[go: up one dir, main page]

WO2005029723A1 - Mobile communication terminal - Google Patents

Mobile communication terminal Download PDF

Info

Publication number
WO2005029723A1
WO2005029723A1 PCT/JP2003/011911 JP0311911W WO2005029723A1 WO 2005029723 A1 WO2005029723 A1 WO 2005029723A1 JP 0311911 W JP0311911 W JP 0311911W WO 2005029723 A1 WO2005029723 A1 WO 2005029723A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
detection
mobile communication
communication terminal
path detection
Prior art date
Application number
PCT/JP2003/011911
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Yamashita
Hideto Aikawa
Akihiro Shibuya
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2003/011911 priority Critical patent/WO2005029723A1/en
Priority to JP2005509045A priority patent/JPWO2005029723A1/en
Publication of WO2005029723A1 publication Critical patent/WO2005029723A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7113Determination of path profile

Definitions

  • the present invention relates to a mobile communication terminal adopting a CDMA (Code Division Multiple Access) system as a communication system. More specifically, the present invention measures a pilot signal power of a nearby radio base station, and The present invention relates to a mobile communication terminal having a configuration for specifying a path used for AKE reception.
  • CDMA Code Division Multiple Access
  • the information data signal is spread over a wide band using a chip transmission rate higher than the report data transmission rate and transmitted.
  • Despreading using the spreading code used for spreading enables multiple access.
  • mobile communications especially land mobile communications
  • communication is often out of line of sight, and multiple propagation paths from various directions with different arrival times are formed due to reflection from buildings. This multiple propagation path causes a fluctuation in the level of the received signal called fuzzing, which adversely affects the communication quality.
  • the signal of each delay path is separated from the received signal, and these are combined and received by the RAKE receiver to improve the communication quality.
  • path detection processing is important.
  • a threshold value is set to separate path signals. That is, in the receiving apparatus, the path detecting unit transmits the position information of the path having a value equal to or larger than the threshold value to the RAKE receiving circuit, and the RAKE receiving circuit performs RAKE combining based on the notified path position information.
  • a method for path detection for example, a method of setting a threshold based on the average power of a delay profile or a method of setting a threshold based on a maximum value and a minimum value is considered. Have been.
  • a floor level of the delay profile is obtained by calculating an average power of a measured delay profile. .
  • the floor level is a value calculated by multiplying the average power by an appropriate constant value. Then, at the time of path detection, the values below the floor level are removed, the position detection data 3 ⁇ 4 is reduced, and then the correlation peak value is searched. As a result, the amount of search data in the correlation peak value search can be reduced, and the search processing speed can be further increased.
  • Patent Document 1 is a diagrammatic representation of Patent Document 1
  • the conventional mobile communication terminal receiving device
  • the time required for the path search a series of processes from the intimacy distribution measurement based on the delay profile to the path detection based on the threshold determination
  • the first path detected becomes older and the reliability increases.
  • the performance is impaired. In particular, when the mobile communication terminal moves at high speed, the effect tends to be remarkable.
  • the path detectors are equipped with path detectors for the number of neighboring cells, which can reduce the time required for path detection.
  • the path detectors that operate simultaneously Power consumption and required resources 11911 are equipped with path detectors for the number of neighboring cells, which can reduce the time required for path detection.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a mobile communication terminal that can reduce power and resources consumed in path detection while performing path detection under optimal conditions. . Disclosure of the invention
  • the mobile communication terminal includes a path search device for specifying a path used for RAKE reception, and the path search device measures reception power of a pilot signal included in a received signal.
  • a path detecting means including a specific number of path detectors for detecting a plurality of paths existing within a predetermined time (path detection range) from a predetermined quasi-path timing '(the embodiment described later)
  • the cell information including the reference path timing according to the cell allocation information in which the path detection operation start time is associated with each path detector for each cell.
  • Means for controlling the path detection by the specified number of path detectors by notifying the path detection means path detection control unit: equivalent to I1).
  • Each path detector is on the basis of the path detection control cell information notified from the means [delta], and executes in a time division path detection.
  • the path detection of many peripheral cells is performed by a small number of path detectors (less than the number of peripheral cells). Also, for example, the path detection time for one cell is reduced, and the path detection for one cell is repeatedly executed.
  • FIG. 1 is a diagram showing a configuration of a mobile communication terminal (path search device) according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a cell allocation plan table.
  • FIG. 5 is a flowchart showing the operation of the path search device ft according to the first embodiment.
  • FIG. 4 is a diagram illustrating the structure of the mobile communication terminal search device according to the second embodiment of the present invention.
  • FIG. 5 is a flowchart showing the operation of the path search device according to the second embodiment
  • FIG. 6 is a flowchart showing the operation of the path search device according to the second embodiment.
  • FIG. 7 is a diagram showing the configuration of a mobile communication terminal (path search device) according to a third embodiment of the present invention.
  • FIG. 8 is a diagram showing the operation of the path search device of the third embodiment.
  • FIG. 9 is a diagram showing a configuration of a mobile communication terminal (path search device) according to a fourth embodiment of the present invention.
  • FIG. 10 is a flowchart of the fourth embodiment.
  • FIG. 11 is a flowchart showing the operation of the path search device of FIG. 11.
  • FIG. 11 is a diagram showing a fixed time range (path detection range) centered on the reference path timing given to the path detection unit 12.
  • Figure 12 shows the time range that can be detected by the path detection unit 12.
  • FIG. 13 is a flowchart showing a process corresponding to step S1 of the first to fourth embodiments.
  • FIG. 1 is a diagram showing a configuration of a first embodiment of a path search device in a mobile communication terminal (receiving device) according to the present invention, specifically, a mobile communication terminal.
  • the illustrated path search device 1 includes a path detection control unit 11 that controls path detection based on a plurality of cell information input from the outside, and a plurality of path search units based on the cell information received from the path detection control unit 11.
  • a path detection section 12 for detecting paths, a path search result collection section 13 for totalizing and managing a plurality of pieces of path information output from the path detection section 12 in units of cells, and a path detection control section 1 1 is composed of a cell allocation table 14 used for allocating cells to the path detection unit 12.
  • the path detection unit 12 includes a plurality of path detectors 12-1—1, 12-2. , 1 2— 3....
  • FIG. 2 is a diagram showing an example of a cell allocation meter table 14.
  • This cell allocation meter table 14 has one path detection operation for each cell. It associates a numerical value (path detection start time) that specifies the elapsed time or start time in units of time to be detected with a number that specifies each path detector. The numerical value associated with the start time and the number specifying the path detector indicates the number specifying the cell.
  • FIG. 3 is a flowchart showing the operation of the path search device.
  • the path detection controller 11 collects a plurality of pieces of cell information input from the outside (FIG. 3, step S1). Then, the cell information is set in the path detection unit 12 based on the cell allocation plan table 14 and the time at that time (step S 2). At this time, if the path detector 12 is composed of a plurality of path detectors, cell information corresponding to the number is set.
  • the path detection unit 12 measures the received power of the pilot signal based on the set cell information, thereby obtaining a plurality of signals existing at a fixed time ⁇ from the reference path timing ′ included in the cell information. Is detected (step S3). At this time, the path detection unit 12 performs a path detection operation until a predetermined time set so as to delay the path detection time is reached, and then outputs a detected path.
  • the path search result totaling section 13 collects the detected paths output from the path detecting section 12 (step S4), and averages the received level for each detected path (step S5).
  • the averaging method for example, a method of calculating the average of the reception levels of the past detection paths (for the specified number of times) or the time elapsed since the detection of the reception level of the past detection paths A method of multiplying by a coefficient corresponding to and adding.
  • the path search result totaling unit 13 collectively outputs the detected path information obtained by averaging, for example, path timing and reception level, to the outside (step S6). Thereafter, when continuously performing a path search for each cell, the path detection unit 12 continues the path search based on the cell allocation plan table 14 unless externally controlled to stop the path detection (Step S). 7).
  • the path detection unit 12 by performing the path search in a time-division manner, the path detection of many peripheral cells is performed by a small number of path detectors (less than the number of peripheral cells). Further, by reducing the path detection time for one cell, the difference between the path detection timings in each cell is reduced. Thereby, the reliability of the path detection result for each cell can be made equal.
  • the power consumption can be significantly reduced compared to the conventional technology in which path detectors K are provided with path detectors for the number of peripheral cells and operate them simultaneously. Further, since path detection for one cell is repeatedly performed, it is possible to obtain the same degree of path detection as when performing path detection for a long time.
  • FIG. 4 is a diagram showing a configuration of a mobile communication terminal (receiving device) according to the present invention, specifically, an embodiment of a path search device in the mobile communication terminal.
  • the path search device 1a includes a path detection control unit 11a that controls path switching based on a plurality of cell information input from the outside, and a plurality of paths output from the path detection unit 12. It has a path search result aggregation unit 13a that aggregates and manages ⁇ in cell units, and a path power determination unit 15 that determines whether the received power of the detected path exceeds a specific threshold.
  • the same components as those in FIG. 1 of Embodiment 1 described above are denoted by the same reference numerals, and description thereof will be omitted.
  • the determination result of the path power determination unit 15 exceeds the threshold, the number of repetitions of the operation of the path detection control unit 11 a and the path detection unit 12 is reduced. . '
  • FIG. 5 is a flowchart showing the operation of the path search device 1a.
  • the path result summation unit 13a outputs the detection path information obtained by averaging, for example, the path timing and the reception level, etc., to the outside at once, and after t (step S6),
  • the path power determination unit 15 sets the reception power of the detected path in advance.
  • the power threshold value is compared with the threshold value (FIG. 5, step S8). This dagger comparison operation is performed when a specific time has elapsed from the start of the path search execution.
  • step S8 for example, if the received power of the detected / exceeded power exceeds the above power threshold value (step S8, OK), the path detection control unit 1a holds the received power.
  • the path detection end number parameter that is, the number of repetitions of path detection is reduced (step S9).
  • the reception power of the detection path is equal to or lower than the above power threshold (step S8, NG)
  • the current path detection end count parameter is held.
  • the path detection control unit 11 determines the end of the path search operation based on the path detection end number parameter (step S10).
  • the path detection operation is terminated in the middle, whereby the path detection operation is performed.
  • the number of repetitions was reduced (operation time was shortened).
  • the power and processing time consumed in the path search can be further reduced.
  • step S8 NG the current path detection end number parameter is held when the received power of the detected path is equal to or lower than the above power threshold value.
  • the number of repetitions of the path detection operation may be increased (operation time is increased) (FIG. 6, step S11).
  • FIG. 7 is a diagram showing a configuration of a third embodiment of a path search device in a mobile communication terminal (receiving device) according to the present invention.
  • the path search device 1b includes a path power determination unit 15b that determines whether the reception power of the detected path exceeds a specific threshold, a movement speed detection unit 16 that detects the movement speed, A path power threshold generator 17 for generating a threshold for path power determination based on the moving speed detected by the moving speed detector 16. Note that the same components as those in the first or second embodiment described above are denoted by the same reference numerals and description thereof is omitted. To do.
  • the present embodiment utilizes the fact that the peripheral cell and path power fluctuate greatly during high-speed movement, and relatively slowly during low-speed movement or in a stationary state. Set high values for / and, and set low power thresholds when moving at low speeds.
  • FIG. 8 is a flowchart showing the operation of the path search device 1b.
  • the moving speed detector 16 detects the moving speed of the mobile communication terminal equipped with the path search device 1b of the present embodiment (FIG. 8, step S21).
  • the path power threshold generation unit .17 generates a power threshold to be used by the path power determination unit 15b based on the detected moving speed (step S22). That is, a power threshold higher than the reference is generated during high-speed movement, and a power threshold lower than the reference is generated during low-speed movement.
  • the processing related to the moving speed in step S21 and step S22 is not limited to FIG. 8, and is performed before the end of the pass search operation (step S10). This can be done wherever the order is followed.
  • the power threshold during high-speed movement is set high, and the power threshold during low-speed movement is set low, and the path detection is repeated according to the movement speed.
  • the number was changed.
  • FIG. 9 is a diagram showing a horizontal configuration of a mobile communication terminal (receiving device) according to the present invention, specifically, a fourth embodiment of a path search device in a mobile communication terminal.
  • the path search device 1c includes a path detection control unit 11c that controls path detection based on a plurality of pieces of cell information input from the outside, and a reception power of a detected path exceeding a specific threshold.
  • a path power determination unit 15c for determining whether or not to perform the operation, and an intermittent operation control unit 18 for managing the start timing of the intermittent operation.
  • the same components as those in the first, second, or third embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
  • the intermittent operation control unit 18 obtains an optimal intermittent operation interval based on the surrounding path power and the moving speed, and adjusts the intermittent operation frequency. In addition, the intermittent operation control unit 18 holds the criterion value of the intermittent operation interval, and corrects the intermittent operation interval based on the moving speed information detected by the moving speed detecting unit 16.
  • FIG. 10 is a flowchart showing the operation of the path search device 1c. Here, only the processing different from the first, second, or third embodiment described above will be described.
  • the ⁇ operation control unit 18 For example, after the path detection control unit 1 lc reduces the number of path detection repetitions (path detection end number parameter) stored therein (10th step, step S9), the ⁇ operation control unit 18 The optimum intermittent operation interval is determined based on the peripheral path power and the moving speed, and the intermittent operation frequency is adjusted (step S31).
  • Step S 10 determines the end of the path search operation based on the path detection end frequency parameter.
  • the intermittent operation controller 18 determines whether to stop the intermittent operation. (Step S32), for example, if an instruction to stop the intermittent operation is received from outside (Step S32, Yes), the intermittent operation is stopped. On the other hand, if the instruction to stop the intermittent operation has not been received (step S32, No), the intermittent operation frequency is adjusted based on the moving speed of the mobile communication terminal (step S33), and the path search operation is performed. It is stopped (step S34) and waits until the next operation start time.
  • Step S33 is a process for correcting the intermittent operation interval.
  • step S31 the intermittent operation interval is captured when the path power threshold and the value judgment are OK.
  • T JP2 drawing 11911 based on the peripheral path power and the moving speed, T JP2 drawing 11911
  • the path detection control units (11, 11a, 11c) described in the first to fourth embodiments specify the reference path timing separately from the cell information having the specific reference path timing.
  • Cell information is generated with reference to the timing obtained by adding and subtracting the time difference between the two, and the information is set in the path detection unit 12.
  • FIG. 11 is a diagram showing a fixed time range (corresponding to the path detection range in Embodiments 1 to 4) centered on the reference path timing ′ given to the path detection unit 12. This time range is often determined at the configuration stage of the device, but in the present embodiment, as shown in FIG. 12, the path detection range detectable by the path detection unit is dynamically increased after the configuration of the attire.
  • FIG. 13 is a flowchart showing a process corresponding to step S1 in the first to fourth embodiments.
  • the path detection control unit adds the time range to the reference path timing within the time range detectable by the path detection unit 12 based on the acquired cell information of the path detection target, and Another cell information is generated with the subtracted timing as the reference nos timing (steps S41, S42).
  • the path detection range that can be detected by the path detection unit can be dynamically increased after the device is configured.
  • the path detection range can be expanded, so that the accuracy of path detection can be further improved.
  • the mobile communication terminal according to this effort is useful for a system that employs CDMA as a communication method.In particular, it measures the pilot signal power of nearby wireless base stations and uses it for RAKE reception. ! / Mobile communication terminal with a configuration to specify the path Suitable for

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A mobile communication terminal includes a path search device (1) for identifying a path used for RAKE reception. In the path search device (1), a path detection section (12) including a particular number of path detectors (12-1, 12-2, ...) measures a reception power of the pilot signal contained in the reception signal, so as to detect a plurality of paths present within a constant time from a predetermined reference path timing and a path detection controller (11) controls path detection by notifying peripheral cell information including the reference path timing to the path detection section (12) according to a cell allocation plan table (14). Each of the path detectors executes path detection by time division according to the cell information notified from the path detection controller (11).

Description

明 細 書 移動体通信端末 技術分野  Description Mobile communication terminal Technical field
この発明は、 通信方式として、 C DMA (Code Division Multiple Access) 方式を採用する移動体通信端末に関するものであり、 詳細には、 周辺の無線基地 局のパイ口ット信号電力を測定し、 R AK E受信に用いるパスを特定する構成を 備えた移動体通信端末に関するものである。 背彔技術  The present invention relates to a mobile communication terminal adopting a CDMA (Code Division Multiple Access) system as a communication system. More specifically, the present invention measures a pilot signal power of a nearby radio base station, and The present invention relates to a mobile communication terminal having a configuration for specifying a path used for AKE reception. Technology
以下、 従来の移動体通信端末 (受信装置) について説明する。 D S— C DMA (Direct Sequence - Code Division Multiple Access) fef 方式では、 ¾報テ —タ伝送速度よりも高いチップ伝送逮度を用いて情報データ信号を広帯域に拡散 させて送信し、 さらに、 復調時に、 拡散に用いた拡散符号を用いて逆拡散を行う ことにより、 多元接続を可能にしている。 また、 移動体通信 (特に陸上移動通信 ) では、 見通し外通信状態であることが多く、 建造物からの反射などによって到 来時間の異なる様々な方向からの多重伝搬路が形成される。 この多重伝搬路がフ ジングと呼ばれる受信信号のレベル変動を招き、 通信品質に悪影響を与える。 そのため、 D S— C DMA通信方式では、 復調時、 受信信号から各遅延パスの 信^を分離し、 これらを RAK E受信機で合成受信することにより、 通信品質の 向上を図っている。 ここでは、 受信信号から各遅延パス信号を分離する必要があ るため、 パス検出処理が重要になる。  Hereinafter, a conventional mobile communication terminal (receiving device) will be described. In the DS-C DMA (Direct Sequence-Code Division Multiple Access) fef method, the information data signal is spread over a wide band using a chip transmission rate higher than the report data transmission rate and transmitted. Despreading using the spreading code used for spreading enables multiple access. In mobile communications (especially land mobile communications), communication is often out of line of sight, and multiple propagation paths from various directions with different arrival times are formed due to reflection from buildings. This multiple propagation path causes a fluctuation in the level of the received signal called fuzzing, which adversely affects the communication quality. Therefore, in the DS-C DMA communication system, at the time of demodulation, the signal of each delay path is separated from the received signal, and these are combined and received by the RAKE receiver to improve the communication quality. Here, since it is necessary to separate each delay path signal from the received signal, path detection processing is important.
つづいて、 従来のパス検出処理について説明する。 通常、 パス検出処理では、 パス信号を分離するためにしきい値を設定する。 すなわち、 受信装置では、 パス 検出部が、 しきい値以上の値を持つパスの位置情報を RA K E受信回路に伝え、 当該 R A K E受信回路が、 通知を受けたパス位置情報をもとに R A K E合成を行 PC蘭 003/011911 Next, a conventional path detection process will be described. Normally, in the path detection processing, a threshold value is set to separate path signals. That is, in the receiving apparatus, the path detecting unit transmits the position information of the path having a value equal to or larger than the threshold value to the RAKE receiving circuit, and the RAKE receiving circuit performs RAKE combining based on the notified path position information. Row PC orchid 003/011911
2 2
う。 これにより、 パスダイパーシチ効果が得られ、 通信品質の向上を図ることが できる。 Yeah. As a result, a path-diverse effect can be obtained, and communication quality can be improved.
—方で、 移動体通信においては、 移動局と基地局との間の距離による減衰や、 位置変動によるフエ一ジングの時間変化等、 を勘案すると、 しきい値を Θ定的に 設定した場合には通信品質 (受信特性) 力明らかに劣化するため、 初期値および 1測定単位でしきい値を推定する必要がある。 したがって、 パス検出のための方 法としては、 たとえば、 遅延プロフ ィルの平均電力を基準にしきい値を設定す る方法や、 最大値と最小値を基準にしきい値を設定する方法、 が考えられている。 上記のようなパス検出方法を用いた従来の受信装置 (下記特許文献 1参照) で は、 たとえば、 測定された遅延プロファイルの平均電力を計算することで、 当該 遅延プロファイルのフロアレベルを求めている。 フロアレベルとは、 平均電力に 適当な一定値をかけることにより算出される値である。 そして、 パス検出時には、 このフロアレベル以下の値を取り除き、 位懞検出データ ¾を削減した後で、 相関 ピーク値の検索を行う。 これにより、 相関ピーク値検索における検索データ量を 削減でき、 さらに検索処理速度を高めることができる。  In mobile communications, when the threshold is set steadily, taking into account attenuation due to the distance between the mobile station and the base station, and the time change of fusing due to position fluctuation, etc. Since the communication quality (reception characteristics) power obviously deteriorates, it is necessary to estimate the threshold value by the initial value and one measurement unit. Therefore, as a method for path detection, for example, a method of setting a threshold based on the average power of a delay profile or a method of setting a threshold based on a maximum value and a minimum value is considered. Have been. In a conventional receiver using the above-described path detection method (see Patent Document 1 below), for example, a floor level of the delay profile is obtained by calculating an average power of a measured delay profile. . The floor level is a value calculated by multiplying the average power by an appropriate constant value. Then, at the time of path detection, the values below the floor level are removed, the position detection data ¾ is reduced, and then the correlation peak value is searched. As a result, the amount of search data in the correlation peak value search can be reduced, and the search processing speed can be further increased.
特許文献 1 .  Patent Document 1.
特開 2 0 0 0— 1 3 4 1 3 5 公報 (図 6 ) し力 しながら、 従来の移動体通信端末 (受信装置) においては、 パスを検出す べき被測定セルの数が多くなるに従い、.パスサーチ (遅延プロファイルに基づく 親度分布測定からしきい値判定に基づくパス検出までの—連の処理) にかかる時 間が長くなるため、 最初に検出したパスが古くなつてしまい、 信頼性が損なわれ る、 という問題があった。 特に、 移動体通 ί言端末が高速に移動する場合 こその影 響は顕著になる傾向がある。  In the conventional mobile communication terminal (receiving device), as the number of cells to be measured for which the path is to be detected increases as the number of cells to be measured increases, Since the time required for the path search (a series of processes from the intimacy distribution measurement based on the delay profile to the path detection based on the threshold determination) becomes longer, the first path detected becomes older and the reliability increases. There is a problem that the performance is impaired. In particular, when the mobile communication terminal moves at high speed, the effect tends to be remarkable.
また、 上記問題を回避するために、 パス検出部に周辺セル数分のパス検出器を 備え、 パス検出にかかる時間の短縮を図ることも考えられる力 その一方で、 同 時に動作させるパス検出器が增加するので、 消費電力および必要なリソースが大 11911 Also, in order to avoid the above problem, the path detectors are equipped with path detectors for the number of neighboring cells, which can reduce the time required for path detection. On the other hand, the path detectors that operate simultaneously Power consumption and required resources 11911
3 Three
幅に増大する、 という問題があった。 There was a problem that it increased in width.
本発明は、 上記に鑑みてなされたものであって、 最適な条件でパス検出を行い つつ、 パス検出で消費する電力およびリソースを削减可能な移動体通信端未を提 供することを目的としている。 発明の開示  The present invention has been made in view of the above, and an object of the present invention is to provide a mobile communication terminal that can reduce power and resources consumed in path detection while performing path detection under optimal conditions. . Disclosure of the invention
本発明にかかる移動体通信端末にあっては、 R A K E受信に用いるパスを特定 するためのパスサーチ装置を備え、 当該パスサーチ装置は、 受信信号に含まれる パイ口ット信号の受信電力を測定することにより、 所定の 準パスタイミンク'か ら一定の時間内 (パス検出範囲) に存在する複数のパスを検出する、 特定数のパ ス検出器を含むパス検出手段 (後述する実施の形態のパス検出部 1 2に相当) と、 セル毎にパス検出動作開始時刻と個々のパス検出器とを関連付けたセル割当て情 報にしたがって、 前記基準パスタイミングを含む周 ¾1のセル情報を前記パス検出 手段に通知することによって、 前記特定数のパス検出器によるパス検出を制卸す るパス検出制御手段 (パス検出制御部: I 1に相当〉 と、 を備え、 前記パス検出手 段に含まれる各パス検出器は、 前記パス検出制御手段から通知されるセル情 δに 基づいて、 パス検出を時分割で実行することを特徴とする。  The mobile communication terminal according to the present invention includes a path search device for specifying a path used for RAKE reception, and the path search device measures reception power of a pilot signal included in a received signal. By doing so, a path detecting means including a specific number of path detectors for detecting a plurality of paths existing within a predetermined time (path detection range) from a predetermined quasi-path timing '(the embodiment described later) The cell information including the reference path timing according to the cell allocation information in which the path detection operation start time is associated with each path detector for each cell. Means for controlling the path detection by the specified number of path detectors by notifying the path detection means (path detection control unit: equivalent to I1). Each path detector is on the basis of the path detection control cell information notified from the means [delta], and executes in a time division path detection.
この発明によれば、 パスサーチを時分割で実行することによって、 少数 (周辺 セル数よりも少ない) のパス検出器で多くの周辺セルのパス検出を行う。 また、 たとえば、 1つのセルに対するパス検出時間を短縮し、 さらに、 1つのセノレこ対 するパス検出を操り返し実行する。 図面の簡単な説明  According to the present invention, by performing the path search in a time division manner, the path detection of many peripheral cells is performed by a small number of path detectors (less than the number of peripheral cells). Also, for example, the path detection time for one cell is reduced, and the path detection for one cell is repeatedly executed. Brief Description of Drawings
第 1図は、 本発明にかかる移動体通信端末 (パスサーチ装置) の実施の形態 1 の構成を示す図であり、 第 2図は、 セル割当て計画表の一例を示す図であり、 第 3図は、 実施の形態 1のパスサーチ装 ftの動作を示すフローチャートであり、 第 4図は、 本発明にかかる移動体通信端末 レ スサーチ装置) の実施の形態 2の構 成を示す図であり、 第 5図は、 実施の形態 2のパスサーチ装置の動作を示すフロ 一チャートであり、 第 6図は、 実施の形態 2のパスサーチ装置の動作を示すフロ 一チャートであり、 第 7図は、 本発明にかかる移動体通信端末 (パスサーチ装置 ) の実施の形態 3の構成を示す図であり、 第 8図は、 実施の形態 3のパスサーチ 装置の動作を示すフローチヤ一トであり、 第 9図は、 本発明にかかる移動体通信 端末 (パスサーチ装置) の実施の形態 4の構成を示す図であり、 第 1 0図 ίま、 実 施の形態 4のパスサーチ装置の動作を示すフローチャートであり、 第 1 1図は、 パス検出部 1 2に与えられた基準パスタイミングを中心とする一定の時間範囲 ( パス検出範囲) を示す図であり、 第 1 2図は、 パス検出部 1 2における検出可能 な時間範囲を示す図であり、 第 1 3図は、 実施の形態 1〜4のステップ S 1に対 応する処理を示すフローチヤ一トである。 発明を実施するための最良の形態 FIG. 1 is a diagram showing a configuration of a mobile communication terminal (path search device) according to a first embodiment of the present invention. FIG. 2 is a diagram showing an example of a cell allocation plan table. FIG. 5 is a flowchart showing the operation of the path search device ft according to the first embodiment. FIG. 4 is a diagram illustrating the structure of the mobile communication terminal search device according to the second embodiment of the present invention. FIG. 5 is a flowchart showing the operation of the path search device according to the second embodiment, and FIG. 6 is a flowchart showing the operation of the path search device according to the second embodiment. FIG. 7 is a diagram showing the configuration of a mobile communication terminal (path search device) according to a third embodiment of the present invention. FIG. 8 is a diagram showing the operation of the path search device of the third embodiment. FIG. 9 is a diagram showing a configuration of a mobile communication terminal (path search device) according to a fourth embodiment of the present invention. FIG. 10 is a flowchart of the fourth embodiment. FIG. 11 is a flowchart showing the operation of the path search device of FIG. 11. FIG. 11 is a diagram showing a fixed time range (path detection range) centered on the reference path timing given to the path detection unit 12. Figure 12 shows the time range that can be detected by the path detection unit 12. FIG. 13 is a flowchart showing a process corresponding to step S1 of the first to fourth embodiments. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説術するために、 添付の図面に従ってこれを説明する。 実施の形態 1 ,  In order to explain the present invention in more detail, this will be described with reference to the accompanying drawings. Embodiment 1,
第 1図は、 本発明にかかる移動体通信端未 (受信装置) 、 詳細には移動体通信 端末におけるパスサーチ装置の実施の形態 1の構成を示す図である。 図示のパス サーチ装置 1は、 外部から入力される複数のセル情報に基づいてパス検出を制御 するパス検出制御部 1 1と、 パス検出制御部 1 1から受け取ったセル情報に基づ いて複数のパスを検出するパス検出部 1 2と、 パス検出部 1 2から出力される複 数のパス情報をセル単位に集計, 管理するパスサ^ "チ結果集計部 1 3と、 パス検 出制御部 1 1がパス検出部 1 2にセルを割り当てるときに使用するセル割当て計 面表 1 4から構成されている。 また、 パス検出部 1 2は複数のパス検出器 1 2— 1 , 1 2 - 2 , 1 2— 3…を備える。  FIG. 1 is a diagram showing a configuration of a first embodiment of a path search device in a mobile communication terminal (receiving device) according to the present invention, specifically, a mobile communication terminal. The illustrated path search device 1 includes a path detection control unit 11 that controls path detection based on a plurality of cell information input from the outside, and a plurality of path search units based on the cell information received from the path detection control unit 11. A path detection section 12 for detecting paths, a path search result collection section 13 for totalizing and managing a plurality of pieces of path information output from the path detection section 12 in units of cells, and a path detection control section 1 1 is composed of a cell allocation table 14 used for allocating cells to the path detection unit 12. The path detection unit 12 includes a plurality of path detectors 12-1—1, 12-2. , 1 2— 3….
また、 第 2図は、 セル割当て計面表 1 4の一例を示す図であり、 ここで ίま、 た とえば、 4つのパス検出器に対して最大 1 6セルを割り当てる場合について記载 している。 このセル割当て計面表 1 4は、 セル毎に、 1度のパス検出動作に有す る時間を単位とする経過時間または開始時刻を特定する数値 (パス検出動作開始 時刻) と、 個々のパス検出器を特定する番号と、 を関連付けたものである。 なお、 上記開始時刻と上記パス検出器を特定する番号とによって関連付けられた数値は、 セルを特定する番号を表す。 FIG. 2 is a diagram showing an example of a cell allocation meter table 14. Here, for example, a case where a maximum of 16 cells are allocated to four path detectors will be described. ing. This cell allocation meter table 14 has one path detection operation for each cell. It associates a numerical value (path detection start time) that specifies the elapsed time or start time in units of time to be detected with a number that specifies each path detector. The numerical value associated with the start time and the number specifying the path detector indicates the number specifying the cell.
ここで、 上記パスサーチ装置 1の動作を、 図面を用いて詳細に説明する。 第 3 図は、 上記パスサーチ装置の動作を示すフロ一チヤ一トである。  Here, the operation of the path search device 1 will be described in detail with reference to the drawings. FIG. 3 is a flowchart showing the operation of the path search device.
まず、 パス検出制御部 1 1では、 外部から入力される複数のセル情報を収集す る (第 3図、 ステップ S 1 ) 。 そして、 セル割当て計画表 1 4およびそのときの 時刻に基づいてパス検出部 1 2にセル情報を設定する (ステップ S 2 ) 。 このと き、 パス検出部 1 2が複数のパス検出器で構成される場合には、 その数に応じた セル情報を設定する。  First, the path detection controller 11 collects a plurality of pieces of cell information input from the outside (FIG. 3, step S1). Then, the cell information is set in the path detection unit 12 based on the cell allocation plan table 14 and the time at that time (step S 2). At this time, if the path detector 12 is composed of a plurality of path detectors, cell information corresponding to the number is set.
つぎに、 パス検出部 1 2では、設定されたセル情報に基づいて、 パイロット信 号の受信電力を測定することにより、 セル情報に含まれる基準パスタイミング'か ら一定の時間內に存在する複数のパスを検出する (ステップ S 3 ) 。 このとき、 パス検出部 1 2では、 パス検出時間を繊宿するように設定した所定時間 ¾こ達する までパス検出動作を実行後、 検出パスを出力する。  Next, the path detection unit 12 measures the received power of the pilot signal based on the set cell information, thereby obtaining a plurality of signals existing at a fixed time ら from the reference path timing ′ included in the cell information. Is detected (step S3). At this time, the path detection unit 12 performs a path detection operation until a predetermined time set so as to delay the path detection time is reached, and then outputs a detected path.
つぎに、 パスサーチ結果集計部 1 3では、 パス検出部 1 2から出力された検出 パスを収集し (ステップ S 4 ) 、 検出パス毎に受信レべノレを平均化する (ステツ プ S 5 ) 。 ここでは、 平均化方法として、 たとえば、 過去 (規定回数分) の検出 パスの受信レベルの平均を計算する方法、 または、 過去の検出パスの受 ί言レベル に対して検出してからの経過時間に見合った係数をかけて加算する方法、 を採用 する。  Next, the path search result totaling section 13 collects the detected paths output from the path detecting section 12 (step S4), and averages the received level for each detected path (step S5). . Here, as the averaging method, for example, a method of calculating the average of the reception levels of the past detection paths (for the specified number of times) or the time elapsed since the detection of the reception level of the past detection paths A method of multiplying by a coefficient corresponding to and adding.
つぎに、 パスサーチ結果集計部 1 3では、 平均化して得られた検出パス情報、 たとえば、 パスタイミングや受信レベル等、 を一括して外部に出力する (ステツ プ S 6 ) 。 その後、 パス検出部 1 2では、 連続的に各セルに対するパスサーチを 実行する場合、 外部からパス検出停止の制御を受けない限り、 セル割当て計画表 1 4に基づくパスサーチを継続する (ステップ S 7 )。 このように、 本実施の形態では、 パスサーチを時分割で実行することによって、 少数 (周辺セル数よりも少ない) のパス検出器で多くの周辺セルのパス検出を行 う。 さらに、 1つのセルに対するパス検出時間を することによって、 各セル におけるパス検出タイミングの差を減少させる。 これにより、 個々のセルに対す るパス検出結果の信頼性を等しくすることができる。 さらに、 パス検 K部に周辺 セル数分のパス検出器を備え、 それらを同時に動作させる従来技術と!:匕較して、 消費電力を大幅に低減できる。 また、 1つのセルに対するパス検出を緹り返し実 行するので、 長時間にわたってパス検出を行う場合と同等のパス検出粽度を得る ことができる。 Next, the path search result totaling unit 13 collectively outputs the detected path information obtained by averaging, for example, path timing and reception level, to the outside (step S6). Thereafter, when continuously performing a path search for each cell, the path detection unit 12 continues the path search based on the cell allocation plan table 14 unless externally controlled to stop the path detection (Step S). 7). As described above, in the present embodiment, by performing the path search in a time-division manner, the path detection of many peripheral cells is performed by a small number of path detectors (less than the number of peripheral cells). Further, by reducing the path detection time for one cell, the difference between the path detection timings in each cell is reduced. Thereby, the reliability of the path detection result for each cell can be made equal. Furthermore, the power consumption can be significantly reduced compared to the conventional technology in which path detectors K are provided with path detectors for the number of peripheral cells and operate them simultaneously. Further, since path detection for one cell is repeatedly performed, it is possible to obtain the same degree of path detection as when performing path detection for a long time.
実施の形態 2 . Embodiment 2
第 4図は、 本発明にかかる移動体通信端末 (受信装置) 、 詳細には移動体通信 端末におけるパスサーチ装置の実施の形 の構成を示す図である。 このパスサ ーチ装置 1 aは、 外部から入力される複数のセル情報に基づいてパス換出を制御 するパス検出制御部 1 1 aと、 パス検出都 1 2から出力される複数のパス' If ^ を セル単位に集計, 管理するパスサーチ結果集計部 1 3 aと、 検出パスの受信電力 が特定のしきい値を超えているかどうかを判定するパス電力判定部 1 5 と、 を備 える。 なお、 先に説明した実施の形態 1の第 1図と同様の構成については、 同一 の符号を付してその説明を省略する。  FIG. 4 is a diagram showing a configuration of a mobile communication terminal (receiving device) according to the present invention, specifically, an embodiment of a path search device in the mobile communication terminal. The path search device 1a includes a path detection control unit 11a that controls path switching based on a plurality of cell information input from the outside, and a plurality of paths output from the path detection unit 12. It has a path search result aggregation unit 13a that aggregates and manages ^ in cell units, and a path power determination unit 15 that determines whether the received power of the detected path exceeds a specific threshold. The same components as those in FIG. 1 of Embodiment 1 described above are denoted by the same reference numerals, and description thereof will be omitted.
本実施の形態においては、 パス電力判定部 1 5の判定結果がしきい値を超えて いる場合、 パス検出制御部 1 1 a力;、 パス検出部 1 2の動作の繰り返し回数を低 減させる。 '  In the present embodiment, when the determination result of the path power determination unit 15 exceeds the threshold, the number of repetitions of the operation of the path detection control unit 11 a and the path detection unit 12 is reduced. . '
ここで、 上記パスサーチ装置 1 aの動作を、 図面を用いて詳細に説月する。 第 5図は、 上記パスサーチ装置 1 aの動作を示すフローチャートである。 なお、 こ こでは、 先に説明した実施の形態 1の第 3図と異なる処理についてのみ説明する。 たとえば、 パスサ^ "チ結果集計部 1 3 a力 平均化して得られた検 ίϋパス情報、 たとえば、 パスタイミングや受信レベル等、 を一括して外部に出力し t (ステツ プ S 6 ) 後、 パス電力判定部 1 5では、 検出パスの受信電力と予め設定しておい た電力しきい値とを比較する (第 5図、 ステップ S 8 ) 。 この t匕較動作は、 パス サーチ実行開始から特定の時間が経過した時点で実施される。 Here, the operation of the path search device 1a will be described in detail with reference to the drawings. FIG. 5 is a flowchart showing the operation of the path search device 1a. Here, only the processing different from FIG. 3 of Embodiment 1 described above will be described. For example, the path result summation unit 13a outputs the detection path information obtained by averaging, for example, the path timing and the reception level, etc., to the outside at once, and after t (step S6), The path power determination unit 15 sets the reception power of the detected path in advance. The power threshold value is compared with the threshold value (FIG. 5, step S8). This dagger comparison operation is performed when a specific time has elapsed from the start of the path search execution.
そして、 ステップ S 8の t匕較処理において、 たとえば、 検出/ スの受信電力が 上記電力しきい値を上回る場合 (ステップ S 8 , O K) 、 パス検出制御部ュ 1 a では、 保持しているパス検出終了回数パラメータ、 すなわち、 パス検出の繰り返 し回数を減少させる (ステップ S 9 ) 。 一方、 検出パスの受信鼋力が上記電力し きい値以下の場合 (ステップ S 8, N G) は、 現在のパス検出終了回数パラメ一 タを保持する。  Then, in the t-shadow comparison process of step S8, for example, if the received power of the detected / exceeded power exceeds the above power threshold value (step S8, OK), the path detection control unit 1a holds the received power. The path detection end number parameter, that is, the number of repetitions of path detection is reduced (step S9). On the other hand, when the reception power of the detection path is equal to or lower than the above power threshold (step S8, NG), the current path detection end count parameter is held.
最後に、 パス検出制御部 1 1では、 上記パス検出終了回数パラメータに基づい てパスサ一チ動作の終了判断を行う (ステップ S 1 0 ) 。  Finally, the path detection control unit 11 determines the end of the path search operation based on the path detection end number parameter (step S10).
このように、 本実施の形態では、 検出パスの電力に応じて、 すなわち、 検出パ スの受信電力が十分大きい場合には、 パス検出動作を途中で打ち切ることによつ て、 パス検出動作の綠り返し回数を減らす (動作時間短縮) こととした。 これに より、パスサーチで消費する'電力および処理時間をさらに削減できる。  Thus, in the present embodiment, according to the power of the detection path, that is, when the reception power of the detection path is sufficiently large, the path detection operation is terminated in the middle, whereby the path detection operation is performed. The number of repetitions was reduced (operation time was shortened). As a result, the power and processing time consumed in the path search can be further reduced.
なお、 本実施の形態では、 検出パスの受信電力が上記電力しきい値以下のとき に (ステップ S 8 , N G) 、 現在のパス検出終了回数パラメータを保持する場合 について説明したが、 これに限らず、 たとえば、 第 6図に示すように、 パス検出 動作の繰り返し回数を増やす (動作時間増加) こととしてもよい (第 6図、 ステ ップ S 1 1 ) 。  Note that, in the present embodiment, a case has been described where the current path detection end number parameter is held when the received power of the detected path is equal to or lower than the above power threshold value (step S8, NG). Instead, for example, as shown in FIG. 6, the number of repetitions of the path detection operation may be increased (operation time is increased) (FIG. 6, step S11).
実施の形態 3 . Embodiment 3.
第 7図は、 本発明にかかる移動体通信端末 (受信装置) 、 詳 »Bには移動体通信 端末におけるパスサーチ装置の実施の形態 3の構成を示す図である。 このパスサ ーチ装置 1 bは、 検出パスの受信電力が特定のしきい値を超えているかどうかを 判定するパス電力判定部 1 5 bと、 移動速度を検出する移動速度検出部 1 6と、 移動速度検出部 1 6にて検出した移動速度に基づいてパス電力判定用のしきい値 を生成するパス電力しきい値生成部 1 7と、 を備える。 なお、 先に説明した実施 の形態 1または 2と同様の構成については、 同一の符号を付してその説明を省略 する。 FIG. 7 is a diagram showing a configuration of a third embodiment of a path search device in a mobile communication terminal (receiving device) according to the present invention. The path search device 1b includes a path power determination unit 15b that determines whether the reception power of the detected path exceeds a specific threshold, a movement speed detection unit 16 that detects the movement speed, A path power threshold generator 17 for generating a threshold for path power determination based on the moving speed detected by the moving speed detector 16. Note that the same components as those in the first or second embodiment described above are denoted by the same reference numerals and description thereof is omitted. To do.
本実施の形態では、 周辺セルおよびパス電力が、 高速移動時には大きく変動し、 低速移動時あるいは静止状態の場合には比較的緩やかに変動することを利用して、 高速移動時における鼋力しき!/、値を高く設定し、 低速移動時における電力しきい 値を低く設定する。  The present embodiment utilizes the fact that the peripheral cell and path power fluctuate greatly during high-speed movement, and relatively slowly during low-speed movement or in a stationary state. Set high values for / and, and set low power thresholds when moving at low speeds.
ここで、 上記パスサーチ装置 1 bの動作を、 図面を用いて詳細に説明する。 第 8図は、 上記パスサーチ装置 1 bの動作を示すフローチャートである。 なお、 こ こでは、 先に説明した実施の形態 1または 2と異なる処理についてのみ説明する。 たとえば、 移動速度検出部 1 6では、 本実施の形態のパスサーチ装-置 1 bを備 えた移動体通信端末の移動速度を検出する (第 8図、 ステップ S 2 1 ) 。 そして、 パス電力しきい植生成部.1 7では、 検出された移動速度に基づいてパス電力判定 部 1 5 bにて使用する電力しきい値を生成する (ステップ S 2 2) 。 すなわち、 高速移動時については、 基準よりも高い電力しきい値を生成し、 低速移動時につ いては、 基準よりも低い電力しきい値を生成する。 なお、 ステップ S 2 1および ステップ S 2 2の移動速度に関する処理については、 第 8図に限らず、 パスサー チ動作の終了判断を行う (ステップ S 1 0 ) 前に実施され、 カゝっ処理の順番が守 られていれば、 どこで実施しもてよい。  Here, the operation of the path search device 1b will be described in detail with reference to the drawings. FIG. 8 is a flowchart showing the operation of the path search device 1b. Here, only the processing different from the first or second embodiment described above will be described. For example, the moving speed detector 16 detects the moving speed of the mobile communication terminal equipped with the path search device 1b of the present embodiment (FIG. 8, step S21). Then, the path power threshold generation unit .17 generates a power threshold to be used by the path power determination unit 15b based on the detected moving speed (step S22). That is, a power threshold higher than the reference is generated during high-speed movement, and a power threshold lower than the reference is generated during low-speed movement. Note that the processing related to the moving speed in step S21 and step S22 is not limited to FIG. 8, and is performed before the end of the pass search operation (step S10). This can be done wherever the order is followed.
このように、 本実施の形態においては、 高速移動時における電力しきい値を高 く設定し、 低速移動時における電力しきい値を低く設定し、 移動速度に応じてパ ス検出の橾り返し回数を変更することとした。 これにより、.高速移動日寺のパス検 出精度を損なうことなく、 さらに、 低速移動時の消費電力および処理畤問を低減 でき、 常に通信環境に応じた最適な条件でパス検出を行うことができる。  As described above, in the present embodiment, the power threshold during high-speed movement is set high, and the power threshold during low-speed movement is set low, and the path detection is repeated according to the movement speed. The number was changed. As a result, it is possible to reduce the power consumption and processing speed when moving at low speeds without compromising the path detection accuracy of high-speed moving day temples, and to always perform path detection under optimal conditions according to the communication environment. it can.
実施の形態 4 . Embodiment 4.
第 9図は、 本発明にかかる移動体通信端来 (受信装置) 、 詳細には移動体通信 端末におけるパスサーチ装置の実施の形態 4の横成を示す図である。 このパスサ ーチ装置 1 cは、 外部から入力される複数のセル情報に基づいてパス検出を制御 するパス検出制御部 1 1 cと、 検出パスの受信電力が特定のしきい値を超えてい るかどうかを判定するパス電力判定部 15 cと、 閒欠動作の開始タイミングを管 理する間欠動作制御部 18と、 を備える。 なお、 先に説明した実施の形態 1、 2 または 3と同様の構成については、 同一の符号を付してその説明を省略する。 本実施の形態では、 間欠動作制御部 18が、 周囲のパス電力および移動速度に 基づいて最適な間欠動作間隔を求め、 間欠動作頻度を調整する。 なお、 間久動作 制御部 18では、 間欠動作間隔の墓準値を保持し、 移動速度検出部 16にて検出 された移動速度情報によって間欠動作間隔を捕正する。 FIG. 9 is a diagram showing a horizontal configuration of a mobile communication terminal (receiving device) according to the present invention, specifically, a fourth embodiment of a path search device in a mobile communication terminal. The path search device 1c includes a path detection control unit 11c that controls path detection based on a plurality of pieces of cell information input from the outside, and a reception power of a detected path exceeding a specific threshold. A path power determination unit 15c for determining whether or not to perform the operation, and an intermittent operation control unit 18 for managing the start timing of the intermittent operation. The same components as those in the first, second, or third embodiment described above are denoted by the same reference numerals, and description thereof is omitted. In the present embodiment, the intermittent operation control unit 18 obtains an optimal intermittent operation interval based on the surrounding path power and the moving speed, and adjusts the intermittent operation frequency. In addition, the intermittent operation control unit 18 holds the criterion value of the intermittent operation interval, and corrects the intermittent operation interval based on the moving speed information detected by the moving speed detecting unit 16.
ここで、 上記パスサーチ装置 1 cの動作を、 図面を用いて詳細に説明する。 第 Here, the operation of the path search device 1c will be described in detail with reference to the drawings. No.
10図は、 上記パスサーチ装置 1 cの動作を示すフローチヤ一トである。 なお、 ここでは、 先に説明した実施の形態 1、 2または 3と異なる処理についてのみ説 明する。 FIG. 10 is a flowchart showing the operation of the path search device 1c. Here, only the processing different from the first, second, or third embodiment described above will be described.
たとえば、 パス検出制御部 1 l cが、保持しているパス検出の繰り返し回数 ( パス検出終了回数パラメータ) を減少させた (第 10囡、 ステップ S 9) 後、 閬 欠動作制御部 1 8では、 周辺のパス電力おょぴ移動速度に基づいて最適な間欠動 作間隔を求め、 間欠動作頻度を調整する (ステップ S 31)。  For example, after the path detection control unit 1 lc reduces the number of path detection repetitions (path detection end number parameter) stored therein (10th step, step S9), the 欠 operation control unit 18 The optimum intermittent operation interval is determined based on the peripheral path power and the moving speed, and the intermittent operation frequency is adjusted (step S31).
そして、 パス検出制御部 1 1 c力 パス検出終了回数パラメータに基づいてパ スサーチ動作の終了判断を行った (ステップ S 10) 後、 問欠動作制御部 18で は、 間欠動作の停止判定を行い (ステップ S 32) 、 たとえば、 外部から間欠動 作の停止指示を受けた場合 (ステップ S 32, Y e s) , 間欠動作を停止する。 —方で、 間欠動作の停止指示を受けていない場合は (ステップ S 32, No)、 移動体通信端未の移動速度に基づいて間欠動作頻度を調整し (ステップ S 33〉、 パスサーチ動作を停止させ (ステップ S 34) 、 次の動作開始時点まで待機する。 なお、 ステップ S 33は、 間欠動作間隔を補正する処理であり、 たとえば、 低 速移動時は、 パス変動が小さいため、 間欠動作間隔を長くとり、 逆に、 高速移動 時は、 間欠動作間隔を短くしてパス変動に追従する。 また、 ステップ S 31は、 パス電力のしき 、値判定で O Kの場合に間欠動作間隔を捕正する処理である。 このように、 本実施の形態においては、 周辺のパス電力および移動速度に基づ T JP2画 11911 Then, the path detection controller 1 1 c determines the end of the path search operation based on the path detection end frequency parameter (step S 10). After that, the intermittent operation controller 18 determines whether to stop the intermittent operation. (Step S32), for example, if an instruction to stop the intermittent operation is received from outside (Step S32, Yes), the intermittent operation is stopped. On the other hand, if the instruction to stop the intermittent operation has not been received (step S32, No), the intermittent operation frequency is adjusted based on the moving speed of the mobile communication terminal (step S33), and the path search operation is performed. It is stopped (step S34) and waits until the next operation start time.Step S33 is a process for correcting the intermittent operation interval. On the other hand, when moving at high speed, the intermittent operation interval is shortened to follow the path fluctuation, and in step S31, the intermittent operation interval is captured when the path power threshold and the value judgment are OK. As described above, in the present embodiment, based on the peripheral path power and the moving speed, T JP2 drawing 11911
10 Ten
いて最適な間欠動作間隔を求め、 間欠動作頻度を調整する。 これにより、 低速移 動時については、 パスサーチで消費する電力および処理時間をさらに低減させる ことができ、 さらに、 高速移動時については、 パス検出精度をさらに向上させる ことができる。 To determine the optimal intermittent operation interval and adjust the intermittent operation frequency. This makes it possible to further reduce the power and processing time consumed in the path search when moving at a low speed, and further improve the path detection accuracy when moving at a high speed.
実施の形態 5 . Embodiment 5
実施の形態 5では、 実施の形態 1〜 4に示すパス検出制御部 (1 1 , 1 1 a , 1 1 c ) 、 特定の基準パスタイミングを持つセル情報とは別に、 当該基準パス タイミングに特定の時間差を加算および減算したタイミングを基準パスタイミン グとするセル情報を生成し、 その情報をパス検出部 1 2に設定する。  In the fifth embodiment, the path detection control units (11, 11a, 11c) described in the first to fourth embodiments specify the reference path timing separately from the cell information having the specific reference path timing. Cell information is generated with reference to the timing obtained by adding and subtracting the time difference between the two, and the information is set in the path detection unit 12.
第 1 1図は、 パス検出部 1 2に与えられた基準パスタイミンク'を中心とする一 定の時問範囲 (実施の形態 1〜4におけるパス検出範囲に相当) を示す図である。 この時間範囲は装置の構成段階で決まることが多いが、 本実施の形態では、 第 1 2図に示すように、 パス検出部で検出できるパス検出範囲を装度構成後に動的に 増加させる。  FIG. 11 is a diagram showing a fixed time range (corresponding to the path detection range in Embodiments 1 to 4) centered on the reference path timing ′ given to the path detection unit 12. This time range is often determined at the configuration stage of the device, but in the present embodiment, as shown in FIG. 12, the path detection range detectable by the path detection unit is dynamically increased after the configuration of the attire.
第 1 3図は、 実施の形態 1 ~ 4のステップ S 1に対応する処理を示すフローチ ヤートである。 本実施の形態では、 パス検出制御部が、 取得したパス検出対象の セル情報に基づいて、 パス検出部 1 2にて検出可能な時問範囲内の基準パスタイ ミングに当該時聞範囲を加算および減算したタイミングを基準ノ スタイミングと する、 別のセル情報を生成する (ステップ S 4 1、 S 4 2 ) 。  FIG. 13 is a flowchart showing a process corresponding to step S1 in the first to fourth embodiments. In this embodiment, the path detection control unit adds the time range to the reference path timing within the time range detectable by the path detection unit 12 based on the acquired cell information of the path detection target, and Another cell information is generated with the subtracted timing as the reference nos timing (steps S41, S42).
このように、 本実施の形態においては、 パス検出部で検出できるパス検出範囲 を装置構成後に動的に増加可能とした。 これにより、 パス検出範囲を拡大できる ので、 パス検出の精度をさらに向上させることができる。 産業上の利用可能性  As described above, in the present embodiment, the path detection range that can be detected by the path detection unit can be dynamically increased after the device is configured. As a result, the path detection range can be expanded, so that the accuracy of path detection can be further improved. Industrial applicability
以上のように、 本努明にかかる移動体通信端末は、 通信方式として C DMAを 採用するシステムに有用であり、 特に、 周辺の無線基地局のパイロット信号電力 を測定し、 RAK E受信に用!/、るパスを特定する構成を備えた移動体通信端末と して適して ヽる As described above, the mobile communication terminal according to this effort is useful for a system that employs CDMA as a communication method.In particular, it measures the pilot signal power of nearby wireless base stations and uses it for RAKE reception. ! / Mobile communication terminal with a configuration to specify the path Suitable for

Claims

請 求 の 範 囲 The scope of the claims
1 . R AK E受信に用いるバスを特定するためのパスサーチ装置を備えた移動 体通信端末において、 1. In a mobile communication terminal equipped with a path search device for specifying a bus used for RAKE reception,
前記パスサーチ装置は、  The path search device,
受信信号に含まれるパイ口ット信号の受信電力を測定することにより、 所定の 基準パスタイミングから一定の時間内 (パス検出乾囲) に存在する複数のパスを 検出する、 特定数のパス検出器を含むパス検出手段と、  By measuring the received power of the pilot signal included in the received signal, a specific number of path detections that detect multiple paths existing within a certain time (path detection dry space) from a predetermined reference path timing Path detecting means including a detector,
セル毎にパス検出動作開始時刻と個々のパス検出器とを関連付けたセル割当て 情報にしたがって、 前記基準パスタイミングを含む周辺のセル情報を前記パス検 出手段に通知することによって、 前記特定数のパス検出器によるパス検出を制御 するパス検出制御手段と、  According to the cell allocation information in which the path detection operation start time and the individual path detectors are associated with each other for each cell, by notifying peripheral path information including the reference path timing to the path detection means, Path detection control means for controlling path detection by the path detector;
を備え、  With
前記パス検出手段に含まれる各パス検出器は、 前記パス検出制御手段から通知 されるセル情報に基づいて、 パス検出を時分割で実行することを特徴とする移動 体通信端末。  A mobile communication terminal, wherein each path detector included in the path detection means performs path detection in a time division manner based on the cell information notified from the path detection control means.
2 . さらに、 前記検出パスの受信電力と、 パス検出の終了を判断するための所 定の電力しきい値と、 を比較するパス電力比較手 ¾、 2. Further, a path power comparison method for comparing the reception power of the detected path with a predetermined power threshold value for determining the end of path detection,
を備え、  With
前記パス検出制御手段は、 前記比較結果に応じて検出パスの受信電力が前記電 力しきい値を上回る場合に、 パス検出の終丁し、 ノ スサーチにかかる動作時間を 短縮することを特徴とする請求の範囲第 1項に記载の移動体通信端末。  When the received power of the detected path exceeds the power threshold value according to the comparison result, the path detection control means terminates path detection and shortens the operation time required for noise search. The mobile communication terminal according to claim 1, wherein
3 . さらに、 自端末の移動速度を検出する移動 度検出手段と、 3. A mobility detecting means for detecting a moving speed of the terminal,
検出された移動速度に基づ!ヽて前記パス電力比蛟手段にて使用する電力しきい 値を生成する電力しきい値生成手段と、 を備えることを特徴とする請求の範囲第 2項に 15載の移動体通信端末。 Based on the detected moving speed! Power threshold generation means for generating a power threshold used by the path power ratio means; The mobile communication terminal according to claim 15, wherein the mobile communication terminal includes:
4 . さらに、 前記検出パスの受信電力おょぴ前 15移動速度、 または、 前記移動 速度に基づいて、 最適な間欠動作間隔を求め、 間タ動作頻度を調整する間欠動作 制御手段、 4. Further, based on the received power of the detection path before and after 15 moving speeds, or based on the moving speed, an optimum intermittent operation interval is determined, and an intermittent operation control means for adjusting the intermittent operation frequency,
を備えることを特徴とする請求の範囲第 3項に記載の移動体通信端末。  4. The mobile communication terminal according to claim 3, comprising:
5 . さらに、 前記検出パスの受信電力と、 パス検出の終了を判断するための所 定の電力しきい搲と、 を比較するパス電力比較 ¥段、 5. Further, a path power comparison unit for comparing the reception power of the detection path with a predetermined power threshold for judging the end of path detection,
を備え、  With
• 前記パス検出制御手段は、 前記比較結果に応じてパスサーチにかかる動作時間 の增減を制御することを特徴とする請求の範囲第 1項に記載の移動体通信端末。  2. The mobile communication terminal according to claim 1, wherein the path detection control means controls a reduction in an operation time required for a path search according to the comparison result.
6 . さらに、 自端末の移動速度を検出する移動速度検出手段と、 6. A moving speed detecting means for detecting a moving speed of the terminal,
検出された移動速度に基づいて前記パス電力比較手段にて使用する電力しきい 値を生成する電力しきい値生成手段と、  Power threshold generation means for generating a power threshold used by the path power comparison means based on the detected moving speed;
を備えることを特徴とする請求の範囲第 5項に記載の移動体通信端末。  6. The mobile communication terminal according to claim 5, comprising:
7 . さらに、 前記検出パスの受信電力および前言己移動速度、 または、 前記移動 速度に基づいて、 最適な間欠動作間隔を求め、 間欠動作頻度を調整する間久動作 制御手段、 7. Further, based on the received power of the detection path and the self-moving speed, or the moving speed, an optimal intermittent operation interval is determined, and an intermittent operation control means for adjusting the intermittent operation frequency,
を備えることを特徴とする請求の範囲第 6項に IB載の移動体通信端末。  7. The mobile communication terminal according to claim 6, wherein the mobile communication terminal has an IB.
8 . 前記パス検出制御手段は、 前記基準パスタイミングを含むセル情報に加え て、 前記パス検出手段にて検出可能な時間範囲を增やすような別のセル情報を生 成し、 パス検出範囲を動的に增加させることを特^ ¾とする請求の範囲第 1項に記 載の移動体通信端 8. The path detection control unit generates, in addition to the cell information including the reference path timing, another cell information that shortens a time range detectable by the path detection unit, and sets the path detection range. The mobile communication terminal according to claim 1, characterized in that the mobile communication terminal is dynamically added.
PCT/JP2003/011911 2003-09-18 2003-09-18 Mobile communication terminal WO2005029723A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2003/011911 WO2005029723A1 (en) 2003-09-18 2003-09-18 Mobile communication terminal
JP2005509045A JPWO2005029723A1 (en) 2003-09-18 2003-09-18 Mobile communication terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/011911 WO2005029723A1 (en) 2003-09-18 2003-09-18 Mobile communication terminal

Publications (1)

Publication Number Publication Date
WO2005029723A1 true WO2005029723A1 (en) 2005-03-31

Family

ID=34362492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011911 WO2005029723A1 (en) 2003-09-18 2003-09-18 Mobile communication terminal

Country Status (2)

Country Link
JP (1) JPWO2005029723A1 (en)
WO (1) WO2005029723A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012075163A (en) * 2011-11-21 2012-04-12 Nec Corp Wireless communication system, wireless communication device, and effective path detection method for use in those
JP2013517747A (en) * 2010-01-20 2013-05-16 クゥアルコム・インコーポレイテッド Method and apparatus for switching between single user detection and multiple user detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191896A (en) * 1997-12-25 1999-07-13 Sharp Corp Receiver for cdma cellular system
JP2001016137A (en) * 1999-06-30 2001-01-19 Fujitsu Ltd Cell search method, communication synchronization device, and recording medium
JP2001028778A (en) * 1999-07-14 2001-01-30 Ntt Docomo Inc Cell search control method, mobile station and mobile communication system
JP2001186056A (en) * 1999-12-27 2001-07-06 Toshiba Corp Cdma demodulation method and cdma demodulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191896A (en) * 1997-12-25 1999-07-13 Sharp Corp Receiver for cdma cellular system
JP2001016137A (en) * 1999-06-30 2001-01-19 Fujitsu Ltd Cell search method, communication synchronization device, and recording medium
JP2001028778A (en) * 1999-07-14 2001-01-30 Ntt Docomo Inc Cell search control method, mobile station and mobile communication system
JP2001186056A (en) * 1999-12-27 2001-07-06 Toshiba Corp Cdma demodulation method and cdma demodulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013517747A (en) * 2010-01-20 2013-05-16 クゥアルコム・インコーポレイテッド Method and apparatus for switching between single user detection and multiple user detection
US8983389B2 (en) 2010-01-20 2015-03-17 Qualcomm Incorporated Method and apparatus for switching between single user detection and multi user detection
JP2012075163A (en) * 2011-11-21 2012-04-12 Nec Corp Wireless communication system, wireless communication device, and effective path detection method for use in those

Also Published As

Publication number Publication date
JPWO2005029723A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
US6233454B1 (en) Mobile station
JP3733336B2 (en) Wireless terminal device
JP3954045B2 (en) Forward power control method in mobile communication system in discontinuous transmission mode
KR100919040B1 (en) Method and system for control of congestion in cdma systems
US6862458B2 (en) Transmission power control apparatus and transmission power control method
CN1316753C (en) System for adjusting gain of mobile station during idle period of serving base station
US8280365B1 (en) Method and apparatus for searching for a base station using an adaptable search window
EP1425871A4 (en) Time division duplex method for determining whether to initiate handover
AU3506301A (en) Apparatus and method for measurement of communication quality in CDMA system
JP5666706B2 (en) Decision-oriented antenna diversity in radio frequency receivers
JPH10303810A (en) Transmission power control method for code division multiple access system
US7826802B2 (en) Estimation of received signal strength
JP2006054625A (en) Mobile communication system, mobile communication terminal, and handover control method used for them and program thereof
WO2005029723A1 (en) Mobile communication terminal
JP4061198B2 (en) Determining the allocation period for packet data
US7372897B2 (en) Portable information communication terminal, program, and recording medium
WO1999051049A1 (en) Base station and method of communication
JP4081982B2 (en) CDMA mobile communication demodulation circuit and demodulation method
US20090117894A1 (en) Wireless Diversity Reception Apparatus and Reception Method
JP2002141858A (en) Mobile wireless terminal and moving speed detecting method therefor
JP2001196974A (en) CDMA radio receiving apparatus and control method
JP2004363950A (en) Cdma terminal and multipath synchronizing method
KR20130128255A (en) Root terminal for changing channel dynamically
JP2004112624A (en) Base station apparatus, higher station apparatus, and transmission power value setting method
JP2002330102A (en) Transmission power control circuit by using w-cdma system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR HU IE IT LU MC NL PT RO SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005509045

Country of ref document: JP

122 Ep: pct application non-entry in european phase