[go: up one dir, main page]

WO2005040274A1 - Aligning agent for liquid crystal and liquid-crystal display element - Google Patents

Aligning agent for liquid crystal and liquid-crystal display element Download PDF

Info

Publication number
WO2005040274A1
WO2005040274A1 PCT/JP2004/015531 JP2004015531W WO2005040274A1 WO 2005040274 A1 WO2005040274 A1 WO 2005040274A1 JP 2004015531 W JP2004015531 W JP 2004015531W WO 2005040274 A1 WO2005040274 A1 WO 2005040274A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
formula
crystal alignment
polymer
group
Prior art date
Application number
PCT/JP2004/015531
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuya Imamura
Hideyuki Nawata
Rie Gunji
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to JP2005514961A priority Critical patent/JP4702058B2/en
Priority to KR1020067005417A priority patent/KR101133479B1/en
Publication of WO2005040274A1 publication Critical patent/WO2005040274A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/60Temperature independent

Definitions

  • Liquid crystal alignment agent and liquid crystal display device Liquid crystal alignment agent and liquid crystal display device
  • the present invention relates to a liquid crystal alignment treatment agent used for forming a liquid crystal alignment film of a liquid crystal display element, and a liquid crystal display element manufactured using the same.
  • a liquid crystal display element that has become widespread has a structure in which a liquid crystal material is filled between two opposing substrates, and the liquid crystal material is formed by the action of a liquid crystal alignment film provided on the substrate surface. The desired initial alignment state is maintained.
  • a method of rubbing a polyimide resin film (rubbing film) is generally widely used.
  • a method of irradiating the organic film with polarized ultraviolet light photo-alignment film is also being vigorously studied.
  • the applied voltage-transmittance characteristic of such a liquid crystal display element fluctuates depending on the environmental temperature, and this is an obstacle to stable high-quality display.
  • the first factor in which the characteristics fluctuate is that the characteristics of the liquid crystal have temperature dependence, but there is also a factor derived from the liquid crystal alignment film. For example, if the pretilt angle of the liquid crystal changes due to the environmental temperature, a shift occurs in the threshold voltage when driving the liquid crystal, and as a result, the applied voltage-transmittance characteristic of the liquid crystal display element also changes.
  • the fluctuation of the pretilt angle due to the environmental temperature is remarkable when the liquid crystal alignment film has a weak liquid crystal alignment regulating force, such as a liquid crystal alignment film having a high pretilt angle or a photoalignment film.
  • the pretilt angle is greatly reduced at high temperatures, causing problems such as a failure to drive the liquid crystal normally. Therefore, a liquid crystal display element that requires a high pretilt angle and a method of replacing a rubbing film have attracted attention, and this is a particularly important problem for a photo-alignment film.
  • the pretilt angle of the liquid crystal obtained from a polyimide-based liquid crystal alignment film having a simple structure is not very high.
  • the stability to the temperature at which a liquid crystal alignment film is formed and the stability to heat treatment after forming a liquid crystal display element are improved by improving the side chain of polyimide.
  • structures are also known techniques for introducing a cyclic substituent (e.g., JP-a 9 278 724 JP reference.) 0
  • the pretilt angle stabilization technology which has been proposed in the past, has almost the stability to the manufacturing process and the stability related to the durability. There are no reports on corner stabilization techniques.
  • the present invention has been made to solve the problem of the stability of the pretilt angle of a liquid crystal with respect to a change in environmental temperature, particularly, the stability of the pretilt angle at a high temperature. That is, an object of the present invention is to form a liquid crystal alignment film having a small change in pretilt angle with respect to a change in environmental temperature, a stable high liquid crystal even at high temperatures, and a pretilt angle. It is an object of the present invention to provide a liquid crystal display device capable of performing high-quality display stably with respect to a change in environmental temperature.
  • the present invention has the following gist.
  • A is a main chain structure of a polymer obtained by addition polymerization
  • B is a single bond or It is a bonding group selected from the group consisting of an ester, an ether, an amide, and a urethane.
  • XI and X2 independently represent an aromatic ring, an aliphatic ring, or a heterocyclic ring
  • R1 is an alkyl group having 3 to 18 carbon atoms, an alkoxy group having 3 to 18 carbon atoms, and a fluoroalkyl having 115 carbon atoms. Group, a fluoroalkoxy group having 115 carbon atoms, a cyano group, or a halogen atom.
  • liquid crystal alignment treatment agent according to 1 above, further comprising at least one polymer selected from the group consisting of polyamic acids, polyimides, polyamides, polyesters, and polyureas.
  • the addition polymer contains at least 50% of the structural unit represented by the formula (1) in terms of the number of the structural units, and the ratio of the addition polymer to all polymer components is 0.1 to 20% by weight. %.
  • the liquid crystal alignment treatment agent according to any one of items 1 to 4, above.
  • liquid crystal alignment treatment agent according to any one of the above items 15 to 15, wherein the addition polymer contains 5% or more of the structural unit represented by the formula (1) in terms of the number of the structural units.
  • R2 represents a hydrogen atom, a methyl group, or a halogen atom.
  • the liquid crystal alignment film formed from the liquid crystal alignment agent of the present invention can provide a thermally stable high pretilt angle to a liquid crystal in which the change in the pretilt angle of the liquid crystal with respect to a change in environmental temperature is small. it can.
  • the liquid crystal display device using the liquid crystal alignment agent of the present invention can perform stable and high-quality display with little change in applied voltage-transmittance characteristic with respect to changes in environmental temperature.
  • FIG. 1 is a graph showing a VT curve of Example 1.
  • FIG. 2 is a graph showing a VT curve of Comparative Example 4.
  • V applied voltage
  • T transmittance (%)
  • the liquid crystal alignment treating agent of the present invention is a coating solution for forming a liquid crystal alignment film on a substrate, and is an addition polymer containing a structural unit represented by the formula (1) as a stabilizer for imparting a pretilt angle of liquid crystal. It contains.
  • A is a main chain structure of a polymer obtained by an addition polymerization reaction
  • B is a single bond or a bonding group selected from the group consisting of ester, ether, amide, and urethane.
  • the polymer obtained by the addition polymerization reaction include polybutyl, poly (meth) acrylic acid, and polymaleimide. Specific structural examples of the portion indicated by A are described below, but are not limited thereto. [0017] [Dani 4]
  • R2 represents a hydrogen atom, a methyl group, or a halogen atom such as a fluorine atom or a chlorine atom.
  • poly (meth) acrylic acid is preferred from the viewpoints of polymerizability and ease of side chain introduction.
  • R2 represents a hydrogen atom, a methyl group, or a halogen atom such as a fluorine atom and a chlorine atom.
  • XI and X2 independently represent an aromatic ring, an aliphatic ring, or a hetero ring
  • R 1 is an alkyl group having 3 to 18 carbon atoms, and an alkoxy group having 3 to 18 carbon atoms.
  • the portion composed of XI-X2-R1 preferably has a liquid crystal-like structure.
  • Aromatic rings include benzene, naphthalene, anthracene, phenanthrene, and indane rings, and aliphatic rings include cyclobutane, cyclopentane, cyclohexane, and bicyclooctane. Include a furan ring, a thiophene ring, a thiazole ring, a pyridine ring, a pyrimidine ring, Examples include a noline ring, an acylidine ring, a phenanthridine ring, a benzothiazole ring, and a dioxane ring.
  • a higher linearity is more preferable, for example, a benzene ring is preferably a para bond.
  • Preferred examples of XI or X2 are shown below, but are not limited thereto. XI and X2 may have different structures.
  • any hydrogen atom on the ring structure may be substituted with a methyl group, an ethyl group, or a halogen atom such as a fluorine atom or a chlorine atom.
  • the combination of XI and X2 is more preferably a combination in which a group power consisting of a benzene ring, a cyclohexane ring, a pyridine ring, and a pyrimidine ring is also selected from the viewpoint of compatibility with the current liquid crystal. , Benzene ring, and cyclohexane ring force preferable.
  • the combination of XI and X2 is particularly preferably selected from the group consisting of biphenyl, bicyclohexyl, phenylcyclohexyl, and cyclohexylphenyl.
  • R1 is an alkyl group having 3 to 18 carbon atoms, an alkoxy group having 3 to 18 carbon atoms, or a fluorophore having 115 carbon atoms in accordance with the compatibility with the liquid crystal to be used and the desired pretilt angle. It can be appropriately selected from a alkyl group, a fluoroalkoxy group having 115 carbon atoms, a cyano group, and a halogen atom. Among them, an alkyl group having 5 to 8 carbon atoms and an alkoxy group having 5 to 8 carbon atoms are particularly preferable because of wide application range.
  • n is preferably an integer of 3-12, particularly preferably 5-10.
  • the addition polymer containing the structural unit represented by the formula (1) is a homopolymer of the structural unit represented by the formula (1) or a random copolymer with another structural unit obtained by addition polymerization. It may be any of a copolymer, an alternating copolymer, a block copolymer, or a graft copolymer. These polymers can be synthesized by known radical polymerization, cationic polymerization, ion polymerization and the like.
  • the polymerization means may be any of thermal polymerization, photopolymerization and the like.
  • the addition polymer containing the structural unit represented by the formula (1) comprises the monomer corresponding to the formula (1), that is, the XI-X2-R1 via the bonding group represented by the B It can be obtained by a general addition polymerization reaction using a vinyl compound having a substituent, a maleimidized compound, or the like.
  • the polymer having the structure represented by the formula (1) controls the magnitude of the pretilt angle, controls the solubility of the polymer in an organic solvent, and the other polymer contained in the liquid crystal alignment treatment agent.
  • a random copolymer It can be an alternating copolymer, a block copolymer or the like.
  • Specific examples of other monomers capable of undergoing an addition polymerization reaction include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, Hexyl (meth) acrylate, hydroxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyhexyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, (meth) acrylic acid Cyclohexyl, (meth) acrylate, benzyl (meth) acrylate, glycidyl (meth) acrylate, styrene, hydroxystyrene, carboxystyrene, methacrylamide, N-aryl methacrylamide, N-hydroxyethyl N-methyl methacrylamide, N-methyl-N-methyl methacrylamide,
  • the formula (1) An example of a method for obtaining an addition polymer containing the structural unit shown by a radical polymerization method is described below. Dissolve the corresponding monomer in an organic solvent and add a reaction initiator.
  • the solvent for the above reaction is not particularly limited as long as it can dissolve the obtained polymer.
  • reaction initiator examples include azoi conjugates such as AIBN (azobis isopuchi mouth-tolyl), and peroxy sulfides such as peroxy benzoyl.
  • AIBN azobis isopuchi mouth-tolyl
  • peroxy sulfides such as peroxy benzoyl.
  • the content ratio of the structural unit represented by the formula (1) is a force that can be freely set. Therefore, the content is preferably 5% or more in terms of the number of structural units, more preferably 30% or more.
  • the formula (1) The content ratio of the structural unit represented by is preferably 50% or more, more preferably 60% or more, and particularly preferably 70% or more.
  • the molecular weight of the polymer having the structure represented by the formula (1) is not particularly limited !, but is, for example, 1000 to 1,000,000, 2000 to 2000, as a weight average molecular weight measured by a GPC (Gel Permeation Chromatography) method. Suitable for a force such as 400,000, 5000 to 100,000.
  • the polymer component contained in the liquid crystal alignment treatment agent of the present invention is, in addition to the addition polymer containing the structural unit represented by the formula (1), for controlling the liquid crystal alignment in the horizontal direction with respect to the substrate. It is preferable to include a polymer.
  • a polymer a polymer used for a general liquid crystal alignment film can be used, and polyamic acid, polyimide, polyamide, polyester, polyurea and the like are preferable.
  • polyamic acid or polyimide is excellent in liquid crystal alignment and heat resistance, is widely used as a material for a liquid crystal alignment film, and is preferably used as a polymer component contained in the liquid crystal alignment treatment agent of the present invention.
  • the structure of the above-mentioned polyamic acid or polyimide is not particularly limited.
  • the liquid crystal alignment treatment agent of the present invention is used in a method of irradiating polarized ultraviolet light or the like to form a liquid crystal alignment film, that is, a so-called light alignment film
  • the main chain contains a cyclobutane ring, an amide bond, an olefin structure, and a benzophenone structure that chemically react with light.
  • polyamic acid can be obtained by reacting tetracarboxylic dianhydride with diamine conjugate in an organic solvent.
  • polyimide can be obtained by imidizing (dehydrating and cyclizing) polyamic acid.
  • Examples of the polyamic acid that can be contained in the liquid crystal alignment treatment agent of the present invention include one or more tetracarboxylic dianhydrides selected from the following tetracarboxylic dianhydrides and diamine conjugates. Examples include, but are not limited to, polyamic acids obtained by reacting an anhydride with one or more diamine compounds.
  • Examples of the tetracarboxylic dianhydride used in the polyamic acid synthesis reaction include pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3,4,4,4-biphene- Rutetracarbonic acid, 2,3,3,4-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3,4,4,1-benzophenonetetracarboxylic acid, 3,3,4,4,1-chalconetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3
  • the diamine compounds used in the polyamic acid synthesis reaction include p-diene diamine, m-phenylene diamine, N, N-diaryl 1,2,4 benzenetriamine, 2,5-diaminobenzonitrile, and 2,5-diaminotoluene.
  • 2,6-diaminotoluene 4,4'diaminobiphenyl, 3,3, -dimethyl-4,4-diaminobiphenyl, 3,3, dimethoxy-4,4, -diaminobiphenyl, diaminodiphenylmethane, diaminodiphenyl -Diether, diaminodiphenylamine, 2,2, diaminodiphenylpropane, bis (3,5-diethyl-4-aminophenyl) methane, diaminodiphenylsulfone, diaminobenzophenone, 3,3'-diaminochalcone, 4,4, Diaminochalcone, 3, 3, diaminostilbene, 4, 4, diaminostilbene, diaminonaphthalene, 1, 4 1,4-bis (4-aminophenyl) benzene, 9,10 bis (4-aminophenyl) anthracene, 1,3 bis (4-aminophenoxy
  • the polyamic acid contained in the liquid crystal alignment agent of the present invention preferably has a weight average molecular weight ⁇ Mw ⁇ of 21,500,000 as measured by GPC (Gel Permeation Chromatography). If the molecular weight is too small, the strength of the coating film obtained therefrom will be insufficient, and if the molecular weight is too large, the workability during the formation of the coating film may deteriorate.
  • the molecular weight of the polyamic acid can be controlled by adjusting the molar ratio of the tetracarboxylic dianhydride and the diamine conjugate used in the polyamic acid synthesis reaction. As in the ordinary polycondensation reaction, the closer the mole ratio is to 1.0, the higher the degree of polymerization of the produced polymer becomes.
  • the polyamic acid synthesis reaction is carried out in an organic solvent at a reaction temperature of usually 0 to 150 ° C, preferably 0 to 100 ° C.
  • the organic solvent at this time is not particularly limited as long as the obtained polyamic acid can be dissolved.
  • Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethyl Sulfone, hexamethylsulfoxide, ⁇ -butyrolataton and the like can be mentioned. These may be used alone or as a mixture. Further, even if the solvent does not dissolve the polyamic acid, it may be used by mixing with the above solvent as long as the polyamic acid generated by the polymerization reaction does not precipitate.
  • Examples of the polyimide that can be contained in the liquid crystal alignment treatment agent of the present invention include those obtained by subjecting the above-mentioned polyamic acid to imidization (dehydration ring closure).
  • the polyimide is included in its category even if all of the repeating units of the polyamic acid are not imidized, and is suitably used for the liquid crystal alignment treatment agent of the present invention.
  • the imidization (dehydration ring closure) of the polyamic acid can be performed in a solution.
  • the reaction temperature is usually 50 to 200 ° C, preferably 60 to 170 ° C. If the reaction temperature is lower than 50 ° C, the dehydration ring closure reaction does not proceed sufficiently, and if the reaction temperature exceeds 200 ° C, the molecular weight of the obtained imidized polymer may decrease. Addition of a dehydrating agent and a dehydration ring-closing catalyst during this imidization reaction is advantageous because the imidation reaction proceeds at a relatively low temperature and the resulting polyimide is less likely to have a reduced molecular weight.
  • the dehydrating agent for example, tertiary amines such as pyridine and triethylamine can be used.
  • the amount of the dehydrating agent used is preferably 0.01 to 20 mol per 1 mol of the repeating unit of the polyamic acid.
  • the dehydration ring-closing catalyst for example, tertiary amines such as pyridine and triethylamine can be used.
  • the amount of the dehydration ring-closing catalyst used is preferably 0.01 to 10 mol per 1 mol of the dehydrating agent used.
  • the organic solvent used for the dehydration ring closure reaction include the organic solvents exemplified as those used for the synthesis of polyamic acid.
  • the reaction temperature when the dehydrating agent and the dehydration ring-closing catalyst are added is usually 0 to 180 ° C, preferably 10 to 150 ° C.
  • the polyamic acid or polyimide obtained as described above may be used as it is, or may be used after precipitation and isolation in a poor solvent such as methanol or ethanol.
  • the addition polymer containing the structural unit represented by the formula (1) is contained in a form chemically bonded to a polymer contained as another polymer component. You may. As a method for this, for example, a substituent capable of addition polymerization is introduced into a side chain of a polymer contained as another polymer component, and in a solution in which this polymer is present, as described above, the formula (1) is used. An addition polymerization reaction may be carried out using a monomer corresponding to the structure shown and, if necessary, other monomer components capable of undergoing an addition polymerization reaction.
  • a polymer having the structure represented by the formula (1) is chemically bonded to a polyamic acid or a polyimide
  • a diamine having a butyl group and a methacryloyl group in a side chain is used.
  • the synthesis may be performed, and the above reaction may be performed in a solution containing the polyamic acid.
  • diamine having a methacryloyl group in a side chain examples include the following diamines. [0057] [Formula 19]
  • a polymer containing a hydroxy group, a carboxyl group, an amino group, an isocyanate group, an acid anhydride group, etc. as a polymer having a structure represented by the formula (1) and other polymer components And bonded by a reaction between a hydroxy group or a carboxyl group and an isocyanate group, or a reaction between an amino group and an acid anhydride group.
  • the weight ratio of the structural unit represented by the formula (1) in the entire polymer component contained in the liquid crystal alignment treatment agent of the present invention is arbitrarily determined according to the desired pretilt angle. It can be set, but the weight ratio is preferably 0.01 to 50% by weight, more preferably 0.1 to 20% by weight.
  • the liquid crystal alignment treatment agent of the present invention includes an addition polymer containing the structural unit represented by the formula (1), and a polymer for imparting horizontal liquid crystal alignment control to the substrate.
  • the content ratio of the addition polymer containing the structural unit represented by the formula (1) may be 0.1 to 20% by weight of the whole polymer component contained in the liquid crystal alignment treatment agent. It is more preferably 0.3-5% by weight.
  • the composition of the polymer component contained in the liquid crystal alignment treatment agent of the present invention be, for example, (A) the content ratio of the structural unit represented by the formula (1) is
  • the addition polymer is at least 50%, more preferably at least 60%, particularly preferably at least 70% in terms of the number of units, and at least one type selected from (B) polyamic acid, polyimide, polyamide, polyester or polyester.
  • the liquid crystal alignment treatment agent of the present invention is a coating solution containing the above-described polymer component.
  • the solvent contained in the coating solution is not particularly limited as long as it can dissolve the polymer component. These can be used alone or in combination of two or more solvents. Furthermore, even if it is a solvent which does not dissolve the polymer by itself, it can be added within a range in which the polymer component does not precipitate. Specific examples of the solvent component are shown below, but are not limited thereto.
  • N-methyl-2-pyrrolidone ⁇ , ⁇ -dimethylformamide, ⁇ , ⁇ -dimethylacetamide, ⁇ -butyrolataton, dimethylsulfoxide, tetramethylurea, hexamethylphosphotriamide, m-creso-monole, methinole Anoreconore, etinoleanorekonore, echinoreenotenore, ethylenglycorenomonomethinooleatenore, ethylene glycolonorenotenore, ethylene glycoloneole n- butinoreatenore, ethyleneglycorerenotenore Athenole, diethylene glycol dimethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, cyclohexanone, hexane, heptane, toluene, xylene.
  • the liquid crystal alignment treatment agent of the present invention may contain a functional silane-containing compound for imparting adhesion to a substrate.
  • a functional silane-containing compound for imparting adhesion to a substrate.
  • Examples include silane, bis (ethylamino) dimethylsilane, 1-trimethylsilylimidazole, methyltriacetoxysilane, ethoxymethylphenylsilane, phenyltriethoxysilane, and diphenylsilanediol. ,.
  • the above-mentioned components are mixed to form a solution having a concentration capable of being applied to a substrate.
  • concentration of the polymer component in the liquid crystal alignment treatment agent of the present invention can be appropriately changed depending on the setting of the thickness of the liquid crystal alignment film to be formed, but is preferably set to be 11 to 15% by weight. If it is less than 1% by weight, it is difficult to form a uniform and defect-free coating film, and if it is more than 15% by weight, the storage stability of the solution may be poor.
  • the liquid crystal alignment treating agent of the present invention obtained as described above is filtered, if necessary, It can be applied to a substrate, dried and fired to form a coating film. By subjecting the coating surface to rubbing or irradiating polarized ultraviolet light in a certain direction to the substrate surface, the liquid crystal It can be used as an alignment film.
  • a transfer printing method is widely used industrially from the viewpoint of productivity S such as a spin coating method, a printing method, an ink jet method, and productivity. It is also suitably used in the liquid crystal aligning agent of the present invention.
  • the step of drying after applying the liquid crystal alignment treatment agent is not necessarily required. However, when the time from application to one baking is not constant for each substrate, or when baking is not performed immediately after application. Preferably includes a drying step.
  • the drying method is not particularly limited as long as the solvent is evaporated to such an extent that the shape of the coating film is not deformed by the transfer of the substrate or the like.
  • a method of drying on a hot plate at 50 to 150 ° C., preferably 80 to 120 ° C. for 0.5 to 30 minutes, preferably 115 minutes may be employed.
  • the firing of the liquid crystal alignment treatment agent can be performed at any temperature of 100 to 350 ° C, preferably 150 to 300 ° C, and more preferably 200 to 250 ° C. is there.
  • a polyamic acid is contained in the liquid crystal alignment treatment agent, the conversion to polyamic acid force polyimide changes depending on the firing temperature.However, the liquid crystal alignment treatment agent of the present invention does not necessarily need to be imidized 100%. There is no. However, it is preferable to perform firing at a temperature that is at least 10 ° C. higher than the heat treatment temperature required for the liquid crystal cell manufacturing process, such as curing of a sealant.
  • the thickness of the coating film after firing is too large, which is disadvantageous in terms of power consumption of the liquid crystal display element, and too thin, the reliability of the liquid crystal display element may be reduced. Is 10—100 nm.
  • the liquid crystal display element of the present invention is obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method, and then forming a liquid crystal cell by a known method to obtain a liquid crystal display element. It is.
  • a pair of substrates on which a liquid crystal alignment film is formed is sandwiched between spacers of 110 ⁇ m, preferably 2 to 10 ⁇ m, with a rubbing direction of 0 to 270 ⁇ m. It is a common practice to install the device at an arbitrary angle, fix the periphery with a sealant, and inject and seal liquid crystal.
  • the method of sealing the liquid crystal is not particularly limited.
  • the vacuum method in which the pressure in the manufactured liquid crystal cell is reduced and then the liquid crystal is injected, and the sealing after the liquid crystal is dropped. Examples of the method include a dropping method.
  • the substrate used for the liquid crystal display element is not particularly limited as long as it is a substrate having high transparency, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. It is also preferable to use a substrate on which electrodes and the like are formed from the viewpoint of simplifying the process.
  • a reflection type liquid crystal display element an opaque object such as a silicon wafer can be used as long as only one substrate is used. In this case, a material which reflects light such as aluminum can be used.
  • NMP N-methyl- 2 Pyrrolidone
  • AIBN azoisobutyl mouth-tolyl
  • NMP was added to the reaction solution of the addition polymer obtained in Synthesis Example 2 to obtain a solution having an addition polymer concentration of 3 wt%.
  • NMP was added to the polyamic acid reaction solution obtained in Synthesis Example 3 to obtain a polyamic acid concentration of 3 wt%.
  • To 99 g of this 3 wt% solution of polyamic acid 1 g of a 3 wt% solution of the addition polymer was added, and the mixture was sufficiently stirred to obtain a uniform solution, thereby obtaining a liquid crystal alignment treating agent of the present invention.
  • This liquid crystal alignment treatment agent was subjected to pressure filtration with a membrane filter having a pore size of 0.5 ⁇ m, and then spin-coated on a glass substrate with a transparent electrode.
  • the substrate was dried on a hot plate at 80 ° C for 5 minutes, and then baked in a hot air circulating oven at 210 ° C for 60 minutes to obtain a 50 nm-thick coating film on the substrate.
  • the coated surface was subjected to a rubbing treatment using a rubbing device equipped with rayon cloth under the conditions of a rotational speed of 300 rpm, a moving speed of 20 mmZs, and an indentation of 0.5 mm to obtain a substrate with a liquid crystal alignment film.
  • the pretilt angle of this liquid crystal cell at 23 ° C was measured to 22.1 ° using a pretilt angle measuring device (PAS-301) manufactured by ELSICON.
  • PAS-301 the voltage-transmittance characteristic of this liquid crystal cell was measured at 23 ° C and 60 ° C, and the applied voltage (V90) at which the transmittance became 90% was measured.
  • the thermal stability was evaluated by comparing the values of. As a result, 23. V90 in C is 0.72V, 60.
  • the V90 at C was 0.66 V, and although a shift to the low voltage side due to the temperature characteristics of the liquid crystal was observed, no shift to the high voltage side due to the decrease in the pretilt angle was observed. Regardless, it was confirmed to have a very stable pretilt angle.
  • the measurement of the VT curve and the calculation of V90 were performed as follows.
  • the angle between the polarizer and analyzer of the polarizing microscope was set to 90 degrees.
  • the liquid crystal cell was installed so that the alignment processing directions of the upper and lower substrates matched the polarization directions of the polarizer and the analyzer, respectively, so that the amount of light transmission was maximized when no voltage was applied. .
  • the measurement at 23 ° C was performed at room temperature of 23 ° C, and the measurement at 60 ° C was performed by heating the liquid crystal cell to 60 ° C on a stage of a polarizing microscope.
  • the pretilt angle and the VT curve of this liquid crystal cell were measured in the same manner as in Example 1. As a result, the pretilt angle was 22.5 °. The V90 at 23 ° C was 0.78 V, and the V90 at 60 ° C was 0.66 V. Although a shift to a lower voltage side due to the temperature characteristics of the liquid crystal was observed, it was due to a decrease in the pretilt angle. No shift to the high voltage side is observed, and it is confirmed that the pretilt angle has a very stable irrespective of the ambient temperature. ⁇ Comparative Example 1>
  • a liquid crystal cell was produced in the same manner as in Example 1 using the above liquid crystal alignment treatment agent. Observation of the alignment state of the liquid crystal cell with a polarizing microscope confirmed that the liquid crystal cell had a uniform alignment without defects.
  • the pretilt angle and the VT curve of this liquid crystal cell were measured in the same manner as in Example 1. As a result, the pretilt angle was 16.5 °.
  • the V90 at 23 ° C was 0.87 V
  • the V90 at 60 ° C was 1.01 V
  • a shift to a high voltage side due to a decrease in the pretilt angle was observed at 60 ° C. It was unstable.
  • a liquid crystal cell was produced in the same manner as in Example 1 using the above-mentioned liquid crystal alignment treatment agent. Observation of the alignment state of the liquid crystal cell with a polarizing microscope confirmed that the liquid crystal cell had a uniform alignment without defects.
  • the pretilt angle and the VT curve of this liquid crystal cell were measured in the same manner as in Example 1. As a result, the pretilt angle was 20.9 °.
  • the V90 at 23 ° C was 0.63 V
  • the V90 at 60 ° C was 0.76 V
  • a shift to a high voltage side due to a decrease in the pretilt angle was observed at 60 ° C. It was unstable.
  • NMP was added to the reaction solution of the addition polymer obtained above to obtain a solution having an addition polymer concentration of 3 wt%.
  • NMP was added to the polyamic acid reaction solution obtained above to obtain a solution having a polyamic acid concentration of 3% by weight.
  • a 3 wt% solution lg of the above-mentioned addition polymer was added to 99 g of a 3 wt% solution of the polyamic acid, and the mixture was sufficiently stirred to obtain a uniform solution, thereby obtaining a liquid crystal alignment treatment agent for comparison.
  • a liquid crystal cell was produced in the same manner as in Example 2 using the above liquid crystal alignment agent. Observation of the alignment state of the liquid crystal cell with a polarizing microscope confirmed that the liquid crystal cell had a uniform alignment without defects.
  • the pretilt angle and the VT curve of this liquid crystal cell were measured in the same manner as in Example 1. As a result, the pretilt angle was 22.1 °.
  • the V90 at 23 ° C was 0.70 V, and the V90 at 60 ° C was 1.28 V. At 60 ° C, a large shift to the high voltage side due to the decrease in pretilt angle was observed, and the pretilt angle was very unstable.
  • a 3 wt% solution of polyamic acid prepared in Comparative Example 3 was used as a liquid crystal alignment treatment agent for comparison.
  • liquid crystal alignment agent Using this liquid crystal alignment agent, a liquid crystal cell was produced in the same manner as in Example 2. Observation of the orientation of the liquid crystal cell with a polarizing microscope revealed that the cell was uniform with no defects. Was confirmed.
  • the pretilt angle and the VT curve of this liquid crystal cell were measured in the same manner as in Example 1. As a result, the pretilt angle was 15.9 °.
  • the V90 at 23 ° C is 0.78 V
  • the V90 at 60 ° C is 1.42 V
  • a large shift toward high voltage due to the decrease in pretilt angle is observed at 60 ° C. Very unstable.
  • a 3 wt% solution of polyamic acid prepared in Example 1 was used as a liquid crystal alignment treatment agent for comparison.
  • liquid crystal alignment agent Using this liquid crystal alignment agent, a liquid crystal cell was produced in the same manner as in Example 2. Observation of the orientation of the liquid crystal cell with a polarizing microscope confirmed that the liquid crystal cell had a uniform orientation without defects.
  • the pretilt angle and the VT curve of this liquid crystal cell were measured in the same manner as in Example 1. As a result, the pretilt angle was as low as 0.3 °. The V90 at 23 ° C was 1.41 V, and the V90 at 60 ° C was 1.33 V. A shift toward a lower voltage due to the temperature characteristics of the liquid crystal was observed. This means that the pretilt angle almost appeared at 23 ° C, and therefore, even when the temperature was raised to 60 ° C, a decrease in the pretilt angle was not observed.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

An aligning agent for liquid crystals which can form a liquid-crystal alignment film which enables a liquid crystal to change little in pretilt angle with changing ambient temperature and to stably have a large pretilt angle even at a high temperature; and a liquid-crystal display element which can stably display high-quality images even when the ambient temperature changes. The aligning agent for liquid crystals comprises an addition polymer having a structural unit represented by the following formula (1). The liquid-crystal display element is produced with the aligning agent for liquid crystals. (In the formula, A is a structure of the main chain of a polymer obtained by addition polymerization; B is a single bond or a bonding group selected from the group consisting of an ester, ether, amide, and urethane; X1 and X2 each independently represents an aromatic ring, aliphatic ring, or heterocycle; and R1 represents C3-18 alkyl, C3-18 alkoxy, C1-5 fluoroalkyl, C1-5 fluoroalkoxy, cyano, or halogeno.)

Description

明 細 書  Specification
液晶配向処理剤及び液晶表示素子  Liquid crystal alignment agent and liquid crystal display device
技術分野  Technical field
[0001] 本発明は、液晶表示素子の液晶配向膜を形成するのに用いられる液晶配向処理 剤、及びこれを用いて作製された液晶表示素子に関するものである。  The present invention relates to a liquid crystal alignment treatment agent used for forming a liquid crystal alignment film of a liquid crystal display element, and a liquid crystal display element manufactured using the same.
背景技術  Background art
[0002] 現在、普及している液晶表示素子は、対向する 2枚の基板間に液晶物質を充填さ せた構造からなり、該液晶物質は基板表面に設けられた液晶配向膜の作用により所 望の初期配向状態を維持している。この液晶配向膜としては、ポリイミド系の榭脂膜 をラビングして用いる方法 (ラビング膜)が一般的に広く用いられている。また、ラビン グ膜に代わる方法として、有機膜に偏光紫外線などを照射する方法 (光配向膜)も精 力的に検討されている。  [0002] At present, a liquid crystal display element that has become widespread has a structure in which a liquid crystal material is filled between two opposing substrates, and the liquid crystal material is formed by the action of a liquid crystal alignment film provided on the substrate surface. The desired initial alignment state is maintained. As the liquid crystal alignment film, a method of rubbing a polyimide resin film (rubbing film) is generally widely used. As an alternative to the rubbing film, a method of irradiating the organic film with polarized ultraviolet light (photo-alignment film) is also being vigorously studied.
[0003] このような液晶表示素子の印加電圧一透過率特性に関しては、一般的に環境温度 によって変動することが知られており、安定して高品位の表示をする為の障害となる。 この特性が変動する第 1の要因としては液晶の特性に温度依存性があることが挙げら れるが、一方で液晶配向膜に由来する要因も存在する。例えば、液晶のプレチルト 角が、環境温度によって変動すると、液晶を駆動させる際の閾値電圧にずれが生じ、 結果として液晶表示素子の印加電圧一透過率特性も変動するのである。環境温度に よるプレチルト角の変動は、プレチルト角が高い液晶配向膜や、光配向膜のように、 液晶配向膜の液晶配向規制力が弱い場合に顕著に表れる。極端な場合には高温 時にプレチルト角が大きく低下し、正常な液晶駆動ができなくなるなどの問題が生じ る。よって、高いプレチルト角を必要とする液晶表示素子や、ラビング膜に代わる方 法として注目されて 、る光配向膜にぉ 、ては、特に重要な問題となる。  [0003] It is generally known that the applied voltage-transmittance characteristic of such a liquid crystal display element fluctuates depending on the environmental temperature, and this is an obstacle to stable high-quality display. The first factor in which the characteristics fluctuate is that the characteristics of the liquid crystal have temperature dependence, but there is also a factor derived from the liquid crystal alignment film. For example, if the pretilt angle of the liquid crystal changes due to the environmental temperature, a shift occurs in the threshold voltage when driving the liquid crystal, and as a result, the applied voltage-transmittance characteristic of the liquid crystal display element also changes. The fluctuation of the pretilt angle due to the environmental temperature is remarkable when the liquid crystal alignment film has a weak liquid crystal alignment regulating force, such as a liquid crystal alignment film having a high pretilt angle or a photoalignment film. In extreme cases, the pretilt angle is greatly reduced at high temperatures, causing problems such as a failure to drive the liquid crystal normally. Therefore, a liquid crystal display element that requires a high pretilt angle and a method of replacing a rubbing film have attracted attention, and this is a particularly important problem for a photo-alignment film.
[0004] 通常、単純な構造のポリイミド系液晶配向膜から得られる液晶のプレチルト角はあ まり高くはないが、このプレチルト角を高め、任意の値にする手法として、ポリイミドの 側鎖に長鎖アルキル基やフルォロアルキル基を導入する方法が知られて 、る(例え ば、特開平 2— 282726号公報参照。 )0 [0005] また、上記のように高められたプレチルト角に関して、液晶配向膜を形成する温度 に対する安定性、液晶表示素子とした後の熱処理に対する安定性を改善する手法と して、ポリイミドの側鎖構造に環状置換基を導入する手法も知られている(例えば、特 開平 9 278724号公報参照。 )0 [0004] Usually, the pretilt angle of the liquid crystal obtained from a polyimide-based liquid crystal alignment film having a simple structure is not very high. is known a method of introducing an alkyl group or Furuoroarukiru group, Ru (for example, JP-2- 282726 discloses reference.) 0 [0005] Further, with respect to the pretilt angle increased as described above, the stability to the temperature at which a liquid crystal alignment film is formed and the stability to heat treatment after forming a liquid crystal display element are improved by improving the side chain of polyimide. structures are also known techniques for introducing a cyclic substituent (e.g., JP-a 9 278 724 JP reference.) 0
[0006] し力しながら、従来から提案されて!、るプレチルト角の安定化技術は、製造プロセス に対する安定性や、耐久性に関わる安定性がほとんどであり、環境温度の変化に対 するプレチルト角の安定ィ匕技術に関しての報告例はない。  [0006] The pretilt angle stabilization technology, which has been proposed in the past, has almost the stability to the manufacturing process and the stability related to the durability. There are no reports on corner stabilization techniques.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、環境温度の変化に対する液晶のプレチルト角の安定性、特に高温時で のプレチルト角安定性の問題を解決するためになされたものである。すなわち本発明 の課題は、環境温度の変化に対してプレチルト角の変化が少なぐかつ高温時にお Vヽても液晶に安定して高!、プレチルト角を与える液晶配向膜を形成させることができ る液晶配向処理剤を提供することであり、環境温度の変化に対して安定して高品位 な表示をすることが可能な液晶表示素子を提供することにある。 The present invention has been made to solve the problem of the stability of the pretilt angle of a liquid crystal with respect to a change in environmental temperature, particularly, the stability of the pretilt angle at a high temperature. That is, an object of the present invention is to form a liquid crystal alignment film having a small change in pretilt angle with respect to a change in environmental temperature, a stable high liquid crystal even at high temperatures, and a pretilt angle. It is an object of the present invention to provide a liquid crystal display device capable of performing high-quality display stably with respect to a change in environmental temperature.
課題を解決するための手段  Means for solving the problem
[0008] 上記本発明の課題は以下に示す液晶配向処理剤及び液晶表示素子により解決さ れることが見出された。 [0008] It has been found that the above object of the present invention can be solved by the following liquid crystal alignment treatment agent and liquid crystal display element.
[0009] 力べして、本発明は下記の要旨を有するものである。 [0009] By all means, the present invention has the following gist.
1. 下記式(1)で示される構造単位を含む付加重合体を含有する液晶配向処理剤  1. A liquid crystal alignment treatment agent containing an addition polymer containing a structural unit represented by the following formula (1)
[0010] [化 1] [0010] [Formula 1]
Figure imgf000004_0001
Figure imgf000004_0001
(式中、 Aは付加重合によって得られる重合体の主鎖構造であり、 Bは単結合又は エステル、エーテル、アミド、及びウレタン力もなる群より選ばれる結合基である。 XIと X2は独立して芳香族環、脂肪族環、又はへテロ環を表し、 R1は炭素数 3— 18のァ ルキル基、炭素数 3— 18のアルコキシ基、炭素数 1一 5のフルォロアルキル基、炭素 数 1一 5のフルォロアルコキシ基、シァノ基、又はハロゲン原子を表す。 ) (In the formula, A is a main chain structure of a polymer obtained by addition polymerization, and B is a single bond or It is a bonding group selected from the group consisting of an ester, an ether, an amide, and a urethane. XI and X2 independently represent an aromatic ring, an aliphatic ring, or a heterocyclic ring, and R1 is an alkyl group having 3 to 18 carbon atoms, an alkoxy group having 3 to 18 carbon atoms, and a fluoroalkyl having 115 carbon atoms. Group, a fluoroalkoxy group having 115 carbon atoms, a cyano group, or a halogen atom. )
2.更に、ポリアミド酸、ポリイミド、ポリアミド、ポリエステル及びポリウレァカもなる群か ら選ばれる少なくとも一種類の重合体とを含有する上記 1に記載の液晶配向処理剤  2. The liquid crystal alignment treatment agent according to 1 above, further comprising at least one polymer selected from the group consisting of polyamic acids, polyimides, polyamides, polyesters, and polyureas.
3.付加重合体が、ポリアミド酸、ポリイミド、ポリアミド、ポリエステル及びポリウレアから なる群から選ばれる少なくとも一種類の重合体と化学的に結合した状態で含有され ているに上記 2に記載の液晶配向処理剤。 3. The liquid crystal alignment treatment as described in 2 above, wherein the addition polymer is contained in a state of being chemically bonded to at least one polymer selected from the group consisting of polyamic acid, polyimide, polyamide, polyester, and polyurea. Agent.
4.液晶配向処理剤に含有される重合体成分全体の中で、式(1)で示される構造単 位が占める重量割合が 0. 01— 50重量%である、上記 2又は 3に記載の液晶配 向処理剤。  4. The method according to the above 2 or 3, wherein the weight ratio of the structural unit represented by the formula (1) is 0.01% to 50% by weight in the whole polymer component contained in the liquid crystal alignment treatment agent. Liquid crystal orientation agent.
5.付加重合体が、式(1)で示される構造単位を、構造単位の数換算で 50%以上含 有し、かつ全重合体成分における前記付加重合体の比率が 0. 1— 20重量%である 上記 1一 4のいずれかに記載の液晶配向処理剤。  5. The addition polymer contains at least 50% of the structural unit represented by the formula (1) in terms of the number of the structural units, and the ratio of the addition polymer to all polymer components is 0.1 to 20% by weight. %. The liquid crystal alignment treatment agent according to any one of items 1 to 4, above.
6.付加重合体が、式(1)の構造単位を構造単位数換算で 5%以上含有する上記 1 一 5のいずれかに記載の液晶配向処理剤。  6. The liquid crystal alignment treatment agent according to any one of the above items 15 to 15, wherein the addition polymer contains 5% or more of the structural unit represented by the formula (1) in terms of the number of the structural units.
7.付加重合体が、その構造単位の式(1)において、 A— Bで示される部分力 下記 式(2)で示される構造である上記 1一 6のいずれかに記載の液晶配向処理剤。  7. The liquid crystal alignment treatment agent according to any one of the above items 1 to 6, wherein the addition polymer has a structural unit represented by the following formula (2) in the structural unit represented by the formula (1): .
[化 2] [Formula 2]
Figure imgf000005_0001
Figure imgf000005_0001
(式中、 R2は水素原子、メチル基、又はハロゲン原子を表す。 ) (In the formula, R2 represents a hydrogen atom, a methyl group, or a halogen atom.)
8.上記 1一 7のいずれかに記載された液晶配向処理剤を用いた液晶表示素子。 発明の効果 8. A liquid crystal display device using the liquid crystal alignment treatment agent according to any one of the above items 1 to 7. The invention's effect
[0012] 本発明の液晶配向処理剤から形成された液晶配向膜は、環境温度の変化に対す る液晶のプレチルト角変化が少なぐ液晶に対し熱的に安定な高いプレチルト角を与 えることができる。また、本発明の液晶配向処理剤を用いた液晶表示素子は、環境 温度の変化に対し印加電圧一透過率特性の変動が少なぐ安定して高品位な表示を することができる。  [0012] The liquid crystal alignment film formed from the liquid crystal alignment agent of the present invention can provide a thermally stable high pretilt angle to a liquid crystal in which the change in the pretilt angle of the liquid crystal with respect to a change in environmental temperature is small. it can. In addition, the liquid crystal display device using the liquid crystal alignment agent of the present invention can perform stable and high-quality display with little change in applied voltage-transmittance characteristic with respect to changes in environmental temperature.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]実施例 1の V— T曲線を表すグラフ FIG. 1 is a graph showing a VT curve of Example 1.
[図 2]比較例 4の V— T曲線を表すグラフ  FIG. 2 is a graph showing a VT curve of Comparative Example 4.
符号の説明  Explanation of symbols
[0014] V:印加電圧 (V) T:透過率(%)  V: applied voltage (V) T: transmittance (%)
23°C: 23°Cにおける V— T曲線 60°C: 60°Cにおける V— T曲線  23 ° C: V-T curve at 23 ° C 60 ° C: V-T curve at 60 ° C
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下に本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明の液晶配向処理剤は、基板上に液晶配向膜を形成させる為の塗布液であ り、液晶のプレチルト角付与安定化剤として、式(1)で示される構造単位を含む付加 重合体を含有するものである。  The liquid crystal alignment treating agent of the present invention is a coating solution for forming a liquid crystal alignment film on a substrate, and is an addition polymer containing a structural unit represented by the formula (1) as a stabilizer for imparting a pretilt angle of liquid crystal. It contains.
[0016] [化 3] [0016] [Formula 3]
Figure imgf000006_0001
式(1)において、 Aは付加重合反応によって得られる重合体の主鎖構造であり、 B は単結合又は、エステル、エーテル、アミド、及びウレタン力 なる群より選ばれる結 合基である。付加重合反応によって得られる上記重合体としては、ポリビュル、ポリ( メタ)アクリル酸、ポリマレイミド、などが挙げられる。以下に Aで示される部分の具体的 構造例を記載するが、この限りではない。 [0017] [ィ匕 4]
Figure imgf000006_0001
In the formula (1), A is a main chain structure of a polymer obtained by an addition polymerization reaction, and B is a single bond or a bonding group selected from the group consisting of ester, ether, amide, and urethane. Examples of the polymer obtained by the addition polymerization reaction include polybutyl, poly (meth) acrylic acid, and polymaleimide. Specific structural examples of the portion indicated by A are described below, but are not limited thereto. [0017] [Dani 4]
Figure imgf000007_0001
Figure imgf000007_0001
(上記式中、 R2は水素原子、メチル基、又はフッ素原子、塩素原子などのハロゲン原 子を表す。 ) (In the above formula, R2 represents a hydrogen atom, a methyl group, or a halogen atom such as a fluorine atom or a chlorine atom.)
重合性や側鎖導入の容易性の観点から、付加重合反応によって得られる重合体と してはポリ (メタ)アクリル酸が好ましい。具体的な構造としては、式(1)の A— Bで示さ れる部分が、式(2)で示される構造が好ましい。  As a polymer obtained by the addition polymerization reaction, poly (meth) acrylic acid is preferred from the viewpoints of polymerizability and ease of side chain introduction. As a specific structure, a structure represented by the formula (2) in which the portion represented by AB in the formula (1) is preferable.
[0018] [化 5] [0018] [Formula 5]
Figure imgf000007_0002
Figure imgf000007_0002
(式中、 R2は水素原子、メチル基、又はフッ素原子、塩素原子などのハロゲン原子を 表す。) (In the formula, R2 represents a hydrogen atom, a methyl group, or a halogen atom such as a fluorine atom and a chlorine atom.)
[0019] 式(1)において、 XIと X2は独立して芳香族環、脂肪族環、又はへテロ環を表し、 R 1は炭素数 3— 18のアルキル基、炭素数 3— 18のアルコキシ基、炭素数 1一 5のフル ォロアルキル基、炭素数 1一 5のフルォロアルコキシ基、シァノ基、又はハロゲン原子 を表す。この、 XI— X2— R1からなる部分は、液晶類似構造とすることが好ましい。  In the formula (1), XI and X2 independently represent an aromatic ring, an aliphatic ring, or a hetero ring, and R 1 is an alkyl group having 3 to 18 carbon atoms, and an alkoxy group having 3 to 18 carbon atoms. A fluoroalkyl group having 115 carbon atoms, a fluoroalkoxy group having 115 carbon atoms, a cyano group, or a halogen atom. The portion composed of XI-X2-R1 preferably has a liquid crystal-like structure.
[0020] XI又は X2の具体例は次のものが挙げられる。芳香族環としては、ベンゼン環、ナ フタレン環、アントラセン環、フエナントレン環、インダン環などが、脂肪族環としては、 シクロブタン環、シクロペンタン環、シクロへキサン環、ビシクロオクタン環など力 へ テロ環としては、フラン環、チォフェン環、チアゾール環、ピリジン環、ピリミジン環、キ ノリン環、ァシリジン環、フエナントリジン環、ベンゾチアゾール環、ジォキサン環など が挙げられる。式(1)におけるこれら環構造の結合位置は、直線性が高い方が好まし ぐ例えばベンゼン環であれば、パラ結合が好ましい。以下に XI又は X2の好ましい 例を示すがこの限りではない。また、 XIと X2は互いに異なる構造であってもよい。 [0020] Specific examples of XI or X2 include the following. Aromatic rings include benzene, naphthalene, anthracene, phenanthrene, and indane rings, and aliphatic rings include cyclobutane, cyclopentane, cyclohexane, and bicyclooctane. Include a furan ring, a thiophene ring, a thiazole ring, a pyridine ring, a pyrimidine ring, Examples include a noline ring, an acylidine ring, a phenanthridine ring, a benzothiazole ring, and a dioxane ring. In the bonding position of these ring structures in the formula (1), a higher linearity is more preferable, for example, a benzene ring is preferably a para bond. Preferred examples of XI or X2 are shown below, but are not limited thereto. XI and X2 may have different structures.
[0021] [化 6] [0021] [Formula 6]
[0022] [0022]
[0023] [0023]
Figure imgf000008_0001
上記構造において、環構造上の任意の水素原子は、メチル基、ェチル基、又はフ ッ素原子、塩素原子などのハロゲン原子等で置換されて ヽてもよ 、。
Figure imgf000008_0001
In the above structure, any hydrogen atom on the ring structure may be substituted with a methyl group, an ethyl group, or a halogen atom such as a fluorine atom or a chlorine atom.
XIと X2との組み合わせは、現行の液晶との相性からは、ベンゼン環、シクロへキサ ン環、ピリジン環、及びピリミジン環力もなる群力も選ばれる組み合わせであることがよ り好ましぐ特には、ベンゼン環、及びシクロへキサン環力 なる群力 選ばれることが 好ましい。具体的には、 XIと X2の組合わせは、ビフエ-ル、ビシクロへキシル、フエ -ルシクロへキシル及びシクロへキシルフエ-ルからなる群から選ばれることが特に 好ましい。 The combination of XI and X2 is more preferably a combination in which a group power consisting of a benzene ring, a cyclohexane ring, a pyridine ring, and a pyrimidine ring is also selected from the viewpoint of compatibility with the current liquid crystal. , Benzene ring, and cyclohexane ring force preferable. Specifically, the combination of XI and X2 is particularly preferably selected from the group consisting of biphenyl, bicyclohexyl, phenylcyclohexyl, and cyclohexylphenyl.
[0025] R1は、使用する液晶との相性及び目的とするプレチルト角の大きさに合わせて、炭 素数 3— 18のアルキル基、炭素数 3— 18のアルコキシ基、炭素数 1一 5のフルォロア ルキル基、炭素数 1一 5のフルォロアルコキシ基、シァノ基、又はハロゲン原子の中か ら適宜選択することができる。中でも、炭素数 5— 8のアルキル基、炭素数 5— 8のァ ルコキシ基は、適用範囲が広 、ので特に好まし 、。  [0025] R1 is an alkyl group having 3 to 18 carbon atoms, an alkoxy group having 3 to 18 carbon atoms, or a fluorophore having 115 carbon atoms in accordance with the compatibility with the liquid crystal to be used and the desired pretilt angle. It can be appropriately selected from a alkyl group, a fluoroalkoxy group having 115 carbon atoms, a cyano group, and a halogen atom. Among them, an alkyl group having 5 to 8 carbon atoms and an alkoxy group having 5 to 8 carbon atoms are particularly preferable because of wide application range.
[0026] 以下に、 XI— X2— R1からなる部分の具体例の一部を示す力この限りではない。な お、下記構造中、 nは好ましくは 3— 12、特に好ましくは 5— 10の整数である。  [0026] The following is a limited force showing a part of a specific example of the portion consisting of XI-X2-R1. In the following structure, n is preferably an integer of 3-12, particularly preferably 5-10.
[0027] [化 9]  [0027] [Formula 9]
Figure imgf000009_0001
Figure imgf000009_0001
[0028] [化 10] [0028] [Formula 10]
[0029]
Figure imgf000010_0001
[0029]
Figure imgf000010_0001
[0030] 式(1)で示される構造単位を含む付加重合体は、式(1)で示される構造単位の単 独重合体、又は、付加重合によって得られるその他の構造単位とのランダム共重合 体、交互共重合体、ブロック共重合体、又はグラフト共重合体のいずれでもよい。こ れらの重合体は、公知のラジカル重合、カチオン重合、ァ-オン重合などにより合成 できる。重合手段は熱重合、光重合などのいずれでもよい。 [0030] The addition polymer containing the structural unit represented by the formula (1) is a homopolymer of the structural unit represented by the formula (1) or a random copolymer with another structural unit obtained by addition polymerization. It may be any of a copolymer, an alternating copolymer, a block copolymer, or a graft copolymer. These polymers can be synthesized by known radical polymerization, cationic polymerization, ion polymerization and the like. The polymerization means may be any of thermal polymerization, photopolymerization and the like.
[0031] 式(1)で示される構造単位を含む付加重合体は、式(1)に対応する単量体、即ち、 前記 Bで示される結合基を介して前記 XI— X2— R1からなる置換基を有するビニル 化合物、マレイミドィ匕合物などを用い、一般的な付加重合反応をさせることにより得る ことができる。  [0031] The addition polymer containing the structural unit represented by the formula (1) comprises the monomer corresponding to the formula (1), that is, the XI-X2-R1 via the bonding group represented by the B It can be obtained by a general addition polymerization reaction using a vinyl compound having a substituent, a maleimidized compound, or the like.
[0032] 以下に、式(1)で示される構造に対応する単量体の構造を示すが、この限りではな い。なお、下記式中の Rl、 R2、 XI、 X2は前述のとおりである。 [0033] [化 12][0032] The structure of a monomer corresponding to the structure represented by the formula (1) is shown below, but is not limited thereto. Note that Rl, R2, XI, and X2 in the following formula are as described above. [0033] [Formula 12]
Figure imgf000011_0001
Figure imgf000011_0001
[0034] [化 13] [0034] [Formula 13]
Figure imgf000011_0002
Figure imgf000011_0002
[0035] [化 14]
Figure imgf000011_0003
[0035]
Figure imgf000011_0003
[0036] [化 15] [0036] [Formula 15]
Figure imgf000011_0004
Figure imgf000011_0004
[0037] [化 16]  [0037] [Formula 16]
HN— X1— X2 [0038] [化 17] HN— X1— X2 [0038] [Formula 17]
Figure imgf000012_0001
Figure imgf000012_0001
[0039] [化 18] [0039] [Formula 18]
Figure imgf000012_0002
Figure imgf000012_0002
[0040] 上記のような単量体は 1種又は複数種を併用して用いてもよい。また、式(1)で示さ れる構造を有する重合体は、プレチルト角の大きさの制御や、重合体の有機溶媒に 対する溶解性の制御、液晶配向処理剤に含有されるその他の重合体との相溶性制 御、液晶配向処理剤の塗布性向上、液晶配向膜の耐熱性の付与といった目的で、 付加重合反応が可能なその他の単量体を 1種以上併用し、ランダム共重合体、交互 共重合体、ブロック共重合体などとすることができる。 [0040] One or more of the above monomers may be used in combination. In addition, the polymer having the structure represented by the formula (1) controls the magnitude of the pretilt angle, controls the solubility of the polymer in an organic solvent, and the other polymer contained in the liquid crystal alignment treatment agent. For the purpose of controlling the compatibility of the liquid crystal, improving the applicability of the liquid crystal alignment agent, and imparting heat resistance to the liquid crystal alignment film, a random copolymer, It can be an alternating copolymer, a block copolymer or the like.
[0041] 付加重合反応が可能なその他の単量体の具体例としては、(メタ)アクリル酸メチル 、 (メタ)アクリル酸ェチル、 (メタ)アクリル酸 n-ブチル、 (メタ)アクリル酸イソブチル、 ( メタ)アクリル酸へキシル、 (メタ)アクリル酸ヒドロキシェチル、 (メタ)アクリル酸 2-メトキ シェチル、 (メタ)アクリル酸 2—エトキシェチル、 (メタ)アクリル酸 2—ブトキシェチル、 ( メタ)アクリル酸シクロへキシル、 (メタ)アクリル酸フ -ル、 (メタ)アクリル酸ベンジル 、 (メタ)アクリル酸グリシジル、スチレン、ヒドロキシスチレン、カルボキシスチレン、メタ クリルアミド、 N—ァリールメタクリルアミド、 N—ヒドロキシェチルー N—メチルメタクリルァ ミド、 N—メチルー N フエ-ルメタクリルアミド、アクリルアミド、 N—ァリールアクリルアミ ド、 N, N—ァリールアクリルアミド、 N—メチルー N フエ-ルアクリルアミド、 N ビュル 2—ピロリドン、 N—フエ-ルマレイミド、ビュルカルバゾール、ビュルピリジン、ビ-ルイ ミダゾール等が挙げられる。この中でも特にメタクリル酸グリシジルは重合体の溶解性 及び相溶性向上に効果があり好ましい。 [0041] Specific examples of other monomers capable of undergoing an addition polymerization reaction include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, Hexyl (meth) acrylate, hydroxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyhexyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, (meth) acrylic acid Cyclohexyl, (meth) acrylate, benzyl (meth) acrylate, glycidyl (meth) acrylate, styrene, hydroxystyrene, carboxystyrene, methacrylamide, N-aryl methacrylamide, N-hydroxyethyl N-methyl methacrylamide, N-methyl-N-methyl methacrylamide, acrylamide , N- § reel acrylamide, N, N- § reel acrylamide, N- methyl-N Hue - Le acrylamide, N Bulle Examples thereof include 2-pyrrolidone, N-phenylmaleimide, bulcarbazole, bulpyridine, and biluimidazole. Of these, glycidyl methacrylate is particularly preferred because it has an effect on improving the solubility and compatibility of the polymer.
[0042] 上記のように、式(1)で示される構造に対応する単量体、及び必要に応じて付加重 合反応が可能なその他の単量体成分を用いて、式(1)で示される構造単位を含む 付加重合体をラジカル重合法で得る手法の一例を以下に述べる。対応する単量体 を有機溶媒中に溶解し、反応開始剤を添加する。上記反応の溶媒としては、得られ る重合体を溶解させうるものであれば特に制限はない。例えば、 γ—プチ口ラタトン、 シクロへキサノン、ジメチルスルホキシド、 Ν—メチルー 2—ピロリドン、 Ν, Ν—ジメチルァ セトアミド、 Ν, Ν—ジメチルホルムアミド、乳酸ェチル(EL)、メトキシプロパノール(PG ME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、又はこれらの 混合物が挙げられる。反応開始剤としては、 AIBN (ァゾビスイソプチ口-トリル)など のァゾィ匕合物、過酸ィ匕ベンゾィルなどの過酸ィ匕物などが挙げられる。また、反応を促 進させたり、反応を完結させる目的で反応系を加熱してもよい。このようにして得られ た重合体は、反応液をそのまま使用してもよぐ貧溶媒中に投入して目的の重合体を 回収して力も用いてもよい。  As described above, using the monomer corresponding to the structure represented by the formula (1) and, if necessary, other monomer components capable of undergoing an addition polymerization reaction, the formula (1) An example of a method for obtaining an addition polymer containing the structural unit shown by a radical polymerization method is described below. Dissolve the corresponding monomer in an organic solvent and add a reaction initiator. The solvent for the above reaction is not particularly limited as long as it can dissolve the obtained polymer. For example, γ-petit mouth ratataton, cyclohexanone, dimethyl sulfoxide, Ν-methyl-2-pyrrolidone, Ν, Ν-dimethylacetoamide, Ν, Ν-dimethylformamide, ethyl lactate (EL), methoxypropanol (PG ME), propylene Glycol monomethyl ether acetate (PGMEA), or a mixture thereof. Examples of the reaction initiator include azoi conjugates such as AIBN (azobis isopuchi mouth-tolyl), and peroxy sulfides such as peroxy benzoyl. The reaction system may be heated for the purpose of promoting the reaction or completing the reaction. The polymer obtained in this manner may be used in a poor solvent in which the reaction solution can be used as it is, and the target polymer may be recovered to use the force.
[0043] 式(1)で示される構造単位を含む付加重合体にお!ヽて、式(1)で示される構造単 位の含有比率は自由に設定できる力 安定してプレチルト角を発現させるために構 造単位の数換算で 5%以上含まれることが好ましぐより好ましくは 30%以上である。 また後述するように、本発明の液晶配向処理剤に、式(1)で示される構造単位を含 む付加重合体と、この重合体以外の重合体とを含有させる場合は、式(1)で示される 構造単位の含有比率は 50%以上であることが好ましぐより好ましくは 60%以上であ り、特に好ましくは 70%以上である。  [0043] In the addition polymer containing the structural unit represented by the formula (1), the content ratio of the structural unit represented by the formula (1) is a force that can be freely set. Therefore, the content is preferably 5% or more in terms of the number of structural units, more preferably 30% or more. As described later, when the liquid crystal alignment treatment agent of the present invention contains an addition polymer containing the structural unit represented by the formula (1) and a polymer other than the polymer, the formula (1) The content ratio of the structural unit represented by is preferably 50% or more, more preferably 60% or more, and particularly preferably 70% or more.
[0044] 式(1)で示される構造を有する重合体の分子量は特に制限はされな!ヽが、例えば GPC (Gel Permeation Chromatography)法で測定した重量平均分子量で 10 00— 100万、 2000— 40万、 5000— 10万など力 子適である。  [0044] The molecular weight of the polymer having the structure represented by the formula (1) is not particularly limited !, but is, for example, 1000 to 1,000,000, 2000 to 2000, as a weight average molecular weight measured by a GPC (Gel Permeation Chromatography) method. Suitable for a force such as 400,000, 5000 to 100,000.
[0045] 本発明の液晶配向処理剤に含有される重合体成分は、式(1)で示される構造単位 を含む付加重合体以外に、基板に対して水平方向の液晶配向規制を与えるための 重合体を含有させることが好ましい。このような重合体としては、一般の液晶配向膜に 用いられているポリマーを用いることができ、ポリアミド酸、ポリイミド、ポリアミド、ポリエ ステル、ポリウレアなどが好ましい。特にポリアミド酸又はポリイミドは、液晶の配向性、 耐熱性に優れ、液晶配向膜の材料として広く用いられており、本発明の液晶配向処 理剤に含有させる重合体成分として好まし ヽ。 [0045] The polymer component contained in the liquid crystal alignment treatment agent of the present invention is, in addition to the addition polymer containing the structural unit represented by the formula (1), for controlling the liquid crystal alignment in the horizontal direction with respect to the substrate. It is preferable to include a polymer. As such a polymer, a polymer used for a general liquid crystal alignment film can be used, and polyamic acid, polyimide, polyamide, polyester, polyurea and the like are preferable. In particular, polyamic acid or polyimide is excellent in liquid crystal alignment and heat resistance, is widely used as a material for a liquid crystal alignment film, and is preferably used as a polymer component contained in the liquid crystal alignment treatment agent of the present invention.
[0046] 上記のポリアミド酸又はポリイミドの構造は特に限定されないが、本発明の液晶配向 処理剤を、偏光紫外線などを照射して液晶配向膜を形成させる方法、いわゆる光配 向膜で用いる場合は、光に対して化学反応するシクロブタン環、アミド結合、ォレフィ ン構造、ベンゾフエノン構造を主鎖に含有することが望ま 、。  The structure of the above-mentioned polyamic acid or polyimide is not particularly limited. However, when the liquid crystal alignment treatment agent of the present invention is used in a method of irradiating polarized ultraviolet light or the like to form a liquid crystal alignment film, that is, a so-called light alignment film It is desirable that the main chain contains a cyclobutane ring, an amide bond, an olefin structure, and a benzophenone structure that chemically react with light.
[0047] 通常ポリアミド酸は、テトラカルボン酸二無水物とジァミンィ匕合物とを有機溶媒中で 反応させることにより得ることができる。また、ポリイミドはポリアミド酸をイミド化 (脱水閉 環)すること〖こより得ることができる。  [0047] In general, polyamic acid can be obtained by reacting tetracarboxylic dianhydride with diamine conjugate in an organic solvent. Further, polyimide can be obtained by imidizing (dehydrating and cyclizing) polyamic acid.
[0048] 本発明の液晶配向処理剤に含有させることができるポリアミド酸の例としては、以下 に示すテトラカルボン酸二無水物及びジァミンィ匕合物から選ばれる、 1種類以上のテ トラカルボン酸二無水物と、 1種類以上のジァミン化合物との反応によって得られるポ リアミド酸が挙げられるがこの限りではない。  [0048] Examples of the polyamic acid that can be contained in the liquid crystal alignment treatment agent of the present invention include one or more tetracarboxylic dianhydrides selected from the following tetracarboxylic dianhydrides and diamine conjugates. Examples include, but are not limited to, polyamic acids obtained by reacting an anhydride with one or more diamine compounds.
[0049] ポリアミド酸の合成反応に用いられるテトラカルボン酸二無水物としては、ピロメリット 酸、 2, 3, 6, 7—ナフタレンテトラカルボン酸、 1, 2, 5, 6—ナフタレンテトラカルボン 酸、 1, 4, 5, 8—ナフタレンテトラカルボン酸、 2, 3, 6, 7—アントラセンテトラカルボン 酸、 1, 2, 5, 6—アントラセンテトラカルボン酸、 3, 3,, 4, 4,ービフエ-ルテトラカルボ ン酸、 2, 3, 3,, 4ービフエ-ルテトラカルボン酸、ビス(3, 4—ジカルボキシフエ-ル) エーテル、 3, 3,4, 4,一べンゾフエノンテトラカルボン酸、 3, 3,4, 4,一カルコンテトラ カルボン酸、ビス(3, 4—ジカルボキシフエ-ル)スルホン、ビス(3, 4—ジカルボキシフ ェニル)メタン、 2, 2—ビス(3, 4—ジカルボキシフエニル)プロパン、 1, 1, 1, 3, 3, 3— へキサフルオロー 2, 2—ビス(3, 4—ジカルボキシフエ-ル)プロパン、ビス(3, 4—ジカ ルボキシフエ-ル)ジメチルシラン、ビス(3, 4—ジカルボキシフエ-ル)ジフエ-ルシラ ン、 2, 3, 4, 5—ピリジンテトラカルボン酸、 2, 6—ビス(3, 4—ジカルボキシフエ-ル) ピリジンなどの芳香族テトラカルボン酸の二無水物、 1, 2, 3, 4ーシクロブタンテトラ力 ルボン酸、 1, 2, 3, 4—シクロペンタンテトラカルボン酸、 1, 2, 4, 5—シクロへキサン テトラカルボン酸、 2, 3, 5—トリカルボキシシクロペンチル酢酸、 3, 4—ジカルボキシー 1, 2, 3, 4ーテトラヒドロー 1 ナフタレンコハク酸などの脂環式テトラカルボン酸の二無 水物、 1, 2, 3, 4 ブタンテトラカルボン酸などの脂肪族テトラカルボン酸の二無水物 などが挙げられる。 [0049] Examples of the tetracarboxylic dianhydride used in the polyamic acid synthesis reaction include pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3,4,4,4-biphene- Rutetracarbonic acid, 2,3,3,4-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3,4,4,1-benzophenonetetracarboxylic acid, 3,3,4,4,1-chalconetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-di Carboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-di Ruboxyphenyl) propane, bis (3,4-dicarboxyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3,4-dicarboxyphenyl) dianhydride of aromatic tetracarboxylic acid such as pyridine, 1,2,3,4-cyclobutanetetraforce Rubonic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 2,3,5-tricarboxycyclopentylacetic acid, 3,4-dicarboxy-1, 2,3,4-tetrahydro-1 dihydrate of alicyclic tetracarboxylic acid such as naphthalene succinic acid, dianhydride of aliphatic tetracarboxylic acid such as 1,2,3,4 butanetetracarboxylic acid, etc. .
ポリアミド酸の合成反応に用いられるジァミン化合物としては、 p フエ-レンジァミン 、 m フエ二レンジァミン、 N, N—ジァリル 1, 2, 4 ベンゼントリァミン、 2, 5—ジァミノ ベンゾニトリル、 2, 5—ジァミノトルエン、 2, 6—ジァミノトルエン、 4, 4'ージアミノビフエ -ル、 3, 3,—ジメチルー 4, 4しジアミノビフエ-ル、 3, 3しジメトキシ—4, 4,—ジァミノ ビフエ-ル、ジアミノジフエ-ルメタン、ジアミノジフエ-ルエーテル、ジアミノジフエ- ルァミン、 2, 2,ージアミノジフエ-ルプロパン、ビス(3, 5—ジェチルー 4ーァミノフエ- ル)メタン、ジアミノジフエニルスルホン、ジァミノべンゾフエノン、 3, 3'—ジァミノカルコ ン、 4, 4,ージァミノカルコン、 3, 3,ージアミノスチルベン、 4, 4,ージアミノスチルベン、 ジァミノナフタレン、 1, 4 ビス(4 アミノフエノキシ)ベンゼン、 1, 4—ビス(4—アミノフ 工 -ル)ベンゼン、 9, 10 ビス(4ーァミノフエ-ル)アントラセン、 1, 3 ビス(4ーァミノ フエノキシ)ベンゼン、 4, 4' ビス(4 アミノフエノキシ)ジフエ-ルスルホン、 2, 2—ビ ス [4— (4 アミノフエノキシ)フエ-ル]プロパン、 2, 2—ビス(4—ァミノフエ-ル)へキサ フルォロプロパン、 2, 2 ビス [4— (4 アミノフエノキシ)フエ-ル]へキサフルォロプロ パンなどの芳香族ジァミン、 2, 6—ジァミノピリジン、 2, 4—ジァミノピリジン、 2, 7—ジァ ミノべンゾフラン、 2, 7—ジァミノカルバゾール、 3, 7—ジアミノフエノチアジン、 2, 5—ジ ァミノ— 1, 3, 4—チアジアゾール、 2, 4—ジァミノ— s トリァジンなどの複素環式ジアミ ン、ビス(4—アミノシクロへキシル)メタン、ビス(4ーァミノ一 3—メチルシクロへキシル)メ タン等の脂環式ジァミン及び 1, 2—ジアミノエタン、 1, 3—ジァミノプロパン、 1, 4ージ アミノブタン、 1, 6—ジァミノへキサンなどの脂肪族ジァミン、 1, 3—ジアミノー 4一才クタ デシルォキシベンゼン、 1, 3—ジアミノー 4一へキサデシルォキシベンゼン、 1, 3—ジァ ミノー 4—ドデシルォキシベンゼン、 4— [4— (4—トランス n—へプチルシクロへキシル) フエノキシ ]—1, 3—ジァミノベンゼン、(4—トランス n ペンチルビシクロへキシル )一3 , 5—ジァミノべンゾエートなどのアルキル基や液晶類似構造を側鎖に有するジァミン 、 1, 3—ビス(3—ァミノプロピル)— 1, 1, 3, 3—テトラメチルジシロキサンなどのシリコン ジァミンなどが挙げられる。 The diamine compounds used in the polyamic acid synthesis reaction include p-diene diamine, m-phenylene diamine, N, N-diaryl 1,2,4 benzenetriamine, 2,5-diaminobenzonitrile, and 2,5-diaminotoluene. , 2,6-diaminotoluene, 4,4'diaminobiphenyl, 3,3, -dimethyl-4,4-diaminobiphenyl, 3,3, dimethoxy-4,4, -diaminobiphenyl, diaminodiphenylmethane, diaminodiphenyl -Diether, diaminodiphenylamine, 2,2, diaminodiphenylpropane, bis (3,5-diethyl-4-aminophenyl) methane, diaminodiphenylsulfone, diaminobenzophenone, 3,3'-diaminochalcone, 4,4, Diaminochalcone, 3, 3, diaminostilbene, 4, 4, diaminostilbene, diaminonaphthalene, 1, 4 1,4-bis (4-aminophenyl) benzene, 9,10 bis (4-aminophenyl) anthracene, 1,3 bis (4-aminophenoxy) benzene, 4,4'bis (4aminophenoxy) diphenyl sulfone, 2,2-bis [4- (4aminophenoxy) phenyl] propane, 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2bis [4— Aromatic diamines such as (4aminophenoxy) phenyl] hexafluoropropane, 2,6-diaminopyridine, 2,4-diaminopyridine, 2,7-diaminobenzofuran, 2,7-diaminocarbazole, 3, Heterocyclic diamines such as 7-diaminophenothiazine, 2,5-diamino-1,3,4-thiadiazole, 2,4-diamino-s-triazine, bis (4-aminocyclohexyl) methane, Screw (4 Alicyclic diamines such as mino-3-methylcyclohexyl) methane and aliphatic diamines such as 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane and 1,6-diaminohexane; 1,3-diamino-4 year old Kuta decyloxybenzene, 1,3-diamino-4-1, hexadecyloxybenzene, 1,3-diamino 4-dodecyloxybenzene, 4- [4— (4— Trans-n-heptylcyclohexyl) phenoxy] -1,3-diaminobenzene, (4-trans-n-pentylbicyclohexyl) -1,3,5-diaminobenzoate, etc. And silicon diamines such as 1,1,3-bis (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane.
[0051] 本発明の液晶配向処理剤に含有させるポリアミド酸は、 GPC (Gel Permeation Chromatography)法で測定した重量平均分子量 {Mw}で 2千一 50万とするのが 好ましい。この分子量力 、さすぎると、そこから得られる塗膜の強度が不十分となり、 分子量が大きすぎると塗膜形成時の作業性が悪くなる場合がある。ポリアミド酸の分 子量制御は、ポリアミド酸の合成反応に用いるテトラカルボン酸二無水物とジアミンィ匕 合物のモル比を調整することによって可能である。通常の重縮合反応同様、このモ ル比が 1. 0に近 、ほど生成する重合体の重合度は大きくなる。  [0051] The polyamic acid contained in the liquid crystal alignment agent of the present invention preferably has a weight average molecular weight {Mw} of 21,500,000 as measured by GPC (Gel Permeation Chromatography). If the molecular weight is too small, the strength of the coating film obtained therefrom will be insufficient, and if the molecular weight is too large, the workability during the formation of the coating film may deteriorate. The molecular weight of the polyamic acid can be controlled by adjusting the molar ratio of the tetracarboxylic dianhydride and the diamine conjugate used in the polyamic acid synthesis reaction. As in the ordinary polycondensation reaction, the closer the mole ratio is to 1.0, the higher the degree of polymerization of the produced polymer becomes.
[0052] ポリアミド酸の合成反応は、有機溶媒中で、通常 0— 150°C、好ましくは 0— 100°C の反応温度で行われる。この際の有機溶媒としては、得られたポリアミド酸が溶解す るものであれば特に制限はない。その具体例を挙げるならば、 N, N—ジメチルホルム アミド、 N, N—ジメチルァセトアミド、 N—メチルー 2—ピロリドン、 N—メチルカプロラクタ ム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、へキサメチ ルスルホキシド、 γ—ブチロラタトン等が挙げることができる。これらは単独でも、また 混合して使用してもよい。さらに、ポリアミド酸を溶解しない溶媒であっても、重合反応 により生成したポリアミド酸が析出しない範囲で、上記溶媒に混合して使用してもよい  [0052] The polyamic acid synthesis reaction is carried out in an organic solvent at a reaction temperature of usually 0 to 150 ° C, preferably 0 to 100 ° C. The organic solvent at this time is not particularly limited as long as the obtained polyamic acid can be dissolved. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethyl Sulfone, hexamethylsulfoxide, γ-butyrolataton and the like can be mentioned. These may be used alone or as a mixture. Further, even if the solvent does not dissolve the polyamic acid, it may be used by mixing with the above solvent as long as the polyamic acid generated by the polymerization reaction does not precipitate.
[0053] 本発明の液晶配向処理剤に含有させることができるポリイミドの例としては、前記し たポリアミド酸をイミドィ匕 (脱水閉環)させたものが挙げられる。ここで 、うポリイミドとは 、ポリアミド酸の繰り返し単位の全てがイミド化されていないものであっても、その範疇 に含まれ、本発明の液晶配向処理剤にも好適に用いられる。 Examples of the polyimide that can be contained in the liquid crystal alignment treatment agent of the present invention include those obtained by subjecting the above-mentioned polyamic acid to imidization (dehydration ring closure). Here, the polyimide is included in its category even if all of the repeating units of the polyamic acid are not imidized, and is suitably used for the liquid crystal alignment treatment agent of the present invention.
[0054] 通常ポリアミド酸のイミド化 (脱水閉環)は、溶液中で行うことができる。溶液中でポリ アミド酸をイミドィ匕させる方法において、その反応温度は、通常 50— 200°Cとされ、好 ましくは 60— 170°Cとされる。反応温度が 50°C未満では脱水閉環反応が十分に進 行せず、反応温度が 200°Cを超えると得られるイミド化重合体の分子量が低下するこ とがある。このイミド化反応の際に、脱水剤及び脱水閉環触媒を添加することは、比 較的低温でイミドィ匕反応が進行し得られるポリイミドの分子量低下が起こりにく 、ので 好ましい。脱水剤としては、例えばピリジン、トリェチルァミンなどの 3級ァミンを用いる ことができる。脱水剤の使用量は、ポリアミド酸の繰り返し単位 1モルに対して 0. 01 一 20モルとするのが好ましい。また、脱水閉環触媒としては、例えばピリジン、トリエ チルァミンなどの 3級ァミンを用いることができる。脱水閉環触媒の使用量は、使用す る脱水剤 1モルに対して 0. 01— 10モルとするのが好ましい。なお、脱水閉環反応に 用いられる有機溶媒としては、ポリアミド酸の合成に用いられるものとして例示した有 機溶媒を挙げることができる。そして、脱水剤及び脱水閉環触媒を添加した場合の 反応温度は、通常 0— 180°C、好ましくは 10— 150°Cとされる。 [0054] Usually, the imidization (dehydration ring closure) of the polyamic acid can be performed in a solution. In the method of imidizing a polyamic acid in a solution, the reaction temperature is usually 50 to 200 ° C, preferably 60 to 170 ° C. If the reaction temperature is lower than 50 ° C, the dehydration ring closure reaction does not proceed sufficiently, and if the reaction temperature exceeds 200 ° C, the molecular weight of the obtained imidized polymer may decrease. Addition of a dehydrating agent and a dehydration ring-closing catalyst during this imidization reaction is advantageous because the imidation reaction proceeds at a relatively low temperature and the resulting polyimide is less likely to have a reduced molecular weight. preferable. As the dehydrating agent, for example, tertiary amines such as pyridine and triethylamine can be used. The amount of the dehydrating agent used is preferably 0.01 to 20 mol per 1 mol of the repeating unit of the polyamic acid. As the dehydration ring-closing catalyst, for example, tertiary amines such as pyridine and triethylamine can be used. The amount of the dehydration ring-closing catalyst used is preferably 0.01 to 10 mol per 1 mol of the dehydrating agent used. Examples of the organic solvent used for the dehydration ring closure reaction include the organic solvents exemplified as those used for the synthesis of polyamic acid. The reaction temperature when the dehydrating agent and the dehydration ring-closing catalyst are added is usually 0 to 180 ° C, preferably 10 to 150 ° C.
[0055] 上記のようにして得られたポリアミド酸又はポリイミドはそのまま使用することもでき、 またメタノール、エタノール等の貧溶媒に沈殿単離させて回収した後、使用してもよ い。 The polyamic acid or polyimide obtained as described above may be used as it is, or may be used after precipitation and isolation in a poor solvent such as methanol or ethanol.
[0056] 本発明の液晶配向処理剤において、式(1)で示される構造単位を含む付加重合 体は、その他の重合体成分として含有されるポリマーと化学的に結合した形態で含 有されていてもよい。その手法としては、例えばその他の重合体成分として含有され るポリマーの側鎖に、付加重合可能な置換基を導入し、このポリマーが存在する溶液 中で、前記のように、式(1)で示される構造に対応する単量体、及び必要に応じて付 加重合反応が可能なその他の単量体成分を用いて、付加重合反応させればょ 、。 ポリアミド酸又はポリイミドに、式(1)で示される構造を有する重合体が化学的に結合 した形態とするには、例えば側鎖にビュル基ゃメタクリロイル基を有するジァミンを用 V、てポリアミド酸を合成し、このポリアミド酸の存在する溶液中で上記反応を行えばよ い。  [0056] In the liquid crystal alignment treatment agent of the present invention, the addition polymer containing the structural unit represented by the formula (1) is contained in a form chemically bonded to a polymer contained as another polymer component. You may. As a method for this, for example, a substituent capable of addition polymerization is introduced into a side chain of a polymer contained as another polymer component, and in a solution in which this polymer is present, as described above, the formula (1) is used. An addition polymerization reaction may be carried out using a monomer corresponding to the structure shown and, if necessary, other monomer components capable of undergoing an addition polymerization reaction. In order to obtain a form in which a polymer having the structure represented by the formula (1) is chemically bonded to a polyamic acid or a polyimide, for example, a diamine having a butyl group and a methacryloyl group in a side chain is used. The synthesis may be performed, and the above reaction may be performed in a solution containing the polyamic acid.
側鎖にメタクリロイル基を有するジァミンとしては以下のようなジァミンが挙げられる。 [0057] [化 19] Examples of the diamine having a methacryloyl group in a side chain include the following diamines. [0057] [Formula 19]
Figure imgf000018_0001
Figure imgf000018_0001
[0058] その他、ヒドロキシ基、カルボキシル基、アミノ基、イソシアナ一ト基、酸無水物基な どを、式(1)で示される構造を有する重合体及びその他の重合体成分として含有さ れるポリマーのそれぞれに導入し、ヒドロキシ基又はカルボキシル基とイソシアナ一ト 基の反応や、ァミノ基と酸無水物基との反応などで結合させてもょ 、。 In addition, a polymer containing a hydroxy group, a carboxyl group, an amino group, an isocyanate group, an acid anhydride group, etc. as a polymer having a structure represented by the formula (1) and other polymer components And bonded by a reaction between a hydroxy group or a carboxyl group and an isocyanate group, or a reaction between an amino group and an acid anhydride group.
[0059] 本発明の液晶配向処理剤に含有される重合体成分全体の中で、式(1)で示される 構造単位が占める重量割合は、目的とするプレチルト角の大きさに合わせて任意に 設定することができるが、その重量割合が 0. 01— 50重量%であることが好ましぐよ り好ましくは 0. 1— 20重量%である。  [0059] The weight ratio of the structural unit represented by the formula (1) in the entire polymer component contained in the liquid crystal alignment treatment agent of the present invention is arbitrarily determined according to the desired pretilt angle. It can be set, but the weight ratio is preferably 0.01 to 50% by weight, more preferably 0.1 to 20% by weight.
[0060] また、本発明の液晶配向処理剤に、式(1)で示される構造単位を含む付加重合体 と、それ以外に基板に対して水平方向の液晶配向規制を与えるための重合体とを含 有させる場合の、式(1)で示される構造単位を含む付加重合体の含有割合は、液晶 配向処理剤に含有される重合体成分全体の 0. 1— 20重量%であることが好ましぐ より好ましくは 0. 3— 5重量%である。式(1)で示される構造単位の含有量が高い付 加重合体を、基板に対して水平方向の液晶配向規制を与えるための重合体に対し て、比較的少量含有させることにより、プレチルト角が安定でかつ、基板に対して水 平方向の液晶配向規制にも優れる液晶配向膜を得ることができる。  Further, the liquid crystal alignment treatment agent of the present invention includes an addition polymer containing the structural unit represented by the formula (1), and a polymer for imparting horizontal liquid crystal alignment control to the substrate. In the case where is contained, the content ratio of the addition polymer containing the structural unit represented by the formula (1) may be 0.1 to 20% by weight of the whole polymer component contained in the liquid crystal alignment treatment agent. It is more preferably 0.3-5% by weight. By adding a relatively small amount of the addition polymer having a high content of the structural unit represented by the formula (1) to the polymer for controlling the liquid crystal alignment in the horizontal direction with respect to the substrate, the pretilt angle can be reduced. It is possible to obtain a liquid crystal alignment film that is stable and excellent in regulating the liquid crystal alignment in the horizontal direction with respect to the substrate.
[0061] 以上のことから、本発明の液晶配向処理剤に含有される重合体成分の組成として 好ま 、一例を挙げるならば、 (A)式(1)で示される構造単位の含有比率が構造単 位の数換算で 50%以上、より好ましくは 60%以上、特に好ましくは 70%以上である 付加重合体と、(B)ポリアミド酸、ポリイミド、ポリアミド、ポリエステル又はポリウレァか ら選ばれる少なくとも一種類の重合体とを含有し、全重合体成分における (A)の比率 が 0. 1— 20重量0 /0、より好ましくは 0. 3— 5重量%である組成である。 [0062] 本発明の液晶配向処理剤は、以上に述べた重合体成分を含有する塗布液である 。この塗布液に含まれる溶剤は、前記の重合体成分を溶解させうるものであれば特 に限定はされない。また、これらは単独でも 2種以上の溶剤を組み合わせて用いるこ ともできる。さら〖こは、単独では重合体を溶解させない溶剤であっても、重合体成分 が析出しない範囲で加えることもできる。以下に溶剤成分の具体例を示すがこの限り ではない。 From the above, it is preferable that the composition of the polymer component contained in the liquid crystal alignment treatment agent of the present invention be, for example, (A) the content ratio of the structural unit represented by the formula (1) is The addition polymer is at least 50%, more preferably at least 60%, particularly preferably at least 70% in terms of the number of units, and at least one type selected from (B) polyamic acid, polyimide, polyamide, polyester or polyester. polymers and contain a ratio of (a) in the total polymer component 0.5 1 20 weight 0/0, a composition more preferably from 0.5 3 5 wt%. [0062] The liquid crystal alignment treatment agent of the present invention is a coating solution containing the above-described polymer component. The solvent contained in the coating solution is not particularly limited as long as it can dissolve the polymer component. These can be used alone or in combination of two or more solvents. Furthermore, even if it is a solvent which does not dissolve the polymer by itself, it can be added within a range in which the polymer component does not precipitate. Specific examples of the solvent component are shown below, but are not limited thereto.
[0063] N—メチルー 2—ピロリドン、 Ν,Ν—ジメチルホルムアミド、 Ν,Ν—ジメチルァセトアミド、 γ ブチロラタトン、ジメチルスルホキシド、テトラメチル尿素、へキサメチルホスホトリ アミド、 m クレゾ一ノレ、メチノレアノレコーノレ、ェチノレアノレコーノレ、ジェチノレエーテノレ、ェ チレングリコーノレモノメチノレエーテノレ、エチレングリコーノレェチノレエーテノレ、エチレン グリコーノレ n—ブチノレエーテノレ、エチレングリコーノレジメチノレエーテノレ、ジエチレング リコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリ コールモノブチルエーテル、シクロへキサノン、へキサン、ヘプタン、トルエン、キシレ ン。 [0063] N-methyl-2-pyrrolidone, Ν, Ν-dimethylformamide, Ν, Ν-dimethylacetamide, γ-butyrolataton, dimethylsulfoxide, tetramethylurea, hexamethylphosphotriamide, m-creso-monole, methinole Anoreconore, etinoleanorekonore, echinoreenotenore, ethylenglycorenomonomethinooleatenore, ethylene glycolonorenotenore, ethylene glycoloneole n- butinoreatenore, ethyleneglycorerenotenore Athenole, diethylene glycol dimethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, cyclohexanone, hexane, heptane, toluene, xylene.
[0064] 本発明の液晶配向処理剤は、基板との密着性を付与するための官能性シラン含有 化合物を含有してもよい。例えば、 N—トリメチルシリルァセトアミド、ジァセトキシジメ チルシラン、テトラメトキシシラン、 3—ァミノプロピルジェトキシメチルシラン、 3—ァミノ プロピルトリエトキシシラン、 1, 4—ビス(ジメチルシリル)ベンゼン、ビス(ジメチルァミノ )ジメチルシラン、ビス(ェチルァミノ)ジメチルシラン、 1—トリメチルシリルイミダゾール 、メチルトリァセトキシシラン、ジェトキメチルフエニルシラン、フエニルトリエトキシシラ ン、ジフエ-ルシランジオールなどを挙げることができるがこの限りではな 、。  [0064] The liquid crystal alignment treatment agent of the present invention may contain a functional silane-containing compound for imparting adhesion to a substrate. For example, N-trimethylsilylacetamide, diacetoxydimethylsilane, tetramethoxysilane, 3-aminopropyljetoxymethylsilane, 3-aminopropyltriethoxysilane, 1,4-bis (dimethylsilyl) benzene, bis (dimethylamino) dimethyl Examples include silane, bis (ethylamino) dimethylsilane, 1-trimethylsilylimidazole, methyltriacetoxysilane, ethoxymethylphenylsilane, phenyltriethoxysilane, and diphenylsilanediol. ,.
[0065] 本発明の液晶配向処理剤を得るには、上記した各成分を混合し、基板に塗布する ことが可能な濃度の溶液とすればょ、。本発明の液晶配向処理剤における重合体成 分濃度は、形成させようとする液晶配向膜の厚みの設定によって適宜変更することが できるが、 1一 15重量%とすることが好ましい。 1重量%未満では均一で欠陥のない 塗膜を形成させることが困難となり、 15重量%よりも多いと溶液の保存安定性が悪く なる場合がある。  [0065] In order to obtain the liquid crystal alignment treatment agent of the present invention, the above-mentioned components are mixed to form a solution having a concentration capable of being applied to a substrate. The concentration of the polymer component in the liquid crystal alignment treatment agent of the present invention can be appropriately changed depending on the setting of the thickness of the liquid crystal alignment film to be formed, but is preferably set to be 11 to 15% by weight. If it is less than 1% by weight, it is difficult to form a uniform and defect-free coating film, and if it is more than 15% by weight, the storage stability of the solution may be poor.
[0066] 以上のようにして得られた本発明の液晶配向処理剤は、必要に応じて濾過した後、 基板に塗布し、乾燥、焼成して塗膜とすることができ、この塗膜面をラビングや偏光し た紫外線を基板面に対して一定方向に照射するなどの配向処理をすることにより、 液晶配向膜として使用することができる。 [0066] The liquid crystal alignment treating agent of the present invention obtained as described above is filtered, if necessary, It can be applied to a substrate, dried and fired to form a coating film. By subjecting the coating surface to rubbing or irradiating polarized ultraviolet light in a certain direction to the substrate surface, the liquid crystal It can be used as an alignment film.
[0067] 液晶配向処理剤の塗布方法としては、スピンコート法、印刷法、インクジヱット法な どが挙げられる力 S、生産性の面から工業的には転写印刷法が広く用いられており、 本発明の液晶配向処理剤においても好適に用いられる。  [0067] As a method for applying the liquid crystal alignment treatment agent, a transfer printing method is widely used industrially from the viewpoint of productivity S such as a spin coating method, a printing method, an ink jet method, and productivity. It is also suitably used in the liquid crystal aligning agent of the present invention.
[0068] 液晶配向処理剤を塗布した後の乾燥の工程は、必ずしも必要とされな ヽが、塗布 後一焼成までの時間が基板ごとに一定していない場合や、塗布後ただちに焼成され ない場合には、乾燥工程を含める方が好ましい。この乾燥は、基板の搬送等により塗 膜形状が変形しない程度に溶媒が蒸発していれば良ぐその乾燥手段については 特に限定されない。具体例を挙げるならば、 50— 150°C、好ましくは 80— 120°Cの ホットプレート上で、 0. 5— 30分、好ましくは 1一 5分乾燥させる方法がとられる。  [0068] The step of drying after applying the liquid crystal alignment treatment agent is not necessarily required. However, when the time from application to one baking is not constant for each substrate, or when baking is not performed immediately after application. Preferably includes a drying step. The drying method is not particularly limited as long as the solvent is evaporated to such an extent that the shape of the coating film is not deformed by the transfer of the substrate or the like. As a specific example, a method of drying on a hot plate at 50 to 150 ° C., preferably 80 to 120 ° C. for 0.5 to 30 minutes, preferably 115 minutes may be employed.
[0069] 液晶配向処理剤の焼成は、 100— 350°Cの任意の温度で行うことができる力 好ま しくは 150°C— 300°Cであり、さらに好ましくは 200°C— 250°Cである。液晶配向処理 剤中にポリアミド酸を含有する場合は、この焼成温度によってポリアミド酸力 ポリイミ ドへの転化率が変化するが、本発明の液晶配向処理剤は、必ずしも 100%イミド化さ せる必要は無い。ただし、液晶セル製造行程で必要とされる、シール剤硬化などの 熱処理温度より、 10°C以上高!、温度で焼成することが好ま 、。  [0069] The firing of the liquid crystal alignment treatment agent can be performed at any temperature of 100 to 350 ° C, preferably 150 to 300 ° C, and more preferably 200 to 250 ° C. is there. When a polyamic acid is contained in the liquid crystal alignment treatment agent, the conversion to polyamic acid force polyimide changes depending on the firing temperature.However, the liquid crystal alignment treatment agent of the present invention does not necessarily need to be imidized 100%. There is no. However, it is preferable to perform firing at a temperature that is at least 10 ° C. higher than the heat treatment temperature required for the liquid crystal cell manufacturing process, such as curing of a sealant.
[0070] 焼成後の塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、 薄すぎると液晶表示素子の信頼性が低下する場合があるので、 5— 300應、好ましく は 10— lOOnmである。  [0070] The thickness of the coating film after firing is too large, which is disadvantageous in terms of power consumption of the liquid crystal display element, and too thin, the reliability of the liquid crystal display element may be reduced. Is 10—100 nm.
[0071] 本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液 晶配向膜付き基板を得た後、公知の方法で液晶セルを作成し、液晶表示素子とした ものである。液晶セル作成の一例を挙げるならば、液晶配向膜の形成された 1対の 基板を、 1一 30 μ m、好ましくは 2— 10 μ mのスぺーサーを挟んで、ラビング方向が 0 一 270° の任意の角度となるように設置して周囲をシール剤で固定し、液晶を注入し て封止する方法が一般的である。液晶封入の方法については特に制限されず、作 製した液晶セル内を減圧にした後液晶を注入する真空法、液晶を滴下した後封止を 行う滴下法などが例示できる。 [0071] The liquid crystal display element of the present invention is obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the above-described method, and then forming a liquid crystal cell by a known method to obtain a liquid crystal display element. It is. To give an example of liquid crystal cell production, a pair of substrates on which a liquid crystal alignment film is formed is sandwiched between spacers of 110 μm, preferably 2 to 10 μm, with a rubbing direction of 0 to 270 μm. It is a common practice to install the device at an arbitrary angle, fix the periphery with a sealant, and inject and seal liquid crystal. The method of sealing the liquid crystal is not particularly limited. The vacuum method in which the pressure in the manufactured liquid crystal cell is reduced and then the liquid crystal is injected, and the sealing after the liquid crystal is dropped. Examples of the method include a dropping method.
[0072] 液晶表示素子に用いる基板としては透明性の高い基板であれば特に限定されず、 ガラス基板、アクリル基板やポリカーボネート基板などのプラスチック基板などを用い ることができ、液晶駆動のための ITO電極などが形成された基板を用いることがプロ セスの簡素化の観点力も好ましい。また、反射型の液晶表示素子では片側の基板の みにならばシリコンウェハー等の不透明な物でも使用でき、この場合の電極はアルミ 等の光を反射する材料も使用できる。  [0072] The substrate used for the liquid crystal display element is not particularly limited as long as it is a substrate having high transparency, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. It is also preferable to use a substrate on which electrodes and the like are formed from the viewpoint of simplifying the process. In the case of a reflection type liquid crystal display element, an opaque object such as a silicon wafer can be used as long as only one substrate is used. In this case, a material which reflects light such as aluminum can be used.
以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定され るものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
実施例  Example
[0073] <合成例 1 >  <Synthesis Example 1>
メタクリロイルクロリド 5. 16g (49. 36mmol)、 4— (4—トランス n ペンチルシクロへ キシル)フエノール 11. 06g (44. 87mmol)、及びトリェチルァミン 4. 99g (49. 36m mol)をテトラヒドロフラン 200mL溶媒中、室温で 30分攪拌し、その後、 50°Cで 1時 間攪拌した。反応溶液を室温まで徐冷し、酢酸ェチルで抽出後、無水硫酸ナトリウム で有機層を乾燥した。有機層を濃縮後、シリカゲルカラムクロマトグラフィー (酢酸ェ チル:へキサン = 3 : 1)により精製を行い、 HPLC相対純度 99%以上の 4 (4ートラン スー n ペンチルシクロへキシル)フエノキシメタタリレートを 14. 15g得た。  5.16 g (49.36 mmol) of methacryloyl chloride, 11.06 g (44.87 mmol) of 4- (4-trans-n-pentylcyclohexyl) phenol, and 4.99 g (49.36 mmol) of triethylamine in 200 mL of tetrahydrofuran solvent, The mixture was stirred at room temperature for 30 minutes, and then at 50 ° C for 1 hour. The reaction solution was gradually cooled to room temperature, extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate. After concentrating the organic layer, the residue is purified by silica gel column chromatography (ethyl acetate: hexane = 3: 1), and 4 (4-trans-n-pentylcyclohexyl) phenoxymethatalate having an HPLC relative purity of 99% or more is obtained. 14.15 g was obtained.
[0074] <合成例 2>  <Synthesis Example 2>
合成例 1と同様にして得られた 4 (4 トランス n ペンチルシクロへキシル)フエノ キシメタタリレート 20. 10g (0. 07mol)及びグリシジルメタタリレート 4. 27g (0. 03m ol)を N—メチルー 2 ピロリドン(以下、 NMPと略す) 87. 48gに溶解させた後、フラス コ内を窒素にて置換し 70°Cまで昇温した。昇温後 NMPlOgに溶解したァゾイソプチ 口-トリル (以下、 AIBNと略す) 0. 2gを窒素加雰囲気下で添加し、 24時間反応させ 、式(1)の構造単位を含む付加重合体を得た。この付加重合体の重量平均分子量 { Mw}は 28000であった。  20.10 g (0.07 mol) of 4 (4 trans-n-pentylcyclohexyl) phenoxymethallate and 4.27 g (0.03 mol) of glycidyl methacrylate obtained in the same manner as in Synthesis Example 1 were added to N-methyl- 2 Pyrrolidone (hereinafter abbreviated as NMP) After dissolving in 87.48 g, the inside of the flask was replaced with nitrogen and the temperature was raised to 70 ° C. After the temperature was raised, 0.2 g of azoisobutyl mouth-tolyl (hereinafter abbreviated as AIBN) dissolved in NMPlOg was added under a nitrogen-added atmosphere and reacted for 24 hours to obtain an addition polymer containing a structural unit of the formula (1). . The weight average molecular weight {Mw} of this addition polymer was 28,000.
[0075] <合成例 3 >  <Synthesis Example 3>
p—フエ-レンジァミン 10. 81g (0. lmol)を NMP172. 4gに溶解し、これにシクロ ブタンテトラカルボン酸二無水物 19. 61g (0. lmol)を添カ卩し、室温で 24時間反応 させ、ポリアミド酸を得た。得られたポリアミド酸の重量平均分子量 {Mw}は 156000 であった。 Dissolve 10.81 g (0.1 mol) of p-phenylenediamine in 172.4 g of NMP and add 19.61 g (0.1 mol) of butanetetracarboxylic dianhydride was added, and the mixture was reacted at room temperature for 24 hours to obtain a polyamic acid. The weight average molecular weight {Mw} of the obtained polyamic acid was 156000.
[0076] <実施例 1 > <Example 1>
合成例 2で得られた付加重合体の反応溶液に NMPを加えて、付加重合体濃度 3 wt%の溶液とした。また、合成例 3で得られたポリアミド酸の反応溶液に NMPをカロえ て、ポリアミド酸濃度 3wt%の溶液とした。このポリアミド酸の 3wt%溶液 99gに、前記 付加重合体の 3wt%溶液 lgを加え、充分攪拌して均一な溶液とし、本発明の液晶 配向処理剤を得た。  NMP was added to the reaction solution of the addition polymer obtained in Synthesis Example 2 to obtain a solution having an addition polymer concentration of 3 wt%. NMP was added to the polyamic acid reaction solution obtained in Synthesis Example 3 to obtain a polyamic acid concentration of 3 wt%. To 99 g of this 3 wt% solution of polyamic acid, 1 g of a 3 wt% solution of the addition polymer was added, and the mixture was sufficiently stirred to obtain a uniform solution, thereby obtaining a liquid crystal alignment treating agent of the present invention.
[0077] この液晶配向処理剤を、孔径 0. 5 μ mのメンブランフィルターで加圧濾過した後、 透明電極付きガラス基板にスピンコートした。この基板を 80°Cのホットプレートにのせ て 5分間乾燥した後、 210°Cの熱風循環式オーブンで 60分焼成して、基板上に膜厚 50nmの塗膜を得た。この塗膜面を、レーヨン布を装着したラビング装置を用いて、口 ール回転速度 300rpm、移動速度 20mmZs、押し込み 0. 5mmの条件でラビング 処理を行い、液晶配向膜付きの基板を得た。  This liquid crystal alignment treatment agent was subjected to pressure filtration with a membrane filter having a pore size of 0.5 μm, and then spin-coated on a glass substrate with a transparent electrode. The substrate was dried on a hot plate at 80 ° C for 5 minutes, and then baked in a hot air circulating oven at 210 ° C for 60 minutes to obtain a 50 nm-thick coating film on the substrate. The coated surface was subjected to a rubbing treatment using a rubbing device equipped with rayon cloth under the conditions of a rotational speed of 300 rpm, a moving speed of 20 mmZs, and an indentation of 0.5 mm to obtain a substrate with a liquid crystal alignment film.
[0078] 上記の液晶配向膜付き基板を 2枚用意し、片方の基板の液晶配向膜面に 6 μ mの スぺーサーを散布した後、ラビング方向が直行するように張り合わせ、ネマチック液 晶(メルク社製 ZLI— 4792)を注入して液晶セルを作成した。この液晶セルを 120°C で 30分処理し、その後の液晶の配向状態を偏光顕微鏡で観察したところ欠陥のな Vヽ均一な配向をして 、ることが確認された。  [0078] Two substrates having the above-mentioned liquid crystal alignment film were prepared, and a 6-μm spacer was sprayed on the liquid crystal alignment film surface of one of the substrates. Then, the substrates were laminated so that the rubbing direction was perpendicular to the substrate. A liquid crystal cell was prepared by injecting ZLI-4792 from Merck. This liquid crystal cell was treated at 120 ° C. for 30 minutes, and the alignment state of the liquid crystal after that was observed with a polarizing microscope. As a result, it was confirmed that V ヽ uniform alignment without defects was obtained.
[0079] この液晶セルの 23°Cにおけるプレチルト角を、 ELSICON社製プレチルト角測定 装置(PAS- 301)で測定したところ 22. 1° であった。次に、この液晶セルの電圧一透 過率特性 (V - T曲線)の測定を、 23°C及び 60°Cの温度で行い、透過率が 90%とな るときの印加電圧 (V90)の値を比較することにより、その熱安定性を評価した。その 結果、 23。Cにおける V90は 0. 72Vであり、 60。Cにおける V90は 0. 66Vあり、液晶 の温度特性に由来する低電圧側へのシフトが観測されたものの、プレチルト角の低 下に由来する高電圧側へのシフトは観測されず、環境温度によらず非常に安定なプ レチルト角を有して ヽることが確認された。 [0080] なお、 V— T曲線の測定及び V90の算出は以下の様にして行った。 [0079] The pretilt angle of this liquid crystal cell at 23 ° C was measured to 22.1 ° using a pretilt angle measuring device (PAS-301) manufactured by ELSICON. Next, the voltage-transmittance characteristic (V-T curve) of this liquid crystal cell was measured at 23 ° C and 60 ° C, and the applied voltage (V90) at which the transmittance became 90% was measured. The thermal stability was evaluated by comparing the values of. As a result, 23. V90 in C is 0.72V, 60. The V90 at C was 0.66 V, and although a shift to the low voltage side due to the temperature characteristics of the liquid crystal was observed, no shift to the high voltage side due to the decrease in the pretilt angle was observed. Regardless, it was confirmed to have a very stable pretilt angle. [0080] The measurement of the VT curve and the calculation of V90 were performed as follows.
(1)接眼部に受光素子を設置した偏光顕微鏡を用い、偏光顕微鏡のポーラライザ一と アナライザーの角度は 90度に設定した。  (1) Using a polarizing microscope with a light-receiving element installed in the eyepiece, the angle between the polarizer and analyzer of the polarizing microscope was set to 90 degrees.
(2)液晶セルは、上下の基板の配向処理方向が、それぞれポーラライザ一又はアナラ ィザ一の偏光方向に一致するように設置し、電圧無印加時に光透過量が最大になる よつにした。  (2) The liquid crystal cell was installed so that the alignment processing directions of the upper and lower substrates matched the polarization directions of the polarizer and the analyzer, respectively, so that the amount of light transmission was maximized when no voltage was applied. .
(3)液晶セルに 30Hzの交流矩形波を 0— ± 5Vの範囲で 0. 01V刻みで印加し、その 時の光透過量を前記受光素子にて検知し記録した。  (3) A 30 Hz alternating-current rectangular wave was applied to the liquid crystal cell in the range of 0- ± 5 V in increments of 0.01 V, and the amount of light transmitted at that time was detected and recorded by the light receiving element.
(4)電圧無印加時の透過光量を透過率 100%、士 5V印加した時の透過光量を透過 率 0%として、印加電圧と透過率の関係をグラフ化し、このグラフから透過率が 90%と なる時の印加電圧の値を読みとり V90の値とした。  (4) Assuming that the amount of transmitted light when no voltage is applied is 100% and the amount of transmitted light when 5V is applied is 0%, the relationship between applied voltage and transmittance is graphed.From this graph, the transmittance is 90%. The value of the applied voltage at the time of was read as V90.
(5) 23°Cにおける測定は 23°Cの室温下で、 60°Cにおける測定は偏光顕微鏡のステ ージ上で液晶セルを 60°Cに加熱して行った。  (5) The measurement at 23 ° C was performed at room temperature of 23 ° C, and the measurement at 60 ° C was performed by heating the liquid crystal cell to 60 ° C on a stage of a polarizing microscope.
[0081] <実施例 2>  <Example 2>
実施例 1と同様にして得られた塗膜をラビング処理する代わりに、 ELSICON社製 光照射装置、 OptoAlign™(E3— UV— 600— A)を用いて、ランプの角度を Odeg、 照射量 20Jの光照射を行い、光配向処理により液晶配向膜付きの基板を得た。  Instead of rubbing the coating film obtained in the same manner as in Example 1, using a light irradiation device manufactured by ELSICON, OptoAlign ™ (E3—UV—600—A), setting the angle of the lamp to Odeg and the irradiation amount to 20 J And a substrate with a liquid crystal alignment film was obtained by photo alignment treatment.
[0082] 上記の液晶配向膜付き基板を 2枚用意し、片方の基板の液晶配向膜面に 6 μ mの スぺーサーを散布した後、光照射の偏向方向が直行するように張り合わせ、ネマチッ ク液晶(メルク社製 ZLI— 4792)を注入して液晶セルを作成した。この液晶セルを 12 0°Cで 30分処理し、その後の液晶の配向状態を偏光顕微鏡で観察したところ欠陥の な!、均一な配向をして 、ることが確認された。  [0082] Two substrates with a liquid crystal alignment film were prepared, and a 6-μm spacer was sprayed on the liquid crystal alignment film surface of one of the substrates. Liquid crystal (ZLI-4792, manufactured by Merck) was injected to form a liquid crystal cell. This liquid crystal cell was treated at 120 ° C. for 30 minutes, and then the alignment state of the liquid crystal was observed with a polarizing microscope. As a result, it was confirmed that there was no defect and uniform alignment was obtained.
[0083] この液晶セルについて実施例 1と同様にプレチルト角の測定と、 V— T曲線の測定を 行った。その結果、プレチルト角は 22. 5° であった。また、 23°Cにおける V90は 0. 78Vであり、 60°Cにおける V90は 0. 66Vあり、液晶の温度特性に由来する低電圧 側へのシフトが観測されたものの、プレチルト角の低下に由来する高電圧側へのシフ トは観測されず、環境温度によらず非常に安定なプレチルト角を有していることが確 f*i¾ れ 。 [0084] <比較例 1 > [0083] The pretilt angle and the VT curve of this liquid crystal cell were measured in the same manner as in Example 1. As a result, the pretilt angle was 22.5 °. The V90 at 23 ° C was 0.78 V, and the V90 at 60 ° C was 0.66 V. Although a shift to a lower voltage side due to the temperature characteristics of the liquid crystal was observed, it was due to a decrease in the pretilt angle. No shift to the high voltage side is observed, and it is confirmed that the pretilt angle has a very stable irrespective of the ambient temperature. <Comparative Example 1>
p—フエ-レンジァミン 9. 73g (0. 9mol)及び 1, 3—ジアミノー 4一才クタデシルォキシ ベンゼン 3. 77g (0. Imol)を N—メチルピロリドン(NMP) 187. 8gに溶解し、これに シクロブタンテトラカルボン酸二無水物 19. 61g (0. Imol)を添カ卩し、室温で 24時間 反応させ、ポリアミド酸を得た。得られたポリアミド酸の重量平均分子量 {Mw}は 126 000であった。このポリアミド酸の反応溶液に NMPをカ卩えて濃度 3wt%の溶液にし、 比較の為の液晶配向処理剤とした。  9.73 g (0.9 mol) of p-phenylenediamine and 3.77 g (0.1 mol) of 1,3-diamino-4 1-year-old octadecyloxybenzene were dissolved in 187.8 g of N-methylpyrrolidone (NMP), and cyclobutane was added thereto. 19.61 g (0. Imol) of tetracarboxylic dianhydride was added, and the mixture was reacted at room temperature for 24 hours to obtain a polyamic acid. The weight average molecular weight {Mw} of the obtained polyamic acid was 126 000. NMP was added to this polyamic acid reaction solution to prepare a solution having a concentration of 3 wt%, which was used as a liquid crystal alignment treatment agent for comparison.
[0085] 上記の液晶配向処理剤を用いて、実施例 1と同様にして液晶セルを作製した。この 液晶セルの配向状態を偏光顕微鏡で観察したところ、欠陥のない均一な配向をして いることが確認された。  [0085] A liquid crystal cell was produced in the same manner as in Example 1 using the above liquid crystal alignment treatment agent. Observation of the alignment state of the liquid crystal cell with a polarizing microscope confirmed that the liquid crystal cell had a uniform alignment without defects.
[0086] この液晶セルについて実施例 1と同様にプレチルト角の測定と、 V— T曲線の測定を 行った。その結果、プレチルト角は 16. 5° であった。また、 23°Cにおける V90は 0. 87Vであり、 60°Cにおける V90は 1. 01Vあり、 60°Cにてプレチルト角の低下に由来 する高電圧側へのシフトが観測され、プレチルト角は不安定であった。  [0086] The pretilt angle and the VT curve of this liquid crystal cell were measured in the same manner as in Example 1. As a result, the pretilt angle was 16.5 °. The V90 at 23 ° C was 0.87 V, the V90 at 60 ° C was 1.01 V, and a shift to a high voltage side due to a decrease in the pretilt angle was observed at 60 ° C. It was unstable.
[0087] <比較例 2>  <Comparative Example 2>
p—フエ-レンジァミン 9. 73g (0. O9mol)及び 4— [4— (4—トランス n プチルシ クロへキシル)フエノキシ ]—1, 3—ジァミノベンゼン 3. 81g (0. Olmol)を N—メチルビ 口リドン(NMP) 187. 8gに溶解し、これにシクロブタンテトラカルボン酸二無水物 19 . 61g (0. Imol)を添加し、室温で 24時間反応させ、ポリアミド酸を得た。得られたポ リアミド酸の重量平均分子量 {Mw}は 143000であった。このポリアミド酸の反応溶液 に NMPを加えて濃度 3wt%の溶液にし、比較の為の液晶配向処理剤とした。  9.73 g (0.09 mol) of p-phenylenediamine and 3.81 g (0. Olmol) of 4- [4- (4-trans-n-butylcyclohexyl) phenoxy] -1,3-diaminobenzene are added to N-methylbi The solution was dissolved in 187.8 g of lidone (NMP), and 19.61 g (0.1 mol) of cyclobutanetetracarboxylic dianhydride was added thereto and reacted at room temperature for 24 hours to obtain a polyamic acid. The weight average molecular weight {Mw} of the obtained polyamic acid was 143,000. NMP was added to the polyamic acid reaction solution to make a solution having a concentration of 3 wt%, which was used as a liquid crystal alignment treatment agent for comparison.
[0088] 上記の液晶配向処理剤を用いて、実施例 1と同様にして液晶セルを作製した。この 液晶セルの配向状態を偏光顕微鏡で観察したところ、欠陥のない均一な配向をして いることが確認された。  A liquid crystal cell was produced in the same manner as in Example 1 using the above-mentioned liquid crystal alignment treatment agent. Observation of the alignment state of the liquid crystal cell with a polarizing microscope confirmed that the liquid crystal cell had a uniform alignment without defects.
[0089] この液晶セルについて実施例 1と同様にプレチルト角の測定と、 V— T曲線の測定を 行った。その結果、プレチルト角は 20. 9° であった。また、 23°Cにおける V90は 0. 63Vであり、 60°Cにおける V90は 0. 76Vあり、 60°Cにてプレチルト角の低下に由来 する高電圧側へのシフトが観測され、プレチルト角は不安定であった。 [0090] <比較例 3 > [0089] The pretilt angle and the VT curve of this liquid crystal cell were measured in the same manner as in Example 1. As a result, the pretilt angle was 20.9 °. The V90 at 23 ° C was 0.63 V, the V90 at 60 ° C was 0.76 V, and a shift to a high voltage side due to a decrease in the pretilt angle was observed at 60 ° C. It was unstable. <Comparative Example 3>
n—ドデシルメタタリレート 12. 72g (0. O5mol)及びグリシジルメタタリレート 7. l lg ( 0. O5mol)を NMP69. 3gに溶解させた後、フラスコ内を窒素にて置換し 70°Cまで 昇温した。昇温後 NMPlOgに溶解したァゾイソプチ口-トリル (AIBN) O. 2gを窒素 雰囲気下で添加し、 24時間反応させ、比較の為の付加重合体を得た。この付加重 合体の重量平均分子量 {Mw}は 32000であった。  After dissolving 12.72 g (0.05 mol) of n-dodecyl methacrylate and 7.11 lg (0.05 mol) of glycidyl methacrylate in 69.3 g of NMP, the atmosphere in the flask was replaced with nitrogen and the temperature was reduced to 70 ° C. The temperature rose. After the temperature was raised, 0.2 g of azoisobutyrate-tolyl (AIBN) dissolved in NMPlOg was added under a nitrogen atmosphere and allowed to react for 24 hours to obtain an addition polymer for comparison. The weight average molecular weight {Mw} of this addition polymer was 32,000.
[0091] p フエ-レンジァミン 8. 65g (0. 8mol)及び 4— [4— (4—トランス n プチルシク 口へキシル)フエノキシ ]—1, 3—ジァミノベンゼン 7. 61g (0. 2mol)を N—メチルピロリ ドン(NMP) 203. 3gに溶解し、これにシクロブタンテトラカルボン酸二無水物 19. 61 g (0. Imol)を添加し、室温で 24時間反応させ、ポリアミド酸を得た。得られたポリアミ ド酸の重量平均分子量 {Mw}は 143000であった。  [0091] p-Phenylenediamine 8.65 g (0.8 mol) and 4-—4- (4-trans n-butylsilyl hexyl) phenoxy] -1,3-diaminobenzene 7.61 g (0.2 mol) with N— It was dissolved in 203.3 g of methylpyrrolidone (NMP), and 19.61 g (0.1 mol) of cyclobutanetetracarboxylic dianhydride was added thereto and reacted at room temperature for 24 hours to obtain a polyamic acid. The weight average molecular weight {Mw} of the obtained polyamic acid was 143,000.
[0092] 上記で得られた付加重合体の反応溶液に NMPをカ卩えて、付加重合体濃度 3wt% の溶液とした。また、上記で得られたポリアミド酸の反応溶液に NMPを加えて、ポリア ミド酸濃度 3wt%の溶液とした。このポリアミド酸の 3wt%溶液 99gに、前記付加重合 体の 3wt%溶液 lgをカ卩え、充分攪拌して均一な溶液とし、比較の為の液晶配向処 理剤を得た。  [0092] NMP was added to the reaction solution of the addition polymer obtained above to obtain a solution having an addition polymer concentration of 3 wt%. NMP was added to the polyamic acid reaction solution obtained above to obtain a solution having a polyamic acid concentration of 3% by weight. A 3 wt% solution lg of the above-mentioned addition polymer was added to 99 g of a 3 wt% solution of the polyamic acid, and the mixture was sufficiently stirred to obtain a uniform solution, thereby obtaining a liquid crystal alignment treatment agent for comparison.
[0093] 上記の液晶配向処理剤を用いて、実施例 2と同様にして液晶セルを作製した。この 液晶セルの配向状態を偏光顕微鏡で観察したところ、欠陥のない均一な配向をして いることが確認された。  [0093] A liquid crystal cell was produced in the same manner as in Example 2 using the above liquid crystal alignment agent. Observation of the alignment state of the liquid crystal cell with a polarizing microscope confirmed that the liquid crystal cell had a uniform alignment without defects.
[0094] この液晶セルについて実施例 1と同様にプレチルト角の測定と、 V— T曲線の測定を 行った。その結果、プレチルト角は 22. 1° であった。また、 23°Cにおける V90は 0. 70Vであり、 60°Cにおける V90は 1. 28Vあり、 60°Cにてプレチルト角の低下に由来 する高電圧側への大きなシフトが観測され、プレチルト角は非常に不安定であった。  The pretilt angle and the VT curve of this liquid crystal cell were measured in the same manner as in Example 1. As a result, the pretilt angle was 22.1 °. The V90 at 23 ° C was 0.70 V, and the V90 at 60 ° C was 1.28 V. At 60 ° C, a large shift to the high voltage side due to the decrease in pretilt angle was observed, and the pretilt angle Was very unstable.
[0095] <比較例 4 >  [0095] <Comparative Example 4>
比較例 3で調製した、ポリアミド酸の 3wt%溶液を比較の為の液晶配向処理剤とし た。  A 3 wt% solution of polyamic acid prepared in Comparative Example 3 was used as a liquid crystal alignment treatment agent for comparison.
この液晶配向処理剤を用いて、実施例 2と同様にして液晶セルを作製した。この液 晶セルの配向状態を偏光顕微鏡で観察したところ、欠陥のない均一な配向をしてい ることが確認された。 Using this liquid crystal alignment agent, a liquid crystal cell was produced in the same manner as in Example 2. Observation of the orientation of the liquid crystal cell with a polarizing microscope revealed that the cell was uniform with no defects. Was confirmed.
[0096] この液晶セルについて実施例 1と同様にプレチルト角の測定と、 V— T曲線の測定を 行った。その結果、プレチルト角は 15.9° であった。また、 23°Cにおける V90は 0. 78Vであり、 60°Cにおける V90は 1.42Vあり、 60°Cにてプレチルト角の低下に由来 する高電圧側への大きなシフトが観測され、プレチルト角は非常に不安定であった。  The pretilt angle and the VT curve of this liquid crystal cell were measured in the same manner as in Example 1. As a result, the pretilt angle was 15.9 °. The V90 at 23 ° C is 0.78 V, the V90 at 60 ° C is 1.42 V, and a large shift toward high voltage due to the decrease in pretilt angle is observed at 60 ° C. Very unstable.
[0097] <比較例 5>  [0097] <Comparative Example 5>
実施例 1で調製した、ポリアミド酸の 3wt%溶液を比較の為の液晶配向処理剤とし た。  A 3 wt% solution of polyamic acid prepared in Example 1 was used as a liquid crystal alignment treatment agent for comparison.
この液晶配向処理剤を用いて、実施例 2と同様にして液晶セルを作製した。この液 晶セルの配向状態を偏光顕微鏡で観察したところ、欠陥のない均一な配向をしてい ることが確認された。  Using this liquid crystal alignment agent, a liquid crystal cell was produced in the same manner as in Example 2. Observation of the orientation of the liquid crystal cell with a polarizing microscope confirmed that the liquid crystal cell had a uniform orientation without defects.
[0098] この液晶セルについて実施例 1と同様にプレチルト角の測定と、 V— T曲線の測定を 行った。その結果、プレチルト角は 0.3° と低いものであった。また、 23°Cにおける V 90は 1.41Vであり、 60°Cにおける V90は 1.33Vあり、液晶の温度特性に由来する 低電圧側へのシフトが観測された。これは 23°Cにお 、てプレチルト角がほとんど発 現して 、な 、ため、 60°Cに昇温してもプレチルト角の低下が観測されな力つたことを 表している。  [0098] The pretilt angle and the VT curve of this liquid crystal cell were measured in the same manner as in Example 1. As a result, the pretilt angle was as low as 0.3 °. The V90 at 23 ° C was 1.41 V, and the V90 at 60 ° C was 1.33 V. A shift toward a lower voltage due to the temperature characteristics of the liquid crystal was observed. This means that the pretilt angle almost appeared at 23 ° C, and therefore, even when the temperature was raised to 60 ° C, a decrease in the pretilt angle was not observed.
[0099] [表 1] 配向性 プレチル卜角 23ででの V90値 60 :での V90値 △V90値(23 ;_60Τ:) 実施例 1 良好 22. 1 ° 0. 72 V 0. 66 V 0. 06 V 実施例 2 良好 22. 5 ° 0. 78 V 0. 66 V 0. 12 V 比較例 1 良好 16. 50 0. 87 V 1. 0 1 V 一 0. 14 V 比較例 2 良好 20. 9 ° 0. 63 V 0. 76 V 一 0. 13 V 比較例 3 良好 22. 1 ° 0. 70 V 1. 28 V - 0. 58 V 比較例 4 良好 15. 9。 0. 78 V 1. 42 V — 0. 64 V 比較例 5 良好 0. 3° 1. 41 V 1. 33 V 0. 08 V [Table 1] Orientation V90 value at pretilt angle 23 V90 value at 60: V90 value (23; _60Τ :) Example 1 Good 22.1 ° 0.72 V 0.66 V 0 . 06 V example 2 good 22. 5 ° 0. 78 V 0. 66 V 0. 12 V Comparative example 1 good 16. 5 0 0. 87 V 1. 0 1 V one 0. 14 V Comparative example 2 good 20 9 ° 0.63 V 0.76 V – 0.13 V Comparative Example 3 Good 22.1 ° 0.70 V 1.28 V-0.58 V Comparative Example 4 Good 15.9. 0.78 V 1.42 V — 0.64 V Comparative Example 5 Good 0.3 ° 1.41 V 1.33 V 0.08 V

Claims

請求の範囲 [1] 下記式(1)で示される構造単位を含む付加重合体を含有する液晶配向処理剤。 Claims [1] A liquid crystal alignment treating agent containing an addition polymer containing a structural unit represented by the following formula (1).
[化 1]  [Chemical 1]
Figure imgf000027_0001
Figure imgf000027_0001
(式中、 Aは付加重合によって得られる重合体の主鎖構造であり、 Bは単結合又はェ ステル、エーテル、アミド、及びウレタン力 なる群より選ばれる結合基である。 XIと X 2は独立して芳香族環、脂肪族環、又はへテロ環を表し、 R1は炭素数 3— 18のアル キル基、炭素数 3— 18のアルコキシ基、炭素数 1一 5のフルォロアルキル基、炭素数 1一 5のフルォロアルコキシ基、シァノ基、又はハロゲン原子を表す。 ) (In the formula, A is a main chain structure of a polymer obtained by addition polymerization, B is a single bond or a bonding group selected from the group consisting of ester, ether, amide, and urethane. XI and X 2 are Independently represents an aromatic ring, an aliphatic ring, or a hetero ring, wherein R1 is an alkyl group having 3 to 18 carbon atoms, an alkoxy group having 3 to 18 carbon atoms, a fluoroalkyl group having 15 to 15 carbon atoms, Represents 1 to 5 fluoroalkoxy groups, cyano groups, or halogen atoms.)
[2] 更に、ポリアミド酸、ポリイミド、ポリアミド、ポリエステル及びポリウレァカもなる群から 選ばれる少なくとも一種類の重合体を含有する請求項 1に記載の液晶配向処理剤。  2. The liquid crystal alignment treatment agent according to claim 1, further comprising at least one polymer selected from the group consisting of polyamic acids, polyimides, polyamides, polyesters, and polyureas.
[3] 付加重合体が、ポリアミド酸、ポリイミド、ポリアミド、ポリエステル及びポリウレアから なる群から選ばれる少なくとも一種類の重合体と化学的に結合した状態で含有され ているに請求項 2に記載の液晶配向処理剤。  3. The liquid crystal according to claim 2, wherein the addition polymer is contained in a state of being chemically bonded to at least one polymer selected from the group consisting of polyamic acid, polyimide, polyamide, polyester, and polyurea. Alignment agent.
[4] 液晶配向処理剤に含有される重合体成分全体の中で、式(1)で示される構造単位 が占める重量割合が 0. 01— 50重量%である、請求項 1、 2又は 3に記載の液晶配 向処理剤。  [4] The weight ratio of the structural unit represented by the formula (1) in the entire polymer component contained in the liquid crystal alignment treatment agent is 0.01% to 50% by weight. The liquid crystal orientation treating agent according to the above.
[5] 付加重合体が、式(1)で示される構造単位を、構造単位の数換算で 50%以上含 有し、かつ全重合体成分における前記付加重合体の比率が 0. 1— 20重量%である 請求項 1一 4のいずれかに記載の液晶配向処理剤。  [5] The addition polymer contains the structural unit represented by the formula (1) in an amount of 50% or more in terms of the number of structural units, and the ratio of the addition polymer to all polymer components is 0.1 to 20. The liquid crystal alignment treating agent according to any one of claims 14 to 14, which is% by weight.
[6] 付加重合体が、式 (1)の構造単位を構造単位数換算で 5%以上含有する請求項 1 一 5のいずれかに記載の液晶配向処理剤。 6. The liquid crystal alignment treating agent according to claim 15, wherein the addition polymer contains 5% or more of the structural unit represented by the formula (1) in terms of the number of structural units.
[7] 付加重合体が、その構造単位の式(1)において、 A— Bで示される部分が、下記式 ([7] In the addition polymer, in the formula (1) of the structural unit, a portion represented by AB is represented by the following formula (
2)で示される構造を有する請求項 1一 6のいずれかに記載の液晶配向処理剤。 [化 2] 17. The liquid crystal alignment treatment agent according to claim 16, having a structure represented by 2). [Chemical 2]
Figure imgf000028_0001
Figure imgf000028_0001
(式中、 R2は水素原子、メチル基、又はハロゲン原子を表す。 )  (In the formula, R2 represents a hydrogen atom, a methyl group, or a halogen atom.)
[8] 請求項 1一 7のいずれかに記載された液晶配向処理剤を用いた液晶表示素子。  [8] A liquid crystal display device using the liquid crystal alignment treatment agent according to claim 17.
PCT/JP2004/015531 2003-10-23 2004-10-20 Aligning agent for liquid crystal and liquid-crystal display element WO2005040274A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005514961A JP4702058B2 (en) 2003-10-23 2004-10-20 Liquid crystal aligning agent and liquid crystal display element
KR1020067005417A KR101133479B1 (en) 2003-10-23 2004-10-20 Aligning agent for liquid crystal and liquid-crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-363001 2003-10-23
JP2003363001 2003-10-23

Publications (1)

Publication Number Publication Date
WO2005040274A1 true WO2005040274A1 (en) 2005-05-06

Family

ID=34510014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015531 WO2005040274A1 (en) 2003-10-23 2004-10-20 Aligning agent for liquid crystal and liquid-crystal display element

Country Status (5)

Country Link
JP (1) JP4702058B2 (en)
KR (1) KR101133479B1 (en)
CN (1) CN100396728C (en)
TW (1) TW200523345A (en)
WO (1) WO2005040274A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169224A (en) * 2008-01-18 2009-07-30 Jsr Corp Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2009265486A (en) * 2008-04-28 2009-11-12 Jsr Corp Liquid crystal-aligning agent, liquid crystal alignment layer, and liquid crystal display element
JP2011186049A (en) * 2010-03-05 2011-09-22 Jsr Corp Method for manufacturing liquid crystal display element
CN101012381B (en) * 2006-01-30 2012-12-05 Jsr株式会社 Liquid crystal aligning agent, alignment film and liquid crystal display device
CN1916111B (en) * 2005-08-19 2014-01-15 三星显示有限公司 Organic composition, liquid crystal display comprising same and method for manufacturing liquid crystal display
WO2015002291A1 (en) * 2013-07-05 2015-01-08 日産化学工業株式会社 Polymer composition and liquid crystal alignment film for in-plane-switching-type liquid crystal display element
KR101612725B1 (en) * 2009-04-14 2016-04-15 라헤짜르 코미토프 Maleimide-n-vinyllactam based sidechain polymers for lcd alignment layers
US20220326576A1 (en) * 2021-03-30 2022-10-13 Japan Display Inc. Alignment film material and liquid crystal display device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101600989B (en) * 2006-11-01 2012-01-25 日产化学工业株式会社 Agent for alignment treatment of liquid crystal and liquid crystal display element using the same
CN101470212B (en) * 2007-12-28 2014-10-22 住友化学株式会社 Optical film
CN101889243B (en) * 2008-01-30 2012-10-17 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
JP5585755B2 (en) * 2008-06-17 2014-09-10 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5708914B2 (en) * 2010-02-08 2015-04-30 Jsr株式会社 Manufacturing method of liquid crystal display element
WO2012018121A1 (en) * 2010-08-05 2012-02-09 日産化学工業株式会社 Resin composition, liquid crystal orientation agent, and phase difference agent
CN105388670A (en) * 2015-12-24 2016-03-09 上海天马微电子有限公司 Liquid crystal panel, manufacturing method thereof and display device comprising liquid crystal panel
CN111763518B (en) * 2020-06-12 2021-11-12 江苏三月科技股份有限公司 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262528A (en) * 1988-04-14 1989-10-19 Nissan Chem Ind Ltd Composition for liquid crystal orienting agent
JPH09127512A (en) * 1995-10-30 1997-05-16 Sumitomo Bakelite Co Ltd Liquid crystal orienting agent and liquid crystal display element formed by using the same
JP2000281724A (en) * 1999-03-30 2000-10-10 Jsr Corp Liquid crystal alignment agent
JP2002348330A (en) * 2001-05-28 2002-12-04 Nitto Denko Corp Side chain-type liquid crystalline polymer, liquid crystalline composition, preparation of homeotropicaly oriented liquid crystalline film, and homeotropicaly oriented liquid crystalline film
JP2003195050A (en) * 2001-12-27 2003-07-09 Kureha Chem Ind Co Ltd Method for manufacturing optically anisotropic polymer molding
JP2003222868A (en) * 2002-01-31 2003-08-08 Jsr Corp Liquid crystal alignment agent, method for forming liquid crystal alignment film, and liquid crystal display device
JP2004035722A (en) * 2002-07-03 2004-02-05 Dainippon Ink & Chem Inc Composition for photo-alignment film and method for producing photo-alignment film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520376B2 (en) * 1993-06-11 2004-04-19 セイコーエプソン株式会社 Liquid crystal display device and method of manufacturing the same
US6107427A (en) * 1995-09-15 2000-08-22 Rolic Ag Cross-linkable, photoactive polymer materials
JP3572787B2 (en) * 1996-03-14 2004-10-06 松下電器産業株式会社 Liquid crystal cell manufacturing method
JP3955694B2 (en) * 1999-03-30 2007-08-08 富士フイルム株式会社 Liquid crystal alignment film and liquid crystal element
US7074344B2 (en) * 2001-10-03 2006-07-11 Jsr Corporation Liquid crystal aligning agent and liquid crystal display element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262528A (en) * 1988-04-14 1989-10-19 Nissan Chem Ind Ltd Composition for liquid crystal orienting agent
JPH09127512A (en) * 1995-10-30 1997-05-16 Sumitomo Bakelite Co Ltd Liquid crystal orienting agent and liquid crystal display element formed by using the same
JP2000281724A (en) * 1999-03-30 2000-10-10 Jsr Corp Liquid crystal alignment agent
JP2002348330A (en) * 2001-05-28 2002-12-04 Nitto Denko Corp Side chain-type liquid crystalline polymer, liquid crystalline composition, preparation of homeotropicaly oriented liquid crystalline film, and homeotropicaly oriented liquid crystalline film
JP2003195050A (en) * 2001-12-27 2003-07-09 Kureha Chem Ind Co Ltd Method for manufacturing optically anisotropic polymer molding
JP2003222868A (en) * 2002-01-31 2003-08-08 Jsr Corp Liquid crystal alignment agent, method for forming liquid crystal alignment film, and liquid crystal display device
JP2004035722A (en) * 2002-07-03 2004-02-05 Dainippon Ink & Chem Inc Composition for photo-alignment film and method for producing photo-alignment film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916111B (en) * 2005-08-19 2014-01-15 三星显示有限公司 Organic composition, liquid crystal display comprising same and method for manufacturing liquid crystal display
CN101012381B (en) * 2006-01-30 2012-12-05 Jsr株式会社 Liquid crystal aligning agent, alignment film and liquid crystal display device
JP2009169224A (en) * 2008-01-18 2009-07-30 Jsr Corp Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI422617B (en) * 2008-01-18 2014-01-11 Jsr Corp Liquid crystal aligning agent, and liquid crystal aligning film and liquid crystal display element
JP2009265486A (en) * 2008-04-28 2009-11-12 Jsr Corp Liquid crystal-aligning agent, liquid crystal alignment layer, and liquid crystal display element
KR101612725B1 (en) * 2009-04-14 2016-04-15 라헤짜르 코미토프 Maleimide-n-vinyllactam based sidechain polymers for lcd alignment layers
JP2011186049A (en) * 2010-03-05 2011-09-22 Jsr Corp Method for manufacturing liquid crystal display element
WO2015002291A1 (en) * 2013-07-05 2015-01-08 日産化学工業株式会社 Polymer composition and liquid crystal alignment film for in-plane-switching-type liquid crystal display element
US20220326576A1 (en) * 2021-03-30 2022-10-13 Japan Display Inc. Alignment film material and liquid crystal display device
JP7652607B2 (en) 2021-03-30 2025-03-27 株式会社ジャパンディスプレイ Alignment film material and liquid crystal display device

Also Published As

Publication number Publication date
CN1845965A (en) 2006-10-11
JPWO2005040274A1 (en) 2007-03-15
KR20060133528A (en) 2006-12-26
TWI374928B (en) 2012-10-21
JP4702058B2 (en) 2011-06-15
CN100396728C (en) 2008-06-25
TW200523345A (en) 2005-07-16
KR101133479B1 (en) 2012-04-10

Similar Documents

Publication Publication Date Title
US7687118B2 (en) Photocrosslinkable materials
JP5466872B2 (en) LIQUID CRYSTAL ALIGNANT, LIQUID CRYSTAL ALIGNMENT FILM FORMED FROM THE SAME, ITS MANUFACTURING METHOD, AND LIQUID CRYSTAL DISPLAY DEVICE PROVIDED WITH THE ALIGN
WO2004021076A1 (en) Material for liquid crystal alignment and liquid crystal displays made by using the same
CN100427529C (en) Liquid crystal alignment treatment agent for vertical alignment and liquid crystal display element
TWI401252B (en) Liquid-crystal alignment formulation, and liquid-crystal aligning film and liquid-crystal display element prepared by using the same
WO2005083504A1 (en) Liquid crystal aligning agent for photoalignment and liquid crystal display device utilizing the same
JP4702058B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP4096944B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI694291B (en) Liquid crystal alignment agent, manufacturing method of liquid crystal element, liquid crystal alignment film, liquid crystal element and compound
WO2015182894A1 (en) Photoreactive diamine monomer polymerization and lcd alignment film using same
CN107880902B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display component
CN111556981B (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal element, and manufacturing method of liquid crystal element
TWI767970B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN102344816B (en) Liquid crystal alignment agent, and liquid crystal alignment film and liquid crystal display element prepared therefrom
JP5467712B2 (en) Alignment film material containing polyimide resin polymer and the resin for liquid crystal display
JP6962449B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP2001228483A (en) Liquid crystal alignment film forming agent using polyimide copolymer, liquid crystal alignment film, and method for producing the same
JP2023170991A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element
CN106978195A (en) Liquid crystal alignment film, liquid crystal display assembly and manufacturing method thereof
JP2023109149A (en) Liquid crystal aligning agents, liquid crystal alignment films, liquid crystal elements, polymers and compounds
JP2008020899A (en) Liquid crystal aligning agent for inkjet coating and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480025374.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067005417

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005514961

Country of ref document: JP

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1020067005417

Country of ref document: KR