WO2005059618A2 - Microlithography projection objective with crystal lens - Google Patents
Microlithography projection objective with crystal lens Download PDFInfo
- Publication number
- WO2005059618A2 WO2005059618A2 PCT/EP2004/014290 EP2004014290W WO2005059618A2 WO 2005059618 A2 WO2005059618 A2 WO 2005059618A2 EP 2004014290 W EP2004014290 W EP 2004014290W WO 2005059618 A2 WO2005059618 A2 WO 2005059618A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- projection objective
- microlithography projection
- lens
- lenses
- microlithography
- Prior art date
Links
- 238000001393 microlithography Methods 0.000 title claims abstract description 22
- 239000013078 crystal Substances 0.000 title claims description 29
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 50
- 239000011780 sodium chloride Substances 0.000 claims abstract description 25
- 238000007654 immersion Methods 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims description 43
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 38
- 239000000395 magnesium oxide Substances 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 4
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 239000002178 crystalline material Substances 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 15
- 210000000695 crystalline len Anatomy 0.000 abstract 3
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 238000002834 transmittance Methods 0.000 description 12
- 239000001103 potassium chloride Substances 0.000 description 11
- 235000011164 potassium chloride Nutrition 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 8
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 8
- 229910001634 calcium fluoride Inorganic materials 0.000 description 8
- 239000012530 fluid Substances 0.000 description 7
- 238000001459 lithography Methods 0.000 description 7
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 7
- 229910052681 coesite Inorganic materials 0.000 description 6
- 229910052906 cristobalite Inorganic materials 0.000 description 6
- 229910052682 stishovite Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910052905 tridymite Inorganic materials 0.000 description 6
- 239000003513 alkali Substances 0.000 description 5
- 230000001012 protector Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 150000004694 iodide salts Chemical class 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000671 immersion lithography Methods 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910026161 MgAl2O4 Inorganic materials 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- PSNPEOOEWZZFPJ-UHFFFAOYSA-N alumane;yttrium Chemical compound [AlH3].[Y] PSNPEOOEWZZFPJ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 229910001637 strontium fluoride Inorganic materials 0.000 description 1
- FVRNDBHWWSPNOM-UHFFFAOYSA-L strontium fluoride Chemical compound [F-].[F-].[Sr+2] FVRNDBHWWSPNOM-UHFFFAOYSA-L 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70341—Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/02—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/14—Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
- G02B13/143—Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation for use with ultraviolet radiation
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70241—Optical aspects of refractive lens systems, i.e. comprising only refractive elements
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/7035—Proximity or contact printers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7095—Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
- G03F7/70958—Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
Definitions
- the invention relates to a microlithography projection objective with at least one crystal lens, wherein the objective is designed in particular for a high numerical aperture and with immersion or optical near field.
- Suitable immersion liquids are inter alia described in US 60/568,006 or DE 10 2004 051 730.4.
- Crystal lenses consisting in particular of calcium fluoride (fluorspar) or other fluorides have been used until now as a means to achieve a sufficient transmittance at wavelengths below 200 nm and down to, e.g., 126 nm, and also to achieve a chromatic compensation by using fluoride lenses particularly in combination with lens elements of quartz glass.
- fluoride lenses particularly in combination with lens elements of quartz glass.
- these arrangements involved the use of several crystal lenses in the objective, with diameters exceeding 10 cm and with a combined thickness of the order of 10 cm, where the lenses had to be arranged at different places in the objective, including in particular locations close to the pupil and close to the object.
- the same material is also known to be suitable for lenses close to a field plane because of its higher radiation resistance associated with a lower degree of compaction compared to quartz glass.
- the first approach that always comes to mind is to use shorter wavelengths.
- the shorter the wavelength the more difficult it becomes to find suitable immersion materials and lens materials with a high refractive index. Attempts have therefore been made to stay with longer wavelengths but find materials that have an even higher refractive index to compensate for the disadvantage of the longer wavelength.
- the aperture has to be larger by a factor of 1.285.
- a resolution of 50 nm would require a refractive index of at least 1.49 if a value of 0.3 has been selected for ki.
- quartz glass fused silica, Si0 2
- Si0 2 has a refractive index of 1.506235 at a wavelength of 248 nm
- the next node at 45 nm is not attainable without a change of material.
- lens materials with a particularly high refractive index for_.l_ens_es-.-in_.the .area. near.-.the_ image plane of-.ar-- objective of the kind described in generic terms in the introductory paragraph, including suitable protector plates or other elements.
- the refractive index is higher than for quartz glass, it is also possible to use materials whose other properties are less ideal, such as calcium fluoride, for individual elements with a thickness of a few millimeters to centimeters .
- a material has been found which has a higher refractive index and can meet all other requirements for lithography applications.
- the material needs to be sufficiently isotropic.
- an intrinsic birefringence in the deep ultraviolet range near the absorption edge has to be tolerated.
- the further away the absorption edge the smaller are the values of the intrinsic birefringence.
- a particularly advantageous selection is achieved if the intrinsic birefringence crosses the zero level at the wavelength being used for the lithography application.
- sodium chloride (NaCl) was found to be suitable, which at this wavelength has a refractive index of 1.657766.
- Figures 1 to 8 schematically illustrate sections through the lenses near the image plane of a projection objective according to the invention, including the immersion area and the wafer or another object being exposed to the projection.
- Figure 1 schematically illustrates the last lenses on the image side of a microlithography projection objective according to the invention with an immersion fluid I, for example 25% D 3 P0 4 in D 2 0 (n248 « 1.66), a monocrystalline last lens of NaCl, with a plane-parallel thin protector plate P or a protective layer placed in between.
- an immersion fluid I for example 25% D 3 P0 4 in D 2 0 (n248 « 1.66)
- a monocrystalline last lens of NaCl with a plane-parallel thin protector plate P or a protective layer placed in between.
- Monocrystalline NaCl is not hygroscopic in air, in contrast to commercially available kitchen salt which contains impurities of MgCl and therefore attracts water. It should be clear that the work operations on NaCl in the production process have to be free of water, because NaCl dissolves in liquid water. However, the appropriate working techniques have been known for decades . Otherwise, the lenses can be coated with vapor-deposited layers and worked on with ion beams. Inside the objective, which is normally flushed with helium or nitrogen, moisture is in any event of no concern.
- potassium iodide is water-soluble but advantageously isotropic.
- Other representatives of the alkali group in the form of iodides are likewise suitable, including Nal, Rbl, Csl. Since the primary use of iodides is in the infrared range, no raw materials of extreme purity have so far been used to grow crystals for the far ultraviolet range.
- the transmittance edge for Csl a material of the highest refractive index, is reported as 227 nm, so that the transmittance values obtained for Nal, Ki, Rbl tend to be ev.en_mor.e_.favorable .
- the highest index of refraction is obtained with Cs as it has the highest atomic weight in the alkali group.
- Figure 2 shows the end portion of a refractive or catadioptric objective with an aperture of more than 2.0.
- the wafer W is for example in the optical near field, with a distance of 20 nm.
- a fluid from the group of highly refractive substances that are also known as immersion fluids is arranged between the last two lenses on the image side of the objective.
- magnesium oxide MgO has to be produced in crystalline form with the requisite purity. In the form of a thin element, it is sufficiently transparent.
- the crystalline oxide material is isotropic and has a coefficient of linear thermal expansion of 14xlO ⁇ 6 /K, while Csl for example has a linear expansion coefficient of 54.9xlO "6 /K.
- MgO is of course also possible to use MgO itself for the one or more last elements if a crystal material of suitable transmittance and homogeneity is used.
- MgO has very good chemical and mechanical properties and is a most highly refractive material with a refractive index over 2.0, it is suitable for the wavelength of 248 nm, if the crystal quality is appropriately optimized. Instructive comments on this may be found in the paper by John H. Burnett et al . "High Index Materials for 193 nm and 157 nm Immersion Lithography", Intl. Symp. On Immersion + 157 nm Lithography, Vancouver, 2 Aug 2004.
- Figure 3 represents an example of a refractive or catadioptric projection objective in which the system aperture stop or the conjugate plane of the system aperture stop that is closest to the image plane is followed by a lens group in which the last lens and in this case also the next to last lens on the image side of the objective are lenses of monocrystalline magnesium oxide .
- MgO has a unique position.
- the oxides of the first group i.e., of the alkali group
- the oxides of the second group the alkaline earth gx.ou.p-, the—oxide—o-f—-the—i] g-h-t ⁇ s-t—eie-men-t-—ts—BeQ-r- Wfe ⁇ e- the latter has a good transmittance, it has a wurzite structure and is therefore birefringent .
- the further oxides MgO, CaO, SrO, BaO have the crystal structure of NaCl and are optically isotropic.
- Magnesium oxide has the further advantage of an excellent chemical stability in contact with many immersion fluids I, which necessarily should likewise have a very high index of refraction at 248 nm. With a system that works in the optical near field, it is important to pay attention to the need for frequent cleaning. Using MgO in the last optical element of the system is advantageous also because of its exceptional hardness and ease of cleaning. With no immediate need to pusn up the refractive index at the 45 nm node, it also makes sense to protect an NaCl lens with a thin MgO plate.
- MgO crystal In order to prevent the MgO element from heating up, it is important that the MgO crystal be produced from base material components of the highest purity. A certain amount of absorption can be tolerated as long as MgO serves only as a protector plate that is overlaid on another optical material, because with a small thickness of for example 1.0 mm, the absorption volume, and consequently the heat generation, will remain small. If entire lenses are made of MgO, one should aim for a crystal of high purity.
- the 193 nm wavelength while not yet representing the majority of applications, is an established working wavelength and therefore, as a natural consequence, attractive for a further reduction of the structure widths through the use of very large NA values .
- n 1.501436 for CaF 2 at 193.304 nm
- n 1.560289 for Si0 2 at 193.304 nm
- Chromatic compensation materials with a higher refractive index and a higher dispersion than CaF 2 are known, e.g., from U.S. Patent 6,683,729 Bl (inventor Schuster) and from the aforementioned paper by Burnett et al . , including among others the following:
- an objective with a large refractive lens element of BaF 2 in the end position stands up better to radiation than amorphous Si0 2 , but the refractive index is not significantly increased in comparison to Si0 2 .
- Potassium chloride KCl has a very good transmittance at 193 nm and more than satisfies the requirement of a refractive index of 1.685. In fact, the refractive index of KCl is 1.756255 at 193 nm. Given that the resists already reach indices up to 1.75, there is a possible application for a system where the light passes from the last lens to the resist on a wafer by means of the optical near field without immersion.
- Figure 4 schematically illustrates the part of a projection objective that extends from the aperture stop plane AS (system aperture plane or a conjugate plane of the system aperture plane) closest to the image field, equipped with KCl lenses according to the invention in near-field distance from a resist / wafer W.
- AS system aperture plane or a conjugate plane of the system aperture plane
- Sodium chloride NaCl has a refractive index of 1.829085 at a wavelength of 193 nm.
- the k x -factor for 193 nm and for the 22 nm node can be raised again to
- Figure 5 shows an end group of a projection objective configured in this manner with a lens member made of two wrung-together KCl lens elements and as the closing member on the image side two wrung-together monocrystalline NaCl lens elements.
- the crystallographic orientations of the lens elements are in each case rotated relative to each .o ⁇ Ler—Jox—-the—c-ompen-sa-t-i-on—of—bi-re-f-r-ing-e-ne-e—
- FIG. 6 Another example is illustrated in Figure 6, where an individual KCl crystal lens is arranged in combination with an NaCl lens member of two wrung-together elements.
- NaCl should be used as the last optical element of positive refractive power.
- the KCl lens combines a greater refractive power with smaller intrinsic birefringence and favorable transmittance, so that the intrinsic birefringence can be compensated better and the heating of the last double lens can be kept smaller due to the reduced overall amount of absorption.
- the invention is also directed to the use of the proposed materials in 248 nm or 193 nm lithography applications; to the use of the optical near field or immersion simultaneously with the proposed materials; to the compensation of the intrinsic birefringence in NaCl at 193 nm; to the compensation of the intrinsic birefringence associated with KCl lenses; to mixed combinations in which KCl and NaCl lens elements are wrung together; to refractive indices larger than 1.75 or larger than 1.82 in lenses; to the use of chlorine compounds as a crystal material for the wavelength of 193 nm; to the location where the materials are used within the objective, i.e., .ailt-er_the— pje tu e—-top—o-3 ⁇ ---te-—a—G-o-nj-ug-a-fee—oea-fe-io-n— ⁇ -f the aperture stop and before the image plane; to an angle of incidence on the lens surface of at least 60° and preferably
- lens refers to a refractive optical element of only one material, also often referred to as lens component.
- this optical element can still be coated, in particular with anti-reflex coatings and protective coatings against chemical and physical factors such as being attacked by aggressive chemicals, being dissolved by water or other solvents (moisture protection coating) , or against scratching.
- a further crystal material that has been found suitable for the lens elements of a lithography objective is YAG (yttrium aluminum granate) . Its chemical formula is
- the refractive index of YAG is higher than in MgO.
- YAG has a good transmittance.
- YAG has been used for many years as a material to grow high-quality crystals for lasers, and with the need to continuously improve these lasers, YAG has in the meantime been developed much farther than for example MgO or spinel MgAl 2 0 4 .
- YAG is another material that is still sufficiently transmissive at 193 nm.
- YAG Based on the higher index of refraction one can estimate that an absorption edge in YAG lies at about 175 nm. This makes YAG suitable as a material for lithographic projection systems for wavelengths of 248 n and 193 nm.
- YAG is basically isotropic but exhibits intrinsic birefringence at 248 nm and in particular at 193 nm, as is also known to occur in CaF 2 and has been described above for chloride crystals.
- FIG 8 illustrates the foregoing concept schematically in an example.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Environmental & Geological Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Toxicology (AREA)
- Lenses (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/596,626 US7755839B2 (en) | 2003-12-19 | 2004-12-15 | Microlithography projection objective with crystal lens |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53062303P | 2003-12-19 | 2003-12-19 | |
US60/530,623 | 2003-12-19 | ||
US56800604P | 2004-05-04 | 2004-05-04 | |
US60/568,006 | 2004-05-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005059618A2 true WO2005059618A2 (en) | 2005-06-30 |
WO2005059618A3 WO2005059618A3 (en) | 2006-01-19 |
Family
ID=34704297
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2004/014100 WO2005059645A2 (en) | 2003-12-19 | 2004-12-10 | Microlithography projection objective with crystal elements |
PCT/EP2004/014290 WO2005059618A2 (en) | 2003-12-19 | 2004-12-15 | Microlithography projection objective with crystal lens |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2004/014100 WO2005059645A2 (en) | 2003-12-19 | 2004-12-10 | Microlithography projection objective with crystal elements |
Country Status (3)
Country | Link |
---|---|
US (1) | US7755839B2 (en) |
JP (1) | JP5102492B2 (en) |
WO (2) | WO2005059645A2 (en) |
Cited By (129)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006047127A1 (en) * | 2004-10-21 | 2006-05-04 | Saint-Gobain Ceramics & Plastics, Inc. | Optical lens elements, semiconductor lithographic patterning apparatus, and methods for processing semiconductor devices |
DE102005010655A1 (en) * | 2005-03-08 | 2006-09-14 | Schott Ag | Method to produce optical parts for microlithography, associated lens systems and its application uses optical garnets, cubic spinels, cubic perovskites, and cubic M (II) - M (Iv) oxides |
WO2007034838A1 (en) | 2005-09-21 | 2007-03-29 | Nikon Corporation | Exposure device, exposure method, and device fabrication method |
GB2431670A (en) * | 2005-10-25 | 2007-05-02 | Zeiss Carl Smt Ag | Protective coating with windows for protection of optical element that is soluble in immersion liquid. |
WO2007052659A1 (en) | 2005-11-01 | 2007-05-10 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
WO2007055237A1 (en) | 2005-11-09 | 2007-05-18 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
WO2007055199A1 (en) | 2005-11-09 | 2007-05-18 | Nikon Corporation | Exposure apparatus and method, and method for manufacturing device |
WO2007055373A1 (en) | 2005-11-14 | 2007-05-18 | Nikon Corporation | Liquid recovery member, exposure apparatus, exposure method, and device production method |
WO2007058354A1 (en) | 2005-11-21 | 2007-05-24 | Nikon Corporation | Exposure method and device manufacturing method using the same, exposure apparatus, and substrate treatment method and apparatus |
WO2007066758A1 (en) | 2005-12-08 | 2007-06-14 | Nikon Corporation | Substrate holding device, exposure device, exposure method, and device fabrication method |
WO2007077875A1 (en) | 2005-12-28 | 2007-07-12 | Nikon Corporation | Exposure apparatus, exposure method, and device production method |
WO2007094407A1 (en) | 2006-02-16 | 2007-08-23 | Nikon Corporation | Exposure apparatus, exposing method, and device manufacturing method |
WO2007094431A1 (en) | 2006-02-16 | 2007-08-23 | Nikon Corporation | Exposure apparatus, exposing method, and device manufacturing method |
WO2007094470A1 (en) | 2006-02-16 | 2007-08-23 | Nikon Corporation | Exposure apparatus, exposure method and method for manufacturing device |
WO2007097466A1 (en) | 2006-02-21 | 2007-08-30 | Nikon Corporation | Measuring device and method, processing device and method, pattern forming device and method, exposing device and method, and device fabricating method |
WO2007097380A1 (en) | 2006-02-21 | 2007-08-30 | Nikon Corporation | Pattern forming apparatus, pattern forming method, mobile object driving system, mobile body driving method, exposure apparatus, exposure method and device manufacturing method |
WO2007100087A1 (en) | 2006-03-03 | 2007-09-07 | Nikon Corporation | Exposure apparatus and device manufacturing method |
WO2007108415A1 (en) | 2006-03-17 | 2007-09-27 | Nikon Corporation | Exposure apparatus and device manufacturing method |
WO2007108414A1 (en) | 2006-03-17 | 2007-09-27 | Nikon Corporation | Exposure apparatus and device production method |
WO2007119501A1 (en) | 2006-03-23 | 2007-10-25 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
EP1851574A1 (en) * | 2005-02-25 | 2007-11-07 | Carl Zeiss SMT AG | Optical system, in particular objective or illumination system for a microlithographic projection exposure apparatus |
WO2007129753A1 (en) | 2006-05-10 | 2007-11-15 | Nikon Corporation | Exposure apparatus and device manufacturing method |
WO2007136089A1 (en) | 2006-05-23 | 2007-11-29 | Nikon Corporation | Maintenance method, exposure method and apparatus, and device manufacturing method |
WO2007136052A1 (en) | 2006-05-22 | 2007-11-29 | Nikon Corporation | Exposure method and apparatus, maintenance method, and device manufacturing method |
WO2007138834A1 (en) | 2006-05-31 | 2007-12-06 | Nikon Corporation | Exposure apparatus and exposure method |
WO2007144193A1 (en) * | 2006-06-16 | 2007-12-21 | Carl Zeiss Smt Ag | Projection objective of a microlithographic projection exposure apparatus |
US7385764B2 (en) | 2003-12-15 | 2008-06-10 | Carl Zeiss Smt Ag | Objectives as a microlithography projection objective with at least one liquid lens |
WO2009013903A1 (en) | 2007-07-24 | 2009-01-29 | Nikon Corporation | Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method |
US7557997B2 (en) | 2006-09-28 | 2009-07-07 | Nikon Corporation | Immersion objective optical system, exposure apparatus, device fabrication method, and boundary optical element |
US7679721B2 (en) | 2005-04-19 | 2010-03-16 | Carl Zeiss Smt Ag | Projection objective of a microlithographic projection exposure apparatus and method for its production |
US7679806B2 (en) | 2005-03-08 | 2010-03-16 | Schott Ag | Method for making optical elements for microlithography, the lens systems obtained by the method and their uses |
US7684008B2 (en) | 2003-06-11 | 2010-03-23 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7701550B2 (en) | 2004-08-19 | 2010-04-20 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7719658B2 (en) | 2004-02-13 | 2010-05-18 | Carl Zeiss Smt Ag | Imaging system for a microlithographical projection light system |
US7782442B2 (en) | 2005-12-06 | 2010-08-24 | Nikon Corporation | Exposure apparatus, exposure method, projection optical system and device producing method |
US7779781B2 (en) | 2003-07-31 | 2010-08-24 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7803516B2 (en) | 2005-11-21 | 2010-09-28 | Nikon Corporation | Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus |
US7812925B2 (en) | 2003-06-19 | 2010-10-12 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US7843550B2 (en) | 2003-07-25 | 2010-11-30 | Nikon Corporation | Projection optical system inspecting method and inspection apparatus, and a projection optical system manufacturing method |
US7855777B2 (en) | 2003-07-09 | 2010-12-21 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
US7868998B2 (en) | 2003-10-28 | 2011-01-11 | Asml Netherlands B.V. | Lithographic apparatus |
US7872730B2 (en) | 2006-09-15 | 2011-01-18 | Nikon Corporation | Immersion exposure apparatus and immersion exposure method, and device manufacturing method |
US7875418B2 (en) | 2004-03-16 | 2011-01-25 | Carl Zeiss Smt Ag | Method for a multiple exposure, microlithography projection exposure installation and a projection system |
US7880860B2 (en) | 2004-12-20 | 2011-02-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7898645B2 (en) | 2003-10-08 | 2011-03-01 | Zao Nikon Co., Ltd. | Substrate transport apparatus and method, exposure apparatus and exposure method, and device fabricating method |
US7907254B2 (en) | 2003-02-26 | 2011-03-15 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US7907255B2 (en) | 2003-08-29 | 2011-03-15 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7916272B2 (en) | 2003-03-25 | 2011-03-29 | Nikon Corporation | Exposure apparatus and device fabrication method |
US7924402B2 (en) | 2003-09-19 | 2011-04-12 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US7929110B2 (en) | 2003-04-10 | 2011-04-19 | Nikon Corporation | Environmental system including a transport region for an immersion lithography apparatus |
US7927428B2 (en) | 2006-09-08 | 2011-04-19 | Nikon Corporation | Cleaning member, cleaning method, and device manufacturing method |
US7932989B2 (en) | 2003-04-11 | 2011-04-26 | Nikon Corporation | Liquid jet and recovery system for immersion lithography |
US7936444B2 (en) | 2003-05-13 | 2011-05-03 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7982850B2 (en) | 2002-11-12 | 2011-07-19 | Asml Netherlands B.V. | Immersion lithographic apparatus and device manufacturing method with gas supply |
US7982857B2 (en) | 2003-12-15 | 2011-07-19 | Nikon Corporation | Stage apparatus, exposure apparatus, and exposure method with recovery device having lyophilic portion |
US7990517B2 (en) | 2004-02-03 | 2011-08-02 | Nikon Corporation | Immersion exposure apparatus and device manufacturing method with residual liquid detector |
US7995186B2 (en) | 2003-10-08 | 2011-08-09 | Zao Nikon Co., Ltd. | Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure method, device manufacturing method |
US8004651B2 (en) | 2007-01-23 | 2011-08-23 | Nikon Corporation | Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method |
US8018657B2 (en) | 2003-04-17 | 2011-09-13 | Nikon Corporation | Optical arrangement of autofocus elements for use with immersion lithography |
US8023106B2 (en) | 2007-08-24 | 2011-09-20 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
US8035795B2 (en) | 2003-04-11 | 2011-10-11 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the protection lens during wafer exchange in an immersion lithography machine |
US8035800B2 (en) | 2006-03-13 | 2011-10-11 | Nikon Corporation | Exposure apparatus, maintenance method, exposure method, and method for producing device |
US8039807B2 (en) | 2003-09-29 | 2011-10-18 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US8040491B2 (en) | 2003-06-13 | 2011-10-18 | Nikon Corporation | Exposure method, substrate stage, exposure apparatus, and device manufacturing method |
US8045136B2 (en) | 2004-02-02 | 2011-10-25 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US8045137B2 (en) | 2004-12-07 | 2011-10-25 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8054447B2 (en) | 2003-12-03 | 2011-11-08 | Nikon Corporation | Exposure apparatus, exposure method, method for producing device, and optical part |
US8054448B2 (en) | 2004-05-04 | 2011-11-08 | Nikon Corporation | Apparatus and method for providing fluid for immersion lithography |
US8054472B2 (en) | 2006-02-21 | 2011-11-08 | Nikon Corporation | Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method |
US8072576B2 (en) | 2003-05-23 | 2011-12-06 | Nikon Corporation | Exposure apparatus and method for producing device |
US8085381B2 (en) | 2003-04-11 | 2011-12-27 | Nikon Corporation | Cleanup method for optics in immersion lithography using sonic device |
US8089610B2 (en) | 2003-04-10 | 2012-01-03 | Nikon Corporation | Environmental system including vacuum scavenge for an immersion lithography apparatus |
US8102501B2 (en) | 2003-04-09 | 2012-01-24 | Nikon Corporation | Immersion lithography fluid control system using an electric or magnetic field generator |
US8111375B2 (en) | 2003-04-07 | 2012-02-07 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
US8111373B2 (en) | 2004-03-25 | 2012-02-07 | Nikon Corporation | Exposure apparatus and device fabrication method |
US8120751B2 (en) | 2003-07-09 | 2012-02-21 | Nikon Corporation | Coupling apparatus, exposure apparatus, and device fabricating method |
US8120763B2 (en) | 2002-12-20 | 2012-02-21 | Carl Zeiss Smt Gmbh | Device and method for the optical measurement of an optical system by using an immersion fluid |
US8125613B2 (en) | 2006-04-21 | 2012-02-28 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
US8130361B2 (en) | 2003-10-09 | 2012-03-06 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US8134685B2 (en) | 2007-03-23 | 2012-03-13 | Nikon Corporation | Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method |
US8154708B2 (en) | 2003-06-09 | 2012-04-10 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8189168B2 (en) | 2007-05-28 | 2012-05-29 | Nikon Corporation | Exposure apparatus, device production method, cleaning apparatus, cleaning method, and exposure method |
US8194232B2 (en) | 2007-07-24 | 2012-06-05 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method |
US8218127B2 (en) | 2003-07-09 | 2012-07-10 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US8218125B2 (en) | 2003-07-28 | 2012-07-10 | Asml Netherlands B.V. | Immersion lithographic apparatus with a projection system having an isolated or movable part |
US8218129B2 (en) | 2007-08-24 | 2012-07-10 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, measuring method, and position measurement system |
US8233133B2 (en) | 2003-05-28 | 2012-07-31 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing device |
US8237919B2 (en) | 2007-08-24 | 2012-08-07 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method for continuous position measurement of movable body before and after switching between sensor heads |
US8237911B2 (en) | 2007-03-15 | 2012-08-07 | Nikon Corporation | Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine |
USRE43576E1 (en) | 2005-04-08 | 2012-08-14 | Asml Netherlands B.V. | Dual stage lithographic apparatus and device manufacturing method |
US8243253B2 (en) | 2003-04-10 | 2012-08-14 | Nikon Corporation | Lyophobic run-off path to collect liquid for an immersion lithography apparatus |
US8279399B2 (en) | 2007-10-22 | 2012-10-02 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
US8289500B2 (en) | 2006-09-29 | 2012-10-16 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
US8305553B2 (en) | 2004-08-18 | 2012-11-06 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US8319939B2 (en) | 2004-07-07 | 2012-11-27 | Asml Netherlands B.V. | Immersion lithographic apparatus and device manufacturing method detecting residual liquid |
US8330935B2 (en) | 2004-01-20 | 2012-12-11 | Carl Zeiss Smt Gmbh | Exposure apparatus and measuring device for a projection lens |
US8363206B2 (en) | 2006-05-09 | 2013-01-29 | Carl Zeiss Smt Gmbh | Optical imaging device with thermal attenuation |
US8390779B2 (en) | 2006-02-16 | 2013-03-05 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US8422015B2 (en) | 2007-11-09 | 2013-04-16 | Nikon Corporation | Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method |
US8451424B2 (en) | 2003-07-28 | 2013-05-28 | Nikon Corporation | Exposure apparatus, method for producing device, and method for controlling exposure apparatus |
US8472002B2 (en) | 2002-11-12 | 2013-06-25 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8472001B2 (en) | 2003-05-23 | 2013-06-25 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing device |
US8508718B2 (en) | 2003-07-08 | 2013-08-13 | Nikon Corporation | Wafer table having sensor for immersion lithography |
US8514366B2 (en) | 2006-05-18 | 2013-08-20 | Nikon Corporation | Exposure method and apparatus, maintenance method and device manufacturing method |
US8520187B2 (en) | 2003-09-03 | 2013-08-27 | Nikon Corporation | Apparatus and method for providing fluid for immersion lithography |
US8520184B2 (en) | 2004-06-09 | 2013-08-27 | Nikon Corporation | Immersion exposure apparatus and device manufacturing method with measuring device |
US8547519B2 (en) | 2003-11-14 | 2013-10-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8547527B2 (en) | 2007-07-24 | 2013-10-01 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and pattern formation apparatus, and device manufacturing method |
US8570484B2 (en) | 2006-08-30 | 2013-10-29 | Nikon Corporation | Immersion exposure apparatus, device manufacturing method, cleaning method, and cleaning member to remove foreign substance using liquid |
US8609301B2 (en) | 2006-09-08 | 2013-12-17 | Nikon Corporation | Mask, exposure apparatus and device manufacturing method |
US8629418B2 (en) | 2005-02-28 | 2014-01-14 | Asml Netherlands B.V. | Lithographic apparatus and sensor therefor |
US8638415B2 (en) | 2004-05-18 | 2014-01-28 | Asml Netherlands B.V. | Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets |
US8665455B2 (en) | 2007-11-08 | 2014-03-04 | Nikon Corporation | Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method |
US8692973B2 (en) | 2005-01-31 | 2014-04-08 | Nikon Corporation | Exposure apparatus and method for producing device |
US8711327B2 (en) | 2007-12-14 | 2014-04-29 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
US8797508B2 (en) | 2007-11-07 | 2014-08-05 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
US8867022B2 (en) | 2007-08-24 | 2014-10-21 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, and device manufacturing method |
US8891056B2 (en) | 2006-07-14 | 2014-11-18 | Nikon Corporation | Stage apparatus and exposure apparatus |
US9013681B2 (en) | 2007-11-06 | 2015-04-21 | Nikon Corporation | Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method |
US9176393B2 (en) | 2008-05-28 | 2015-11-03 | Asml Netherlands B.V. | Lithographic apparatus and a method of operating the apparatus |
US9223224B2 (en) | 2003-08-29 | 2015-12-29 | Nikon Corporation | Exposure apparatus with component from which liquid is protected and/or removed and device fabricating method |
US9229333B2 (en) | 2007-12-28 | 2016-01-05 | Nikon Corporation | Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method |
US9256140B2 (en) | 2007-11-07 | 2016-02-09 | Nikon Corporation | Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method with measurement device to measure movable body in Z direction |
US9304412B2 (en) | 2007-08-24 | 2016-04-05 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and measuring method |
US9746781B2 (en) | 2005-01-31 | 2017-08-29 | Nikon Corporation | Exposure apparatus and method for producing device |
US9846372B2 (en) | 2010-04-22 | 2017-12-19 | Asml Netherlands B.V. | Fluid handling structure, lithographic apparatus and device manufacturing method |
US9851644B2 (en) | 2005-12-30 | 2017-12-26 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10261428B2 (en) | 2002-11-12 | 2019-04-16 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10503084B2 (en) | 2002-11-12 | 2019-12-10 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW538256B (en) * | 2000-01-14 | 2003-06-21 | Zeiss Stiftung | Microlithographic reduction projection catadioptric objective |
US8208198B2 (en) | 2004-01-14 | 2012-06-26 | Carl Zeiss Smt Gmbh | Catadioptric projection objective |
US7466489B2 (en) * | 2003-12-15 | 2008-12-16 | Susanne Beder | Projection objective having a high aperture and a planar end surface |
WO2005106589A1 (en) * | 2004-05-04 | 2005-11-10 | Carl Zeiss Smt Ag | Microlithographic projection exposure apparatus and immersion liquid therefore |
US7460206B2 (en) * | 2003-12-19 | 2008-12-02 | Carl Zeiss Smt Ag | Projection objective for immersion lithography |
WO2005059645A2 (en) | 2003-12-19 | 2005-06-30 | Carl Zeiss Smt Ag | Microlithography projection objective with crystal elements |
US20080151364A1 (en) * | 2004-01-14 | 2008-06-26 | Carl Zeiss Smt Ag | Catadioptric projection objective |
KR101204114B1 (en) * | 2004-01-14 | 2012-11-23 | 칼 짜이스 에스엠티 게엠베하 | Catadioptric projection objective |
CN101793993B (en) | 2004-01-16 | 2013-04-03 | 卡尔蔡司Smt有限责任公司 | Optical elements, optical arrangement and system |
US20070019179A1 (en) | 2004-01-16 | 2007-01-25 | Damian Fiolka | Polarization-modulating optical element |
TWI395068B (en) | 2004-01-27 | 2013-05-01 | 尼康股份有限公司 | Optical system, exposure device and method of exposure |
CN101727021A (en) * | 2004-02-13 | 2010-06-09 | 卡尔蔡司Smt股份公司 | Projection objective for a microlithographic projection exposure apparatus |
JP4370992B2 (en) * | 2004-02-18 | 2009-11-25 | 株式会社ニコン | Optical element and exposure apparatus |
WO2005098504A1 (en) | 2004-04-08 | 2005-10-20 | Carl Zeiss Smt Ag | Imaging system with mirror group |
KR101391470B1 (en) | 2004-05-17 | 2014-05-07 | 칼 짜이스 에스엠티 게엠베하 | Catadioptric projection objective with intermediate images |
KR101248328B1 (en) * | 2004-06-04 | 2013-04-01 | 칼 짜이스 에스엠티 게엠베하 | Projection system with compensation of intensity variations and compensation element therefor |
CN101833247B (en) | 2004-06-04 | 2013-11-06 | 卡尔蔡司Smt有限责任公司 | Measuring system for the optical measurement of projecting object lens of micro-lithography projection exposure system |
KR101342330B1 (en) | 2004-07-12 | 2013-12-16 | 가부시키가이샤 니콘 | Exposure equipment and device manufacturing method |
EP1803036A2 (en) * | 2004-10-22 | 2007-07-04 | Carl Zeiss SMT AG | Projection exposure apparatus for microlithography |
EP1820050A1 (en) * | 2004-12-09 | 2007-08-22 | Carl Zeiss SMT AG | Transmitting optical element and objective for a microlithographic projection exposure apparatus |
US7405805B2 (en) | 2004-12-28 | 2008-07-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
WO2007017473A1 (en) * | 2005-08-10 | 2007-02-15 | Carl Zeiss Smt Ag | Imaging system, in particular projection lens of a microlithographic projection exposure unit |
WO2007031544A1 (en) | 2005-09-14 | 2007-03-22 | Carl Zeiss Smt Ag | Optical system of a microlithographic exposure system |
US7764427B2 (en) | 2006-02-21 | 2010-07-27 | Carl Zeiss Smt Ag | Microlithography optical system |
US7972438B2 (en) * | 2006-08-30 | 2011-07-05 | Crystal Photonics, Incorporated | High-index UV optical materials for immersion lithography |
US8023104B2 (en) | 2007-01-22 | 2011-09-20 | Carl Zeiss Smt Gmbh | Microlithographic projection exposure apparatus |
JP2008216498A (en) * | 2007-03-01 | 2008-09-18 | Canon Inc | Projection optical system, exposure apparatus, and device fabrication method |
DE102008001761A1 (en) | 2007-06-06 | 2008-12-11 | Carl Zeiss Smt Ag | Projection lens for microlithographic projection illumination system for forming mask on light sensitive layer, has two compensation units arranged on different position along optical axis, where refractive lens are provided between units |
CN101815969B (en) * | 2007-10-02 | 2013-07-17 | 卡尔蔡司Smt有限责任公司 | Projection objective for microlithography |
TWI434142B (en) * | 2008-07-25 | 2014-04-11 | Nanya Technology Corp | Lithography apparatus with a fiber module |
US20230185201A1 (en) * | 2021-12-13 | 2023-06-15 | Changxin Memory Technologies, Inc. | Method of forming photoresist pattern and projection exposure apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4861148A (en) * | 1986-03-12 | 1989-08-29 | Matsushita Electric Industrial Co., Inc. | Projection optical system for use in precise copy |
EP0475020A2 (en) * | 1990-08-28 | 1992-03-18 | International Business Machines Corporation | Field compensated lens |
US6025115A (en) * | 1990-09-26 | 2000-02-15 | Canon Kabushiki Kaisha | Processing method for etching a substrate |
US20020102497A1 (en) * | 1999-06-04 | 2002-08-01 | Sparrow Robert W. | Fluoride lens crystal for optical microlithography systems |
US20030174408A1 (en) * | 2002-03-08 | 2003-09-18 | Carl Zeiss Smt Ag | Refractive projection objective for immersion lithography |
Family Cites Families (160)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2380887A (en) | 1941-05-22 | 1945-07-31 | Taylor Taylor & Hobson Ltd | Optical system |
NL269391A (en) | 1961-09-19 | |||
JPS6019484B2 (en) | 1975-11-07 | 1985-05-16 | キヤノン株式会社 | Copying lens |
US4293186A (en) | 1977-02-11 | 1981-10-06 | The Perkin-Elmer Corporation | Restricted off-axis field optical system |
CH624776A5 (en) | 1977-12-08 | 1981-08-14 | Kern & Co Ag | |
US4241390A (en) | 1978-02-06 | 1980-12-23 | The Perkin-Elmer Corporation | System for illuminating an annular field |
CH651943A5 (en) | 1980-08-16 | 1985-10-15 | Ludvik Dr Canzek | HIGH OPENING CATADIOPTRIC LENS. |
JPS5744115A (en) | 1980-08-30 | 1982-03-12 | Asahi Optical Co Ltd | Reflex telephoto zoom lens system |
US4346164A (en) | 1980-10-06 | 1982-08-24 | Werner Tabarelli | Photolithographic method for the manufacture of integrated circuits |
GB2146454B (en) | 1981-05-15 | 1986-04-16 | Gen Signal Corp | Apparatus for projecting a series of images onto dies of a semiconductor wafer |
US4469414A (en) | 1982-06-01 | 1984-09-04 | The Perkin-Elmer Corporation | Restrictive off-axis field optical system |
JPS60184223A (en) | 1984-03-01 | 1985-09-19 | Nippon Kogaku Kk <Nikon> | Cata-dioptric telephoto lens |
US4812028A (en) | 1984-07-23 | 1989-03-14 | Nikon Corporation | Reflection type reduction projection optical system |
US4834515A (en) | 1984-11-29 | 1989-05-30 | Lockheed Missiles & Space Company, Inc. | Catadioptric imaging system with dioptric assembly of the petzval type |
US4779966A (en) | 1984-12-21 | 1988-10-25 | The Perkin-Elmer Corporation | Single mirror projection optical system |
JPS61156737A (en) | 1984-12-27 | 1986-07-16 | Canon Inc | Catadioptric system |
US4711535A (en) | 1985-05-10 | 1987-12-08 | The Perkin-Elmer Corporation | Ring field projection system |
US4757354A (en) | 1986-05-02 | 1988-07-12 | Matsushita Electrical Industrial Co., Ltd. | Projection optical system |
EP0947882B1 (en) | 1986-07-11 | 2006-03-29 | Canon Kabushiki Kaisha | X-ray reduction projection exposure system of reflection type |
GB2197962A (en) | 1986-11-10 | 1988-06-02 | Compact Spindle Bearing Corp | Catoptric reduction imaging apparatus |
US4951078A (en) | 1988-05-16 | 1990-08-21 | Minolta Camera Kabushiki Kaisha | Camera system including catadioptric lens and catadioptric lens system used therein |
US5004331A (en) | 1989-05-03 | 1991-04-02 | Hughes Aircraft Company | Catadioptric projector, catadioptric projection system and process |
US5063586A (en) | 1989-10-13 | 1991-11-05 | At&T Bell Laboratories | Apparatus for semiconductor lithography |
US5114238A (en) | 1990-06-28 | 1992-05-19 | Lockheed Missiles & Space Company, Inc. | Infrared catadioptric zoom relay telescope |
US5031976A (en) | 1990-09-24 | 1991-07-16 | Kla Instruments, Corporation | Catadioptric imaging system |
GB9020902D0 (en) | 1990-09-26 | 1990-11-07 | Optics & Vision Ltd | Optical systems,telescopes and binoculars |
US5315629A (en) | 1990-10-10 | 1994-05-24 | At&T Bell Laboratories | Ringfield lithography |
US5734496A (en) | 1991-06-03 | 1998-03-31 | Her Majesty The Queen In Right Of New Zealand | Lens system |
US5121256A (en) | 1991-03-14 | 1992-06-09 | The Board Of Trustees Of The Leland Stanford Junior University | Lithography system employing a solid immersion lens |
US5212588A (en) | 1991-04-09 | 1993-05-18 | The United States Of America As Represented By The United States Department Of Energy | Reflective optical imaging system for extreme ultraviolet wavelengths |
JP3203719B2 (en) | 1991-12-26 | 2001-08-27 | 株式会社ニコン | Exposure apparatus, device manufactured by the exposure apparatus, exposure method, and device manufacturing method using the exposure method |
US5220590A (en) | 1992-05-05 | 1993-06-15 | General Signal Corporation | X-ray projection lithography camera |
US5353322A (en) | 1992-05-05 | 1994-10-04 | Tropel Corporation | Lens system for X-ray projection lithography camera |
JPH06188169A (en) | 1992-08-24 | 1994-07-08 | Canon Inc | Method of image formation, exposure system, and manufacture of device |
US5477304A (en) | 1992-10-22 | 1995-12-19 | Nikon Corporation | Projection exposure apparatus |
US6078381A (en) | 1993-02-01 | 2000-06-20 | Nikon Corporation | Exposure method and apparatus |
JP3635684B2 (en) | 1994-08-23 | 2005-04-06 | 株式会社ニコン | Catadioptric reduction projection optical system, catadioptric optical system, and projection exposure method and apparatus |
US5636066A (en) | 1993-03-12 | 1997-06-03 | Nikon Corporation | Optical apparatus |
US5410434A (en) | 1993-09-09 | 1995-04-25 | Ultratech Stepper, Inc. | Reflective projection system comprising four spherical mirrors |
US5515207A (en) | 1993-11-03 | 1996-05-07 | Nikon Precision Inc. | Multiple mirror catadioptric optical system |
EP0696848B1 (en) * | 1994-08-08 | 2000-04-05 | Micronas Intermetall GmbH | Method of digital signal interpolation |
US5488229A (en) | 1994-10-04 | 1996-01-30 | Excimer Laser Systems, Inc. | Deep ultraviolet microlithography system |
JPH08166542A (en) | 1994-10-13 | 1996-06-25 | Nisshin Koki Kk | Catadioptric system and optical device using the same |
IL113350A (en) | 1995-04-12 | 1998-06-15 | State Rafaelel Ministry Of Def | Catadioptric optics for staring array detector system |
JP3711586B2 (en) | 1995-06-02 | 2005-11-02 | 株式会社ニコン | Scanning exposure equipment |
US5650877A (en) | 1995-08-14 | 1997-07-22 | Tropel Corporation | Imaging system for deep ultraviolet lithography |
US5805365A (en) | 1995-10-12 | 1998-09-08 | Sandia Corporation | Ringfield lithographic camera |
JP3456323B2 (en) | 1995-11-01 | 2003-10-14 | 株式会社ニコン | Microscope objective lens |
JPH09148241A (en) | 1995-11-27 | 1997-06-06 | Canon Inc | Scanning aligner and method for manufacturing device using the same |
US5815310A (en) | 1995-12-12 | 1998-09-29 | Svg Lithography Systems, Inc. | High numerical aperture ring field optical reduction system |
JPH09251097A (en) | 1996-03-15 | 1997-09-22 | Nikon Corp | Reflection reduction image-forming optical system for x-ray lithography |
US5686728A (en) | 1996-05-01 | 1997-11-11 | Lucent Technologies Inc | Projection lithography system and method using all-reflective optical elements |
US5729376A (en) | 1996-07-01 | 1998-03-17 | The United States Of America As Represented By The Secretary Of The Army | Catadioptric multi-functional optical assembly |
US5999310A (en) | 1996-07-22 | 1999-12-07 | Shafer; David Ross | Ultra-broadband UV microscope imaging system with wide range zoom capability |
US5717518A (en) | 1996-07-22 | 1998-02-10 | Kla Instruments Corporation | Broad spectrum ultraviolet catadioptric imaging system |
DE19633128A1 (en) | 1996-08-16 | 1998-02-19 | Zeiss Carl Fa | Achromatic lens system for ultraviolet rays with germanium dioxide glass |
US6631036B2 (en) | 1996-09-26 | 2003-10-07 | Carl-Zeiss-Stiftung | Catadioptric objective |
US6169627B1 (en) | 1996-09-26 | 2001-01-02 | Carl-Zeiss-Stiftung | Catadioptric microlithographic reduction objective |
JP4029183B2 (en) | 1996-11-28 | 2008-01-09 | 株式会社ニコン | Projection exposure apparatus and projection exposure method |
DE69738910D1 (en) | 1996-11-28 | 2008-09-25 | Nikon Corp | ALIGNMENT DEVICE AND EXPOSURE METHOD |
US7130129B2 (en) | 1996-12-21 | 2006-10-31 | Carl Zeiss Smt Ag | Reticle-masking objective with aspherical lenses |
JP2000505958A (en) | 1996-12-24 | 2000-05-16 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Two-dimensional balance positioning device having two article holders and lithographic device having this positioning device |
JPH10183099A (en) | 1996-12-27 | 1998-07-07 | Lion Corp | Low-foaming friction resistance-reducing agent for water-base medium and reduction of friction resistance of water-base medium with little foaming by using the same |
JPH10284408A (en) | 1997-04-08 | 1998-10-23 | Nikon Corp | Exposure method |
JP3747566B2 (en) | 1997-04-23 | 2006-02-22 | 株式会社ニコン | Immersion exposure equipment |
US6291110B1 (en) * | 1997-06-27 | 2001-09-18 | Pixelligent Technologies Llc | Methods for transferring a two-dimensional programmable exposure pattern for photolithography |
US5956192A (en) | 1997-09-18 | 1999-09-21 | Svg Lithography Systems, Inc. | Four mirror EUV projection optics |
US5920380A (en) | 1997-12-19 | 1999-07-06 | Sandia Corporation | Apparatus and method for generating partially coherent illumination for photolithography |
EP1089327A4 (en) | 1998-03-06 | 2003-01-02 | Nikon Corp | Exposure device and method of manufacturing semiconductor device |
US6097537A (en) | 1998-04-07 | 2000-08-01 | Nikon Corporation | Catadioptric optical system |
JPH11316343A (en) | 1998-05-01 | 1999-11-16 | Nikon Corp | Catadioptric lens |
DE19923609A1 (en) | 1998-05-30 | 1999-12-02 | Zeiss Carl Fa | Reduction objective useful in projector for deep ultraviolet microlithography in chip manufacture |
EP1293832A1 (en) | 1998-06-08 | 2003-03-19 | Nikon Corporation | Projection exposure apparatus and method |
EP0989434B1 (en) | 1998-07-29 | 2006-11-15 | Carl Zeiss SMT AG | Catadioptric optical system and exposure apparatus having the same |
US6213610B1 (en) | 1998-09-21 | 2001-04-10 | Nikon Corporation | Catoptric reduction projection optical system and exposure apparatus and method using same |
JP2000100694A (en) | 1998-09-22 | 2000-04-07 | Nikon Corp | Reflection/reduction projection optical system, projection aligner comprising it, and exposure method using the aligner |
US6220713B1 (en) | 1998-10-23 | 2001-04-24 | Compaq Computer Corporation | Projection lens and system |
JP4345232B2 (en) | 1998-12-25 | 2009-10-14 | 株式会社ニコン | Catadioptric imaging optical system and projection exposure apparatus provided with the optical system |
EP1772775B1 (en) | 1999-02-15 | 2008-11-05 | Carl Zeiss SMT AG | Microlithographic reduction lens and projection illumination system |
US6188513B1 (en) | 1999-03-15 | 2001-02-13 | Russell Hudyma | High numerical aperture ring field projection system for extreme ultraviolet lithography |
US6033079A (en) | 1999-03-15 | 2000-03-07 | Hudyma; Russell | High numerical aperture ring field projection system for extreme ultraviolet lithography |
US6426506B1 (en) | 1999-05-27 | 2002-07-30 | The Regents Of The University Of California | Compact multi-bounce projection system for extreme ultraviolet projection lithography |
US6867922B1 (en) | 1999-06-14 | 2005-03-15 | Canon Kabushiki Kaisha | Projection optical system and projection exposure apparatus using the same |
DE10029938A1 (en) | 1999-07-09 | 2001-07-05 | Zeiss Carl | Optical system for projection exposure device, includes optical element which consists of magnesium fluoride, as main constituent |
JP4717974B2 (en) | 1999-07-13 | 2011-07-06 | 株式会社ニコン | Catadioptric optical system and projection exposure apparatus provided with the optical system |
US6495202B1 (en) * | 1999-09-08 | 2002-12-17 | Nikon Corporation | Method for manufacturing an optical element containing fluoride in at least its surface portions |
EP1093021A3 (en) | 1999-10-15 | 2004-06-30 | Nikon Corporation | Projection optical system as well as equipment and methods making use of said system |
US6600608B1 (en) | 1999-11-05 | 2003-07-29 | Carl-Zeiss-Stiftung | Catadioptric objective comprising two intermediate images |
US6995930B2 (en) | 1999-12-29 | 2006-02-07 | Carl Zeiss Smt Ag | Catadioptric projection objective with geometric beam splitting |
US7187503B2 (en) | 1999-12-29 | 2007-03-06 | Carl Zeiss Smt Ag | Refractive projection objective for immersion lithography |
TW538256B (en) | 2000-01-14 | 2003-06-21 | Zeiss Stiftung | Microlithographic reduction projection catadioptric objective |
US6285737B1 (en) | 2000-01-21 | 2001-09-04 | Euv Llc | Condenser for extreme-UV lithography with discharge source |
JP2001228401A (en) | 2000-02-16 | 2001-08-24 | Canon Inc | Projection optical system, projection aligner by this projection optical system and method for manufacturing device |
DE10010131A1 (en) | 2000-03-03 | 2001-09-06 | Zeiss Carl | Microlithography projection exposure with tangential polarization involves using light with preferred direction of polarization oriented perpendicularly with respect to plane of incidence |
US7301605B2 (en) | 2000-03-03 | 2007-11-27 | Nikon Corporation | Projection exposure apparatus and method, catadioptric optical system and manufacturing method of devices |
JP2001343589A (en) | 2000-03-31 | 2001-12-14 | Canon Inc | Projection optical system, projection exposure device by the same, manufacturing method of devices |
JP2002083766A (en) | 2000-06-19 | 2002-03-22 | Nikon Corp | Projectoin optical system, method of manufacturing the optical system, and projection exposure system equipped with the optical system |
US6842298B1 (en) | 2000-09-12 | 2005-01-11 | Kla-Tencor Technologies Corporation | Broad band DUV, VUV long-working distance catadioptric imaging system |
JP2004512552A (en) | 2000-10-20 | 2004-04-22 | カール ツァイス シュティフトゥング トレイディング アズ カール ツァイス | 8 Reflection mirror type projection optical system for microlithography |
JP4245286B2 (en) | 2000-10-23 | 2009-03-25 | 株式会社ニコン | Catadioptric optical system and exposure apparatus provided with the optical system |
JP2002217095A (en) | 2000-11-14 | 2002-08-02 | Canon Inc | Aligner, method for fabricating semiconductor device, factory for producing semiconductor and method for maintaining aligner and position detector |
JP2004514943A (en) | 2000-11-28 | 2004-05-20 | カール・ツアイス・エスエムテイ・アーゲー | Catadioptric projection system for 157nm lithography |
JP2002208551A (en) | 2001-01-10 | 2002-07-26 | Nikon Corp | Reflection/refraction optical system and projection aligner |
KR20040015251A (en) | 2001-05-15 | 2004-02-18 | 칼 짜이스 에스엠티 아게 | Objective with fluoride crystal lenses |
DE10123725A1 (en) | 2001-05-15 | 2002-11-21 | Zeiss Carl | Objective for microlithographic projection, includes lens element with axis perpendicular to specified fluoride crystal plane |
DE10127227A1 (en) | 2001-05-22 | 2002-12-05 | Zeiss Carl | Catadioptric reduction lens |
JP4780364B2 (en) | 2001-06-14 | 2011-09-28 | 株式会社ニコン | Catadioptric optical system and exposure apparatus provided with the optical system |
JP2005508560A (en) | 2001-06-21 | 2005-03-31 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Optical scanning device |
DE10143385C2 (en) * | 2001-09-05 | 2003-07-17 | Zeiss Carl | Projection exposure system |
JP2003114387A (en) | 2001-10-04 | 2003-04-18 | Nikon Corp | Cata-dioptic system and projection exposure device equipped with the same system |
US7140699B2 (en) | 2002-02-14 | 2006-11-28 | Continental Teves Ag & Co. Ohg | Method for regulating a predetermined modifiable brake pressure |
JP4016179B2 (en) | 2002-02-28 | 2007-12-05 | ソニー株式会社 | Exposure apparatus and converging lens control method |
US7075721B2 (en) * | 2002-03-06 | 2006-07-11 | Corning Incorporated | Compensator for radially symmetric birefringence |
DE10332112A1 (en) | 2003-07-09 | 2005-01-27 | Carl Zeiss Smt Ag | Manufacturing semiconductor, other finely-structured components involves setting working distance at least temporarily to less than maximum size of optical near field of emanating projection light |
JP4350341B2 (en) * | 2002-03-26 | 2009-10-21 | キヤノン株式会社 | Optical system and exposure apparatus |
US6912042B2 (en) | 2002-03-28 | 2005-06-28 | Carl Zeiss Smt Ag | 6-mirror projection objective with few lenses |
JP2003297729A (en) * | 2002-04-03 | 2003-10-17 | Nikon Corp | Projection optical system, exposure apparatus, and method of exposure |
JP4292497B2 (en) | 2002-04-17 | 2009-07-08 | 株式会社ニコン | Projection optical system, exposure apparatus, and exposure method |
JP2003309059A (en) | 2002-04-17 | 2003-10-31 | Nikon Corp | Projection optical system and manufacturing method thereof, projection aligner, and exposure method |
JP2003307680A (en) | 2002-04-17 | 2003-10-31 | Nikon Corp | Catadioptric system |
JP2005524866A (en) * | 2002-05-03 | 2005-08-18 | カール・ツァイス・エスエムティー・アーゲー | Ultra high aperture projection objective |
AU2002316719A1 (en) | 2002-07-17 | 2004-02-09 | Carl Zeiss Semiconductor Manufacturing Technologies Ag | Catadioptric multi-mirror systems for protection lithography |
JP4217437B2 (en) | 2002-07-22 | 2009-02-04 | キヤノン株式会社 | Zoom lens and image projection apparatus having the same |
US7154669B2 (en) * | 2002-08-05 | 2006-12-26 | Asml Holding N.V. | Method and system for correction of intrinsic birefringence in UV microlithography |
TWI249082B (en) | 2002-08-23 | 2006-02-11 | Nikon Corp | Projection optical system and method for photolithography and exposure apparatus and method using same |
US6788477B2 (en) | 2002-10-22 | 2004-09-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Apparatus for method for immersion lithography |
US8675276B2 (en) | 2003-02-21 | 2014-03-18 | Kla-Tencor Corporation | Catadioptric imaging system for broad band microscopy |
US20050164522A1 (en) | 2003-03-24 | 2005-07-28 | Kunz Roderick R. | Optical fluids, and systems and methods of making and using the same |
JP2004317534A (en) | 2003-04-11 | 2004-11-11 | Nikon Corp | Catadioptric image-formation optical system, exposure device, and exposure method |
US7348575B2 (en) | 2003-05-06 | 2008-03-25 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
JP2004333761A (en) | 2003-05-06 | 2004-11-25 | Nikon Corp | Catadioptric projection optical system, projection aligner, and exposure method |
KR101383984B1 (en) | 2003-05-06 | 2014-04-10 | 가부시키가이샤 니콘 | Projection optical system, and exposure apparatus and exposure method |
EP1480065A3 (en) | 2003-05-23 | 2006-05-10 | Canon Kabushiki Kaisha | Projection optical system, exposure apparatus, and device manufacturing method |
JP2005003982A (en) | 2003-06-12 | 2005-01-06 | Nikon Corp | Projection optical system, and device and method of exposure |
KR101265454B1 (en) | 2003-06-19 | 2013-05-16 | 가부시키가이샤 니콘 | Exposure device and device producing method |
WO2005013009A1 (en) | 2003-08-01 | 2005-02-10 | E.I. Dupont De Nemours And Company | Use of perfluoro-n-alkanes in vacuum ultraviolet applications |
WO2005015316A2 (en) | 2003-08-12 | 2005-02-17 | Carl Zeiss Smt Ag | Projection objective for microlithography |
US7085075B2 (en) | 2003-08-12 | 2006-08-01 | Carl Zeiss Smt Ag | Projection objectives including a plurality of mirrors with lenses ahead of mirror M3 |
JP4880869B2 (en) * | 2003-08-28 | 2012-02-22 | 株式会社ニコン | Lens system and projection exposure apparatus |
JP2007508591A (en) | 2003-10-17 | 2007-04-05 | カール・ツァイス・エスエムティー・アーゲー | Catadioptric projection objective |
EP1692240A2 (en) | 2003-12-12 | 2006-08-23 | 3M Innovative Properties Company | Pressure sensitive adhesive composition and article |
US7466489B2 (en) | 2003-12-15 | 2008-12-16 | Susanne Beder | Projection objective having a high aperture and a planar end surface |
WO2005106589A1 (en) | 2004-05-04 | 2005-11-10 | Carl Zeiss Smt Ag | Microlithographic projection exposure apparatus and immersion liquid therefore |
KR100965330B1 (en) | 2003-12-15 | 2010-06-22 | 칼 짜이스 에스엠티 아게 | Objective lens as a microlithographic projection objective with at least one liquid lens |
WO2005059645A2 (en) | 2003-12-19 | 2005-06-30 | Carl Zeiss Smt Ag | Microlithography projection objective with crystal elements |
US7460206B2 (en) | 2003-12-19 | 2008-12-02 | Carl Zeiss Smt Ag | Projection objective for immersion lithography |
KR101204114B1 (en) | 2004-01-14 | 2012-11-23 | 칼 짜이스 에스엠티 게엠베하 | Catadioptric projection objective |
CN101727021A (en) | 2004-02-13 | 2010-06-09 | 卡尔蔡司Smt股份公司 | Projection objective for a microlithographic projection exposure apparatus |
EP1721201A1 (en) | 2004-02-18 | 2006-11-15 | Corning Incorporated | Catadioptric imaging system for high numerical aperture imaging with deep ultraviolet light |
WO2005098504A1 (en) | 2004-04-08 | 2005-10-20 | Carl Zeiss Smt Ag | Imaging system with mirror group |
KR101391470B1 (en) | 2004-05-17 | 2014-05-07 | 칼 짜이스 에스엠티 게엠베하 | Catadioptric projection objective with intermediate images |
DE602005018648D1 (en) | 2004-07-14 | 2010-02-11 | Zeiss Carl Smt Ag | CATADIOPRIC PROJECTION LENS |
US7224520B2 (en) | 2004-09-28 | 2007-05-29 | Wavefront Research, Inc. | Compact fast catadioptric imager |
US7697198B2 (en) | 2004-10-15 | 2010-04-13 | Carl Zeiss Smt Ag | Catadioptric projection objective |
DE102005045862A1 (en) | 2004-10-19 | 2006-04-20 | Carl Zeiss Smt Ag | Optical system for ultraviolet light has liquid lens arranged in space between first and second limiting optical elements and containing liquid transparent for wavelength less than or equal to 200 nm |
US20060198018A1 (en) | 2005-02-04 | 2006-09-07 | Carl Zeiss Smt Ag | Imaging system |
JP2006309220A (en) | 2005-04-29 | 2006-11-09 | Carl Zeiss Smt Ag | Projection objective |
WO2007025643A1 (en) | 2005-08-30 | 2007-03-08 | Carl Zeiss Smt Ag | High-na projection objective with aspheric lens surfaces |
KR20080091182A (en) | 2006-01-30 | 2008-10-09 | 가부시키가이샤 니콘 | Method of manufacturing reflective refractive imaging optical system, exposure apparatus and device |
US8930758B2 (en) | 2012-01-16 | 2015-01-06 | Siemens Aktiengesellschaft | Automated testing of mechatronic systems |
-
2004
- 2004-12-10 WO PCT/EP2004/014100 patent/WO2005059645A2/en active Application Filing
- 2004-12-10 JP JP2006544290A patent/JP5102492B2/en not_active Expired - Fee Related
- 2004-12-15 US US10/596,626 patent/US7755839B2/en not_active Expired - Fee Related
- 2004-12-15 WO PCT/EP2004/014290 patent/WO2005059618A2/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4861148A (en) * | 1986-03-12 | 1989-08-29 | Matsushita Electric Industrial Co., Inc. | Projection optical system for use in precise copy |
EP0475020A2 (en) * | 1990-08-28 | 1992-03-18 | International Business Machines Corporation | Field compensated lens |
US6025115A (en) * | 1990-09-26 | 2000-02-15 | Canon Kabushiki Kaisha | Processing method for etching a substrate |
US20020102497A1 (en) * | 1999-06-04 | 2002-08-01 | Sparrow Robert W. | Fluoride lens crystal for optical microlithography systems |
US20030174408A1 (en) * | 2002-03-08 | 2003-09-18 | Carl Zeiss Smt Ag | Refractive projection objective for immersion lithography |
Non-Patent Citations (1)
Title |
---|
JOHN H. BURNETT ET AL.: "High Index Materials for 193nm and 157nm Immersion Lithography" INTERNATIONAL SEMATECH, 2 August 2004 (2004-08-02), XP001207229 International Symposium on Immersion & 157 nm Lithography, Vancouver cited in the application * |
Cited By (425)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8472002B2 (en) | 2002-11-12 | 2013-06-25 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9740107B2 (en) | 2002-11-12 | 2017-08-22 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8797503B2 (en) | 2002-11-12 | 2014-08-05 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method with a liquid inlet above an aperture of a liquid confinement structure |
US8558989B2 (en) | 2002-11-12 | 2013-10-15 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10788755B2 (en) | 2002-11-12 | 2020-09-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10261428B2 (en) | 2002-11-12 | 2019-04-16 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10222706B2 (en) | 2002-11-12 | 2019-03-05 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10191389B2 (en) | 2002-11-12 | 2019-01-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9091940B2 (en) | 2002-11-12 | 2015-07-28 | Asml Netherlands B.V. | Lithographic apparatus and method involving a fluid inlet and a fluid outlet |
US8208120B2 (en) | 2002-11-12 | 2012-06-26 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10962891B2 (en) | 2002-11-12 | 2021-03-30 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10620545B2 (en) | 2002-11-12 | 2020-04-14 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9057967B2 (en) | 2002-11-12 | 2015-06-16 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7982850B2 (en) | 2002-11-12 | 2011-07-19 | Asml Netherlands B.V. | Immersion lithographic apparatus and device manufacturing method with gas supply |
US10503084B2 (en) | 2002-11-12 | 2019-12-10 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8120763B2 (en) | 2002-12-20 | 2012-02-21 | Carl Zeiss Smt Gmbh | Device and method for the optical measurement of an optical system by using an immersion fluid |
US7907254B2 (en) | 2003-02-26 | 2011-03-15 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US9766555B2 (en) | 2003-02-26 | 2017-09-19 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US8102504B2 (en) | 2003-02-26 | 2012-01-24 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US9182684B2 (en) | 2003-02-26 | 2015-11-10 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US7911583B2 (en) | 2003-02-26 | 2011-03-22 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US10180632B2 (en) | 2003-02-26 | 2019-01-15 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US7932991B2 (en) | 2003-02-26 | 2011-04-26 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US9348239B2 (en) | 2003-02-26 | 2016-05-24 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US7907253B2 (en) | 2003-02-26 | 2011-03-15 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US8736809B2 (en) | 2003-02-26 | 2014-05-27 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US8018570B2 (en) | 2003-03-25 | 2011-09-13 | Nikon Corporation | Exposure apparatus and device fabrication method |
US8804095B2 (en) | 2003-03-25 | 2014-08-12 | Nikon Corporation | Exposure apparatus and device fabrication method |
US7916272B2 (en) | 2003-03-25 | 2011-03-29 | Nikon Corporation | Exposure apparatus and device fabrication method |
US8558987B2 (en) | 2003-03-25 | 2013-10-15 | Nikon Corporation | Exposure apparatus and device fabrication method |
US8537331B2 (en) | 2003-04-07 | 2013-09-17 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
US8111375B2 (en) | 2003-04-07 | 2012-02-07 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
US8102501B2 (en) | 2003-04-09 | 2012-01-24 | Nikon Corporation | Immersion lithography fluid control system using an electric or magnetic field generator |
US9618852B2 (en) | 2003-04-09 | 2017-04-11 | Nikon Corporation | Immersion lithography fluid control system regulating flow velocity of gas based on position of gas outlets |
US8797500B2 (en) | 2003-04-09 | 2014-08-05 | Nikon Corporation | Immersion lithography fluid control system changing flow velocity of gas outlets based on motion of a surface |
US8497973B2 (en) | 2003-04-09 | 2013-07-30 | Nikon Corporation | Immersion lithography fluid control system regulating gas velocity based on contact angle |
US7929110B2 (en) | 2003-04-10 | 2011-04-19 | Nikon Corporation | Environmental system including a transport region for an immersion lithography apparatus |
US9244362B2 (en) | 2003-04-10 | 2016-01-26 | Nikon Corporation | Environmental system including vacuum scavenge for an immersion lithography apparatus |
US8089610B2 (en) | 2003-04-10 | 2012-01-03 | Nikon Corporation | Environmental system including vacuum scavenge for an immersion lithography apparatus |
US9977350B2 (en) | 2003-04-10 | 2018-05-22 | Nikon Corporation | Environmental system including vacuum scavenge for an immersion lithography apparatus |
US9910370B2 (en) | 2003-04-10 | 2018-03-06 | Nikon Corporation | Environmental system including a transport region for an immersion lithography apparatus |
US8830443B2 (en) | 2003-04-10 | 2014-09-09 | Nikon Corporation | Environmental system including a transport region for an immersion lithography apparatus |
US8836914B2 (en) | 2003-04-10 | 2014-09-16 | Nikon Corporation | Environmental system including vacuum scavenge for an immersion lithography apparatus |
US9658537B2 (en) | 2003-04-10 | 2017-05-23 | Nikon Corporation | Environmental system including vacuum scavenge for an immersion lithography apparatus |
US9632427B2 (en) | 2003-04-10 | 2017-04-25 | Nikon Corporation | Environmental system including a transport region for an immersion lithography apparatus |
US8243253B2 (en) | 2003-04-10 | 2012-08-14 | Nikon Corporation | Lyophobic run-off path to collect liquid for an immersion lithography apparatus |
US7969552B2 (en) | 2003-04-10 | 2011-06-28 | Nikon Corporation | Environmental system including a transport region for an immersion lithography apparatus |
US7965376B2 (en) | 2003-04-10 | 2011-06-21 | Nikon Corporation | Environmental system including a transport region for an immersion lithography apparatus |
US7929111B2 (en) | 2003-04-10 | 2011-04-19 | Nikon Corporation | Environmental system including a transport region for an immersion lithography apparatus |
US8456610B2 (en) | 2003-04-10 | 2013-06-04 | Nikon Corporation | Environmental system including vacuum scavenge for an immersion lithography apparatus |
US9007561B2 (en) | 2003-04-10 | 2015-04-14 | Nikon Corporation | Immersion lithography apparatus with hydrophilic region encircling hydrophobic region which encircles substrate support |
US9244363B2 (en) | 2003-04-10 | 2016-01-26 | Nikon Corporation | Environmental system including a transport region for an immersion lithography apparatus |
US8810768B2 (en) | 2003-04-10 | 2014-08-19 | Nikon Corporation | Environmental system including vacuum scavenge for an immersion lithography apparatus |
US8035795B2 (en) | 2003-04-11 | 2011-10-11 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the protection lens during wafer exchange in an immersion lithography machine |
US8848168B2 (en) | 2003-04-11 | 2014-09-30 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US10185222B2 (en) | 2003-04-11 | 2019-01-22 | Nikon Corporation | Liquid jet and recovery system for immersion lithography |
US8269944B2 (en) | 2003-04-11 | 2012-09-18 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US9081298B2 (en) | 2003-04-11 | 2015-07-14 | Nikon Corporation | Apparatus for maintaining immersion fluid in the gap under the projection lens during wafer exchange using a co-planar member in an immersion lithography machine |
US8634057B2 (en) | 2003-04-11 | 2014-01-21 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US8879047B2 (en) | 2003-04-11 | 2014-11-04 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens using a pad member or second stage during wafer exchange in an immersion lithography machine |
US7932989B2 (en) | 2003-04-11 | 2011-04-26 | Nikon Corporation | Liquid jet and recovery system for immersion lithography |
US9304409B2 (en) | 2003-04-11 | 2016-04-05 | Nikon Corporation | Liquid jet and recovery system for immersion lithography |
US8269946B2 (en) | 2003-04-11 | 2012-09-18 | Nikon Corporation | Cleanup method for optics in immersion lithography supplying cleaning liquid at different times than immersion liquid |
US8488100B2 (en) | 2003-04-11 | 2013-07-16 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US8493545B2 (en) | 2003-04-11 | 2013-07-23 | Nikon Corporation | Cleanup method for optics in immersion lithography supplying cleaning liquid onto a surface of object below optical element, liquid supply port and liquid recovery port |
US9329493B2 (en) | 2003-04-11 | 2016-05-03 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US8351019B2 (en) | 2003-04-11 | 2013-01-08 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US9500960B2 (en) | 2003-04-11 | 2016-11-22 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US8514367B2 (en) | 2003-04-11 | 2013-08-20 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US8848166B2 (en) | 2003-04-11 | 2014-09-30 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US9785057B2 (en) | 2003-04-11 | 2017-10-10 | Nikon Corporation | Liquid jet and recovery system for immersion lithography |
US8610875B2 (en) | 2003-04-11 | 2013-12-17 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US9946163B2 (en) | 2003-04-11 | 2018-04-17 | Nikon Corporation | Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine |
US9958786B2 (en) | 2003-04-11 | 2018-05-01 | Nikon Corporation | Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer |
US8670104B2 (en) | 2003-04-11 | 2014-03-11 | Nikon Corporation | Cleanup method for optics in immersion lithography with cleaning liquid opposed by a surface of object |
US8670103B2 (en) | 2003-04-11 | 2014-03-11 | Nikon Corporation | Cleanup method for optics in immersion lithography using bubbles |
US8085381B2 (en) | 2003-04-11 | 2011-12-27 | Nikon Corporation | Cleanup method for optics in immersion lithography using sonic device |
US8059258B2 (en) | 2003-04-11 | 2011-11-15 | Nikon Corporation | Liquid jet and recovery system for immersion lithography |
US8094379B2 (en) | 2003-04-17 | 2012-01-10 | Nikon Corporation | Optical arrangement of autofocus elements for use with immersion lithography |
US9086636B2 (en) | 2003-04-17 | 2015-07-21 | Nikon Corporation | Optical arrangement of autofocus elements for use with immersion lithography |
US8599488B2 (en) | 2003-04-17 | 2013-12-03 | Nikon Corporation | Optical arrangement of autofocus elements for use with immersion lithography |
US8953250B2 (en) | 2003-04-17 | 2015-02-10 | Nikon Corporation | Optical arrangement of autofocus elements for use with immersion lithography |
US8810915B2 (en) | 2003-04-17 | 2014-08-19 | Nikon Corporation | Optical arrangement of autofocus elements for use with immersion lithography |
US8018657B2 (en) | 2003-04-17 | 2011-09-13 | Nikon Corporation | Optical arrangement of autofocus elements for use with immersion lithography |
US10466595B2 (en) | 2003-05-13 | 2019-11-05 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7936444B2 (en) | 2003-05-13 | 2011-05-03 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8724084B2 (en) | 2003-05-13 | 2014-05-13 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8724083B2 (en) | 2003-05-13 | 2014-05-13 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9798246B2 (en) | 2003-05-13 | 2017-10-24 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8964164B2 (en) | 2003-05-13 | 2015-02-24 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8472001B2 (en) | 2003-05-23 | 2013-06-25 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing device |
US8134682B2 (en) | 2003-05-23 | 2012-03-13 | Nikon Corporation | Exposure apparatus and method for producing device |
US9285684B2 (en) | 2003-05-23 | 2016-03-15 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing device |
US9933708B2 (en) | 2003-05-23 | 2018-04-03 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing device |
US9304392B2 (en) | 2003-05-23 | 2016-04-05 | Nikon Corporation | Exposure apparatus and method for producing device |
US9939739B2 (en) | 2003-05-23 | 2018-04-10 | Nikon Corporation | Exposure apparatus and method for producing device |
US9354525B2 (en) | 2003-05-23 | 2016-05-31 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing device |
US8780327B2 (en) | 2003-05-23 | 2014-07-15 | Nikon Corporation | Exposure apparatus and method for producing device |
US9977336B2 (en) | 2003-05-23 | 2018-05-22 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing device |
US8760617B2 (en) | 2003-05-23 | 2014-06-24 | Nikon Corporation | Exposure apparatus and method for producing device |
US8488108B2 (en) | 2003-05-23 | 2013-07-16 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing device |
US8384877B2 (en) | 2003-05-23 | 2013-02-26 | Nikon Corporation | Exposure apparatus and method for producing device |
US8174668B2 (en) | 2003-05-23 | 2012-05-08 | Nikon Corporation | Exposure apparatus and method for producing device |
US8169592B2 (en) | 2003-05-23 | 2012-05-01 | Nikon Corporation | Exposure apparatus and method for producing device |
US8072576B2 (en) | 2003-05-23 | 2011-12-06 | Nikon Corporation | Exposure apparatus and method for producing device |
US8125612B2 (en) | 2003-05-23 | 2012-02-28 | Nikon Corporation | Exposure apparatus and method for producing device |
US8711324B2 (en) | 2003-05-28 | 2014-04-29 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing device |
US10082739B2 (en) | 2003-05-28 | 2018-09-25 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing device |
US9488920B2 (en) | 2003-05-28 | 2016-11-08 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing device |
US8233133B2 (en) | 2003-05-28 | 2012-07-31 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing device |
US8421992B2 (en) | 2003-05-28 | 2013-04-16 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing device |
US9541843B2 (en) | 2003-06-09 | 2017-01-10 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method involving a sensor detecting a radiation beam through liquid |
US9152058B2 (en) | 2003-06-09 | 2015-10-06 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method involving a member and a fluid opening |
US8482845B2 (en) | 2003-06-09 | 2013-07-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8154708B2 (en) | 2003-06-09 | 2012-04-10 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9081299B2 (en) | 2003-06-09 | 2015-07-14 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method involving removal of liquid entering a gap |
US10180629B2 (en) | 2003-06-09 | 2019-01-15 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10678139B2 (en) | 2003-06-09 | 2020-06-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9964858B2 (en) | 2003-06-11 | 2018-05-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9110389B2 (en) | 2003-06-11 | 2015-08-18 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8363208B2 (en) | 2003-06-11 | 2013-01-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7684008B2 (en) | 2003-06-11 | 2010-03-23 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8208117B2 (en) | 2003-06-13 | 2012-06-26 | Nikon Corporation | Exposure method, substrate stage, exposure apparatus, and device manufacturing method |
US9019467B2 (en) | 2003-06-13 | 2015-04-28 | Nikon Corporation | Exposure method, substrate stage, exposure apparatus, and device manufacturing method |
US8040491B2 (en) | 2003-06-13 | 2011-10-18 | Nikon Corporation | Exposure method, substrate stage, exposure apparatus, and device manufacturing method |
US8384880B2 (en) | 2003-06-13 | 2013-02-26 | Nikon Corporation | Exposure method, substrate stage, exposure apparatus, and device manufacturing method |
US9268237B2 (en) | 2003-06-13 | 2016-02-23 | Nikon Corporation | Exposure method, substrate stage, exposure apparatus, and device manufacturing method |
US9846371B2 (en) | 2003-06-13 | 2017-12-19 | Nikon Corporation | Exposure method, substrate stage, exposure apparatus, and device manufacturing method |
US9551943B2 (en) | 2003-06-19 | 2017-01-24 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US8436979B2 (en) | 2003-06-19 | 2013-05-07 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US9274437B2 (en) | 2003-06-19 | 2016-03-01 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US8692976B2 (en) | 2003-06-19 | 2014-04-08 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US10191388B2 (en) | 2003-06-19 | 2019-01-29 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8717537B2 (en) | 2003-06-19 | 2014-05-06 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8724085B2 (en) | 2003-06-19 | 2014-05-13 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8319941B2 (en) | 2003-06-19 | 2012-11-27 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US9025129B2 (en) | 2003-06-19 | 2015-05-05 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US10007188B2 (en) | 2003-06-19 | 2018-06-26 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US8767177B2 (en) | 2003-06-19 | 2014-07-01 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US9810995B2 (en) | 2003-06-19 | 2017-11-07 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US9001307B2 (en) | 2003-06-19 | 2015-04-07 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US9019473B2 (en) | 2003-06-19 | 2015-04-28 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US8436978B2 (en) | 2003-06-19 | 2013-05-07 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8830445B2 (en) | 2003-06-19 | 2014-09-09 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US7812925B2 (en) | 2003-06-19 | 2010-10-12 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8027027B2 (en) | 2003-06-19 | 2011-09-27 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8018575B2 (en) | 2003-06-19 | 2011-09-13 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8705001B2 (en) | 2003-06-19 | 2014-04-22 | Nikon Corporation | Exposure apparatus, and device manufacturing method |
US8508718B2 (en) | 2003-07-08 | 2013-08-13 | Nikon Corporation | Wafer table having sensor for immersion lithography |
US9500959B2 (en) | 2003-07-09 | 2016-11-22 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US8879043B2 (en) | 2003-07-09 | 2014-11-04 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
US8120751B2 (en) | 2003-07-09 | 2012-02-21 | Nikon Corporation | Coupling apparatus, exposure apparatus, and device fabricating method |
US8797505B2 (en) | 2003-07-09 | 2014-08-05 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US9097988B2 (en) | 2003-07-09 | 2015-08-04 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US7855777B2 (en) | 2003-07-09 | 2010-12-21 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
US8218127B2 (en) | 2003-07-09 | 2012-07-10 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US9977352B2 (en) | 2003-07-09 | 2018-05-22 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US8228484B2 (en) | 2003-07-09 | 2012-07-24 | Nikon Corporation | Coupling apparatus, exposure apparatus, and device fabricating method |
US7868997B2 (en) | 2003-07-25 | 2011-01-11 | Nikon Corporation | Projection optical system inspecting method and inspection apparatus, and a projection optical system manufacturing method |
US7843550B2 (en) | 2003-07-25 | 2010-11-30 | Nikon Corporation | Projection optical system inspecting method and inspection apparatus, and a projection optical system manufacturing method |
US9760026B2 (en) | 2003-07-28 | 2017-09-12 | Nikon Corporation | Exposure apparatus, method for producing device, and method for controlling exposure apparatus |
US9639006B2 (en) | 2003-07-28 | 2017-05-02 | Asml Netherlands B.V. | Lithographic projection apparatus and device manufacturing method |
US8218125B2 (en) | 2003-07-28 | 2012-07-10 | Asml Netherlands B.V. | Immersion lithographic apparatus with a projection system having an isolated or movable part |
US8749757B2 (en) | 2003-07-28 | 2014-06-10 | Nikon Corporation | Exposure apparatus, method for producing device, and method for controlling exposure apparatus |
US8964163B2 (en) | 2003-07-28 | 2015-02-24 | Asml Netherlands B.V. | Immersion lithographic apparatus and device manufacturing method with a projection system having a part movable relative to another part |
US8451424B2 (en) | 2003-07-28 | 2013-05-28 | Nikon Corporation | Exposure apparatus, method for producing device, and method for controlling exposure apparatus |
US10185232B2 (en) | 2003-07-28 | 2019-01-22 | Nikon Corporation | Exposure apparatus, method for producing device, and method for controlling exposure apparatus |
US9494871B2 (en) | 2003-07-28 | 2016-11-15 | Nikon Corporation | Exposure apparatus, method for producing device, and method for controlling exposure apparatus |
US8937704B2 (en) | 2003-07-31 | 2015-01-20 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method involving a resistivity sensor |
US7779781B2 (en) | 2003-07-31 | 2010-08-24 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8947637B2 (en) | 2003-08-29 | 2015-02-03 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10025204B2 (en) | 2003-08-29 | 2018-07-17 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10514618B2 (en) | 2003-08-29 | 2019-12-24 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7907255B2 (en) | 2003-08-29 | 2011-03-15 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9568841B2 (en) | 2003-08-29 | 2017-02-14 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9223224B2 (en) | 2003-08-29 | 2015-12-29 | Nikon Corporation | Exposure apparatus with component from which liquid is protected and/or removed and device fabricating method |
US9316919B2 (en) | 2003-08-29 | 2016-04-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8035798B2 (en) | 2003-08-29 | 2011-10-11 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US11003096B2 (en) | 2003-08-29 | 2021-05-11 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8520187B2 (en) | 2003-09-03 | 2013-08-27 | Nikon Corporation | Apparatus and method for providing fluid for immersion lithography |
US9817319B2 (en) | 2003-09-03 | 2017-11-14 | Nikon Corporation | Apparatus and method for providing fluid for immersion lithography |
US10203610B2 (en) | 2003-09-03 | 2019-02-12 | Nikon Corporation | Apparatus and method for providing fluid for immersion lithography |
US8896807B2 (en) | 2003-09-03 | 2014-11-25 | Nikon Corporation | Apparatus and method for providing fluid for immersion lithography |
US9547243B2 (en) | 2003-09-03 | 2017-01-17 | Nikon Corporation | Apparatus and method for providing fluid for immersion lithography |
US7924402B2 (en) | 2003-09-19 | 2011-04-12 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US8139198B2 (en) | 2003-09-29 | 2012-03-20 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US10025194B2 (en) | 2003-09-29 | 2018-07-17 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US9513558B2 (en) | 2003-09-29 | 2016-12-06 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US8749759B2 (en) | 2003-09-29 | 2014-06-10 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US8039807B2 (en) | 2003-09-29 | 2011-10-18 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US8305552B2 (en) | 2003-09-29 | 2012-11-06 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US8755025B2 (en) | 2003-10-08 | 2014-06-17 | Nikon Corporation | Substrate transport apparatus and method, exposure apparatus and exposure method, and device fabricating method |
US9097986B2 (en) | 2003-10-08 | 2015-08-04 | Nikon Corporation | Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure method, device manufacturing method |
US9110381B2 (en) | 2003-10-08 | 2015-08-18 | Nikon Corporation | Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure method, device manufacturing method |
US8107055B2 (en) | 2003-10-08 | 2012-01-31 | Zao Nikon Co., Ltd. | Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure method, device manufacturing method |
US7995186B2 (en) | 2003-10-08 | 2011-08-09 | Zao Nikon Co., Ltd. | Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure method, device manufacturing method |
US7898645B2 (en) | 2003-10-08 | 2011-03-01 | Zao Nikon Co., Ltd. | Substrate transport apparatus and method, exposure apparatus and exposure method, and device fabricating method |
US8345216B2 (en) | 2003-10-08 | 2013-01-01 | Nikon Corporation | Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure method, device manufacturing method |
US9383656B2 (en) | 2003-10-09 | 2016-07-05 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US10209623B2 (en) | 2003-10-09 | 2019-02-19 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US8130361B2 (en) | 2003-10-09 | 2012-03-06 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US9063438B2 (en) | 2003-10-09 | 2015-06-23 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US8638418B2 (en) | 2003-10-28 | 2014-01-28 | Asml Netherlands B.V. | Lithographic apparatus |
US8860923B2 (en) | 2003-10-28 | 2014-10-14 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7868998B2 (en) | 2003-10-28 | 2011-01-11 | Asml Netherlands B.V. | Lithographic apparatus |
US10527955B2 (en) | 2003-10-28 | 2020-01-07 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8542343B2 (en) | 2003-10-28 | 2013-09-24 | Asml Netherlands B.V. | Lithographic apparatus |
US10248034B2 (en) | 2003-10-28 | 2019-04-02 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8542344B2 (en) | 2003-10-28 | 2013-09-24 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9482962B2 (en) | 2003-10-28 | 2016-11-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9134622B2 (en) | 2003-11-14 | 2015-09-15 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10345712B2 (en) | 2003-11-14 | 2019-07-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9134623B2 (en) | 2003-11-14 | 2015-09-15 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8634056B2 (en) | 2003-11-14 | 2014-01-21 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9952515B2 (en) | 2003-11-14 | 2018-04-24 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8547519B2 (en) | 2003-11-14 | 2013-10-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9182685B2 (en) | 2003-12-03 | 2015-11-10 | Nikon Corporation | Exposure apparatus, exposure method, method for producing device, and optical part |
US9019469B2 (en) | 2003-12-03 | 2015-04-28 | Nikon Corporation | Exposure apparatus, exposure method, method for producing device, and optical part |
US10088760B2 (en) | 2003-12-03 | 2018-10-02 | Nikon Corporation | Exposure apparatus, exposure method, method for producing device, and optical part |
US8054447B2 (en) | 2003-12-03 | 2011-11-08 | Nikon Corporation | Exposure apparatus, exposure method, method for producing device, and optical part |
US7385764B2 (en) | 2003-12-15 | 2008-06-10 | Carl Zeiss Smt Ag | Objectives as a microlithography projection objective with at least one liquid lens |
US7982857B2 (en) | 2003-12-15 | 2011-07-19 | Nikon Corporation | Stage apparatus, exposure apparatus, and exposure method with recovery device having lyophilic portion |
US7428105B2 (en) | 2003-12-15 | 2008-09-23 | Carl Zeiss Smt Ag | Objectives as a microlithography projection objective with at least one liquid lens |
US7474469B2 (en) | 2003-12-15 | 2009-01-06 | Carl Zeiss Smt Ag | Arrangement of optical elements in a microlithographic projection exposure apparatus |
US9798245B2 (en) | 2003-12-15 | 2017-10-24 | Nikon Corporation | Exposure apparatus, and exposure method, with recovery device to recover liquid leaked from between substrate and member |
US9436095B2 (en) | 2004-01-20 | 2016-09-06 | Carl Zeiss Smt Gmbh | Exposure apparatus and measuring device for a projection lens |
US10345710B2 (en) | 2004-01-20 | 2019-07-09 | Carl Zeiss Smt Gmbh | Microlithographic projection exposure apparatus and measuring device for a projection lens |
US8330935B2 (en) | 2004-01-20 | 2012-12-11 | Carl Zeiss Smt Gmbh | Exposure apparatus and measuring device for a projection lens |
US9632431B2 (en) | 2004-02-02 | 2017-04-25 | Nikon Corporation | Lithographic apparatus and method having substrate and sensor tables |
US10007196B2 (en) | 2004-02-02 | 2018-06-26 | Nikon Corporation | Lithographic apparatus and method having substrate and sensor tables |
US9684248B2 (en) | 2004-02-02 | 2017-06-20 | Nikon Corporation | Lithographic apparatus having substrate table and sensor table to measure a patterned beam |
US8547528B2 (en) | 2004-02-02 | 2013-10-01 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US9665016B2 (en) | 2004-02-02 | 2017-05-30 | Nikon Corporation | Lithographic apparatus and method having substrate table and sensor table to hold immersion liquid |
US8553203B2 (en) | 2004-02-02 | 2013-10-08 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US8045136B2 (en) | 2004-02-02 | 2011-10-25 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US8711328B2 (en) | 2004-02-02 | 2014-04-29 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US8736808B2 (en) | 2004-02-02 | 2014-05-27 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US10139737B2 (en) | 2004-02-02 | 2018-11-27 | Nikon Corporation | Lithographic apparatus and method having substrate and sensor tables |
US8705002B2 (en) | 2004-02-02 | 2014-04-22 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US8724079B2 (en) | 2004-02-02 | 2014-05-13 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
US10151983B2 (en) | 2004-02-03 | 2018-12-11 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US9041906B2 (en) | 2004-02-03 | 2015-05-26 | Nikon Corporation | Immersion exposure apparatus and method that detects liquid adhered to rear surface of substrate |
US8767168B2 (en) | 2004-02-03 | 2014-07-01 | Nikon Corporation | Immersion exposure apparatus and method that detects residual liquid on substrate held by substrate table after exposure |
US8488101B2 (en) | 2004-02-03 | 2013-07-16 | Nikon Corporation | Immersion exposure apparatus and method that detects residual liquid on substrate held by substrate table on way from exposure position to unload position |
US7990517B2 (en) | 2004-02-03 | 2011-08-02 | Nikon Corporation | Immersion exposure apparatus and device manufacturing method with residual liquid detector |
US7990516B2 (en) | 2004-02-03 | 2011-08-02 | Nikon Corporation | Immersion exposure apparatus and device manufacturing method with liquid detection apparatus |
US7719658B2 (en) | 2004-02-13 | 2010-05-18 | Carl Zeiss Smt Ag | Imaging system for a microlithographical projection light system |
US8634060B2 (en) | 2004-03-16 | 2014-01-21 | Carl Zeiss Smt Gmbh | Method for a multiple exposure, microlithography projection exposure installation and a projection system |
US7875418B2 (en) | 2004-03-16 | 2011-01-25 | Carl Zeiss Smt Ag | Method for a multiple exposure, microlithography projection exposure installation and a projection system |
US8111373B2 (en) | 2004-03-25 | 2012-02-07 | Nikon Corporation | Exposure apparatus and device fabrication method |
US8411248B2 (en) | 2004-03-25 | 2013-04-02 | Nikon Corporation | Exposure apparatus and device fabrication method |
US9411248B2 (en) | 2004-03-25 | 2016-08-09 | Nikon Corporation | Exposure apparatus and device fabrication method |
US8169590B2 (en) | 2004-03-25 | 2012-05-01 | Nikon Corporation | Exposure apparatus and device fabrication method |
US10126661B2 (en) | 2004-03-25 | 2018-11-13 | Nikon Corporation | Exposure apparatus and device fabrication method |
US9046790B2 (en) | 2004-03-25 | 2015-06-02 | Nikon Corporation | Exposure apparatus and device fabrication method |
US9285683B2 (en) | 2004-05-04 | 2016-03-15 | Nikon Corporation | Apparatus and method for providing fluid for immersion lithography |
US8054448B2 (en) | 2004-05-04 | 2011-11-08 | Nikon Corporation | Apparatus and method for providing fluid for immersion lithography |
US10761438B2 (en) | 2004-05-18 | 2020-09-01 | Asml Netherlands B.V. | Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets |
US9623436B2 (en) | 2004-05-18 | 2017-04-18 | Asml Netherlands B.V. | Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets |
US8638415B2 (en) | 2004-05-18 | 2014-01-28 | Asml Netherlands B.V. | Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets |
US8525971B2 (en) | 2004-06-09 | 2013-09-03 | Nikon Corporation | Lithographic apparatus with cleaning of substrate table |
US8520184B2 (en) | 2004-06-09 | 2013-08-27 | Nikon Corporation | Immersion exposure apparatus and device manufacturing method with measuring device |
US8704997B2 (en) | 2004-06-09 | 2014-04-22 | Nikon Corporation | Immersion lithographic apparatus and method for rinsing immersion space before exposure |
US9645505B2 (en) | 2004-06-09 | 2017-05-09 | Nikon Corporation | Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid |
US8319939B2 (en) | 2004-07-07 | 2012-11-27 | Asml Netherlands B.V. | Immersion lithographic apparatus and device manufacturing method detecting residual liquid |
US10338478B2 (en) | 2004-07-07 | 2019-07-02 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10739684B2 (en) | 2004-07-07 | 2020-08-11 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8305553B2 (en) | 2004-08-18 | 2012-11-06 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US9904185B2 (en) | 2004-08-19 | 2018-02-27 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8446563B2 (en) | 2004-08-19 | 2013-05-21 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10331047B2 (en) | 2004-08-19 | 2019-06-25 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8755028B2 (en) | 2004-08-19 | 2014-06-17 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10705439B2 (en) | 2004-08-19 | 2020-07-07 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9097992B2 (en) | 2004-08-19 | 2015-08-04 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9488923B2 (en) | 2004-08-19 | 2016-11-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9507278B2 (en) | 2004-08-19 | 2016-11-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7701550B2 (en) | 2004-08-19 | 2010-04-20 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9746788B2 (en) | 2004-08-19 | 2017-08-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8031325B2 (en) | 2004-08-19 | 2011-10-04 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10599054B2 (en) | 2004-08-19 | 2020-03-24 | Asml Holding N.V. | Lithographic apparatus and device manufacturing method |
WO2006047127A1 (en) * | 2004-10-21 | 2006-05-04 | Saint-Gobain Ceramics & Plastics, Inc. | Optical lens elements, semiconductor lithographic patterning apparatus, and methods for processing semiconductor devices |
US8045137B2 (en) | 2004-12-07 | 2011-10-25 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10509326B2 (en) | 2004-12-20 | 2019-12-17 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8115899B2 (en) | 2004-12-20 | 2012-02-14 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9703210B2 (en) | 2004-12-20 | 2017-07-11 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8941811B2 (en) | 2004-12-20 | 2015-01-27 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8638419B2 (en) | 2004-12-20 | 2014-01-28 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7880860B2 (en) | 2004-12-20 | 2011-02-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9746781B2 (en) | 2005-01-31 | 2017-08-29 | Nikon Corporation | Exposure apparatus and method for producing device |
US8692973B2 (en) | 2005-01-31 | 2014-04-08 | Nikon Corporation | Exposure apparatus and method for producing device |
EP1851574A1 (en) * | 2005-02-25 | 2007-11-07 | Carl Zeiss SMT AG | Optical system, in particular objective or illumination system for a microlithographic projection exposure apparatus |
US8629418B2 (en) | 2005-02-28 | 2014-01-14 | Asml Netherlands B.V. | Lithographic apparatus and sensor therefor |
US7679806B2 (en) | 2005-03-08 | 2010-03-16 | Schott Ag | Method for making optical elements for microlithography, the lens systems obtained by the method and their uses |
DE102005010655A1 (en) * | 2005-03-08 | 2006-09-14 | Schott Ag | Method to produce optical parts for microlithography, associated lens systems and its application uses optical garnets, cubic spinels, cubic perovskites, and cubic M (II) - M (Iv) oxides |
DE102005010655A8 (en) * | 2005-03-08 | 2007-02-01 | Schott Ag | Method for the production of optical elements for microlithography, lens systems obtainable therewith and their use |
USRE43576E1 (en) | 2005-04-08 | 2012-08-14 | Asml Netherlands B.V. | Dual stage lithographic apparatus and device manufacturing method |
USRE47943E1 (en) | 2005-04-08 | 2020-04-14 | Asml Netherlands B.V. | Dual stage lithographic apparatus and device manufacturing method |
USRE44446E1 (en) | 2005-04-08 | 2013-08-20 | Asml Netherlands B.V. | Dual stage lithographic apparatus and device manufacturing method |
USRE46933E1 (en) | 2005-04-08 | 2018-07-03 | Asml Netherlands B.V. | Dual stage lithographic apparatus and device manufacturing method |
USRE45576E1 (en) | 2005-04-08 | 2015-06-23 | Asml Netherlands B.V. | Dual stage lithographic apparatus and device manufacturing method |
US7679721B2 (en) | 2005-04-19 | 2010-03-16 | Carl Zeiss Smt Ag | Projection objective of a microlithographic projection exposure apparatus and method for its production |
WO2007034838A1 (en) | 2005-09-21 | 2007-03-29 | Nikon Corporation | Exposure device, exposure method, and device fabrication method |
GB2431670A (en) * | 2005-10-25 | 2007-05-02 | Zeiss Carl Smt Ag | Protective coating with windows for protection of optical element that is soluble in immersion liquid. |
WO2007052659A1 (en) | 2005-11-01 | 2007-05-10 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
WO2007055199A1 (en) | 2005-11-09 | 2007-05-18 | Nikon Corporation | Exposure apparatus and method, and method for manufacturing device |
WO2007055237A1 (en) | 2005-11-09 | 2007-05-18 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
US8345217B2 (en) | 2005-11-14 | 2013-01-01 | Nikon Corporation | Liquid recovery member, exposure apparatus, exposing method, and device fabricating method |
WO2007055373A1 (en) | 2005-11-14 | 2007-05-18 | Nikon Corporation | Liquid recovery member, exposure apparatus, exposure method, and device production method |
WO2007058354A1 (en) | 2005-11-21 | 2007-05-24 | Nikon Corporation | Exposure method and device manufacturing method using the same, exposure apparatus, and substrate treatment method and apparatus |
US7803516B2 (en) | 2005-11-21 | 2010-09-28 | Nikon Corporation | Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus |
US7782442B2 (en) | 2005-12-06 | 2010-08-24 | Nikon Corporation | Exposure apparatus, exposure method, projection optical system and device producing method |
US8089615B2 (en) | 2005-12-08 | 2012-01-03 | Nikon Corporation | Substrate holding apparatus, exposure apparatus, exposing method, and device fabricating method |
WO2007066758A1 (en) | 2005-12-08 | 2007-06-14 | Nikon Corporation | Substrate holding device, exposure device, exposure method, and device fabrication method |
EP3327759A1 (en) | 2005-12-08 | 2018-05-30 | Nikon Corporation | Substrate holding apparatus, exposure apparatus, exposing method, and device fabricating method |
EP2768016A1 (en) | 2005-12-08 | 2014-08-20 | Nikon Corporation | Exposure apparatus and method |
WO2007077875A1 (en) | 2005-12-28 | 2007-07-12 | Nikon Corporation | Exposure apparatus, exposure method, and device production method |
US11669021B2 (en) | 2005-12-30 | 2023-06-06 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US11275316B2 (en) | 2005-12-30 | 2022-03-15 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10222711B2 (en) | 2005-12-30 | 2019-03-05 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10761433B2 (en) | 2005-12-30 | 2020-09-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9851644B2 (en) | 2005-12-30 | 2017-12-26 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
WO2007094470A1 (en) | 2006-02-16 | 2007-08-23 | Nikon Corporation | Exposure apparatus, exposure method and method for manufacturing device |
US8027020B2 (en) | 2006-02-16 | 2011-09-27 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US8390779B2 (en) | 2006-02-16 | 2013-03-05 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US7714982B2 (en) | 2006-02-16 | 2010-05-11 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
WO2007094407A1 (en) | 2006-02-16 | 2007-08-23 | Nikon Corporation | Exposure apparatus, exposing method, and device manufacturing method |
WO2007094431A1 (en) | 2006-02-16 | 2007-08-23 | Nikon Corporation | Exposure apparatus, exposing method, and device manufacturing method |
US8908145B2 (en) | 2006-02-21 | 2014-12-09 | Nikon Corporation | Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method |
US9989859B2 (en) | 2006-02-21 | 2018-06-05 | Nikon Corporation | Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method |
US9690214B2 (en) | 2006-02-21 | 2017-06-27 | Nikon Corporation | Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method |
US10139738B2 (en) | 2006-02-21 | 2018-11-27 | Nikon Corporation | Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method |
EP3115844A1 (en) | 2006-02-21 | 2017-01-11 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
US9423705B2 (en) | 2006-02-21 | 2016-08-23 | Nikon Corporation | Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method |
US10345121B2 (en) | 2006-02-21 | 2019-07-09 | Nikon Corporation | Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method |
US9329060B2 (en) | 2006-02-21 | 2016-05-03 | Nikon Corporation | Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method |
WO2007097466A1 (en) | 2006-02-21 | 2007-08-30 | Nikon Corporation | Measuring device and method, processing device and method, pattern forming device and method, exposing device and method, and device fabricating method |
WO2007097380A1 (en) | 2006-02-21 | 2007-08-30 | Nikon Corporation | Pattern forming apparatus, pattern forming method, mobile object driving system, mobile body driving method, exposure apparatus, exposure method and device manufacturing method |
EP2813893A1 (en) | 2006-02-21 | 2014-12-17 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
US10088343B2 (en) | 2006-02-21 | 2018-10-02 | Nikon Corporation | Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method |
US8054472B2 (en) | 2006-02-21 | 2011-11-08 | Nikon Corporation | Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method |
US8027021B2 (en) | 2006-02-21 | 2011-09-27 | Nikon Corporation | Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method |
US10088759B2 (en) | 2006-02-21 | 2018-10-02 | Nikon Corporation | Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method |
US10132658B2 (en) | 2006-02-21 | 2018-11-20 | Nikon Corporation | Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method |
US8854632B2 (en) | 2006-02-21 | 2014-10-07 | Nikon Corporation | Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method |
EP3327507A1 (en) | 2006-02-21 | 2018-05-30 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
US9103700B2 (en) | 2006-02-21 | 2015-08-11 | Nikon Corporation | Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method |
US9857697B2 (en) | 2006-02-21 | 2018-01-02 | Nikon Corporation | Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method |
EP3267258A1 (en) | 2006-02-21 | 2018-01-10 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
EP3267259A1 (en) | 2006-02-21 | 2018-01-10 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
EP3270226A1 (en) | 2006-02-21 | 2018-01-17 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
EP3279739A1 (en) | 2006-02-21 | 2018-02-07 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
US10409173B2 (en) | 2006-02-21 | 2019-09-10 | Nikon Corporation | Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method |
US10012913B2 (en) | 2006-02-21 | 2018-07-03 | Nikon Corporation | Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method |
EP3293577A1 (en) | 2006-02-21 | 2018-03-14 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
US10234773B2 (en) | 2006-02-21 | 2019-03-19 | Nikon Corporation | Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method |
US7916270B2 (en) | 2006-03-03 | 2011-03-29 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
WO2007100087A1 (en) | 2006-03-03 | 2007-09-07 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US8035800B2 (en) | 2006-03-13 | 2011-10-11 | Nikon Corporation | Exposure apparatus, maintenance method, exposure method, and method for producing device |
WO2007108414A1 (en) | 2006-03-17 | 2007-09-27 | Nikon Corporation | Exposure apparatus and device production method |
WO2007108415A1 (en) | 2006-03-17 | 2007-09-27 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US8982322B2 (en) | 2006-03-17 | 2015-03-17 | Nikon Corporation | Exposure apparatus and device manufacturing method |
WO2007119501A1 (en) | 2006-03-23 | 2007-10-25 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
US8125613B2 (en) | 2006-04-21 | 2012-02-28 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
US8902401B2 (en) | 2006-05-09 | 2014-12-02 | Carl Zeiss Smt Gmbh | Optical imaging device with thermal attenuation |
US9810996B2 (en) | 2006-05-09 | 2017-11-07 | Carl Zeiss Smt Gmbh | Optical imaging device with thermal attenuation |
US8363206B2 (en) | 2006-05-09 | 2013-01-29 | Carl Zeiss Smt Gmbh | Optical imaging device with thermal attenuation |
WO2007129753A1 (en) | 2006-05-10 | 2007-11-15 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US8477283B2 (en) | 2006-05-10 | 2013-07-02 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US8514366B2 (en) | 2006-05-18 | 2013-08-20 | Nikon Corporation | Exposure method and apparatus, maintenance method and device manufacturing method |
WO2007136052A1 (en) | 2006-05-22 | 2007-11-29 | Nikon Corporation | Exposure method and apparatus, maintenance method, and device manufacturing method |
WO2007136089A1 (en) | 2006-05-23 | 2007-11-29 | Nikon Corporation | Maintenance method, exposure method and apparatus, and device manufacturing method |
WO2007138834A1 (en) | 2006-05-31 | 2007-12-06 | Nikon Corporation | Exposure apparatus and exposure method |
WO2007144193A1 (en) * | 2006-06-16 | 2007-12-21 | Carl Zeiss Smt Ag | Projection objective of a microlithographic projection exposure apparatus |
US8325426B2 (en) | 2006-06-16 | 2012-12-04 | Carl Zeiss Smt Gmbh | Projection objective of a microlithographic projection exposure apparatus |
US7982969B2 (en) | 2006-06-16 | 2011-07-19 | Carl Zeiss Smt Gmbh | Projection objective of a microlithographic projection exposure apparatus |
US8891056B2 (en) | 2006-07-14 | 2014-11-18 | Nikon Corporation | Stage apparatus and exposure apparatus |
US8570484B2 (en) | 2006-08-30 | 2013-10-29 | Nikon Corporation | Immersion exposure apparatus, device manufacturing method, cleaning method, and cleaning member to remove foreign substance using liquid |
US9563116B2 (en) | 2006-09-08 | 2017-02-07 | Nikon Corporation | Mask, exposure apparatus and device manufacturing method |
US8609301B2 (en) | 2006-09-08 | 2013-12-17 | Nikon Corporation | Mask, exposure apparatus and device manufacturing method |
US7927428B2 (en) | 2006-09-08 | 2011-04-19 | Nikon Corporation | Cleaning member, cleaning method, and device manufacturing method |
US7872730B2 (en) | 2006-09-15 | 2011-01-18 | Nikon Corporation | Immersion exposure apparatus and immersion exposure method, and device manufacturing method |
US8743341B2 (en) | 2006-09-15 | 2014-06-03 | Nikon Corporation | Immersion exposure apparatus and immersion exposure method, and device manufacturing method |
US7557997B2 (en) | 2006-09-28 | 2009-07-07 | Nikon Corporation | Immersion objective optical system, exposure apparatus, device fabrication method, and boundary optical element |
US8289500B2 (en) | 2006-09-29 | 2012-10-16 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
US8922748B2 (en) | 2006-09-29 | 2014-12-30 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
US8004651B2 (en) | 2007-01-23 | 2011-08-23 | Nikon Corporation | Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method |
US8891059B2 (en) | 2007-01-23 | 2014-11-18 | Nikon Corporation | Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method |
EP2653924A2 (en) | 2007-01-23 | 2013-10-23 | Nikon Corporation | Liquid recovery system, immersion exposure apparatus, immersion exposure method, and device fabricating method |
EP3407137A1 (en) | 2007-01-23 | 2018-11-28 | Nikon Corporation | Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method |
US8400610B2 (en) | 2007-03-15 | 2013-03-19 | Nikon Corporation | Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine |
US9217933B2 (en) | 2007-03-15 | 2015-12-22 | Nikon Corporation | Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine |
US8237911B2 (en) | 2007-03-15 | 2012-08-07 | Nikon Corporation | Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine |
US8743343B2 (en) | 2007-03-15 | 2014-06-03 | Nikon Corporation | Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine |
US9013675B2 (en) | 2007-03-23 | 2015-04-21 | Nikon Corporation | Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method |
US8134685B2 (en) | 2007-03-23 | 2012-03-13 | Nikon Corporation | Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method |
US8189168B2 (en) | 2007-05-28 | 2012-05-29 | Nikon Corporation | Exposure apparatus, device production method, cleaning apparatus, cleaning method, and exposure method |
US8194232B2 (en) | 2007-07-24 | 2012-06-05 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method |
US8582084B2 (en) | 2007-07-24 | 2013-11-12 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method |
US8264669B2 (en) | 2007-07-24 | 2012-09-11 | Nikon Corporation | Movable body drive method, pattern formation method, exposure method, and device manufacturing method for maintaining position coordinate before and after switching encoder head |
US8547527B2 (en) | 2007-07-24 | 2013-10-01 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and pattern formation apparatus, and device manufacturing method |
US9612539B2 (en) | 2007-07-24 | 2017-04-04 | Nikon Corporation | Movable body drive method, pattern formation method, exposure method, and device manufacturing method for maintaining position coordinate before and after switching encoder head |
WO2009013903A1 (en) | 2007-07-24 | 2009-01-29 | Nikon Corporation | Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method |
US8237919B2 (en) | 2007-08-24 | 2012-08-07 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method for continuous position measurement of movable body before and after switching between sensor heads |
US8767182B2 (en) | 2007-08-24 | 2014-07-01 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
US9304412B2 (en) | 2007-08-24 | 2016-04-05 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and measuring method |
US8023106B2 (en) | 2007-08-24 | 2011-09-20 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
US8867022B2 (en) | 2007-08-24 | 2014-10-21 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, and device manufacturing method |
US8218129B2 (en) | 2007-08-24 | 2012-07-10 | Nikon Corporation | Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, measuring method, and position measurement system |
US8279399B2 (en) | 2007-10-22 | 2012-10-02 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
US9013681B2 (en) | 2007-11-06 | 2015-04-21 | Nikon Corporation | Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method |
US8797508B2 (en) | 2007-11-07 | 2014-08-05 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
US9256140B2 (en) | 2007-11-07 | 2016-02-09 | Nikon Corporation | Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method with measurement device to measure movable body in Z direction |
US8665455B2 (en) | 2007-11-08 | 2014-03-04 | Nikon Corporation | Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method |
US8422015B2 (en) | 2007-11-09 | 2013-04-16 | Nikon Corporation | Movable body apparatus, pattern formation apparatus and exposure apparatus, and device manufacturing method |
US8711327B2 (en) | 2007-12-14 | 2014-04-29 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
US10274831B2 (en) | 2007-12-28 | 2019-04-30 | Nikon Corporation | Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method |
US10310384B2 (en) | 2007-12-28 | 2019-06-04 | Nikon Corporation | Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method |
US9229333B2 (en) | 2007-12-28 | 2016-01-05 | Nikon Corporation | Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method |
US9690205B2 (en) | 2007-12-28 | 2017-06-27 | Nikon Corporation | Exposure apparatus, movable body drive system, pattern formation apparatus, exposure method, and device manufacturing method |
US9176393B2 (en) | 2008-05-28 | 2015-11-03 | Asml Netherlands B.V. | Lithographic apparatus and a method of operating the apparatus |
US11187991B2 (en) | 2008-05-28 | 2021-11-30 | Asml Netherlands B.V. | Lithographic apparatus and a method of operating the apparatus |
US12072635B2 (en) | 2008-05-28 | 2024-08-27 | Asml Netherlands B.V. | Lithographic apparatus and a method of operating the apparatus |
US10209624B2 (en) | 2010-04-22 | 2019-02-19 | Asml Netherlands B.V. | Fluid handling structure, lithographic apparatus and device manufacturing method |
US10620544B2 (en) | 2010-04-22 | 2020-04-14 | Asml Netherlands B.V. | Fluid handling structure, lithographic apparatus and device manufacturing method |
US9846372B2 (en) | 2010-04-22 | 2017-12-19 | Asml Netherlands B.V. | Fluid handling structure, lithographic apparatus and device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
WO2005059645A2 (en) | 2005-06-30 |
WO2005059645A3 (en) | 2005-10-20 |
WO2005059618A3 (en) | 2006-01-19 |
US20070091451A1 (en) | 2007-04-26 |
WO2005059645A9 (en) | 2006-06-08 |
US7755839B2 (en) | 2010-07-13 |
JP2007529762A (en) | 2007-10-25 |
JP5102492B2 (en) | 2012-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7755839B2 (en) | Microlithography projection objective with crystal lens | |
US6683729B1 (en) | Objective with crystal lenses and projection exposure equipment for microlithography | |
JP5106858B2 (en) | Projection objective having a high numerical aperture and a planar end face | |
US20060262389A1 (en) | Reflective optical element for ultraviolet radiation, projection optical system and projection exposure system therewith, and method for forming the same | |
US8488103B2 (en) | Optical element for reflection of UV radiation, method for manufacturing the same and projection exposure apparatus comprising the same | |
JPH11311704A (en) | Mirror for uv ray | |
JP2008287219A (en) | Engineered fluoride-coated element for laser system | |
US6590702B1 (en) | Multilayer antireflection film, optical member, and reduction projection exposure apparatus | |
JP2006113533A5 (en) | ||
JP5510987B2 (en) | Microlithography projection exposure apparatus | |
US20100134891A1 (en) | Optical system of a microlithographic projection exposure apparatus | |
US9684252B2 (en) | Optical element with an antireflection coating, projection objective, and exposure apparatus comprising such an element | |
WO2002093201A9 (en) | Preferred crystal orientation optical elements from cubic materials | |
US20070146904A1 (en) | Submersive doublet for high numerical aperture optical system | |
JP3232727B2 (en) | 2-wavelength anti-reflection coating | |
WO2011105612A1 (en) | Glass composition and optical device | |
JPH11514106A (en) | UV achromatic lens optics containing germanium dioxide glass | |
JP2001013304A (en) | Optical parts | |
JP2003014921A (en) | Mirror for uv ray and exposure device using the same | |
CN114488359B (en) | Optical components and optical devices | |
JPH11109103A (en) | Optical member | |
JP2001004803A (en) | Reflection preventing film and optical element | |
TW200304548A (en) | Image optical system and projection aligner | |
JP2005345489A (en) | Antireflection film and optical element | |
JPH11248903A (en) | Reflection preventive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007091451 Country of ref document: US Ref document number: 10596626 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase | ||
WWP | Wipo information: published in national office |
Ref document number: 10596626 Country of ref document: US |