WO2005063827A1 - Procede de production d'un fluoropolymere - Google Patents
Procede de production d'un fluoropolymere Download PDFInfo
- Publication number
- WO2005063827A1 WO2005063827A1 PCT/JP2004/019219 JP2004019219W WO2005063827A1 WO 2005063827 A1 WO2005063827 A1 WO 2005063827A1 JP 2004019219 W JP2004019219 W JP 2004019219W WO 2005063827 A1 WO2005063827 A1 WO 2005063827A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymerization
- surfactant
- emulsified dispersion
- polymerization reaction
- autoclave
- Prior art date
Links
- 229920002313 fluoropolymer Polymers 0.000 title claims abstract description 28
- 239000004811 fluoropolymer Substances 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title abstract description 11
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 114
- 239000004094 surface-active agent Substances 0.000 claims abstract description 63
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 20
- 125000003342 alkenyl group Chemical group 0.000 claims abstract description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 12
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 10
- 150000001768 cations Chemical class 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims description 72
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical group FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims description 25
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 75
- 230000007423 decrease Effects 0.000 abstract description 3
- 239000001257 hydrogen Substances 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract 1
- 239000006185 dispersion Substances 0.000 description 99
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 37
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 37
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 37
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 37
- 239000000178 monomer Substances 0.000 description 34
- 230000000052 comparative effect Effects 0.000 description 24
- 239000007789 gas Substances 0.000 description 22
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 21
- 229910052757 nitrogen Inorganic materials 0.000 description 18
- 229910001220 stainless steel Inorganic materials 0.000 description 18
- 239000010935 stainless steel Substances 0.000 description 18
- 230000003247 decreasing effect Effects 0.000 description 16
- 101001012040 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Immunomodulating metalloprotease Proteins 0.000 description 11
- 238000001704 evaporation Methods 0.000 description 11
- -1 aliphatic sulfonates Chemical class 0.000 description 10
- 238000003756 stirring Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- YOALFLHFSFEMLP-UHFFFAOYSA-N azane;2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoic acid Chemical compound [NH4+].[O-]C(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YOALFLHFSFEMLP-UHFFFAOYSA-N 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 150000001335 aliphatic alkanes Chemical group 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 5
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 5
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 101150065749 Churc1 gene Proteins 0.000 description 4
- 102100038239 Protein Churchill Human genes 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 238000007720 emulsion polymerization reaction Methods 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- 239000004908 Emulsion polymer Substances 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 3
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 3
- 239000003505 polymerization initiator Substances 0.000 description 3
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 3
- KHXKESCWFMPTFT-UHFFFAOYSA-N 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2-trifluoroethenoxy)propane Chemical compound FC(F)=C(F)OC(F)(F)C(F)(F)C(F)(F)F KHXKESCWFMPTFT-UHFFFAOYSA-N 0.000 description 2
- BLTXWCKMNMYXEA-UHFFFAOYSA-N 1,1,2-trifluoro-2-(trifluoromethoxy)ethene Chemical compound FC(F)=C(F)OC(F)(F)F BLTXWCKMNMYXEA-UHFFFAOYSA-N 0.000 description 2
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical group FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- GQVGTJJTGBWRBC-UHFFFAOYSA-L disodium decane sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O.CCCCCCCCCC GQVGTJJTGBWRBC-UHFFFAOYSA-L 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- PVWOIHVRPOBWPI-UHFFFAOYSA-N n-propyl iodide Chemical compound CCCI PVWOIHVRPOBWPI-UHFFFAOYSA-N 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000007870 radical polymerization initiator Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- HRQDCDQDOPSGBR-UHFFFAOYSA-M sodium;octane-1-sulfonate Chemical compound [Na+].CCCCCCCCS([O-])(=O)=O HRQDCDQDOPSGBR-UHFFFAOYSA-M 0.000 description 2
- 238000010557 suspension polymerization reaction Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- RRZIJNVZMJUGTK-UHFFFAOYSA-N 1,1,2-trifluoro-2-(1,2,2-trifluoroethenoxy)ethene Chemical class FC(F)=C(F)OC(F)=C(F)F RRZIJNVZMJUGTK-UHFFFAOYSA-N 0.000 description 1
- WFLOTYSKFUPZQB-UHFFFAOYSA-N 1,2-difluoroethene Chemical group FC=CF WFLOTYSKFUPZQB-UHFFFAOYSA-N 0.000 description 1
- URIFOOWUGCOEPI-UHFFFAOYSA-N 1-(2-iodoethenoxy)propane Chemical compound IC=COCCC URIFOOWUGCOEPI-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- FCBJLBCGHCTPAQ-UHFFFAOYSA-N 1-fluorobutane Chemical compound CCCCF FCBJLBCGHCTPAQ-UHFFFAOYSA-N 0.000 description 1
- QMIWYOZFFSLIAK-UHFFFAOYSA-N 3,3,3-trifluoro-2-(trifluoromethyl)prop-1-ene Chemical compound FC(F)(F)C(=C)C(F)(F)F QMIWYOZFFSLIAK-UHFFFAOYSA-N 0.000 description 1
- FDMFUZHCIRHGRG-UHFFFAOYSA-N 3,3,3-trifluoroprop-1-ene Chemical group FC(F)(F)C=C FDMFUZHCIRHGRG-UHFFFAOYSA-N 0.000 description 1
- HMBNQNDUEFFFNZ-UHFFFAOYSA-N 4-ethenoxybutan-1-ol Chemical compound OCCCCOC=C HMBNQNDUEFFFNZ-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229910014033 C-OH Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910014570 C—OH Inorganic materials 0.000 description 1
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical group O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- MUXOBHXGJLMRAB-UHFFFAOYSA-N Dimethyl succinate Chemical compound COC(=O)CCC(=O)OC MUXOBHXGJLMRAB-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 241001061127 Thione Species 0.000 description 1
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- NCMHKCKGHRPLCM-UHFFFAOYSA-N caesium(1+) Chemical compound [Cs+] NCMHKCKGHRPLCM-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical compound FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- BEPAFCGSDWSTEL-UHFFFAOYSA-N dimethyl malonate Chemical compound COC(=O)CC(=O)OC BEPAFCGSDWSTEL-UHFFFAOYSA-N 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000010556 emulsion polymerization method Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- PEYVWSJAZONVQK-UHFFFAOYSA-N hydroperoxy(oxo)borane Chemical compound OOB=O PEYVWSJAZONVQK-UHFFFAOYSA-N 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- FMKOJHQHASLBPH-UHFFFAOYSA-N isopropyl iodide Chemical compound CC(C)I FMKOJHQHASLBPH-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000004978 peroxycarbonates Chemical class 0.000 description 1
- 150000004968 peroxymonosulfuric acids Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical compound CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 description 1
- YPVDWEHVCUBACK-UHFFFAOYSA-N propoxycarbonyloxy propyl carbonate Chemical compound CCCOC(=O)OOC(=O)OCCC YPVDWEHVCUBACK-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910001419 rubidium ion Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical class [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 1
- ZOOPHYLANWVUDY-UHFFFAOYSA-M sodium;undecanoate Chemical compound [Na+].CCCCCCCCCCC([O-])=O ZOOPHYLANWVUDY-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- JREYOWJEWZVAOR-UHFFFAOYSA-N triazanium;[3-methylbut-3-enoxy(oxido)phosphoryl] phosphate Chemical compound [NH4+].[NH4+].[NH4+].CC(=C)CCOP([O-])(=O)OP([O-])([O-])=O JREYOWJEWZVAOR-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
- C08F214/22—Vinylidene fluoride
- C08F214/225—Vinylidene fluoride with non-fluorinated comonomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F14/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F14/02—Monomers containing chlorine
- C08F14/04—Monomers containing two carbon atoms
- C08F14/06—Vinyl chloride
Definitions
- the present invention relates to a method for producing a fluoropolymer that can carry out polymerization with high production efficiency in the presence of a small amount of a surfactant.
- Fluoropolymers exhibit excellent chemical resistance, solvent resistance, and heat resistance, and are therefore used as raw materials for sealing materials and the like used under severe conditions, such as the automobile industry, the semiconductor industry, and the Iridaku Industry. Wide, etc.!, Used in industrial fields!
- fluoropolymers are produced by emulsion polymerization or suspension polymerization of fluoroolefin.
- surfactants are used in the emulsion polymerization method, but as the amount of surfactant used increases, the number of polymer particles generated at the beginning of emulsion polymerization increases, the polymerization speed increases, and the production of fluoropolymers increases. Efficiency is improved.
- a surfactant is used in a large amount, there is a tendency that various properties such as water resistance of the fluoropolymer obtained from the surfactant are reduced. Therefore, it has been desired to develop a method for producing a fluoropolymer, which allows efficient polymerization in the presence of a small amount of a surfactant and does not adversely affect the properties of the fluoropolymer.
- linear aliphatic sulfonates are used to replace expensive, perfluorooctanoic acid ammonium which is generally used in emulsion polymerization of fluoropolymers.
- Fluoropolymers have been produced using salt-based surfactants (see, for example, US Pat. No. 6,512,033).
- salt-based surfactants see, for example, US Pat. No. 6,512,033
- the present invention relates to a method for producing a fluoropolymer that can carry out polymerization with high production efficiency in the presence of a small amount of a surfactant.
- Means for solving the problem That is, the present invention relates to a method for producing a fluoropolymer containing at least one fluorofluorin, which comprises the formula (1):
- R 2 is an alkyl group or an alkenyl group which may be the same or different
- R 3 is a hydrogen atom, an alkyl group or an alkenyl group
- the total number of carbon atoms of R 1 to R 3 Is 2—25 and L— is —SO—, —OSO—, —PO—, — OPO— or —COO—
- M + is a monovalent cation
- the surfactant is represented by the formula (2):
- R 1 and R 2 are an alkyl group or an alkenyl group having a total of 2 to 25 carbon atoms, and may be the same or different, and L— is SO—, -OSO-, -PO-, one O
- it is a surfactant.
- the total carbon number is preferably 10-20.
- the polymerization is preferably production polymerization of seed particles.
- the fluoroolefin is 1,1-difluoroethylene.
- FIG. 1 is a graph showing the relationship between the concentration of surfactant and the number of emulsified dispersions per lg of water (the number of particles) in Examples 118 and Comparative Examples 113.
- the present invention is a process for producing a fluoropolymer containing at least one fluoroolefin, comprising the following formula (1):
- R 2 is an alkyl group or an alkenyl group which may be the same or different
- R 3 is a hydrogen atom, an alkyl group or an alkenyl group, and the total number of carbon atoms of R 1 to R 3 Is 2—25 and L— is —SO— OPO— or —COO—
- M + is a monovalent cation
- the fluorofluorin is not particularly limited, but in the present invention, the fluoropolymer is a copolymer of two or more fluorofluorin monomers, or a fluorofluorin monomer and a non-fluoroolefin. A copolymer of a refin monomer can be employed.
- Fluoroolefin monomers include tetrafluoroethylene (TFE), hexafluoropropylene (HFP), perfluoro (alkyl butyl ether) (PAVE), [0021] [Formula 4]
- Perfluoroolefin monomers such as trifluoroethylene (CTFE), 1,1-difluoroethylene (VdF), trifluoroethylene, butyl fluoride, trifluoropropylene, and pentane
- CTFE trifluoroethylene
- VdF 1,1-difluoroethylene
- N-perfluoroolefin monomers such as fluoropropylene, tetrafluoropropylene, and hexafluoroisobutene are exemplified.
- PAVE include perfluoro (methyl vinyl ether) (PMVE), perfluoro (ethyl vinyl ether) (PEVE), and perfluoro (propyl vinyl ether) (PPVE).
- a fluoroolefin monomer containing a functional group can be used.
- a functional group-containing fluoroolefin for example, a compound represented by the formula (3):
- X 1 and X 2 are the same or different, each of which is a hydrogen atom or a fluorine atom, and R is carbon atom 0-f
- CF 2 CFOCF 2 CF 2 CH 2 OH
- CF 2 CFO (CF 2 ) 3 COOH
- CF 2 CFOCF 2 CF 2 COOCH 3
- CF 2 CFOCF 2 CFOCF 2 CF 2 CH 2 OH
- CF 2 CFCF 2 COOH
- CF 2 CFCF 2 CH 2 OH
- CF 2 CFCF 2 CF 2 CH 2 CHCH 2
- CF 2 CFCF 2 OCF 2 CFCOOCH 3
- CF 2 CFOCF-, CFOCF 2 CF 2 SOgF
- CH 2 CFCF 2 OCFCH 2 OCH 3 ⁇ 4 CHCH 2
- CH 2 CHCF 2 CF 2 CH 2 CH 2 COOH
- CH 2 CH-e CF 2 CH 2 CH fH 2 0H
- CH 2 CH -6 CF 2 CH 2 CH 2 COOCH 3
- CH 2 CFCOOH
- CH 2 CHCH 2 C—OH [0028].
- an iodine-containing monomer such as perfluoro (6,6-dihydro-6-) described in Japanese Patent Publication No. 5-63482 and Japanese Patent Application Laid-Open No. 62-12734.
- Iodides of perfluorovinyl ethers such as iodo-3oxa-1—hexene) and perfluoro (5—doodo3—year-old pentene) can also be copolymerized.
- non-fluorene monomer examples include ⁇ -olefin monomers having 2 to 10 carbon atoms, such as ethylene (ET), propylene, butene, and pentene; methyl vinyl ether, ethynolebininoleatene, Examples thereof include alkylbutyl ether having an alkyl group having 120 carbon atoms, such as propynolebininoleatenore, cyclohexinolebininoleatenore, hydroxybutyl vinyl ether and butyl vinyl ether.
- ⁇ -olefin monomers having 2 to 10 carbon atoms such as ethylene (ET), propylene, butene, and pentene
- methyl vinyl ether examples thereof include alkylbutyl ether having an alkyl group having 120 carbon atoms, such as propynolebininoleatenore, cyclohexinolebininoleatenore, hydroxybutyl vinyl ether and but
- a copolymer consisting of 1,1-difluoroethylene and hexafluoropropylene or a copolymer consisting of 1,1-difluoroethylene, hexafluoropropylene and tetrafluoroethylene, Preferred for the purpose of producing a fluoropolymer.
- the composition of the fluoropolymer obtained at this time is preferably more than 100: 1 to 50:50 in molar ratio of the above-mentioned 1,1-difluoroethylene: hexafluoropropylene.
- properly 90: 10- 60:40, and tetrafurfuryl O b ethylene force O-40 mole 0/0 preferably include a tool 0- 30 mol% is more preferable.
- R 2 may be the same or different! /, And may be an alkyl group or an alkenyl group, and R 3 may be a hydrogen atom, an alkyl group or an alkaryl group.
- the alkyl group or the alkenyl group may be linear or branched.
- R 1 - total number of carbon atoms in R 3 is 2-25, and more preferably preferably fixture 10 20 der Rukoto is 5-20. If the total carbon number of R 1 -R 3 exceeds 25, the concentration in the water phase that is hardly soluble in water tends to be unable to be increased. Further, specific examples of such a surfactant include HostapurSAS93 of Clariant Japan KK.
- R 3 is a hydrogen atom, and R 1 and R 2 may be the same or different from each other in terms of high emulsifying power.
- the total number of carbon 2 25 Al kill group or Aruke - a is preferred instrument
- R 3 it is Le group is a hydrogen atom, Yogu total carbon be different even with the same R 1 and R 2 1S number 5 20 alkyl group or the a is preferred instrument
- R 3 is a hydrogen atom an alkenyl group,, respectively it R 1 and R 2 force Yogu total number of carbon atoms be different even in the same
- it is a 10-20 alkyl or alkenyl group.
- alkyl group or the alkyl group include, but are not limited to, fluorine, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, pentyl, and the like.
- L- is a group represented by SO-OSO-PO-OPO- or COO-
- the monovalent cations include lithium ion, sodium ion, potassium ion, rubidium ion, cesium ion, and ammonium ion. From the viewpoint of economical efficiency, sodium ion and ammonium ion are preferable.
- the amount of the surfactant represented by the formula (1) is preferably 100 to 9000 ppm power S, and more preferably 500 5000 ppm power to the total amount of water! / ⁇ .
- the surface active agent's 14 agent usage is less than 100 ppm, the effect as a surfactant is reduced, the number of generated particles is reduced, and 9000 pp If it exceeds m, aggregation of the dispersion due to the surfactant tends to occur.
- the surfactant may be used in combination with another surfactant.
- Surfactants that can be used in combination include, for example, F (CF) COOM, F (CF) COOM, C
- Fluorinated surfactants such as F CF) CH CH SO M (M is a monovalent cation), CH (C
- Hydrocarbon surfactants such as thione
- Examples of the surfactant that can be used in combination include a reactive surfactant comprising a compound having a radical polymerizable unsaturated bond and a hydrophilic group in the molecule.
- Reactive surfactants can form part of the polymer chain of the polymer when present in the reaction system during polymerization.
- the reactive surfactant for example, the conjugate described in JP-A-8-67795 can be used.
- the polymerization method of the present invention is not particularly limited, and may be a known method such as emulsion polymerization, suspension polymerization or the like.
- the initial stage of seed polymerization that is, the production polymerization of seed particles can be suitably applied.
- the seed polymerization method is not particularly limited, and may be a known method.
- the stirring means for example, anchor blades, turbine blades, inclined blades and the like can be used. Stirring with large blades called full zone or max blend is preferred, in which monomer diffusion and polymer dispersion stability are good. ⁇ .
- the stirring device may be a horizontal stirring device or a vertical stirring device.
- the polymerization temperature is not particularly limited, and an optimum temperature is adopted according to the type of the polymerization initiator. However, if the temperature is too high, the monomer density in the gas phase may easily decrease, or a branching reaction of the polymer may occur, so that the desired copolymer may not be obtained. Preferably it is 40-120 ° C, more preferably 50-100 ° C.
- the monomer may be supplied continuously or sequentially!
- an oil-soluble peroxide compound can be used as a polymerization initiator.
- Diisopropyl peroxydicarbonate (IPP) a typical oil-soluble initiator, is di-n-propyl peroxydicarbonate.
- Peroxycarbonates such as (NPP) have the danger of explosion and are expensive, and they tend to adhere to scales on the walls of the polymerization tank during the polymerization reaction! There is.
- a water-soluble radical polymerization initiator it is preferable to use a water-soluble radical polymerization initiator.
- water-soluble radical polymerization initiator examples include, for example, persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, and ammonium, potassium, and sodium salts of percarbonate. Preferred are potassium and potassium persulfate.
- the amount of the polymerization initiator to be added is not particularly limited !, but the amount is not less than a certain amount (for example, several ppm to water concentration), which is not significantly reduced at the beginning of the polymerization, or is not reduced significantly. Should be added sequentially or continuously.
- the upper limit is within the range that can remove heat from polymerization reaction heat of the device.
- a molecular weight modifier and the like may be further added.
- the molecular weight regulator may be added all at once in the initial stage, or may be added continuously or in portions.
- Examples of the molecular weight adjusting agent include esters of esters such as dimethyl malonate, getyl malonate, methyl acetate, ethyl acetate, butyl acetate, dimethyl succinate, isopentane, isopropanol, acetone, various mercaptans, carbon tetrachloride , Cyclohexane, mono-iodomethane, 1-iodomethane, 1-iodopropane, isopropyl iodide, iodomethane, 1,2-iodomethane, 1,3-iodopropane and the like.
- esters of esters such as dimethyl malonate, getyl malonate, methyl acetate, ethyl acetate, butyl acetate, dimethyl succinate, isopentane, isopropanol, acetone, various mercaptans, carbon tetrachloride , Cyclohex
- a buffering agent or the like may be appropriately added, but the amount is preferably in the range of V, which does not impair the effects of the present invention.
- the particle size of the emulsified dispersion was determined using a Microtrac UPA (Nikkiso (The molecular weight of the fluoropolymer was measured using GPC (manufactured by Tosoh Corporation).
- a mixed gas containing 65 mol% of hexafluoropropylene (HFP) and 1,1-difluoroethylene (VdF) power 3 ⁇ 45 mol% power was charged to IMPa in a vacuum state.
- the autoclave was immersed in water nos with a horizontal stirrer whose temperature was adjusted to 80 ° C, and the polymerization reaction was started. The pressure in the autoclave became constant after 3 minutes, and then decreased with the polymerization reaction. The polymerization reaction was performed for one hour.
- the autoclave was taken out of the water bath, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to find that it was 95.2 nm.
- the concentration of the emulsified dispersion was measured to 1.63% by evaporating a portion of the emulsified dispersion to dryness. From the particle diameter and the concentration of the emulsified dispersion, the number of emulsified dispersions per lg of water (the number of particles) was calculated to be 2 ⁇ 10 13 .
- the water bath autoclave was taken out, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to find that it was 60.8 nm.
- the concentration of the emulsified dispersion was measured by evaporating a part of the emulsified dispersion to dryness, and found to be 0.71%.
- the number (number of particles) of the emulsified dispersion per lg of water was calculated from the particle diameter and the concentration of the emulsified dispersion to be 3.4 ⁇ 10 13 .
- the water bath power autoclave was taken out, the remaining monomer was released into the air, and a part of the emulsified dispersion was evaporated to dryness to measure the concentration of the emulsified dispersion. 15%.
- the autoclave was taken out of the water bath, the remaining monomer was released into the air, and a part of the emulsified dispersion was evaporated to dryness to measure the concentration of the emulsified dispersion. 19%.
- Example 3 Since the particle size of the emulsified dispersion obtained in Example 3 was too strong to be measured by UPA, 5 g of the emulsified dispersion was diluted with 45 g of ion-exchanged water, and the surfactant concentration was the same as in Example 1. 1 OO ppm, 0.05 g of ammonium persulfate was added, and the same polymerization operation as in Example 1 was performed for 1 hour as seed polymerization. As a result, the concentration of the newly obtained emulsified dispersion was 1.28. %, And the particle size was 31.3 nm. From this, the particle number was calculated to be 4.5 ⁇ 10 ”. The particle number of the emulsified dispersion before dilution was calculated to be 4.5 ⁇ 10 15. Was.
- the emulsified dispersion lg was diluted with 29 g of ion-exchanged water, and the surfactant concentration was the same as in Example 1. 1 OOppm, 0.05 g of ammonium persulfate was added, and the same polymerization operation as in Example 1 was performed for 1 hour as seed polymerization. The concentration of the newly obtained emulsified dispersion was 1.3. %, And the particle size was 33 nm. From this, the particle number was calculated to be 3.9 ⁇ 10 ′′. The particle number of the emulsified dispersion before dilution was calculated to be 1.2 ⁇ 10 16 .
- IMPa is a mixture of hexafluoropropylene (HFP) with 65 mol% and 1,1-difluoroethylene (VdF) with 35 mol% power under vacuum.
- HFP hexafluoropropylene
- VdF 1,1-difluoroethylene
- the temperature inside the autoclave was raised to 80 ° C while stirring the system with an electromagnetic stirrer, and the system was left until the pressure became constant. Then, an aqueous solution obtained by dissolving 1. Olg of ammonium persulfate in 5.00 g of ion-exchanged water was injected with nitrogen gas to initiate a polymerization reaction. Thereafter, the pressure decreased with the polymerization reaction. The polymerization reaction was performed for 3.5 hours.
- the residual monomer was released into the atmosphere, and a part of the emulsified dispersion was evaporated to dryness to measure the concentration of the emulsified dispersion.
- the pressure drop is reduced by using a plunger pump to mix a gas mixture consisting of 22 mol% of hexafluoropropylene (HFP) and 78 mol% of 1,1-difluoroethylene (VdF). Supplemented by kacha. 266 g of a mixed gas containing 22 mol% of hexafluoropropylene (HFP) and 78 mol% of 1,1-difluoroethylene (VdF) was charged into the polymerization tank to complete the polymerization.
- HFP hexafluoropropylene
- VdF 1,1-difluoroethylene
- the particle size of the obtained emulsified dispersion was measured by UPA to be 123.5 nm.
- a part of the emulsified dispersion was evaporated to dryness.
- the concentration of the emulsified dispersion was measured to be 26.55%.
- ML (1 + 10), 100 ° C was 82.6.
- the molecular weight in terms of polystyrene was 21.4,000 in weight average molecular weight and 921,000 in number average molecular weight.
- a mixed gas having a hexafluoropropylene (HFP) power of S60 mol% and a 1,1-difluoroethylene (VdF) power of 0 mol% power is supplied under vacuum.
- HFP hexafluoropropylene
- VdF 1,1-difluoroethylene
- the autoclave was removed from the water bath, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to find that it was 70.8 nm.
- the concentration of the emulsified dispersion was measured by evaporating a portion of the emulsified dispersion to dryness, and found to be 0.72%.
- the number of emulsified dispersions per lg of water (the number of particles) was calculated from the particle diameter and the concentration of the emulsified dispersion, it was 2.2 ⁇ 10 13 .
- ion exchange water 0.05 g of ammonium persulfate (APS), and 0.1 g of APFO (ammonium perfluorooctanoate) as a surfactant in a 1 L stainless steel autoclave.
- APS ammonium persulfate
- APFO ammonium perfluorooctanoate
- HFP hexafluoropropylene
- VdF 1,1-difluoroethylene
- the autoclave was taken out of the water bath, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to find that it was 71. Inm.
- the concentration of the emulsified dispersion was measured by evaporating a part of the emulsified dispersion to dryness, and found to be 0.7%. From the particle size and the concentration of the emulsified dispersion, emulsification per lg of water The number of dispersions (number of particles) was calculated to be 2.1 ⁇ 10 13 .
- ion exchange water 0.05 g of ammonium persulfate (APS), and 0.1 g of APFO (ammonium perfluorooctanoate) as a surfactant in a 1 L stainless steel autoclave.
- APS ammonium persulfate
- APFO ammonium perfluorooctanoate
- HFP hexafluoropropylene
- VdF 1,1-difluoroethylene
- the water bath autoclave was taken out, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to find that it was 67.4 nm.
- the concentration of the emulsified dispersion was measured to be 0.82% by evaporating part of the emulsified dispersion to dryness. From the particle diameter and the concentration of the emulsified dispersion, the number of emulsified dispersions per lg of water (the number of particles) was calculated to be 2.9 ⁇ 10 13 .
- a stainless steel autoclave with an inner volume of 0.1 L, 50 g of ion-exchanged water, 0.05 g of ammonium persulfate (APS), and APFO (ammonium perfluorooctanoate) as a surfactant 2.
- APS ammonium persulfate
- APFO ammonium perfluorooctanoate
- a mixed gas containing 60 mol% of hexafluoropropylene (HFP) and 1,1-difluoroethylene (VdF) power of 0 mol 1% power is supplied in a vacuum state.
- HFP hexafluoropropylene
- VdF 1,1-difluoroethylene
- the autoclave was immersed in a water bath having a horizontally moving stirrer whose temperature was previously adjusted to 80 ° C, and the polymerization reaction was started. The pressure in the autoclave became constant after 3 minutes, and then decreased with the polymerization reaction
- the water bath autoclave was taken out, the remaining monomers were released into the air, and a part of the emulsified dispersion was evaporated to dryness to measure the concentration of the emulsified dispersion. 57%.
- Comparative Example 5 Since the particle size of the emulsified dispersion obtained in Comparative Example 4 was too strong to be measured by UPA, 5 g of the emulsified dispersion was diluted with 45 g of ion-exchanged water, and the surfactant concentration was the same as in Comparative Example 3. As a surfactant concentration, 0.05 g of ammonium persulfate was added, and the same polymerization operation as in Comparative Example 3 was performed for 0.5 hours as seed polymerization. Was 8.32% and the particle size was 33.9 nm, which means that the force particle count was calculated to be 2.5 ⁇ 10 15 . The particle number of the emulsified dispersion before dilution was calculated to be 2.5 ⁇ 10 16 .
- the concentration of the emulsified dispersion was measured to be 27%.
- ML (1 + 10), 100 ° C. was 82.6.
- the molecular weight in terms of polystyrene was 205,000, the weight average molecular weight, and 98,000 the number average molecular weight.
- the number (number of particles) of the emulsified dispersion per lg of water was calculated from the particle diameter and the concentration of the emulsified dispersion to be 2 ⁇ 10 14 .
- the number of particles of the milk dispersion of Comparative Example 6 was calculated to be 1.1 ⁇ 10 16 .
- 0.1 g of ion exchange water, 0.05 g of ammonium persulfate (APS), and 0.05 g of sodium n-octanesulfonate as a surfactant were charged to a stainless steel autoclave with an inner volume of 0.1 L. After replacing with nitrogen and vacuum, a mixed gas consisting of 22 mol% of hexafluoropropylene (HFP) and 78 mol% of 1,1-difluoroethylene (VdF) was charged to 2.4 MPa under vacuum. It is.
- This autoclave was immersed in a water bath having a horizontal motion type stirrer that had been previously adjusted to 80 ° C. to start the polymerization reaction. The pressure in the autoclave became constant after 3 minutes, and then decreased with the polymerization reaction. The polymerization reaction was performed for one hour.
- the water bath autoclave was taken out, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to be 105.9 nm.
- the concentration of the emulsified dispersion was measured to be 3.11% by evaporating a part of the emulsified dispersion to dryness. From the particle diameter and the concentration of the emulsified dispersion, the number of emulsified dispersions per lg of water (the number of particles) was calculated to be 2.9 ⁇ 10 13 .
- a mixed gas containing 22 mol% of hexafluoropropylene (HFP) and 78 mol% of 1,1-difluoroethylene (VdF) at a vacuum of 2.4 MPa was charged to become.
- This autoclave was immersed in a water bath having a horizontally moving stirrer that had been previously adjusted to 80 ° C., and the polymerization reaction was started. The pressure in the autoclave became constant after 3 minutes and then decreased with the polymerization reaction. The polymerization reaction was performed for one hour.
- the water bath autoclave was taken out, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to be 105.9 nm.
- the concentration of the emulsified dispersion was measured to be 3.11% by evaporating a part of the emulsified dispersion to dryness. From the particle diameter and the concentration of the emulsified dispersion, the number of emulsified dispersions per lg of water (the number of particles) was calculated to be 2.9 ⁇ 10 13 .
- 0.1 g of a 1 L stainless steel autoclave was charged with 50 g of ion-exchanged water, 0.05 g of ammonium persulfate (APS), and 0.05 g of sodium lauryl sulfate as a surfactant. After that, a mixed gas consisting of 65 mol% of hexafluoropropylene (HFP) and 35 mol% of 1,1-difluoroethylene (VdF) was charged to 1 MPa under vacuum. . The autoclave was immersed in a water bath having a horizontal stirrer preliminarily controlled at 80 ° C. to start a polymerization reaction. The pressure in the autoclave became constant after 3 minutes, and then decreased with the polymerization reaction. The polymerization reaction was performed for 1.8 hours.
- HFP hexafluoropropylene
- VdF 1,1-difluoroethylene
- the autoclave was taken out of the water bath, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to find that it was 70.5 nm.
- the concentration of the emulsified dispersion was measured to be 0.89% by evaporating a part of the emulsified dispersion to dryness.
- the number of emulsified dispersions per lg of water (number of particles) was calculated from the particle diameter and the concentration of the emulsified dispersion to be 2.7 ⁇ 10 13 .
- 0.1 g of a 1 L stainless steel autoclave was charged with 50 g of ion-exchanged water, 0.05 g of ammonium persulfate (APS), and 0.05 g of sodium n-decane sulfate as a surfactant. After sufficiently replacing with nitrogen and vacuum, hexanefluoropropylene (vacuum)
- a mixed gas containing 65 mol% of HFP) and 35 mol% of 1,1-difluoroethylene (VdF) was charged to IMPa.
- the autoclave was immersed in a water bath having a horizontal stirrer preliminarily controlled at 80 ° C. to start a polymerization reaction.
- the pressure in the autoclave became constant after 3 minutes, and then decreased with the polymerization reaction.
- the polymerization reaction was performed for 1.5 hours.
- the water bath autoclave was taken out, the remaining monomers were released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to find that it was 84.5 nm.
- the concentration of the emulsified dispersion was determined to be 1.0% by evaporating a part of the emulsified dispersion to dryness.
- the number (number of particles) of emulsified dispersion per lg of water was calculated from the particle diameter and the concentration of the emulsified dispersion to be 1.8 ⁇ 10 13 .
- the water bath autoclave was taken out, the remaining monomers were released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to be 134.8 nm.
- the concentration of the emulsified dispersion was 2.5% by evaporating a portion of the emulsified dispersion to dryness. From the particle diameter and the concentration of the emulsified dispersion, the number of emulsified dispersions per lg of water (the number of particles) was calculated to be 1.1 ⁇ 10 13 .
- the autoclave was taken out of the water bath, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to be 60 nm.
- the concentration of the emulsified dispersion was measured by evaporating a portion of the emulsified dispersion to dryness, and found to be 0.5%. From the particle diameter and the concentration of the emulsified dispersion, the number of emulsified dispersions per lg of water (number of particles) was calculated to be 2.5 ⁇ 10 13 .
- FIG. 1 shows the relationship between the surfactant concentration and the number of emulsified dispersions (particle number) per gram of water in Examples 118 and Comparative Examples 113.
- the hollow circles in Fig. 1 show the relationship between the surfactant concentration and the number of particles in the emulsion polymers of Examples 14 and 7 in which seed polymerization was not performed, and the hollow squares show that seed polymerization was not performed.
- the relationship between the surfactant concentration of the emulsion polymers of Examples 5, 6, and 8 and the number of particles is shown.
- the black circles in Fig. 1 show the relationship between the surfactant concentration and the number of particles in the emulsion polymers of Comparative Examples 14 to 14, 6 and 8 to 13 without seed polymerization, and the black squares.
- Example 1 the number of particles was 1. OX 10 14 or more, whereas in Examples 5 and 6 in which the concentration of the surfactant was Normal polymerization In Example 1, the number of particles was 2 ⁇ 10 13 , and it can be seen that the number of particles was significantly increased by performing the seed polymerization even when the surfactant concentration was the same.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
Abstract
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04807576.6A EP1726599B1 (fr) | 2003-12-25 | 2004-12-22 | Procede de production d'un fluoropolymere |
JP2005516604A JP4100431B2 (ja) | 2003-12-25 | 2004-12-22 | フルオロポリマーの製造方法 |
US10/584,710 US7566762B2 (en) | 2003-12-25 | 2004-12-22 | Process for preparing fluoropolymer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-430765 | 2003-12-25 | ||
JP2003430765 | 2003-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005063827A1 true WO2005063827A1 (fr) | 2005-07-14 |
Family
ID=34736358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/019219 WO2005063827A1 (fr) | 2003-12-25 | 2004-12-22 | Procede de production d'un fluoropolymere |
Country Status (4)
Country | Link |
---|---|
US (1) | US7566762B2 (fr) |
EP (1) | EP1726599B1 (fr) |
JP (1) | JP4100431B2 (fr) |
WO (1) | WO2005063827A1 (fr) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7279522B2 (en) | 2001-09-05 | 2007-10-09 | 3M Innovative Properties Company | Fluoropolymer dispersions containing no or little low molecular weight fluorinated surfactant |
WO2008001895A1 (fr) | 2006-06-30 | 2008-01-03 | Daikin Industries, Ltd. | Procédé de fabrication d'un élastomère contenant du fluor |
WO2009069320A1 (fr) | 2007-11-28 | 2009-06-04 | Unimatec Co., Ltd. | Procédé de production de fluoroélastomères |
US7659333B2 (en) | 2005-11-24 | 2010-02-09 | 3M Innovative Properties Company | Fluorinated surfactants for use in making a fluoropolymer |
US7671112B2 (en) | 2005-07-15 | 2010-03-02 | 3M Innovative Properties Company | Method of making fluoropolymer dispersion |
US7728087B2 (en) | 2005-12-23 | 2010-06-01 | 3M Innovative Properties Company | Fluoropolymer dispersion and method for making the same |
US7754795B2 (en) | 2006-05-25 | 2010-07-13 | 3M Innovative Properties Company | Coating composition |
US7776946B2 (en) | 2005-07-15 | 2010-08-17 | 3M Innovative Properties Company | Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant |
WO2010104142A1 (fr) | 2009-03-12 | 2010-09-16 | ダイキン工業株式会社 | Procédé de production de dispersion aqueuse de particules germes de polymère fluoré, composition de peinture en phase aqueuse, et article peint |
US7838608B2 (en) | 2005-12-21 | 2010-11-23 | 3M Innovative Properties Company | Fluorinated surfactants for making fluoropolymers |
WO2012043831A1 (fr) | 2010-09-30 | 2012-04-05 | ダイキン工業株式会社 | Procédé pour la préparation d'un polymère contenant du fluor |
US20120157621A1 (en) * | 2009-08-28 | 2012-06-21 | Daikin Industries, Ltd | Method for producing fluorine-containing polymer |
WO2012133582A1 (fr) | 2011-03-31 | 2012-10-04 | ダイキン工業株式会社 | Procédé de production d'un copolymère contenant du fluor |
US8404790B2 (en) | 2005-07-15 | 2013-03-26 | 3M Innovative Properties Company | Aqueous emulsion polymerization process for producing fluoropolymers |
WO2014104416A1 (fr) * | 2012-12-28 | 2014-07-03 | ダイキン工業株式会社 | Procédé de production pour un liquide de dispersion aqueuse de poly(fluorure de vinylidène) et liquide de dispersion aqueuse de poly(fluorure de vinylidène) |
JP2015007218A (ja) * | 2013-05-27 | 2015-01-15 | ダイキン工業株式会社 | フルオロポリマーの製造方法 |
US8952115B2 (en) | 2009-08-28 | 2015-02-10 | Daikin Industries, Ltd. | Method for producing fluorine-containing polymer |
WO2019031617A1 (fr) * | 2017-08-10 | 2019-02-14 | ダイキン工業株式会社 | Procédé de production d'un liquide constitué d'une dispersion aqueuse de polytétrafluoréthylène purifié, procédé de production d'une poudre de polytétrafluoréthylène modifié, procédé de production d'un objet moulé en polytétrafluoréthylène, et composition |
WO2020071503A1 (fr) * | 2018-10-03 | 2020-04-09 | ダイキン工業株式会社 | Procédé de production de polytétrafluoroéthylène |
JP2022050308A (ja) * | 2020-09-17 | 2022-03-30 | ダイキン工業株式会社 | 含フッ素重合体及びその製造方法 |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1570917B1 (fr) * | 2004-03-01 | 2009-06-10 | 3M Innovative Properties Company | Procédé de revêtement d'un substrat avec une dispersion de polymère fluoré |
GB0514387D0 (en) * | 2005-07-15 | 2005-08-17 | 3M Innovative Properties Co | Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant |
GB2430437A (en) * | 2005-09-27 | 2007-03-28 | 3M Innovative Properties Co | Method of making a fluoropolymer |
US20070276103A1 (en) * | 2006-05-25 | 2007-11-29 | 3M Innovative Properties Company | Fluorinated Surfactants |
US8119750B2 (en) * | 2006-07-13 | 2012-02-21 | 3M Innovative Properties Company | Explosion taming surfactants for the production of perfluoropolymers |
BRPI0807109A2 (pt) * | 2007-02-16 | 2014-05-06 | 3M Innovative Properties Co | Sistema e processo para a remoção de fluoroquiímicos da água |
US20080264864A1 (en) * | 2007-04-27 | 2008-10-30 | 3M Innovative Properties Company | PROCESS FOR REMOVING FLUORINATED EMULSIFIER FROM FLUOROPOLMER DISPERSIONS USING AN ANION-EXCHANGE RESIN AND A pH-DEPENDENT SURFACTANT AND FLUOROPOLYMER DISPERSIONS CONTAINING A pH-DEPENDENT SURFACTANT |
CN101679790B (zh) * | 2007-05-23 | 2012-09-19 | 3M创新有限公司 | 氟化表面活性剂的水性组合物及其使用方法 |
US8476385B2 (en) * | 2007-06-06 | 2013-07-02 | 3M Innovative Properties Company | Fluorinated ether compositions and methods of using the same |
CN102149674A (zh) * | 2008-07-18 | 2011-08-10 | 3M创新有限公司 | 氟化醚化合物及其使用方法 |
WO2010080473A1 (fr) | 2008-12-18 | 2010-07-15 | 3M Innovative Properties Company | Procédé de mise en contact de formations portant des hydrocarbures avec des compositions d'éther fluoré |
EP3539995B1 (fr) | 2010-11-09 | 2020-12-30 | The Chemours Company FC, LLC | Polymérisation aqueuse de fluoromonomère à l'aide d'un agent tensioactif d'hydrocarbure |
WO2012064846A1 (fr) | 2010-11-09 | 2012-05-18 | E. I. Du Pont De Nemours And Company | Nucléation en polymérisation en milieu aqueux de fluoromonomère |
US9074025B2 (en) | 2010-11-09 | 2015-07-07 | The Chemours Company Fc, Llc | Reducing the telogenic behavior of hydrocarbon-containing surfactants in aqueous dispersion fluoromonomer polymerization |
US20130303707A1 (en) * | 2012-05-09 | 2013-11-14 | E I Du Pont De Nemours And Company | Fluorination of Fluoropolymer Resin to Reduce Discoloration |
GB2517481A (en) * | 2013-08-22 | 2015-02-25 | 3M Innovative Properties Co | Method of making peroxide fluoropolymers using non-fluorindated emulsifiers |
CN106414510B (zh) | 2013-11-26 | 2018-11-30 | 得凯莫斯公司弗罗里达有限公司 | 采用聚环氧烷在含氟单体的水相聚合中成核 |
US11028198B2 (en) | 2016-08-17 | 2021-06-08 | 3M Innovative Properties Company | Tetrafluoroethylene and perfluorinated allyl ether copolymers |
EP3284762A1 (fr) | 2016-08-17 | 2018-02-21 | 3M Innovative Properties Company | Fluoropolymeres comprenant tetrafluoroethylene et un ou plusieurs perfluorés allyle ether comonomères |
US20200055971A1 (en) | 2016-11-09 | 2020-02-20 | 3M Innovative Properties Company | Peroxide curable partially fluorinated polymer |
WO2018211457A2 (fr) | 2017-05-19 | 2018-11-22 | 3M Innovative Properties Company | Procédés de fabrication d'un éther d'allyle polyfluoré et composés associés aux procédés |
EP3527634A1 (fr) | 2018-02-15 | 2019-08-21 | 3M Innovative Properties Company | Fluoropolymères et dispersions de fluoropolymère |
GB201807544D0 (en) | 2018-05-09 | 2018-06-20 | 3M Innovative Properties Co | Fluoropolymers with very low amounts of a fluorinated alkanoic acid or its salts |
TW202033573A (zh) | 2018-12-17 | 2020-09-16 | 美商3M新設資產公司 | 包括可固化氟聚合物及固化劑之組成物及製造及使用其之方法 |
WO2020245724A1 (fr) | 2019-06-04 | 2020-12-10 | 3M Innovative Properties Company | Composé fluoré multifonctionnel, polymères fluorés fabriqués à partir du composé, et procédés associés |
US20230357172A1 (en) | 2020-03-19 | 2023-11-09 | 3M Innovative Properties Company | Perfluorinated Allyl Ethers and Perfluorinated Allyl Amines and Methods of Making and Using the Same |
WO2022180547A1 (fr) | 2021-02-26 | 2022-09-01 | 3M Innovative Properties Company | Procédé de fabrication d'un fluoropolymère et fluoropolymère obtenu à partir de ce dernier |
US20240191012A1 (en) | 2021-06-11 | 2024-06-13 | 3M Innovative Properties Company | Method of Making a Fluoropolymer Dispersion Having a Low Amount of Perfluoroalkanoic Acids or Salts Thereof and the Fluoropolymer Comprises a Low Ionic End Group Ratio |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0841413A (ja) * | 1994-08-01 | 1996-02-13 | Central Glass Co Ltd | 含フッ素樹脂水性分散液の製造方法 |
WO2002024828A1 (fr) * | 2000-09-21 | 2002-03-28 | Daikin Industries, Ltd. | Dispersion aqueuse d'eau et de d'oleofuge de son procede de fabrication |
WO2002028925A2 (fr) * | 2000-10-04 | 2002-04-11 | Dupont Dow Elastomers L.L.C. | Procede de production d'elastomeres fluores |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2235459B (en) * | 1989-08-09 | 1993-06-23 | Toa Gosei Chem Ind | Process for producing an aqueous resin dispersion |
JP3505719B2 (ja) * | 1997-04-30 | 2004-03-15 | ダイキン工業株式会社 | 水性分散組成物及び塗装物品 |
CA2306908C (fr) * | 1997-10-23 | 2004-06-08 | The Procter & Gamble Company | Acides gras, savons, systemes tensioactifs et produits de consommation a base de ces composes |
DE19842952A1 (de) * | 1998-09-18 | 2000-03-23 | Basf Ag | Dispergiermittel |
US6767882B1 (en) * | 1999-06-21 | 2004-07-27 | The Procter & Gamble Company | Process for producing coated detergent particles |
EP1392235A2 (fr) * | 2001-05-30 | 2004-03-03 | The Procter & Gamble Company | Composition topique comprenant un agent collant cosmetique trans-structure, active |
EP1452571B1 (fr) * | 2003-02-28 | 2005-08-17 | 3M Innovative Properties Company | Dispersion de fluoropolymère contenant pas ou peu d'agent tensioactif fluore à faible poids moléculaire |
-
2004
- 2004-12-22 EP EP04807576.6A patent/EP1726599B1/fr not_active Expired - Lifetime
- 2004-12-22 WO PCT/JP2004/019219 patent/WO2005063827A1/fr active Application Filing
- 2004-12-22 US US10/584,710 patent/US7566762B2/en not_active Expired - Lifetime
- 2004-12-22 JP JP2005516604A patent/JP4100431B2/ja not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0841413A (ja) * | 1994-08-01 | 1996-02-13 | Central Glass Co Ltd | 含フッ素樹脂水性分散液の製造方法 |
WO2002024828A1 (fr) * | 2000-09-21 | 2002-03-28 | Daikin Industries, Ltd. | Dispersion aqueuse d'eau et de d'oleofuge de son procede de fabrication |
WO2002028925A2 (fr) * | 2000-10-04 | 2002-04-11 | Dupont Dow Elastomers L.L.C. | Procede de production d'elastomeres fluores |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7279522B2 (en) | 2001-09-05 | 2007-10-09 | 3M Innovative Properties Company | Fluoropolymer dispersions containing no or little low molecular weight fluorinated surfactant |
US7776946B2 (en) | 2005-07-15 | 2010-08-17 | 3M Innovative Properties Company | Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant |
US8404790B2 (en) | 2005-07-15 | 2013-03-26 | 3M Innovative Properties Company | Aqueous emulsion polymerization process for producing fluoropolymers |
US7671112B2 (en) | 2005-07-15 | 2010-03-02 | 3M Innovative Properties Company | Method of making fluoropolymer dispersion |
US7659333B2 (en) | 2005-11-24 | 2010-02-09 | 3M Innovative Properties Company | Fluorinated surfactants for use in making a fluoropolymer |
US7838608B2 (en) | 2005-12-21 | 2010-11-23 | 3M Innovative Properties Company | Fluorinated surfactants for making fluoropolymers |
US7728087B2 (en) | 2005-12-23 | 2010-06-01 | 3M Innovative Properties Company | Fluoropolymer dispersion and method for making the same |
US7754795B2 (en) | 2006-05-25 | 2010-07-13 | 3M Innovative Properties Company | Coating composition |
US8598290B2 (en) | 2006-06-30 | 2013-12-03 | Daikin Industries, Ltd. | Method for producing fluorine-containing elastomer |
EP2039706A4 (fr) * | 2006-06-30 | 2009-06-03 | Daikin Ind Ltd | Procédé de fabrication d'un élastomère contenant du fluor |
WO2008001895A1 (fr) | 2006-06-30 | 2008-01-03 | Daikin Industries, Ltd. | Procédé de fabrication d'un élastomère contenant du fluor |
WO2009069320A1 (fr) | 2007-11-28 | 2009-06-04 | Unimatec Co., Ltd. | Procédé de production de fluoroélastomères |
JPWO2009069320A1 (ja) * | 2007-11-28 | 2011-04-07 | ユニマテック株式会社 | フルオロエラストマーの製造法 |
WO2010104142A1 (fr) | 2009-03-12 | 2010-09-16 | ダイキン工業株式会社 | Procédé de production de dispersion aqueuse de particules germes de polymère fluoré, composition de peinture en phase aqueuse, et article peint |
US8952115B2 (en) | 2009-08-28 | 2015-02-10 | Daikin Industries, Ltd. | Method for producing fluorine-containing polymer |
US20120157621A1 (en) * | 2009-08-28 | 2012-06-21 | Daikin Industries, Ltd | Method for producing fluorine-containing polymer |
US8735492B2 (en) | 2009-08-28 | 2014-05-27 | Daikin Industries, Ltd. | Method for producing fluorine-containing polymer |
WO2012043831A1 (fr) | 2010-09-30 | 2012-04-05 | ダイキン工業株式会社 | Procédé pour la préparation d'un polymère contenant du fluor |
US9567413B2 (en) | 2010-09-30 | 2017-02-14 | Daikin Industries, Ltd. | Method for producing fluorine-containing polymer |
WO2012133582A1 (fr) | 2011-03-31 | 2012-10-04 | ダイキン工業株式会社 | Procédé de production d'un copolymère contenant du fluor |
WO2014104416A1 (fr) * | 2012-12-28 | 2014-07-03 | ダイキン工業株式会社 | Procédé de production pour un liquide de dispersion aqueuse de poly(fluorure de vinylidène) et liquide de dispersion aqueuse de poly(fluorure de vinylidène) |
JP2014141673A (ja) * | 2012-12-28 | 2014-08-07 | Daikin Ind Ltd | ポリビニリデンフルオライド水性分散液の製造方法及びポリビニリデンフルオライド水性分散液 |
US10150820B2 (en) | 2012-12-28 | 2018-12-11 | Daikin Industries, Ltd. | Production method for polyvinylidene fluoride aqueous dispersion liquid, and polyvinylidene fluoride aqueous dispersion liquid |
US9834631B2 (en) | 2013-05-27 | 2017-12-05 | Daikin Industries, Ltd. | Fluoropolymer production method |
JP2015007218A (ja) * | 2013-05-27 | 2015-01-15 | ダイキン工業株式会社 | フルオロポリマーの製造方法 |
WO2019031617A1 (fr) * | 2017-08-10 | 2019-02-14 | ダイキン工業株式会社 | Procédé de production d'un liquide constitué d'une dispersion aqueuse de polytétrafluoréthylène purifié, procédé de production d'une poudre de polytétrafluoréthylène modifié, procédé de production d'un objet moulé en polytétrafluoréthylène, et composition |
WO2020071503A1 (fr) * | 2018-10-03 | 2020-04-09 | ダイキン工業株式会社 | Procédé de production de polytétrafluoroéthylène |
CN112771087A (zh) * | 2018-10-03 | 2021-05-07 | 大金工业株式会社 | 聚四氟乙烯的制造方法 |
JPWO2020071503A1 (ja) * | 2018-10-03 | 2021-09-02 | ダイキン工業株式会社 | ポリテトラフルオロエチレンの製造方法 |
CN112771087B (zh) * | 2018-10-03 | 2023-01-20 | 大金工业株式会社 | 聚四氟乙烯的制造方法 |
JP7277799B2 (ja) | 2018-10-03 | 2023-05-19 | ダイキン工業株式会社 | ポリテトラフルオロエチレンの製造方法 |
JP2022050308A (ja) * | 2020-09-17 | 2022-03-30 | ダイキン工業株式会社 | 含フッ素重合体及びその製造方法 |
JP7256409B2 (ja) | 2020-09-17 | 2023-04-12 | ダイキン工業株式会社 | 含フッ素重合体及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP4100431B2 (ja) | 2008-06-11 |
JPWO2005063827A1 (ja) | 2007-07-19 |
US7566762B2 (en) | 2009-07-28 |
EP1726599A1 (fr) | 2006-11-29 |
EP1726599B1 (fr) | 2013-07-24 |
US20070149733A1 (en) | 2007-06-28 |
EP1726599A4 (fr) | 2009-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005063827A1 (fr) | Procede de production d'un fluoropolymere | |
US9371405B2 (en) | Nucleation in aqueous polymerization of fluoromonomer | |
JP6622209B2 (ja) | フルオロモノマーの水性重合において核を形成するためのポリアルキレンオキシドの使用 | |
US12319757B2 (en) | Method for making fluoropolymers | |
WO2012125788A2 (fr) | Synthèse de fluoropolymères contenant du 2,3,3,3-tétrafluoropropène | |
CN102482362B (zh) | 含氟聚合物的制造方法 | |
CN102482363B (zh) | 含氟聚合物的制造方法 | |
JP5082212B2 (ja) | フルオロエラストマーの製造方法 | |
CN101443366B (zh) | 含氟聚合物的制造方法 | |
US8623957B2 (en) | Method of preparing fluoropolymers by aqueous emulsion polymerization | |
CN103459441A (zh) | 含氟共聚物的制造方法 | |
JP5454470B2 (ja) | 含フッ素重合体の製造方法 | |
JP2006111722A (ja) | 含フッ素重合体の製造方法 | |
WO2022025190A1 (fr) | Procédé de production de dispersion aqueuse d'élastomère contenant du fluor, élastomère contenant du fluor ainsi que dispersion aqueuse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005516604 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007149733 Country of ref document: US Ref document number: 10584710 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004807576 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2004807576 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10584710 Country of ref document: US |