[go: up one dir, main page]

WO2005045233A1 - Fuel injection valve for internal combustion engines - Google Patents

Fuel injection valve for internal combustion engines Download PDF

Info

Publication number
WO2005045233A1
WO2005045233A1 PCT/DE2004/001811 DE2004001811W WO2005045233A1 WO 2005045233 A1 WO2005045233 A1 WO 2005045233A1 DE 2004001811 W DE2004001811 W DE 2004001811W WO 2005045233 A1 WO2005045233 A1 WO 2005045233A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
valve
section
valve needle
injection
Prior art date
Application number
PCT/DE2004/001811
Other languages
German (de)
French (fr)
Inventor
Markus Ohnmacht
Wolfgang Stoecklein
Holger Rapp
Andreas Koeninger
Andreas Rau
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2005045233A1 publication Critical patent/WO2005045233A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/001Control chambers formed by movable sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines, as is known from published patent application DE 100 24 703 AI.
  • a fuel injection valve has a housing with an inlet space in which a valve needle is arranged to be longitudinally displaceable. Through its longitudinal movement, the valve needle interacts with a valve seat and thereby opens and closes at least one injection opening, which is the injection of
  • the fuel is supplied to the inlet space via an inlet channel and flows through the annular space, which is formed between the wall of the inlet space and the valve needle, in the direction of the injection openings when the valve needle has lifted off the valve seat.
  • the known fuel injection valve is a so-called stroke-controlled system, in which a high fuel pressure is always present in the inlet space.
  • the valve needle is acted upon by the fuel pressure in a control chamber and thereby experiences a closing force which is countered by an opening force which is caused by the
  • Fuel pressure in the inlet area acts on the valve needle.
  • the valve needle opens or returns to its closed position.
  • valve needle In the known fuel injection valve, the valve needle is guided with a central guide area in the inlet space, the fuel flow to the injection openings being ensured by side grindings on the valve needle.
  • the flow cross-section of these cuts is selected so that there is sufficient throttling of the fuel flow.
  • the known fuel injection valve has the disadvantage that the injection characteristic of the injection valve depends very sensitively on the size of the throttles that are formed by the cuts on the valve needle. Even very small manufacturing tolerances in this area lead to a change in the injection behavior, which leads to a large scatter from the injection nozzle to the injection nozzle and thus to an uneven injection behavior in the different pistons of the internal combustion engine.
  • a small passage cross section in the area of the ground sections has the disadvantage that this leads to pressure fluctuations in the inlet space when the fuel injection valve closes. Since the passage cross section in the area of the ground sections is relatively small, the fuel must have a high speed in this area in order to supply a sufficient amount to the injection openings.
  • the fuel injection valve according to the invention with the characterizing features of patent claim 1 has the advantage over the fact that the fuel injection valve is relatively insensitive to manufacturing tolerances and has less wear in the area of the valve seat.
  • the injection behavior is insensitive to temperature fluctuations and fuel-viscosity fluctuations.
  • a throttle point is formed on the inlet channel, which feeds fuel into the inlet chamber, which represents the smallest flow cross-section with respect to the fuel flow from the inlet channel to the injection openings. This allows the grindings on the
  • Passage cross-section formed larger, which significantly reduces the sensitivity to manufacturing tolerances and there leads to a reduction in the kinetic energy of the fuel. The latter in turn leads to a reduction in pressure vibrations and thus wear on the valve seat.
  • the flow cross section at the passage cross section which is formed in the filling area of the valve needle, is two to ten times larger than the flow cross section at the throttle point.
  • the passage cross section in the guide region of the valve needle is formed by two to six cuts on the valve needle, which are preferably arranged uniformly distributed over the circumference. Depending on the required flow resistance, the passage cross-section can be adjusted via the number of cuts, without the mechanical stability of the valve needle suffering.
  • the passage cross section on the valve needle is dimensioned such that the kinetic energy of the fuel when the valve needle is placed on the valve seat only triggers weak pressure vibrations in the annular space, that is to say in the inlet space, which do not cause wear on the valve seat. If the kinetic energy in the area of the passage cross-section is low enough, the intensity of the pressure vibrations remains below a critical threshold, which does not cause any noteworthy deformation of the housing and therefore also no additional wear.
  • Figure 2 shows a cross section through the fuel injector along the line labeled II-II.
  • FIG. 1 shows a longitudinal section through a fuel injection valve according to the invention.
  • the fuel injection valve has a housing 1, which comprises a valve body 2, a throttle disc 3 and a holding body 5, which are pressed against one another in this order by a clamping nut 7.
  • An inlet chamber 12 is formed in the valve body 2, which essentially has the shape of a stepped bore.
  • the inlet chamber 12 is delimited at its end on the combustion chamber side by a conical valve seat 20, from which a plurality of injection openings 22 emanate, which open into the combustion chamber of the internal combustion engine in the installed position of the fuel injection valve.
  • a piston-shaped valve needle 18 is arranged in the inlet space 12 and is guided in a central guide section 19 on the wall of the inlet space 12.
  • the valve needle 18 has at its end on the valve seat side an essentially conical valve sealing surface 23 with which it cooperates with the valve seat 20 for opening and closing the injection openings 22.
  • An annular space 15 is formed between the valve needle 18 and the wall of the inlet space 12, through which the fuel detects the injection Openings 22 flows.
  • the inlet chamber 12 is filled via an inlet channel 10 with fuel under high pressure, which is formed in the holding body 5 and in the throttle disc 3 and the other end of which is connected to a high-pressure fuel source, not shown in the drawing.
  • the valve needle 18 At its end facing away from the valve seat, the valve needle 18 is surrounded by a sleeve 24 which, together with the throttle disk 3, delimits a control chamber 40 which is connected to the inlet channel 10 via an inlet throttle 35.
  • a closing spring 28 is arranged under pressure, which presses the sleeve 24 against the throttle disk 3 on the one hand and on the other hand a closing force on the valve needle 18 in the direction of the valve seat 20 exercises.
  • the valve needle 18 is held in contact with the valve seat 20 in the absence of further forces, so that in this case, for example when the internal combustion engine is switched off, the injection openings 22 remain closed.
  • a control valve 32 is formed in the holding body 5 and comprises a control valve member 33 in a control valve chamber 34.
  • the control valve chamber 34 is connected to the control chamber 40 via an outlet throttle 37 and, moreover, to the inlet chamber 12 via an additional throttle 38.
  • the control valve member 33 is moved longitudinally via an actuator (not shown in the drawing) and thus connects the control chamber 34 to a leakage oil chamber 41 is formed in the holding body 5 and in which there is always a low fuel pressure. If the control valve member 33 is in its position facing away from the valve needle 18, the inflow of the control valve chamber 34 to the leakage oil chamber 41 is interrupted while the additional throttle 38 is opened. If, on the other hand, the control valve member 33 is in contact with the throttle disk 3, the additional throttle 38 is closed and the connection to the leakage oil chamber 41 is opened. The connection of the control valve chamber 34 to the control chamber 40 always remains open.
  • FIG. 2 shows a cross section through the fuel injection valve along the line II-II.
  • four bevels 44 are formed, which form four individual channels between the wall of the inlet space 12 and the valve needle 18, which together represent a passage cross section 46.
  • the bevels 44 are designed so that the passage cross section 46 only forms a low flow resistance for the fuel flowing into the injection openings 22.
  • a throttle point 30 is arranged in the throttle disc 3, which represents the smallest flow cross section for the entire fuel flow. Except for the other unavoidable flow losses, the throttling of the fuel flow takes place exclusively at the throttle point 30, which has a flow cross-section that is 2 to 10 times smaller than that of the passage cross-section 46.
  • the fuel injection valve functions as follows: At the beginning of the injection, the control valve member 33 is in its first switching position, in which the inflow from the control chamber 34 to the leakage oil chamber 41 is interrupted. About the inlet throttle 35 and the additional throttle 38 prevails in the control valve chamber 34 and in the control chamber 40, the same high fuel pressure as in the inlet channel 10 and in
  • the pressure increase in the area of the valve sealing surface 23 is therefore less steep and only causes a relatively slow increase in the opening force. Since only a very small amount of fuel is to be injected, the control valve 32 is actuated again before the valve needle 18 abuts the throttle valve. disc 3 is. The control valve member 33 again moves away from the throttle disc 3 and closes the connection of the control valve chamber 34 with the leakage oil chamber 41.
  • the pressure in the control chamber 40 increases via the inlet throttle 35 and the inlet throttle 38, which additionally fuel via the outlet throttle 37 in the control chamber 40 brings very quickly back on and causes a closing force on the valve needle 18, which brakes its opening movement and accelerates it again in the direction of the valve seat 20 until it sits again on the valve seat 20 and closes the injection openings 22.
  • Front side of the valve needle 18 acts to reach a maximum of the area of the front side multiplied by the pressure of the fuel in the control chamber 40, which corresponds to the pressure in the inlet channel 10. If the fuel flow between the inlet duct 10 and the valve seat 20 is not throttled, the hydraulic opening force which acts on the valve needle 18 also has this value when the injection openings 22 are fully open. As a result, only the relatively low biasing force of the closing spring 28 would be available as the resulting closing force. By throttling the fuel flow at the throttling point 30, the hydraulic opening force on the valve needle 18 is slightly reduced and the resulting closing force is increased. This results in a significantly higher closing speed of the valve needle 18 and thus a more precisely defined closing time of the injection valve.
  • the fuel In the area of the connections 44, the fuel is in motion as a result of the injection process, as in the entire inlet space 12, and has a certain kinetic energy.
  • the fuel column which is located in the annular space 15 is braked abruptly, which converts the kinetic energy into compression work and finally leads to pressure oscillations in the annular space 15. Due to the relatively large passage cross section 46 in the annular space 15, which is approximately 2 mm 2 , the kinetic energy is in
  • the area of the bevels 44 is so small that the pressure vibrations do not lead to any significant expansion of the valve body 2 and thus to no additional wear on the valve seat 20.
  • the throttle point 30 is formed further upstream in the inlet channel 10, depending on which position is advantageous in terms of flow and production technology. It can also be provided that instead of four grindings 44 in the guide area 19 two, three, five or six grindings 44 are provided which provide a corresponding passage cross section 46.
  • Guide region 19 of the valve needle 18 is simply cylindrical.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Disclosed is a fuel injection valve comprising a housing (1) within which a supply chamber (12) is embodied. A valve needle (18) is disposed in a longitudinally movable manner inside said supply chamber (12). The valve needle (18) cooperates with a valve seat (20) as a result of the longitudinal movement thereof so as to open and close at least one injection port (22). A feeding duct (10) is configured inside the housing (1). The supply chamber (12) can be filled with fuel via said feeding duct (10) such that the fuel is delivered to the injection ports (22) through an annular space (15) which is embodied between the wall of the supply chamber (12) and the valve needle (18) when the injection ports (22) are open. A throttle point (30) which forms the smallest cross-section of the fuel flow from the feeding duct (10) to the injection ports (22) via the annular space (15) is configured within the feeding duct (10).

Description

Kraftstoffeinspritzventil für BrennkraftmaschinenFuel injection valve for internal combustion engines
Stand der TechnikState of the art
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen aus, wie es aus der Offenlegungsschrift DE 100 24 703 AI bekannt ist. Ein solches Kraftstoffeinspritzventil weist ein Gehäuse mit einem Zulaufraum auf, in dem eine Ventilnadel längsverschiebbar angeordnet ist. Durch ihre Längsbewegung wirkt die Ventilnadel mit einem Ventilsitz zusammen und öffnet und schließt dadurch wenigstens eine Einspritzöffnung, was die Einspritzung vonThe invention is based on a fuel injection valve for internal combustion engines, as is known from published patent application DE 100 24 703 AI. Such a fuel injection valve has a housing with an inlet space in which a valve needle is arranged to be longitudinally displaceable. Through its longitudinal movement, the valve needle interacts with a valve seat and thereby opens and closes at least one injection opening, which is the injection of
Kraftstoff aus dem Zulaufraum in den Brennraum steuert. Der Kraftstoff wird dem Zulaufraum über einen Zulaufkanal zugeführt und fließt durch den Ringraum, der zwischen der Wand des Zulaufraums und der Ventilnadel ausgebildet ist, in Richtung der Einspritzöffhungen, wenn die Ventilnadel vom Ventilsitz ab- gehoben hat.Controls fuel from the inlet chamber into the combustion chamber. The fuel is supplied to the inlet space via an inlet channel and flows through the annular space, which is formed between the wall of the inlet space and the valve needle, in the direction of the injection openings when the valve needle has lifted off the valve seat.
Das bekannte Kraftstoffeinspritzventil ist ein sogenanntes hubgesteuertes System, bei dem im Zulaufraum stets ein hoher Kraftstoffdruck anliegt. Die Ventilnadel wird vom Kraftstoffdruck in einem Steuerraum beaufschlagt und erfährt dadurch eine Schließkraft, der eine Öffnungskraft entgegengerichtet ist, die durch denThe known fuel injection valve is a so-called stroke-controlled system, in which a high fuel pressure is always present in the inlet space. The valve needle is acted upon by the fuel pressure in a control chamber and thereby experiences a closing force which is countered by an opening force which is caused by the
Kraftstoffdruck im Zulauf raum auf die Ventilnadel wirkt. Durch Änderung des Drucks im Steuerraum öffnet die Ventilnadel oder geht zurück in ihre Schließposition.Fuel pressure in the inlet area acts on the valve needle. By changing the pressure in the control room, the valve needle opens or returns to its closed position.
Für ein ordnungsgemäßes Funktionieren ist es hierbei unerlässlich, den Kraftstoffstrom aus dem Zulaufkanal zu den Einspritzöff ungen zu drosseln. Bei einem un- gedrosselten Kraftstoffstrom ist es nicht möglich, eine für die geforderte Mengengenauigkeit ausreichende Schließgeschwindigkeit der Ventilnadel zu erreichen. Durch das Abheben der Ventilnadel vom Ventilsitz werden zusätzliche Flächen der Ventilnadel vom Kraftstoffdruck im Zulaufraum beaufschlagt, was zu einem Anstieg der auf die Ventilnadel wirkenden hydraulischen Öffnungskraft führt. Ist der Zustrom ungedrosselt, so steigt diese zusätzliche Öffnungskraft bei voll geöffneter Ventilnadel bis auf das Niveau der maximal möglichen hydraulischen Schließkraft an, so dass ausgehend von diesem Zustand nur noch eine sehr lang- same Schließgeschwindigkeit erreicht werden kann. Eine langsame Schließgeschwindigkeit führt aber zu einer starken, unerwünschten Streuung des Schließzeitpunkts und damit auch der Einspritzmenge von Exemplar zu Exemplar und von Hub zu Hub. Bei dem bekannten Kraftstoffeinspritzventil wird die Ventilnadel mit einem mittleren Führungsbereich im Zulaufraum gefuhrt, wobei der Kraft- stoffstrom zu den Einspritzöffnungen durch seitliche Anschliffe an der Ventilnadel sichergestellt wird. Der Strömungsquerschnitt dieser Anschliffe wird dabei so gewählt, dass eine ausreichende Drosselung des Kraftstoffstroms erfolgt.For proper functioning, it is essential to throttle the fuel flow from the inlet channel to the injection openings. With an unthrottled fuel flow, it is not possible to achieve a closing speed of the valve needle sufficient for the required quantity accuracy. By lifting the valve needle from the valve seat, additional areas of the valve needle are acted upon by the fuel pressure in the inlet space, resulting in a Leads to an increase in the hydraulic opening force acting on the valve needle. If the inflow is not throttled, this additional opening force increases when the valve needle is fully open to the level of the maximum possible hydraulic closing force, so that, starting from this state, only a very slow closing speed can be achieved. However, a slow closing speed leads to a strong, undesirable spread of the closing time and thus also the injection quantity from item to item and from stroke to stroke. In the known fuel injection valve, the valve needle is guided with a central guide area in the inlet space, the fuel flow to the injection openings being ensured by side grindings on the valve needle. The flow cross-section of these cuts is selected so that there is sufficient throttling of the fuel flow.
Das bekannte Kraftstoffeinspritzventil weist hierbei jedoch den Nachteil auf, dass die Einspritzcharakteristik des Einspritzventils sehr empfindlich von der Größe der Drosseln abhängt, die durch die Anschliffe an der Ventilnadel gebildet werden. Bereits sehr geringe Fertigungstoleranzen in diesem Bereich fuhren zu einem veränderten Einspritzverhalten, was zu einer starken Streuung von Einspritzdüse zu Einspritzdüse fuhrt und damit zu einem ungleichmäßigen Einspritzverhalten in den unterschiedlichen Kolben der Brennkraftmaschine. Darüber hinaus weist ein geringer Durchtrittsquerschnitt im Bereich der Anschliffe den Nachteil auf, dass es hierdurch zu Druckschwankungen im Zulaufraum beim Schließen des Kraftstoffeinspritzventils kommt. Da der Durchtrittsquerschnitt im Bereich der Anschliffe relativ gering ist, muss der Kraftstoff, um eine ausreichende Menge den Einspritzöffnungen zuzuführen, in diesem Bereich eine hohe Geschwindigkeit aufweisen. Die dadurch im Bereich der Anschliffe vorhandene kinetische Energie des Kraftstoffs setzt sich beim Schließen der Ventilnadel in Kompressionsarbeit um, die schließlich zu Druckschwingungen in der Kraftstoffsäule zwischen der Wand des Zulaufraums und der Ventilnadel führt. Solche Druckschwingungen fuhren zu einer leichten elastischen Verformung des Gehäuses und damit zu einerHowever, the known fuel injection valve has the disadvantage that the injection characteristic of the injection valve depends very sensitively on the size of the throttles that are formed by the cuts on the valve needle. Even very small manufacturing tolerances in this area lead to a change in the injection behavior, which leads to a large scatter from the injection nozzle to the injection nozzle and thus to an uneven injection behavior in the different pistons of the internal combustion engine. In addition, a small passage cross section in the area of the ground sections has the disadvantage that this leads to pressure fluctuations in the inlet space when the fuel injection valve closes. Since the passage cross section in the area of the ground sections is relatively small, the fuel must have a high speed in this area in order to supply a sufficient amount to the injection openings. The resulting kinetic energy of the fuel in the area of the bevel is converted into compression work when the valve needle closes, which ultimately leads to pressure vibrations in the fuel column between the wall of the inlet space and the valve needle. Such pressure vibrations lead to a slight elastic deformation of the housing and thus to one
Bewegung der Ventilnadel auf dem Ventilsitz, was in diesem Bereich mit der Zeit zu einem unverhältnismäßig hohen Verschleiß führt.Movement of the valve needle on the valve seat, which leads to a disproportionately high wear in this area over time.
Ferner findet die Drosselung im Bereich der Anschliffe in Folge der geringen Spalthöhe dort zu einem großen Teil durch Wandreibungseffekte statt und ist da- her stark von der Viskosität des Kraftstoffs abhängig. Damit entsteht ein unerwünschter Einfluss der Temperatur und der Kraftstoffsorte auf die Ventilnadeldy- namik und damit auf die Einspritzmenge.Furthermore, throttling in the area of the bevels takes place to a large extent due to wall friction effects due to the small gap height and is therefore strongly depends on the viscosity of the fuel. This creates an undesirable influence of the temperature and the type of fuel on the valve needle dynamics and thus on the injection quantity.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass das Kraftstoffeinspritzventil relativ unempfindlich gegen Fertigungstoleranzen ist und ei- nen geringeren Verschleiß im Bereich des Ventilsitzes aufweist. Darüber hinaus ist das Einspritzverhalten unempfindlich gegen Temperaturschwankungen und sortenbedingte Schwankungen der Kraftstoffviskosität. Hierzu ist am Zulaufkanal, der Kraftstoff in den Zulaufraum führt, eine Drosselstelle ausgebildet, die bezüglich des Kraftstoffstroms vom Zulaufkanal zu den Einspritzöffhungen den kleins- ten Strömungsquerschnitt darstellt. Dadurch kann der durch die Anschliffe an derThe fuel injection valve according to the invention with the characterizing features of patent claim 1 has the advantage over the fact that the fuel injection valve is relatively insensitive to manufacturing tolerances and has less wear in the area of the valve seat. In addition, the injection behavior is insensitive to temperature fluctuations and fuel-viscosity fluctuations. For this purpose, a throttle point is formed on the inlet channel, which feeds fuel into the inlet chamber, which represents the smallest flow cross-section with respect to the fuel flow from the inlet channel to the injection openings. This allows the grindings on the
Ventilnadel gebildete Durchtrittsquerschnitt größer ausgebildet werden, was die Empfindlichkeit gegenüber Fertigungstoleranzen erheblich herabsetzt und dort zu einer Verminderung der kinetischen Energie des Kraftstoffs führt. Letzteres führt wiederum zu einer Verminderung der Druckschwingungen und damit des Ver- schleißes am Ventilsitz.Passage cross-section formed larger, which significantly reduces the sensitivity to manufacturing tolerances and there leads to a reduction in the kinetic energy of the fuel. The latter in turn leads to a reduction in pressure vibrations and thus wear on the valve seat.
Durch die abhängigen Ansprüche sind vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung möglich. In einer ersten vorteilhaften Ausgestaltung ist der Strömungsquerschnitt am Durchtrittsquerschnitt, die im Fülirungsbereich der Ventilnadel ausgebildet ist, zwei bis zehn Mal größer, als der Strömungsquerschnitt an der Drosselstelle. Eine solche Dimensionierung hat sich im Versuch als vorteilhaft erwiesen und stellt sicher, dass die oben genannten Vorteile auftreten.The dependent claims enable advantageous refinements of the subject matter of the invention. In a first advantageous embodiment, the flow cross section at the passage cross section, which is formed in the filling area of the valve needle, is two to ten times larger than the flow cross section at the throttle point. Such dimensioning has proven to be advantageous in the experiment and ensures that the advantages mentioned above occur.
In einer weiteren vorteilhaften Ausgestaltung wird der Durchtrittsquerschnitt im Führungsbereich der Ventilnadel durch zwei bis sechs Anschliffe an der Ventilnadel ausgebildet, die vorzugsweise gleichmäßig über den Umfang verteilt angeordnet sind. Je nach erforderlichem Durchflusswiderstand kann so der Durchtrittsquerschnitt über die Anzahl der Anschliffe eingestellt werden, ohne dass die mechanische Stabilität der Ventilnadel leidet. In einer weiteren vorteilhaften Ausgestaltung wird der Durchtrittsquerschnitt an der Ventilnadel so bemessen, dass die kinetische Energie des Kraftstoffs beim Aufsetzen der Ventilnadel auf den Ventilsitz nur solch schwache Druckschwingungen im Ringraum, also im Zulaufraum auslöst, die keinen Verschleiß am Ventilsitz bewirken. Ist die kinetische Energie im Bereich des Durchtrittsquerschnitts gering genug, bleiben die Druckschwingungen in ihrer Intensität unter einer kritischen Schwelle, die keine nennenswerte Deformation des Gehäuses bewirkt und damit auch keinen zusätzlichen Verschleiß.In a further advantageous embodiment, the passage cross section in the guide region of the valve needle is formed by two to six cuts on the valve needle, which are preferably arranged uniformly distributed over the circumference. Depending on the required flow resistance, the passage cross-section can be adjusted via the number of cuts, without the mechanical stability of the valve needle suffering. In a further advantageous embodiment, the passage cross section on the valve needle is dimensioned such that the kinetic energy of the fuel when the valve needle is placed on the valve seat only triggers weak pressure vibrations in the annular space, that is to say in the inlet space, which do not cause wear on the valve seat. If the kinetic energy in the area of the passage cross-section is low enough, the intensity of the pressure vibrations remains below a critical threshold, which does not cause any noteworthy deformation of the housing and therefore also no additional wear.
Zeichnungdrawing
In der Zeichnung ist ein Ausfuhrungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils dargestellt. Es zeigtIn the drawing, an exemplary embodiment of the fuel injection valve according to the invention is shown. It shows
Figur 1 einen Längsschnitt durch ein erfindungsgemäßes Kraftstoffein- Spritzventil und1 shows a longitudinal section through an inventive fuel injection valve and
Figur 2 einen Querschnitt durch das Kraftstoffeinspritzventil entlang der mit II-II bezeichneten Linie.Figure 2 shows a cross section through the fuel injector along the line labeled II-II.
Beschreibung des AusführungsbeispielsDescription of the embodiment
In Figur 1 ist ein Längsschnitt durch ein erfindungsgemäßes Kraftstoffeinspritzventil dargestellt. Das Kraftstoffeinspritzventil weist ein Gehäuse 1 auf, das einen Ventilkörper 2, eine Drosselscheibe 3 und einen Haltekörper 5 umfasst, die durch eine Spannmutter 7 in dieser Reihenfolge aneinandergepresst werden. Im Ventil- körper 2 ist ein Zulaufraum 12 ausgebildet, der im wesentlichen die Form einer gestuften Bohrung hat. Der Zulaufraum 12 wird an seinem brennraumseitigen Ende von einem konischen Ventilsitz 20 begrenzt, von dem mehrere Einspritzöffnungen 22 ausgehen, die in Einbaulage des Kraftstoffeinspritzventils in den Brennraum der Brennkraftmaschine münden. Im Zulaufraum 12 ist eine kolben- formige Ventilnadel 18 angeordnet, die in einem mittleren Führungsabschnitt 19 an der Wand des Zulaufraums 12 geführt ist. Die Ventilnadel 18 weist an ihrem ventilsitzseitigen Ende eine im wesentlichen konische Ventildichtfläche 23 auf, mit der sie mit dem Ventilsitz 20 zum Öffnen und Schließen der Einspritzöffhungen 22 zusammenwirkt. Zwischen der Ventilnadel 18 und der Wand des Zulauf- raums 12 ist ein Ringraum 15 ausgebildet, durch den der Kraftstoff den Einspritz- Öffnungen 22 zufließt. Der Zulaufraum 12 wird hierbei über einen Zulaufkanal 10 mit Kraftstoff unter hohem Druck befüllt, der im Haltekörper 5 und in der Drosselscheibe 3 ausgebildet ist und dessen anderes Ende mit einer in der Zeichnung nicht dargestellten Kraftstoffhochdruckquelle verbunden ist.FIG. 1 shows a longitudinal section through a fuel injection valve according to the invention. The fuel injection valve has a housing 1, which comprises a valve body 2, a throttle disc 3 and a holding body 5, which are pressed against one another in this order by a clamping nut 7. An inlet chamber 12 is formed in the valve body 2, which essentially has the shape of a stepped bore. The inlet chamber 12 is delimited at its end on the combustion chamber side by a conical valve seat 20, from which a plurality of injection openings 22 emanate, which open into the combustion chamber of the internal combustion engine in the installed position of the fuel injection valve. A piston-shaped valve needle 18 is arranged in the inlet space 12 and is guided in a central guide section 19 on the wall of the inlet space 12. The valve needle 18 has at its end on the valve seat side an essentially conical valve sealing surface 23 with which it cooperates with the valve seat 20 for opening and closing the injection openings 22. An annular space 15 is formed between the valve needle 18 and the wall of the inlet space 12, through which the fuel detects the injection Openings 22 flows. The inlet chamber 12 is filled via an inlet channel 10 with fuel under high pressure, which is formed in the holding body 5 and in the throttle disc 3 and the other end of which is connected to a high-pressure fuel source, not shown in the drawing.
An ihrem ventilsitzabgewandten Ende ist die Ventilnadel 18 von einer Hülse 24 umgeben, die zusammen mit der Drosselscheibe 3 einen Steuerraum 40 begrenzt, der über eine Zulaufdrossel 35 mit dem Zulaufkanal 10 verbunden ist. Zwischen der Hülse 24 und einem Stützring 26, der sich an einer Schulter der Ventilnadel 18 abstützt, ist eine Schließfeder 28 unter Druckvorspannung angeordnet, die einerseits die Hülse 24 gegen die Drosselscheibe 3 drückt und andererseits eine Schließkraft auf die Ventilnadel 18 in Richtung des Ventilsitzes 20 ausübt. Dadurch wird die Ventilnadel 18 beim Fehlen weiterer Kräfte in Anlage am Ventilsitz 20 gehalten, so dass in diesem Fall, beispielsweise bei abgeschalteter Brenn- kraftmaschine, die Einspritzöffhungen 22 verschlossen bleiben.At its end facing away from the valve seat, the valve needle 18 is surrounded by a sleeve 24 which, together with the throttle disk 3, delimits a control chamber 40 which is connected to the inlet channel 10 via an inlet throttle 35. Between the sleeve 24 and a support ring 26, which is supported on a shoulder of the valve needle 18, a closing spring 28 is arranged under pressure, which presses the sleeve 24 against the throttle disk 3 on the one hand and on the other hand a closing force on the valve needle 18 in the direction of the valve seat 20 exercises. As a result, the valve needle 18 is held in contact with the valve seat 20 in the absence of further forces, so that in this case, for example when the internal combustion engine is switched off, the injection openings 22 remain closed.
Im Haltekörper 5 ist ein Steuerventil 32 ausgebildet, das ein Steuerventilglied 33 in einem Steuerventilraum 34 umfasst. Der Steuerventilraum 34 ist über eine Ablaufdrossel 37 mit dem Steuerraum 40 verbunden und darüber hinaus über eine Zusatzdrossel 38 mit dem Zulaufraum 12. Das Steuerventilglied 33 wird über einen in der Zeichnung nicht dargestellten Aktor längsbewegt und verbindet so den Steuerraum 34 mit einem Leckölraum 41, der im Haltekörper 5 ausgebildet ist und in dem stets ein niedriger Kraftstoffdruck herrscht. Ist das Steuerventilglied 33 in seiner der Ventilnadel 18 abgewandten Position, so wird der Zulauf des Steuerventilraums 34 zum Leckölraum 41 unterbrochen, während die Zusatzdrossel 38 geöffnet wird. Ist das Steuerventilglied 33 hingegen in Anlage an der Drosselscheibe 3, so wird die Zusatzdrossel 38 verschlossen und die Verbindung zum Leckölraum 41 geöffnet. Die Verbindung des Steuerventilraums 34 mit dem Steuerraum 40 bleibt hierbei stets geöffnet.A control valve 32 is formed in the holding body 5 and comprises a control valve member 33 in a control valve chamber 34. The control valve chamber 34 is connected to the control chamber 40 via an outlet throttle 37 and, moreover, to the inlet chamber 12 via an additional throttle 38. The control valve member 33 is moved longitudinally via an actuator (not shown in the drawing) and thus connects the control chamber 34 to a leakage oil chamber 41 is formed in the holding body 5 and in which there is always a low fuel pressure. If the control valve member 33 is in its position facing away from the valve needle 18, the inflow of the control valve chamber 34 to the leakage oil chamber 41 is interrupted while the additional throttle 38 is opened. If, on the other hand, the control valve member 33 is in contact with the throttle disk 3, the additional throttle 38 is closed and the connection to the leakage oil chamber 41 is opened. The connection of the control valve chamber 34 to the control chamber 40 always remains open.
Figur 2 zeigt einen Querschnitt durch das Kraftstoffeinspritzventil entlang der Linie II-II. Am Führungsbereich 19 der Ventilnadel 18 sind vier Anschliffe 44 ausgebildet, die zwischen der Wand des Zulaufraums 12 und der Ventilnadel 18 vier Einzelkanäle bilden, die zusammen einen Durchtrittsquerschnitt 46 darstellen. Die Anschliffe 44 sind hierbei so ausgebildet, dass der Durchtrittsquerschnitt 46 nur einen geringen Strömungswiderstand für den Kraftstoff, der den Einspritzöffhungen 22 zufließt, bildet. Um den Kraftstoffstrom aus dem Zulaufkanal 10 durch den Zulaufraum 12 und den Durchtrittsquerschnitt 46 zu den Einspritzöffhungen 22 hin zu drosseln, ist in der Drosselscheibe 3 eine Drosselstelle 30 angeordnet, die für den gesamten Kraftstoffstrom den kleinsten Strömungsquerschnitt darstellt. Die Drosselung des Kraftstoffstroms findet also, bis auf die sonstigen unvermeidlichen Strömungsverluste, ausschließlich an der Drosselstelle 30 statt, die einen Strömungsquerschnitt aufweist, der 2- bis 10-mal kleiner ist als der des Durchtrittsquerschnitts 46.Figure 2 shows a cross section through the fuel injection valve along the line II-II. On the guide area 19 of the valve needle 18, four bevels 44 are formed, which form four individual channels between the wall of the inlet space 12 and the valve needle 18, which together represent a passage cross section 46. The bevels 44 are designed so that the passage cross section 46 only forms a low flow resistance for the fuel flowing into the injection openings 22. In order to throttle the fuel flow from the inlet channel 10 through the inlet space 12 and the passage cross section 46 to the injection openings 22, a throttle point 30 is arranged in the throttle disc 3, which represents the smallest flow cross section for the entire fuel flow. Except for the other unavoidable flow losses, the throttling of the fuel flow takes place exclusively at the throttle point 30, which has a flow cross-section that is 2 to 10 times smaller than that of the passage cross-section 46.
Das erfindungsgemäße Kraftstoffeinspritzventil funktioniert wie folgt: Zu Beginn der Einspritzung ist das Steuerventilglied 33 in seiner ersten Schaltposition, in der der Zulauf vom Steuerraum 34 zum Leckölraum 41 unterbrochen ist. Über die Zulaufdrossel 35 und die Zusatzdrossel 38 herrscht im Steuerventilraum 34 und im Steuerraum 40 derselbe hohe Kraftstoffdruck wie im Zulaufkanal 10 und imThe fuel injection valve according to the invention functions as follows: At the beginning of the injection, the control valve member 33 is in its first switching position, in which the inflow from the control chamber 34 to the leakage oil chamber 41 is interrupted. About the inlet throttle 35 and the additional throttle 38 prevails in the control valve chamber 34 and in the control chamber 40, the same high fuel pressure as in the inlet channel 10 and in
Zulaufraum 12. Soll eine Einspritzung stattfinden, bei der nur eine geringe Kraftstoffmenge, beispielsweise für eine Voreinspritzung in den Brennraum, eingebracht werden soll, so wird der Aktor aktiviert, und das Steuerventilglied 33 fahrt in Anlage an die Drosselscheibe 3. Dadurch wird die Zusatzdrossel 38 verschlos- sen und der Zugang vom Steuerventilraum 34 zum Leckölraum 41 geöffnet. DerInlet chamber 12. If an injection is to take place in which only a small amount of fuel is to be introduced into the combustion chamber, for example for a pre-injection, the actuator is activated and the control valve member 33 comes into contact with the throttle disk 3. This turns the additional throttle 38 are closed and the access from the control valve chamber 34 to the leak oil chamber 41 is opened. The
Druck im Steuerventilraum 34 und damit auch im Steuerraum 40 fällt daraufhin ab, da über die Ablaufdrossel 37 mehr Kraftstoff aus dem Steuerraum 40 abfließt als über die Zulaufdrossel 35 nachfließen kann. Die hydraulische Kraft auf die ventilsitzabgewandte Stirnseite der Ventilnadel 18 vermindert sich dadurch, so dass die Ventilnadel 18, angetrieben vom hydraulischen Druck auf die Druckschulter 16, vom Ventilsitz 20 abhebt. Da die Ventildichtfläche 23 nun vom Kraftstoff des Zulaufraums 12 beaufschlagt ist, ergibt sich eine zusätzliche, vom Ventilsitz 20 weggerichtete hydraulische Öffnungskraft, die eine zusätzliche Beschleunigung der Öffnungsbewegung der Ventilnadel 18 bewirkt. Um diesen Kraftanstieg zu beschränken ist in der Drosselscheibe 3 eine Drosselstelle 30 ausgebildet, die ein überschnelles Nachfließen von Kraftstoff in den Zulaufraum 12 unterbindet. Der Druckanstieg im Bereich der Ventildichtfläche 23 ist dadurch weniger steil und bewirkt nur eine relativ langsame Zunahme der Öffnungskraft. Da nur eine sehr kleine Kraftstoffmenge eingespritzt werden soll, wird das Steu- erventil 32 wieder betätigt, noch ehe die Ventilnadel 18 in Anlage an der Drossel- scheibe 3 ist. Das Steuerventilglied 33 fährt hierzu wieder von der Drosselscheibe 3 weg und verschließt die Verbindung des Steuerventilraums 34 mit dem Leckölraum 41. Dadurch steigt der Druck im Steuerraum 40 über die Zulauf drossel 35 und die Zulaufdrossel 38, die zusätzlich Kraftstoff über die Ablaufdrossel 37 in den Steuerraum 40 einbringt, sehr rasch wieder an und bewirkt eine Schließkraft auf die Ventilnadel 18, die diese in ihrer Öffnungsbewegung abgebremst und wieder in Richtung des Ventilsitzes 20 beschleunigt, bis sie wieder auf dem Ventilsitz 20 aufsitzt und die Einspritzöffhungen 22 verschließt.Pressure in the control valve chamber 34 and thus also in the control chamber 40 then drops because more fuel flows out of the control chamber 40 via the outlet throttle 37 than can flow in via the inlet throttle 35. The hydraulic force on the end of the valve needle 18 facing away from the valve seat is reduced, so that the valve needle 18, driven by the hydraulic pressure on the pressure shoulder 16, lifts off the valve seat 20. Since the valve sealing surface 23 is now acted upon by the fuel of the inlet space 12, there is an additional hydraulic opening force directed away from the valve seat 20, which causes an additional acceleration of the opening movement of the valve needle 18. In order to limit this increase in force, a throttle point 30 is formed in the throttle disk 3, which prevents fuel from flowing into the inlet space 12 too quickly. The pressure increase in the area of the valve sealing surface 23 is therefore less steep and only causes a relatively slow increase in the opening force. Since only a very small amount of fuel is to be injected, the control valve 32 is actuated again before the valve needle 18 abuts the throttle valve. disc 3 is. The control valve member 33 again moves away from the throttle disc 3 and closes the connection of the control valve chamber 34 with the leakage oil chamber 41. As a result, the pressure in the control chamber 40 increases via the inlet throttle 35 and the inlet throttle 38, which additionally fuel via the outlet throttle 37 in the control chamber 40 brings very quickly back on and causes a closing force on the valve needle 18, which brakes its opening movement and accelerates it again in the direction of the valve seat 20 until it sits again on the valve seat 20 and closes the injection openings 22.
Dabei kann die hydraulische Schließkraft, welche auf die ventilsitzabgewandteThe hydraulic closing force that acts on the valve seat
Stirnseite der Ventilnadel 18 wirkt, maximal die Fläche der Stirnseite multipliziert mit dem Druck des Kraftstoffs im Steuerraum 40, der dem Druck im Zulaufkanal 10 entspricht, erreichen. Ist der Kraftstofffluss zwischen dem Zulaufkanal 10 und dem Ventilsitz 20 nicht gedrosselt, so weist bei voll geöffneten Einspritzöffnun- gen 22 auch die hydraulische Öfrhungskraft, welche auf die Ventilnadel 18 wirkt, diesen Wert auf. Folglich stünde als resultierende Schließkraft nur die relativ geringe Vorspannkraft der Schließfeder 28 zur Verfügung. Durch die Drosselung des Kraftstoffstroms an der Drosselstelle 30 wird die hydraulische Öffnungskraft auf die Ventilnadel 18 geringfügig abgesenkt und dadurch die resultierende Schließkraft erhöht. Daraus ergibt sich eine erheblich höhere Schließgeschwindigkeit der Ventilnadel 18 und damit ein genauer definierter Schließzeitpunkt des Einspritz ventils.Front side of the valve needle 18 acts to reach a maximum of the area of the front side multiplied by the pressure of the fuel in the control chamber 40, which corresponds to the pressure in the inlet channel 10. If the fuel flow between the inlet duct 10 and the valve seat 20 is not throttled, the hydraulic opening force which acts on the valve needle 18 also has this value when the injection openings 22 are fully open. As a result, only the relatively low biasing force of the closing spring 28 would be available as the resulting closing force. By throttling the fuel flow at the throttling point 30, the hydraulic opening force on the valve needle 18 is slightly reduced and the resulting closing force is increased. This results in a significantly higher closing speed of the valve needle 18 and thus a more precisely defined closing time of the injection valve.
Im Bereich der Anschlüsse 44 ist durch den Einspritzvorgang, ebenso wie im ge- samten Zulaufraum 12, der Kraftstoff in Bewegung und weist eine gewisse kinetische Energie auf. Nach dem Verschließen der Einspritzöffhungen 22 wird die Kraftstoffsäule, die sich im Ringraum 15 befindet, abrupt abgebremst, was die kinetische Energie in Kompressionsarbeit umwandelt und schließlich zu Druckschwingungen im Ringraum 15 führt. Durch den relativ großen Durchtrittsquer- schnitt 46 im Ringraum 15, der etwa 2 mm2 beträgt, ist die kinetische Energie imIn the area of the connections 44, the fuel is in motion as a result of the injection process, as in the entire inlet space 12, and has a certain kinetic energy. After the injection openings 22 have been closed, the fuel column which is located in the annular space 15 is braked abruptly, which converts the kinetic energy into compression work and finally leads to pressure oscillations in the annular space 15. Due to the relatively large passage cross section 46 in the annular space 15, which is approximately 2 mm 2 , the kinetic energy is in
Bereich der Anschliffe 44 jedoch so gering, dass die Druckschwingungen zu keiner nennenswerten Aufweitung des Ventilkörpers 2 führen und damit zu keinem zusätzlichen Verschleiß am Ventilsitz 20. Neben der Ausbildung der Drosselstelle 30 an der Drosselscheibe 3 kann es auch vorgesehen sein, die Drosselstelle 30 weiter stromaufwärts im Zulaufkanal 10 auszubilden, je nach dem, welche Position strömungstechnisch und fertigungstechnisch vorteilhaft ist. Es kann auch vorgesehen sein, statt vier Anschliffe 44 im Führungsbereich 19 zwei, drei, fünf oder sechs Anschliffe 44 vorzusehen, die eine entsprechenden Durchtrittsquerschnitt 46 zur Verfügung stellen.However, the area of the bevels 44 is so small that the pressure vibrations do not lead to any significant expansion of the valve body 2 and thus to no additional wear on the valve seat 20. In addition to the formation of the throttle point 30 on the throttle disc 3, it can also be provided that the throttle point 30 is formed further upstream in the inlet channel 10, depending on which position is advantageous in terms of flow and production technology. It can also be provided that instead of four grindings 44 in the guide area 19 two, three, five or six grindings 44 are provided which provide a corresponding passage cross section 46.
Es kann alternativ auch vorgesehen sein, die Anschliffe 44 am Führungsabschnitt der Ventilnadel 18 durch entsprechende Ausnehmungen an der Wand des Zulauf- raums 12 zu ersetzen, die den Kraftstoffstrom ermöglichen. In diesem Fall ist derAlternatively, it can also be provided to replace the bevels 44 on the guide section of the valve needle 18 by corresponding recesses on the wall of the inlet space 12, which enable the fuel flow. In this case it is
Führungsbereich 19 der Ventilnadel 18 einfach zylindrisch ausgebildet. Guide region 19 of the valve needle 18 is simply cylindrical.

Claims

Ansprüche Expectations
1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Gehäuse (1), in dem ein Zulaufraum (12) ausgebildet ist, in dem eine Ventilnadel (18) längs- u verschiebbar angeordnet ist, die durch ihre Längsbewegung mit einem Ventilsitz (20) zum Öffnen und Schließen wenigstens einer Einspritzöff ung (22) zusammenwirkt, und mit einem im Gehäuse (1) ausgebildeten Zulaufkanal (10), über den der Zulaufraum (12) mit Kraftstoff so befüllbar ist, dass der Kraftstoff bei freigegebenen Einspritzöffnungen (22) durch einen zwischen5 der Wand des Zulaufraums (12) und der Ventilnadel (18) ausgebildeten Ringraum (15) den Einspritzöffhungen (22) zufließt, dadurch gekennzeichnet, dass im Zulaufkanal (10) eine Drosselstelle (30) ausgebildet ist, die den kleinsten Strömungsquerschnitt des Kraftstoffstroms vom Zulaufkanal (10) durch den Ringraum (15) zu den Einspritzöffnungen (22) bildet. 01. Fuel injection valve for internal combustion engines with a housing (1) in which an inlet chamber (12) is formed, in which a valve needle (18) is arranged to be longitudinally and displaceably movable by its longitudinal movement with a valve seat (20) for opening and closing at least one injection opening (22) cooperates, and with an inlet channel (10) formed in the housing (1), via which the inlet space (12) can be filled with fuel in such a way that the fuel when the injection openings (22) are open through an intermediate wall of the inlet space (12) and the valve needle (18) designed annular space (15) flows to the injection openings (22), characterized in that a throttle point (30) is formed in the inlet channel (10), which has the smallest flow cross section of the fuel flow from the inlet channel (10 ) through the annular space (15) to the injection openings (22). 0
2. Kraftstoffeinspritzventil nach Anspruch 1 , wobei die Ventilnadel (18) in einem mittleren Führungsabschnitt (19) im Zulaufraum (12) geführt ist und an dem mittleren Führungsabschnitt (19) der Ventilnadel (18) ein Durchtrittsquerschnitt (46) vorgesehen ist, durch den der Kraftstofffluss zu der wenigstens einen Einspritzöffhung (22) erfolgt. 52. Fuel injection valve according to claim 1, wherein the valve needle (18) is guided in a central guide section (19) in the inlet space (12) and on the central guide section (19) of the valve needle (18) a passage cross section (46) is provided through which the fuel flows to the at least one injection opening (22). 5
3. Kraftstoffeinspritzventil nach Anspruch 2, bei dem der Strömungsquerschnitt an dem Durchtrittsquerschnitt (46) 2- bis 10-mal größer ist als der Strömungsquerschnitt an der Drosselstelle (30).3. Fuel injection valve according to claim 2, wherein the flow cross section at the passage cross section (46) is 2 to 10 times larger than the flow cross section at the throttle point (30).
4. Kraftstoffemspritzventil nach Anspruch 2, bei dem der Durchtrittsquerschnitt (46) durch Anschliffe (44) am Führungsabschnitt (19) der Ventilnadel (18) 0 gebildet ist. 4. Fuel injection valve according to claim 2, in which the passage cross section (46) is formed by cuts (44) on the guide section (19) of the valve needle (18) 0.
5. Kraftstoffeinspritzventil nach Anspruch 4, bei dem zwei bis sechs Anschliffe am Führungsabschnitt (19) der Ventilnadel (18) vorgesehen sind, die gleichmäßig über den Umfang der Ventilnadel (18) verteilt angeordnet sind.5. Fuel injection valve according to claim 4, in which two to six grindings are provided on the guide section (19) of the valve needle (18), which are arranged uniformly distributed over the circumference of the valve needle (18).
6. Kraftstoffeinspritzventil nach Anspruch 2, bei dem der Durchtrittsquerschnitt 5 (46) am Führungsabschnitt (19) durch Ausnehmungen an der Wand des Zulaufraums (12) ausgebildet ist.6. Fuel injection valve according to claim 2, wherein the passage cross section 5 (46) on the guide section (19) is formed by recesses on the wall of the inlet space (12).
7. Kraftstoffeinspritzventil nach Anspruch 2, bei dem der Strömungsquerschnitt an dem Durchtrittsquerschnitt (46) so bemessen ist, dass die kinetische Energie des Kraftstoffs beim Aufsetzen der Ventilnadel (18) auf dem Ventilsitz ϊ 0 (20) nur solche Druckschwingungen im Ringraum (15) auslöst, die keinen Verschleiß am Ventilsitz (20) bewirken.7. The fuel injector according to claim 2, wherein the flow cross section at the passage cross section (46) is dimensioned such that the kinetic energy of the fuel when the valve needle (18) is placed on the valve seat ϊ 0 (20) only such pressure vibrations in the annular space (15) triggers that do not cause wear on the valve seat (20).
15 15
PCT/DE2004/001811 2003-10-06 2004-08-13 Fuel injection valve for internal combustion engines WO2005045233A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10346212.0 2003-10-06
DE2003146212 DE10346212A1 (en) 2003-10-06 2003-10-06 Fuel injection valve for IC engines has fuel feed channel with throttle to form smallest flow profile from the feed channel to injection apertures

Publications (1)

Publication Number Publication Date
WO2005045233A1 true WO2005045233A1 (en) 2005-05-19

Family

ID=34353326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/001811 WO2005045233A1 (en) 2003-10-06 2004-08-13 Fuel injection valve for internal combustion engines

Country Status (2)

Country Link
DE (1) DE10346212A1 (en)
WO (1) WO2005045233A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012064679A1 (en) * 2010-11-08 2012-05-18 Caterpillar Inc. Fuel injector with needle control system that includes f, a. z and e orifices
WO2013070579A1 (en) * 2011-11-07 2013-05-16 Caterpillar Inc. Fuel injector with needle control system that includes f, a, z and e orifices

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005059172A1 (en) * 2005-12-12 2007-06-14 Robert Bosch Gmbh fuel injector
DE102008002522A1 (en) * 2008-06-19 2009-12-24 Robert Bosch Gmbh Fuel injector
EP2218900B1 (en) * 2009-02-16 2011-09-28 Continental Automotive GmbH Valve assembly for an injection valve and injection valve
JP7302875B2 (en) 2020-01-23 2023-07-04 株式会社デンソー fuel injector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878623A2 (en) * 1997-05-14 1998-11-18 Lucas Industries Public Limited Company Fuel injector
GB2335000A (en) * 1998-03-05 1999-09-08 Lucas Ind Plc Fuel injector having a restricted fuel flow path provided by a needle valve
EP0957262A2 (en) * 1998-05-13 1999-11-17 LUCAS INDUSTRIES public limited company Fuel injector
EP0971118A2 (en) * 1998-07-06 2000-01-12 Isuzu Motors Limited Fuel Injector
DE10117861A1 (en) * 2001-04-10 2002-10-24 Bosch Gmbh Robert Fuel injector for injecting fuel into internal combustion engine combustion chambers has nozzle needle with at least one guide section and in form of choke point near nozzle seat
DE10149961A1 (en) * 2001-10-10 2003-04-30 Bosch Gmbh Robert Fuel injection device for internal combustion engine, especially common rail injector, has flow path control sections interacting to give defined flow characteristic against time
US20040031863A1 (en) * 2000-12-16 2004-02-19 Detlev Potz Fuel injection valves for internal combustion engines
EP1416152A1 (en) * 2002-10-31 2004-05-06 Robert Bosch Gmbh Valve for control of fluids with supply of pressurized fluid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878623A2 (en) * 1997-05-14 1998-11-18 Lucas Industries Public Limited Company Fuel injector
GB2335000A (en) * 1998-03-05 1999-09-08 Lucas Ind Plc Fuel injector having a restricted fuel flow path provided by a needle valve
EP0957262A2 (en) * 1998-05-13 1999-11-17 LUCAS INDUSTRIES public limited company Fuel injector
EP0971118A2 (en) * 1998-07-06 2000-01-12 Isuzu Motors Limited Fuel Injector
US20040031863A1 (en) * 2000-12-16 2004-02-19 Detlev Potz Fuel injection valves for internal combustion engines
DE10117861A1 (en) * 2001-04-10 2002-10-24 Bosch Gmbh Robert Fuel injector for injecting fuel into internal combustion engine combustion chambers has nozzle needle with at least one guide section and in form of choke point near nozzle seat
DE10149961A1 (en) * 2001-10-10 2003-04-30 Bosch Gmbh Robert Fuel injection device for internal combustion engine, especially common rail injector, has flow path control sections interacting to give defined flow characteristic against time
EP1416152A1 (en) * 2002-10-31 2004-05-06 Robert Bosch Gmbh Valve for control of fluids with supply of pressurized fluid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012064679A1 (en) * 2010-11-08 2012-05-18 Caterpillar Inc. Fuel injector with needle control system that includes f, a. z and e orifices
US8448878B2 (en) 2010-11-08 2013-05-28 Caterpillar Inc. Fuel injector with needle control system that includes F, A, Z and E orifices
WO2013070579A1 (en) * 2011-11-07 2013-05-16 Caterpillar Inc. Fuel injector with needle control system that includes f, a, z and e orifices
US8690075B2 (en) 2011-11-07 2014-04-08 Caterpillar Inc. Fuel injector with needle control system that includes F, A, Z and E orifices
CN103975160A (en) * 2011-11-07 2014-08-06 卡特彼勒公司 Fuel injector with needle control system that includes f, a, z and e orifices

Also Published As

Publication number Publication date
DE10346212A1 (en) 2005-04-21

Similar Documents

Publication Publication Date Title
EP1478840B1 (en) Fuel injection valve for internal combustion engines
EP0657642B1 (en) Fuel injection device for internal combustion engines
EP1332282B1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
EP1507972B1 (en) Fuel injection valve for internal combustion engines
EP2867517A1 (en) Fuel injection valve for internal combustion engines
EP1747370B1 (en) Fuel-injection valve for internal combustion engines
DE19910589C2 (en) Injection valve for an internal combustion engine
DE19618698A1 (en) Fuel injection valve for internal combustion engines
DE19946906A1 (en) Fuel injection valve for internal combustion engines
WO2007038811A1 (en) Device for the injection of fuel into the combustion chamber of an internal combustion engine
DE19823937A1 (en) Servo valve for injection valve for injecting fuel into IC engine
DE10100390A1 (en) Injector
DE10031582A1 (en) Pressure controlled injector with controlled nozzle needle
WO2005045233A1 (en) Fuel injection valve for internal combustion engines
DE10031580A1 (en) Pressure-controlled control part for common rail injectors
DE10019153A1 (en) Fuel injection valve for IC engines has valve bore with valve member and valve piston loaded by hydraulic closing force to engage on valve member
DE10132248A1 (en) Fuel injector with 2-way valve control
EP2740927B1 (en) Fuel injector valve for combustion engines
DE102004051756A1 (en) Fuel injection valve for internal combustion engines
EP0915251A2 (en) Accumulator fuel injection system for a multicylinder engine
EP1176306A2 (en) Fuel injection system for internal combustion engine
DE19900033A1 (en) Fuel injection device for internal combustion engines
EP2960487A1 (en) Fuel injector valve for combustion engines
EP1370766A1 (en) Fuel-injection valve for internal combustion engines
WO2005026525A1 (en) Fuel-injection valve for internal combustion engines

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase