminated one after another, and a window material and the like are integrated.
  • These window materials are a preferable mode for a combined glass window.
  • the antiglare composition layer 2 functions as an intermediate film (for example, a laminated glass intermediate film) of the two plate-shaped substrates 1.
  • the above-described antiglare composition layer 2 may contain an infrared absorbing composition containing a phosphoric acid ester conjugate and a metal ion.
  • an infrared absorbing composition containing a phosphoric acid ester conjugate and a metal ion.
  • a window material in which an antiglare composition layer 2 and an infrared absorbing composition layer are sequentially laminated on the plate-like member 1, the infrared absorbing composition layer and the anti-glare composition on the plate-like member 1 A window material in which the layer 2 is sequentially laminated, or a window material in which the antiglare composition layer 2, the infrared absorbing composition layer, and the antiglare composition layer 2 are sequentially laminated on the plate-like member 1, may be used.
  • the window material 10 having such an infrared absorbing composition layer exhibits a function as a heat ray absorbing material due to its near-infrared light absorbing property, and various members that need to block heat rays are used.
  • Applicable to Applications include, for example, window materials and roofing materials that take in natural light such as sunlight and other external light (houses, stores and other buildings or structures, automobiles and other vehicles). (Translucent members used for transporting equipment, their storage locations, traffic paths, etc.), general members intended for indoor and outdoor tanning, and the like.
  • External light such as sunlight contains ultraviolet rays that have a harmful effect on the human body (skin) and cause deterioration of paints, paints, rubber products, plastic products, and the like.
  • a window material 10 not only absorbs heat rays but also has a performance of blocking ultraviolet light among wavelength components of incident light, and thus can be suitably used as a building material.
  • the window material 10 has high transmission characteristics for visible light.
  • the material constituting the plate-shaped substrate 1 is not particularly limited as long as it is a light-transmitting material having visible light transmittance, and can be appropriately selected depending on the application of the window material.
  • glass or plastic is preferably used as described above.
  • the glass include inorganic glass and organic glass.
  • the plastic include polycarbonate, acrylonitrile-styrene copolymer, polymethinole methacrylate, biel chloride resin, polystyrene, polyester, polyolefin, norbornene resin, and the like.
  • each may be made of the same type of material, or may be made of different materials.
  • a means for mixing with a mixer such as a Henschel mixer, a means for kneading and mixing with a roll kneader, a kneading extruder, or the like is used.
  • a mixer such as a Henschel mixer, a means for kneading and mixing with a roll kneader, a kneading extruder, or the like.
  • a means for dispersing each component in an appropriate organic solvent and removing the organic solvent from the dispersion can be used.
  • the optical member is a window material
  • the resin composition described above has excellent anti-glare properties and translucency as well as excellent moldability, so that anti-glare spectacle lenses (sunglasses), anti-glare filters, screen power bars, Extremely useful as a component of optical filters such as glare display filters, color purity correction filters, color tone correction filters, brightness adjustment filters for lighting equipment, optical communication function devices, Faraday devices, optical amplifiers, wavelength converters, etc. It is. Devices equipped with these devices include a color display (color image display device), a color imaging camera (color image imaging device), an illumination lamp (illumination equipment), a laser, and a communication optical amplifier. , A communication optical isolator, an optical switch, and the like.
  • neodymium acetate monohydrate 5 g
  • n-butyl phosphate compound manufactured by Tokyo Chemical Industry
  • a translucent solution was obtained.
  • toluene was distilled off to obtain 7.28 g of a composition containing neodymium ions and phosphoric acid ester conjugate.
  • Neodymium acetate monohydrate (5 g), methoxypropyl phosphate compound (manufactured by Johoku Chemical Co., Ltd.) with a molar ratio of 61.6: 33.6, a ratio of phosphate monoester component and phosphate diester component, S, 4.
  • a translucent solution was obtained.
  • toluene was distilled off to obtain 10 g of a composition containing neodymium ions and a phosphate compound.
  • a translucent solution was obtained by adding 5 g of copper acetate monohydrate and 16.6 g of 2-ethylhexyl phosphate compound (manufactured by Tokyo Chemical Industry) containing only the phosphodiester component to 10 g of toluene. Was done. After performing deacetic acid reflux using this solution, toluene was distilled off to obtain 21.0 g of a composition containing copper ion and a phosphate compound.
  • composition lg obtained in Preparation Example 1 was dissolved in 2 g of a plasticizer (3G ⁇ (triethylene glycol di-2-ethylhexanate), manufactured by Across Inc.), and a polybutyral resin (Esrec BH3, Sekisui Water) was dissolved. 7. The mixture was mixed with Og at 85 ° C. to obtain a resin composition.
  • a plasticizer 3G ⁇ (triethylene glycol di-2-ethylhexanate), manufactured by Across Inc.)
  • polybutyral resin Esrec BH3, Sekisui Water
  • the obtained resin composition was pressed several times by a press machine (WF-50, manufactured by Shindo Metal Co., Ltd.) adjusted to 85 ° C, and then pressed several times by a press machine adjusted to 120 ° C. Then, a sheet having a uniform surface with a thickness of 1. Omm was produced. And rare earth In order to test the solubility of the compound of metal ion and phosphoric ester in polyvinyl butyral resin, the appearance of the obtained sheet was visually observed and evaluated according to the following criteria. Table 1 shows the evaluation results.
  • the sheet obtained as described above was sandwiched between two slide glasses (76 mm ⁇ 26 mm XI.1 mm), and the obtained laminate was subjected to autoclave at a temperature of 130 ° C. and a pressure of 1. Vacuum pressing was performed while maintaining the pressure at 2 MPa for 30 minutes to produce a laminated glass.
  • a resin composition was obtained in the same manner as in Example 1, except that the composition lg obtained in Preparation Example 2 was used. Next, a sheet was obtained in the same manner as in Example 1, and after visually observing the appearance of the sheet, a laminated glass was obtained.
  • a resin composition was obtained in the same manner as in Example 1, except that 0.5 g of the composition obtained in Preparation Example 1 and 0.5 g of the composition obtained in Preparation Example 2 were used. Next, a sheet was obtained in the same manner as in Example 1, and the appearance of the sheet was visually observed, and then a laminated glass was obtained.
  • a resin composition was obtained in the same manner as in Example 1, except that 2 g of the composition obtained in Preparation Example 1 was used. Next, a sheet was obtained in the same manner as in Example 1, and after visually observing the appearance of the sheet, a laminated glass was obtained.
  • a resin composition was obtained in the same manner as in Example 1, except that 5 g of the composition obtained in Preparation Example 1 was used. Next, a sheet was obtained in the same manner as in Example 1, and after visually observing the appearance of the sheet, a laminated glass was obtained.
  • a resin composition was obtained in the same manner as in Example 1, except that 1 Og of the composition obtained in Preparation Example 1 was used. Then, a sheet was obtained in the same manner as in Example 1, and the sheet was After visually observing the appearance, a laminated glass was obtained.
  • a resin composition was obtained in the same manner as in Example 1, except that the composition lg obtained in Preparation Example 3 was used. Next, a sheet was obtained in the same manner as in Example 1, and after visually observing the appearance of the sheet, a laminated glass was obtained.
  • a resin composition was obtained in the same manner as in Example 1, except that the composition lg obtained in Preparation Example 4 was used. Next, a sheet was obtained in the same manner as in Example 1, and after visually observing the appearance of the sheet, a laminated glass was obtained.
  • a laminated glass was obtained in the same manner as in Example 1, except that the sheet obtained in Example 1 was sandwiched between green glasses (76 mm X 26 mm X 2 mm).
  • a resin composition was obtained in the same manner as in Example 1, except that 0.1 lg of the composition obtained in Preparation Example 5 was used. Next, a sheet was obtained in the same manner as in Example 1, and the appearance of the sheet was visually observed, and then a laminated glass was obtained.
  • a resin composition was obtained in the same manner as in Example 1, except that 0.1 lg of the composition obtained in Preparation Example 6 was used. Next, a sheet was obtained in the same manner as in Example 1, and the appearance of the sheet was visually observed, and then a laminated glass was obtained.
  • Example 13 A resin composition was obtained in the same manner as in Example 1, except that 0.1 lg of the composition obtained in Preparation Example 7 was used. Next, a sheet was obtained in the same manner as in Example 1, and the appearance of the sheet was visually observed, and then a laminated glass was obtained.
  • neodymium acetate 'monohydrate 5g plasticizer (3G_ ⁇ (Kisaneto to triethylene glycol over Gee 2 E Ji Le), manufactured by Akurosu Ltd.) and 2 g, poly Bulle butyral resin (S-LEC BH3, Sekisui Chemical Co., 7.) Og was mixed at 85 ° C. to obtain a resin composition. Next, a sheet was obtained in the same manner as in Example 1, and the appearance of the sheet was visually observed, and then a laminated glass was obtained.
  • plasticizer (3G_ ⁇ (Kisaneto to triethylene glycol over Gee 2 E Ji Le), manufactured by Akurosu Ltd.) and 2 g, poly Bulle butyral resin (S-LEC BH3, Sekisui Chemical Co., 7.) Og was mixed at 85 ° C. to obtain a resin composition. Next, a sheet was obtained in the same manner as in Example 1, and the appearance of the sheet was visually observed, and then a laminated glass was obtained.
  • a resin composition was obtained in the same manner as in Example 1, except that 1 g of the composition obtained in Comparative Preparation Example 1 was used. Next, a sheet was obtained in the same manner as in Example 1, and the appearance of the sheet was visually observed, and then a laminated glass was obtained.
  • the composition lg obtained in Comparative Preparation Example 2 was mixed at 85 ° C. with a polyvinyl butyral resin (Eslek BH3, manufactured by Sekisui Chemical Co., Ltd.) at 85 ° C. to obtain a resin composition. Next, a sheet was obtained in the same manner as in Example 1, and then a laminated glass was obtained.
  • a polyvinyl butyral resin Eslek BH3, manufactured by Sekisui Chemical Co., Ltd.
  • the composition lg obtained in Comparative Preparation Example 3 was mixed at 85 ° C. with a polyvinyl butyral resin (Eslec BL1, manufactured by Sekisui Chemical Co., Ltd.) at 85 ° C. to obtain a resin composition. Next, a sheet was obtained in the same manner as in Example 1, and then a laminated glass was obtained.
  • a polyvinyl butyral resin (Eslec BL1, manufactured by Sekisui Chemical Co., Ltd.) at 85 ° C.
  • composition lg obtained in Comparative Preparation Example 4 was mixed with a polybutyral resin (Eslec BL1, manufactured by Sekisui Chemical Co., Ltd.) at 85 ° C. together with 9. Og to obtain a resin composition.
  • a sheet was obtained in the same manner as in Example 1, and then a laminated glass was obtained.
  • the composition lg obtained in Comparative Preparation Example 5 was mixed at 85 ° C. with a polybutyral resin (Eslec BH3, manufactured by Sekisui Chemical Co., Ltd.) at 85 ° C. to obtain a resin composition. Then, the embodiment After a sheet was obtained in the same manner as in 1, a laminated glass was obtained.
  • a polybutyral resin Eslec BH3, manufactured by Sekisui Chemical Co., Ltd.
  • the laminated glass prepared by using the resin compositions of Examples 11 and 13 and Comparative Examples 12 and 13 was used in accordance with JIS K0101 23.
  • the haze at C was measured using a turbidimeter (product name: NDH-1001D P, manufactured by Nippon Denshoku Industries). Table 1 shows the measurement results.
  • the content of ⁇ ⁇ Figure 2 shows the relationship.
  • FIG. 3 shows the spectrum of the laminated glass of Example 13 and Comparative Example 1
  • FIG. 4 shows the spectrum of the laminated glass of Example 46.
  • the laminated glass of Examples 7 to 8 is shown in FIG. Fig. 5 shows the spectrum of.
  • FIG. 3-5 the spectral spectrum of the laminated glass of Example 18 is shown as E1-8, and the spectral spectrum of the laminated glass of Comparative Example 1 is shown as C1.
  • FIG. 6 shows the spectral spectrum of the laminated glass obtained in Example 9 at 300 to 2300 nm
  • FIG. 7 shows the spectral spectrum of the laminated glass obtained in Example 10 at 300 to 300 nm.
  • Example 1 ⁇ 87. 2 76. 4 2. 1
  • Example 2 ⁇ 91.3 90. 3 1.6
  • Example 4 ⁇ 84. 2 66. 6 3 1
  • Example 5 ⁇ 73.5 38.2 4.8
  • Example 6 ⁇ 63.7 20.7 12.6
  • Example 7 ⁇ 90. 1 88.2 13.2
  • Example 8 ⁇ 88. 1 84. 5 10.7
  • Example 9 ⁇ 78. 4 3.5 Example 10 ⁇ 71.5 57. 8 4.1
  • Example 11 ⁇ 86.5 55.6.10
  • Example 12 ⁇ 88.8 76. 9 14.7
  • xenon weather meter (Atlas C135, manufactured by Toyo Seiki Seisaku; light source: xenon lamp, automatic irradiation intensity: 0.78WZm 2, black panel temperature: 63 ° C) to have use of, subjected to 100 hours ultraviolet radiation was. Then, the spectral transmittance (T (%)) in the visible light of each laminated glass after the irradiation of the ultraviolet rays was measured in the same manner as described above.
  • the frosted glass was stored in air for 40 days. Then, the haze (H (%)) of each laminated glass was measured in the same manner as described above. The change in haze ( ⁇ (%)) of the laminated glass before and after long-term storage was calculated, and the long-term storage stability was evaluated based on the change. The smaller the value of ⁇ , the smaller the change in haze due to the effect of the solvent, indicating higher stability. Table 4 summarizes the results obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a resin composition which uses a polyvinyl acetal resin as the resin component and is capable of imparting an optical member with excellent anti-dazzle property and sufficient light transmission property. The resin composition is characterized by containing a rare earth metal ion, an alkylphosphate compound or an alkenyl phosphate compound, and a polyvinyl acetal resin.

Description

明 細 書  Specification

樹脂組成物及び光学部材  Resin composition and optical member

技術分野  Technical field

[0001] 本発明は、樹脂組成物及びこれを用いた光学部材に関する。  The present invention relates to a resin composition and an optical member using the same.

背景技術  Background art

[0002] 従来、ガラスや樹脂等の透光性材料に金属イオンを含有させて、この金属イオンに よる特定の光学的特性を該透光性材料に付与する試みがなされてレ、る。このような 金属イオンとしては、特定の波長域の光線を吸収して防眩性を発現する希土類金属 イオンが知られている。  [0002] Conventionally, attempts have been made to incorporate metal ions into a light-transmitting material such as glass or resin to impart specific optical characteristics to the light-transmitting material by the metal ions. As such a metal ion, a rare earth metal ion that absorbs light in a specific wavelength range and exhibits antiglare properties is known.

[0003] また、このような希土類金属イオンを含有する樹脂組成物としては、例えば、希土類 金属イオン、(メタ)アタリロイル基等を有するリン酸エステルイ匕合物及びアクリル系樹 脂を含有する樹脂組成物等が知られている。そして、力かる樹脂組成物を用いた光 学部材としては、例えば、防眩性眼鏡レンズ、テレビ等に用いられる防眩フィルター、 照明器具の輝度調節フィルター、色調補正フィルターが挙げられる(例えば、特許文 献 1 , 2参照)。  [0003] Examples of such a resin composition containing a rare-earth metal ion include a resin composition containing a rare-earth metal ion, a phosphoric acid ester-containing compound having a (meth) atalyloyl group or the like, and an acrylic resin. Things are known. Examples of the optical member using the strong resin composition include, for example, an anti-glare spectacle lens, an anti-glare filter used for a television, a brightness adjustment filter of a lighting fixture, and a color tone correction filter (for example, see Patent See references 1 and 2.)

特許文献 1:特開 2000 - 247985号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2000-247985

特許文献 2:特開 2001 - 122923号公報  Patent Document 2: JP 2001-122923 A

発明の開示  Disclosure of the invention

発明が解決しょうとする課題  Problems to be solved by the invention

[0004] ところで、近年、光学部材の一つである合わせガラスの需要が高まっている。この合 わせガラスは、 2枚のガラス間に樹脂成分を含む中間膜を備えるものであり、樹脂成 分としてポリビュルァセタール樹脂やエチレン酢酸ビュル樹脂等が使用されている。 また、 自動車のフロントガラスにおいては、以前から安全性の確保を目的として合わ せガラスの使用が義務付けられている。さらに、このフロントガラス以外の自動車の窓 材ゃ建築の窓材においても、安全性や防犯の観点から、従来の安全ガラス等から合 わせガラスへの代替が望まれてレ、る。  [0004] In recent years, demand for laminated glass, which is one of the optical members, has been increasing. This laminated glass is provided with an intermediate film containing a resin component between two pieces of glass, and a polybutyl acetal resin, an ethylene butyl acetate resin, or the like is used as a resin component. For automotive windshields, the use of laminated glass has always been required for the purpose of ensuring safety. In addition, for window materials for automobiles other than the windshield and window materials for architecture, it is desired to replace conventional safety glass with laminated glass from the viewpoint of safety and crime prevention.

[0005] このような巿場トレンドの流れの中で、自動車や建築の窓材等においては、上述し た合わせガラスを使用することにより安全性を確保するとともに、更に紫外線吸収機 能や防眩機能等を付与した高付加価値の合わせガラスが要望されている。 [0005] In such a trend of the market trend, the window materials for automobiles and buildings, etc. are described above. There is a demand for a high-value-added laminated glass that ensures safety by using laminated glass and further has an ultraviolet absorbing function, an anti-glare function, and the like.

[0006] し力 ながら、合わせガラスに防眩性を付与するために、ポリビエルァセタール樹脂 に希土類金属イオンを添加して、合わせガラス用中間膜を形成するための樹脂組成 物の調製を試みると、当該樹脂中に希土類金属イオンを均一に溶解又は分散させる ことができなレ、。このため、樹脂成分としてポリビュルァセタール樹脂を用レ、、合わせ ガラス等の光学部材に対し防眩性及び透光性を付与することの可能な樹脂組成物 は、未だ提供されていない。  [0006] In order to impart an antiglare property to the laminated glass, a rare earth metal ion is added to the polybiacetal resin to prepare a resin composition for forming an interlayer film for laminated glass. And that the rare earth metal ions cannot be uniformly dissolved or dispersed in the resin. For this reason, there has not yet been provided a resin composition capable of using a polybulacetal resin as a resin component, and imparting an antiglare property and a light transmitting property to an optical member such as laminated glass.

[0007] 本発明は、上記問題点に鑑みてなされたものであり、樹脂成分としてポリビニルァ セタール樹脂を用い、光学部材に対し優れた防眩性及び充分な透光性を付与する ことの可能な樹脂組成物を提供することを目的とする。本発明はまた、当該樹脂組成 物を用いた光学部材を提供することを目的とする。  [0007] The present invention has been made in view of the above problems, and it is possible to use a polyvinyl acetal resin as a resin component to impart excellent antiglare properties and sufficient translucency to an optical member. An object is to provide a resin composition. Another object of the present invention is to provide an optical member using the resin composition.

課題を解決するための手段  Means for solving the problem

[0008] 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、希土類金属イオン とポリビニルァセタール樹脂とに特定のリン酸エステルイヒ合物を組み合わせることに より、上記目的が達成されることを見出し、本発明を完成するに至った。 [0008] The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, the above object was achieved by combining a rare earth metal ion and a polyvinyl acetal resin with a specific phosphoric acid ester compound. The inventors have found that the present invention has been completed.

[0009] すなわち、本発明の樹脂組成物は、希土類金属イオンと、アルキルリン酸エステル 化合物又はアルケニルリン酸エステル化合物と、ポリビュルァセタール樹脂と、を含 有することを特徴とする。 That is, the resin composition of the present invention is characterized by containing a rare earth metal ion, an alkyl phosphate compound or an alkenyl phosphate compound, and a polybutylacetal resin.

[0010] また、本発明の樹脂組成物は、希土類金属イオンと、アルキルリン酸エステル化合 物と、ポリビュルァセタール樹脂とを含有することを特徴としてもよい。 [0010] Further, the resin composition of the present invention may be characterized by containing a rare earth metal ion, an alkyl phosphate compound and a polybutylacetal resin.

[0011] 本発明によれば、樹脂成分としてポリビュルァセタール樹脂を用いた樹脂組成物で あっても、光学部材に対し優れた防眩性及び充分な透光性を付与することができる。 このように優れた防眩性を付与することができるのは、特定の波長域の光線を高い効 率で吸収可能な希土類金属イオンを含有することに主に基づいているものと、本発 明者らは推測している。また、充分な透光性を付与することができるのは、希土類金 属イオンがポリビエルァセタール樹脂中に凝集することなく均一に溶解又は分散する ことが可能になることに主に起因するものと、本発明者らは推察している。 [0012] また、希土類金属イオンのポリビュルァセタール樹脂への溶解性や分散性が優れ るようになる要因は必ずしも明らかではなレ、が、希土類金属イオンとリン酸基とがィォ ン結合及び/又は配位結合を形成すること、希土類金属イオンが結合したリン酸ェ ステルのアルキル基に基づいてポリビュルァセタール樹脂への相溶性が高められる こと等に起因するものと、本発明者らは推察している。さらに、本発明によれば、光に 対する優れた安定性、すなわち、優れた耐光性が得られるようになるほか、加熱や長 期保存による透光性の低下を大幅に抑制することも可能となる。その結果、本発明の 樹脂組成物を用いて得られる合わせガラスは、耐光性、耐熱性、保存安定性に優れ 、長期の使用によっても極めて劣化が少ないものとなる。 According to the present invention, excellent antiglare properties and sufficient translucency can be imparted to an optical member even with a resin composition using a polybulacetal resin as a resin component. The reason that such excellent anti-glare properties can be imparted is mainly based on the fact that it contains a rare earth metal ion capable of absorbing light rays in a specific wavelength range with high efficiency. Are speculating. In addition, the reason why the sufficient translucency can be imparted is mainly due to the fact that the rare earth metal ions can be uniformly dissolved or dispersed without aggregating in the polyvinyl alcohol resin. The present inventors speculate. [0012] Further, it is not always clear why the rare earth metal ion becomes excellent in solubility and dispersibility in the polybutylacetal resin, but the rare earth metal ion and the phosphate group have an ionic bond. And / or formation of a coordination bond, and an increase in compatibility with the polybutylacetal resin based on the alkyl group of the phosphate bonded with the rare earth metal ion. Speculate. Furthermore, according to the present invention, excellent stability against light, that is, excellent light resistance can be obtained, and a decrease in light transmittance due to heating or long-term storage can be significantly suppressed. Become. As a result, the laminated glass obtained by using the resin composition of the present invention is excellent in light resistance, heat resistance and storage stability, and has extremely little deterioration even after long-term use.

[0013] なお、本発明における「ポリビュルァセタール樹脂」とは、ポリビュルアルコールにァ ルデヒドを反応させてァセタール化した樹脂をレ、い、一部をァセタール化したもの及 び大部分 (完全を含む)をァセタールイ匕したものの双方が含まれる。このようなポリビ 二ルァセタール樹脂としては、例えば、ポリビエルホルマール樹脂(ビニロン)、ポリビ 二ルブチラール樹脂が挙げられる。  [0013] The "polyvinyl acetal resin" in the present invention refers to a resin obtained by reacting an aldehyde with a polybutyl alcohol to form an acetal, a part of which is acetalized, and a part of which is acetalized. ) Is included. Examples of such a polyvinyl acetal resin include a polyvinyl formal resin (vinylon) and a polyvinyl butyral resin.

[0014] また、上記アルキルリン酸エステル化合物又は前記アルケニルリン酸エステル化合 物は、下記一般式(la)及び/又は下記一般式(lb)で表される化合物であることが 好ましい。  [0014] The alkyl phosphate compound or the alkenyl phosphate compound is preferably a compound represented by the following general formula (la) and / or the following general formula (lb).

[化 1]

Figure imgf000005_0001
[Chemical 1]
Figure imgf000005_0001

[化 2]

Figure imgf000005_0002
[Chemical 2]
Figure imgf000005_0002

(式中、 R1はそれぞれ独立に炭素数が 4一 18のアルキル基又は炭素数 4一 18のァ ノレケニル基を示す。 ) 特に、上記アルキルリン酸エステル化合物は、下記一般式(la)及び/又は下記一 般式(lb)で表されるアルキルリン酸エステルイ匕合物であることが好ましい。 (In the formula, R 1 each independently represents an alkyl group having 418 carbon atoms or an olerecenyl group having 418 carbon atoms.) In particular, the alkyl phosphate compound is preferably an alkyl phosphate ester conjugate represented by the following general formula (la) and / or the following general formula (lb).

[化 3]  [Formula 3]

0  0

( HO)-P-OR1 (1 a) (HO) -P-OR 1 (1 a)

[化 4] [Formula 4]

0  0

、 ιι , , (1 b)  , Ιι,, (1 b)

[0016] このような特定のアルキルリン酸エステル化合物又はアルケニルリン酸エステル化 合物とすることにより、希土類金属イオンとともに樹脂への溶解性及び分散性がより 一層高められるため、防眩性及び透光性が格段に優れた樹脂組成物とすることがで きる。 [0016] By using such a specific alkyl phosphate compound or alkenyl phosphate compound, the solubility and dispersibility in the resin together with the rare earth metal ion are further enhanced, so that the antiglare property and the permeability are improved. It is possible to obtain a resin composition having extremely excellent light properties.

[0017] 本発明はまた、前述した本発明の樹脂組成物を用いてなることを特徴とする光学部 材を提供する。力かる光学部材は、上述した樹脂組成物が付与されて一体を成す光 学部材である。このため、本発明の光学部材は、特定の波長光に対する吸収性能、 すなわち防眩性に優れるとともに、高い透光性を有することができる。また、優れた耐 光性を有するようになるほか、加熱や長期保存による透光性の低下も極めて少ないも のとなる。  The present invention also provides an optical member characterized by using the above-described resin composition of the present invention. The strong optical member is an optical member to which the above-described resin composition is applied to form an integral unit. For this reason, the optical member of the present invention can be excellent in absorption performance for light of a specific wavelength, that is, excellent in anti-glare properties, and can have high translucency. In addition to having excellent light resistance, the decrease in translucency due to heating or long-term storage is extremely small.

[0018] なお、本発明の光学部材は、建築物の部材料に限られず、例えば、移動車両の窓 に用いられるような外光を取り込むための部材を含んでおり、より具体的には、例え ば、アーケード等の通路の天蓋材、カーテン、カーポートやガレージの天蓋、サンノレ 一ムの窓又は壁材、ショーウィンドウやショーケースの窓材、テント又はその窓材、ブ ラインド、定置住宅や仮設住宅等の屋根材ゃ天窓その他窓材、 自動車、船舶、航空 機又は電車 (鉄道)車両の窓材、道路標識等の塗装面の被覆材、その他パラソル等 の日除け具材、等が挙げられる。但し、これらに限定されない。 [0019] これらの光学部材に上述した樹脂組成物を付与する方法としては、例えば、当該 樹脂組成物を樹脂フィルムとして貼付したり、粘着性樹脂組成物と混合して塗布した り、コーティング材料と混合してコートしたりする方法が挙げられる。また、ガラス又は プラスチック等の透光性材料を用いる場合には、その調製、成形又は加工時に原材 料に添加'混合するといつた簡便な手段を用いることができる。 [0018] The optical member of the present invention is not limited to a component material of a building, and includes, for example, a member for taking in external light such as that used for a window of a moving vehicle, and more specifically, For example, canopies for aisles such as arcades, curtains, canopies for carports and garages, windows or wall materials for Sannore-me, window materials for show windows and showcases, tents or their window materials, blinds, fixed houses, Roofing materials for temporary housing, etc. ゃ Skylights and other window materials, window materials for cars, ships, aircraft or trains (railroad) vehicles, coating materials for painted surfaces such as road signs, sunshade materials such as parasols, etc. . However, it is not limited to these. As a method for applying the above-mentioned resin composition to these optical members, for example, the resin composition is applied as a resin film, mixed with an adhesive resin composition, applied, or coated with a coating material. For example, a method of coating by mixing. When a translucent material such as glass or plastic is used, a simple means can be used which is added to and mixed with the raw material during its preparation, molding or processing.

発明の効果  The invention's effect

[0020] 本発明によれば、樹脂成分としてポリビュルァセタール樹脂を用い、優れた防眩性 及び充分な透光性を有する樹脂組成物を提供することが可能になる。また、当該榭 脂組成物を用いることで、優れた防眩性及び充分な透光性を有する光学部材を提供 すること力 Sできる。  According to the present invention, it is possible to provide a resin composition having excellent antiglare properties and sufficient translucency by using a polybutylacetal resin as a resin component. Further, by using the resin composition, it is possible to provide an optical member having excellent anti-glare properties and sufficient translucency.

図面の簡単な説明  Brief Description of Drawings

[0021] [図 1]本発明による光学部材の一例を模式的に示す断面図である。  FIG. 1 is a cross-sectional view schematically showing one example of an optical member according to the present invention.

[図 2]実施例に係る光学部材のヘーズの測定結果の一例を示すグラフである。  FIG. 2 is a graph showing an example of a measurement result of haze of the optical member according to the example.

[図 3]実施例 1一 3及び比較例 1に係る光学部材の分光スペクトルの測定結果の一例 を示すグラフである。  FIG. 3 is a graph showing an example of measurement results of spectral spectra of optical members according to Examples 13 and 13 and Comparative Example 1.

[図 4]実施例 4一 6に係る光学部材の分光スペクトルの測定結果の一例を示すグラフ である。  FIG. 4 is a graph showing an example of a measurement result of a spectral spectrum of the optical member according to Examples 416.

[図 5]実施例 7— 8に係る光学部材の分光スペクトルの測定結果の一例を示すグラフ である。  FIG. 5 is a graph showing an example of a measurement result of a spectrum of the optical member according to Examples 7-8.

[図 6]実施例 9に係る光学部材の分光スペクトルの測定結果の一例を示すグラフであ る。  FIG. 6 is a graph showing an example of the measurement result of the spectral spectrum of the optical member according to Example 9.

[図 7]実施例 10に係る光学部材の分光スペクトルの測定結果の一例を示すグラフで ある。  FIG. 7 is a graph showing an example of the measurement result of the spectral spectrum of the optical member according to Example 10.

符号の説明  Explanation of symbols

[0022] 1…板状基材、 2…樹脂組成物からなる層(防眩組成物層)、 10…窓材。  [0022] 1 ... plate-like base material, 2 ... layer made of resin composition (anti-glare composition layer), 10 ... window material.

発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION

[0023] 以下、本発明の樹脂組成物及び光学部材の実施形態に関し詳細に説明する。 [0024] (樹脂組成物) Hereinafter, embodiments of the resin composition and the optical member of the present invention will be described in detail. (Resin composition)

先ず、樹脂組成物について説明する。樹脂組成物は、希土類金属イオンと、アルキ ルリン酸エステル化合物又はァルケ二ルリン酸エステルと、ポリビニルァセタール榭 脂と、を含有するものである。  First, the resin composition will be described. The resin composition contains a rare earth metal ion, an alkyl phosphate ester compound or an alkenyl phosphate ester, and a polyvinyl acetal resin.

[0025] 希土類金属イオンとしては、ランタノイドイオン、すなわち、ランタンイオン、セリウム イオン、プラセオジムイオン、ネオジムイオン、プロメチウムイオン、サマリウムイオン、 ユーロピウムイオン、ガドリニウムイオン、テルビウムイオン、ジスプロシウムイオン、ホ ルミゥムイオン、エルビウムイオン、ツリウムイオン、イッテルビウムイオン、ルテチウム イオン等を例示することができる。そして、これらの希土類金属イオンは、それぞれの 金属イオンを含む金属化合物を供給源とすることができる。  [0025] Rare earth metal ions include lanthanoid ions, that is, lanthanum ion, cerium ion, praseodymium ion, neodymium ion, promethium ion, samarium ion, europium ion, gadolinium ion, terbium ion, dysprosium ion, holmium ion, erbium ion, Thulium ion, ytterbium ion, lutetium ion and the like can be exemplified. These rare earth metal ions can be supplied from metal compounds containing the respective metal ions.

[0026] このような金属化合物(以下、「希土類金属塩」とレ、う。)としては、例えば、希土類金 属との有機酸塩、希土類金属との無機塩の無水物又は水和物、希土類金属の酸化 物、希土類金属の水酸化物等のヒドロォキシ塩ゃヒドロオタソ錯塩が挙げられる。また 、ネオジム一 2, 4—ペンタンジォネート、ネオジムトリフルォロペンタンジォネートといつ た化合物も例示可能である。なお、上述した有機酸塩を構成する有機酸としては、例 えば、酢酸、安息香酸、シユウ酸、アクリル酸、メタクリル酸が挙げられ、無機酸塩を構 成する無機酸としては、例えば、硫酸、塩酸、硝酸、フッ酸、水酸化物が例示できる。 これらの中では、入手が容易であり、かつ、樹脂組成物の製造時に副生する酸成分 の除去の容易さから、希土類金属の酢酸塩が好ましい。  Examples of such a metal compound (hereinafter, referred to as “rare earth metal salt”) include, for example, an organic acid salt with a rare earth metal, an anhydride or hydrate of an inorganic salt with a rare earth metal, Hydroxyl salts such as oxides of rare earth metals, hydroxides of rare earth metals, and hydrootaso complex salts. In addition, compounds such as neodymium-1,4-pentanedionate and neodymium trifluoropentanedionate can also be exemplified. Examples of the organic acid constituting the above-mentioned organic acid salt include acetic acid, benzoic acid, oxalic acid, acrylic acid, and methacrylic acid. Examples of the inorganic acid constituting the inorganic acid salt include sulfuric acid. , Hydrochloric acid, nitric acid, hydrofluoric acid, and hydroxide. Of these, acetates of rare earth metals are preferred because they are easily available and easy to remove acid components by-produced during the production of the resin composition.

[0027] このような希土類金属イオンを含有する樹脂組成物は、可視光の防眩性に優れた 光学部材を形成でき、また、医療用或いは加工用レーザで用いられるレーザ光(波 長約 520nm)からの眼の防護性に優れた光学部材を形成することが可能である。さ らに、これら希土類金属のイオンは、希土類金属イオンの中でも、蛍光を高効率で発 光したり、レーザ発光したりするので、これら希土類金属イオンを含む樹脂組成物は 、優れた光増幅機能を発現することが可能となる。  [0027] The resin composition containing such a rare earth metal ion can form an optical member having excellent antiglare property for visible light, and can emit laser light (wavelength of about 520 nm) used in medical or processing lasers. ), It is possible to form an optical member having excellent eye protection. Furthermore, since these rare earth metal ions emit fluorescence with high efficiency or emit laser light among the rare earth metal ions, the resin composition containing these rare earth metal ions has an excellent light amplification function. Can be expressed.

[0028] また、上述した希土類金属イオンの中では、ネオジム、プラセオジム及びホルミウム 力 なる群より選ばれる少なくとも一つの金属のイオンが好ましい。ネオジム、プラセ オジム及びホルミウムのイオンは、波長 580nm近傍や波長 520nm近傍の光の吸収 特性に優れており、これらの波長域は人間の眼球の視細胞が有する最大応答波長と 合致することから、防眩性により一層優れた樹脂組成物を得ることができる。 [0028] Also, among the rare earth metal ions described above, an ion of at least one metal selected from the group consisting of neodymium, praseodymium, and holmium is preferable. Neodymium, praseodymium and holmium ions absorb light at wavelengths around 580 nm and 520 nm. It has excellent properties, and since these wavelength ranges match the maximum response wavelength of the visual cells of the human eye, it is possible to obtain a resin composition having more excellent antiglare properties.

[0029] また、希土類金属イオンは、単独で又は 2種以上混合して使用することができる。希 土類金属イオンの含有割合は樹脂組成物の全質量基準で 0. 02 25質量%である ことが好ましぐより好ましくは 0. 02— 20質量%、更に好ましくは 0. 02 15質量% である。希土類金属イオンの含有割合が 0. 02質量%未満であると、後述する光学 部材の厚さによっては特定の波長光に対する吸収特性が充分に得られ難ぐ防眩性 が不充分となる場合がある。一方、この含有割合が 25質量%を超えると、樹脂組成 物中に希土類金属イオンを均一に溶解又は分散させ難レ、傾向にある。  [0029] The rare earth metal ions can be used alone or in combination of two or more. The content of the rare earth metal ion is preferably 0.025% by mass, more preferably 0.02% to 20% by mass, and still more preferably 0.015% by mass, based on the total mass of the resin composition. It is. If the content of the rare earth metal ion is less than 0.02% by mass, depending on the thickness of the optical member, which will be described later, the anti-glare property may be insufficient because it is difficult to sufficiently obtain light having a specific wavelength. is there. On the other hand, if the content exceeds 25% by mass, it tends to be difficult to uniformly dissolve or disperse rare earth metal ions in the resin composition.

[0030] さらに、上述した樹脂組成物は、希土類金属イオン以外の他の金属イオンを含有し ていてもよい。他の金属イオンとしては、例えば、銅イオン、ナトリウムイオン、カリウム イオン、カルシウムイオン、鉄イオン、マンガンイオン、コバルトイオン、マグネシウムィ オン、ニッケルイオンが挙げられる。これらの他の金属イオンは、希土類金属イオンと 同様に金属化合物を供給源とすることができる。これら他の金属イオンのうち、特に 銅イオンは、近赤外領域の光(近赤外光)に対する良好な吸収特性を有している。こ のような銅イオンが樹脂組成物の一成分として含まれると、アルキルリン酸エステル化 合物又はアルケニルリン酸エステルのリン酸基が配位結合及び/又はイオン結合に より銅イオンにも結合し、銅イオンはそれら成分に囲まれた状態で樹脂組成物に溶解 又は分散される。そして、この銅イオンの d軌道の電子遷移によって近赤外光が選択 的に吸収されるので、このような銅イオンを含む樹脂組成物は、優れた近赤外光吸 収性を有する。よって、 目的に応じて銅イオンを導入することにより、希土類金属ィォ ンに特有の波長の可視光吸収特性と近赤外光吸収特性を併せ持つ樹脂組成物を 得ること力 Sできる。  [0030] Further, the above-described resin composition may contain a metal ion other than the rare earth metal ion. Examples of other metal ions include copper ions, sodium ions, potassium ions, calcium ions, iron ions, manganese ions, cobalt ions, magnesium ions, and nickel ions. These other metal ions can be sourced from metal compounds, similar to rare earth metal ions. Among these other metal ions, copper ions, in particular, have good absorption characteristics for light in the near infrared region (near infrared light). When such a copper ion is contained as a component of the resin composition, the phosphate group of the alkyl phosphate compound or the alkenyl phosphate ester also binds to the copper ion through coordination bond and / or ionic bond. The copper ions are dissolved or dispersed in the resin composition while being surrounded by these components. Then, near infrared light is selectively absorbed by the electronic transition of the d-orbit of the copper ion, and thus the resin composition containing such a copper ion has excellent near infrared light absorption. Therefore, by introducing copper ions according to the purpose, it is possible to obtain a resin composition having both visible light absorption characteristics and near-infrared light absorption characteristics of a wavelength specific to rare-earth metal ions.

[0031] これら他の金属イオンの含有量としては、例えば、全金属イオン量 (希土類金属ィ オンと他の金属イオンとの合計量)の 50質量%未満、好ましくは 30質量%以内とす ると好適である。この場合、希土類金属イオンの全金属イオンに対する割合は 50質 量%以上となり、防眩性に充分に優れた樹脂組成物を得ることが可能になる。また、 他の金属イオンを混合することにより、それら他の金属イオンに特徴的な波長光をも 吸収できる樹脂組成物が形成される。 [0031] The content of these other metal ions is, for example, less than 50% by mass, preferably within 30% by mass of the total amount of metal ions (the total amount of rare earth metal ions and other metal ions). It is suitable. In this case, the ratio of the rare earth metal ions to the total metal ions is 50% by mass or more, and it is possible to obtain a resin composition having sufficiently excellent antiglare properties. In addition, by mixing other metal ions, light having a wavelength characteristic of those other metal ions can also be obtained. A resin composition that can be absorbed is formed.

[0032] 次に、アルキルリン酸エステル化合物又はアルケニルリン酸エステルについて説明 する。アルキルリン酸エステル化合物としては、下記一般式(la)及び/又は下記一 般式(lb)で表されるアルキルリン酸エステルィヒ合物が好適であり、下記一般式(la) で表されるリン酸ジエステル成分と、下記一般式(lb)で表されるリン酸モノエステル 成分とを、それぞれ単独で又は各成分を混合して使用することができる。  Next, the alkyl phosphate ester compound or alkenyl phosphate ester will be described. As the alkyl phosphate compound, an alkyl phosphate ester compound represented by the following general formula (la) and / or the following general formula (lb) is preferable, and a phosphorus compound represented by the following general formula (la) is preferable. The acid diester component and the phosphoric acid monoester component represented by the following general formula (lb) can be used alone or in combination.

[化 5]  [Formula 5]

0  0

(HO)-P-OR1 (1 a) (HO) -P-OR 1 (1 a)

[化 6] [Formula 6]

0  0

(HO)-P-(OR1) (1 b) (HO) -P- (OR 1 ) (1 b)

[0033] 上記一般式中、 R1は炭素数力 ¾一 18のアルキル基であることが好ましぐより好まし くは炭素数 5— 18であり、更に好ましくは炭素数 6— 16であり、特に好ましくは炭素数 6— 12である。炭素数力 ¾未満又は 18を超えると、リン酸エステル化合物の樹脂への 溶解性及び分散性が低下して樹脂組成物の透光性が不充分となる場合がある。な お、上記一般式(lb)中、複数存在する R1は同一であっても異なっていてもよい。 In the above general formula, R 1 is preferably an alkyl group having a carbon number of 18 to 1, more preferably 5 to 18 carbon atoms, and still more preferably 6 to 16 carbon atoms. Particularly preferably, it has 6 to 12 carbon atoms. If the carbon number is less than 18 or more than 18, the solubility and dispersibility of the phosphate compound in the resin may be reduced, and the light transmittance of the resin composition may be insufficient. In the general formula (lb), a plurality of R 1 may be the same or different.

[0034] 上記アルキル基としては、直鎖状、分枝状、環状のアルキル基が挙げられる。これ らのうち、直鎖状、分枝状のものが好ましぐ例えば、 2_ェチルへキシル基、ブチル 基、アミノレ基、へキシル基、 n—ォクチル基、ノニノレ基、デシル基、ラウリル基、へキサ デシル基、ォクタデシル基が好適である。また、アルケニルリン酸エステル化合物は、 上記アルキル基に代えて、アルケニル基を含む不飽和結合を有する基が置換した 1 価の炭化水素基を有するものである。このようなアルケニル基としては、例えば、ォレ ィル基が挙げられる。アルケニル基の炭素数は、 4一 18であると好ましい。このような アルキル基又はアルケニル基を採用することにより、リン酸エステル化合物の樹脂へ の溶解性及び分散性が格段に向上することから、より一層透光性に優れる樹脂組成 物を得ること力 Sできる。 アルキルリン酸エステル化合物の具体例としては、下記式(2a)—(6a) (8a)で表 されるアルキルリン酸モノエステル化合物と、下記式(2b)—(6b) (8b)で表される アルキルリン酸ジエステル化合物が挙げられる。 [0034] Examples of the alkyl group include a linear, branched, and cyclic alkyl group. Of these, straight-chain or branched ones are preferred, for example, 2-ethylhexyl, butyl, aminole, hexyl, n-octyl, noninole, decyl, lauryl. , Hexadecyl group and octadecyl group are preferred. Further, the alkenyl phosphate compound has a monovalent hydrocarbon group substituted by a group having an unsaturated bond containing an alkenyl group, instead of the above-mentioned alkyl group. Examples of such an alkenyl group include an oleyl group. The alkenyl group preferably has 418 carbon atoms. By employing such an alkyl group or an alkenyl group, the solubility and dispersibility of the phosphate compound in the resin are remarkably improved, so that a resin composition having more excellent translucency can be obtained. it can. Specific examples of the alkyl phosphate ester compound include the alkyl phosphate monoester compounds represented by the following formulas (2a) to (6a) and (8a) and the following formulas (2b) to (6b) and (8b). Alkyl phosphate diester compounds.

[化 7] [Formula 7]

OH (2b)

Figure imgf000011_0001
OH (2b)
Figure imgf000011_0001

[化 8]  [Formula 8]

(3b)

Figure imgf000011_0002
(3b)
Figure imgf000011_0002

[化 9]  [Formula 9]

n-C1 129Hn25 O— (4b)

Figure imgf000011_0003
nC 1 12 9 H n 25 O— (4b)
Figure imgf000011_0003

[化 10] 5b

Figure imgf000011_0004
[Formula 10] 5b
Figure imgf000011_0004

[化 11] (6b)

Figure imgf000011_0005
[Formula 11] (6b)
Figure imgf000011_0005

[化 12] (8b)

Figure imgf000011_0006
また、アルケニルリン酸エステル化合物としては、下記式(9a)で表されるリン酸モノ エステル化合物と下記式(9b)で表されるリン酸ジエステル化合物と挙げられる。 [Formula 12] (8b)
Figure imgf000011_0006
Examples of the alkenyl phosphate compound include a phosphate monoester compound represented by the following formula (9a) and a phosphate diester compound represented by the following formula (9b).

[化 13] [Formula 13]

Figure imgf000012_0001
Figure imgf000012_0001

[0037] なお、上述したアルキルリン酸エステル化合物又はアルケニルリン酸エステル化合 物は、市販の化合物を使用しても良ぐまた、下記の G)—(m)の方法により製造して あよい。  The above-mentioned alkyl phosphate compound or alkenyl phosphate compound may be a commercially available compound, or may be produced by the following method G)-(m).

[0038] (i)無溶媒又は適宜の有機溶剤(例えばトルエン、キシレン等)中で、特定のアルコ ール (例えば、 Ι^〇Η、以下同じ)と、五酸化リンとを反応させる方法である。特定のァ ルコールと五酸化リンとの反応条件は、反応温度が 0— 100°C、好ましくは 40— 80 °Cであり、反応時間が 1一 24時間、好ましくは 4一 9時間である。この方法においては 、例えば、特定のアルコール及び五酸化リンをモル比で 3 : 1となる割合で用いること により、リン酸モノエステル成分と、リン酸ジエステル成分との割合が略 1 : 1の混合物 が得られる。  [0038] (i) A method in which a specific alcohol (for example, {^}, the same applies hereinafter) and phosphorus pentoxide are reacted without solvent or in an appropriate organic solvent (for example, toluene or xylene). is there. The reaction conditions of the specific alcohol with phosphorus pentoxide are such that the reaction temperature is 0-100 ° C, preferably 40-80 ° C, and the reaction time is 124 hours, preferably 419 hours. In this method, for example, by using a specific alcohol and phosphorus pentoxide in a molar ratio of 3: 1, a mixture of a phosphate monoester component and a phosphate diester component in a ratio of approximately 1: 1 is used. Is obtained.

[0039] (ii)無溶媒又は適宜の有機溶剤(例えばトルエン、キシレン等)中で、特定のアルコ ールとォキシハロゲン化リンとを反応させ、得られる生成物に水を添加して加水分解 する方法である。ォキシハロゲン化リンとしては、例えば、ォキシ塩化リンが好適に用 レ、られる。そして、特定のアルコールとォキシハロゲン化リンとの反応条件は、反応温 度が 0— 110°C、好ましくは 40— 80°Cであり、反応時間が 1一 20時間、好ましくは 2 一 8時間である。また、この方法においては、例えば、特定のアルコール及びォキシ ハロゲン化リンをモル比で 1: 1となる割合で用いることにより、アルキルリン酸モノエス テル化合物又はアルケニルリン酸エステル化合物を得ることができる。  (Ii) A specific alcohol is reacted with a phosphorus oxyhalide without a solvent or in an appropriate organic solvent (for example, toluene, xylene, etc.), and water is added to the obtained product to hydrolyze it. Is the way. As the phosphorus oxyhalide, for example, phosphorus oxychloride is preferably used. The reaction conditions of the specific alcohol and the phosphorus oxyhalide are such that the reaction temperature is 0 to 110 ° C, preferably 40 to 80 ° C, and the reaction time is 120 hours, preferably 218 hours. is there. In this method, for example, an alkyl phosphate monoester compound or an alkenyl phosphate compound can be obtained by using a specific alcohol and oxyhalogenated phosphorus in a molar ratio of 1: 1.

[0040] (iii)無溶媒又は適宜の有機溶剤(例えば、へキサン、ヘプタン等)中で、特定のァ ルコールと三ハロゲン化リンとを反応させることにより、ホスホン酸エステル化合物を 合成し、その後、得られたホスホン酸エステル化合物を酸化する方法である。三ハロ ゲン化リンとしては、例えば三塩化リンが好適に用いられる。そして、特定のアルコー ルと三ハロゲン化リンとの反応条件は、反応温度が 0— 90°C、好ましくは 40— 75°C であり、反応時間が 1一 10時間、好ましくは 2— 5時間である。上記ホスホン酸エステ ル化合物を酸化する手段としては、ホスホン酸エステル化合物に例えば塩素ガス等 のハロゲンを反応させることにより、ホスホロハロリデートィ匕合物を合成し、このホスホ ロハロリデートィ匕合物を加水分解する手段を利用することができる。ここで、ホスホン 酸エステル化合物とハロゲンとの反応温度は 0— 40°Cが好ましぐ特に好ましくは 5 一 25。Cである。また、ホスホン酸エステル化合物を酸化する前に、このホスホン酸ェ ステル化合物を蒸留して精製してもよい。この方法においては、例えば、特定のアル コール及び三ハロゲン化リンをモル比で 3 : 1となる割合で用いることにより、アルキル リン酸ジエステルイヒ合物又はアルケニルリン酸エステル化合物を高い純度で得ること ができる。 (Iii) A phosphonate ester compound is synthesized by reacting a specific alcohol with phosphorus trihalide in the absence of a solvent or in an appropriate organic solvent (eg, hexane, heptane, etc.), and thereafter And oxidizing the resulting phosphonate compound. As the phosphorus trihalogenate, for example, phosphorus trichloride is suitably used. The reaction conditions of the specific alcohol and phosphorus trihalide are such that the reaction temperature is 0-90 ° C, preferably 40-75 ° C. And the reaction time is 110 hours, preferably 2-5 hours. As a means for oxidizing the phosphonate ester compound, a phosphorohalolidate conjugate is synthesized by reacting the phosphonate ester compound with a halogen such as chlorine gas, and the phosphorohalate conjugate is hydrolyzed. Means for decomposing can be used. Here, the reaction temperature between the phosphonate compound and the halogen is preferably from 0 to 40 ° C, particularly preferably from 525 to 525. C. Further, before oxidizing the phosphonate ester compound, the phosphonate ester compound may be purified by distillation. In this method, for example, by using a specific alcohol and phosphorus trihalide in a molar ratio of 3: 1, an alkyl phosphate diester aldehyde compound or an alkenyl phosphate compound can be obtained with high purity. Can be.

[0041] また、アルキルリン酸エステル化合物又はアルケニルリン酸エステル化合物として は、リン酸モノエステル成分とリン酸ジエステル成分とをモル比で 70 : 30 0 : 100の 割合で含有することが好ましぐより好ましくは 70 : 30— 10 : 90であり、更に好ましくは 70 : 30— 30 : 70である。  [0041] The alkyl phosphate compound or alkenyl phosphate compound preferably contains a phosphate monoester component and a phosphate diester component in a molar ratio of 70: 300: 100. It is more preferably 70: 30-30: 90, and even more preferably 70: 30-30: 70.

[0042] なお、アルキルリン酸エステル化合物又はアルケニルリン酸エステル化合物が複数 成分を含む場合には、このような混合物は、上記 R1が同一の基であるリン酸モノエス テル成分とリン酸ジエステル成分 (例えば、上記一般式(5a)及び(5b)で表される化 合物)とから構成されていてもよぐまた、 R1がそれぞれ異種の基であるリン酸モノエ ステル成分とリン酸ジエステル成分 (例えば、上記一般式(5a)及び(6b)で表される 化合物)とから構成されていてもよい。さらに、 R1がそれぞれ同一及び異種の基であ るリン酸モノエステル成分とリン酸ジエステル成分 (例えば、上記一般式(5a)及び(5 b)、並びに上記一般式(6a)及び(6b)で表される化合物)とで構成されてレ、てもよレ、 [0042] In the case where the alkyl phosphoric acid ester compound or alkenyl phosphate compound comprises a plurality of components, such mixtures, phosphoric acid monoester component and a phosphodiester component the R 1 are identical groups (For example, the compounds represented by the above general formulas (5a) and (5b)). Further, the monoester phosphate component and the phosphate diester in which R 1 is a different group, respectively. It may be composed of components (for example, compounds represented by the above general formulas (5a) and (6b)). Further, a phosphate monoester component and a phosphate diester component in which R 1 is the same or different groups (for example, the above general formulas (5a) and (5b), and the above general formulas (6a) and (6b) A compound represented by the formula:

[0043] 具体的に例示したアルキルリン酸エステル化合物の中では、上記式(5a)及び/又 は(5b)で表されるアルキルリン酸エステル化合物が好ましぐ上記式(5b)で表され るリン酸ジエステル成分のみからなるアルキルリン酸エステル化合物、及び上記式(5 a)で表されるリン酸モノエステル成分と上記式(5b)で表されるリン酸ジエステル成分 とをモル比で 50: 50の割合で含有するアルキルリン酸エステル化合物が特に好まし レ、。 [0043] Among the alkyl phosphate ester compounds specifically exemplified, the alkyl phosphate ester compound represented by the above formula (5a) and / or (5b) is preferably represented by the above formula (5b). An alkyl phosphate compound consisting of only a phosphoric diester component, and a phosphoric acid monoester component represented by the above formula (5a) and a phosphoric diester component represented by the above formula (5b) in a molar ratio of 50. : Alkyl phosphate compounds containing at a ratio of 50 are particularly preferred. Les ,.

[0044] また、本実施形態に係る樹脂組成物は、上述のように希土類金属イオンとアルキル リン酸エステル化合物又はァルケニノレリン酸エステル化合物とを含有するものである が、上述したアルキルリン酸エステル化合物又はアルケニルリン酸エステル化合物と 希土類金属化合物とを反応させて得られるアルキルリン酸エステル希土類金属化合 物又はアルケニルリン酸エステル希土類金属化合物を含有させても良い。  [0044] The resin composition according to the present embodiment contains a rare earth metal ion and an alkyl phosphate compound or an alkeninole phosphate compound as described above. An alkyl phosphate ester rare earth metal compound or an alkenyl phosphate ester rare earth metal compound obtained by reacting an alkenyl phosphate ester compound with a rare earth metal compound may be contained.

[0045] 希土類金属化合物としては、前述した希土類金属塩を用いることができる。また、ァ ルキルリン酸エステル化合物又はアルケニルリン酸エステルと希土類金属塩との反 応は、適宜の条件下で両者を接触させることにより行われる。  [0045] As the rare earth metal compound, the aforementioned rare earth metal salts can be used. The reaction between the alkyl phosphate compound or the alkenyl phosphate and the rare earth metal salt is carried out by bringing them into contact under appropriate conditions.

[0046] 具体的には、 (ィ)アルキルリン酸エステル化合物又はアルケニルリン酸エステルと 希土類金属塩とを混合して、両者を反応させる方法、(口)適宜の有機溶剤中におい てアルキルリン酸エステルイヒ合物又はアルケニルリン酸エステルィヒ合物と希土類金 属塩とを反応させる方法、(ハ)アルキルリン酸エステル化合物又はアルケニルリン酸 エステル化合物が有機溶剤中に含有されてなる有機溶剤層と、希土類金属塩が溶 解又は分散されてなる水層とを接触させることにより、アルキルリン酸エステル化合物 又はアルケニルリン酸エステル化合物と希土類金属塩とを反応させる方法、等が挙 げられる。なお、上記反応条件は、反応温度 0— 250°C、好ましくは 40— 180°Cで、 反応時間 0. 5— 30時間、好ましくは 1一 10時間である。また、上記有機溶媒としては 、例えば、トルエン等の芳香族化合物、メチルアルコール等のアルコール類、メチル セロソルブ等のグリコールエーテル類、ジェチルエーテル等のエーテル類、アセトン 等のケトン類、酢酸ェチル等のエステル類が例示される。  [0046] Specifically, (a) a method of mixing an alkyl phosphate ester compound or an alkenyl phosphate ester with a rare earth metal salt and reacting them, (a) alkyl phosphate in an appropriate organic solvent A method of reacting an ester or alkenyl phosphate ester compound with a rare earth metal salt; (c) an organic solvent layer containing an alkyl phosphate or alkenyl phosphate compound in an organic solvent; A method in which an alkyl phosphate compound or an alkenyl phosphate compound is allowed to react with a rare earth metal salt by bringing into contact with an aqueous layer in which the metal salt is dissolved or dispersed. The reaction conditions are a reaction temperature of 0 to 250 ° C, preferably 40 to 180 ° C, and a reaction time of 0.5 to 30 hours, preferably 1 to 10 hours. Examples of the organic solvent include aromatic compounds such as toluene, alcohols such as methyl alcohol, glycol ethers such as methyl cellosolve, ethers such as getyl ether, ketones such as acetone, and ethyl acetate. Esters are exemplified.

[0047] また、希土類金属塩として酸塩を用いた場合には、アルキルリン酸エステル化合物 又はアルケニルリン酸エステルと希土類金属塩との反応にぉレ、て、希土類金属塩か ら陰イオンである酸成分が遊離される。このような酸成分は、アルキルリン酸エステル 化合物又はアルケニルリン酸エステルをポリビュルァセタール樹脂に溶解又は分散 せしめて樹脂組成物とするときに、該樹脂組成物の耐湿性及び熱安定性を低下させ る原因となり得るため、必要に応じて除去することが好ましい。上記 (ィ)又は(口)の方 法によりアルキルリン酸エステル希土類金属化合物又はアルケニルリン酸エステル希 土類金属化合物を製造する場合には、アルキルリン酸エステル化合物又はアルケニ ルリン酸エステル化合物と希土類金属塩とを反応させた後、生成した酸成分((口)の 方法においては生成された酸成分及び有機溶剤)を蒸留によって除去することがで きる。 When an acid salt is used as the rare earth metal salt, the reaction between the alkyl phosphate compound or alkenyl phosphate and the rare earth metal salt causes an anion from the rare earth metal salt. The acid component is liberated. Such an acid component reduces the moisture resistance and thermal stability of the resin composition when the alkyl phosphate compound or alkenyl phosphate ester is dissolved or dispersed in a polybutylacetal resin to form a resin composition. It is preferable to remove it as necessary, since it may cause the formation. The alkyl phosphate rare earth metal compound or the alkenyl phosphate dilute In the case of producing an earth metal compound, an alkyl phosphate compound or an alkenyl phosphate compound is reacted with a rare earth metal salt, and then the generated acid component (the acid component formed in the method of (Port)) is used. And organic solvents) can be removed by distillation.

[0048] さらに、上記 (ハ)の方法によってアルキルリン酸エステル希土類金属化合物又はァ ルケ二ルリン酸エステル化合物を製造する場合には、酸成分を除去する好ましい方 法として、水に不溶又は難溶の有機溶剤にリン酸エステルイ匕合物が含有されてなる 有機溶剤相に、アルカリを添加することによって中和した後、この有機溶剤相と希土 類金属塩が溶解又は分散された水相とを接触させることより、アルキルリン酸エステ ル化合物又はアルケニルリン酸エステル化合物と希土類金属塩とを反応させ、その 後、有機溶剤相と水相とを分離する方法がある。  [0048] Further, in the case where the alkyl phosphate ester rare earth metal compound or the alkenyl phosphate ester compound is produced by the method (c), a preferable method for removing the acid component is insoluble or hardly soluble in water. After neutralization by adding an alkali to an organic solvent phase in which the phosphoric acid ester conjugate is contained in the organic solvent of the above, the organic solvent phase and the aqueous phase in which the rare earth metal salt is dissolved or dispersed are mixed with the organic solvent phase. In this method, an alkyl phosphate ester compound or an alkenyl phosphate compound is allowed to react with a rare earth metal salt, and then an organic solvent phase and an aqueous phase are separated.

[0049] ここで、アルカリとしては、水酸化ナトリウム、水酸化カリウム、アンモニア等が挙げら れる力 これらに限定されるものではない。この方法によれば、銅塩から遊離される酸 成分とアルカリとによって水溶性の塩が形成され、この塩が水相に移行するとともに、 生成されるアルキルリン酸エステル希土類金属化合物又はアルケニルリン酸エステ ル化合物は有機溶剤相に移行するため、この水層と有機溶剤層とを分離することに より、酸成分が除去される。  [0049] Here, examples of the alkali include sodium hydroxide, potassium hydroxide, and ammonia. The alkali is not limited to these. According to this method, a water-soluble salt is formed by the acid component released from the copper salt and the alkali, and the salt is transferred to the aqueous phase, and the resulting alkyl phosphate ester rare earth metal compound or alkenyl phosphate is formed. Since the ester compound moves to the organic solvent phase, the acid component is removed by separating the aqueous layer and the organic solvent layer.

[0050] 上記 (ィ)一(ハ)の方法で得られたアルキルリン酸エステル希土類金属化合物又は アルケニルリン酸エステル希土類金属化合物の好適な具体例としては、例えば、下 記一般式(7a)で表されるリン酸モノエステル成分由来のアルキルリン酸エステル希 土類金属化合物又はアルケニルリン酸エステル希土類金属化合物、或いは、下記 一般式(7b)で表されるリン酸ジエステル成分由来のアルキルリン酸エステル希土類 金属化合物又はアルケニルリン酸エステル希土類金属化合物が挙げられる。ここで 、アルキルリン酸エステル希土類金属化合物又はァノレケニノレリン酸エステル希土類 金属化合物は、単独もしくは 2種類以上を組み合わせたアルキルリン酸エステル化 合物又はアルケニルリン酸エステル化合物と希土類金属塩とを反応させて得られた ものであってもよレ、。従って、例えば、下記一般式(7b)において、希土類金属イオン Mに結合した 3つのリン酸残基は、互いに同一のものでも異なるものであってもよレ、。

Figure imgf000016_0001
Preferred specific examples of the alkyl phosphate rare earth metal compound or the alkenyl phosphate rare earth metal compound obtained by the method (a) (c) include, for example, a compound represented by the following general formula (7a): Alkyl phosphate ester rare earth metal compound or alkenyl phosphate rare earth metal compound derived from phosphate monoester component represented, or alkyl phosphate ester derived from phosphate diester component represented by the following general formula (7b) Rare earth metal compounds or alkenyl phosphate rare earth metal compounds are exemplified. Here, the alkyl phosphate ester rare earth metal compound or the anorekeninole phosphate ester rare earth metal compound is an alkyl phosphate ester compound or an alkenyl phosphate ester compound alone or in combination of two or more, and a rare earth metal salt. It may be obtained by reaction. Therefore, for example, in the following general formula (7b), the three phosphate residues bonded to the rare earth metal ion M may be the same or different from each other.
Figure imgf000016_0001

[化 15] [Formula 15]

M (7b)

Figure imgf000016_0002
M (7b)
Figure imgf000016_0002

(式中、 R1はそれぞれ独立に炭素数力 ¾一 18であるアルキル基又は炭素数力 S4 1 8であるアルケニル基を示し、 Mは希土類金属イオンを示す。 ) (In the formula, R 1 independently represents an alkyl group having a carbon number power of 18 or an alkenyl group having a carbon number power of S418, and M represents a rare earth metal ion.)

[0051] 上記一般式(7a)で表されるアルキルリン酸モノエステル希土類金属化合物又はァ ルケ二ルリン酸モノエステル希土類金属化合物、及び、上記一般式(7b)で表される アルキルリン酸ジエステル希土類金属化合物又はアルケニルリン酸ジエステル希土 類金属化合物(以下、「リン酸エステル希土類化合物」という)における R1としては、上 記一般式( 1 a)及び( lb)で表されるアルキルリン酸エステル化合物における R1と同 一の置換基を、好適な置換基として挙げることができる。 [0051] Alkyl phosphate monoester rare earth metal compound or alkenyl phosphoric acid monoester rare earth metal compound represented by the above general formula (7a), and alkyl phosphate diester rare earth metal represented by the above general formula (7b) R 1 in the metal compound or the alkenyl phosphate diester rare earth metal compound (hereinafter, referred to as “phosphate rare earth compound”) is an alkyl phosphate represented by the above general formulas (1a) and (lb). The same substituent as R 1 in the compound can be mentioned as a suitable substituent.

[0052] また、リン酸エステル希土類金属化合物は、単独で又は 2種以上混合して使用する こと力 Sできる。なお、リン酸エステル希土類金属化合物が単独成分からなる場合には 、上記一般式(7b)で表されるリン酸エステル希土類金属化合物が好ましぐ一方、リ ン酸エステル希土類金属化合物が複数成分からなる場合には、上記一般式 (7a)で 表されるリン酸エステル希土類金属化合物と上記一般式(7b)で表されるリン酸エス テル希土類金属化合物とを 50: 50の割合(モル比)で含有するものが好ましい。  [0052] The phosphate rare earth metal compounds can be used alone or in combination of two or more. When the phosphate ester rare earth metal compound is composed of a single component, the phosphate ester rare earth metal compound represented by the general formula (7b) is preferred, while the phosphate ester rare earth metal compound is composed of a plurality of components. In this case, the phosphate ester rare earth metal compound represented by the general formula (7a) and the ester phosphate rare earth metal compound represented by the general formula (7b) are in a ratio of 50:50 (molar ratio). Is preferred.

[0053] このようなリン酸エステル希土類金属化合物の含有割合は、樹脂組成物の用途又 は使用目的によって異なるが、樹脂組成物の全質量基準で 0. 1— 90質量%である ことが好ましぐより好ましくは 0. 1— 70質量%であり、更に好ましくは 0. 1 60質量 [0053] The content ratio of such a phosphate rare earth metal compound varies depending on the use or purpose of use of the resin composition, but is preferably 0.1 to 90% by mass based on the total mass of the resin composition. More preferably 0.1 to 70% by mass, even more preferably 0.160% by mass

%である。このような含有割合とすることにより、アルキルリン酸エステル化合物又は アルケニルリン酸エステルイヒ合物や希土類金属イオンの沈殿を生ずることなく均一に 溶解又は分散することができる。 %. With such a content ratio, the alkyl phosphate compound or the alkenyl phosphate ester compound or the rare earth metal ion can be uniformly formed without precipitation. It can be dissolved or dispersed.

[0054] また、希土類イオンに対するアルキルリン酸エステルイヒ合物又はアルケニルリン酸 エステル化合物に含まれる水酸基の合計量の割合(OH基/希土類イオン) 、モル 比で 0. 5— 8であることが好ましぐより好ましくは 0. 5— 6であり、更に好ましくは 0. 8 一 4である。 OH基の比率が 0. 5未満となると、アルキルリン酸エステル化合物又はァ ルケ二ルリン酸エステル化合物を樹脂中に分散させることが困難となり、また、特定波 長に対する吸収性能や透光性が不充分となる傾向がある。一方、〇H基の比率が 8 を超えると、希土類イオンとの配位結合及び/又はイオン結合に関与しない水酸基 の割合が過大となるため、このような組成割合の組成物は、吸湿性が比較的大きくな るィ頃向にある。  The ratio of the total amount of hydroxyl groups contained in the alkyl phosphate ester compound or alkenyl phosphate compound to the rare earth ion (OH group / rare earth ion) is preferably 0.5 to 8 in molar ratio. More preferably, it is 0.5-6, and still more preferably 0.8-14. If the ratio of the OH groups is less than 0.5, it becomes difficult to disperse the alkyl phosphate compound or the alkyl phosphate compound in the resin, and the absorption performance and the light transmittance for a specific wavelength are not good. Tends to be sufficient. On the other hand, if the ratio of ΔH groups exceeds 8, the proportion of hydroxyl groups that do not participate in coordination bonds and / or ionic bonds with rare earth ions becomes excessive, so that the composition having such a composition ratio has a hygroscopic property. They tend to be relatively large.

[0055] 次に、樹脂組成物の樹脂成分であるポリビュルァセタール樹脂について説明する。  Next, a polybutyl acetal resin which is a resin component of the resin composition will be described.

ポリビュルァセタール樹脂は、ポリビュルアルコールをアルデヒドによって一部又は大 部分をァセタール化することにより得ることができる。ポリアセタール樹脂のなかでも、 ポリビニルプチラール樹脂が好ましレ、。ポリビュルプチラール樹脂を用いることにより 、得られる中間膜の透明性、耐候性、ガラスに対する接着性等が優れたものとなる。 なお、ポリビニルァセタール樹脂は、必要な物性に応じて、適当な組み合わせにてブ レンドされたものであってもよぐァセタール化時にアルデヒドを組み合わせてァセタ ール化することにより得られるポリビニルァセタール樹脂であってもよレ、。このようなポ リビニルァセタール樹脂の分子量、分子量分布及びァセタール化度は特に限定され ないが、例えば、ァセタールイ匕度は、 40— 85%であると好ましく、より好ましい下限値 は 60%であり、より好ましい上限値は 75%である。  The polybutyl acetal resin can be obtained by partially or mostly acetalizing polybutyl alcohol with an aldehyde. Among polyacetal resins, polyvinyl butyral resin is preferred. By using the polybutyral resin, the resulting interlayer film has excellent transparency, weather resistance, adhesion to glass, and the like. The polyvinyl acetal resin may be blended in an appropriate combination depending on the required physical properties. The polyvinyl acetal obtained by combining the aldehyde with the aldehyde during the acetalization may be used. It may be resin. Although the molecular weight, molecular weight distribution and degree of acetalization of such a polyvinyl acetal resin are not particularly limited, for example, the degree of acetalization is preferably from 40 to 85%, and more preferably the lower limit is 60%. The more preferred upper limit is 75%.

[0056] ポリビュルァセタール樹脂の製造に用いるポリビュルアルコール樹脂は、例えば、 ポリ酢酸ビュルを鹼化することにより得られるものであり、鹼化度が 80 99. 8モル% であるものが好ましい。ポリビュルアルコール樹脂の粘度平均重合度の好ましい下限 値は 200であり、上限値は 3000である。粘度平均重合度が 200未満であると、得ら れる合わせガラスの耐貫通性が低下する傾向にある。一方、 3000を超えると、樹脂 膜の成形性が悪くなるほか、樹脂膜の剛性が大きくなり過ぎ、加工性が悪くなる傾向 にある。これらの不都合をより低減する観点から、粘度平均重合度のより好ましい下 限値は 500であり、上限値は 2000である。なお、ポリビュルアルコール樹脂の粘度 平均重合度及び鹼化度は、例えば、 JISK 6726「ポリビュルアルコール試験方法」 に基づレ、て測定することができる。 [0056] The polybutyl alcohol resin used in the production of the polybutyl acetal resin is obtained, for example, by converting poly (vinyl acetate), and preferably has a degree of deterioration of 8099.8 mol%. . The preferred lower limit of the viscosity average degree of polymerization of the polybutyl alcohol resin is 200, and the upper limit is 3000. If the viscosity average degree of polymerization is less than 200, the resulting laminated glass tends to have reduced penetration resistance. On the other hand, if it exceeds 3,000, the moldability of the resin film becomes poor, and the rigidity of the resin film becomes too large, so that the processability tends to deteriorate. From the viewpoint of further reducing these inconveniences, the lower the viscosity average polymerization degree is more preferable. The limit is 500 and the upper limit is 2000. The viscosity average degree of polymerization and degree of polymerization of the polybutyl alcohol resin can be measured, for example, based on JISK 6726 “Testing method for polybutyl alcohol”.

[0057] ァセタール化に用いられるアルデヒドとしては、例えば、炭素数 1一 10のアルデヒド 等が挙げられ、プロピオンアルデヒド、 n—ブチルアルデヒド、イソブチルアルデヒド、 2 —ェチルブチルアルテヒド、 n—バレルアルデヒド、 n—ペンチルアルデヒド、 n—へキシ ノレアノレデヒド、 η—ォクチルアルデヒド、 n—ノニルアルデヒド、 n—デシノレアノレデヒド、ホ ノレムァノレデヒド、ァセトアルデヒド、ベンズアルデヒド等を挙げることができ、これらを単 独で用いてもよぐ 2種以上を併用してもよい。なかでも、炭素数力 S4のブチルアルデ ヒドが好ましレ、。このようにして得られるポリビュルァセタール樹脂の平均重合度は、 5 00—3, 000であることカ好ましく、より好ましレヽ平均重合度は 1 , 000 2, 500であ る。 [0057] Examples of the aldehyde used for acetalization include aldehydes having 11 to 10 carbon atoms, such as propionaldehyde, n-butyraldehyde, isobutyraldehyde, 2-ethylbutyl aldehyde, n-valeraldehyde, and the like. n-pentylaldehyde, n-hexynoleanolaldehyde, η-octylaldehyde, n-nonylaldehyde, n-decinoleanolaldehyde, honolemunoraldehyde, acetaldehyde, benzaldehyde and the like. They may be used alone or in combination of two or more. Of these, S4 butyl aldehyde is preferred. The average degree of polymerization of the polybutyl acetal resin thus obtained is preferably 500 to 3,000, and more preferably the average degree of polymerization is 1,000, 2,500.

[0058] 好適なポリビニルァセタール樹脂としては、例えば、ポリビュルアルコールをホルム アルデヒドで一部又は大部分をァセタール化したポリビニルホルマール樹脂(ビニ口 ン)、ポリビエルアルコールを炭素数が 4である n—ブチルアルデヒドで一部又は大部 分をァセタール化したポリビニルブチラール樹脂が挙げられる。これらの樹脂は、単 独で又は 2種以上を組み合わせて用いることもできる。さらに、樹脂組成物を後述す る合わせガラス用中間膜を用いる場合、これらの樹脂の中でポリビニルプチラール榭 脂が、ガラス、プラスチック等の透光性材料に対して高い接着性を有することから、好 適に使用される。なお、ポリビエルァセタール樹脂の含有割合は、上述した希土類金 属イオン、アルキルリン酸エステル化合物及び後述する任意成分の合計質量を樹脂 組成物の全質量からを除レ、た残部である。  [0058] Suitable polyvinyl acetal resins include, for example, polyvinyl formal resin (vinyl alcohol) obtained by partially or mostly acetalizing polybutyl alcohol with formaldehyde, and polyvinyl alcohol having 4 carbon atoms. — A polyvinyl butyral resin partially or mostly acetalized with butyraldehyde. These resins can be used alone or in combination of two or more. Further, when an interlayer film for laminated glass described later is used for the resin composition, polyvinyl butyral resin among these resins has high adhesiveness to light-transmitting materials such as glass and plastic. , Is preferably used. The content of the polybiacetal resin is the remainder obtained by removing the total mass of the rare earth metal ion, the alkyl phosphate ester compound and the optional components described below from the total mass of the resin composition.

[0059] 樹脂組成物には任意成分として、ベンゾトリアゾール系、ベンゾフヱノン系又はサリ チル酸系の紫外線吸収剤、その他の抗酸化剤、安定剤等を更に含有させることがで きる。さらに、必要に応じて、押出機中での熱による変質を防止するための酸化防止 剤、調色のための染料及び顔料、界面活性剤、難燃剤、帯電防止剤、耐湿剤等の 添加剤等が添加されていても良い。  [0059] The resin composition may further contain, as optional components, a benzotriazole-based, benzophenone-based or salicylic acid-based ultraviolet absorber, other antioxidants, stabilizers, and the like. In addition, if necessary, additives such as antioxidants for preventing deterioration due to heat in the extruder, dyes and pigments for toning, surfactants, flame retardants, antistatic agents, and moisture resistance. Etc. may be added.

[0060] 紫外線吸収剤としては、ベンゾエート系化合物、サリシレート系化合物、ベンゾフエ ノン系化合物、ベンゾトリアゾール系化合物、シァノアクリレート系化合物、シユウ酸ァ 二リド系化合物、トリアジン系化合物等が挙げられる。 [0060] Examples of the ultraviolet absorber include benzoate compounds, salicylate compounds, and benzophene compounds. Examples include non-based compounds, benzotriazole-based compounds, cyanoacrylate-based compounds, oxalic acid amide-based compounds, and triazine-based compounds.

[0061] ベンゾエート系化合物としては、 2, 4_ジー t_ブチルフエ二ルー 3 ' , 5 ' _ジー t—ブチ ノレ一 4 '—ヒドロキシベンゾエートが挙げられ、サリシレート系化合物としては、フエニル サリシレートや p_t—ブチルフヱニルサリシレートが挙げられる。  [0061] Examples of the benzoate compound include 2,4_di-t_butylphenyl 3 'and 5'_di-t-butinole-1 4'-hydroxybenzoate, and examples of the salicylate compound include phenyl salicylate and p_t —Butylphenyl salicylate.

[0062] ベンゾフエノン系化合物としては、 2, 4—ジーヒドロキシベンゾフエノン、 2—ヒドロキシ —4ーメトキシベンゾフエノン、 2—ヒドロキシー 4ーメトキシベンゾフエノン一 5—スルホン酸、 2—ヒドロキシ一 4_n—ォクチルォキシベンゾフエノン、 2—ヒドロキシ一 4_n—ドデシルォ キシベンゾフエノン、 2, 2' , 4, 4'—テトラヒドロべンゾフエノン、ビス(5—ベンゾイノレー 4 —ヒドロキシー 2—メトキシフエ二ル)メタン、 2, 2'—ジヒドロキシー 4, 4'—ジメトキシベンゾ フエノン、 2, 2'—ジヒドロキシー 4, 4'—ジメトキシベンゾフエノン一 5, 5 ' _ジスルホン酸 ナトリウム、 2, 2'—ジヒドロキシ _5—メトキシベンゾフエノン、 2—ヒドロキシー 4ーメタクリロ ィルォキシェチルベンゾフエノン、 4_ベンゾィルォキシ一 2—ヒドロキシベンゾフエノン、 2, 2,, 4, 4,ーテトラヒドロキシベンゾフエノン等が挙げられる。  [0062] Benzophenone-based compounds include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-15-sulfonic acid, and 2-hydroxy-1_n. —Octyloxybenzophenone, 2-hydroxy-1-4_n-dodecyloxybenzophenone, 2, 2 ′, 4,4′-tetrahydrobenzozophenone, bis (5-benzoinole 4-hydroxy-2-methoxyphenyl) methane 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone-1,5'-sodium disulfonate, 2,2'-dihydroxy_5 —Methoxybenzophenone, 2-hydroxy-4-methacryloyloxyshetyl benzophenone, 4_benzoyloxy-2-hydroxybenzene Nzophenone, 2,2,4,4-tetrahydroxybenzophenone and the like.

[0063] ベンゾトリアゾール系化合物としては、 2_ (2,ーヒドロキシー 5,一メチルフエニル)ベン ゾトリァゾール、 2— (2,一ヒドロキシ _3,一t—ブチルー 5 '—メチルフエニル)一5—クロ口べ ンゾトリァゾール、 2— (2 '―ヒドロキシ -3' , 5 '—ジ -t—ブチルフエ二ノレ)— 5—クロ口ベン ゾトリァゾール、 2_ (2 '—ヒドロキシー 3' , 5 ' _ジー t_ブチルフエニル)ベンゾトリァゾー ノレ、 2_ (2 '—ヒドロキシ _5_t—ォクチルフエ二ノレ)ベンゾトリアゾール、 2_ (2 '—ヒドロキ シ一 5— t—ブチルフエニル)ベンゾトリァゾール、 2— [2,—ヒドロキシー 3,—(3,,, 4" , 5 , ', 6 ' '—テトラヒドロフタリミドメチル)—5 '—メチルフエニル]ベンゾトリァゾール、 2— (2 ,—ヒドロキシ _3 ', 5,—ジ— t—ァミルフエニル)ベンゾトリァゾール、 2— (2,—ヒドロキシ — 5— t—ォクチルフエ二ル)ベンゾトリァゾール、 2— [2,一ヒドロキシ一 3 ', 5,一ビス(ひ, ひ—ジメトキシベンゾィル)フエニル]ベンゾトリァゾール、 2, 2 '—メチレンビス [4— (1 , 1 , 3, 3—テトラメチルブチル)_6_(2N—ベンゾトリァゾーノレ _2_ィル)フエノール]、 2 - (2'—ヒドロキシ— 5,—メタクリロイルォキシェチルフエニル)—2H—ベンゾトリアゾール 、 2— (2 '―ヒドロキシ— 3'—ドデシルー 5'—メチルフエニル)ベンゾトリァゾール、メチルー 3_[3_t_ブチル _5_ (2H—ベンゾトリァゾーノレ— 2—ィル)_4—ヒドロキシフヱニル]プ 口ピオネートとポリエチレングリコールとの縮合物等が挙げられる。 [0063] Examples of the benzotriazole-based compound include 2_ (2-hydroxy-5,1-methylphenyl) benzotriazole, 2- (2,1-hydroxy_3,1t-butyl-5'-methylphenyl) -15-chlorobenzototriazole, 2 — (2'-Hydroxy-3 ', 5'-di-t-butylphenyl) -5-chloro-benzotriazole, 2_ (2'-Hydroxy-3', 5'_di-t-butylphenyl) benzotriazole, 2_ (2'-hydroxy_5_t-octylpheninole) benzotriazole, 2_ (2'-hydroxy-5-t-butylphenyl) benzotriazole, 2- [2, -hydroxy-3,-(3 ,,, 4 ", 5, ', 6''-tetrahydrophthalimidomethyl)-5'-methylphenyl] benzotriazole, 2- (2, -hydroxy_3', 5, -di-t-amylphenyl) benzotriazole, 2- (2, -Hydroxy-5-t-octylphenyl) benzotriazole, 2- [2,1-Hydroxy-1 3 ', 5,1-bis (H, H-dimethoxybenzoyl) phenyl] benzotriazole , 2, 2'-methylenebis [4- (1,1,3,3-tetramethylbutyl) _6_ (2N-benzotriazonole_2_yl) phenol], 2-(2'-hydroxy-5,- Methacryloyloxyshetylphenyl) -2H-benzotriazole, 2- (2'-hydroxy-3'-dodecyl-5'-methylphenyl) benzotriazole, methyl-3_ [3_t_butyl _5_ (2H-benzotriazonole) 2-yl) _4-hydroxyphenyl] p A condensate of mouth pionate and polyethylene glycol may, for example, be mentioned.

[0064] シァノアクリレート系化合物としては、ェチノレー 2_シァノ一3, 3—ジフエ二ルァクリレー トゃォクチノレ一 2_シァノ _3, 3—ジフエニルアタリレートが挙げられ、シユウ酸ァニリド 系化合物としては、 2_エトキシ _2 ' _ェチルォキサリック酸ビスァニリドゃ 2_エトキシ— 5_t—ブチルー 2' _ェチルォキサリック酸ビスァニリドが挙げられる。また、トリアジン系 化合物としては、 2— (4, 6—ジフエ二ルー 1 , 3, 5—トリァジン— 2_ィル)—5— [ (へキシ ノレ)ォキシ]—フエノールが挙げられる。  [0064] Examples of the cyanoacrylate compound include ethinoleate 2_cyano-13,3-diphenylacrylate relay 2_cyano_3,3-diphenylatalylate, and examples of the anilide oxalate-based compound include: 2_ethoxy_2'_bisilanilic acid bisanilide ゃ 2_ethoxy-5_t-butyl-2'_bisilanilic acid bisanilide. Examples of the triazine-based compound include 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-[(hexinole) oxy] -phenol.

[0065] また、樹脂組成物に添加し得る安定剤としては、光安定剤が挙げられる。特に、上 述した紫外光吸収剤とこの光安定剤を併用すると、光に対する安定性が極めて良好 となる傾向にある。光安定剤としては、ヒンダードアミン系光安定剤(HALS)や、 Ni 系化合物を適用可能である。  [0065] Examples of the stabilizer that can be added to the resin composition include a light stabilizer. In particular, when the above-mentioned ultraviolet light absorber and this light stabilizer are used in combination, the stability to light tends to be extremely good. As the light stabilizer, a hindered amine light stabilizer (HALS) or a Ni compound can be used.

[0066] より具体的には、 HALSとしては、ビス(2, 2, 6, 6—テトラメチルー 4—ピペリジル)セ バケート、ビス(1 , 2, 2, 6, 6_ペンタメチルー 4—ピペリジル)セバケード、 1-[2-[3- (3, 5_t—ブチルー 4—ヒドロキシフエニル)プロピオニルォキシ]ェチル ]_4_[3_(3, More specifically, HALS includes bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6_pentamethyl-4-piperidyl) sebacate, 1- [2- [3- (3,5_t-butyl-4-hydroxyphenyl) propionyloxy] ethyl] _4_ [3_ (3,

5—ジー t—ブチルー 4—ヒドロキシフエニル)プロピオ二ルォキシ]— 2, 2, 6, 6—テトラメ チルピペリジン、 4一ベンゾィルォキシ一 2, 2, 6, 6—テトラメチルピペリジン、 8—ァセチ ノレ一 3—ドデシルー 7, 7, 9, 9—テトラメチルー 1, 3, 8_トリァザスピロ [4, 5]デカン一 2, 4—ジオン、ビス—(1, 2, 2, 6, 6—ペンタメチルー 4—ピペリジル)—2— (3, 5—ジー t—ブ チルー 4—ヒドロキシベンジル)_2— n—ブチルマロネート、テトラキス(1, 2, 2, 6, 6_ ペンタメチルー 4—ピペリジル 2, 3, 4_ブタンテトラカルボキシレート、テトラキス( 2, 2, 6, 6—テトラメチノレー 4—ピペリジル 2, 3, 4_ブタンテトラカルボキシレート5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] —2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-1,2,6,6-tetramethylpiperidine, 8-acetinol 3-dodecyl-7,7,9,9-tetramethyl-1,3,8_triazaspiro [4,5] decane-1,4-dione, bis- (1,2,2,6,6-pentamethyl-4-piperidyl) —2— (3,5-di-tert-butyl-4-hydroxybenzyl) _2—n-butylmalonate, tetrakis (1,2,2,6,6_pentamethyl-4-piperidyl 2,3,4_butanetetracarboxy Rate, tetrakis (2,2,6,6-tetramethinole 4-piperidyl 2,3,4_butanetetracarboxylate

、 (Mixed 1, 2, 2, 6, 6_ペンタメチノレ一 4_ヒ。ぺリジノレ/トリデシノレ)_1 , 2, 3, 4_ ブタンテトラカルボキシレート、 Mixed { 1 , 2, 2, 6, 6_ペンタメチノレー 4—ピペリジル Z β , β , β ' , j3 '—テトラメチル _3, 9— [2, 4, 8, 10—テトラオキサスピロ(5, 5)ゥ ンデカン]ジェチル}_1 , 2, 3, 4_ブタンテトラカルボキシレート、 (Mixed 2, 2, 6,, (Mixed 1,2,2,6,6_pentamethinole 4_e. Peridinole / tridecinole) _1,2,3,4_butanetetracarboxylate, Mixed {1,2,2,6,6_pentamethinole 4 —Piperidyl Z β, β, β ′, j3′—tetramethyl_3,9— [2,4,8,10-tetraoxaspiro (5,5), decane] getyl} _1,2,3,4_butane Tetracarboxylate, (Mixed 2, 2, 6,

6—テトラメチルー 4—ピペリジル Zトリデシル)— 1 , 2, 3, 4_ブタンテトラカルボキシレ ート、 Mixed { 2, 2, 6, 6—テトラメチノレ _4—ピペリジノレ / /3 , β , β ' , j3 '―テトラメ チル一 3, 9— [2, 4, 8, 10—テトラオキサスピロ(5, 5)ゥンデカン]ジェチノレ }—1, 2, 3 , 4_ブタンテトラカルボキシレート、 2, 2, 6, 6—テトラメチルー 4—ピペリジルメタクリレ 一卜、 1, 2, 2, 6, 6—ペンタメチル— 4—ピぺリジルメタクリレー卜、ポリ [ (6— (1, 1 , 3, 3 —テトラメチルブチル)ィミノ— 1 , 3, 5_トリアジンー 2, 4_ジィル)] [ (2, 2, 6, 6—テトラ メチノレ一 4—ピペリジル)ィミノ]へキサメチレン [ (2, 2, 6, 6—テトラメチル一 4—ピペリジ ノレ)イミノール]、ジメチルサシネートポリマ _with_4—ヒドロキシ一 2, 2, 6, 6—テトラメ チル—1—ピぺリジンエタノール、 N, N,, N' ', N' ' '—テトラキス _ (4, 6—ビス—(ブチ ノレ—(N—メチル _2, 2, 6, 6—テトラメチルピペリジン _4_ィル)ァミノ)—トリァジン— 2— ィル ) _4, 7_ジァザデカン— 1 , 10—ジァミン、ジブチルァミン— 1 , 3, 5_トリァジン—N , N'—ビス(2, 2, 6, 6—テトラメチルー 4—ピベリジルー 1, 6—へキサメチレンジァミンと N- (2, 2, 6, 6—テトラメチルピペリジル)ブチルァミンの重縮合物、デカン二酸ビス( 2, 2, 6, 6—テトラメチルー 1—(ォクチルォキシ)— 4—ピベリジニル)エステル等が挙げ られる。 6-tetramethyl-4-piperidyl-z-tridecyl) -1,2,3,4_butanetetracarboxylate, Mixed {2,2,6,6-tetramethinole_4—piperidinole // 3, β, β ', j3' ―Tetramethyl-1,3,9- [2,4,8,10-Tetraoxaspiro (5,5) pandecane] getinole} -1,2,3 , 4_butanetetracarboxylate, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, poly [(6 — (1,1,3,3—tetramethylbutyl) imino— 1,3,5_triazine-2,4_diyl)] [(2,2,6,6-tetramethynole-1 4-piperidyl) imino] Xamethylene [(2,2,6,6-tetramethyl-1-piperidinole) iminol], dimethyl succinate polymer _with_4-hydroxy-1,2,6,6-tetramethyl-1-piperidineethanol, N, N ,, N '', N '''—Tetrakis _ (4,6-bis- (butinole- (N-methyl_2,2,6,6-tetramethylpiperidine_4_yl) amino) -triazine— 2— yl) _4, 7_ diazadecane— 1, 10—diamine, dibutylamine— 1, 3, 3, 5 triazine—N, N′—bis (2, 2, 6, 6— Polycondensation product of tetramethyl-4-piberidyl 1,6-hexamethylenediamine and N- (2,2,6,6-tetramethylpiperidyl) butylamine, bis (2,2,6,6-tetramethyl-decandioate) And 1- (octyloxy) -4-piberidinyl) ester.

[0067] また、 Ni系化合物の光安定剤としては、 [2, 2'—チオービス(4 t-ォクチルフエノレ ート) ]_2—ェチルへキシルアミンーニッケル(II)、ニッケルジブチルジチォカーボネー ト、 [2, 2,一チォ—ビス(4 tーォクチルフエノレート)]—ブチルァミン—ニッケル(Π)等が 挙げられる。  [0067] Examples of the light stabilizer of the Ni-based compound include [2,2'-thio-bis (4t-octylphenolate)] _ 2-ethylhexylamine-nickel (II) and nickel dibutyldithiocarbonate. , [2,2,1-thio-bis (4-octyl phenolate)]-butylamine-nickel (Π) and the like.

[0068] またさらに、樹脂組成物には、種々の可塑剤を含有させることもできる。中間膜用の 可塑剤として一椴的に用いられている公知の可塑剤が挙げられ、例えば、一塩基性 有機酸エステル、多塩基性有機酸エステル等の有機系可塑剤;有機リン酸系、有機 亜リン酸系等のリン酸系可塑剤等が好適に用いられる。これらの可塑剤は、単独で 用いられてもよぐ 2種以上が併用されてもよぐ樹脂の種類に応じて相溶性等を考慮 して使レ、分けることが好ましレ、。  [0068] Further, the resin composition may contain various plasticizers. As the plasticizer for the intermediate film, known plasticizers are commonly used, and examples thereof include organic plasticizers such as monobasic organic acid esters and polybasic organic acid esters; A phosphoric acid plasticizer such as an organic phosphorous acid is preferably used. These plasticizers may be used alone or two or more types may be used in combination, depending on the type of resin to be used.

[0069] 一塩基性有機酸エステルとしては、例えば、トリエチレングリコール、テトラエチレン グリコール又はトリプロピレングリコール等のグリコールと、酪酸、イソ酪酸、カプロン酸 、 2—ェチル酪酸、ヘプタン酸、 n—オクタン酸、 2—ェチルへキサン酸、ペラルゴン酸( n—ノニル酸)又はデシノレ酸等の一塩基性有機酸との反応によって得られるグリコー ル系エステル等が挙げられる。より具体的には、トリエチレングリコールジー 2_ェチル へキサノエート(3G〇)、トリエチレングリコールジ— 2ェチルブチレート(3GH)、ジへ キシルアジペート(DHA)、テトラエチレングリコールジヘプタノエート(4G7)、テトラ エチレングリコールジー 2—ェチルへキサノエート(4GO)、トリエチレングリコールジへ プタノエート(3G7)等が例示できる。なかでも、 3G〇、 3GH又は 3G7が好ましい。 [0069] Examples of the monobasic organic acid ester include glycols such as triethylene glycol, tetraethylene glycol or tripropylene glycol, butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptanoic acid, and n-octanoic acid. And glycol-based esters obtained by reaction with monobasic organic acids such as 1,2-ethylhexanoic acid, pelargonic acid (n-nonylic acid) and desinoleic acid. More specifically, triethylene glycol di-2-ethyl hexanoate (3G〇), triethylene glycol di-2-ethyl butyrate (3GH), Examples include xyl adipate (DHA), tetraethylene glycol diheptanoate (4G7), tetraethylene glycol di-2-ethylhexanoate (4GO), and triethylene glycol diheptanoate (3G7). Among them, 3G〇, 3GH or 3G7 is preferred.

[0070] 多塩基性有機酸エステルとしては特に限定されず、例えば、アジピン酸、セバシン 酸又はァゼライン酸等の多塩基性有機酸と、炭素数 4一 8の直鎖状又は分枝状アル コールとの反応によって得られるエステル等が挙げられ、なかでも、ジブチルセバシ ン酸エステル、ジォクチルァゼライン酸エステル、ジブチルカルビトールアジピン酸ェ ステル等が好適に用いられる。  The polybasic organic acid ester is not particularly limited. For example, a polybasic organic acid such as adipic acid, sebacic acid or azelaic acid and a linear or branched alcohol having 418 carbon atoms And the like. Among them, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate and the like are preferably used.

[0071] その他、有機酸系エステルの可塑剤として、ジォクチルフタレート、ジブチルフタレ ート等のフタル酸系可塑剤、ジブチルセバケート、ブチルリシノレート、メチルァセチ ノレリシノレート、プチルサクシネート等の脂肪酸系可塑剤、ブチルフタリルブチルダリ コレート、ポリエチレングリコール等のグリコール系可塑剤等が挙げられる。  [0071] Other plasticizers for organic acid esters include phthalic acid plasticizers such as dioctyl phthalate and dibutyl phthalate, and fatty acid plasticizers such as dibutyl sebacate, butyl ricinoleate, methyl acetinol resinolate, and butyl succinate. And butyl phthalyl butyl dalicholate and glycol-based plasticizers such as polyethylene glycol.

[0072] 有機リン酸系可塑剤としては、例えば、トリブトキシェチルホスフェート、イソデシル フエニルホスフェート、トリイソプロピルホスフェート、リン酸トリクレジル、リン酸トリフエ ニル等が挙げられる。  [0072] Examples of the organic phosphoric acid plasticizer include tributoxyshethyl phosphate, isodecyl phenyl phosphate, triisopropyl phosphate, tricresyl phosphate, and triphenyl phosphate.

[0073] 樹脂組成物における可塑剤の含有量は、樹脂材料 100質量部に対して、 1一 120 質量部とすることが好ましぐ 1一 100質量部とすることがより好ましぐ 2— 80質量部 とすることが更に好ましい。可塑剤の含有量が、樹脂材料 100質量部に対して 1質量 部未満であると、希土類金属イオンやリン含有化合物の溶解性が低下して透光性が 不十分となる場合がある。一方、 100質量部を超えると基材である樹脂材料が柔軟 になり過ぎ、例えば合わせガラスにおける中間膜としての使用が困難となる ί頃向にあ る。  [0073] The content of the plasticizer in the resin composition is preferably 1 to 120 parts by mass with respect to 100 parts by mass of the resin material, and more preferably 1 to 100 parts by mass. More preferably, it is 80 parts by mass. When the content of the plasticizer is less than 1 part by mass with respect to 100 parts by mass of the resin material, the solubility of the rare earth metal ion or the phosphorus-containing compound may be reduced, and the translucency may be insufficient. On the other hand, if it exceeds 100 parts by mass, the resin material as the base material becomes too flexible, and for example, it is difficult to use it as an interlayer film in laminated glass.

[0074] また、樹脂組成物には、必要に応じて、接着力調整剤が含有されていてもよい。ま た、これらの接着力調整剤は、当該樹脂組成物からなる中間膜の表面に塗布されて いてもよレ、。接着力調整剤としては、例えば、有機酸又は無機酸のアルカリ金属塩又 はアル力リ土類金属塩、変成シリコーンオイル等が挙げられる。  [0074] Further, the resin composition may contain an adhesion regulator as required. In addition, these adhesive force adjusters may be applied to the surface of an intermediate film made of the resin composition. Examples of the adhesion regulator include an alkali metal salt or an alkaline earth metal salt of an organic acid or an inorganic acid, and a modified silicone oil.

[0075] 有機酸としては、例えば、オクタン酸、へキサン酸、酪酸、酢酸、蟻酸等のカルボン 酸等が挙げられる。無機酸としては、例えば、塩酸、硝酸等が挙げられる。アルカリ金 属塩及びアルカリ土類金属塩としては、例えば、カリウム、ナトリウム、カルシウム、マ グネシゥム等の塩が挙げられる。 [0075] Examples of the organic acid include carboxylic acids such as octanoic acid, hexanoic acid, butyric acid, acetic acid, and formic acid. Examples of the inorganic acid include hydrochloric acid, nitric acid and the like. Alkali gold Examples of the genus salts and alkaline earth metal salts include salts of potassium, sodium, calcium, magnesium and the like.

[0076] 有機酸又は無機酸のアルカリ金属塩又はアルカリ土類金属塩のなかでも、炭素数 2— 16の有機酸のアルカリ金属塩及びアルカリ土類金属塩が好ましぐより好ましく は、炭素数 2 16のカルボン酸のカリウム塩及びマグネシウム塩である。  [0076] Among the alkali metal salts or alkaline earth metal salts of organic acids or inorganic acids, alkali metal salts and alkaline earth metal salts of organic acids having 2 to 16 carbon atoms are more preferable, and the number of carbon atoms is more preferable. 216 are potassium salts and magnesium salts of carboxylic acids.

[0077] 炭素数 2— 16のカルボン酸のカリウム塩及びマグネシウム塩としては特に限定され ないが、例えば、酢酸マグネシウム、酢酸カリウム、プロピオン酸マグネシウム、プロピ オン酸カリウム、 2_ェチルブタン酸マグネシウム、 2_ェチルブタン酸カリウム、 2—ェ チルへキサン酸マグネシウム、 2—ェチルへキサン酸カリウム等が好適である。これら は単独で用いられてもよぐ 2種以上が供用されてもよい。  [0077] The potassium salt and magnesium salt of a carboxylic acid having 2 to 16 carbon atoms are not particularly limited. For example, magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, magnesium 2-ethylbutanoate, 2_ Preferred are potassium ethylbutanoate, magnesium 2-ethylhexanoate, potassium 2-ethylhexanoate, and the like. These may be used alone or in combination of two or more.

[0078] 有機酸又は無機酸のアルカリ金属塩又はアルカリ土類金属塩の配合量の好ましい 下限値は、樹脂 100重量部に対して 0. 001重量部であり、上限値は 0. 5重量部で ある。この配合量が 0. 001重量部未満であると、高湿度雰囲気下で周辺部の接着 力が低下することがある。 0. 5重量部を超えると、膜の透明性が低下する場合がある 。これらの不都合を防止する観点から、有機酸又は無機酸のアルカリ金属塩又はァ ルカリ土類金属塩の配合量のより好ましい下限値は 0. 01重量部であり、上限値は 0 . 2重量部である。  [0078] The preferred lower limit of the amount of the alkali metal salt or alkaline earth metal salt of an organic acid or inorganic acid is 0.001 part by weight per 100 parts by weight of the resin, and the upper limit is 0.5 part by weight. It is. If the amount is less than 0.001 parts by weight, the adhesive strength of the peripheral portion may be reduced in a high humidity atmosphere. If the amount exceeds 0.5 parts by weight, the transparency of the film may decrease. From the viewpoint of preventing these inconveniences, the more preferred lower limit of the amount of the alkali metal salt or alkali earth metal salt of the organic acid or inorganic acid is 0.01 part by weight, and the upper limit is 0.2 part by weight. It is.

[0079] また、変成シリコーンオイルとしては特に限定されず、例えば、エポキシ変成シリコ ーンオイル、エーテル変性シリコーンオイル、エステル変性シリコーンオイル、ァミン 変性シリコーンオイル、カルボキシル変性シリコーンオイル等が挙げられる。これらは 、単独で用いられてもよぐ 2種以上が併用されてもよい。なお、これらの変性シリコー ンオイルは、一般にポリシロキサンに、変性させるべき化合物を反応させることによつ て得ること力 Sできる。  [0079] The modified silicone oil is not particularly limited, and examples thereof include an epoxy-modified silicone oil, an ether-modified silicone oil, an ester-modified silicone oil, an amine-modified silicone oil, and a carboxyl-modified silicone oil. These may be used alone or in combination of two or more. Note that these modified silicone oils can generally be obtained by reacting a compound to be modified with polysiloxane.

[0080] 変性シリコーンオイルの分子量の好ましい下限値は 800であり、上限値は 5000で ある。この分子量が 800未満であると、表面への局在化が不充分なことがある。一方 、 5000を超えると、樹脂との相溶性が低下し、膜表面にブリードアウトしてガラスとの 接着力が低下することがある。これらを防止する観点から、変性シリコーンオイルの分 子量のより好ましい下限値は 1500であり、より好ましい上限値は 4000である。 [0081] 変性シリコーンオイルを添加する場合、その配合量の好ましい下限値は、樹脂 100 重量部に対して 0. 01重量部であり、上限値は 0. 2重量部である。この配合量が 0. 01重量部未満であると、吸湿による白化を防止する効果が不充分となることがある。 また、 0. 2重量部を超えると、樹脂との柏溶性が低下し、変性シリコーンオイルが膜 表面にブリードアウトして樹脂とガラスとの接着力が低下する場合がある。これらの観 点から、変性シリコーンオイルの分子量のより好ましい下限値は 0. 03重量部であり、 より好ましい上限値は 0. 1重量部である。 The preferred lower limit of the molecular weight of the modified silicone oil is 800, and the upper limit is 5,000. If the molecular weight is less than 800, localization on the surface may be insufficient. On the other hand, if it exceeds 5,000, the compatibility with the resin is reduced, and the resin bleeds out to the surface of the film, and the adhesive strength with glass may be reduced. From the viewpoint of preventing these, the more preferred lower limit of the molecular weight of the modified silicone oil is 1500, and the more preferred upper limit is 4000. [0081] When the modified silicone oil is added, the preferred lower limit of the amount is 0.01 parts by weight and the upper limit is 0.2 parts by weight based on 100 parts by weight of the resin. If the amount is less than 0.01 parts by weight, the effect of preventing whitening due to moisture absorption may be insufficient. On the other hand, if the amount exceeds 0.2 parts by weight, the solubility of the resin in the resin may decrease, and the modified silicone oil may bleed out to the surface of the film to lower the adhesive strength between the resin and the glass. From these viewpoints, a more preferred lower limit of the molecular weight of the modified silicone oil is 0.03 parts by weight, and a more preferred upper limit is 0.1 parts by weight.

[0082] (光学部材)  (Optical member)

光学部材は、上述した樹脂組成物を用いてなるものであり、以下の 3種類の形態が 好適である。  The optical member is formed using the above-described resin composition, and the following three types are suitable.

第 1の形態:上述した樹脂組成物で形成されるもの。  First form: Formed with the resin composition described above.

第 2の形態:ガラス又はプラスチック等の透光性材料からなる透明基板に、上述した 樹脂組成物が貼合されたもの。  Second form: a transparent substrate made of a light-transmitting material such as glass or plastic, and the above-described resin composition bonded to the transparent substrate.

第 3の形態:ガラス又はプラスチック等の透光性材料からなる透明基板に、上述した 樹脂組成物よりなる層が形成されたもの。  Third form: a transparent substrate made of a light-transmitting material such as glass or plastic on which a layer made of the above resin composition is formed.

[0083] 第 1の形態の光学部材としては、例えば、板状(円状を含む)のレンズ、シート、フィ ルムが挙げられる。ここで、シートとは、上記樹脂組成物を溶融させて、例えば押出 成形により 250 μ ΐη以上の厚さを有する薄板状に成形したものをいう。また、フィルム とは、上記樹脂組成物を溶融させて、例えば延伸成形により厚さ 5— 250 μ ΐηの薄い 膜状にしたものをいう。また、シート又はフィルムを製造する手段としては、溶融押出 成形法、カレンダー成形法、プレス成形法、溶液キャスト法等が好適に使用される。 さらに、板状のレンズは、射出成形法、溶融押出成形法等により成形可能である。  [0083] Examples of the optical member of the first embodiment include a plate-like (including circular) lens, sheet, and film. Here, the sheet refers to a sheet obtained by melting the above resin composition and forming the sheet into a thin plate having a thickness of 250 μηη or more by, for example, extrusion molding. The term “film” refers to a film obtained by melting the above resin composition to form a thin film having a thickness of 5 to 250 μΐη by, for example, stretch molding. As a means for producing a sheet or a film, a melt extrusion molding method, a calendar molding method, a press molding method, a solution casting method and the like are suitably used. Further, the plate-shaped lens can be formed by an injection molding method, a melt extrusion molding method, or the like.

[0084] 第 2の形態の光学部材としては、例えば、上述したシート又はフィルムを合わせガラ ス用中間膜として使用し、この合わせガラス用中間膜と、ガラス、プラスチック等からな る透光性材料とを貼り合せたものが挙げられる。シート又はフィルムからなる合わせガ ラス用中間膜と、透光性材料とを接着させる手段としては、プレス法、マルチロール 法、減圧法などの加圧又は減圧により接着する手段、オートクレープ等を用いて加熱 することにより接着させる手段又はこれらの組み合わせによる手段を用いることができ る。 As the optical member of the second embodiment, for example, the above-mentioned sheet or film is used as a laminated glass intermediate film, and the laminated glass intermediate film and a light-transmitting material made of glass, plastic, or the like are used. And lamination. As a means for bonding the laminated glass intermediate film composed of a sheet or film and the light-transmitting material, means for bonding by pressurizing or depressurizing such as a press method, a multi-roll method, a depressurizing method, and autoclave are used. Means for bonding by heating or a combination of these means. The

[0085] なお、合わせガラス用中間膜は、その厚みが 0. 001— 10mm、特に 0. 01— 5mm であることが好ましい。合わせガラス用中間膜の厚みが 0. 001mm未満の場合には 、特定の波長光に対する吸収性が高い中間膜を得ることが困難となって、防眩性が 不充分なものとなることがある。一方、合わせガラス用中間膜の厚みが 10mmを超え る場合には、可視光線の透過率が高い中間膜を得ることが困難となって、透光性が 低いものとなることがある。  The interlayer for laminated glass preferably has a thickness of 0.001 to 10 mm, particularly 0.01 to 5 mm. If the thickness of the interlayer film for laminated glass is less than 0.001 mm, it may be difficult to obtain an interlayer film having a high absorbance for light of a specific wavelength, and the antiglare property may be insufficient. . On the other hand, when the thickness of the interlayer film for laminated glass exceeds 10 mm, it is difficult to obtain an interlayer film having a high visible light transmittance, and the light transmittance may be low.

[0086] 第 3の形態の光学部材としては、例えば、コーティングが挙げられる。ここで、コーテ イングとは、上記樹脂組成物を適宜の溶剤に溶解又は分散させた溶液又は分散液を 、必要な面に塗布し溶剤を蒸発させて、その面の一部又は全部に形成される薄膜、 被覆物又は薄層をいう。また、薄膜等が形成された面の平坦性等を高める目的で、 例えば、レべリング剤、消泡剤としての各種の界面活性剤等の溶解補助剤を溶液又 は分散液に添加してもよい。  [0086] Examples of the optical member of the third mode include a coating. Here, coating means that a solution or dispersion obtained by dissolving or dispersing the above resin composition in an appropriate solvent is applied to a required surface and the solvent is evaporated to form a part or all of the surface. Thin film, coating or thin layer. For the purpose of enhancing the flatness of the surface on which the thin film or the like is formed, for example, a dissolution aid such as a leveling agent or various surfactants as an antifoaming agent is added to the solution or the dispersion. Is also good.

[0087] 力かる第 1一 3の形態の光学部材は、希土類金属イオンを含有することに起因して 特定の波長光を吸収可能になることから優れた防眩性を有するようになり、また、榭 脂組成物中における希土類金属イオンの溶解性及び分散性が良好であることから透 光性にも優れるようになる。さらに、優れた耐光性が得られるようになるほか、加熱や 長期保存による透光性の低下も大幅に少なレ、ものとなる。また、樹脂成分としてポリビ 二ルァセタール樹脂、特にポリビュルプチラール樹脂を含有すると、透光性材料との 接着性に優れるようになる。さらにまた、ポリビエルァセタール樹脂は熱可塑性を有 することから、成形加工を簡易に行うことができる。  The optical member according to the first to thirteenth embodiments has excellent antiglare properties because it can absorb light of a specific wavelength due to the inclusion of rare earth metal ions, and Since the solubility and dispersibility of the rare earth metal ion in the resin composition are good, the light transmittance is also excellent. In addition, excellent light fastness can be obtained, and the decrease in light transmittance due to heating or long-term storage is significantly reduced. In addition, when a polyvinyl acetal resin, particularly a polybutyral resin, is contained as a resin component, the adhesiveness to a light-transmitting material becomes excellent. Furthermore, since the polybiacetal resin has thermoplasticity, molding can be easily performed.

[0088] また、合わせガラスの製造方法として、接着性を有する熱可塑性樹脂からなる中間 膜を 2枚のガラス板の間に挿入し、得られた積層体を予備圧着して各層間に残存す る空気を排除した後、本圧着して積層体を完全に密着させる方法が採られることがあ る。この場合に用いられる中間膜は、保存時に中間膜同士が合着し塊状となる、いわ ゆるブロッキング現象が生じないこと、ガラスと中間膜とを重ね合わせる際の作業性が 良好であること、および予備圧着工程における脱気性が良好であることが要求される 。予備圧着時の脱気性は合わせガラスの品質を左右し、脱気が不十分であると得ら れた合わせガラスの透明性が悪くなつたり、促進試験を行うと気泡が生じたりすること 力 Sある。 [0088] As a method for manufacturing a laminated glass, an interlayer film made of a thermoplastic resin having an adhesive property is inserted between two glass plates, and the obtained laminate is pre-pressed to form air remaining between the respective layers. In some cases, a method is adopted in which the laminate is completely adhered by completely press-bonding after eliminating the pressure. The interlayer used in this case is that the interlayers are coalesced during storage and form a lump, so-called blocking phenomenon does not occur, workability at the time of overlaying the glass and the interlayer is good, and Good deaeration in the pre-compression bonding step is required. Deaeration during pre-crimping affects the quality of the laminated glass. There is a force S that the transparency of the laminated glass deteriorates and bubbles are generated when the accelerated test is performed.

[0089] 上記のような中間膜の総合性能は、素材である熱可塑性樹脂の種類や粘弾性等 の物性によって左右されるが、これらの物性を固定して考えると、中間膜の表面形状 がその総合性能を決定する大きな要因となる。特に、エンボスと呼ばれる多数の微細 な凹凸を中間膜の表面に形成すると効果が得られ、エンボスが表面に形成された中 間膜が従来より使用されている。そのエンボスの形態としては、例えば、多数の凸部 とこれらの凸部に対する多数の凹部とからなる各種凸凹模様、多数の凸条とこれらの 凸条に対する多数の凹溝とからなる各種の凸凹模様、粗さ、配置、大きさ等の種々の 形状因子に関し多様な値を有するエンボス形状がある。このようなエンボスとしては、 例えば、特開平 6—198809号公報に記載されているような凸部の大きさを変え、そ の大きさ、配置を規定したもの、特開平 9一 40444号公報に記載されているような表 面の粗さを 20— 50 /i mとしたもの、特開平 9-295839号公報に記載されているよう な凸条が交差するように配置されたもの、特開 2003— 48762号公報に記載されてい るような主凸部の上に更に小さな凸部が形成されているもの、等が挙げられる。また、 このような、エンボス形状を施す方法としては、特表 2003-528749号公報に、樹脂 成形時に発生するメルトフラクチャ一を利用する方法が記載されており、特表 2002— 505211号公報、特表平 9一 502755号公報に、架橋 PVB粒子や造核剤を用いる方 法が記載されている。  [0089] The overall performance of the interlayer film as described above depends on the type of thermoplastic resin as a material and physical properties such as viscoelasticity. However, when these physical properties are fixed and considered, the surface shape of the interlayer film is reduced. This is a major factor in determining its overall performance. In particular, an effect is obtained when a large number of fine irregularities called embosses are formed on the surface of the intermediate film, and an intermediate film having an embossed surface is conventionally used. Examples of the form of the emboss include, for example, various uneven patterns composed of a large number of convex portions and a large number of concave portions corresponding to these convex portions, and various concave and convex patterns including a large number of convex portions and a large number of concave grooves corresponding to the convex portions. There are embossed shapes that have various values for various shape factors, such as roughness, placement, size, and the like. Such embosses include, for example, those in which the size of a convex portion is changed and its size and arrangement are specified as described in JP-A-6-198809, and JP-A-9-140444. Japanese Patent Application Laid-Open No. 9-295839, Japanese Patent Application Laid-Open No. 9-295839, in which ridges are arranged so as to intersect, — One in which a smaller convex portion is formed on the main convex portion as described in JP-A-48762. As a method for forming such an embossed shape, Japanese Patent Application Laid-Open No. 2003-528749 describes a method utilizing melt fracture generated during resin molding. JP-A-9-1502755 describes a method using crosslinked PVB particles and a nucleating agent.

[0090] さらに、各種用途において、合わせガラスに対して遮音性が要求される場合がある 。一般に遮音性能は、周波数の変化に応じた透過損失量として示される。この透過 損失量は、 JIS A4708では、 500Hz以上において遮音等級に応じてそれぞれ一定 値で規定されている。しかし、ガラス板の遮音性能は、 2000Hzを中心とする周波数 領域ではコインシデンス効果により著しく低下する。ここで、コインシデンス効果とは、 ガラス板に音波が入射した時、ガラス板の剛性と慣性によって、ガラス板状を横波が 伝播してこの横波と入射音とが共鳴し、その結果、音の透過が起こる現象をいう。一 般的な合わせガラスでは、 2000Hzを中心とする周波数領域において、かかるコイン シデンス効果による遮音性能の低下が避けられず、この点の改善が求められることが ある。 [0090] Further, in various applications, laminated glass may be required to have sound insulation. Generally, sound insulation performance is indicated as a transmission loss amount according to a change in frequency. In JIS A4708, this transmission loss is specified as a constant value according to the sound insulation class at 500 Hz or higher. However, the sound insulation performance of the glass sheet is significantly reduced in the frequency range around 2000 Hz due to the coincidence effect. Here, the coincidence effect means that when a sound wave enters a glass plate, a transverse wave propagates through the glass plate due to the rigidity and inertia of the glass plate, and the transverse wave and the incident sound resonate. As a result, sound transmission The phenomenon that occurs. In general laminated glass, in the frequency range around 2000 Hz, the reduction in sound insulation performance due to the coincidence effect is inevitable, and it is necessary to improve this point. is there.

[0091] 一方、人間の聴覚は、等ラウドネス曲線から、 1000— 6000Hzの範囲では他の周 波数領域に比べ非常に良い感度を示すことが知られている。従って、コインシデンス 効果による上記遮音性能の落ち込みを解消することは、防音性能を高める上で重要 であることがわかる。従って、合わせガラスの遮音性能を高めるには、上記コインシデ ンス効果による遮音性能の低下を緩和し、コインシデンス効果によって生じる透過損 失の極小部(以下、この極小部の透過損失量を TL値という。)の低下を防ぐ必要があ る。  [0091] On the other hand, it is known from the equal loudness curve that human hearing exhibits much better sensitivity in the range of 1000 to 6000 Hz than in other frequency regions. Therefore, it is understood that eliminating the drop in the sound insulation performance due to the coincidence effect is important for enhancing the sound insulation performance. Therefore, in order to enhance the sound insulation performance of the laminated glass, the decrease in the sound insulation performance due to the above-mentioned coincidence effect is mitigated, and the minimum transmission loss caused by the coincidence effect (hereinafter, the transmission loss amount of this minimum portion is referred to as TL value). ) Must be prevented.

[0092] 合わせガラスに遮音性を付与する方法としては、合わせガラスの質量を増大させる 方法、ガラスを複合化する方法、ガラス面積を細分化する方法、ガラス板支持手段を 改善する方法などがある。  [0092] Methods for imparting sound insulation to a laminated glass include a method of increasing the mass of the laminated glass, a method of compounding the glass, a method of subdividing the glass area, and a method of improving the means for supporting a glass plate. .

[0093] また、遮音性能が中間膜の動的粘弾性により左右され、特に貯蔵弾性率と損失弾 性率との比である損失正接に影響されることが知られている。このため、この値を制 御すれば合わせガラスの遮音性能を高めることができる。制御手段としては、例えば 、特定の重合度を有する樹脂膜を用いる方法、特開平 4 - 2317443号公報に記載さ れているような、ポリビニルァセタール樹脂のァセタール部分の構造を規定する方法 、特開 2001-220183号公報に記載されているような、樹脂中の可塑剤量を規定す る方法、等が挙げられる。さらに、異なる 2種以上の樹脂を組み合わせることにより広 い温度範囲にわたって合わせガラスの遮音性能を高めることもできる。例えば、特開 2001-206742号公報に記載されているような複数種の樹脂をブレンドする方法、 特開 2001-206741号公報、特開 2001—226152号公報に記載されているような 複数種の樹脂を積層する方法、特開 2001—192243号公報に記載されているような 中間膜中の可塑剤量に偏向を持たせる方法、等が挙げられる。  [0093] It is also known that the sound insulation performance is affected by the dynamic viscoelasticity of the interlayer, and is particularly affected by the loss tangent which is the ratio between the storage elastic modulus and the loss elastic modulus. Therefore, controlling this value can improve the sound insulation performance of the laminated glass. As the control means, for example, a method using a resin film having a specific polymerization degree, a method for defining the structure of an acetal portion of a polyvinyl acetal resin as described in JP-A-4-2317443, A method for defining the amount of a plasticizer in a resin, as described in Japanese Unexamined Patent Publication No. 2001-220183, and the like. Furthermore, by combining two or more different resins, the sound insulation performance of laminated glass can be improved over a wide temperature range. For example, a method of blending a plurality of types of resins as described in JP-A-2001-206742, JP-A-2001-206741, and a plurality of types of resins as described in JP-A-2001-226152 Examples of the method include a method of laminating a resin and a method of giving a bias to the amount of a plasticizer in an interlayer film as described in JP-A-2001-192243.

[0094] 更に合わせガラスの遮熱性を高める方法としては、遮熱機能を有する金属や金属 酸化物微粒子を中間膜中に含有させる方法や、これらの材料を含む層を合わせガラ スの積層構造の任意の位置に揷入する方法等が挙げられる。具体的には、例えば、 特開 2001— 206743号公報、特開 2001— 261383号公報、特開 2001— 302289号 公報等に記載されている方法が例示できる。酸化物微粒子としては錫ドープ酸化ィ ンジゥム(ITO)、アンチモンドープ酸化錫 (AT〇)、アルミニウムドープ酸化亜鉛 (AZ O)等が挙げられる。また、中間膜の透光性を上げるためには、酸化物微粒子の粒径 を規定する方法(特許 271589号公報、特開 2002 - 293583号公報)や、分散性を 高める方法等を用いてもよい。微粒子の分散性を上げるためには、機械的に分散さ せる、分散剤を用いる等の既知の微粒子分散技術を用いることが出来る。また、金属 や金属酸化物微粒子だけではなぐ特開平 7-157344号公報、特許第 319271号 公報に記載されているような有機系の遮熱機能を有する染料'顔料を用いる方法も 挙げられる。有機系の染料'顔料としては、フタロシアニン系、アントラキノン系、ナフト キノン系、シァニン系、ナフタロシアニン系、ピロール系、ィモニゥム系、ジチオール 系、メルカプトナフトール系等が挙げられる。 [0094] Further, as a method of increasing the heat shielding property of the laminated glass, a method of including a metal or a metal oxide fine particle having a heat shielding function in an interlayer film, or a method of laminating a laminated glass structure by laminating a layer containing these materials. There is a method of inserting an arbitrary position. Specifically, for example, the methods described in JP-A-2001-206743, JP-A-2001-261383, JP-A-2001-302289 and the like can be exemplified. Tin-doped oxide Aluminum (ITO), antimony-doped tin oxide (AT〇), aluminum-doped zinc oxide (AZO), and the like. Further, in order to increase the light transmittance of the intermediate film, a method of defining the particle size of the oxide fine particles (Japanese Patent No. 271589, Japanese Patent Application Laid-Open No. 2002-2933583), a method of improving dispersibility, and the like are used. Good. In order to enhance the dispersibility of the fine particles, known fine particle dispersion techniques such as mechanically dispersing or using a dispersant can be used. Further, a method using an organic dye or pigment having a heat-shielding function as described in JP-A-7-157344 and JP-A-319271, which is not limited to metal or metal oxide fine particles, may also be used. Examples of the organic dye 'pigment include phthalocyanine, anthraquinone, naphthoquinone, cyanine, naphthalocyanine, pyrrole, immonium, dithiol, and mercaptonaphthol.

[0095] 合わせガラスの遮熱性を高める方法としては、遮熱機能を有するガラスを用いて合 わせガラスを作成する方法が挙げられる。例えば、特開 2001— 151539号公報に記 載されているような Fe等の遷移金属を含有するガラス (例えば、グリーンガラス等)を 使用する方法や、特開 2001-261384号公報、特開 2001—226148号公報に記載 されているような金属、金属酸化物を積層したガラス板を使用する方法等が挙げられ る。 [0095] As a method of increasing the heat shielding property of a laminated glass, a method of producing a laminated glass using a glass having a heat shielding function is exemplified. For example, a method using a glass containing a transition metal such as Fe (for example, green glass) described in JP-A-2001-151539, JP-A-2001-261384, and JP-A-2001-261384. No. 226148, a method using a glass plate on which a metal or metal oxide is laminated, and the like.

[0096] また、中間膜としての性能を高めるために、以下に例示するような方法を用いること も出来る。耐貫通性を向上させる方法としては、例えば、特公平 6 - 25005号公報に 記載されるように樹脂基材として α -ォレフイン変性ポリビュルァセタールを使用する 方法、特開平 10 - 25390号公報に記載されるように樹脂の重合度、可塑剤添加量 を規定する方法、特開平 11-147736号公報に記載されるように中間膜の厚み偏差 を低減させる方法、等が挙げられる。  [0096] Further, in order to enhance the performance as an intermediate film, a method as exemplified below can be used. As a method of improving the penetration resistance, for example, a method of using α-olefin-modified polybutylacetal as a resin base material as described in JP-B-6-25005, and JP-A-10-25390 Examples include a method for defining the degree of polymerization of the resin and the amount of the plasticizer to be added, and a method for reducing the thickness deviation of the interlayer as described in JP-A-11-147736.

[0097] 中間膜とガラスとの接着性、密着性を改良する方法としては、例えば、特許 26247 79号公報に記載されるように樹脂を放射線グラフト不飽和化する方法、特開平 11 - 322378号公報に記載されるようにシリコーンオイルを添カ卩する方法、特開 2000—1 238586号公報に記載されるようにアルカリ金属又はアルカリ土類金属を添加する方 法、特開 2002—505210号公報に記載されるように表面エネルギー改変剤を添カロ する方法、等が挙げられる。 [0098] 耐久性試験時における白化防止方法としては、例えば、特開 2000-72495号公 報に記載されるように分子中に疎水性の大きな炭化水素基を有するシリコーンオイル を添加する方法、特開 2000-128586号公報に記載されるようにアルカリ金属又は アルカリ土類金属添加量を規定する方法、特開 2001 - 139352号公報に記載され るようにォキシアルキレングリコール含有量を規定する方法、特開 2001—163640号 公報に記載されるように規定された特性をもつ樹脂を使用する方法、特開平 6— 211 548号公報に記載されるようにシランカップリング材シールする方法、等が挙げられる [0097] As a method for improving the adhesion and adhesion between the interlayer film and the glass, for example, as described in Japanese Patent No. 2624779, a method in which a resin is subjected to radiation graft desaturation, and a method described in JP-A-11-322378 Japanese Patent Application Laid-Open No. 2002-505210 discloses a method of adding silicone oil as described in Japanese Unexamined Patent Publication, a method of adding an alkali metal or an alkaline earth metal as described in Japanese Patent Application Laid-Open No. 2000-1238586, and Japanese Patent Application Laid-Open No. 2002-505210. And a method of adding a surface energy modifier as described in the above. [0098] As a method for preventing whitening during the durability test, for example, a method of adding a silicone oil having a large hydrophobic hydrocarbon group in a molecule as described in JP-A-2000-72495, Japanese Patent Application Laid-Open No. 2000-128586 discloses a method for defining the amount of an alkali metal or alkaline earth metal to be added, a method for defining the oxyalkylene glycol content as described in JP-A-2001-139352, Japanese Patent Application Laid-Open No. 2001-163640 discloses a method using a resin having specified characteristics, and a method described in Japanese Patent Application Laid-Open No. 6-211548, in which a silane coupling material is sealed. Be

[0099] 紫外線吸収性を向上させる方法としては、特公平 4—29697号公報、特開平 10— 1 94796号公報、特開 2000—128587号公報に記載されるように紫外線吸収剤を添 加する方法が挙げられる。帯電防止方法としては、特開 2001—240425号公報に記 載されるようにカルボン酸アルカリ金属塩を添カ卩する方法、特開 2001—261384号 公報に記載されるようにォキシアルキレン化合物を添加する方法、等が挙げられる。 調色方法としては、特開平 9-183638号公報に記載されるように染料を添加する方 法が挙げられる。 [0099] As a method for improving the ultraviolet absorbing property, an ultraviolet absorber is added as described in JP-B-4-29697, JP-A-10-194796, and JP-A-2000-128587. Method. Examples of the antistatic method include a method of adding an alkali metal carboxylate as described in JP-A-2001-240425, and a method of using an oxyalkylene compound as described in JP-A-2001-261384. And the like. Examples of the toning method include a method of adding a dye as described in JP-A-9-183638.

[0100] また、透光性に優れる光学部材とするためには、光学部材のヘーズが 30%以下で あることが好ましぐ 20%以下であることがより好ましぐ 10%以下であることが特に好 ましレ、。力かるヘーズが 30%を超えると、可視光線の透過率が不充分となって透光 十生が低くなる ί頃向がある。  [0100] Further, in order to make the optical member excellent in translucency, the haze of the optical member is preferably 30% or less, more preferably 20% or less, more preferably 10% or less. Is particularly preferred. When the power haze exceeds 30%, the transmittance of visible light becomes insufficient, and the light transmittance decreases.

[0101] さらに、合わせガラスは、上述したような近赤外光領域の光線を吸収する特性を有 する中間膜のみならず、更なる近赤外光遮断特性の向上を目的として、近赤外光を 反射する特性を有する層(赤外反射層)を更に備えるものであってもよい。このような 赤外反射層は、合わせガラスの任意の位置に導入することができる。  [0101] Further, the laminated glass is not only an interlayer having a property of absorbing light in the near-infrared light region as described above, but also a near-infrared light for the purpose of further improving near-infrared light blocking properties. It may further include a layer having the property of reflecting light (infrared reflective layer). Such an infrared reflective layer can be introduced at any position of the laminated glass.

[0102] 赤外反射層としては、金属や金属酸ィヒ物から構成される透明な層が挙げられ、具 体的には、例えば、金、銀、銅、錫、アルミニウム、ニッケル、パラジウム、ケィ素、クロ ム、チタン、インジウム、アンチモン等の金属単体、合金、混合物又は酸化物が例示 できる。このような赤外反射層は、例えば、当該層を形成すべき面上に、例えば、金 属ゃ金属酸化物を蒸着することによって形成することが可能である。また、赤外反射 層としては、特表平 09-506837、特表 2000—506082、特表 2000—506084、特 表 2004-525403、特表 2003—515754、特開 2002—231038、特表 2004—503 402等に示されるような、光の干渉を利用して特定波長を反射する高分子多層フィル ムを適用してもよい。 [0102] Examples of the infrared reflective layer include transparent layers composed of metals and metal oxides. Specifically, for example, gold, silver, copper, tin, aluminum, nickel, palladium, Examples thereof include simple metals such as silicon, chromium, titanium, indium, and antimony, alloys, mixtures, and oxides. Such an infrared reflective layer can be formed, for example, by depositing a metal-metal oxide on a surface on which the layer is to be formed. Also, infrared reflection The layers are shown in JP-T-09-506837, JP-T 2000-506082, JP-T 2000-506084, JP-T 2004-525403, JP-T 2003-515754, JP-A-2002-231038, JP-T 2004-503 402, etc. As described above, a polymer multilayer film that reflects a specific wavelength by using light interference may be applied.

[0103] ここで、上述したように赤外反射層を形成した場合は、この赤外反射層とこれに隣 接する層との接着性が低下してしまうことがある。例えば、透光性基板と中間膜との間 に赤外反射層を導入した場合には、赤外反射層と中間膜との接着性が低下し、合わ せガラスが破損した場合に、透光性基板が剥離 *飛散し易くなる傾向にある。このた め、安全性の点で問題が生じることになる。  [0103] Here, when the infrared reflective layer is formed as described above, the adhesiveness between the infrared reflective layer and a layer adjacent thereto may be reduced. For example, when an infrared reflective layer is introduced between the light-transmitting substrate and the intermediate film, the adhesiveness between the infrared reflective layer and the intermediate film is reduced, and when the laminated glass is broken, the light is transmitted. * The substrate tends to be scattered. This raises security issues.

[0104] そこで、このような接着性の低下を避けるために、赤外反射層と、これと隣接する層 との接着性を調整する手段を採ることができる。具体的には、透光性基板と中間膜と の間に赤外反射層を形成する場合には、これらの間に、中間膜よりも高いァセタール 度を有するポリビュルァセタールからなる層(特開平 7-187726号公報、特開平 8- 337446号公報)を設ける方法等を採用することができる。その他、赤外反射層と、こ れと隣接する層との間に、所定の割合のァセトキシ基を有する PVBからなる層(特開 平 8-337445号公報)を設ける方法や、所定のシリコーンオイルからなる層(特開平 7— 314609号広報)を設ける方法等も挙げられる。  [0104] Therefore, in order to avoid such a decrease in adhesiveness, a means for adjusting the adhesiveness between the infrared reflective layer and a layer adjacent thereto can be employed. Specifically, when an infrared reflective layer is formed between the translucent substrate and the intermediate film, a layer made of polybutyl acetal having a higher acetal degree than that of the intermediate film (particularly, between them) Japanese Patent Application Laid-Open No. 7-187726, Japanese Patent Application Laid-Open No. 8-337446) can be employed. In addition, a method of providing a layer made of PVB having a predetermined ratio of an acetoxyl group (Japanese Patent Application Laid-Open No. 8-337445) between an infrared reflective layer and an adjacent layer, For example, a method of providing a layer made of (JP-A-7-314609).

[0105] このように、合わせガラスにおいては、近赤外光吸収性を有する中間膜に加えて、 近赤外光反射性を有する反射層を更に設けることで、両層の効果により、合わせガラ スに対して極めて優れた近赤外光遮断特性を付与することができる。また、上述した ような、赤外反射層と中間膜 (赤外吸収層)との接着性を改善する方法を採用すれば 、近赤外光遮断特性に加え、より優れた強度を有する合わせガラスを得ることも可能 となる。  As described above, in the laminated glass, a reflective layer having near-infrared light reflectivity is further provided in addition to the intermediate film having near-infrared light absorbability, so that the effect of the two layers allows the laminated glass to be laminated. Extremely excellent near-infrared light blocking characteristics. In addition, if a method for improving the adhesiveness between the infrared reflective layer and the intermediate film (infrared absorbing layer) as described above is employed, a laminated glass having more excellent strength in addition to the near-infrared light blocking characteristics can be obtained. It is also possible to obtain

[0106] 図 1は、本実施形態による光学部材の一例を模式的に示す断面図である。図 1に 示す光学部材は窓材 10である。窓材 10は、ガラスやプラスチック等の透光性材料か らなる板状基材 1上に、上述した樹脂組成物からなる層(以下、「防眩組成物層」とい う) 2が設けられたものであり、単層ガラス窓又はその母材、合わせガラス窓の単層、 複層ガラス窓の一層等に好適に用いることができる。このような構成の窓材 10は、板 状基材 1上の主面の一方に樹脂組成物を塗布(例えば、コーティング)して形成する こと力 Sできる。また、板状基材 1上の主面の一方に上述したシート、フィルムを貼り合 せて形成することも可能である。 FIG. 1 is a sectional view schematically showing an example of the optical member according to the present embodiment. The optical member shown in FIG. The window material 10 is provided with a layer (hereinafter, referred to as an “anti-glare composition layer”) 2 made of the above-described resin composition on a plate-shaped substrate 1 made of a light-transmitting material such as glass or plastic. It can be suitably used for a single-layer glass window or its base material, a single-layer laminated glass window, a single-layer glass window, and the like. The window material 10 having such a configuration is The resin composition can be formed by applying (for example, coating) the resin composition to one of the main surfaces on the base material 1. Further, it is also possible to form the above-mentioned sheet or film by laminating it on one of the main surfaces on the plate-shaped substrate 1.

[0107] また、図 1に示す窓材 10は、板状基材 1の主面の一方に防眩組成物層 2が設けら れているが、更に板状基材 1の主面の他方にも防眩組成物層 2が設けられていてもよ レ、。またさらに、窓材 10において、防眩組成物層 2上に、更に防眩組成物層 2が積層 されていてもよい。このような構成の窓材は、上述の窓材 10と同様に、単層ガラス窓 又はその母材、合わせガラス窓の単層、複層ガラス窓の一層等に好適に用いること ができる。  The window material 10 shown in FIG. 1 is provided with the antiglare composition layer 2 on one of the main surfaces of the plate-shaped substrate 1, and further has the other of the main surfaces of the plate-shaped substrate 1. The anti-glare composition layer 2 may also be provided. Further, in the window material 10, the antiglare composition layer 2 may be further laminated on the antiglare composition layer 2. The window material having such a configuration can be suitably used for a single-layer glass window or a base material thereof, a single-layer laminated glass window, a single-layer glass window, and the like, similarly to the above-described window material 10.

[0108] さらに、板状基材 1上に防眩組成物層 2、及び板状基材 1を順次積層させて一体化 した窓材、板状基材 1上に防眩組成物層 2、防眩組成物層 2、及び板状基材 1を順 次積層させて一体化した窓材、板状部材 1上に防眩組成物層 2、板状部材 1、及び 防眩組成物層 2を順次積層させて一体化した窓材等が挙げられ、これらの窓材は合 わせガラス窓に好適な態様である。また、このような態様の窓材においては、防眩組 成物層 2が 2枚の板状基材 1の中間膜 (例えば、合わせガラス中間膜)として機能して いる。  [0108] Further, an antiglare composition layer 2 on the plate-shaped substrate 1, and a window material in which the plate-shaped substrate 1 was sequentially laminated and integrated, an anti-glare composition layer 2 on the plate-shaped substrate 1, An antiglare composition layer 2, a plate-like member 1, and an antiglare composition layer 2 on a window material and a plate-like member 1 in which an antiglare composition layer 2 and a plate-like substrate 1 are sequentially laminated and integrated. Are laminated one after another, and a window material and the like are integrated. These window materials are a preferable mode for a combined glass window. In the window material of such an embodiment, the antiglare composition layer 2 functions as an intermediate film (for example, a laminated glass intermediate film) of the two plate-shaped substrates 1.

[0109] また、上述した防眩組成物層 2には、リン酸エステルイ匕合物と金属イオンとを含む赤 外線吸収組成物を含有していても良い。このような構成を有する窓材とすることにより 、特定波長に対する吸収特性に加え、赤外線を吸収する機能をも有することができる  [0109] Further, the above-described antiglare composition layer 2 may contain an infrared absorbing composition containing a phosphoric acid ester conjugate and a metal ion. By using the window material having such a configuration, it is possible to have a function of absorbing infrared rays in addition to the absorption characteristics for a specific wavelength.

[0110] さらに、板状部材 1上に防眩組成物層 2、及び赤外線吸収組成物層を順次積層さ せた窓材、板状部材 1上に赤外線吸収組成物層、及び防眩組成物層 2を順次積層 させた窓材、板状部材 1上に防眩組成物層 2、赤外線吸収組成物層、及び防眩組成 物層 2を順次積層させた窓材としてもよい。 [0110] Further, a window material in which an antiglare composition layer 2 and an infrared absorbing composition layer are sequentially laminated on the plate-like member 1, the infrared absorbing composition layer and the anti-glare composition on the plate-like member 1 A window material in which the layer 2 is sequentially laminated, or a window material in which the antiglare composition layer 2, the infrared absorbing composition layer, and the antiglare composition layer 2 are sequentially laminated on the plate-like member 1, may be used.

[0111] このような赤外線吸収組成物層を備える窓材 10は、その近赤外光吸収性から熱線 吸収材としての機能を発揮するものであり、熱線の遮断が必要とされる種々の部材に 適用できる。その用途としては、例えば、太陽光等の自然光その他の外光を取り入れ る窓材及び屋根材 (住宅、店舗その他の建築物又は建造物、自動車その他の移動 運搬機器やそれらの収容場所、通行路等に用いられる透光性部材)、屋内外の日焼 けを目的とする部材一般等が挙げられる。 [0111] The window material 10 having such an infrared absorbing composition layer exhibits a function as a heat ray absorbing material due to its near-infrared light absorbing property, and various members that need to block heat rays are used. Applicable to Applications include, for example, window materials and roofing materials that take in natural light such as sunlight and other external light (houses, stores and other buildings or structures, automobiles and other vehicles). (Translucent members used for transporting equipment, their storage locations, traffic paths, etc.), general members intended for indoor and outdoor tanning, and the like.

[0112] また、太陽光等の外光には、人体 (皮膚)に対して有害な影響を及ぼし、且つ、塗 料や塗装或いはゴム製品やプラスチック製品等の劣化を引き起こす紫外線が含まれ ているが、このような窓材 10は熱線吸収のみならず、入射光の波長成分のうち紫外 光を遮断する性能を有しているために、建材等に好適に用いることができる。しかも、 この窓材 10は、可視光に対して高い透過特性を有している。  [0112] External light such as sunlight contains ultraviolet rays that have a harmful effect on the human body (skin) and cause deterioration of paints, paints, rubber products, plastic products, and the like. However, such a window material 10 not only absorbs heat rays but also has a performance of blocking ultraviolet light among wavelength components of incident light, and thus can be suitably used as a building material. In addition, the window material 10 has high transmission characteristics for visible light.

[0113] 板状基材 1を構成する材料としては、可視光透過性を有する透光性材料であれば 、特に限定されるものではなぐ窓材の用途に応じて適宜選択可能である。硬度、耐 熱性、耐薬品性、耐久性等の観点から、上述のようにガラス又はプラスチックが好適 に使用される。ガラスとしては、無機ガラス又は有機ガラス等が挙げられる。プラスチ ックとしては、例えばポリカーボネイト、アクリロニトリル一スチレン共重合体、ポリメチノレ メタタリレート、塩化ビエル系樹脂、ポリスチレン、ポリエステル、ポリオレフイン、ノルボ ルネン系樹脂等が例示できる。なお、板状基材 1が複数存在する場合には、それぞ れ同じ種類の材料で構成されてレ、てもよく、或いは互いに異なる材料で構成されて いてもよい。  [0113] The material constituting the plate-shaped substrate 1 is not particularly limited as long as it is a light-transmitting material having visible light transmittance, and can be appropriately selected depending on the application of the window material. From the viewpoints of hardness, heat resistance, chemical resistance, durability and the like, glass or plastic is preferably used as described above. Examples of the glass include inorganic glass and organic glass. Examples of the plastic include polycarbonate, acrylonitrile-styrene copolymer, polymethinole methacrylate, biel chloride resin, polystyrene, polyester, polyolefin, norbornene resin, and the like. When there are a plurality of plate-shaped substrates 1, each may be made of the same type of material, or may be made of different materials.

[0114] また、防眩組成物層 2として上述した樹脂組成物を使用する場合には、ヘンシェル ミキサー等の混合機により混合する手段、ロール混練機、或いは混練押出機等により 混練混合する手段を用いることができる。また、各成分を適宜の有機溶剤に分散させ 、この分散液から有機溶剤を除去する手段を用いることができる。  When the above-described resin composition is used as the antiglare composition layer 2, a means for mixing with a mixer such as a Henschel mixer, a means for kneading and mixing with a roll kneader, a kneading extruder, or the like is used. Can be used. In addition, means for dispersing each component in an appropriate organic solvent and removing the organic solvent from the dispersion can be used.

[0115] なお、上記実施形態においては、光学部材が窓材である場合について詳細に説 明した。この窓材以外にも、上述した樹脂組成物が防眩性及び透光性に加えて成形 加工性に優れることから、防眩性眼鏡レンズ (サングラス)、防眩性フィルター、画面力 バー、防眩性ディスプレイフィルター、色純度補正フィルター、色調補正フィルター、 照明器具の輝度調節フィルタ一等の光学フィルター、光通信機能デバイス、ファラデ 一素子、光増幅素子、波長変換素子等を構成するものとして極めて有用である。また 、これらを備えて成る機器としては、カラーディスプレイ(カラー画像表示装置)、カラ 一撮像カメラ (カラー画像撮像装置)、照明灯 (照明器具)、レーザ、通信用光増幅器 、通信用光アイソレーター、光スィッチ等を例示することができる。 [0115] In the above embodiment, the case where the optical member is a window material has been described in detail. In addition to the window material, the resin composition described above has excellent anti-glare properties and translucency as well as excellent moldability, so that anti-glare spectacle lenses (sunglasses), anti-glare filters, screen power bars, Extremely useful as a component of optical filters such as glare display filters, color purity correction filters, color tone correction filters, brightness adjustment filters for lighting equipment, optical communication function devices, Faraday devices, optical amplifiers, wavelength converters, etc. It is. Devices equipped with these devices include a color display (color image display device), a color imaging camera (color image imaging device), an illumination lamp (illumination equipment), a laser, and a communication optical amplifier. , A communication optical isolator, an optical switch, and the like.

実施例  Example

[0116] 以下、実施例及び比較例に基づき本発明をさらに具体的に説明するが、本発明は 以下の実施例に何ら限定されるものではない。  Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

(希土類金属イオンとアルキルリン酸エステルとの組成物の調製)  (Preparation of composition of rare earth metal ion and alkyl phosphate ester)

[0117] (調製例 1)  (Preparation Example 1)

酢酸ネオジム '一水和物 5gと、リン酸モノエステル成分とリン酸ジエステル成分との 割合がモル比で 50: 50の 2-ェチルへキシルリン酸エステル化合物(東京化成製) 6 . 95gと、をトルエン 10gに加えたところ、透明な溶液が得られた。この溶液を用いて 脱酢酸還流を行った後、トルエンを留去してネオジムイオンとリン酸エステルイ匕合物と を含む組成物 12gを得た。  5 g of neodymium acetate monohydrate and 6.95 g of a 2-ethylhexyl phosphate compound (manufactured by Tokyo Chemical Industry) having a molar ratio of a phosphate monoester component to a phosphate diester component of 50:50 When added to 10 g of toluene, a clear solution was obtained. After performing acetic acid reflux with this solution, toluene was distilled off to obtain 12 g of a composition containing neodymium ions and phosphoric acid ester conjugate.

[0118] (調製例 2) (Preparation Example 2)

酢酸プラセオジム二水和物 5gと、リン酸モノエステル成分とリン酸ジエステル成分と の割合が、モル比で 50: 50の 2—ェチルへキシルリン酸エステル化合物(東京化成製 ) 13. 54gとをトルエン 10gに加えたところ、透明な溶液が得られた。この溶液を用い て脱酢酸還流を行った後、トルエンを留去してプラセオジムイオンとリン酸エステルイ匕 合物とを含む組成物 19gを得た。  5 g of praseodymium acetate dihydrate and 2-54-ethylhexyl phosphate compound (manufactured by Tokyo Chemical Industry Co., Ltd.) having a molar ratio of a phosphate monoester component to a phosphate diester component of 50:50 were dissolved in 13.54 g of toluene. Upon addition to 10 g, a clear solution was obtained. After performing deacetic acid reflux with this solution, toluene was distilled off to obtain 19 g of a composition containing praseodymium ions and phosphoric acid ester conjugate.

[0119] (調製例 3) (Preparation Example 3)

酢酸ネオジム '一水和物 5gと、 2—ェチルへキシルリン酸ジエステル化合物(東京化 成製、リン酸ジエステル成分 100%) 13. 3gとをトノレェン 10gにカロえたところ、透明な 溶液が得られた。この溶液を用いて脱酢酸還流を行った後、トルエンを留去してネオ ジムイオンとリン酸エステル化合物とを含む組成物 19gを得た。  A clear solution was obtained when 5 g of neodymium acetate monohydrate and 13.3 g of 2-ethylhexyl phosphate diester compound (manufactured by Tokyo Chemical Co., 100% phosphate diester component) were added to 10 g of Tonolen. . After performing deacetic acid reflux using this solution, toluene was distilled off to obtain 19 g of a composition containing neodymium ions and a phosphate compound.

[0120] (調製例 4) (Preparation Example 4)

酢酸ネオジム '一水和物 5gと、リン酸モノエステル成分とリン酸ジエステル成分との 割合が、モル比で 50 : 50のラウリルリン酸エステルイ匕合物(城北化学製) 14. 46gと、 をトルエン 10gにカ卩えたところ、半透明な溶液が得られた。この溶液を用いて脱酢酸 還流を行った後、トルエンを留去してネオジムイオンとリン酸エステルイ匕合物とを含む 組成物 20gを得た。 [0121] (調製例 5) 5 g of neodymium acetate monohydrate and 14.46 g of a lauryl phosphate ester conjugate (manufactured by Johoku Chemical) having a molar ratio of a phosphate monoester component and a phosphate diester component of 50:50 were obtained. When translucent with 10 g of toluene, a translucent solution was obtained. After performing acetic acid reflux with this solution, toluene was distilled off to obtain 20 g of a composition containing neodymium ions and phosphoric acid ester conjugate. (Preparation Example 5)

酢酸ネオジム '一水和物 5gと、リン酸モノエステル成分とリン酸ジエステル成分との 割合が、モル比で 50 : 50のォレイルリン酸エステルイ匕合物(東京化成製) 11. 83gと 、をトルエン 10gに加えたところ、半透明な溶液が得られた。この溶液を用いて脱酢 酸還流を行った後、トルエンを留去してネオジムイオンとリン酸エステルイ匕合物とを含 む組成物 14. 69gを得た。  5 g of neodymium acetate monohydrate and 11.83 g of a oleyl phosphate ester conjugate (manufactured by Tokyo Chemical Industry) having a molar ratio of a phosphate monoester component and a phosphate diester component of 50:50 were mixed with toluene. Upon addition to 10 g, a translucent solution was obtained. After performing deacetic acid reflux using this solution, toluene was distilled off to obtain 14.69 g of a composition containing neodymium ions and phosphoric acid ester conjugate.

[0122] (調製例 6) (Preparation Example 6)

酢酸ネオジム '一水和物 5gと、リン酸モノエステル成分とリン酸ジエステル成分との 割合が、モル比で 50 : 50のステアリルリン酸エステル化合物(城北化学製) 11. 90g と、をトルエン 10gに加えたところ、半透明な溶液が得られた。この溶液を用いて脱酢 酸還流を行った後、トルエンを留去してネオジムイオンとリン酸エステルイ匕合物とを含 む組成物 15. 31gを得た。  5 g of neodymium acetate monohydrate, 11.90 g of a stearyl phosphate compound (manufactured by Johoku Chemical Co., Ltd.) having a molar ratio of a phosphate monoester component to a phosphate diester component of 50:50, and 10 g of toluene To give a translucent solution. After the solution was refluxed with deacetic acid using this solution, toluene was distilled off to obtain 15.31 g of a composition containing neodymium ions and phosphoric acid ester conjugate.

[0123] (調製例 7) (Preparation Example 7)

酢酸ネオジム '一水和物 5gと、リン酸モノエステル成分とリン酸ジエステル成分との 割合が、モル比で 50 : 50の n—ブチルリン酸エステル化合物(東京化成製) 4. 58gと 、をトルエン 10gに加えたところ、半透明な溶液が得られた。この溶液を用いて脱酢 酸還流を行った後、トルエンを留去してネオジムイオンとリン酸エステルイ匕合物とを含 む組成物 7. 28gを得た。  4.58 g of neodymium acetate monohydrate (5 g), n-butyl phosphate compound (manufactured by Tokyo Chemical Industry) having a molar ratio of a phosphate monoester component and a phosphate diester component of 50:50, and Upon addition to 10 g, a translucent solution was obtained. After refluxing deacetic acid with this solution, toluene was distilled off to obtain 7.28 g of a composition containing neodymium ions and phosphoric acid ester conjugate.

[0124] (比較調製例 1) (Comparative Preparation Example 1)

酢酸ネオジム '一水和物 5gと、リン酸モノエステル成分とリン酸ジエステル成分との 割合力 S、モル比で 61. 6 : 33. 6のメトキシプロピルリン酸エステル化合物(城北化学 製) 4. 77gと、をトルエン 10gに加えたところ、半透明な溶液が得られた。この溶液を 用いて脱酢酸還流を行った後、トルエンを留去してネオジムイオンとリン酸エステル 化合物とを含む組成物 10gを得た。  Neodymium acetate monohydrate (5 g), methoxypropyl phosphate compound (manufactured by Johoku Chemical Co., Ltd.) with a molar ratio of 61.6: 33.6, a ratio of phosphate monoester component and phosphate diester component, S, 4. When 77 g and 10 g of toluene were added, a translucent solution was obtained. After performing deacetic acid reflux using this solution, toluene was distilled off to obtain 10 g of a composition containing neodymium ions and a phosphate compound.

[0125] (比較調製例 2) (Comparative Preparation Example 2)

酢酸銅'一水和物 5gと、リン酸モノエステル成分とリン酸ジエステル成分との割合が 、モル比で 50 : 50の 2_ェチルへキシルリン酸エステル化合物(東京化成製) 8. 9gと 、をトルエン 10gに加えたところ、半透明な溶液が得られた。この溶液を用いて脱酢 酸還流を行った後、トルエンを留去して銅イオンとリン酸エステル化合物とを含む組 成物 10. 8gを得た。 5 g of copper acetate 'monohydrate, and a ratio of a phosphate monoester component to a phosphate diester component in a molar ratio of 50:50, 2_ethylhexyl phosphate compound (manufactured by Tokyo Chemical Industry) 8.9 g, Was added to 10 g of toluene to obtain a translucent solution. Use this solution for devinegarization After acid reflux, toluene was distilled off to obtain 10.8 g of a composition containing a copper ion and a phosphate compound.

[0126] (比較調製例 3)  (Comparative Preparation Example 3)

酢酸鉄 ·一水和物 5gと、リン酸モノエステル成分とリン酸ジエステル成分との割合が 、モル比で 50 : 50の 2_ェチルへキシルリン酸エステル化合物(東京化成製) 2. 45g と、をトルエン 10gに加えたところ、半透明な溶液が得られた。この溶液を用いて脱酢 酸還流を行った後、トルエンを留去して鉄イオンとリン酸エステル化合物とを含む組 成物 6. 4gを得た。  5 g of iron acetate monohydrate and a molar ratio of a phosphate monoester component and a phosphate diester component of 50:50 2_ethylhexyl phosphate compound (manufactured by Tokyo Chemical Industry) 2.45 g, Was added to 10 g of toluene to obtain a translucent solution. After the solution was refluxed with deacetic acid using this solution, toluene was distilled off to obtain 6.4 g of a composition containing iron ions and a phosphate compound.

[0127] (比較調製例 4)  (Comparative Preparation Example 4)

酢酸ニッケル '一水和物 5gと、リン酸モノエステル成分とリン酸ジエステル成分との 割合が、モル比で 50: 50の 2_ェチルへキシルリン酸エステル化合物(東京化成製) 3. 5gと、をトルエン 10gに加えたところ、半透明な溶液が得られた。この溶液を用い て脱酢酸還流を行った後、トルエンを留去してニッケルイオンとリン酸エステルイ匕合 物とを含む組成物 7. 2gを得た。  5 g of nickel acetate 'monohydrate and 2 g of 2-ethylhexyl phosphate compound (manufactured by Tokyo Chemical Industry) having a molar ratio of 50:50 between the phosphate monoester component and the phosphate diester component, 3.5 g, Was added to 10 g of toluene to obtain a translucent solution. After performing acetic acid reflux using this solution, toluene was distilled off to obtain 7.2 g of a composition containing nickel ions and phosphoric acid ester conjugate.

[0128] (比較調製例 5)  (Comparative Preparation Example 5)

酢酸銅 '一水和物 5gと、リン酸ジエステル成分のみを含む 2—ェチルへキシルリン酸 エステル化合物(東京化成製) 16. 6gと、をトルエン 10gに加えたところ、半透明な溶 液が得られた。この溶液を用いて脱酢酸還流を行った後、トルエンを留去して銅ィォ ンとリン酸エステル化合物とを含む組成物 21. 0gを得た。  A translucent solution was obtained by adding 5 g of copper acetate monohydrate and 16.6 g of 2-ethylhexyl phosphate compound (manufactured by Tokyo Chemical Industry) containing only the phosphodiester component to 10 g of toluene. Was done. After performing deacetic acid reflux using this solution, toluene was distilled off to obtain 21.0 g of a composition containing copper ion and a phosphate compound.

[0129] (実施例 1)  (Example 1)

(樹脂組成物の合成)  (Synthesis of resin composition)

調製例 1で得られた組成物 lgを可塑剤(3G〇(トリエチレングリコールジー 2—ェチ ルへキサネート)、ァクロス社製) 2gへ溶解させ、ポリビュルプチラール樹脂(エスレツ ク BH3、積水化学 (株)製) 7. Ogと共に 85°Cで混合して樹脂組成物を得た。  The composition lg obtained in Preparation Example 1 was dissolved in 2 g of a plasticizer (3G〇 (triethylene glycol di-2-ethylhexanate), manufactured by Across Inc.), and a polybutyral resin (Esrec BH3, Sekisui Water) was dissolved. 7. The mixture was mixed with Og at 85 ° C. to obtain a resin composition.

[0130] (シート及びこれを用いた合わせガラスの作製)  (Production of Sheet and Laminated Glass Using It)

次いで、得られた樹脂組成物を、 85°Cに調製されたプレス機 (WF— 50、神藤金属 工業製)により数回プレスした後、 120°Cに調整されたプレス機で数回プレスを行つ て混鍊成形し、厚さ 1. Ommの均一な面を有するシートを作製した。そして、希土類 金属イオン及びリン酸エステルィヒ合物のポリビニルブチラール樹脂への溶解性を試 験するために、得られたシートの外観を目視観察して以下の基準で評価を行った。 評価結果を表 1に示す。 Next, the obtained resin composition was pressed several times by a press machine (WF-50, manufactured by Shindo Metal Co., Ltd.) adjusted to 85 ° C, and then pressed several times by a press machine adjusted to 120 ° C. Then, a sheet having a uniform surface with a thickness of 1. Omm was produced. And rare earth In order to test the solubility of the compound of metal ion and phosphoric ester in polyvinyl butyral resin, the appearance of the obtained sheet was visually observed and evaluated according to the following criteria. Table 1 shows the evaluation results.

評価基準;  Evaluation criteria;

〇:全く曇りが見られず、透光性が維持されている。  〇: No fogging was observed, and translucency was maintained.

X:透光性が維持されていない。  X: Translucency is not maintained.

[0131] 次いで、上述のようにして得られたシートをスライドガラス(76mm X 26mm X I . 1 mm) 2枚の間に挟み、得られた積層体をオートクレープにより温度 130°C、圧力 1. 2 MPaで 30分保持しながら真空プレスを行レ、、合わせガラスを作製した。  Next, the sheet obtained as described above was sandwiched between two slide glasses (76 mm × 26 mm XI.1 mm), and the obtained laminate was subjected to autoclave at a temperature of 130 ° C. and a pressure of 1. Vacuum pressing was performed while maintaining the pressure at 2 MPa for 30 minutes to produce a laminated glass.

[0132] (実施例 2)  (Example 2)

調製例 2で得られた組成物 lgを用いたこと以外は、実施例 1と同様の方法により樹 脂組成物を得た。次いで、実施例 1と同様の方法により、シートを得、当該シートの外 観を目視観察した後、合わせガラスを得た。  A resin composition was obtained in the same manner as in Example 1, except that the composition lg obtained in Preparation Example 2 was used. Next, a sheet was obtained in the same manner as in Example 1, and after visually observing the appearance of the sheet, a laminated glass was obtained.

[0133] (実施例 3) (Example 3)

調製例 1で得られた組成物 0. 5g及び調製例 2で得られた組成物 0. 5gを用いたこ と以外は、実施例 1と同様の方法により樹脂組成物を得た。次いで、実施例 1と同様 の方法によりシートを得、当該シートの外観を目視観察した後、合わせガラスを得た。  A resin composition was obtained in the same manner as in Example 1, except that 0.5 g of the composition obtained in Preparation Example 1 and 0.5 g of the composition obtained in Preparation Example 2 were used. Next, a sheet was obtained in the same manner as in Example 1, and the appearance of the sheet was visually observed, and then a laminated glass was obtained.

[0134] (実施例 4) (Example 4)

調製例 1で得られた組成物 2gを用いたこと以外は、実施例 1と同様の方法により榭 脂組成物を得た。次いで、実施例 1と同様の方法により、シートを得、当該シートの外 観を目視観察した後、合わせガラスを得た。  A resin composition was obtained in the same manner as in Example 1, except that 2 g of the composition obtained in Preparation Example 1 was used. Next, a sheet was obtained in the same manner as in Example 1, and after visually observing the appearance of the sheet, a laminated glass was obtained.

[0135] (実施例 5) (Example 5)

調製例 1で得られた組成物 5gを用いたこと以外は、実施例 1と同様の方法により樹 脂組成物を得た。次いで、実施例 1と同様の方法により、シートを得、当該シートの外 観を目視観察した後、合わせガラスを得た。  A resin composition was obtained in the same manner as in Example 1, except that 5 g of the composition obtained in Preparation Example 1 was used. Next, a sheet was obtained in the same manner as in Example 1, and after visually observing the appearance of the sheet, a laminated glass was obtained.

[0136] (実施例 6) (Example 6)

調製例 1で得られた組成物 1 Ogを用レ、たこと以外は、実施例 1と同様の方法により 樹脂組成物を得た。次いで、実施例 1と同様の方法により、シートを得、当該シートの 外観を目視観察した後、合わせガラスを得た。 A resin composition was obtained in the same manner as in Example 1, except that 1 Og of the composition obtained in Preparation Example 1 was used. Then, a sheet was obtained in the same manner as in Example 1, and the sheet was After visually observing the appearance, a laminated glass was obtained.

[0137] (実施例 7) (Example 7)

調製例 3で得られた組成物 lgを用いたこと以外は、実施例 1と同様の方法により榭 脂組成物を得た。次いで、実施例 1と同様の方法により、シートを得、当該シートの外 観を目視観察した後、合わせガラスを得た。  A resin composition was obtained in the same manner as in Example 1, except that the composition lg obtained in Preparation Example 3 was used. Next, a sheet was obtained in the same manner as in Example 1, and after visually observing the appearance of the sheet, a laminated glass was obtained.

[0138] (実施例 8) (Example 8)

調製例 4で得られた組成物 lgを用いたこと以外は、実施例 1と同様の方法により樹 脂組成物を得た。次いで、実施例 1と同様の方法により、シートを得、当該シートの外 観を目視観察した後、合わせガラスを得た。  A resin composition was obtained in the same manner as in Example 1, except that the composition lg obtained in Preparation Example 4 was used. Next, a sheet was obtained in the same manner as in Example 1, and after visually observing the appearance of the sheet, a laminated glass was obtained.

[0139] (実施例 9) (Example 9)

実施例 1で得られたシートをグリーンガラス(76mm X 26mm X 2mm)の間に挟ん だこと以外は、実施例 1と同様の方法により合わせガラスを得た。  A laminated glass was obtained in the same manner as in Example 1, except that the sheet obtained in Example 1 was sandwiched between green glasses (76 mm X 26 mm X 2 mm).

[0140] (実施例 10) [0140] (Example 10)

調整例 1で得られた組成物 lg、可塑剤(3GO) 2g、錫ドープ酸化インジウム(IT〇、 平均粒子径 80nm以下) 0. 023gを溶解させた状態で、ポリビエルプチラール樹脂 7 . Ogに加え、 85°Cで混合して樹脂組成物を得た。次いで、実施例 1と同様の方法に よりシートを得、当該シートの外観を目視観察した。次いで、実施例 9と同様のダリー ガラスを用レ、、このグリーンガラスの間に ITOを含有させたシートを挟んで実施例 1と 同様の方法により合わせガラスを得た。  In a state where the composition lg obtained in Preparation Example 1, 2 g of plasticizer (3GO), and tin-doped indium oxide (IT〇, average particle diameter of 80 nm or less) 0.023 g were dissolved, 7.0 g of polybierptylal resin was dissolved. And mixed at 85 ° C. to obtain a resin composition. Next, a sheet was obtained in the same manner as in Example 1, and the appearance of the sheet was visually observed. Next, a laminated glass was obtained in the same manner as in Example 1 by using the same darry glass as in Example 9, and sandwiching a sheet containing ITO between the green glasses.

[0141] (実施例 11) [0141] (Example 11)

調製例 5で得られた組成物 0. lgを用いたこと以外は、実施例 1と同様の方法により 樹脂組成物を得た。次いで、実施例 1と同様の方法により、シートを得、当該シートの 外観を目視観察した後、合わせガラスを得た。  A resin composition was obtained in the same manner as in Example 1, except that 0.1 lg of the composition obtained in Preparation Example 5 was used. Next, a sheet was obtained in the same manner as in Example 1, and the appearance of the sheet was visually observed, and then a laminated glass was obtained.

[0142] (実施例 12) [0142] (Example 12)

調製例 6で得られた組成物 0. lgを用いたこと以外は、実施例 1と同様の方法により 樹脂組成物を得た。次いで、実施例 1と同様の方法により、シートを得、当該シートの 外観を目視観察した後、合わせガラスを得た。  A resin composition was obtained in the same manner as in Example 1, except that 0.1 lg of the composition obtained in Preparation Example 6 was used. Next, a sheet was obtained in the same manner as in Example 1, and the appearance of the sheet was visually observed, and then a laminated glass was obtained.

[0143] (実施例 13) 調整例 7で得られた組成物 0. lgを用いたこと以外は、実施例 1と同様の方法により 樹脂組成物を得た。次いで、実施例 1と同様の方法により、シートを得、当該シートの 外観を目視観察した後、合わせガラスを得た。 (Example 13) A resin composition was obtained in the same manner as in Example 1, except that 0.1 lg of the composition obtained in Preparation Example 7 was used. Next, a sheet was obtained in the same manner as in Example 1, and the appearance of the sheet was visually observed, and then a laminated glass was obtained.

[0144] (比較例 1) (Comparative Example 1)

酢酸ネオジム '一水和物 5gと、可塑剤(3G〇(トリエチレングリコールージー 2—ェチ ルへキサネート)、ァクロス社製) 2gと、ポリビュルブチラール樹脂(エスレック BH3、 積水化学 (株)製) 7. Ogとを 85°Cで混合して樹脂組成物を得た。次いで、実施例 1と 同様の方法により、シートを得、当該シートの外観を目視観察した後、合わせガラスを 得た。 And neodymium acetate 'monohydrate 5g, plasticizer (3G_〇 (Kisaneto to triethylene glycol over Gee 2 E Ji Le), manufactured by Akurosu Ltd.) and 2 g, poly Bulle butyral resin (S-LEC BH3, Sekisui Chemical Co., 7.) Og was mixed at 85 ° C. to obtain a resin composition. Next, a sheet was obtained in the same manner as in Example 1, and the appearance of the sheet was visually observed, and then a laminated glass was obtained.

[0145] (比較例 2) [0145] (Comparative Example 2)

比較調製例 1で得られた組成物 1 gを用いたこと以外は、実施例 1と同様の方法によ り樹脂組成物を得た。次いで、実施例 1と同様の方法により、シートを得、当該シート の外観を目視観察した後、合わせガラスを得た。  A resin composition was obtained in the same manner as in Example 1, except that 1 g of the composition obtained in Comparative Preparation Example 1 was used. Next, a sheet was obtained in the same manner as in Example 1, and the appearance of the sheet was visually observed, and then a laminated glass was obtained.

[0146] (比較例 3) (Comparative Example 3)

比較調製例 2で得られた組成物 lgを、ポリビニルプチラール樹脂(エスレック BH3、 積水化学 (株)製) 9. Ogと共に 85°Cで混合して樹脂組成物を得た。次いで、実施例 1と同様の方法により、シートを得た後、合わせガラスを得た。  The composition lg obtained in Comparative Preparation Example 2 was mixed at 85 ° C. with a polyvinyl butyral resin (Eslek BH3, manufactured by Sekisui Chemical Co., Ltd.) at 85 ° C. to obtain a resin composition. Next, a sheet was obtained in the same manner as in Example 1, and then a laminated glass was obtained.

[0147] (比較例 4) (Comparative Example 4)

比較調製例 3で得られた組成物 lgを、ポリビニルプチラール樹脂(エスレック BL1、 積水化学 (株)製) 9. Ogと共に 85°Cで混合して樹脂組成物を得た。次いで、実施例 1と同様の方法により、シートを得た後、合わせガラスを得た。  The composition lg obtained in Comparative Preparation Example 3 was mixed at 85 ° C. with a polyvinyl butyral resin (Eslec BL1, manufactured by Sekisui Chemical Co., Ltd.) at 85 ° C. to obtain a resin composition. Next, a sheet was obtained in the same manner as in Example 1, and then a laminated glass was obtained.

[0148] (比較例 5) (Comparative Example 5)

比較調製例 4で得られた組成物 lgを、ポリビュルプチラール樹脂(エスレック BL1、 積水化学 (株)製) 9. Ogと共に 85°Cで混合して樹脂組成物を得た。次いで、実施例 1と同様の方法により、シートを得た後、合わせガラスを得た。  The composition lg obtained in Comparative Preparation Example 4 was mixed with a polybutyral resin (Eslec BL1, manufactured by Sekisui Chemical Co., Ltd.) at 85 ° C. together with 9. Og to obtain a resin composition. Next, a sheet was obtained in the same manner as in Example 1, and then a laminated glass was obtained.

[0149] (比較例 6) (Comparative Example 6)

比較調製例 5で得られた組成物 lgを、ポリビュルプチラール樹脂(エスレック BH3、 積水化学 (株)製) 9. Ogと共に 85°Cで混合して樹脂組成物を得た。次いで、実施例 1と同様の方法により、シートを得た後、合わせガラスを得た。 The composition lg obtained in Comparative Preparation Example 5 was mixed at 85 ° C. with a polybutyral resin (Eslec BH3, manufactured by Sekisui Chemical Co., Ltd.) at 85 ° C. to obtain a resin composition. Then, the embodiment After a sheet was obtained in the same manner as in 1, a laminated glass was obtained.

[0150] (ヘーズ試験)  [0150] (Haze test)

実施例 1一 13及び比較例 1一 2の樹脂組成物を用レ、て作製した合わせガラスにつ いて、 JIS K0101に準拠して 23。Cにおけるヘーズを濁度計(製品名 NDH— 1001D P、 日本電色工業製)を用いて測定した。測定結果を表 1に示す。また、希土類金属 イオンと 2_ェチルへキシルリン酸エステル化合物(リン酸モノエステル成分:リン酸ジ エステル成分(モル比) = 50 : 50)とを含む組成物の含有量と^ ^一ズとの関係を図 2 に示す。  The laminated glass prepared by using the resin compositions of Examples 11 and 13 and Comparative Examples 12 and 13 was used in accordance with JIS K0101 23. The haze at C was measured using a turbidimeter (product name: NDH-1001D P, manufactured by Nippon Denshoku Industries). Table 1 shows the measurement results. In addition, the content of a composition containing a rare earth metal ion and a 2_ethylhexyl phosphate compound (phosphate monoester component: phosphate diester component (molar ratio) = 50:50) and the content of ^ ^ Figure 2 shows the relationship.

[0151] (分光透過率測定)  [0151] (Spectral transmittance measurement)

実施例 1一 13及び比較例 1一 2で得られた合わせガラスにっレ、て、分光光度計 (U - 4000、(株)日立製作所製)を用いて、分光測定を行った。実施例 1一 13及び比較 例 1一 2で得られた合わせガラスの 300 800nmにおける分光透過率を表 1に示す 。また、実施例 1一 3及び比較例 1の合わせガラスの分光スペクトルを図 3に示し、実 施例 4一 6の合わせガラスの分光スペクトルを図 4に示し、実施例 7— 8の合わせガラ スの分光スペクトルを図 5に示す。なお、図 3— 5において、実施例 1一 8の合わせガ ラスの分光スペクトルをそれぞれ E1— 8とし、比較例 1の合わせガラスの分光スぺタト ルを C1として表示する。さらに、実施例 9で得られた合わせガラスの 300— 2300nm における分光スぺクトルを図 6に示し、実施例 10で得られた合わせガラスの 300— 2 300nmにおける分光スペクトルを図 7に示す。  Spectrophotometry was performed using a spectrophotometer (U-4000, manufactured by Hitachi, Ltd.) on the laminated glass obtained in Example 113 and Comparative Example 112. Table 1 shows the spectral transmittance of the laminated glass obtained in Example 1-113 and Comparative Example 1-2 at 300 to 800 nm. FIG. 3 shows the spectrum of the laminated glass of Example 13 and Comparative Example 1, and FIG. 4 shows the spectrum of the laminated glass of Example 46. The laminated glass of Examples 7 to 8 is shown in FIG. Fig. 5 shows the spectrum of. In FIG. 3-5, the spectral spectrum of the laminated glass of Example 18 is shown as E1-8, and the spectral spectrum of the laminated glass of Comparative Example 1 is shown as C1. FIG. 6 shows the spectral spectrum of the laminated glass obtained in Example 9 at 300 to 2300 nm, and FIG. 7 shows the spectral spectrum of the laminated glass obtained in Example 10 at 300 to 300 nm.

[表 1] [table 1]

透過率(%) Transmittance (%)

溶解性 ヘーズ(%)  Solubility haze (%)

520nm 580nm  520nm 580nm

実施例 1 〇 87. 2 76. 4 2. 1 実施例 2 〇 91. 3 90. 3 1. 6 実施例 3 〇 89. 0 82. 4 2. 3 実施例 4 〇 84. 2 66. 6 3. 1 実施例 5 〇 73. 5 38. 2 4. 8 実施例 6 〇 63. 7 20. 7 12. 6 実施例 7 〇 90. 1 88. 2 13. 2 実施例 8 〇 88. 1 84. 5 10. 7 実施例 9 〇 78. 4 3. 5 実施例 10 〇 71. 5 57. 8 4. 1 実施例 11 〇 86. 5 85. 6 10. 0 実施例 12 〇 88. 8 76. 9 14. 7 実施例 13 〇 84. 44 82 CO. 92 14. 1  Example 1 〇 87. 2 76. 4 2. 1 Example 2 〇 91.3 90. 3 1.6 Example 3 〇 89. 0 82. 4 2.3 Example 4 〇 84. 2 66. 6 3 1 Example 5 〇 73.5 38.2 4.8 Example 6 〇 63.7 20.7 12.6 Example 7 〇 90. 1 88.2 13.2 Example 8 〇 88. 1 84. 5 10.7 Example 9 〇 78. 4 3.5 Example 10 〇 71.5 57. 8 4.1 Example 11 〇 86.5 55.6.10 Example 12 〇 88.8 76. 9 14.7 Example 13 〇 84.44 82 CO.92 14.1

O  O

比較例 1 X 41. 6 23. 3  Comparative Example 1 X 41.6 32.3

比較例 2 X 82. フ 76. 2 35. 4  Comparative Example 2 X 82.

[0152] (耐光性試験) CD [0152] (Light fastness test) CD

Ο  Ο

実施例 1、 2、 11及び 12、並びに比較例 3— 5の樹脂組成物を用いて作製した合わ せガラスについて、耐光性試験を行った。すなわち、まず、製造直後の各合わせガラ スについて、分光光度計 (U— 4000、 (株)日立製作所製)を用いて、分光測定を行 レ、、 JIS R3106に準拠する分光透過率 (T (%))を測定した。次いで、これらの合わ  Light resistance tests were performed on the laminated glasses produced using the resin compositions of Examples 1, 2, 11, and 12, and Comparative Examples 3-5. That is, first, spectrophotometer (U-4000, manufactured by Hitachi, Ltd.) was used to measure the spectrophotometer of each laminated glass immediately after production, and the spectral transmittance (T ( %)) Was measured. Then combine these

0  0

せガラスに対し、キセノンウエザーメーター(アトラス C135、東洋精機製作所社製;光 源:キセノンランプ、 自動照射強度: 0.78WZm2、ブラックパネル温度: 63°C)を用 いて、 100時間紫外線照射を行った。それから、紫外線照射後の各合わせガラスに ついて、上記と同様にして可視光における分光透過率 (T (%))を測定した。 To cause the glass, xenon weather meter (Atlas C135, manufactured by Toyo Seiki Seisaku; light source: xenon lamp, automatic irradiation intensity: 0.78WZm 2, black panel temperature: 63 ° C) to have use of, subjected to 100 hours ultraviolet radiation Was. Then, the spectral transmittance (T (%)) in the visible light of each laminated glass after the irradiation of the ultraviolet rays was measured in the same manner as described above.

[0153] そして、紫外線照射前後における合わせガラスの透過率の変化(ΔΤ(%))を算出 し、これに基づいて耐光性を評価した。なお、 ΔΤの値が小さいほど合わせガラスの 透光性変化が小さいことから、耐光性が高いことを示している。得られた結果をまとめ て表 2に示した。 [表 2][0153] Then, a change (ΔΤ (%)) in the transmittance of the laminated glass before and after the irradiation of ultraviolet rays was calculated, and the light resistance was evaluated based on the calculated change. The smaller the value of ΔΤ, the smaller the change in translucency of the laminated glass, indicating that the light resistance is high. Table 2 summarizes the obtained results. [Table 2]

Figure imgf000041_0001
Figure imgf000041_0001

[0154] (耐熱性試験)  [0154] (Heat resistance test)

実施例 1、 2、 7、 11及び 12、並びに比較例 6の樹脂組成物を用いて作製した合わ せガラスについて、耐熱性試験を行った。すなわち、まず、製造直後の各合わせガラ スについて、濁り度計(NDH— 1001DP、 日本電色工業社製)を用いてヘーズ (H (  A heat resistance test was performed on the laminated glasses produced using the resin compositions of Examples 1, 2, 7, 11, and 12, and Comparative Example 6. That is, first, haze (H (H (

0 0

%) )の評価を行った JISK 7136に準拠する方法)。次いで、これらの合わせガラス を、 80°Cで 30秒時間加熱した。それから、加熱後の各合わせガラスについて、上記 と同様にしてヘーズ (H (%) )を測定した。 %) Method in accordance with JISK 7136)). Then, the laminated glasses were heated at 80 ° C. for 30 seconds. Then, the haze (H (%)) of each heated laminated glass was measured in the same manner as described above.

1  1

[0155] そして、加熱前後における合わせガラスのヘーズの変化(Δ Η (%) )を算出し、これ に基づいて耐熱性を評価した。なお、 Δ Ηの値が小さいほど、加熱によるヘーズの変 化が小さいことから、耐熱性が高いことを示している。得られた結果をまとめて表 3に 示す。  [0155] The change in haze (Δ 合 わ せ (%)) of the laminated glass before and after heating was calculated, and the heat resistance was evaluated based on the change. Note that the smaller the value of ΔΗ, the smaller the change in haze due to heating, indicating higher heat resistance. Table 3 summarizes the results obtained.

[表 3]  [Table 3]

Figure imgf000041_0002
Figure imgf000041_0002

(長期保存安定性試験)  (Long-term storage stability test)

実施例 1及び 2、並びに比較例 3の樹脂組成物を用いて作製した合わせガラスにつ いて、長期保存安定性試験を行った。すなわち、すなわち、まず、製造直後の各合 わせガラスについて、濁り度計(NDH— 1001DP、 日本電色工業社製)を用いてへ ーズ (H (%) )の評価を行った (JISK 7136に準拠する方法)。次いで、これらの合 Long-term storage stability tests were performed on the laminated glasses produced using the resin compositions of Examples 1 and 2 and Comparative Example 3. That is, first, each laminated glass immediately after production was evaluated for haze (H (%)) using a turbidity meter (NDH-1001DP, manufactured by Nippon Denshoku Industries Co., Ltd.) (JISK 7136). Method to comply with). Then,

0 0

わせガラスを、大気中で 40日間保存した。それから、各合わせガラスについて、上記 と同様にしてヘーズ (H (%) )を測定した。 そして、長期保存前後における合わせガラスのヘーズの変化(ΔΗ(%))を算出し 、これに基づいて長期保存安定性を評価した。なお、 ΔΗの値が小さいほど、溶媒の 影響によるヘーズの変化が小さいことから、安定性が高いことを示している。得られた 結果をまとめて表 4に示す。 The frosted glass was stored in air for 40 days. Then, the haze (H (%)) of each laminated glass was measured in the same manner as described above. The change in haze (ΔΗ (%)) of the laminated glass before and after long-term storage was calculated, and the long-term storage stability was evaluated based on the change. The smaller the value of ΔΗ, the smaller the change in haze due to the effect of the solvent, indicating higher stability. Table 4 summarizes the results obtained.

[表 4] 実施例 1 実施例 2 比較例 3 [Table 4] Example 1 Example 2 Comparative Example 3

Η0(%) 2. 1 1. 6 5. 2 Η 0 (%) 2.1 1. 6 5. 2

(%) 2.7 1. 7 40. 1 (%) 2.7 1. 7 40.1

ΔΗ(%) - 0. 6 - 0. 1 34.9 ΔΗ (%)-0.6-0.1 34.9

Claims

請求の範囲 [1] 希土類金属イオンと、アルキルリン酸エステル化合物又はアルケニルリン酸エステル 化合物と、ポリビニルァセタール樹脂と、を含有することを特徴とする樹脂組成物。 [2] 前記アルキルリン酸エステルイ匕合物又は前記アルケニルリン酸エステルイ匕合物が、 下記一般式(la)及び Z又は下記一般式(lb)で表される化合物であることを特徴と する請求項 1に記載の樹脂組成物。 Claims [1] A resin composition comprising a rare earth metal ion, an alkyl phosphate compound or an alkenyl phosphate compound, and a polyvinyl acetal resin. [2] The alkyl phosphate ester conjugate or the alkenyl phosphate ester conjugate is a compound represented by the following general formulas (la) and Z or the following general formula (lb). Item 4. The resin composition according to Item 1. [化 1]  [Chemical 1] 0  0 (HO)-P-OR1 (1 a) (HO) -P-OR 1 (1 a) [化 2] [Formula 2] 0  0 HO)-P-(OR1 (1 b) HO) -P- (OR 1 (1 b) (式中、 R1はそれぞれ独立に炭素数力 一 18のアルキル基又は炭素数 4一 18のァ ルケ二ル基を示す。 ) (In the formula, R 1 each independently represents an alkyl group having 118 carbon atoms or a alkenyl group having 418 carbon atoms.) 請求項 1又は 2に記載の樹脂組成物を用いてなることを特徴とする光学部材。  An optical member comprising the resin composition according to claim 1.
PCT/JP2005/001273 2004-01-30 2005-01-28 Resin composition and optical member WO2005073312A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005517536A JP5087223B2 (en) 2004-01-30 2005-01-28 Resin composition and optical member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004024412 2004-01-30
JP2004-024412 2004-01-30

Publications (1)

Publication Number Publication Date
WO2005073312A1 true WO2005073312A1 (en) 2005-08-11

Family

ID=34823935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001273 WO2005073312A1 (en) 2004-01-30 2005-01-28 Resin composition and optical member

Country Status (2)

Country Link
JP (1) JP5087223B2 (en)
WO (1) WO2005073312A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088941A1 (en) * 2006-02-03 2007-08-09 Zeon Corporation Polymer composition
WO2009123020A1 (en) * 2008-03-31 2009-10-08 株式会社クレハ Copper salt composition, resin composition using the same, infrared absorbing film, and optical member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110756A (en) * 1983-11-03 1985-06-17 Mitsubishi Rayon Co Ltd Resin composition containing rare earth element and production thereof
WO1993001233A1 (en) * 1991-07-10 1993-01-21 Seiko Epson Corporation Transparent plastic material
JPH09249877A (en) * 1996-03-18 1997-09-22 Hitachi Maxell Ltd Infrared phosphor
WO2000050932A1 (en) * 1999-02-25 2000-08-31 Kureha Kagaku Kogyo Kabushiki Kaisha Optical material and optical member obtained with the optical material
JP2002069305A (en) * 2000-08-25 2002-03-08 Kureha Chem Ind Co Ltd Optical material and method of preparing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247985A (en) * 1999-02-25 2000-09-12 Kureha Chem Ind Co Ltd Optical material and optical member using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110756A (en) * 1983-11-03 1985-06-17 Mitsubishi Rayon Co Ltd Resin composition containing rare earth element and production thereof
WO1993001233A1 (en) * 1991-07-10 1993-01-21 Seiko Epson Corporation Transparent plastic material
JPH09249877A (en) * 1996-03-18 1997-09-22 Hitachi Maxell Ltd Infrared phosphor
WO2000050932A1 (en) * 1999-02-25 2000-08-31 Kureha Kagaku Kogyo Kabushiki Kaisha Optical material and optical member obtained with the optical material
JP2002069305A (en) * 2000-08-25 2002-03-08 Kureha Chem Ind Co Ltd Optical material and method of preparing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088941A1 (en) * 2006-02-03 2007-08-09 Zeon Corporation Polymer composition
WO2009123020A1 (en) * 2008-03-31 2009-10-08 株式会社クレハ Copper salt composition, resin composition using the same, infrared absorbing film, and optical member
JP2009242650A (en) * 2008-03-31 2009-10-22 Kureha Corp Copper salt composition, resin composition using the same, infrared-absorbing film and optical member

Also Published As

Publication number Publication date
JPWO2005073312A1 (en) 2007-09-13
JP5087223B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5400033B2 (en) Copper phosphonate compound, and infrared absorbing material and laminate containing the same
JP6302409B2 (en) Laminated glass interlayer film and laminated glass
CN106458745B (en) Display device, interlayer film for laminated glass, and laminated glass
WO2009093655A1 (en) Intermediate film for laminated glass and laminated glass
CN108025968A (en) Intermediate film for laminated glasses and laminated glass
WO2012023616A1 (en) Interlayer for laminated glass, and laminated glass
JP4777068B2 (en) Infrared absorbing composition for laminated glass and infrared absorbing resin composition for laminated glass
RU2681154C2 (en) Intermediate film for laminated glass and laminated glass
JP2022000409A (en) Laminated glass
JP6362500B2 (en) Interlayer film for laminated glass, laminated glass and vehicle
WO2020189782A1 (en) Thermoplastic film and laminated glass
JP5350733B2 (en) Phosphonic acid, copper phosphonate compound, resin composition and laminate
JP4926712B2 (en) Near infrared light absorbing material and laminate
KR102544849B1 (en) Emissive displays, interlayers for laminated glass, laminated glass, and emissive display systems
US11833784B2 (en) Thermoplastic film and laminated glass
JP4926699B2 (en) Solubilizer and composition containing the same
JP2006103069A (en) Heat barrier multilayer object and laminate
WO2005111170A1 (en) Near-infrared absorbing material, near-infrared absorbing composition and laminate
CN110431123B (en) Laminated glass
JP4365560B2 (en) Laminated glass interlayer film and laminated glass
WO2005073312A1 (en) Resin composition and optical member
WO2021200961A1 (en) Laminated glass interlayer film and laminated glass
WO2006009211A1 (en) Near-infrared absorbing material and laminated body
JP7385513B2 (en) Thermoplastic films and laminated glass
JP2021147287A (en) Thermoplastic film, and laminated glass

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005517536

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase