[go: up one dir, main page]

WO2005029109A1 - Noise filter for three-dimensional heterogeneous nuclear correlation nmr spectrum, noise filter method, and noise filter program - Google Patents

Noise filter for three-dimensional heterogeneous nuclear correlation nmr spectrum, noise filter method, and noise filter program Download PDF

Info

Publication number
WO2005029109A1
WO2005029109A1 PCT/JP2004/013811 JP2004013811W WO2005029109A1 WO 2005029109 A1 WO2005029109 A1 WO 2005029109A1 JP 2004013811 W JP2004013811 W JP 2004013811W WO 2005029109 A1 WO2005029109 A1 WO 2005029109A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
noise
axis
mask
peaks
Prior art date
Application number
PCT/JP2004/013811
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeyuki Yokoyama
Takanori Kigawa
Naohiro Kobayashi
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Publication of WO2005029109A1 publication Critical patent/WO2005029109A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy
    • G01R33/4625Processing of acquired signals, e.g. elimination of phase errors, baseline fitting, chemometric analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy
    • G01R33/4633Sequences for multi-dimensional NMR

Definitions

  • Noise filter device noise filter method, and noise filter program for three-dimensional heteronuclear correlation NMR spectrum
  • the present invention relates to a noise filter device, a noise filter method, and a noise filter program for a three-dimensional heteronuclear correlation NMR spectrum.
  • NOE nuclear Overhauser effect
  • NMR Nuclear Magnetic Resonance
  • NOEs generated between proton nuclei at the middle or distal position in the amino acid sequence have middle-range NOEs! /, Are called long-range NOEs, and the distance information between proton nuclei obtained by these NOEs is It is used as a distance limit in calculations, and the number strongly affects the accuracy and reliability of the calculation structure.
  • the number of observable NOEs has increased remarkably due to the progress of NMR measurement methods, and a higher-order structure calculation method from NOEs has been proposed (for example, see Non-Patent Document 1).
  • Non-patent document l Guntert, P. et al, J. Mol. Biol., 273, 283-298 (1 997)
  • NOE automatic homing method a chemical shift table created by attributable to the total signal observable user, from 'H-' C HSQC- NOESY space Tuttle and 1 H- 15 N HSQC- NOESY spectrum
  • the user can manually enter the NOE by entering a chemical shift table (NOE table) with semi-automatically detected peaks.
  • NOE table chemical shift table
  • the automatic attribution method is achieved. Therefore, how accurate the NOE table is created is an important point of high-precision three-dimensional structure calculation.
  • the present invention has been made in view of the above, and requires signal assignment in a three-dimensional heteronuclear correlation NMR ⁇ vector, which is one of the powerful measurement means in NMR three-dimensional structure analysis of proteins. It is an object of the present invention to provide a noise filter device, a noise filter method, and a noise filter program that can remove noise easily and in a short time.
  • a noise filter device for removing three-dimensional heteronuclear correlation NMR spectrum color noise, wherein in the three-dimensional heteronuclear correlation NMR spectrum, a predetermined number or more of peaks are substantially linear on the y-axis.
  • the X-z plane reference coordinates (P (m), P (m)) of the peak group G (m) (m is a natural number) observed alongside are defined as the coordinates of the mask peak m.
  • a corresponding mask peak searching means for searching for a mask peak included in the corresponding mask peak as a corresponding mask peak of this peak n.
  • a first noise removing means for removing the peak table force stored in the storage means.
  • the invention according to claim 2 is the noise filter device according to claim 1, further comprising a peak table creating unit that creates the peak table.
  • the invention according to claim 3 is characterized in that the noise filter device according to claim 1 or 2 further comprises a mask file creating means for creating the mask file.
  • the predetermined range is set corresponding to a half width of each peak n. It is characterized by
  • the z-axis corresponds to a chemical shift value of a 15N nucleus or a 13C nucleus.
  • the feature is that it is the axis that performs.
  • the invention according to claim 6 is the noise filter device according to any one of claims 115, wherein the three-dimensional heteronuclear correlation NMR spectrum is a three-dimensional HSQC-NO ESY spectrum. And the y-axis represents the chemical shift value C of the 1 H nucleus obtained by time expansion.
  • the noise filter device according to any one of the sixteenth to sixteenth aspects, wherein a predetermined number of peaks are sequentially set in order of the peak table force and the peak intensity. Are extracted as upper peaks, and each of the extracted upper peaks is located at coordinates substantially symmetric with respect to any one of the three axes of the X-axis, y-axis, and z-axis with the upper peak as a center. And a peak pair detecting means for detecting a peak pair of a pair of peaks having substantially the same peak intensity, and discriminating peaks constituting the peak pair as noise.
  • a second noise removing unit for removing information of the determined peak from the peak table stored in the storage unit.
  • the invention according to claim 8 provides the noise filter device according to any one of claims 117 to 17, having the X coordinate and the y coordinate having substantially the same value from the peak table. All the peaks are extracted as diagonal peaks, and for each extracted diagonal peak, the same sign is applied from the diagonal peak to any one of the three axes of the X axis, y axis, and z axis.
  • a continuous peak group detecting means for detecting a peak group having continuous peaks as a continuous peak group, and determining peaks other than diagonal peaks included in the continuous peak group as noise and determining peaks determined as noise.
  • a third noise removing means for removing information from the peak table stored in the storage means.
  • the invention according to claim 9 is the noise filter device according to any one of claims 5 to 8, wherein the peak table having substantially the same value of the X coordinate and the y coordinate is obtained from the peak table.
  • the peak table having substantially the same value of the X coordinate and the y coordinate is obtained from the peak table.
  • a non-diagonal peak group detecting means for detecting as a peak group, and for each detected non-diagonal peak group, determining which of the positive or negative peaks the non-diagonal peak group contains,
  • a code determining means for determining a code as a code of the off-diagonal peak group; a code determined for the off-diagonal peak group by the code determining means; and a code of each peak included in the off-diagonal peak group.
  • a fourth noise removal means for the Pikute one Bull force removes a peak with a different sign and determined sign for the non-diagonal peaks as noise.
  • the invention according to claim 10 is the noise filter device according to any one of claims 11 to 19, wherein the fifth noise removing means removes a peak corresponding to noise derived from light water from the peak table. It is characterized by having a removing means.
  • the invention according to claim 11 corresponds to the chemical shift value C of the 1 H nucleus directly observed.
  • a three-dimensional heteronuclear correlation NMR spectrum force corresponding to the y-axis corresponding to the y-axis and other parameters NMR spectral force A noise filter method for removing noise, wherein the actually measured three-dimensional From the heteronuclear correlation NMR spectrum, peaks having a predetermined peak intensity or more are extracted as peak n (n is a natural number), and for each extracted peak, the X-z plane reference coordinates (C (n),
  • a peak group G (in which a predetermined number or more of peaks are observed in a substantially straight line in the axial direction of the y-axis in the storage step of storing the peak table and in the three-dimensional heterogeneous nuclear correlation vector, m) (m is a natural number), the x-z plane reference coordinates (P (m), P (m)) of each peak group G (m) are determined, and each determined X-z plane Reference coordinates (P (m),
  • the invention according to claim 12 corresponds to the chemical shift value C of the 1 H nucleus directly observed.
  • peaks having a predetermined peak intensity or higher are extracted as peak n (n is a natural number), and for each extracted peak, the X—z plane reference coordinates (C (n), C (n) Create a peak table corresponding to)
  • the X-z plane reference coordinates (P (m), P (m)) of each peak group G (m) are determined and determined.
  • the noise filter device (claim 1) is capable of filtering a spurious signal called off-signal noise existing in a region different from the peak group G (m) arranged substantially linearly in the y-axis direction. This is to detect and remove the signal. If the off-signal noise can be removed efficiently and accurately before the signal is assigned, the effect is obtained.
  • the noise filter device includes a peak table creating means for automatically creating a peak table from actually measured spectrum data.
  • the time and labor required to create a search peak table can be saved, and noise can be more efficiently removed.
  • the noise filter device includes a mask file creating means for automatically creating a mask file from actually measured spectrum data, a user can manually create a peak group. The time and effort required to create a search mask file can be saved, and noise can be removed more efficiently.
  • the noise filter device determines a range corresponding to the half width of each peak n, and searches for a mask peak falling within this range as a corresponding mask peak. Noise can be more accurately removed.
  • the force Cal noise filter device of the present invention (Claim 5), - 13 C HSQC-NOE SY spectrum, 'H-' N HSQC-NOESY spectrum, HCCH- COZY spectrum, and, HCCH- TOCSY spectrum Apply to noise removal of spectrum selected from It can be suitably used for NMR three-dimensional structure analysis of proteins.
  • the noise filter device according to the present invention (claim 6) can be applied to noise removal of three-dimensional HSQC-NOESY spectra, and is suitably used for NMR three-dimensional structure analysis of proteins. it can.
  • the noise filter device detects incomplete decoupling noise or wiggle noise observed as a pair around a strong signal such as a methyl signal. This eliminates incomplete decoupling noise and Uyghur noise before assigning the signal.
  • the noise filter device (claim 8) provides a tilt noise generated as a distortion of a baseline generated near a diagonal peak derived from a signal having a slow relaxation and a strong intensity such as a methyl signal. Is detected and removed, and it is possible to effectively and accurately remove the till noise before assigning the signal.
  • the noise filter device has a non-diagonal peak (NOE peak) in which a predetermined number or more of peaks are arranged substantially linearly in the y-axis direction.
  • NOE peak non-diagonal peak
  • the noise filter device according to the present invention (claim 10) has an effect of removing noise derived from light water.
  • the noise filter method according to the present invention (claim 11) is effective in reducing off-signal noise existing in a region different from the peak group G (m) that is substantially linearly aligned with the y-axis direction. If it can be properly and accurately removed, it has an effect.
  • the noise filter program according to the present invention (claim 12) is different from the peak group G (m) that is substantially aligned in the y-axis direction by causing the computer to execute the noise filter program. This has the effect of efficiently and accurately removing off-signal noise existing in the region.
  • FIG. 1 is a block diagram of a noise filter device according to a first embodiment.
  • FIG. 2 is an actually measured three-dimensional 1 H— 13 C HSQC—NOESY spectrum diagram.
  • FIG. 3 is a schematic diagram showing the principle of noise removal performed by the noise filter device according to the first embodiment.
  • FIG. 4 is a flowchart of noise removal according to the first embodiment.
  • FIG. 5 is a diagram showing an example of a peak table.
  • FIG. 6 is a diagram showing an example of a mask finale.
  • FIG. 7 is a flow chart for searching a mask peak corresponding to a color in a mask file to determine noise.
  • FIG. 8-1 is a partially enlarged view of off-signal noise in FIG. 2.
  • FIG. 8-2 is a partially enlarged view of the noise filter device according to the first embodiment after removing noise from FIG. 8-1.
  • FIG. 9 is a block diagram of a noise filter device according to a second embodiment.
  • FIG. 10 is a flowchart of creating a mask file.
  • FIG. 11-1 is a projection view in which reference coordinates of a peak recorded in a peak table are projected on an Xz plane.
  • FIG. 11-2 is a projection view showing a section detected as a peak group existence area on the Xz plane in FIG. 11-1.
  • FIG. 12 is a block diagram of a noise filter device according to a third embodiment.
  • FIG. 13 is a diagram showing an example of incomplete decoupling noise, in which (A) is a diagram obtained by two-dimensionally slicing in the xy plane, and (B) is a cross-sectional view taken along the line II in (A).
  • FIG. 14 is a diagram showing an example of wiggle noise, in which (A) is a diagram obtained by two-dimensionally slicing in the xy plane, and (B) is a cross-sectional view taken along the line ⁇ - (A).
  • FIG. 15 is a diagram showing an example of tilt noise, in which (A) a two-dimensional slice on the xy plane, and (B) a cross-sectional view taken along the line (A) of (A).
  • FIG. 16 is a diagram showing an example of different sign noise, in which (A) is a diagram obtained by two-dimensionally slicing in the xy plane, and (B) is a cross-sectional view taken along the line (-(A).
  • FIG. 17 is a flowchart of noise removal according to the third embodiment.
  • FIG. 18 is a flowchart of peak pair detection.
  • FIG. 19 is a diagram showing an example of an upper peak table.
  • FIG. 20 is a flowchart of detecting a continuous peak group.
  • FIG. 21 is a diagram showing an example of a diagonal peak table.
  • FIG. 22 is a flowchart of detecting a non-diagonal peak group.
  • FIG. 23-1 is a partially enlarged view of the wiggle noise and the incomplete decoupling noise in FIG.
  • FIG. 23-2 is a partially enlarged view after noise is removed from FIG. 23-1 by the noise filter device of the third embodiment.
  • FIG. 24-1 is a partially enlarged view of the tilt noise in FIG.
  • FIG. 24-2 is a partially enlarged view after noise has been removed from FIG. 24-1 by the noise filter device of the third embodiment.
  • FIG. 25-1 is a partially enlarged view of the different sign noise in FIG. 2.
  • FIG. 25-2 is a partially enlarged view after noise is removed from FIG. 25-1 by the noise filter device of the third embodiment.
  • FIG. 26-1 is a partially enlarged view of the water noise in FIG.
  • FIG. 26-2 is a partially enlarged view after noise is removed from FIG. 26-1 by the noise filter device of the third embodiment.
  • FIG. 1 shows a block diagram of a noise filter device according to the first embodiment.
  • the first embodiment is a noise filter device suitable mainly for removing off-signal noise.
  • the noise filter device 1 according to the first embodiment includes a storage unit 12, a corresponding mask peak search unit 13, and a first noise removal unit 14.
  • the noise filter device 1 is connected to the NMR 2 and the external input / output device 3. N
  • the spectrum data measured using the MR 2 is transmitted to the noise filter device 1 and stored in the storage unit 12.
  • the external input / output device 3 reads out the spectrum data from the storage unit 12, and displays the three-dimensional heteronuclear correlation NMR spectrum on the screen.
  • the user detects peaks on the screen of the external input / output device 3 while confirming the actually measured 3D heteronuclear correlation NMR spectrum, and for each peak, the 3D reference coordinates, half width, and peak intensity of the peak are detected.
  • the peak table data created by the user is also input to the external input / output device.
  • the data of the peak table input from the external input / output device 3 is transmitted to the storage unit 12 and stored.
  • the user detects peak groups observed in a substantially straight line in the axial direction of the y-axis in the actually measured three-dimensional heteronuclear correlation NMR spectrum, and determines the X-z of each peak group G (m).
  • Plane A mask file that records the reference coordinates (P (m), P (m)) as the coordinates of the mask peak m
  • the data of the mask file created by the user is input from the external input / output device 3.
  • the mask file data input from the external input / output device 3 is transmitted to the corresponding mask peak search unit 13.
  • the corresponding mask peak search unit 13 receives the data of the mask file from the external input / output device 3 and reads the data of the peak table from the storage unit 12. The corresponding mask peak search unit 13 compares the peak table with the mask file, searches the peak table for a peak corresponding to noise, and transmits the peak corresponding to noise to the first noise removal unit 14 as noise data. I do.
  • the first noise removing unit 14 reads the data of the peak table from the storage unit 12, removes the information of the peak corresponding to the noise from the peak table, and removes the information of the peak corresponding to the noise.
  • the peak table is transmitted to the storage unit 12.
  • the storage unit 12 stores the data of the peak table after noise removal received from the first noise removal unit 14, and transmits the data to the external input / output device 3 as necessary.
  • the user can check the three-dimensional heteronuclear correlation NMR vector after the noise is removed by the noise filter device 1 on the screen of the external input / output device 3.
  • a user measures a three-dimensional heteronuclear correlation NMR spectrum.
  • the term “three-dimensional heteronuclear correlation NMR spectrum” refers to a three-dimensional NMR spectrum obtained by combining a two-dimensional heteronuclear correlation spectrum with another parameter.
  • the “two-dimensional heteronuclear correlation spectrum” is obtained by directly measuring the correlation spectrum between 3 ⁇ 4 and a heterogeneous nucleus other than 1 H ( 13 C nucleus, 15 N nucleus, etc.) by 1 H nuclear observation. , X-axis corresponding to the chemical shift value C of the 1 H nucleus directly observed), and ⁇ Chemical shift value C of the heterogeneous nucleus other than the nucleus
  • the three-dimensional heteronuclear correlation NMR spectrum is not particularly limited as long as it is a three-dimensional NMR spectrum including the 1 H nuclear direct observation axis and the heteronuclear time expansion axis.
  • a 13 C HSQC—NOESY spectrum (x-axis: nuclear direct observation axis, y-axis: nuclear time expansion) Axis, z axis: "C nuclear time expansion axis", 15 N HSQC—NOESY spectrum (x axis: direct nuclear observation axis, y axis: 1 H nuclear time expansion axis, z axis: 15 N nuclear time expansion axis), HCCH — COSY static (X axis: 3 ⁇ 4nuclear direct observation axis, y axis: 3 ⁇ 4nuclear time expansion axis, z axis: 13 C nuclear time expansion axis), HCC H— TOCSY spectrum (X axis: 1 H nuclear direct observation axis) Axis, y axis: 1 H nuclear time expansion axis, z axis: 13 C nuclear time expansion axis), HCC H— TOCSY spectrum (X axis: 1 H nuclear direct observation axis) Axis,
  • the user performs full-automatic peak detection for proteins whose structure has been identified using NMR2.
  • the obtained 1 H— 15 N HSQC—NOESY spectrum is the HSQC vector between 15 N (X axis: direct nuclear observation axis, z axis : 15 N nuclear time expansion axis) and 1 H NOESY statue (X axis: direct nuclear observation axis, y axis: nuclear time expansion axis).
  • FIG. 2 shows a three-dimensional 1 H— 13 C HSQC—NOESY vector actually measured for mouse SH3.
  • Figure 2 is a three-dimensional 1 H- 13 C HSQC
  • the horizontal axis is the chemical shift value C of the directly observed 1 H nucleus, and the vertical axis is obtained by expanding the time.
  • the peak appearing on this broken line is called the diagonal peak.
  • the NOE to be normally detected is thus observed as a non-diagonal peak linearly distributed in the vertical axis direction from the diagonal peak.
  • the detected peaks are shown in blue when they are on the two-dimensional spectrum slice, and the peaks in the upper or lower layer by one slice are shown in green.
  • the three-dimensional 1 H— 13 C HSQC—NOESY spectrum shows the chemical shift value C of the 1 H nucleus obtained by time-expanding the X axis corresponding to the chemical shift value C of the 1 H nucleus directly observed.
  • X y plane represents the 1 H- 1 H NOESY's vector
  • X- z plane represents a HSQC spectrum of 13 C.
  • the diagonal peak observed on the xy plane represents the 1 H chemical shift of the protein.
  • NOE peak the NOE effect that works only spatially close (shorter linear distance) is observed as a non-diagonal peak (NOE peak).
  • NOE peak The presence of a NOE peak indicates that they are within about 0.5 nm. Therefore, the secondary and tertiary structures of proteins can be determined by collecting information on the presence or absence of NOE between atoms.
  • FIG. 3 shows a schematic diagram of the principle of noise removal performed by the noise filter device according to the first embodiment.
  • FIG. 3 (1) is a schematic diagram of the actually measured three-dimensional spectrum, in which peaks derived from signals are shown in black, and peaks corresponding to off-signal noise are shown in white.
  • the peak derived from the signal is substantially aligned with the diagonal peak derived from the target sample in the y-axis direction. It is observed as a group of peaks aligned on a straight line. A lot of spurious signals called off-signal noise are usually found in a region different from these peak groups.
  • off-signal noise In order to efficiently remove this off-signal noise, first, in an actually measured three-dimensional heteronuclear correlation NMR spectrum, a predetermined number or more of peaks are observed almost in a line in the y-axis direction.
  • the peak group G (m) (m is a natural number) is detected, and the reference Xz plane coordinates of each peak group G (m) are converted to the coordinates (P (m), P (m))
  • a peak that does not exist is determined as noise. Then, as shown in FIG. 3 (III), the peak determined as noise is removed from the three-dimensional heteronuclear correlation NMR ⁇ vector.
  • a noise filter method based on the principle will be described as a mask filter method.
  • FIG. 4 shows a flowchart for removing noise using the noise filter device according to the first embodiment.
  • the HSQC-NOESY spectrum will be described as an example, but this does not preclude the present invention from being applied to other three-dimensional heteronuclear correlation NMR ⁇ vectors.
  • the threshold value described below for the 15 N nucleus can be applied to other nuclides such as the 13 C nucleus.
  • the 1 H- 15 NH SQC- NOESY spectrum was measured for protein to identify the structure using NMR2, acquires the 15 N HSQC- NOESY spectrum data (Step S 10). 1 H- 15 N HSQC- NOESY spectrum data measured by NMR2 is transmitted to the storage unit 12, it is stored.
  • the user based on, creating a peak table were measured 1 H- 15 N HSQC- NOESY spectrum (step S 11).
  • the user reads out the spectrum data from the storage unit 12 through the external input / output device 3 and displays the three-dimensional heteronuclear correlation NMR ⁇ vector on the screen of the external input / output device 3.
  • the user checks the 'H-'N HSQC-NOESY spectrum on the screen of the external input / output device 3 and detects the peak.
  • n is a natural number).
  • a peak table is created by associating the three-dimensional reference coordinates, half width, and peak intensity of the peak.
  • FIG. 5 shows an example of the peak table.
  • the peak table contains the peak ID, 3D reference coordinates (C (n), C (n), C (n)), half-width in each axis direction, and peak for each peak.
  • C (n) is the X coordinate (chemical shift of the 1 H nucleus observed directly
  • C (n) is the y coordinate (chemical shift value of 1 H nucleus obtained by time expansion), C (n) is the z coordinate (
  • the data of the peak table input by the user to the external input / output device 3 is transmitted to the storage unit 12 and stored (step S12).
  • Step S13 Create a mask file (step S13).
  • the user through the external input and output device 3, 1 H- 15 N HSQC- NOESY confirmed the spectral data, while allowing not adversely picking as much as possible noise visually detects each peak group.
  • the user determines the coordinates that overlap with the largest number of peaks in each peak group visually detected, and calculates these coordinates (P (m), P (m)).
  • Figure 6 shows an example of a mask file.
  • P (m) represents the X coordinate of the mask peak m
  • P (m) represents the z coordinate of the mask peak m
  • step S13 The mask file data input to the external input / output device 3 by the user is transmitted to the corresponding mask peak search unit 13 (step S13).
  • the corresponding mask peak search unit 13 compares the peak table read from the storage unit 12 with the data of the mask file received from the external input / output device 3, and for each peak, stores the corresponding mask in the mask file. It is searched whether a peak exists (step S14). The corresponding mask peak searching unit 13 transmits the peak ID of the peak for which no corresponding mask peak could be searched to the first noise removing unit 14 as noise data (step S15).
  • FIG. 7 shows a flowchart for searching for a corresponding mask peak from a mask file to determine noise.
  • the corresponding mask peak search unit 13 calculates the X—z plane coordinates (C (
  • step S140 the number of peaks n is calculated, and an optimization adjustment value that maximizes the number of peaks corresponding to the mask peak m is determined (step S140).
  • “corresponding to the mask peak m” means that the X—z plane coordinates (C (n), C (n)) of the peak n are the coordinates of the mask peak m (P (m), P (m ) )When
  • Whether the peak n corresponds to the mask peak m is determined by the X—z plane coordinates of the peak n (C (n)
  • n with an evaluation value of 1 corresponds to the mask peak m
  • the peak n with an evaluation value of 0 means that it corresponds to the mask peak m! / ⁇ .
  • k and k are fine adjustment values
  • t and t are threshold values set by the user
  • w (n) and w (n) are peak values.
  • H is the half-value width of n, corresponding to the X-axis and z-axis, respectively.
  • the threshold values t and t depend on the measurement conditions, etc.
  • the thresholds t and t should be 0.03 ppm and 0.
  • the total value of the evaluation values of the results of the evaluations is maximized. That is, the total of the evaluation values is calculated while changing the fine adjustment values k, k at a constant pitch.
  • the pitch width is
  • a total value S (i, j) of the evaluation values as a result of evaluating all the peaks with all the mask peaks is calculated, and this value is a maximum, max S (i, j). (I, J).
  • the X—z plane coordinates (C (n), C (n)) of the peak n are optimized using the optimization adjustment value.
  • Step S141 The X-z plane coordinates of the peak n optimized by the optimization adjustment value are (C ( ⁇ ) + ⁇ kI, C (n) + ⁇ kJ).
  • the corresponding mask peak search unit 13 uses the optimized x-z plane coordinates (C ( ⁇ ) + ⁇ kI, C (n) + ⁇ kJ) for each peak n.
  • the corresponding mask peak search unit 13 determines the peak ID of the corresponding peak as a noise.
  • the data is transmitted to the first noise removal unit 14 as data (step S143), and the processing for the peak n is completed. If a corresponding mask peak can be detected in the mask file for the peak n (step S 142 Yes), the processing for the peak n ends. As described above, for all the peaks in the peak table, the corresponding mask peak is searched from the mask file to determine whether or not it is noise.
  • the first noise elimination unit 14 reads the data of the peak table from the storage unit 12 and, based on the noise data received from the corresponding mask peak search unit 13, extracts the information of the peak corresponding to the noise from the peak table. Remove it ( Figure 4, step S16). Then, the first noise removing unit 14 transmits a new peak table from which information of the peak corresponding to the noise has been removed to the storage unit 12.
  • FIG. 8-1 is a partially enlarged view of the 1 H— 13 C HSQC—NOESY spectrum of FIG. 2, in which X is assigned to off-signal noise and * is assigned to the NOE peak.
  • FIG. 8-2 is a diagram after the noise of the spectral power of FIG. 8-1 has also been removed by the noise filter device of the first embodiment. Comparing FIGS. 8A and 8B, it can be seen that the off-signal noise marked with X is efficiently removed by the noise filter device of the first embodiment.
  • the force peak table and the mask file in which the X-z plane coordinates of the peak n have been optimized and the force corresponding peak has been searched are correctly created!
  • the corresponding peak may be searched using the Xz plane coordinates described in the direct peak table.
  • the noise filter device and the noise filter method according to the first embodiment described above provide a peak group G observed in a substantially straight line with respect to the axial direction of the kernel time expansion axis (y-axis). Noise (off-signal noise) that is observed in a region different from (m) can be efficiently and accurately removed before signal assignment, greatly reducing the burden on analysts involved in noise removal work. .
  • the second embodiment is a modification of the first embodiment and is characterized in that a means for automatically creating a peak table and a mask file is provided.
  • FIG. 9 shows a block diagram of a noise filter device according to the second embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the noise filter device includes a peak table creation unit 10 and a mask file creation unit 11.
  • the peak table creation unit 10 automatically creates a peak table from the spectrum data stored in the storage unit 12. Further, the mask file creating section 11 automatically creates a mask file using the peak table created by the peak table creating section 10.
  • Peak table creation unit 10 creates a 1 H- 15 N HSQC- NOESY space Tuttle data force peak table in the following manner.
  • the peak table creating unit 10 J H - from 15 N HSQC- NOESY spectrum data, detects the data points corresponding to the peak.
  • ⁇ — ⁇ HSQC—NOESY spectral data is Data point (i, j, k) (ijk is an integer, i corresponds to the x coordinate, j corresponds to the y coordinate, and k corresponds to the z coordinate).
  • Can be Peak detection can be performed using a generally used method.
  • the data intensity at a data point (i, j, k) of a three-dimensional vector is M (i, j, k), 26 adjacent data points (i 1, j-1, k-1), (i-1, j, k-1), (i-1, j + 1, k-1), (i, j-1, k-1), (i, j, k-- 1), (i, j + 1, k—1), (i + 1, j-1, k—1), (i + 1, j, k—1), (i ++ k—1), (i-1, j-1, k), (i-- k) (i-1, j + 1, k), (i, j--1, k) (i, j + 1, k), (i, +1, j-1, k), (i + l, j, k), (i + 1, j + 1, k), (i-1, j-1, k + 1), (i-1 , j, k + 1),
  • dM (i-l, j-l, kl) M (i-k) -M (i-l, j-l, k-1)
  • dM (i-l, j, k-l) M (i , J, k)-M (i-l, j, k 1)
  • dM (i, j-l, k-l) (i, j, k) -M (i, j-l, k-l)
  • dM (i, j, k-l) M (i, j, k) -M (i, j, k-l)
  • dM (i, j + l, k-l) M (i, j, k) -M (i, j + l, k-1)
  • dM (i + l, l, k-l) M (i, j, k)-M (i + l, j-l, k-1)
  • dM (i + l, j, k-l) M (iJ, k)-(i + l, j, k-l)
  • dM (i + l, j + l, k-l) M (i, j, k) -M (i + l, j + l, k-l)
  • dM (i-l, j-l, k) (i, j, k) -M (i-l, j-l, k)
  • dM (i-l, j, k) M (i, j, k) -M (i-l, j, k)
  • dM (i-l, j + l, k) M (i, j, k) -M (i-l, j + l, k)
  • dM (i, j-l, k) M (i, j, k)-M (i, j-l, k)
  • dM (i-l, j + l, k) M (i, j, k) -M (i-l, j + l, k)
  • dM (i + l, j-l, k) M (i, j, k) -M (i + l, j-l, k)
  • dM (i + l, j, k) M (i, j, k) _M (i + l, j, k)
  • dM (i + l, j + l, k) M (i, j, k)-M (i + l, j + l, k)
  • dM (i-l, j-l, k + l) (i, j, k) -M (i-l, j-l, k + l)
  • dM (i-l, j, k + l) (i, j, k) ⁇ M (i-l, j, k + l)
  • dM (i-l, j + l, k + l) M (i, j, k) -M (i-l, j + l, k + l)
  • dM (i, j-l, k + l) (i, j, k) -M (i, j-l, k + l)
  • dM (i, j, k + l) M (i, j, k) -M (i, j, k + l)
  • dM (i, j + l, k + l) (i, j, k) -M (i, j + l, k + l)
  • dM (i + l, j-l, k + l) M (i, j, k) -M (i + l, j-l, k + l)
  • dM (i + l, j, k + l) M (i, j, k)-M (i + l, j, k + l)
  • dM (i + l, j + l, k + l) M (i, j, k)-M (i + lJ + l, k + l), and when M (i, j, k)> 0 If all the difference values are positive, or if M (i, j, k) ⁇ 0 and all the difference values are negative, the data point (i, j, k) is detected as a peak. [0079] Since the data point uses an integer, it may be far from the peak of the true peak depending on the data point density.
  • the peak table creation unit 10 assigns “n” (n is a natural number) as a peak ID to each detected peak. For each detected peak n, the peak table creating unit 10 calculates a peak ID, three-dimensional reference coordinates (C (n), C (n), C (n)), a half-value width (w (n), w (n
  • the table creation unit 10 transmits the created data of the peak table to the storage unit 12 and the corresponding mask peak search unit 13, respectively.
  • the mask file creating section 11 reads out the data of the peak table stored in the storage section 12. Based on the peak table, the mask file creation unit 11 detects a group of peaks G (m) (m is a natural number) observed substantially linearly in the y-axis direction, and obtains a group of peaks G (m) Determine the X-z plane reference coordinates (P (m), P (m)) of. And each determined X-z plane
  • a mask file that records the reference coordinates (P (m), P (m)) as the coordinates of the mask peak m
  • FIG. 10 shows a flowchart of creating a mask file according to the second embodiment.
  • the mask file creating section 11 divides the Xz plane into sections having the same area, and determines whether or not each section contains a predetermined number or more of the reference coordinates of the peak (step S150).
  • FIG. 11-1 is a projection diagram in which the reference coordinates of the peak recorded in the peak table are projected on the Xz plane. As shown in Fig. 11-1, the mask file creation unit 11 divides the Xz plane at a pitch of 0. Ippm in the X-axis direction and at a pitch of Ippm in the z-axis direction. Is searched for how many peak reference coordinates are included in each section.
  • the mask file creating unit 11 detects, as a peak group existence area, a section including a predetermined number or more of the reference coordinates of the peak (step S151).
  • the hatched section is the section detected as the peak group existence area.
  • the mask file creation unit 11 finely adjusts the center coordinates (p (m), p (m)) of the section detected as the peak group existence area, and the number of corresponding peaks in the peak table is the largest. Tona
  • the peak ⁇ at which the evaluation value becomes 1 corresponds to the center coordinates (p (m), p (m))
  • the peak n at which the evaluation value is 0 means that the peak n corresponds to the mask peak m.
  • k and k are fine adjustment values of the peak n
  • t and t are thresholds set by the user
  • w and w are
  • the mask file creation unit 11 masks the reference coordinates (P (m), P (m)) of the peak group G (m).
  • the coordinates of the peak m are stored in the mask file (step S153).
  • the noise filter device and the noise filter method according to the second embodiment described above can automatically create a peak table and a mask file, thereby further reducing the user's time burden in noise removal work. Can be.
  • oversight of the peak n and oversight of the peak group G (m) can be prevented, more accurate noise removal can be performed.
  • the third embodiment is characterized in that a means for detecting and removing noise that cannot be completely removed in the first embodiment and the second embodiment is added.
  • noise in which the mask peak m and the X-z plane coordinate difference are within a predetermined range is not discriminated as noise and remains in the peak table as it is.
  • the third embodiment is characterized in that such noise is detected and removed.
  • FIG. 12 is a block diagram illustrating the configuration of a noise filter device according to the third embodiment.
  • the noise filter device according to the third embodiment is different from the noise filter device according to the second embodiment in that the noise filter device has a configuration similar to the noise filter device according to the second embodiment.
  • Section 16, continuous peak group detection section 17, third noise removal section 18, A non-diagonal peak group detector 19, a code determiner 20, a fourth noise remover 21, a water noise detector 22, and a fifth noise remover 23 are provided.
  • the peak pair detection unit 15 detects a peak having a strong peak intensity symmetrically with respect to any one of three axes of the X-axis, the y-axis, and the z-axis around the peak. This is to detect one pair.
  • the peak pair detection unit 15 transmits the peak IDs of the peaks forming the peak pair to the second noise removal unit 16 as noise data.
  • the peak pair detection section 15 mainly detects noise generated near a peak derived from a strong and sharp signal such as a methyl signal.
  • the cause of noise near strong peaks, such as methyl signals is that the heteronuclear decoupling performed during the time evolution of the proton nuclei during the spectral measurement process is slightly inadequate, and therefore the proton nuclei It is conceivable that peaks split by S-spin coupling and heterogeneous nuclear forces are mixed. Such noise is called incomplete decoupling noise.
  • a frequency-dependent delay time exists on each time axis. A sharp signal such as a methyl signal hardly relaxes during the delay time.
  • a signal is recognized as a rectangular wave at the time of Fourier transform, and a sine waveform swells on the spectrum after the Fourier transform.
  • This noise is multiplied by the squared cosine function or can be eliminated to some extent by the linear prediction method. It is difficult to completely eliminate the noise.
  • Such noise is called wiggle noise.
  • Fig. 13 shows an example of incomplete decoupling noise
  • Fig. 14 shows an example of Uighur noise. As shown in FIG. 13 and FIG. 14, these noises tend to be found two by two symmetrically around the signal in the vicinity of the strong signal.
  • the peak pair detection unit 15 detects such a pair of peaks, thereby efficiently detecting incomplete decoupling noise and wiggle noise.
  • the second noise removing unit 16 receives the noise data from the peak pair detecting unit 15.
  • the second noise removing unit 16 reads the data of the peak table from the storage unit 12, removes the information of the peak corresponding to the noise from the peak table, and removes the information of the peak corresponding to the noise from the new peak.
  • the table is transmitted to the storage unit 12.
  • the continuous peak group detection unit 17 places the y-axis near the diagonal peak around the diagonal peak. A continuous peak group consisting of peaks of the same sign that are observed while being continuously crowded in the direction is detected. The continuous peak group detection unit 17 transmits the peak IDs of peaks other than diagonal peaks included in the detected continuous peak group to the third noise removal unit 16 as noise data.
  • the continuous peak group detection unit 17 mainly detects noise that is observed as a methyl signal that is slow to relax and has a high intensity or a base line distortion generated near a side chain signal.
  • the phase in the multidimensional NMR spectrum after Fourier transform is generally determined by the hardware or software delay time of the frequency-dependent expansion time set for each axis in the pulse scheme and the delay time generated when the NMR probe and receiver receive. Always a little off. These phase shifts are commonly used and can be fine-tuned by the user on spectral data processing software. In the presence of strong and slow-relaxing, methyl or side-chain signals, it is often very difficult to perfectly align these signals. A phase shift that cannot be completely adjusted distorts the baseline and causes many noise peaks. These types of noise are called tile noise. Fig. 15 shows an example of till noise.
  • the third noise removing unit 18 receives the noise data from the continuous peak group detecting unit 17.
  • the third noise removing unit 18 reads the data of the peak table from the storage unit 12, removes the information of the peak corresponding to the noise from the peak table, and stores the new peak table from which the information of the peak corresponding to the noise is removed. Send to Part 12.
  • the off-diagonal peak group detection unit 19 detects a off-diagonal peak group other than a diagonal peak in which a predetermined number or more peaks are arranged substantially linearly in the y-axis direction from the diagonal peak, The information on the peaks included in the off-diagonal peak group is transmitted to the code determination unit 20.
  • the sign determination unit 20 determines which of the detected non-diagonal peak groups contains more positive or negative peaks, and determines the sign of the peak that is more contained as the sign of the off-diagonal peak group. .
  • the sign determination unit 20 transmits the peak ID of a peak having a sign different from the sign determined for the off-diagonal peak group to the fourth noise removal unit 21 as noise data.
  • the off-diagonal peak group which is also observed as a signal train with the diagonal peak force directed in the y-axis direction, is a signal of the same phase in principle, and the true NOE peak included in the off-diagonal peak group Is the same sign of the peak intensity. Therefore, peaks having different signs of the peak intensities are apparent noise.
  • the sign determination unit 20 detects a peak having a different sign of the peak intensity as a different sign noise.
  • Figure 16 shows an example of different sign noise
  • the fourth noise removing unit 21 receives the noise data from the code determining unit 20.
  • the fourth noise removing unit 21 reads the data of the peak table from the storage unit 12, removes the information of the peak corresponding to the noise from the peak table, and creates a new peak table from which the information of the peak corresponding to the noise is removed. It is transmitted to the storage unit 12.
  • Water noise detection section 22 detects a peak corresponding to noise derived from light water from the power of the peak table.
  • the noise originating from light water mainly appears in the light water signal, and usually appears as about 10,000 to 20000 noises in the range of ⁇ 0.1-0.2 ppm.
  • the water noise detection unit 22 detects a peak corresponding to this, and transmits the peak ID of the peak corresponding to the noise to the fifth noise removal unit 23 as noise data.
  • the fifth noise removing unit 23 reads the data of the peak table from the storage unit 12, removes the information of the peak corresponding to the noise from the peak table, and removes the information of the peak corresponding to the noise.
  • the peak table is transmitted to the storage unit 12.
  • FIG. 17 shows a flowchart for removing noise by a noise filter device according to the third embodiment. Note that the same processes as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the peak pair detection unit 15 After removing the noise by the mask filter method (step S16), the peak pair detection unit 15 reads the peak table from the storage unit 12, and detects the peak pair from the peak table (step S20).
  • FIG. 18 shows a flowchart of peak pair detection.
  • the peak pair detecting unit 15 extracts a predetermined number of peaks as upper peaks in descending order of peak table force and peak intensity, and creates an upper peak table (step S200).
  • the peak pair detection unit 15 assigns peak IDs “s” (s is a natural number) to the extracted upper peaks in descending order of peak intensity.
  • peak IDs “s” s is a natural number
  • C (s), C (s), C (s) three-dimensional reference coordinates
  • the upper peak peak value corresponding to the value range (w (s), w (s), w (s)) and the peak intensity I (s).
  • Fig. 19 shows an example of the upper peak table.
  • the number of upper peaks to be extracted is a force that can be determined by the user. It is preferable to extract about 20 to 30 upper peaks in a normal three-dimensional NMR spectrum of a protein.
  • the peak force of the peak table also detects a peak pair.
  • the upper peak for detecting a peak pair is set as the upper peak 1 having the highest peak intensity (step S201). Then, for the set upper peak, a peak pair is also searched for the intermediate strength of the peak table (step S203).
  • Peak pair detection is performed for two peaks that are located at coordinates that are symmetric with respect to any of the X-axis, y-axis, and z-axis directions and that have the same peak intensity. This is done by searching the peak table for a combination of peaks n and n.
  • the peak ⁇ at which the evaluation value is 1 due to ⁇ , ⁇ ⁇ , ⁇ ⁇ means that it is on the same y-axis line as the upper peak s, and the peak n at which the evaluation value is 0 is different from the upper peak s y It means that it exists on the axis line.
  • the threshold values t 1, t 2, and t 3 used here are appropriately set by the user according to measurement conditions and the like.
  • the peak is close to the distance, and the peak n whose evaluation value is 0 means that the peak exists at a position distant from the upper peak s.
  • the thresholds 1, 1, and 1 used here are appropriately set by the user according to measurement conditions and the like.
  • the line has positional symmetry based on the upper peak s on the line, and a combination of peaks n and n with an evaluation value of 0 means that there is no positional symmetry.
  • the values of the evaluation thresholds rl and r2 here are values around 1 (rl ⁇ l, r2> l), and the forces that can be appropriately set by the user are 0.9 and 1.1, respectively. Is preferred.
  • the two peaks n and n are evaluated by the function W (n, n) to determine whether they have intensity symmetry.
  • 1 2 1 2 combination means having intensity symmetry, peaks n and n for which the evaluation value is 0
  • the values of the evaluation thresholds vl and v2 here are values around 1 (vl ⁇ 1, ⁇ 2> 1), and the forces that the user can appropriately set are 0.8 and 1.2, respectively. Is preferred.
  • the peak pair detection unit 15 calculates a value obtained by multiplying all the functions in the X-axis, y-axis, and z-axis directions by the following equation, and calculates the X-axis, y-axis, and z-axis values. A combination of peaks n and n for which the multiplied value does not become 0 in any axis direction is detected as a peak pair.
  • the peak pair detection unit 15 uses the peak IDs of the peaks n and n constituting the detected peak pair as noise data to perform second noise removal.
  • the information is transmitted to the unit 16 (step S205).
  • step S204 No when a peak pair is not detected (step S204 No) or when a peak pair is detected and noise data is transmitted (step S204 Yes, step S205), the peak pair is detected.
  • the detecting unit 15 determines whether a peak pair has been searched for all upper peaks in the upper peak table (step S206). If a peak pair is still found in the upper peak table, and there is a higher peak (step S206 No), the upper peak table in which the strength of the upper peak table corresponds to the lower rank of the peak intensity by one level. Then, a peak is selected and set as an upper peak for detecting a peak pair (step S207). Then, the process of detecting a peak pair is repeated for the set upper peak (step S203). If all upper peaks in the upper peak table have been searched (step S206
  • the peak pair detection unit 15 determines that the peak pair detection is completed, and ends the peak pair detection processing.
  • the second noise removing unit 16 reads the data of the peak table from the storage unit 12, and removes the information of the peak corresponding to the noise from the peak table (FIG. 17, step S21).
  • the second noise removing unit 16 transmits to the storage unit 12 a new peak table from which information on the peak corresponding to the noise has been removed.
  • the continuous peak group detection unit 17 reads the data of the peak table stored in the storage unit 12, detects a peak corresponding to a diagonal peak from the peak table, and detects the peak corresponding to the diagonal peak in the y-axis direction. Then, a continuous peak group in which a predetermined number or more of peaks having the same sign are arranged substantially on a straight line within a predetermined range is detected (step S22).
  • FIG. 20 shows a flowchart for detecting a continuous peak group.
  • the continuous peak group detection unit 17 extracts a peak corresponding to the diagonal peak from the peak table, and File (step S220).
  • the peak ⁇ at which the evaluation value becomes 1 by the function X ( ⁇ ) of means a diagonal peak
  • the peak ⁇ at which the evaluation value becomes 0 by this function X ( ⁇ ) is a non-diagonal peak
  • ⁇ ⁇ . ⁇ ( ⁇ ) 1 if
  • the threshold value t used here is preferably a value of 0.1 Olppm.
  • the continuous peak group detection unit 17 assigns "a" (a is a natural number) as a diagonal peak ID to a peak determined to be a diagonal peak, and assigns a diagonal peak ID, 3D reference coordinates (C (a), C (a), C (a)), FWHM in each axis direction (w (a), w (a), w (a)),
  • a peak table is created in correspondence with the peak intensity I (a).
  • Figure 21 shows an example of the diagonal peak taper.
  • a continuous peak group is detected in the order of diagonal peak IDs.
  • a diagonal peak for detecting a continuous peak group is set to diagonal peak 1 (step S221). From the peak table, for the set diagonal peak, peaks having a predetermined number or more of the same sign within a predetermined range and directed in the y-axis direction from the diagonal peak continuously substantially linearly.
  • the continuous peak group arranged is detected (step S222).
  • Peak n with a value of 1 means that it is sufficiently close to diagonal peak a.
  • Peak n with an evaluation value of 0 means that the distance from diagonal peak a is long, and The possibility that the noise is a tilt noise of a is denied.
  • functions D (n, a) and D (n, a) are used for the x-axis and z-axis lines.
  • d, d, and d are thresholds, which can be set by the user. For example, 600-80
  • the continuous peak group is detected in the same manner as in the case of the y-axis using 2).
  • the thresholds v, V, and V for the degree of overlap between peaks are values set by the user
  • peaks rl, r2, r3, and r4 are searched for the peaks r that overlap continuously. If the total number of consecutive overlapping peaks exceeds the reference value (usually set to 8), it is detected as a continuous peak group.
  • Step S223 Yes the continuous peak group detection unit 17 determines the peak IDs of all the peaks included in the detected continuous peak group except for the diagonal peaks as noise.
  • the data is transmitted to the third noise removing unit 18 as data (step S224).
  • step S225 determines whether a continuous peak group has been searched for all diagonal peaks in the diagonal peak table. If the continuous peak group is still searched in the diagonal peak table, and there is a diagonal peak (step S225 No), the diagonal peak ID is increased by one and the diagonal to search for the continuous peak group is increased. Set as peak (step S226). Then, a continuous peak group is searched for the set diagonal peak (step S222). All pairs in the diagonal peak table If a continuous peak group has been searched for the angular peak (Step S225 Yes), the continuous peak group detection unit 17 determines that the continuous peak group search has been completed and ends the continuous peak group search processing.
  • the number of diagonal peaks can be set by the user. Usually, however, it is preferable to search the top 20 to 30 diagonal peaks in descending order of peak intensity! / ,.
  • the third noise removing unit 18 reads the data of the peak table from the storage unit 12, and removes the information of the peak corresponding to the noise from the peak table (FIG. 17, step S23). The third noise removing unit 18 transmits to the storage unit 12 a new peak table from which information on the peak corresponding to the noise has been removed.
  • the non-diagonal peak group detection unit 19 reads the data of the peak table stored in the storage unit 12, extracts the peak corresponding to the diagonal peak also in the peak table, and calculates the peak from the diagonal peak in the y-axis direction. Then, a non-diagonal peak group in which a predetermined number or more of peaks are arranged substantially on a straight line is detected (FIG. 17, step S24).
  • FIG. 22 shows a flowchart of detecting a non-diagonal peak group. Note that the same processes as those in the flowchart of detecting the continuous peak group described in FIG. 20 are denoted by the same reference numerals, and description thereof will be omitted.
  • the off-diagonal peak group detection unit 17 sets the diagonal peak for detecting the off-diagonal peak group to diagonal peak 1 (step S221). Then, from the peak table, for the set diagonal peaks, a non-diagonal peak group in which a predetermined number or more of peaks are arranged substantially linearly in the y-axis direction from the diagonal peak is detected (step S250). ).
  • the threshold values t and t used here can be appropriately set by the user. For example, 600-8
  • the off-diagonal peak group detection unit 17 detects a group of peaks other than the diagonal peak a on the same y-axis line as the diagonal peak a as a off-diagonal peak group for the diagonal peak a, and For the X peaks included in the off-diagonal peak group, assign r , r,
  • the data is transmitted to the code determination unit 20 (step S251).
  • the sign determination unit 20 determines which of the positive and negative peaks n the off-diagonal peak group excluding the diagonal peaks includes, and determines the sign of the most contained peak n as the sign of the off-diagonal peak group. Is determined (step S252).
  • Step S253 If the sign of the off-diagonal peak group is positive (Step S253 Yes), the sign determination unit 20 determines the peak ID of the peak having the negative peak intensity from among the peaks included in the off-diagonal peak group. The data is transmitted to the fourth noise removing unit 21 as noise data (step S254).
  • the sign determination unit 20 determines the peak ID of the peak having a positive peak intensity from among the peaks included in the off-diagonal peak group.
  • the data is transmitted to the fourth noise removing unit 21 as noise data (step S255).
  • the off-diagonal peak group detection unit 19 determines whether the off-diagonal peak group has been searched for all the diagonal peaks in the diagonal peak table (step S256). Search the non-diagonal peak group in the diagonal peak table yet! / ⁇ If there is a diagonal peak (No in step S256), increase the diagonal peak ID by one and delete the non-diagonal peak group. Set as the diagonal peak to search (step S226). Then, the non-diagonal peak group detection unit 19 detects a non-diagonal peak group for the set diagonal peak (step S250). If the non-diagonal peak group has been searched for all the diagonal peaks in the diagonal peak table (step S2 56 Yes), the non-diagonal peak group detection unit 19 determines that the non-diagonal peak group detection has been completed. Then, the off-diagonal peak group detection processing ends.
  • the fourth noise removing unit 21 reads the data of the peak table from the storage unit 12, and removes the information of the peak corresponding to the noise from the peak table (FIG. 17, step S26). The fourth noise removing unit 21 transmits a new peak table from which information of the peak corresponding to the noise has been removed to the storage unit 12.
  • the water noise detection unit 22 reads the data of the peak table stored in the storage unit 12, and detects a peak corresponding to the noise derived from light water in the peak table (FIG. 17, step S27).
  • the center X coordinate is determined, and a peak whose peak table force X coordinate is within the range of this center X coordinate force predetermined threshold value is detected.
  • the threshold can be appropriately set by the user, but is preferably set in the range of 0.1 to 0.2 ppm.
  • the water noise detection unit 22 determines the peak corresponding to the light water-derived noise as the noise in the peak table as noise, and sends the peak ID of the peak corresponding to the noise to the fifth noise removal unit 23 as noise data. Send.
  • the fifth noise removing unit 23 reads the data of the peak table from the storage unit 12, and removes the information of the peak corresponding to the noise from the peak table (FIG. 17, step S28). The fifth noise removing unit 23 transmits to the storage unit 12 a new peak table from which information on the peak corresponding to the noise has been removed.
  • FIG. 23- 1, FIG. 24 1, Fig. 25 1, Fig. 26-1 is a partially enlarged view of the 1 H- 13 N HSQC- NOESY space Tuttle in FIG.
  • Figure 23-1 is an enlarged view of the part including incomplete decoupling noise and Uyghur noise, where X corresponding to the incomplete decoupling noise or Uighur noise and * for the NOE peak.
  • Fig. 24-1 is an enlarged view of a part including the tile noise, and an X is added to the peak corresponding to the tile noise.
  • Fig. 25-1 is a partially enlarged view including the sign noise, where the peak corresponding to the sign noise is marked with X, and the NOE peak is marked with *.
  • FIG. 26A is a partially enlarged view including water noise, and an arrow is attached to the boundary line of the existence region of the water noise.
  • FIG. 4 is a diagram after noise has been removed by a noise filter device.
  • Fig. 23-2, Fig. 24-2, Fig. 25-2, and Fig. 26-2 are compared with Fig. 23-1, Fig. 24-1, Fig. 25-1, and Fig. 26-1, respectively. It can be seen that the incomplete decoupling noise, the Uighur noise, the Til noise, the different sign noise, and the ⁇ -outer noise are efficiently removed by the noise filter device.
  • noise filter device and the noise filter method according to the third embodiment described above can be completely removed by a mask filter method, such as incomplete decoupling noise, wiggle noise, tile noise, different sign noise, and water noise. Noise can be removed efficiently and accurately before signal assignment.
  • the noise filter method described in Embodiments 1 to 3 can be provided as a noise filter program for causing a computer to execute the noise filter method.
  • the noise filter program according to the first to third embodiments is a computer-readable recording medium such as a CD-ROM, a floppy (R) disk (FD), or a DVD in an installable or executable file. It is provided by being recorded on a medium.
  • the noise filter program according to the first to third embodiments may be stored on a computer connected to a network such as the Internet, and provided by being downloaded via the network. ,.
  • the noise filter device, the noise filter method, and the noise filter program according to the present invention can be easily performed without requiring signal assignment in a three-dimensional heteronuclear correlation NMR ⁇ vector.
  • noise can be removed in a short time.
  • the noise filter device, the noise filter method, and the noise filter program of the present invention having powerful features are extremely useful in the field of protein NMR three-dimensional structure analysis.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Image Processing (AREA)

Abstract

A noise filter for easily removing noise from a three-dimensional heterogeneous nuclear correlation spectrum in a short time without need to relegate a signal, a noise filter method, and a noise filter program are disclosed. From a measured three-dimensional heterogeneous nuclear correlation NMR spectrum, peak groups G (m) (m is a natural number) each including a predetermined number or more of peaks observed to be in line along the y-axis are detected. A mask file in which the reference x-z plane coordinates of each peak group G (m) are recorded as the coordinates m of a mask peak is prepared. The reference x-z plane coordinates of each measured peak are compared with the coordinates m of the mask peak. The peak with no corresponding mask peak is judged as a noise and removed from the three-dimensional heterogeneous nuclear correlation NMR spectrum.

Description

明 細 書  Specification
3次元異種核相関 NMRスペクトルにおけるノイズフィルター装置、ノイズ フィルター方法、およびノイズフィルタープログラム  Noise filter device, noise filter method, and noise filter program for three-dimensional heteronuclear correlation NMR spectrum
技術分野  Technical field
[0001] 本発明は、 3次元異種核相関 NMRスペクトルにおけるノイズフィルター装置、ノィ ズフィルター方法、およびノイズフィルタープログラムに関する。  The present invention relates to a noise filter device, a noise filter method, and a noise filter program for a three-dimensional heteronuclear correlation NMR spectrum.
背景技術  Background art
[0002] ここ数年間におけるゲノム情報科学の急速な発展によって、タンパク質の NMR立 体構造解析は迅速さと正確さの両方を強く求められるようになってきて!ヽる。  [0002] With the rapid development of genomic informatics in the last few years, NMR stereostructure analysis of proteins has been strongly demanded for both speed and accuracy! Puru.
[0003] 核磁気共鳴法 (NMR)において 5A以内に存在するプロトン核間に観測される核 オーバーハウザー効果 (NOE)はタンパク質の立体構造解析法に不可欠な構造情 報である。アミノ酸配列上中位あるいは遠位にあるプロトン核間に生じる NOEはそれ ぞれミドルレンジ NOEある!/、はロングレンジ NOEと呼ばれ、それら NOEによって得 られるプロトン核間の距離情報は立体構造の計算に距離制限として用いられ、その 数が計算構造の精度や信頼性に強く影響する。現在では NMR測定法の進歩により 、観測可能である NOEの数は以前より格段に増加しており、 NOEからの高次構造 計算方法などが提唱されている (例えば、非特許文献 1参照)。 [0003] In Nuclear Magnetic Resonance (NMR), the nuclear Overhauser effect ( NOE ) observed between proton nuclei existing within 5A is indispensable structural information for a method of analyzing the three-dimensional structure of a protein. NOEs generated between proton nuclei at the middle or distal position in the amino acid sequence have middle-range NOEs! /, Are called long-range NOEs, and the distance information between proton nuclei obtained by these NOEs is It is used as a distance limit in calculations, and the number strongly affects the accuracy and reliability of the calculation structure. At present, the number of observable NOEs has increased remarkably due to the progress of NMR measurement methods, and a higher-order structure calculation method from NOEs has been proposed (for example, see Non-Patent Document 1).
[0004] 非特許文献 l : Guntert, P. et al, J. Mol. Biol. , 273, 283—298 (1 997)  [0004] Non-patent document l: Guntert, P. et al, J. Mol. Biol., 273, 283-298 (1 997)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] このような状況下で近年ではプログラム CANDIDなどの NOEの完全自動帰属法 が発表され、 NMRによる立体構造計算は迅速に行うことができる見通しができ始め ている。実際の NOE自動帰属法においては、ユーザが観測可能な全シグナルを帰 属することによって作成した化学シフトテーブルと、 'H- 'C HSQC— NOESYスぺ タトルや1 H—15N HSQC— NOESYスペクトルよりユーザが手動である!/、は半自動的 に検出したピークの化学シフトテーブル (NOEテーブル)とを入力することで NOEの 自動帰属法は達成される。したがって、 NOEテーブルがいかに正確に作成されてい るかが精度の高い立体構造計算の重要なポイントとなる。 [0005] Under such circumstances, in recent years, a fully automatic assignment method of NOE such as a program CANDID has been announced, and it is beginning to be expected that three-dimensional structure calculations by NMR can be performed quickly. In actual NOE automatic homing method, a chemical shift table created by attributable to the total signal observable user, from 'H-' C HSQC- NOESY space Tuttle and 1 H- 15 N HSQC- NOESY spectrum The user can manually enter the NOE by entering a chemical shift table (NOE table) with semi-automatically detected peaks. The automatic attribution method is achieved. Therefore, how accurate the NOE table is created is an important point of high-precision three-dimensional structure calculation.
[0006] しかしながら、実際に測定して得られる1 H-13C HSQC-NOESY, ^- 'N HS QC— NOESYスペクトルに発生するノイズの除去作業は、依然として解析者の手を 煩わせるものであり、サンプルの質、スペクトルの質によってはノイズを除去するだけ で大変な労力と時間を浪費しており、例えば、残基数 100— 150程度のタンパク質の 立体構造を解析しょうとした場合、通常ではノイズ除去作業に 2— 3日を要していた。 [0006] However, actually measured by 1 H- 13 C HSQC-NOESY obtained, ^ - 'N HS QC- NOESY removal operation of the noise generated in the spectrum, which still bothering analyst However, depending on the quality of the sample and the quality of the spectrum, removing noise alone is a great deal of labor and time.For example, when trying to analyze the three-dimensional structure of a protein with about 100-150 residues, It took 2-3 days to remove the noise.
[0007] 従来技術ではある程度の精度を持った立体構造を計算した後、手動で検出した N OEピークリストに立体構造力 予想される NOEを逆算することでピークの重なりで検 出できなかった NOEを追加していく方法は既に示されている。し力し、シグナルの帰 属前にノイズの除去を行う方法は全く確立されていないのが実情である。  [0007] In the prior art, after calculating the three-dimensional structure with a certain degree of accuracy, the NOE peak list that was detected manually was used to calculate the expected three-dimensional structure NOE, and the NOE that could not be detected due to the overlap of the peaks was calculated. The method of adding is already shown. However, no method has been established to remove the noise before the signal is attributed.
[0008] 本発明は、上記に鑑みてなされたものであって、タンパク質の NMR立体構造解析 における有力な測定手段のひとつである 3次元異種核相関 NMR ^ベクトルにおいて 、シグナルの帰属を必要とすることなぐ簡単かつ短時間にノイズを除去することが可 能なノイズフィルター装置、ノイズフィルター方法、およびノイズフィルタープログラム を提供することを目的とする。  [0008] The present invention has been made in view of the above, and requires signal assignment in a three-dimensional heteronuclear correlation NMR ^ vector, which is one of the powerful measurement means in NMR three-dimensional structure analysis of proteins. It is an object of the present invention to provide a noise filter device, a noise filter method, and a noise filter program that can remove noise easily and in a short time.
課題を解決するための手段  Means for solving the problem
[0009] 上記目的を達成するため、請求項 1にかかる発明は、直接観測している1 H核の化 学シフト値 Cに対応する X軸、時間展開して得られる1 H核以外の異種核の化学シフ [0009] To achieve the above object, the invention according to claim 1, X-axis, different other than 1 H nuclei obtained by time expansion corresponding to direct observation to have 1 H nuclei of chemical shift values C Nuclear chemistry shift
H  H
ト値 Cに対応する z軸、および、その他のパラメータに対応する y軸の 3軸力 なる 3 Triaxial force on the z-axis corresponding to the default value C and the y-axis corresponding to other parameters.
X X
次元異種核相関 NMRスペクトルカゝらノイズを除去するノイズフィルター装置であって 、前記 3次元異種核相関 NMRスペクトルにおいて、予め定められた個数以上のピー クが前記 y軸の軸方向にほぼ直線上に並んで観測されるピーク群 G (m) (mは自然 数)の X— z平面基準座標(P (m) , P (m) )をマスクピーク mの座標と定義し、このマ  A noise filter device for removing three-dimensional heteronuclear correlation NMR spectrum color noise, wherein in the three-dimensional heteronuclear correlation NMR spectrum, a predetermined number or more of peaks are substantially linear on the y-axis. The X-z plane reference coordinates (P (m), P (m)) of the peak group G (m) (m is a natural number) observed alongside are defined as the coordinates of the mask peak m.
H X  H X
スクピーク mの座標を予め記録したマスクファイルを有し、前記 3次元異種核相関 N MRスペクトルにおける各ピーク n (nは自然数)についてピーク nごとにそのピーク nの X— z平面基準座標 (C (n) , C (n) )を対応させたピークテーブルを記憶する記憶手  A mask file in which the coordinates of the peak m are recorded in advance, and for each peak n (n is a natural number) in the three-dimensional heteronuclear correlation N MR spectrum, for each peak n, the X-z plane reference coordinates (C ( n), C (n))
H X  H X
段と、前記ピークテーブルの各ピーク nについて、当該ピーク nの X— z平面基準座標( C (n) , C (n) )と前記マスクファイルの各マスクピーク mの座標(P (m) , P (m) )とFor each peak n in the peak table, the X-z plane reference coordinates of the peak n ( C (n), C (n)) and the coordinates (P (m), P (m)) of each mask peak m in the mask file
H X H X H X H X
の座標差 (C (n)— P (m) , C (n)— P (m) )を算出し、当該座標差が所定の範囲内  Is calculated (C (n) —P (m), C (n) —P (m)), and the coordinate difference is within a predetermined range.
H H X X  H H X X
に入るマスクピークをこのピーク nの対応マスクピークとして検索する対応マスクピーク 検索手段と、前記対応マスクピーク検索手段において、対応マスクピークが検索でき なカゝつたピークをノイズと判別し、ノイズと判別されたピークの情報を前記記憶手段に 記憶された前記ピークテーブル力 除去する第 1のノイズ除去手段とを備えることを 特徴とする。  And a corresponding mask peak searching means for searching for a mask peak included in the corresponding mask peak as a corresponding mask peak of this peak n. And a first noise removing means for removing the peak table force stored in the storage means.
[0010] また、請求項 2にかかる発明は、請求項 1に記載のノイズフィルター装置において、 前記ピークテーブルを作成するピークテーブル作成手段を備えたことを特徴とする。  [0010] The invention according to claim 2 is the noise filter device according to claim 1, further comprising a peak table creating unit that creates the peak table.
[0011] また、請求項 3にかかる発明は、請求項 1または 2に記載のノイズフィルター装置に ぉ ヽて、前記マスクファイルを作成するマスクファイル作成手段を備えたことを特徴と する。  [0011] Further, the invention according to claim 3 is characterized in that the noise filter device according to claim 1 or 2 further comprises a mask file creating means for creating the mask file.
[0012] また、請求項 4にかかる発明は、請求項 1一 3のいずれか一項に記載のノイズフィル ター装置において、前記所定の範囲は、各ピーク nの半値幅に対応して設定されるこ とを特徴とする。  [0012] Further, in the invention according to claim 4, in the noise filter device according to any one of claims 13 to 13, the predetermined range is set corresponding to a half width of each peak n. It is characterized by
[0013] また、請求項 5にかかる発明は、請求項 1一 4のいずれか一項に記載のノイズフィル ター装置において、前記 z軸は、 15N核または13 C核の化学シフト値に対応する軸であ ることを特徴とする。 [0013] Further, according to the invention according to claim 5, in the noise filter device according to any one of claims 14 to 14 , the z-axis corresponds to a chemical shift value of a 15N nucleus or a 13C nucleus. The feature is that it is the axis that performs.
[0014] また、請求項 6にかかる発明は、請求項 1一 5のいずれか一項に記載のノイズフィル ター装置において、前記 3次元異種核相関 NMRスペクトルは、 3次元 HSQC— NO ESYスペクトルであり、前記 y軸は時間展開して得られる1 H核の化学シフト値 C に [0014] Further, the invention according to claim 6 is the noise filter device according to any one of claims 115, wherein the three-dimensional heteronuclear correlation NMR spectrum is a three-dimensional HSQC-NO ESY spectrum. And the y-axis represents the chemical shift value C of the 1 H nucleus obtained by time expansion.
HC  HC
対応することを特徴とする。  It is characterized by corresponding.
[0015] また、請求項 7にかかる発明は、請求項 1一 6のいずれか一項に記載のノイズフィル ター装置にぉ 、て、前記ピークテーブル力 ピーク強度の強 、順に所定の個数だけ ピークを上位ピークとして抽出し、抽出した上位ピークごとに、当該上位ピークを中心 として、前記 X軸、 y軸および z軸の 3軸のうちいずれかの軸方向に対してほぼ対称的 な座標に存在し、かつ、ほぼ同じピーク強度を有する一対のピークのピーク対を検出 するピーク対検出手段と、前記ピーク対を構成するピークをノイズと判別し、ノイズと 判別したピークの情報を前記記憶手段に記憶された前記ピークテーブルから除去す る第 2のノイズ除去手段とを備えたことを特徴とする。 According to a seventh aspect of the present invention, there is provided the noise filter device according to any one of the sixteenth to sixteenth aspects, wherein a predetermined number of peaks are sequentially set in order of the peak table force and the peak intensity. Are extracted as upper peaks, and each of the extracted upper peaks is located at coordinates substantially symmetric with respect to any one of the three axes of the X-axis, y-axis, and z-axis with the upper peak as a center. And a peak pair detecting means for detecting a peak pair of a pair of peaks having substantially the same peak intensity, and discriminating peaks constituting the peak pair as noise. A second noise removing unit for removing information of the determined peak from the peak table stored in the storage unit.
[0016] また、請求項 8にかかる発明は、請求項 1一 7のいずれか一項に記載のノイズフィル ター装置にぉ 、て、前記ピークテーブルからほぼ同じ値の X座標および y座標を有す るピークを対角ピークとして抽出し、抽出した対角ピークごとに、当該対角ピークから 、前記 X軸、 y軸および z軸の 3軸のうちいずれかの軸方向に対して同じ符号を持つピ ークが連続するピーク群を連続ピーク群として検出する連続ピーク群検出手段と、前 記連続ピーク群に含まれる対角ピーク以外のピークをノイズと判別し、ノイズと判別し たピークの情報を前記記憶手段に記憶された前記ピークテーブルから除去する第 3 のノイズ除去手段とを備えることを特徴とする。  [0016] Further, the invention according to claim 8 provides the noise filter device according to any one of claims 117 to 17, having the X coordinate and the y coordinate having substantially the same value from the peak table. All the peaks are extracted as diagonal peaks, and for each extracted diagonal peak, the same sign is applied from the diagonal peak to any one of the three axes of the X axis, y axis, and z axis. A continuous peak group detecting means for detecting a peak group having continuous peaks as a continuous peak group, and determining peaks other than diagonal peaks included in the continuous peak group as noise and determining peaks determined as noise. And a third noise removing means for removing information from the peak table stored in the storage means.
[0017] また、請求項 9にかかる発明は、請求項 5— 8のいずれか一項に記載のノイズフィル ター装置において、前記ピークテーブルから、ほぼ同じ値の X座標および y座標を有 するピークを対角ピークとして抽出し、抽出した対角ピークごとに当該対角ピークから 前記 y軸の軸方向に所定の個数以上のピークがほぼ直線状に並ぶ対角ピーク以外 のピーク群を非対角ピーク群として検出する非対角ピーク群検出手段と、検出された 非対角ピーク群ごとに、当該非対角ピーク群が正負のどちらのピークを多く含むかを 判別し、多く含まれるピークの符号を当該非対角ピーク群の符号として決定する符号 決定手段と、前記符号決定手段によって当該非対角ピーク群について決定された符 合と、当該非対角ピーク群に含まれる各ピークの符号とを比較し、当該非対角ピーク 群について決定された符合と異なる符合を有するピークをノイズとして前記ピークテ 一ブル力 除去する第 4のノイズ除去手段とを備えたことを特徴とする。  [0017] The invention according to claim 9 is the noise filter device according to any one of claims 5 to 8, wherein the peak table having substantially the same value of the X coordinate and the y coordinate is obtained from the peak table. Are extracted as diagonal peaks, and for each of the extracted diagonal peaks, a group of non-diagonal peaks other than the diagonal peaks in which a predetermined number or more peaks are arranged substantially linearly from the diagonal peak in the y-axis direction. A non-diagonal peak group detecting means for detecting as a peak group, and for each detected non-diagonal peak group, determining which of the positive or negative peaks the non-diagonal peak group contains, A code determining means for determining a code as a code of the off-diagonal peak group; a code determined for the off-diagonal peak group by the code determining means; and a code of each peak included in the off-diagonal peak group. Compare with , Characterized in that a fourth noise removal means for the Pikute one Bull force removes a peak with a different sign and determined sign for the non-diagonal peaks as noise.
[0018] また、請求項 10にかかる発明は、請求項 1一 9のいずれか一項に記載のノイズフィ ルター装置において、軽水由来のノイズに該当するピークを前記ピークテーブルから 除去する第 5のノイズ除去手段を備えたことを特徴とする。  [0018] Further, the invention according to claim 10 is the noise filter device according to any one of claims 11 to 19, wherein the fifth noise removing means removes a peak corresponding to noise derived from light water from the peak table. It is characterized by having a removing means.
[0019] また、請求項 11にかかる発明は、直接観測している1 H核の化学シフト値 C に対応 The invention according to claim 11 corresponds to the chemical shift value C of the 1 H nucleus directly observed.
H  H
する X軸、時間展開して得られる1 H核以外の異種核の化学シフト値 Cに対応する z X axis, chemical shift value of heteronucleus other than 1 H nucleus obtained by time expansion z corresponding to C
X  X
軸、および、その他のパラメータに対応する y軸の 3軸力 なる 3次元異種核相関 NM Rスペクトル力 ノイズを除去するノイズフィルター方法であって、実測した前記 3次元 異種核相関 NMRスペクトルから、所定のピーク強度以上のピークをピーク n (nは自 然数)として抽出し、抽出したピークごとにそのピーク nの X— z平面基準座標(C (n) , A three-dimensional heteronuclear correlation NMR spectrum force corresponding to the y-axis corresponding to the y-axis and other parameters NMR spectral force A noise filter method for removing noise, wherein the actually measured three-dimensional From the heteronuclear correlation NMR spectrum, peaks having a predetermined peak intensity or more are extracted as peak n (n is a natural number), and for each extracted peak, the X-z plane reference coordinates (C (n),
H  H
C (n) )を対応させてピークテーブルを作成するピークテーブル作成ステップと、前 C (n)) and a peak table creation step to create a peak table
X X
記ピークテーブルを記憶する記憶ステップと、前記 3次元異種核相関 ぺクト ルにおいて、予め定められた個数以上のピークが前記 y軸の軸方向にほぼ直線上に 並んで観測されるピーク群 G (m) (mは自然数)につ 、て、各ピーク群 G (m)の x— z平 面基準座標 (P (m) , P (m) )を決定し、決定された各 X - z平面基準座標 (P (m) , A peak group G (in which a predetermined number or more of peaks are observed in a substantially straight line in the axial direction of the y-axis in the storage step of storing the peak table and in the three-dimensional heterogeneous nuclear correlation vector, m) (m is a natural number), the x-z plane reference coordinates (P (m), P (m)) of each peak group G (m) are determined, and each determined X-z plane Reference coordinates (P (m),
H X H  H X H
P (m) )をマスクピーク mの座標として記録したマスクファイルを作成するマスクフアイ P (m)) to create a mask file that records the coordinates of the mask peak m.
X X
ル作成ステップと、前記ピークテーブルの各ピーク nについて、当該ピーク nの X— z平 面基準座標(C (n) , C (n) )と前記各マスクピーク mの座標(P (m) , P (m) )との And Le creating step, for each peak n of the peak table of the peak n X- z Rights plane reference coordinates (C (n), C ( n)) and the coordinate of each mask peak m (P (m), P (m))
H X H X  H X H X
座標差 (C (n)— P (m) , C (n)— P (m) )を算出し、前記マスクファイルのなかから Calculate the coordinate difference (C (n) — P (m), C (n) — P (m)) and calculate from the mask file
H H X X  H H X X
当該座標差が予め定められた範囲内に入るマスクピークをこのピーク nの対応マスク ピークとして検索する対応マスクピーク検索ステップと、前記対応マスクピーク検索ス テツプにおいて、対応マスクピークが検索できな力つたピークをノイズと判別し、ノイズ と判別されたピークの情報を前記記憶ステップにおいて記憶された前記ピークテー ブルから除去する第 1のノイズ除去ステップとを含むことを特徴とする。 In the corresponding mask peak search step of searching for a mask peak whose coordinate difference falls within a predetermined range as the corresponding mask peak of this peak n, and in the corresponding mask peak search step, there is an effort to search for a corresponding mask peak. A first noise removing step of determining a peak as noise and removing information of the peak determined as noise from the peak table stored in the storing step.
また、請求項 12にかかる発明は、直接観測している1 H核の化学シフト値 C に対応 The invention according to claim 12 corresponds to the chemical shift value C of the 1 H nucleus directly observed.
H  H
する X軸、時間展開して得られる1 H核以外の異種核の化学シフト値 Cに対応する z X axis, chemical shift value of heteronucleus other than 1 H nucleus obtained by time expansion z corresponding to C
X  X
軸、および、その他のパラメータに対応する y軸の 3軸力 なる 3次元異種核相関 NM Rスペクトルカゝらノイズを除去するノイズフィルター方法をコンピュータに実行させるプ ログラムであって、実測した前記 3次元異種核相関 NMRスペクトルから、所定のピー ク強度以上のピークをピーク n (nは自然数)として抽出し、抽出したピークごとにその ピーク nの X— z平面基準座標(C (n) , C (n) )を対応させてピークテーブルを作成す A program for causing a computer to execute a noise filter method for removing three-dimensional heteronuclear correlation NMR spectrum noise from a three-axis force on the y-axis corresponding to the y-axis and other parameters. From the three-dimensional heteronuclear correlation NMR spectrum, peaks having a predetermined peak intensity or higher are extracted as peak n (n is a natural number), and for each extracted peak, the X—z plane reference coordinates (C (n), C (n) Create a peak table corresponding to)
H X  H X
るピークテーブル作成ステップと、前記ピークテーブルを記憶する記憶ステップと、前 記 3次元異種核相関 NMRスペクトルにおいて、予め定められた個数以上のピークが 前記 y軸の軸方向にほぼ直線上に並んで観測されるピーク群 G (m) (mは自然数)に ついて、各ピーク群 G (m)の X— z平面基準座標(P (m) , P (m) )を決定し、決定さ A peak table creating step, a storing step of storing the peak table, and in the three-dimensional heteronuclear correlation NMR spectrum, a predetermined number or more of peaks are arranged substantially linearly in the y-axis direction. For the observed peak group G (m) (m is a natural number), the X-z plane reference coordinates (P (m), P (m)) of each peak group G (m) are determined and determined.
H X  H X
れた各 X— z平面基準座標(P (m) , P (m) )をマスクピーク mの座標として記録した マスクファイルを作成するマスクファイル作成ステップと、前記ピークテーブルの各ピ ーク nについて、当該ピーク nの X— z平面基準座標(C (n) , C (n) )と前記各マスク X-z plane reference coordinates (P (m), P (m)) recorded as the coordinates of the mask peak m A mask file creating step of creating a mask file, and for each peak n of the peak table, the X-z plane reference coordinates (C (n), C (n)) of the peak n and the mask
H X  H X
ピーク mの座標(P (m) , P (m) )との座標差 (C (n)— P (m) , C (n)— P (m) )を算  Calculate the coordinate difference (C (n) —P (m), C (n) —P (m)) from the coordinate (P (m), P (m)) of peak m.
H X H H X X  H X H H X X
出し、前記マスクファイルのなカゝから当該座標差が予め定められた範囲内に入るマス クピークをこのピーク nの対応マスクピークとして検索する対応マスクピーク検索ステツ プと、前記対応マスクピーク検索ステップにおいて、対応マスクピークが検索できなか つたピークをノイズと判別し、ノイズと判別されたピークの情報を前記記憶ステップに おいて記憶された前記ピークテーブルから除去する第 1のノイズ除去ステップとをコ ンピュータに実行させることを特徴とする。  A corresponding mask peak search step of searching for a mask peak whose coordinate difference falls within a predetermined range from a mask file of the mask file as a corresponding mask peak of this peak n; and A first noise removal step of determining a peak for which a corresponding mask peak could not be retrieved as noise and removing information of the peak determined to be noise from the peak table stored in the storage step. Is executed.
発明の効果  The invention's effect
[0021] 本発明(請求項 1)に力かるノイズフィルター装置は、 y軸方向に対してほぼ一直線 上に並ぶピーク群 G (m)とは異なる領域に存在するオフシグナルノイズと呼ばれる偽 シグナルを検出し除去するものであり、シグナルの帰属前にオフシグナルノイズを効 率的かつ正確に除去できると 、う効果を奏する。  [0021] The noise filter device according to the present invention (claim 1) is capable of filtering a spurious signal called off-signal noise existing in a region different from the peak group G (m) arranged substantially linearly in the y-axis direction. This is to detect and remove the signal. If the off-signal noise can be removed efficiently and accurately before the signal is assigned, the effect is obtained.
[0022] また、本発明(請求項 2)に力かるノイズフィルター装置は、実測したスペクトルデー タから自動的にピークテーブルを作成するピークテーブル作成手段を備えるため、ュ 一ザが手動でピークを探し出しピークテーブルを作成する時間および手間を省くこと ができ、より効率的にノイズを除去することができる。  [0022] Further, the noise filter device according to the present invention (claim 2) includes a peak table creating means for automatically creating a peak table from actually measured spectrum data. The time and labor required to create a search peak table can be saved, and noise can be more efficiently removed.
[0023] また、本発明(請求項 3)に力かるノイズフィルター装置は、実測したスペクトルデー タから自動的にマスクファイルを作成するマスクファイル作成手段を備えるため、ユー ザが手動でピーク群を探し出しマスクファイルを作成する時間および手間を省くこと ができ、より効率的にノイズを除去することができる。  In addition, since the noise filter device according to the present invention (claim 3) includes a mask file creating means for automatically creating a mask file from actually measured spectrum data, a user can manually create a peak group. The time and effort required to create a search mask file can be saved, and noise can be removed more efficiently.
[0024] また、本発明(請求項 4)に力かるノイズフィルター装置は、各ピーク nの半値幅に対 応した範囲を定め、この範囲内に入るマスクピークを対応マスクピークとして検索する ため、より正確にノイズを除去することができる。  Further, the noise filter device according to the present invention (claim 4) determines a range corresponding to the half width of each peak n, and searches for a mask peak falling within this range as a corresponding mask peak. Noise can be more accurately removed.
[0025] また、本発明(請求項 5)に力かるノイズフィルター装置は、 —13 C HSQC-NOE SYスペクトル、 'H- 'N HSQC—NOESYスペクトル、 HCCH— COSYスペクトル、 および、 HCCH— TOCSYスペクトルから選ばれるスペクトルのノイズ除去に適用する ことができるものであり、タンパク質の NMR立体構造解析に好適に利用できる。 [0025] In addition, the force Cal noise filter device of the present invention (Claim 5), - 13 C HSQC-NOE SY spectrum, 'H-' N HSQC-NOESY spectrum, HCCH- COZY spectrum, and, HCCH- TOCSY spectrum Apply to noise removal of spectrum selected from It can be suitably used for NMR three-dimensional structure analysis of proteins.
[0026] また、本発明(請求項 6)に力かるノイズフィルター装置は、 3次元 HSQC— NOESY スペクトルのノイズ除去に適用することができるものであり、タンパク質の NMR立体構 造解析に好適に利用できる。 The noise filter device according to the present invention (claim 6) can be applied to noise removal of three-dimensional HSQC-NOESY spectra, and is suitably used for NMR three-dimensional structure analysis of proteins. it can.
[0027] また、本発明(請求項 7)に力かるノイズフィルター装置は、メチルシグナルのように 強度の強いシグナルの周辺に一対となって観察されるインコンプリートデカップリング ノイズやウイグルノイズを検出し除去するものであり、シグナルの帰属前にインコンプリ ートデカップリングノイズやウイグルノイズを効率的かつ正確に除去できるという効果 を奏する。 [0027] Further, the noise filter device according to the present invention (claim 7) detects incomplete decoupling noise or wiggle noise observed as a pair around a strong signal such as a methyl signal. This eliminates incomplete decoupling noise and Uyghur noise before assigning the signal.
[0028] また、本発明(請求項 8)に力かるノイズフィルター装置は、メチルシグナルのように 緩和の遅く強度の強いシグナル由来の対角ピーク近傍に生じるベースラインのゆが みとして生じるティルノイズを検出し除去するものであり、シグナルの帰属前にティル ノイズを効率的かつ正確に除去できるという効果を奏する。  [0028] Further, the noise filter device according to the present invention (claim 8) provides a tilt noise generated as a distortion of a baseline generated near a diagonal peak derived from a signal having a slow relaxation and a strong intensity such as a methyl signal. Is detected and removed, and it is possible to effectively and accurately remove the till noise before assigning the signal.
[0029] また、本発明(請求項 9)に力かるノイズフィルター装置は、対角ピーク力も y軸方向 に向力つて所定の個数以上のピークがほぼ直線上に並ぶ非対角ピーク (NOEピー ク)の符号 (位相)が理論的には全て同一となるという事実を利用して、符号の異なる ピークをノイズとして検出し、効率的かつ正確に除去することができる。  [0029] Further, the noise filter device according to the present invention (claim 9) has a non-diagonal peak (NOE peak) in which a predetermined number or more of peaks are arranged substantially linearly in the y-axis direction. Using the fact that the signs (phases) of (h) are theoretically the same, peaks with different signs can be detected as noise and can be removed efficiently and accurately.
[0030] また、本発明(請求項 10)に力かるノイズフィルター装置は、軽水由来のノイズを除 去できると!ゝぅ効果を奏する。  [0030] Further, the noise filter device according to the present invention (claim 10) has an effect of removing noise derived from light water.
[0031] また、本発明(請求項 11)に力かるノイズフィルター方法は、 y軸方向に対してほぼ 一直線上に並ぶピーク群 G (m)とは異なる領域に存在するオフシグナルノイズを効 率的かつ正確に除去できると 、う効果を奏する。  [0031] The noise filter method according to the present invention (claim 11) is effective in reducing off-signal noise existing in a region different from the peak group G (m) that is substantially linearly aligned with the y-axis direction. If it can be properly and accurately removed, it has an effect.
[0032] また、本発明(請求項 12)に力かるノイズフィルタープログラムは、当該プログラムを コンピュータに実行させることにより、 y軸方向に対してほぼ一直線上に並ぶピーク群 G (m)とは異なる領域に存在するオフシグナルノイズを効率的かつ正確に除去できる という効果を奏する。  [0032] Further, the noise filter program according to the present invention (claim 12) is different from the peak group G (m) that is substantially aligned in the y-axis direction by causing the computer to execute the noise filter program. This has the effect of efficiently and accurately removing off-signal noise existing in the region.
図面の簡単な説明  Brief Description of Drawings
[0033] [図 1]図 1は、第 1の実施の形態に力かるノイズフィルター装置のブロック図である。 [図 2]図 2は、実測した 3次元1 H—13 C HSQC— NOESYスペクトル図である。 FIG. 1 is a block diagram of a noise filter device according to a first embodiment. FIG. 2 is an actually measured three-dimensional 1 H— 13 C HSQC—NOESY spectrum diagram.
[図 3]図 3は、第 1の実施の形態のノイズフィルター装置によって行われるノイズ除去 の原理を示す模式図である。  FIG. 3 is a schematic diagram showing the principle of noise removal performed by the noise filter device according to the first embodiment.
[図 4]図 4は、第 1の実施の形態におけるノイズ除去のフローチャートである。  FIG. 4 is a flowchart of noise removal according to the first embodiment.
[図 5]図 5は、ピークテーブルの一例を示す図である。 FIG. 5 is a diagram showing an example of a peak table.
[図 6]図 6は、マスクフアイノレの一例を示す図である。 FIG. 6 is a diagram showing an example of a mask finale.
[図 7]図 7は、マスクファイルの中カゝら対応マスクピークを検索してノイズを判別するフ ローチャートである。  [FIG. 7] FIG. 7 is a flow chart for searching a mask peak corresponding to a color in a mask file to determine noise.
[図 8-1]図 8—1は、図 2におけるオフシグナルノイズの部分拡大図である。 FIG. 8-1 is a partially enlarged view of off-signal noise in FIG. 2.
[図 8-2]図 8—2は、第 1の実施の形態のノイズフィルター装置によって図 8—1からノィ ズを除去した後の部分拡大図である。  FIG. 8-2 is a partially enlarged view of the noise filter device according to the first embodiment after removing noise from FIG. 8-1.
[図 9]図 9は、第 2の実施の形態に力かるノイズフィルター装置のブロック図である。  FIG. 9 is a block diagram of a noise filter device according to a second embodiment.
[図 10]図 10は、マスクファイル作成のフローチャートである。 FIG. 10 is a flowchart of creating a mask file.
[図 11-1]図 11—1は、ピークテーブルに記録されたピークの基準座標を X— z平面上に 投影した投影図である。  [FIG. 11-1] FIG. 11-1 is a projection view in which reference coordinates of a peak recorded in a peak table are projected on an Xz plane.
[図 11-2]図 11— 2は、図 11— 1において、 X— z平面上でピーク群存在領域として検出 された区画を示した投影図である。  [FIG. 11-2] FIG. 11-2 is a projection view showing a section detected as a peak group existence area on the Xz plane in FIG. 11-1.
[図 12]図 12は、第 3の実施の形態に力かるノイズフィルター装置のブロック図である。  FIG. 12 is a block diagram of a noise filter device according to a third embodiment.
[図 13]図 13は、インコンプリートデカップリングノイズの一例を示す図であり、 (A) x-y 平面で 2次元スライスした図、および、(B) (A)の I Γ断面図である。 FIG. 13 is a diagram showing an example of incomplete decoupling noise, in which (A) is a diagram obtained by two-dimensionally slicing in the xy plane, and (B) is a cross-sectional view taken along the line II in (A).
[図 14]図 14は、ウイグルノイズの一例を示す図であり、(A) x— y平面で 2次元スライス した図、および、(B) (A)の Ι-Γ断面図である。 [FIG. 14] FIG. 14 is a diagram showing an example of wiggle noise, in which (A) is a diagram obtained by two-dimensionally slicing in the xy plane, and (B) is a cross-sectional view taken along the line Ι- (A).
[図 15]図 15は、ティルノイズの一例を示す図であり、(A) x— y平面で 2次元スライスし た図、および、(B) (A)の Ι-Γ断面図である。  [FIG. 15] FIG. 15 is a diagram showing an example of tilt noise, in which (A) a two-dimensional slice on the xy plane, and (B) a cross-sectional view taken along the line (A) of (A).
[図 16]図 16は、異符号ノイズの一例を示す図であり、(A) x— y平面で 2次元スライス した図、および、(B) (A)の Ι-Γ断面図である。  [FIG. 16] FIG. 16 is a diagram showing an example of different sign noise, in which (A) is a diagram obtained by two-dimensionally slicing in the xy plane, and (B) is a cross-sectional view taken along the line (-(A).
[図 17]図 17は、第 3の実施の形態におけるノイズ除去のフローチャートである。  FIG. 17 is a flowchart of noise removal according to the third embodiment.
[図 18]図 18は、ピーク対の検出のフローチャートである。 [図 19]図 19は、上位ピークテーブルの一例を示す図である。 FIG. 18 is a flowchart of peak pair detection. FIG. 19 is a diagram showing an example of an upper peak table.
[図 20]図 20は、連続ピーク群の検出のフローチャートである。  FIG. 20 is a flowchart of detecting a continuous peak group.
[図 21]図 21は、対角ピークテーブルの一例を示す図である。  FIG. 21 is a diagram showing an example of a diagonal peak table.
[図 22]図 22は、非対角ピーク群の検出のフローチャートである。  FIG. 22 is a flowchart of detecting a non-diagonal peak group.
[図 23- 1]図 23—1は、図 2におけるウイグルノイズおよびインコンプリートデカップリン グノイズの部分拡大図である。  [FIG. 23-1] FIG. 23-1 is a partially enlarged view of the wiggle noise and the incomplete decoupling noise in FIG.
[図 23- 2]図 23— 2は、第 3の実施の形態のノイズフィルター装置によって図 23— 1から ノイズを除去した後の部分拡大図である。  [FIG. 23-2] FIG. 23-2 is a partially enlarged view after noise is removed from FIG. 23-1 by the noise filter device of the third embodiment.
[図 24-1]図 24— 1は、図 2におけるティルノイズの部分拡大図である。  [FIG. 24-1] FIG. 24-1 is a partially enlarged view of the tilt noise in FIG.
[図 24-2]図 24— 2は、第 3の実施の形態のノイズフィルター装置によって図 24— 1から ノイズを除去した後の部分拡大図である。  [FIG. 24-2] FIG. 24-2 is a partially enlarged view after noise has been removed from FIG. 24-1 by the noise filter device of the third embodiment.
[図 25-1]図 25—1は、図 2における異符号ノイズの部分拡大図である。  FIG. 25-1 is a partially enlarged view of the different sign noise in FIG. 2.
[図 25- 2]図 25— 2は、第 3の実施の形態のノイズフィルター装置によって図 25— 1から ノイズを除去した後の部分拡大図である。  [FIG. 25-2] FIG. 25-2 is a partially enlarged view after noise is removed from FIG. 25-1 by the noise filter device of the third embodiment.
[図 26- 1]図 26—1は、図 2におけるウォーターノイズの部分拡大図である。  [FIG. 26-1] FIG. 26-1 is a partially enlarged view of the water noise in FIG.
[図 26- 2]図 26— 2は、第 3の実施の形態のノイズフィルター装置によって図 26— 1から ノイズを除去した後の部分拡大図である。 [FIG. 26-2] FIG. 26-2 is a partially enlarged view after noise is removed from FIG. 26-1 by the noise filter device of the third embodiment.
符号の説明 Explanation of symbols
1 ノイズフィルター装置 1 Noise filter device
10 ピークテーブル作成部  10 Peak table creation section
11 マスクファイル作成部  11 Mask file creation section
12 記憶部  12 Memory
13 対応マスクピーク検索部  13 Corresponding mask peak search section
14 第 1のノイズ除去部  14 1st noise canceller
15 ピーク対検出部  15 Peak pair detector
16 第 2のノイズ除去部  16 Second noise eliminator
17 連続ピーク群検出部  17 Continuous peak group detector
18 第 3のノイズ除去部 19 非対角ピーク群検出部 18 Third noise eliminator 19 Off-diagonal peak group detector
20 符号決定部  20 Sign determination unit
21 第 4のノイズ除去部  21 Fourth noise remover
22 ウォーターノイズ検出部  22 Water noise detector
23 第 5のノイズ除去部  23 Fifth noise remover
2 NMR  2 NMR
3 外部出入力装置  3 External I / O device
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0035] 以下に添付図面を参照して、この発明にカゝかるノイズフィルター装置、ノイズフィル ター方法、およびノイズフィルタープログラムの最良な実施の形態を詳細に説明するHereinafter, preferred embodiments of a noise filter device, a noise filter method, and a noise filter program according to the present invention will be described in detail with reference to the accompanying drawings.
。なお、この実施の形態によりこの発明が限定されるものではない。 . Note that the present invention is not limited to the embodiments.
[0036] (第 1の実施の形態) (First Embodiment)
図 1に、第 1の実施の形態に力かるノイズフィルター装置のブロック図を示す。第 1の 実施の形態は、主としてオフシグナルノイズを除去するのに適したノイズフィルター装 置である。第 1の実施の形態のノイズフィルター装置 1は、記憶部 12、対応マスクピー ク検索部 13、および第 1のノイズ除去部 14を備えて ヽる。  FIG. 1 shows a block diagram of a noise filter device according to the first embodiment. The first embodiment is a noise filter device suitable mainly for removing off-signal noise. The noise filter device 1 according to the first embodiment includes a storage unit 12, a corresponding mask peak search unit 13, and a first noise removal unit 14.
[0037] ノイズフィルター装置 1は、 NMR2および外部出入力装置 3に接続されている。 N[0037] The noise filter device 1 is connected to the NMR 2 and the external input / output device 3. N
MR2を用いて測定されたスペクトルデータは、ノイズフィルター装置 1に送信され、記 憶部 12に格納される。 The spectrum data measured using the MR 2 is transmitted to the noise filter device 1 and stored in the storage unit 12.
[0038] 外部出入力装置 3は、記憶部 12からスペクトルデータを読み出し、画面上に 3次元 異種核相関 NMRスペクトルを表示する。ユーザは、外部出入力装置 3の画面上で、 実測した 3次元異種核相関 NMRスペクトルを確認しながら、ピークを検出し、各ピー クごとにそのピークの 3次元基準座標、半値幅、ピーク強度を対応させてピークテー ブルを作成する。ユーザが作成したピークテーブルのデータは、外部出入力装置 3 力も入力される。外部出入力装置 3から入力されたピークテーブルのデータは、記憶 部 12に送信され保存される。  [0038] The external input / output device 3 reads out the spectrum data from the storage unit 12, and displays the three-dimensional heteronuclear correlation NMR spectrum on the screen. The user detects peaks on the screen of the external input / output device 3 while confirming the actually measured 3D heteronuclear correlation NMR spectrum, and for each peak, the 3D reference coordinates, half width, and peak intensity of the peak are detected. Create a peak table corresponding to. The peak table data created by the user is also input to the external input / output device. The data of the peak table input from the external input / output device 3 is transmitted to the storage unit 12 and stored.
[0039] また、ユーザは、実測した 3次元異種核相関 NMRスペクトルにおいて y軸の軸方向 にほぼ直線上に並んで観測されるピーク群を検出し、各ピーク群 G (m)の X— z平面 基準座標(P (m) , P (m) )をマスクピーク mの座標として記録したマスクファイルを[0039] Further, the user detects peak groups observed in a substantially straight line in the axial direction of the y-axis in the actually measured three-dimensional heteronuclear correlation NMR spectrum, and determines the X-z of each peak group G (m). Plane A mask file that records the reference coordinates (P (m), P (m)) as the coordinates of the mask peak m
H X H X
作成する。ユーザが作成したマスクファイルのデータは、外部出入力装置 3から入力 される。外部出入力装置 3から入力されたマスクファイルのデータは、対応マスクピー ク検索部 13に送信される。  create. The data of the mask file created by the user is input from the external input / output device 3. The mask file data input from the external input / output device 3 is transmitted to the corresponding mask peak search unit 13.
[0040] 対応マスクピーク検索部 13は、外部出入力装置 3からマスクファイルのデータを受 信するとともに、記憶部 12からピークテーブルのデータを読み出す。対応マスクピー ク検索部 13は、ピークテーブルとマスクファイルとを比較し、ピークテーブルからノィ ズに該当するピークを検索し、ノイズに該当するピークをノイズデータとして第 1のノィ ズ除去部 14に送信する。  The corresponding mask peak search unit 13 receives the data of the mask file from the external input / output device 3 and reads the data of the peak table from the storage unit 12. The corresponding mask peak search unit 13 compares the peak table with the mask file, searches the peak table for a peak corresponding to noise, and transmits the peak corresponding to noise to the first noise removal unit 14 as noise data. I do.
[0041] 第 1のノイズ除去部 14は、記憶部 12からピークテーブルのデータを読み出し、ノィ ズに該当するピークの情報をピークテーブルから除去し、ノイズに該当するピークの 情報を除去した新たなピークテーブルを記憶部 12に送信する。  The first noise removing unit 14 reads the data of the peak table from the storage unit 12, removes the information of the peak corresponding to the noise from the peak table, and removes the information of the peak corresponding to the noise. The peak table is transmitted to the storage unit 12.
[0042] 記憶部 12は、第 1のノイズ除去部 14から受信したノイズ除去後のピークテーブルの データを保存し、必要に応じて、外部出入力装置 3にそのデータを送信する。ユーザ は、外部出入力装置 3の画面上で、ノイズフィルター装置 1によってノイズが除去され た後の 3次元異種核相関 NMR^ぺクトルを確認することができる。  The storage unit 12 stores the data of the peak table after noise removal received from the first noise removal unit 14, and transmits the data to the external input / output device 3 as necessary. The user can check the three-dimensional heteronuclear correlation NMR vector after the noise is removed by the noise filter device 1 on the screen of the external input / output device 3.
[0043] 本発明のノイズフィルター装置を用いてノイズを除去する前に、ユーザは 3次元異 種核相関 NMRスペクトルを測定する。本願明細書において、「3次元異種核相関 N MRスペクトル」とは、 2次元の異種核相関スペクトルに、他のもうひとつのパラメータ を組み合わせることにより、 3次元 NMRスペクトルとしたものを意味する。ここで「2次 元異種核相関スペクトル」とは、 ¾と1 H以外の異種核 (13C核、 15N核等)との相関スぺ タトルを1 H核直接観測で測定したものであり、直接観測している1 H核の化学シフト値 C に対応する X軸 核直接観測軸)、および、 ¾核以外の異種核の化学シフト値 CBefore removing noise using the noise filter device of the present invention, a user measures a three-dimensional heteronuclear correlation NMR spectrum. As used herein, the term “three-dimensional heteronuclear correlation NMR spectrum” refers to a three-dimensional NMR spectrum obtained by combining a two-dimensional heteronuclear correlation spectrum with another parameter. Here, the “two-dimensional heteronuclear correlation spectrum” is obtained by directly measuring the correlation spectrum between ¾ and a heterogeneous nucleus other than 1 H ( 13 C nucleus, 15 N nucleus, etc.) by 1 H nuclear observation. , X-axis corresponding to the chemical shift value C of the 1 H nucleus directly observed), and 直接 Chemical shift value C of the heterogeneous nucleus other than the nucleus
H H
に対応する z軸 (異種核時間展開軸)の 2軸カゝらなる。本発明を適用することができる And the two axes of the z-axis (heterogeneous nuclear time expansion axis) corresponding to. The present invention can be applied
X X
3次元異種核相関 NMRスペクトルは、この1 H核直接観測軸および異種核時間展開 軸の 2軸を含む 3次元 NMRスペクトルであれば、 3軸目の y軸は特に限定されない。 The three-dimensional heteronuclear correlation NMR spectrum is not particularly limited as long as it is a three-dimensional NMR spectrum including the 1 H nuclear direct observation axis and the heteronuclear time expansion axis.
[0044] 本発明を適用することができる 3次元異種核相関 NMR ^ベクトルの具体例としては 、 一13 C HSQC— NOESYスペクトル (x軸: 核直接観測軸、 y軸: 核時間展開 軸、 z軸: "C核時間展開軸)、 15 N HSQC— NOESYスペクトル (x軸: 核直接 観測軸、 y軸:1 H核時間展開軸、 z軸:15 N核時間展開軸)、 HCCH— COSYスぺタト ル (X軸: ¾核直接観測軸、 y軸: ¾核時間展開軸、 z軸: 13C核時間展開軸)、 HCC H— TOCSYスペクトル (X軸:1 H核直接観測軸、 y軸:1 H核時間展開軸、 z軸:13 C核 時間展開軸)等を例示することができる。 As a specific example of the three-dimensional heteronuclear correlation NMR ^ vector to which the present invention can be applied, a 13 C HSQC—NOESY spectrum (x-axis: nuclear direct observation axis, y-axis: nuclear time expansion) Axis, z axis: "C nuclear time expansion axis", 15 N HSQC—NOESY spectrum (x axis: direct nuclear observation axis, y axis: 1 H nuclear time expansion axis, z axis: 15 N nuclear time expansion axis), HCCH — COSY static (X axis: ¾nuclear direct observation axis, y axis: ¾nuclear time expansion axis, z axis: 13 C nuclear time expansion axis), HCC H— TOCSY spectrum (X axis: 1 H nuclear direct observation axis) Axis, y axis: 1 H nuclear time expansion axis, z axis: 13 C nuclear time expansion axis) and the like.
[0045] 以下、本発明について詳細に説明していくが、本発明を他の 3次元異種核相関 N MRスペクトルに適用することをなんら妨げるものではない。  Hereinafter, the present invention will be described in detail, but it does not prevent application of the present invention to other three-dimensional heteronuclear correlation NMR spectra.
[0046] まずユーザは、 NMR2を用いて構造を特定した 、タンパク質につ ヽて全自動的な ピーク検出を行う。例えば、ピーク検出を1 H—15 N HSQC— NOESY測定法によって 行う場合、得られる1 H— 15N HSQC— NOESYスペクトルは、 15 N間の HSQCス ベクトル (X軸: 核直接観測軸、 z軸: 15N核時間展開軸)と、 1 H NOESYスぺ タトル (X軸: 核直接観測軸、 y軸: 核時間展開軸)とを組み合わせた 3次元スぺ タトルとして得られる。 First, the user performs full-automatic peak detection for proteins whose structure has been identified using NMR2. For example, when peak detection is performed by the 1 H— 15 N HSQC—NOESY measurement method, the obtained 1 H— 15 N HSQC—NOESY spectrum is the HSQC vector between 15 N (X axis: direct nuclear observation axis, z axis : 15 N nuclear time expansion axis) and 1 H NOESY statue (X axis: direct nuclear observation axis, y axis: nuclear time expansion axis).
[0047] 図 2に、マウス SH3について実際に測定した 3次元1 H—13 C HSQC— NOESYス ベクトルを示す。図 2の 3次元1 H—13 C HSQC— NOESYスペクトルの測定条件は、 8 00MHz、混合時間 80ms、温度 25°C、サンプル濃度 1. OmM、 20mMリン酸バッフ ァー、 lOOmM NaCl、 90%H O/10%D Oである。図 2は 3次元1 H— 13C HSQC FIG. 2 shows a three-dimensional 1 H— 13 C HSQC—NOESY vector actually measured for mouse SH3. 3D 1 H- 13 C HSQC- NOESY measurement conditions of the spectrum of FIG. 2, 8 00MHz, mixing time 80 ms, the temperature 25 ° C, sample concentration 1. Omm, 20 mM phosphate buffer over, lOOmM NaCl, 90% HO / 10% DO. Figure 2 is a three-dimensional 1 H- 13 C HSQC
2 2  twenty two
NOESYスペクトルの13 CZ23. 5ppmにおける 2次元スライスを表示したものであり 、横軸は、直接観測している1 H核の化学シフト値 Cに、縦軸は時間展開して得られ This is a two-dimensional slice at 13 CZ23.5 ppm of the NOESY spectrum.The horizontal axis is the chemical shift value C of the directly observed 1 H nucleus, and the vertical axis is obtained by expanding the time.
H  H
1 H核の化学シフト値 C にそれぞれ対応している。破線はスペクトルの対角部分に Corresponding to the chemical shift value C of the 1 H nucleus. The dashed line is on the diagonal of the spectrum
HC  HC
相当し、この破線上に現れるピークは対角ピークと呼ばれる。通常検出されるべき N OEはこのように対角ピークより縦軸方向に直線的に分布する非対角ピークとして観 測される。図 2においては、検出されたピークが 2次元スペクトルスライス上にある場 合青く、 1スライス分上の階層あるいは下の階層に存在するピークは緑色で表してあ る。このように 3次元1 H—13 C HSQC— NOESYスペクトルは、直接観測している1 H核 の化学シフト値 Cに対応する X軸、時間展開して得られる1 H核の化学シフト値 C に Correspondingly, the peak appearing on this broken line is called the diagonal peak. The NOE to be normally detected is thus observed as a non-diagonal peak linearly distributed in the vertical axis direction from the diagonal peak. In FIG. 2, the detected peaks are shown in blue when they are on the two-dimensional spectrum slice, and the peaks in the upper or lower layer by one slice are shown in green. Thus, the three-dimensional 1 H— 13 C HSQC—NOESY spectrum shows the chemical shift value C of the 1 H nucleus obtained by time-expanding the X axis corresponding to the chemical shift value C of the 1 H nucleus directly observed.
H HC  H HC
対応する y軸、および、 15N核の化学シフト値 Cに対応する z軸の 3軸力 なる 3次元 3-dimensional force of the corresponding y-axis and z-axis corresponding to the chemical shift value C of the 15 N nucleus
N  N
データとして表すことができる。 [0048] 'H- 'C HSQC— NOESYスペクトルにおいて、 X y平面は、 1 H—1 H NOESYス ベクトルを表しており、 X— z平面は、 13 Cの HSQCスペクトルを表している。 X— y平 面上に観測される対角ピークはタンパク質の1 H化学シフトを表している。一方、空間 的に近い(直線距離が近い) どうしのみにはたらく NOE効果が非対角ピーク (NO Eピーク)として観測される。 NOEピークがあると、 どうしが約 0. 5nm以内にあるこ とを示す。したがって、 ¾原子間の NOEの有無の情報を集積することによって、タン パク質の二次構造、三次構造を決めることができる。 It can be represented as data. In [0048] 'H-' C HSQC- NOESY spectra, X y plane represents the 1 H- 1 H NOESY's vector, X- z plane represents a HSQC spectrum of 13 C. The diagonal peak observed on the xy plane represents the 1 H chemical shift of the protein. On the other hand, the NOE effect that works only spatially close (shorter linear distance) is observed as a non-diagonal peak (NOE peak). The presence of a NOE peak indicates that they are within about 0.5 nm. Therefore, the secondary and tertiary structures of proteins can be determined by collecting information on the presence or absence of NOE between atoms.
[0049] 図 3に、第 1の実施の形態のノイズフィルター装置によって行われるノイズ除去の原 理の模式図を示す。図 3 (1)は実測した 3次元スペクトルの模式図であり、シグナル由 来のピークを黒で、オフシグナルノイズに相当するピークを白で示して 、る。  FIG. 3 shows a schematic diagram of the principle of noise removal performed by the noise filter device according to the first embodiment. FIG. 3 (1) is a schematic diagram of the actually measured three-dimensional spectrum, in which peaks derived from signals are shown in black, and peaks corresponding to off-signal noise are shown in white.
[0050] 図 3 (I)に示すように、 3次元異種核相関 NMRスペクトルにおいては、シグナルに 由来するピークは、対象となるサンプル由来の対角ピークを中心として y軸方向に対 してほぼ一直線上に並んだピーク群として観測される。これらのピーク群とは異なる 領域にオフシグナルノイズと呼ばれる疑シグナルが通常多く見出される。このオフシ グナルノイズを効率的に除去するため、まず、実測した 3次元異種核相関 NMRスぺ タトルにおいて、予め定められた個数以上のピークが y軸方向に対してほぼ一直線上 に並んで観測されるピーク群 G (m) (mは自然数)を検出し、図 3 (11)に示すように、 各ピーク群 G (m)の基準 X z平面座標をマスクピーク mの座標(P (m) , P (m) )とし  [0050] As shown in Fig. 3 (I), in the three-dimensional heteronuclear correlation NMR spectrum, the peak derived from the signal is substantially aligned with the diagonal peak derived from the target sample in the y-axis direction. It is observed as a group of peaks aligned on a straight line. A lot of spurious signals called off-signal noise are usually found in a region different from these peak groups. In order to efficiently remove this off-signal noise, first, in an actually measured three-dimensional heteronuclear correlation NMR spectrum, a predetermined number or more of peaks are observed almost in a line in the y-axis direction. The peak group G (m) (m is a natural number) is detected, and the reference Xz plane coordinates of each peak group G (m) are converted to the coordinates (P (m), P (m))
H N  H N
て記録したマスクファイルを作成する。そして、実測した各ピークの基準 X— Z平面座 標とマスクピーク mの座標(P (m) , P (m) )とを比較し、対応するマスクピークが存  Create a mask file recorded by Then, the actually measured reference X-Z plane coordinates of each peak are compared with the coordinates (P (m), P (m)) of the mask peak m, and the corresponding mask peak exists.
H N  H N
在しないピークをノイズと判定する。そして、図 3 (III)に示すように、ノイズと判定され たピークを 3次元異種核相関 NMR ^ベクトルから除去する。本願明細書においては 、当該原理に基づくノイズフィルター方法をマスクフィルタ一法と記載することにする。  A peak that does not exist is determined as noise. Then, as shown in FIG. 3 (III), the peak determined as noise is removed from the three-dimensional heteronuclear correlation NMR ^ vector. In the present specification, a noise filter method based on the principle will be described as a mask filter method.
[0051] 図 4に、第 1の実施の形態に力かるノイズフィルター装置を用いてノイズを除去する フローチャートを示す。以下、
Figure imgf000015_0001
HSQC— NOESYスペクトルを例にして説明 していくが、本発明を他の 3次元異種核相関 NMR ^ベクトルに適用することをなんら 妨げるものではない。また、 15N核について以下説明する閾値は、 13C核等の他の核 種にも適用することが可能である。 [0052] まずユーザは、 NMR2を用いて構造を特定したいタンパク質について1 H—15 N H SQC— NOESYスペクトルを測定し、 15N HSQC— NOESYスペクトルデータを 取得する(ステップ S 10)。 NMR2で測定した1 H—15N HSQC— NOESYスペクトル データは記憶部 12に送信され、保存される。
FIG. 4 shows a flowchart for removing noise using the noise filter device according to the first embodiment. Less than,
Figure imgf000015_0001
The HSQC-NOESY spectrum will be described as an example, but this does not preclude the present invention from being applied to other three-dimensional heteronuclear correlation NMR ^ vectors. The threshold value described below for the 15 N nucleus can be applied to other nuclides such as the 13 C nucleus. [0052] First, the user, the 1 H- 15 NH SQC- NOESY spectrum was measured for protein to identify the structure using NMR2, acquires the 15 N HSQC- NOESY spectrum data (Step S 10). 1 H- 15 N HSQC- NOESY spectrum data measured by NMR2 is transmitted to the storage unit 12, it is stored.
[0053] ユーザは、測定した1 H—15 N HSQC— NOESYスペクトルをもとに、ピークテーブル を作成する (ステップ S 11)。ピークテーブルを作成するため、ユーザは、外部出入力 装置 3を通じて記憶部 12からスペクトルデータを読み出し、外部出入力装置 3の画面 上に 3次元異種核相関 NMR ^ベクトルを表示させる。ユーザは、外部出入力装置 3 の画面上で、 'H- 'N HSQC— NOESYスペクトルを確認しながら、ピークを検出し 、管理を容易にするため、検出したピークについてピーク IDとして「n」(nは自然数) を付す。そして各ピークごとにそのピークの 3次元基準座標、半値幅、ピーク強度を 対応させてピークテーブルを作成する。 [0053] The user, based on, creating a peak table were measured 1 H- 15 N HSQC- NOESY spectrum (step S 11). To create the peak table, the user reads out the spectrum data from the storage unit 12 through the external input / output device 3 and displays the three-dimensional heteronuclear correlation NMR ^ vector on the screen of the external input / output device 3. The user checks the 'H-'N HSQC-NOESY spectrum on the screen of the external input / output device 3 and detects the peak. n is a natural number). Then, for each peak, a peak table is created by associating the three-dimensional reference coordinates, half width, and peak intensity of the peak.
[0054] 図 5にピークテーブルの一例を示す。ピークテーブルは、各ピークについて、ピーク ID、 3次元基準座標 (C (n) , C (n) , C (n) )、各軸方向の半値幅、およびピーク  FIG. 5 shows an example of the peak table. The peak table contains the peak ID, 3D reference coordinates (C (n), C (n), C (n)), half-width in each axis direction, and peak for each peak.
H HC N  H HC N
強度を対応させて作成される。 C (n)は X座標(直接観測している1 H核の化学シフト It is created corresponding to the strength. C (n) is the X coordinate (chemical shift of the 1 H nucleus observed directly
H  H
値)、 C (n)は y座標(時間展開して得られる1 H核の化学シフト値)、 C (n)は z座標 (Value), C (n) is the y coordinate (chemical shift value of 1 H nucleus obtained by time expansion), C (n) is the z coordinate (
HC N HC N
15N核の化学シフト値)を表し、 w (n)、 w (n)、 w (n)はそれぞれ x軸、 y軸、 z軸方 15 N nucleus chemical shift value), where w (n), w (n), and w (n) are x-axis, y-axis, and z-axis directions, respectively.
H HC N  H HC N
向の半値幅を表し、 I (n)はピーク強度を表している。ここでは、 3次元基準座標として And I (n) represents the peak intensity. Here, as three-dimensional reference coordinates
、ピークトップ座標を用いる。 , Peak top coordinates.
[0055] ユーザによって外部出入力装置 3に入力されたピークテーブルのデータは、記憶 部 12に送信され保存される (ステップ S 12)。 The data of the peak table input by the user to the external input / output device 3 is transmitted to the storage unit 12 and stored (step S12).
[0056] ついで、ユーザは、1 H—15 N HSQC— NOESYスペクトルにおいて y軸の軸方向に ほぼ直線上に並んで観測されるピーク群 G (m) (mは自然数)を検出し、各ピーク群[0056] Next, the user, 1 H- 15 N HSQC- NOESY peaks G (m) to be observed side by side substantially in a straight line in the axial direction of the y axis in the spectrum (m is a natural number) is detected, each peak group
G (m)の X— z平面基準座標(P (m) , P (m) )をマスクピーク mの座標として記録した The X-z plane reference coordinates of G (m) (P (m), P (m)) were recorded as the coordinates of the mask peak m
H N  H N
マスクファイルを作成する (ステップ S 13)。ユーザは、外部出入力装置 3を通じて、 1 H—15 N HSQC— NOESYスペクトルデータを確認し、 目視でできるだけノイズを拾 わないようにしながら、各ピーク群を検出する。ユーザは、 目視で検出した各ピーク群 について最も多くのピークと重なる座標を決定し、この座標(P (m) , P (m) )をマス クピーク mの座標として記録したマスクファイルを作成する。図 6にマスクファイルの一 例を示す。 P (m)はマスクピーク mの X座標、 P (m)はマスクピーク mの z座標を表す Create a mask file (step S13). The user, through the external input and output device 3, 1 H- 15 N HSQC- NOESY confirmed the spectral data, while allowing not adversely picking as much as possible noise visually detects each peak group. The user determines the coordinates that overlap with the largest number of peaks in each peak group visually detected, and calculates these coordinates (P (m), P (m)). Create a mask file that records the coordinates of the peak m. Figure 6 shows an example of a mask file. P (m) represents the X coordinate of the mask peak m, and P (m) represents the z coordinate of the mask peak m
H N  H N
[0057] ユーザによって外部出入力装置 3に入力されたマスクファイルのデータは対応マス クピーク検索部 13に送信される (ステップ S 13)。 [0057] The mask file data input to the external input / output device 3 by the user is transmitted to the corresponding mask peak search unit 13 (step S13).
[0058] 対応マスクピーク検索部 13は、記憶部 12から読み出したピークテーブルと、外部 出入力装置 3から受信したマスクファイルのデータとを比較し、各ピークについて、マ スクファイルの中に対応マスクピークが存在するかを検索する (ステップ S 14)。対応 マスクピーク検索部 13は、対応マスクピークが検索できなかったピークのピーク IDを ノイズデータとして第 1のノイズ除去部 14に送信する (ステップ S 15)。  [0058] The corresponding mask peak search unit 13 compares the peak table read from the storage unit 12 with the data of the mask file received from the external input / output device 3, and for each peak, stores the corresponding mask in the mask file. It is searched whether a peak exists (step S14). The corresponding mask peak searching unit 13 transmits the peak ID of the peak for which no corresponding mask peak could be searched to the first noise removing unit 14 as noise data (step S15).
[0059] 図 7に、マスクファイルの中から対応マスクピークを検索してノイズを判別するフロー チャートを示す。まず、対応マスクピーク検索部 13は、ピーク nの X— z平面座標(C (  FIG. 7 shows a flowchart for searching for a corresponding mask peak from a mask file to determine noise. First, the corresponding mask peak search unit 13 calculates the X—z plane coordinates (C (
H  H
n) , C (n) )を少しずつ微調整しながら、ユーザが決定したマスクピーク mに対応して n), C (n)) in small increments, corresponding to the mask peak m determined by the user.
N N
V、るピーク nの数を計算し、マスクピーク mに対応して 、るピーク数が最大となる最適 化調整値を決定する (ステップ S 140)。ここで、「マスクピーク mに対応する」とは、ピ ーク nの X— z平面座標(C (n) , C (n) )がマスクピーク mの座標(P (m) , P (m) )と  V, the number of peaks n is calculated, and an optimization adjustment value that maximizes the number of peaks corresponding to the mask peak m is determined (step S140). Here, “corresponding to the mask peak m” means that the X—z plane coordinates (C (n), C (n)) of the peak n are the coordinates of the mask peak m (P (m), P (m ) )When
H N H N  H N H N
完全に重なって 、る力、あるいは十分近 、距離にあることを意味する。  It means that they are completely overlapped, that they are powerful, or that they are close enough and far from each other.
[0060] ピーク nがマスクピーク mに対応しているか否かは、ピーク nの X— z平面座標(C (n)  Whether the peak n corresponds to the mask peak m is determined by the X—z plane coordinates of the peak n (C (n)
H  H
, C (n) )がマスクピーク mの座標(P (m) , P (m) )力も所定の範囲内に存在してい , C (n)) and the coordinate (P (m), P (m)) of the mask peak m are within the predetermined range.
N H N N H N
る力確認することによって判断する。ピーク nがマスクピーク mに対応して 、るか否か の評価は、 0か 1を結果とする下記の関数 E (n, m)で与えられる。この関数 E (n  Judgment is made by confirming the power. The evaluation of whether peak n corresponds to mask peak m or not is given by the following function E (n, m), which results in 0 or 1. This function E (n
Η,Ν Η,Ν Η, Ν Η, Ν
, m)によって、評価値が 1となるピーク nはマスクピーク mに対応することを意味し、評 価値が 0となるピーク nはマスクピーク mに対応して!/ヽな 、ことを意味する。 , m) means that the peak n with an evaluation value of 1 corresponds to the mask peak m, and the peak n with an evaluation value of 0 means that it corresponds to the mask peak m! / ヽ.
[0061] [数 1] 0 if |CH(n) + kH - PH(m)| > tH + wH(n) [0061] [Number 1] 0 if | C H (n) + k H -P H (m) |> t H + w H (n)
or |CN (n) + kN-PN (m)| >tN+wN(n) or | C N (n) + k N -P N (m) |> t N + w N (n)
EH,N(nm) = E H , N ( n , m ) =
1 if |CH (n) + kH - PH (m)| < tH + wH (n) 1 if | C H (n) + k H -P H (m) | <t H + w H (n)
and |CN (n) + kN-PN (m)| <tN+ N(n) and | C N (n) + k N -P N (m) | <t N + N (n)
[0062] ここで、 k、 kは微調整値、 t、 tはユーザが設定した閾値、 w (n)、 w (n)はピー [0062] Here, k and k are fine adjustment values, t and t are threshold values set by the user, and w (n) and w (n) are peak values.
H N H N H N  H N H N H N
ク nの半値幅であり、それぞれ X軸、 z軸に対応する。閾値 t、 tは、測定条件等に応  H is the half-value width of n, corresponding to the X-axis and z-axis, respectively. The threshold values t and t depend on the measurement conditions, etc.
H N  H N
じてユーザが適宜設定することができる。例えば、 600— 800MHzの NMRで測定さ れたスペクトルで適切なノイズ検索を行うには、閾値 t、 tをそれぞれ 0.03ppm、 0.  The user can make appropriate settings. For example, to perform an appropriate noise search on spectra measured by NMR at 600--800 MHz, the thresholds t and t should be 0.03 ppm and 0.
H N  H N
3ppmに設定することが好まし 、。  It is preferable to set to 3 ppm.
[0063] 最適化には微調整値 k、 kを少しずつ変化させて全てのピークを全てのマスクピ  [0063] For optimization, fine adjustment values k, k are changed little by little, and all peaks are set to all mask peaks.
H N  H N
ークにより評価した結果の評価値の合計値が最大になるようにする。すなわち、微調 整値 k、 kを一定のピッチで変化させながら評価値の合計を算出する。ピッチ幅は So that the total value of the evaluation values of the results of the evaluations is maximized. That is, the total of the evaluation values is calculated while changing the fine adjustment values k, k at a constant pitch. The pitch width is
H N H N
ユーザが適宜決定できる力 例えば、 600— 800MHzの NMRで測定されたスぺタト ルで適切なノイズ検索を行うには、通常 X軸方向については Sk =0.002のピッチ  Forces that can be determined by the user. For example, in order to perform an appropriate noise search on a spectrum measured by NMR from 600 to 800 MHz, a pitch of Sk = 0.002 in the X-axis direction is usually used.
H  H
で、 z軸方向については Sk =0.02のピッチで微調整値を変化させることが好まし  In the z-axis direction, it is preferable to change the fine adjustment value at a pitch of Sk = 0.02.
N  N
ヽ。すなわち、 k = Sk i、k = Sk jとお!/、て( Sk =0.002、 Sk =0.02)、 i  ヽ. That is, k = Sk i, k = Sk j! /, And (Sk = 0.002, Sk = 0.02), i
H H N N H N  H H N N H N
および jの値をそれぞれ一 50、 一49、 -48...47、 48、 49、 50と変えることにより、ピ ーク nの X z平面座標(C (n), C (n))を中心として x軸方向は 0. lppm— + 0.1  By changing the values of and j to 1 50, 1 49, -48 ... 47, 48, 49, 50, respectively, the X z plane coordinates (C (n), C (n)) of peak n 0.lppm— + 0.1
H N  H N
ppm、 z軸方向は 1. Oppm一" hi. Oppmの範囲で、ピーク nを最適化するための微 調整値を検索することができる。  In the ppm and z-axis directions, you can search for a fine adjustment value to optimize the peak n in the range of 1. Oppm-1 "hi. Oppm.
[0064] 最適化には、全てのピークを全てのマスクピークにより評価した結果の評価値の合 計値 S (i, j)を算出し、この値が最大、 max S (i, j)となる(I, J)を求める。  In the optimization, a total value S (i, j) of the evaluation values as a result of evaluating all the peaks with all the mask peaks is calculated, and this value is a maximum, max S (i, j). (I, J).
[0065] [数 2]  [0065] [Equation 2]
N M N M
S(i,j)=∑ ∑E (n,m)  S (i, j) = ∑ ∑E (n, m)
n= n=Mo  n = n = Mo
[0066] :のときの微調整値 k = δ k I、 k = δ k Jが、ピーク nを最適化するための最適 化調整値である。 [0066]: The fine adjustment values k = δkI and k = δkJ at the time are optimal for optimizing the peak n. Adjustment value.
[0067] 続 、て最適化調整値を用 、てピーク nの X— z平面座標 (C (n) , C (n) )を最適化  Then, the X—z plane coordinates (C (n), C (n)) of the peak n are optimized using the optimization adjustment value.
H N  H N
する (ステップ S 141)。最適化調整値によって最適化されたピーク nの X— z平面座標 は(C (η) + δ k I, C (n) + δ k J)となる。  (Step S141). The X-z plane coordinates of the peak n optimized by the optimization adjustment value are (C (η) + δkI, C (n) + δkJ).
H H N N  H H N N
[0068] 次に、対応マスクピーク検索部 13は、各ピーク nについて、最適化された x— z平面 座標(C (η) + δ k I, C (n) + δ k J)を用いて、マスクファイルの中に対応マスク Next, the corresponding mask peak search unit 13 uses the optimized x-z plane coordinates (C (η) + δkI, C (n) + δkJ) for each peak n. The corresponding mask in the mask file
H H N N H H N N
ピークが存在するかを検索する (ステップ S 142)。具体的には、対応マスクピーク検 索部 13は、関数 E (n, m)において、 k = S k I、k = S k Jに固定し、マスクフ  It is searched whether a peak exists (step S142). Specifically, the corresponding mask peak search unit 13 fixes k = S k I and k = S k J in the function E (n, m), and
Η,Ν Η Η Ν Ν  Η, Ν Η Η Ν Ν
アイルの中に E (n, m) = 1となるようなマスクピーク mが存在するか否かを判定する  Determine if there is a mask peak m such that E (n, m) = 1 in the aisle
[0069] [数 3] [0069] [Equation 3]
Figure imgf000019_0001
Figure imgf000019_0001
[0070] ピーク nにつ!/、て、マスクファイルの中に対応マスクピークが存在しな!、場合 (ステツ プ S142 No)、対応マスクピーク検索部 13は、該当するピークのピーク IDをノイズ データとして第 1のノイズ除去部 14に送信し (ステップ S143)、そのピーク nについて の処理を終了する。ピーク nについて、マスクファイルの中に対応マスクピークを検出 できた場合 (ステップ S 142 Yes)、そのピーク nについての処理を終了する。以上の ように、ピークテーブル中のすべてのピークについて、マスクファイルの中から対応マ スクピークを検索してノイズか否かを判別する処理を行う。 [0070] If the corresponding mask peak does not exist in the mask file for the peak n! / (Step S142 No), the corresponding mask peak search unit 13 determines the peak ID of the corresponding peak as a noise. The data is transmitted to the first noise removal unit 14 as data (step S143), and the processing for the peak n is completed. If a corresponding mask peak can be detected in the mask file for the peak n (step S 142 Yes), the processing for the peak n ends. As described above, for all the peaks in the peak table, the corresponding mask peak is searched from the mask file to determine whether or not it is noise.
[0071] 第 1のノイズ除去部 14は、記憶部 12からピークテーブルのデータを読み出し、対応 マスクピーク検索部 13から受信したノイズデータをもとに、ノイズに該当するピークの 情報をピークテーブルから除去する(図 4、ステップ S16)。そして、第 1のノイズ除去 部 14は、ノイズに該当するピークの情報を除去した新たなピークテーブルを記憶部 1 2に送信する。 [0072] 図 8— 1は、図 2の1 H—13 C HSQC— NOESYスペクトルの部分拡大図であり、オフ シグナルノイズに Xを、 NOEピークに *を付してある。図 8— 2は、第 1の実施の形態の ノイズフィルター装置によって図 8—1のスペクトル力もノイズを除去した後の図である 。図 8—1と図 8— 2とを比較すると、第 1の実施の形態のノイズフィルター装置によって Xが付されたオフシグナルノイズが効率的に除去されていることが分かる。 The first noise elimination unit 14 reads the data of the peak table from the storage unit 12 and, based on the noise data received from the corresponding mask peak search unit 13, extracts the information of the peak corresponding to the noise from the peak table. Remove it (Figure 4, step S16). Then, the first noise removing unit 14 transmits a new peak table from which information of the peak corresponding to the noise has been removed to the storage unit 12. FIG. 8-1 is a partially enlarged view of the 1 H— 13 C HSQC—NOESY spectrum of FIG. 2, in which X is assigned to off-signal noise and * is assigned to the NOE peak. FIG. 8-2 is a diagram after the noise of the spectral power of FIG. 8-1 has also been removed by the noise filter device of the first embodiment. Comparing FIGS. 8A and 8B, it can be seen that the off-signal noise marked with X is efficiently removed by the noise filter device of the first embodiment.
[0073] なお、第 1の実施の形態においては、ピーク nの X— z平面座標を最適化して力 対 応ピークを検索した力 ピークテーブルおよびマスクファイルが正確に作成されて!ヽ る場合は、必ずしも最適化する必要はなぐ直接ピークテーブルに記載された X— z平 面座標を用いて対応ピークを検索してもよ 、。  In the first embodiment, the force peak table and the mask file in which the X-z plane coordinates of the peak n have been optimized and the force corresponding peak has been searched are correctly created! However, it is not always necessary to optimize, and the corresponding peak may be searched using the Xz plane coordinates described in the direct peak table.
[0074] 以上述べた第 1の実施の形態のノイズフィルター装置およびノイズフィルター方法 は、 核時間展開軸 (y軸)の軸方向に対してほぼ一直線上に並んで観測されるピ ーク群 G (m)とは異なる領域に観測されるノイズ (オフシグナルノイズ)をシグナルの 帰属前に効率的かつ正確に除去できるため、ノイズの除去作業に伴う解析者の負担 を大幅に軽減することができる。  [0074] The noise filter device and the noise filter method according to the first embodiment described above provide a peak group G observed in a substantially straight line with respect to the axial direction of the kernel time expansion axis (y-axis). Noise (off-signal noise) that is observed in a region different from (m) can be efficiently and accurately removed before signal assignment, greatly reducing the burden on analysts involved in noise removal work. .
[0075] (第 2の実施の形態)  (Second Embodiment)
第 2の実施の形態は、第 1の実施の形態の変形例であり、ピークテーブルおよびマ スクファイルを自動的に作成する手段を備えたことを特徴とする。図 9に第 2の実施の 形態のノイズフィルター装置のブロック図を示す。図 9において、第 1の実施の形態と 同一の構成については同一の符号を付し、説明を省略することにする。  The second embodiment is a modification of the first embodiment and is characterized in that a means for automatically creating a peak table and a mask file is provided. FIG. 9 shows a block diagram of a noise filter device according to the second embodiment. In FIG. 9, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0076] 第 2の実施の形態のノイズフィルター装置は、ピークテーブル作成部 10およびマス クファイル作成部 11を備えたことを特徴とする。ピークテーブル作成部 10は、記憶部 12に保存されて 、るスペクトルデータから自動的にピークテーブルを作成する。また 、マスクファイル作成部 11はピークテーブル作成部 10によって作成されたピークテ 一ブルを用いて自動的にマスクファイルを作成する。  The noise filter device according to the second embodiment includes a peak table creation unit 10 and a mask file creation unit 11. The peak table creation unit 10 automatically creates a peak table from the spectrum data stored in the storage unit 12. Further, the mask file creating section 11 automatically creates a mask file using the peak table created by the peak table creating section 10.
[0077] ピークテーブル作成部 10は、以下の方法によって1 H—15N HSQC— NOESYスぺ タトルデータ力 ピークテーブルを作成する。まず、ピークテーブル作成部 10は、 JH -15N HSQC— NOESYスペクトルデータから、ピークに該当するデータポイントを検 出する。 ^— Ν HSQC— NOESYスペクトルデータは、 3次元スペクトルの各デー タポイント (i, j, k) (i j kは整数であり、 iは x座標、 jは y座標、 kは z座標に対応する。 )と、そのデータポイントにおけるデータ強度を対応させたデータとして得られる。 ピーク検出は一般的に用いられている方法を用いて行うことができる。 3次元スぺク トルのデータポイント (i, j, k)におけるデータ強度を M(i, j, k)とすると、その点を取り 囲む 26個の隣接データ点 (i 1, j-1, k— 1)、 (i-1, j, k— 1)、 (i-1, j + 1, k— 1)、 (i , j-1, k— 1)、 (i, j, k— 1)、 (i, j + 1, k— 1)、 (i+1, j-1, k— 1)、 (i+1, j, k— 1)、 (i + + k— 1)、 (i-1, j-1, k), (i— k) (i-1, j + 1, k), (i, j— 1, k) (i, j +1, k)、 (i+1, j-1, k), (i+l, j, k)、 (i+1, j + 1, k), (i-1, j-1, k+1), (i-1 , j, k+l)、 (i-1, j + 1, k+l)、 (i, j-1, k+l)、 (i, j, k+l)、 (i, j + 1, k+l)、 (i +1, j-1, k+l)、 (i+1, j, k+l)、 (i+1, j + 1, k+1)におけるデータ強度はそれ ぞれ M (ト 1, j-1, k— 1)、 M(i— 1, j, k— 1)、 M(i— 1, j + 1, k— 1)、 M(i, j-1, k— 1 ) , M (i, j, k— 1)、 M(i, j + 1, k— 1)、 M(i+1, j-1, k— 1)、 M(i+1, j, k— 1)、 M(i +1, j + 1, k— l)、M(i— 1, j— 1, k) M(i— 1, j, k) M(i— 1, j + k) M(i, j-1, k) M(i, j + 1, k)、 M(i+1, j-1, k)、 M(i+1, j, k) M(i+1, j + 1, k)、 M (ト 1 , j-1, k+1), M (i-1, j, k+1), M (i-1, j + 1, k+l)、 M(i, j-1, k+l)、 M(i, j , k+l)、 M(i, j + 1, k+l)、 M(i+1, j-1, k+l)、 M(i+1, j, k+l)、 M(i+1, j +1, k+1)となり、それらと M(i, j, k)との差分は [0077] Peak table creation unit 10 creates a 1 H- 15 N HSQC- NOESY space Tuttle data force peak table in the following manner. First, the peak table creating unit 10, J H - from 15 N HSQC- NOESY spectrum data, detects the data points corresponding to the peak. ^ — Ν HSQC—NOESY spectral data is Data point (i, j, k) (ijk is an integer, i corresponds to the x coordinate, j corresponds to the y coordinate, and k corresponds to the z coordinate). Can be Peak detection can be performed using a generally used method. Assuming that the data intensity at a data point (i, j, k) of a three-dimensional vector is M (i, j, k), 26 adjacent data points (i 1, j-1, k-1), (i-1, j, k-1), (i-1, j + 1, k-1), (i, j-1, k-1), (i, j, k-- 1), (i, j + 1, k—1), (i + 1, j-1, k—1), (i + 1, j, k—1), (i ++ k—1), (i-1, j-1, k), (i-- k) (i-1, j + 1, k), (i, j--1, k) (i, j + 1, k), (i +1, j-1, k), (i + l, j, k), (i + 1, j + 1, k), (i-1, j-1, k + 1), (i-1 , j, k + l), (i-1, j + 1, k + l), (i, j-1, k + l), (i, j, k + l), (i, j + 1) , k + l), (i + 1, j-1, k + l), (i + 1, j, k + l), (i + 1, j + 1, k + 1) M (g1, j-1, k-1), M (i-1, j, k-1), M (i-1, j + 1, k-1), M (i, j- 1, k—1), M (i, j, k—1), M (i, j + 1, k—1), M (i + 1, j-1, k—1), M (i + 1, j, k—1), M (i + 1, j + 1, k—l), M (i—1, j—1, k) M (i—1, j, k) M (i— 1, j + k) M (i, j-1, k) M (i, j + 1, k), M (i + 1, j-1, k), M (i + 1, j, k) M (i + 1, j + 1, k), M (g1, j-1, k + 1), M (i-1, j, k + 1), M (i-1, j + 1, k + l), M (i, j-1, k + l), M (i, j, k + l), M (i, j + 1, k + l), M (i + 1, j-1, k + l), M (i + 1, j, k + l), M (i + 1, j + 1, k + 1), and those of M (i, j, k) The difference is
[数 4] [Number 4]
dM(i- l,j - l,k-l) = M(iふ k)- M(i- l,j- l,k- 1) dM(i - l,j,k - l)=M(i,j,k)- M(i - l,j,k 1) dM (i-l, j-l, kl) = M (i-k) -M (i-l, j-l, k-1) dM (i-l, j, k-l) = M (i , J, k)-M (i-l, j, k 1)
dM(i - l,j + l,k - 1 M(i,j,k) - M(i - l,j + l,k - 1)  dM (i-l, j + l, k-1 M (i, j, k)-M (i-l, j + l, k-1)
dM(i,j-l,k-l) = (i,j,k)-M(i,j-l,k-l)  dM (i, j-l, k-l) = (i, j, k) -M (i, j-l, k-l)
dM(i,j,k-l) = M(i,j,k)-M(i,j,k-l)  dM (i, j, k-l) = M (i, j, k) -M (i, j, k-l)
dM(i,j + l,k-l)=M(i,j,k)- M(i,j + l,k- 1)  dM (i, j + l, k-l) = M (i, j, k) -M (i, j + l, k-1)
dM(i + l,ト l,k - l)=M(i,j,k) - M(i + l,j- l,k - 1)  dM (i + l, l, k-l) = M (i, j, k)-M (i + l, j-l, k-1)
dM(i + l,j,k-l)=M(iJ,k)- (i + l,j,k-l)  dM (i + l, j, k-l) = M (iJ, k)-(i + l, j, k-l)
dM(i + l,j + l,k-l) = M(i,j,k)-M(i + l,j + l,k-l)  dM (i + l, j + l, k-l) = M (i, j, k) -M (i + l, j + l, k-l)
dM(i-l,j-l,k)= (i,j,k)-M(i-l,j-l,k)  dM (i-l, j-l, k) = (i, j, k) -M (i-l, j-l, k)
dM(i-l,j,k) = M(i,j,k)-M(i-l,j,k)  dM (i-l, j, k) = M (i, j, k) -M (i-l, j, k)
dM(i-l,j + l,k)=M(i,j,k)-M(i-l,j + l,k)  dM (i-l, j + l, k) = M (i, j, k) -M (i-l, j + l, k)
dM(i, j-l,k) = M(i,j,k)- M(i, j-l,k)  dM (i, j-l, k) = M (i, j, k)-M (i, j-l, k)
dM(i-l,j + l,k) = M(i,j,k)-M(i-l,j + l,k)  dM (i-l, j + l, k) = M (i, j, k) -M (i-l, j + l, k)
dM(i + l,j-l,k) = M(i,j,k)-M(i + l,j-l,k)  dM (i + l, j-l, k) = M (i, j, k) -M (i + l, j-l, k)
dM(i + l,j,k) = M(i,j,k)_M(i + l,j,k)  dM (i + l, j, k) = M (i, j, k) _M (i + l, j, k)
dM(i + l,j + l,k)=M(i,j,k)-M(i + l,j + l,k)  dM (i + l, j + l, k) = M (i, j, k)-M (i + l, j + l, k)
dM(i-l,j-l,k + l)= (i,j,k)-M(i-l,j-l,k + l)  dM (i-l, j-l, k + l) = (i, j, k) -M (i-l, j-l, k + l)
dM(i-l,j,k + l)= (i,j,k)~M(i-l,j,k + l)  dM (i-l, j, k + l) = (i, j, k) ~ M (i-l, j, k + l)
dM(i- l,j + l,k + l)=M(i,j,k)-M(i-l,j + l,k + l)  dM (i-l, j + l, k + l) = M (i, j, k) -M (i-l, j + l, k + l)
dM(i,j-l,k + l) = (i,j,k)-M(i,j-l,k + l)  dM (i, j-l, k + l) = (i, j, k) -M (i, j-l, k + l)
dM(i,j,k + l) = M(i,j,k)-M(i,j,k + l)  dM (i, j, k + l) = M (i, j, k) -M (i, j, k + l)
dM(i,j + l,k + l) = (i,j,k)-M(i,j + l,k + l)  dM (i, j + l, k + l) = (i, j, k) -M (i, j + l, k + l)
dM(i + l,j-l,k + l)=M(i,j,k)-M(i + l,j-l,k + l)  dM (i + l, j-l, k + l) = M (i, j, k) -M (i + l, j-l, k + l)
dM(i + l,j,k + l) = M(i,j,k)- M(i + l,j,k + l)  dM (i + l, j, k + l) = M (i, j, k)-M (i + l, j, k + l)
dM(i + l,j + l,k + l)=M(i,j,k)-M(i + lJ + l,k + l) となり、 M(i, j, k) >0のとき上記全ての差分値が正の場合、あるいは M(i, j, k)≤0 のとき上記全ての差分値が負の場合、そのデータポイント (i, j, k)をピークとして検 出する。 [0079] データポイントは整数を用いているためデータポイント密度によっては真のピークの 頂点から離れていることがある。真のピーク頂点を出来る限り近いデータ点を求める ため、ピークとして検出されたデータポイントについて、このデータポイントと、 X軸、 y 軸、 z軸の 3方向についてそれぞれ前後に隣接する 2点のデータポイントの計 3点を 通る 2次関数の極大点あるいは極小点を算出し、この極大点あるいは極小点の座標 をピーク座標として近似してもよい。この場合、得られるデータ点は整数ではなく実数 で表される。 dM (i + l, j + l, k + l) = M (i, j, k)-M (i + lJ + l, k + l), and when M (i, j, k)> 0 If all the difference values are positive, or if M (i, j, k) ≤ 0 and all the difference values are negative, the data point (i, j, k) is detected as a peak. [0079] Since the data point uses an integer, it may be far from the peak of the true peak depending on the data point density. In order to find a data point as close as possible to the true peak apex, for a data point detected as a peak, this data point and two data points adjacent to each other before and after each in the three directions of the X-axis, y-axis, and z-axis The maximum or minimum point of a quadratic function passing through a total of three points may be calculated, and the coordinates of the maximum or minimum point may be approximated as peak coordinates. In this case, the resulting data points are represented by real numbers, not integers.
[0080] ピークとして検出されたデータポイント (i, j, k)は、ピークテーブルに記載される際 に対応する化学シフト値 (C (n) , C (n) , C (n) )に変換される。  [0080] The data points (i, j, k) detected as peaks are converted to the corresponding chemical shift values (C (n), C (n), C (n)) when described in the peak table. Is done.
H HC N  H HC N
[0081] ピークテーブル作成部 10は、検出された各ピークについてピーク IDとして「n」(nは 自然数)を付ける。ピークテーブル作成部 10は、検出した各ピーク nについて、ピーク ID、 3次元基準座標(C (n) , C (n) , C (n) )、各軸方向の半値幅 (w (n) , w (n  The peak table creation unit 10 assigns “n” (n is a natural number) as a peak ID to each detected peak. For each detected peak n, the peak table creating unit 10 calculates a peak ID, three-dimensional reference coordinates (C (n), C (n), C (n)), a half-value width (w (n), w (n
H HC N H HC  H HC N H HC
) , w (n) )、およびピーク強度を対応させて、ピークテーブルを作成する。ピークテー ), w (n)) and peak intensity are made to correspond to each other to create a peak table. Peak stay
N N
ブル作成部 10は、作成したピークテーブルのデータを記憶部 12および対応マスクピ ーク検索部 13にそれぞれ送信する。  The table creation unit 10 transmits the created data of the peak table to the storage unit 12 and the corresponding mask peak search unit 13, respectively.
[0082] 次に、マスクファイルの作成について説明する。マスクファイルを作成するため、マ スクファイル作成部 11は、記憶部 12に保存されて ヽるピークテーブルのデータを読 み出す。マスクファイル作成部 11は、ピークテーブルをもとに、 y軸の軸方向にほぼ 直線上に並んで観測されるピーク群 G (m) (mは自然数)を検出し、ピーク群 G (m) の X— z平面基準座標(P (m) , P (m) )を決定する。そして、決定された各 X— z平面 Next, creation of a mask file will be described. In order to create a mask file, the mask file creating section 11 reads out the data of the peak table stored in the storage section 12. Based on the peak table, the mask file creation unit 11 detects a group of peaks G (m) (m is a natural number) observed substantially linearly in the y-axis direction, and obtains a group of peaks G (m) Determine the X-z plane reference coordinates (P (m), P (m)) of. And each determined X-z plane
H N  H N
基準座標(P (m) , P (m) )をマスクピーク mの座標として記録したマスクファイルを  A mask file that records the reference coordinates (P (m), P (m)) as the coordinates of the mask peak m
H N  H N
作成する。  create.
[0083] 図 10に、第 2の実施の形態におけるマスクファイル作成のフローチャートを示す。マ スクファイル作成部 11は、 X— z平面を同じ面積をもつ区画に区分けし、各区画中にピ ークの基準座標が所定個数以上含まれるかどうかを判断する (ステップ S150)。図 1 1—1は、ピークテーブルに記録されたピークの基準座標を X— z平面上に投影した投 影図である。マスクファイル作成部 11は、図 11— 1に示すように、 X— z平面を X軸方向 に 0. Ippmずつ、 z軸方向に Ippmずつのピッチで区分けし、この 0. IppmX lppm の各区画にピークの基準座標が何個含まれるかを検索する。 FIG. 10 shows a flowchart of creating a mask file according to the second embodiment. The mask file creating section 11 divides the Xz plane into sections having the same area, and determines whether or not each section contains a predetermined number or more of the reference coordinates of the peak (step S150). FIG. 11-1 is a projection diagram in which the reference coordinates of the peak recorded in the peak table are projected on the Xz plane. As shown in Fig. 11-1, the mask file creation unit 11 divides the Xz plane at a pitch of 0. Ippm in the X-axis direction and at a pitch of Ippm in the z-axis direction. Is searched for how many peak reference coordinates are included in each section.
[0084] マスクファイル作成部 11は、ピークの基準座標を所定の個数以上含む区画をピー ク群存在領域として検出する (ステップ S151)。図 11— 2において、斜線の区画がピ ーク群存在領域として検出された区画である。  [0084] The mask file creating unit 11 detects, as a peak group existence area, a section including a predetermined number or more of the reference coordinates of the peak (step S151). In Fig. 11-2, the hatched section is the section detected as the peak group existence area.
[0085] マスクファイル作成部 11は、ピーク群存在領域として検出された区画の中心座標( p (m), p (m))を微調整し、ピークテーブルの中で対応するピークの数が最大とな [0085] The mask file creation unit 11 finely adjusts the center coordinates (p (m), p (m)) of the section detected as the peak group existence area, and the number of corresponding peaks in the peak table is the largest. Tona
H N H N
るような座標をピーク群 G(m)の基準座標(P (m), P (m) )として決定する (ステップ  Are determined as the reference coordinates (P (m), P (m)) of the peak group G (m) (step
H N  H N
S152)。  S152).
[0086] ピーク nがピーク群存在領域の中心座標 (p (m), p (m) )に対応しているか否かは  [0086] Whether or not the peak n corresponds to the center coordinates (p (m), p (m)) of the peak group existence area is determined.
H N  H N
、既述の関数 E (n, m)を用いて決定することができる。すなわち、この関数 E (n  Can be determined using the function E (n, m) described above. That is, this function E (n
Η,Ν Η,Ν Η, Ν Η, Ν
, m)によって、評価値が 1となるピーク ηは中心座標 (p (m), p (m))に対応すること , m), the peak η at which the evaluation value becomes 1 corresponds to the center coordinates (p (m), p (m))
H N  H N
を意味し、評価値が 0となるピーク nはマスクピーク mに対応して 、な 、ことを意味する [0087] [数 5]  And the peak n at which the evaluation value is 0 means that the peak n corresponds to the mask peak m.
0 if |CH (n) - pH (m) - kH I > t H + wH (n) 0 if | C H (n)-p H (m)-k H I> t H + w H (n)
or |CN (n) - pN (m) - kN I > tN + wN (n)or | C N (n)-p N (m)-k N I> t N + w N (n)
Figure imgf000024_0001
1 if |CH (n) - pH (m) - kH I < tH + wH (n)
Figure imgf000024_0001
1 if | C H (n)-p H (m)-k H I <t H + w H (n)
[and|CN(n)-pN(m)-kN <tN+wN(n) [and | C N (n) -p N (m) -k N <t N + w N (n)
[0088] ここで、 k、 kはピーク nの微調整値、 t、 tはユーザが設定した閾値、 w、 wはピ Here, k and k are fine adjustment values of the peak n, t and t are thresholds set by the user, and w and w are
H N H N H N  H N H N H N
ーク nの半値幅であり、既述の関数 E (n, m)で説明したのと同義である。  This is the half-value width of n, which is the same as that described for the function E (n, m) described above.
Η,Ν  Η, Ν
[0089] 最適化には微調整値 k、 kを少しずつ変化させて全てのピークにより評価した結  [0089] For optimization, fine adjustment values k, k were changed little by little, and evaluation was performed using all peaks.
H N  H N
果の評価値の合計値が最大になるようにする。すなわち、 k = Sk i、k = Sk jと  The total value of the fruit evaluation values is maximized. That is, k = Sk i, k = Sk j
H H N N  H H N N
おいて(Sk 0· 002、 Sk 0· 02)、iおよび jの値をそれぞれ一 50、 一 49、 一 48·  (Sk 0 · 002, Sk 0 · 02), and the values of i and j are 1 50, 1 49, 1 48
H N  H N
..47、 48、 49、 50と変えることにより、ピーク nの x— z平面座標(C (n), C (n))を  By changing to ..47, 48, 49, 50, the x-z plane coordinates (C (n), C (n)) of peak n
H N  H N
中心として X軸方向は ±0. lppm、 z軸方向は ±1. Oppmの範囲で、最適化するた めの微調整値を検索する。  Search for the fine adjustment value for optimization within the range of ± 0.1 ppm in the X-axis direction and ± 1.0 ppm in the z-axis direction.
[0090] 最適化には、全てのピークにより評価した結果の評価値の合計値 S (i, j)を算出し、 この値が最大、 max S (i, j)となる (I, J)を求める。 [0090] In the optimization, the total value S (i, j) of the evaluation values of the results of evaluation based on all peaks is calculated, Find (I, J) where this value is max S (i, j).
[0091] 園 [0091] garden
S(ij) =∑E¾N(n,m) S (ij) = ∑E¾ N (n, m)
n-N0 nN 0
[0092] このときの微調整値 k = S k I、k = S k Jが、中心座標(p (m), p (m) )を最 [0092] At this time, the fine adjustment values k = SkI and k = SkJ make the center coordinates (p (m), p (m)) the maximum.
H H N N H N  H H N N H N
適化するための最適化調整値である。この最適化調整値によって与えられるピーク 群 G (m)の基準座標 (P (m) , P (m) )は (p (m) + δ k I, ρ (m) + δ k J)となる  This is an optimization adjustment value for optimization. The reference coordinates (P (m), P (m)) of the peak group G (m) given by this optimization adjustment value are (p (m) + δ k I, ρ (m) + δ k J)
H N H H N N  H N H H N N
[0093] マスクファイル作成部 11は、ピーク群 G (m)の基準座標(P (m) , P (m) )をマスク [0093] The mask file creation unit 11 masks the reference coordinates (P (m), P (m)) of the peak group G (m).
H N  H N
ピーク mの座標としてマスクファイルに保存する(ステップ S 153)。  The coordinates of the peak m are stored in the mask file (step S153).
[0094] 以上述べた第 2の実施の形態のノイズフィルター装置およびノイズフィルター方法 は、ピークテーブルおよびマスクファイルを自動的に作成できるため、ノイズ除去作業 におけるユーザの時間的負担をより一層軽減することができる。また、ピーク nの見落 とし、およびピーク群 G (m)の見落としを防ぐことができるため、より正確なノイズ除去 が可能となる。 [0094] The noise filter device and the noise filter method according to the second embodiment described above can automatically create a peak table and a mask file, thereby further reducing the user's time burden in noise removal work. Can be. In addition, since oversight of the peak n and oversight of the peak group G (m) can be prevented, more accurate noise removal can be performed.
[0095] (第 3の実施の形態) [0095] (Third embodiment)
つぎに、この発明の第 3の実施の形態について説明する。第 3の実施の形態は、第 1の実施の形態および第 2の実施の形態では除去しきれないノイズを検出し除去する 手段を追加したことを特徴とする。第 1の実施の形態よび第 2の実施の形態では、マ スクピーク mと X— z平面座標差が所定の範囲内に存在するノイズについては、ノイズ として判別されずにピークテーブル中にそのまま残っていた。第 3の実施の形態は、 このようなノイズを検出し、除去することを特徴とする。  Next, a third embodiment of the present invention will be described. The third embodiment is characterized in that a means for detecting and removing noise that cannot be completely removed in the first embodiment and the second embodiment is added. In the first and second embodiments, noise in which the mask peak m and the X-z plane coordinate difference are within a predetermined range is not discriminated as noise and remains in the peak table as it is. Was. The third embodiment is characterized in that such noise is detected and removed.
[0096] 図 12は、第 3の実施の形態に力かるノイズフィルター装置の構成を説明するブロッ ク図である。ここでは、第 2の実施の形態と同一機能のものについては同一の符号を 付し、説明を省略することにする。第 3の実施の形態にカゝかるノイズフィルター装置は 、第 2の実施の形態に力かるノイズフィルター装置の構成にカ卩え、さら〖こ、ピーク対検 出部 15、第 2のノイズ除去部 16、連続ピーク群検出部 17、第 3のノイズ除去部 18、 非対角ピーク群検出部 19、符号決定部 20、第 4のノイズ除去部 21、ウォーターノィ ズ検出部 22、および、第 5のノイズ除去部 23を備えている。 FIG. 12 is a block diagram illustrating the configuration of a noise filter device according to the third embodiment. Here, components having the same functions as those of the second embodiment are denoted by the same reference numerals, and description thereof will be omitted. The noise filter device according to the third embodiment is different from the noise filter device according to the second embodiment in that the noise filter device has a configuration similar to the noise filter device according to the second embodiment. Section 16, continuous peak group detection section 17, third noise removal section 18, A non-diagonal peak group detector 19, a code determiner 20, a fourth noise remover 21, a water noise detector 22, and a fifth noise remover 23 are provided.
[0097] ピーク対検出部 15は、ピーク強度の強いピークについて、そのピークを中心として 、 X軸、 y軸および z軸の 3軸のうちいずれかの軸方向に対して対称的に見出されるピ 一ク対を検出するものである。ピーク対検出部 15は、ピーク対を構成するピークのピ ーク IDをノイズデータとして第 2のノイズ除去部 16に送信する。  [0097] The peak pair detection unit 15 detects a peak having a strong peak intensity symmetrically with respect to any one of three axes of the X-axis, the y-axis, and the z-axis around the peak. This is to detect one pair. The peak pair detection unit 15 transmits the peak IDs of the peaks forming the peak pair to the second noise removal unit 16 as noise data.
[0098] ピーク対検出部 15は、主にメチルシグナルのように強度が強くシャープなシグナル に由来するピークの近傍に生じるノイズを検出するものである。メチルシグナルのよう に強度が強いピークの近傍にノイズが生じる原因として、スペクトル測定過程におけ るプロトン核の時間展開中に実行される異種核デカップリングがわずかに不充分であ り、そのためプロトン核と異種核力 Sスピン結合により分裂したピークが混在してしまうこ とが考えられる。このようなノイズをインコンプリートデカップリングノイズと呼ぶ。また、 測定パルススキーム中にぉ 、て各時間軸上での周波数依存的遅延時間が存在する 力 その遅延時間の間にメチルシグナルなどのシャープなシグナルはほとんど緩和し ない。そのためこのようなシグナルはフーリエ変換時に矩形波として認識され、そのフ 一リエ変換後のスペクトル上にサイン波形のうねりを生じる。このノイズは 2乗コサイン 関数を乗じる、あるいはリニアープレデョクシヨン法によりある程度解消することは出来 る力 完全に消し去ることは難しい。このようなノイズをウイグルノイズと呼ぶ。図 13に インコンプリートデカップリングノイズの一例を、図 14にウイグルノイズの一例を示す。 図 13および図 14に示すように、これらのノイズは、強いシグナルの近傍に、そのシグ ナルを中心として対称的に 2つずつ見出される傾向がある。ピーク対検出部 15は、こ のようなピーク対を検出することによって、インコンプリートデカップリングノイズおよび ウイグルノイズを効率的に検出するものである。  [0098] The peak pair detection section 15 mainly detects noise generated near a peak derived from a strong and sharp signal such as a methyl signal. The cause of noise near strong peaks, such as methyl signals, is that the heteronuclear decoupling performed during the time evolution of the proton nuclei during the spectral measurement process is slightly inadequate, and therefore the proton nuclei It is conceivable that peaks split by S-spin coupling and heterogeneous nuclear forces are mixed. Such noise is called incomplete decoupling noise. Further, in the measurement pulse scheme, a frequency-dependent delay time exists on each time axis. A sharp signal such as a methyl signal hardly relaxes during the delay time. Therefore, such a signal is recognized as a rectangular wave at the time of Fourier transform, and a sine waveform swells on the spectrum after the Fourier transform. This noise is multiplied by the squared cosine function or can be eliminated to some extent by the linear prediction method. It is difficult to completely eliminate the noise. Such noise is called wiggle noise. Fig. 13 shows an example of incomplete decoupling noise, and Fig. 14 shows an example of Uighur noise. As shown in FIG. 13 and FIG. 14, these noises tend to be found two by two symmetrically around the signal in the vicinity of the strong signal. The peak pair detection unit 15 detects such a pair of peaks, thereby efficiently detecting incomplete decoupling noise and wiggle noise.
[0099] 第 2のノイズ除去部 16は、ピーク対検出部 15からノイズデータを受信する。第 2のノ ィズ除去部 16は、記憶部 12からピークテーブルのデータを読み出し、ノイズに該当 するピークの情報をピークテーブルから除去し、ノイズに該当するピークの情報を除 去した新たなピークテーブルを記憶部 12に送信する。  [0099] The second noise removing unit 16 receives the noise data from the peak pair detecting unit 15. The second noise removing unit 16 reads the data of the peak table from the storage unit 12, removes the information of the peak corresponding to the noise from the peak table, and removes the information of the peak corresponding to the noise from the new peak. The table is transmitted to the storage unit 12.
[0100] 連続ピーク群検出部 17は、対角ピークの近傍に、その対角ピークを中心として y軸 方向に対し連続的に混み合 、ながら観測される同符号のピークからなる連続ピーク 群を検出する。連続ピーク群検出部 17は、検出した連続ピーク群に含まれる対角ピ ーク以外のピークのピーク IDをノイズデータとして第 3のノイズ除去部 16に送信する [0100] The continuous peak group detection unit 17 places the y-axis near the diagonal peak around the diagonal peak. A continuous peak group consisting of peaks of the same sign that are observed while being continuously crowded in the direction is detected. The continuous peak group detection unit 17 transmits the peak IDs of peaks other than diagonal peaks included in the detected continuous peak group to the third noise removal unit 16 as noise data.
[0101] 連続ピーク群検出部 17は、主に緩和の遅く強度の強いメチルシグナルや側鎖のシ グナルの近傍で生じるベースラインのゆがみとして観測されるノイズを検出するもので ある。パルススキーム中で各軸に設定された周波数依存的展開時間のハードウェア 的あるいはソフトウェア的遅延時間および NMRプローブ、レシーバーが受信する際 に生じる遅延時間によりフーリエ変換後の多次元 NMRスペクトルにおける位相は通 常幾分ずれて 、る。これらの位相のずれは一般的に用いられて 、るスペクトルデータ 処理ソフトウェア上でユーザが微調整を行うことができる。し力しながら緩和の遅く強 度の強 、メチルシグナルや側鎖のシグナルが存在する場合、これらのシグナルの位 相を完全に合わせることは大変困難な場合が多ぐそれらのシグナルの近傍では完 全に調整できない位相のずれがベースラインをゆがめ多くのノイズピークを生じる。こ れらのタイプのノイズをティルノイズと呼ぶ。図 15にティルノイズの一例を示す。 [0101] The continuous peak group detection unit 17 mainly detects noise that is observed as a methyl signal that is slow to relax and has a high intensity or a base line distortion generated near a side chain signal. The phase in the multidimensional NMR spectrum after Fourier transform is generally determined by the hardware or software delay time of the frequency-dependent expansion time set for each axis in the pulse scheme and the delay time generated when the NMR probe and receiver receive. Always a little off. These phase shifts are commonly used and can be fine-tuned by the user on spectral data processing software. In the presence of strong and slow-relaxing, methyl or side-chain signals, it is often very difficult to perfectly align these signals. A phase shift that cannot be completely adjusted distorts the baseline and causes many noise peaks. These types of noise are called tile noise. Fig. 15 shows an example of till noise.
[0102] 第 3のノイズ除去部 18は、連続ピーク群検出部 17からノイズデータを受信する。第 3のノイズ除去部 18は、記憶部 12からピークテーブルのデータを読み出し、ノイズに 該当するピークの情報をピークテーブルから除去し、ノイズに該当するピークの情報 を除去した新たなピークテーブルを記憶部 12に送信する。  [0102] The third noise removing unit 18 receives the noise data from the continuous peak group detecting unit 17. The third noise removing unit 18 reads the data of the peak table from the storage unit 12, removes the information of the peak corresponding to the noise from the peak table, and stores the new peak table from which the information of the peak corresponding to the noise is removed. Send to Part 12.
[0103] 非対角ピーク群検出部 19は、対角ピークから y軸方向に所定の個数以上のピーク がほぼ直線状に並ぶ対角ピーク以外のピーク群を非対角ピーク群として検出し、非 対角ピーク群に含まれるピークの情報を符号決定部 20に送信する。  [0103] The off-diagonal peak group detection unit 19 detects a off-diagonal peak group other than a diagonal peak in which a predetermined number or more peaks are arranged substantially linearly in the y-axis direction from the diagonal peak, The information on the peaks included in the off-diagonal peak group is transmitted to the code determination unit 20.
[0104] 符号決定部 20は、検出された非対角ピーク群について、正負のどちらのピークを 多く含むかを判別し、多く含まれるピークの符号を当該非対角ピーク群の符号として 決定する。符号決定部 20は、非対角ピーク群について決定された符合と異なる符合 を有するピークのピーク IDをノイズデータとして第 4のノイズ除去部 21に送信する。  [0104] The sign determination unit 20 determines which of the detected non-diagonal peak groups contains more positive or negative peaks, and determines the sign of the peak that is more contained as the sign of the off-diagonal peak group. . The sign determination unit 20 transmits the peak ID of a peak having a sign different from the sign determined for the off-diagonal peak group to the fourth noise removal unit 21 as noise data.
[0105] 対角ピーク力も y軸方向に向力つてシグナル列として観測される非対角ピーク群は 原理的には同じ位相のシグナルであり、非対角ピーク群に含まれる真の NOEピーク はピーク強度の符号が同一の符号となる。したがって、このピーク強度の符号が異な るピークは明らかなノイズである。符号決定部 20は、このピーク強度の符号が異なる ピークを異符号ノイズとして検出するものである。図 16に異符号ノイズの一例を示す [0105] The off-diagonal peak group, which is also observed as a signal train with the diagonal peak force directed in the y-axis direction, is a signal of the same phase in principle, and the true NOE peak included in the off-diagonal peak group Is the same sign of the peak intensity. Therefore, peaks having different signs of the peak intensities are apparent noise. The sign determination unit 20 detects a peak having a different sign of the peak intensity as a different sign noise. Figure 16 shows an example of different sign noise
[0106] 第 4のノイズ除去部 21は、符号決定部 20からノイズデータを受信する。第 4のノイズ 除去部 21は、記憶部 12からピークテーブルのデータを読み出し、ノイズに該当する ピークの情報をピークテーブルから除去し、ノイズに該当するピークの情報を除去し た新たなピークテーブルを記憶部 12に送信する。 The fourth noise removing unit 21 receives the noise data from the code determining unit 20. The fourth noise removing unit 21 reads the data of the peak table from the storage unit 12, removes the information of the peak corresponding to the noise from the peak table, and creates a new peak table from which the information of the peak corresponding to the noise is removed. It is transmitted to the storage unit 12.
[0107] ウォーターノイズ検出部 22は、ピークテーブルのな力から軽水由来のノイズに相当 するピークを検出する。軽水由来のノイズは、主に軽水シグナルを中心し、 ±0. 1-0 . 2ppmにおよぶ領域に通常 10000— 20000個ほどのノイズとなって現れるものであ る。ウォーターノイズ検出部 22は、これに相当するピークを検出し、ノイズに該当する ピークのピーク IDをノイズデータとして第 5のノイズ除去部 23に送信する。  [0107] Water noise detection section 22 detects a peak corresponding to noise derived from light water from the power of the peak table. The noise originating from light water mainly appears in the light water signal, and usually appears as about 10,000 to 20000 noises in the range of ± 0.1-0.2 ppm. The water noise detection unit 22 detects a peak corresponding to this, and transmits the peak ID of the peak corresponding to the noise to the fifth noise removal unit 23 as noise data.
[0108] 第 5のノイズ除去部 23は、記憶部 12からピークテーブルのデータを読み出し、ノィ ズに該当するピークの情報をピークテーブルから除去し、ノイズに該当するピークの 情報を除去した新たなピークテーブルを記憶部 12に送信する。  [0108] The fifth noise removing unit 23 reads the data of the peak table from the storage unit 12, removes the information of the peak corresponding to the noise from the peak table, and removes the information of the peak corresponding to the noise. The peak table is transmitted to the storage unit 12.
[0109] 図 17に、第 3の実施の形態に力かるノイズフィルター装置によってノイズを除去する フローチャートを示す。なお、第 1の実施の形態と同一の処理については、同一の符 号を付し、説明を省略することにする。  FIG. 17 shows a flowchart for removing noise by a noise filter device according to the third embodiment. Note that the same processes as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0110] (インコンプリートデカップリングノイズ ウイグルノイズ除去)  [0110] (Incomplete decoupling noise, Uighur noise removal)
マスクフィルター方法によってノイズを除去した後 (ステップ S16)、ピーク対検出部 15は、記憶部 12からピークテーブルを読み出し、このピークテーブルからピーク対を 検出する (ステップ S 20)。  After removing the noise by the mask filter method (step S16), the peak pair detection unit 15 reads the peak table from the storage unit 12, and detects the peak pair from the peak table (step S20).
[0111] 図 18に、ピーク対の検出のフローチャートを示す。まず、ピーク対検出部 15は、ピ ークテーブル力 ピーク強度の強い順に所定の個数だけピークを上位ピークとして抽 出し、上位ピークテーブルを作成する (ステップ S200)。ピーク対検出部 15は、抽出 した上位ピークにピーク強度の強い順にピーク ID「s」(sは自然数)を付ける。そして、 各上位ピーク sについて、 3次元基準座標(C (s) , C (s) , C (s) )、各軸方向の半 値幅 (w (s) , w (s) , w (s) )、および、ピーク強度 I (s)を対応させて上位ピークテFIG. 18 shows a flowchart of peak pair detection. First, the peak pair detecting unit 15 extracts a predetermined number of peaks as upper peaks in descending order of peak table force and peak intensity, and creates an upper peak table (step S200). The peak pair detection unit 15 assigns peak IDs “s” (s is a natural number) to the extracted upper peaks in descending order of peak intensity. Then, for each upper peak s, three-dimensional reference coordinates (C (s), C (s), C (s)) and half of each axis direction The upper peak peak value corresponding to the value range (w (s), w (s), w (s)) and the peak intensity I (s).
H HC N H HC N
一ブルを作成する。図 19に上位ピークテーブルの一例を示す。抽出する上位ピーク の個数はユーザが決定することができる力 通常のタンパク質の 3次元 NMRスぺタト ルでは、上位 20— 30個程度の上位ピークを抽出することが好ましい。  Create a Bull. Fig. 19 shows an example of the upper peak table. The number of upper peaks to be extracted is a force that can be determined by the user. It is preferable to extract about 20 to 30 upper peaks in a normal three-dimensional NMR spectrum of a protein.
[0112] 次に、上位ピークテーブルに含まれるすべての上位ピークについて、ピークテープ ルの中力もピーク対を検出する。まず、ピーク対を検出する上位ピークを、最もピーク 強度の強い上位ピーク 1に設定する (ステップ S 201)。そして、設定した上位ピークに つ 、て、ピークテーブルの中力もピーク対を検索する(ステップ S 203)。  [0112] Next, for all the upper peaks included in the upper peak table, the peak force of the peak table also detects a peak pair. First, the upper peak for detecting a peak pair is set as the upper peak 1 having the highest peak intensity (step S201). Then, for the set upper peak, a peak pair is also searched for the intermediate strength of the peak table (step S203).
[0113] ピーク対の検出は、設定した上位ピークについて、 X軸、 y軸、 z軸のいずれかの軸 方向に対して対称的な座標に位置し、同等のピーク強度を有するような 2つのピーク nおよび nの組み合わせをピークテーブルの中力 検索することにより行う。  [0113] Peak pair detection is performed for two peaks that are located at coordinates that are symmetric with respect to any of the X-axis, y-axis, and z-axis directions and that have the same peak intensity. This is done by searching the peak table for a combination of peaks n and n.
1 2  1 2
[0114] ピークテーブル中における 2つのピーク nおよび nがピーク対であるかどうかの評価  [0114] Evaluation of whether two peaks n and n in the peak table are a peak pair
1 2  1 2
は下記の手順によって行う。まずピーク nおよび nがそれぞれ上位ピーク sについて X  Is performed according to the following procedure. First, the peaks n and n are X
1 2  1 2
軸、 y軸、 z軸のいずれかの軸方向に対して対称的な位置に出現するピークであるか どうかを判定する。ピーク nが上位ピーク sとほぼ同じ y軸ライン上に存在する力否かの 評価は、 0か 1を結果とする下記の関数 L (n, s)で与えられる。この関数 L (n, s)  Determine whether the peak appears at a position that is symmetrical with respect to any of the x, y, and z axes. The evaluation of whether force is present on the y-axis line where peak n is almost the same as the upper peak s is given by the following function L (n, s), which results in 0 or 1. This function L (n, s)
Η,Ν Η,Ν によって評価値が 1となるピーク ηは上位ピーク sとほぼ同じ y軸ライン上に存在するこ とを意味し、評価値が 0となるピーク nは上位ピーク sと異なる y軸ライン上に存在する ことを意味する。  The peak η at which the evaluation value is 1 due to Ν, Ν Η, ほ ぼ means that it is on the same y-axis line as the upper peak s, and the peak n at which the evaluation value is 0 is different from the upper peak s y It means that it exists on the axis line.
[0115] [数 7]  [0115] [Number 7]
0 if |CH (n) - CH (s)| > tH + wH (n) + wH (s) 0 if | C H (n)-C H (s) |> t H + w H (n) + w H (s)
or |CN(n) - CN (s)| > tN + wN(n) + wN(s)or | C N (n)-C N (s) |> t N + w N (n) + w N (s)
Figure imgf000029_0001
Figure imgf000029_0001
1 if |CH (n) - CH (s)| < tH + wH (n) + wH (s) 1 if | C H (n)-C H (s) | <t H + w H (n) + w H (s)
[and |CN (n)― CN (s)| < tN + wN(n) + wN(s) [and | C N (n)-C N (s) | <t N + w N (n) + w N (s)
[0116] x軸、 z軸ラインに対して同様に検討するにはそれぞれ下記の関数 L (n, s)、 L [0116] Similarly, for the x-axis and z-axis lines, the following functions L (n, s) and L
HC,N  HC, N
(n, s)を用いて検討する。  Consider using (n, s).
[0117] [数 8] 0 if |CHC (n)― CHC (s)| > tHC + wHC(n) + wHC (s) [0117] [Number 8] 0 if | C HC (n)-C HC (s) |> t HC + w HC (n) + w HC (s)
or |CN (n) - CN (s)| > tN + wN(n) + wN(s)or | C N (n)-C N (s) |> t N + w N (n) + w N (s)
Figure imgf000030_0001
Figure imgf000030_0001
1 if |CHC(n)-CHC(s)| < t HC + WHC (n) + WHC (S) and |CN (n) - CN(s)| < tN + wN(n) + wN (s) 1 if | C HC (n) -C HC (s) | <t HC + W HC (n) + W HC ( S ) and | C N (n)-C N (s) | <t N + w N (n) + w N (s)
[0118] [数 9] [0118] [Number 9]
0 if |CH (n) - CH (s)| > tH + wH (n) + wH (s) 0 if | C H (n)-C H (s) |> t H + w H (n) + w H (s)
or |CHc (n)― CHC (s)| > tHC + wHC (n) + wHC (s)o r | C H c ( n )-C HC (s) |> t HC + w HC (n) + w HC (s)
Figure imgf000030_0002
Figure imgf000030_0002
1 if |CH (n) - CH (s)| < t H + wH (n) + wH (s) 1 if | C H (n)-C H (s) | <t H + w H (n) + w H (s)
and |CHC(n)— CHC(s)|≤t HC + WHC (n) + wHC(s) and | C HC (n) — C HC (s) | ≤t HC + W HC (n) + w HC (s)
[0119] ここで用いられる閾値 t 、 t 、 tは測定条件等に応じてユーザが適宜設定すること [0119] The threshold values t 1, t 2, and t 3 used here are appropriately set by the user according to measurement conditions and the like.
H HC N  H HC N
ができる。例えば、 600— 800MHzの NMRで測定されたスペクトルで適切なノイズ検 索を行うには、それぞれ 0. 01ppm、 0. 02ppm、 0. Ippmの値を使用することが好 ましい。  Can do. For example, to perform an appropriate noise search on spectra measured by NMR at 600-800 MHz, it is preferable to use the values 0.01 ppm, 0.02 ppm, and 0.1 ppm, respectively.
[0120] 続 、て関数 P (n, s)を用いて、 y軸ライン上に存在することが確認されたピーク n  [0120] Then, using the function P (n, s), the peak n confirmed to exist on the y-axis line
HC  HC
が上位ピーク sと y軸ライン上で十分近 、距離にあるピークであることを評価する。この 関数 P (n, s)によって評価値が 1となるピーク nは y軸ライン上で上位ピーク sと十分 Evaluate that is the peak that is sufficiently close and far from the upper peak s on the y-axis line. The peak n whose evaluation value is 1 by this function P (n, s) is sufficient as the upper peak s on the y-axis line.
HC HC
近 、距離にあるピークであることを意味し、評価値が 0となるピーク nは上位ピーク sか ら離れた位置に存在するピークであることを意味する。  It means that the peak is close to the distance, and the peak n whose evaluation value is 0 means that the peak exists at a position distant from the upper peak s.
[0121] [数 10]  [0121] [Number 10]
0 if |CHC (n)— CHC (s)| > 1HC + wHC (n) + wHC (s)0 if | C HC (n) — C HC (s) |> 1 HC + w HC (n) + w HC (s)
Figure imgf000030_0003
Figure imgf000030_0003
1 if |C He (n)— CHC (s)| IHC + WHC (N) + WHC (S) 1 if | C He ( n ) — C HC ( s ) | IHC + W HC ( N ) + W HC ( S )
[0122] x軸、 z軸ラインに対して同様に検討するには関数 P (n, s)、 P (n, s)を用いる。 [0122] The functions P (n, s) and P (n, s) are used in the same way for the x-axis and z-axis lines.
[0123] [数 11] 0 if |CH (n) - CH (s)| > 1H + wH (n) + wH (s) [0123] [Number 11] 0 if | C H (n)-C H (s) |> 1 H + w H (n) + w H (s)
PH(n,s) = P H (n, s) =
1 if |CH (n) - CH (s)| < 1H + w H (n) + wH (s) 1 if | C H (n)-C H (s) | <1 H + w H (n) + w H (s)
[0124] [数 12]
Figure imgf000031_0001
[0124] [Number 12]
Figure imgf000031_0001
[0125] ここで用いられる閾値 1、1 、 1は、測定条件等に応じてユーザが適宜設定すること [0125] The thresholds 1, 1, and 1 used here are appropriately set by the user according to measurement conditions and the like.
H HC N  H HC N
ができる。例えば、 600— 800MHzの NMRで測定されたスペクトルで適切なノイズ検 索を行うには、それぞれ、 1. Oppm, 1. Oppm, 1. Oppmの値を使用する。  Can do. For example, to perform an appropriate noise search on spectra measured by NMR from 600 to 800 MHz, use the values of 1.Oppm, 1.Oppm, and 1.Oppm, respectively.
[0126] 次に、上位ピーク sについて確認された X軸、 y軸、 z軸のいずれかの軸方向に対し てほぼ同じライン上に存在するピークの中から、任意に 2つのピーク nおよび nを選 [0126] Next, two peaks n and n are arbitrarily selected from the peaks on the substantially same line in any of the X-axis, y-axis, and z-axis directions confirmed for the upper peak s. Choose
1 2 び、任意に選んだ 2つのピーク nおよび nが y軸ライン上で上位ピーク sを基準とした  1 2 and two arbitrarily selected peaks n and n are based on the upper peak s on the y-axis line.
1 2  1 2
位置対称性を検討する。任意に選んだ 2つのピーク nおよび nが y軸ライン上でピー  Consider positional symmetry. The two randomly selected peaks n and n are peaks on the y-axis line.
1 2  1 2
ク sを基準とした位置対称性を評価する関数は関数 S (n , n , s)で与えられる。この  The function that evaluates the positional symmetry with respect to s is given by the function S (n, n, s). this
HC 1 2  HC 1 2
関数 S (n , n , s)によって評価値が 1となるピーク nおよび nの組み合わせは、 y軸 The combination of peaks n and n for which the evaluation value is 1 by the function S (n, n, s) is the y-axis
HC 1 2 1 2 HC 1 2 1 2
ライン上で上位ピーク sを基準とした位置対称性を有することを意味し、評価値が 0と なるピーク nおよび nの組み合わせは、位置対称性を有しないことを意味する。  It means that the line has positional symmetry based on the upper peak s on the line, and a combination of peaks n and n with an evaluation value of 0 means that there is no positional symmetry.
1 2  1 2
[0127] [数 13]  [0127] [Number 13]
SHC (nl,n2 ' S) : S HC ( n l, n 2 'S):
Figure imgf000031_0002
Figure imgf000031_0002
[0128] ここでの評価閾値 rl、 r2の値は、 1前後の値 (rl < l、 r2> l)であり、ユーザが適宜 設定することができる力 それぞれ 0. 9、 1. 1とすることが好ましい。 [0128] The values of the evaluation thresholds rl and r2 here are values around 1 (rl <l, r2> l), and the forces that can be appropriately set by the user are 0.9 and 1.1, respectively. Is preferred.
[0129] X軸、 z軸ラインに対して同様に検討するには関数 S (n , n , s)、 S (n , n , s)を  [0129] Similarly, for the X-axis and z-axis lines, the functions S (n, n, s) and S (n, n, s)
H 1 2 N 1 2 用いる。 [0130] [数 14] Use H 1 2 N 1 2. [0130] [Number 14]
Figure imgf000032_0001
Figure imgf000032_0001
[0131] [数 15] [0131] [Number 15]
SN (nl,n2' S)S N ( n l, n 2 ' S )
Figure imgf000032_0002
Figure imgf000032_0002
[0132] さらに任意に選んだ 2つのピーク nおよび nが強度対称性を有するかを評価する。 [0132] Further, it is evaluated whether two arbitrarily selected peaks n and n have intensity symmetry.
1 2  1 2
2つのピーク nおよび n力 強度対称性を有するか否かの評価は関数 W(n , n )に  The two peaks n and n are evaluated by the function W (n, n) to determine whether they have intensity symmetry.
1 2 1 2 よって与えられる。この関数 W(n , n )によって評価値が 1となるピーク nおよび nの  Given by 1 2 1 2 This function W (n, n) calculates the peaks n and n for which the evaluation value is 1.
1 2 1 2 組み合わせは、強度対称性を有することを意味し、評価値が 0となるピーク nおよび n  1 2 1 2 combination means having intensity symmetry, peaks n and n for which the evaluation value is 0
1 の組み合わせは、強度対称性を有しな!/、ことを意味する。  The combination of 1 means that there is no intensity symmetry! /.
2  2
[0133] [数 16]  [0133] [Number 16]
W(nい n,) =
Figure imgf000032_0003
W (n or n,) =
Figure imgf000032_0003
1 if I >vl and <v2 1 if I > vl and < v2
[0134] ここでの評価閾値 vl、 v2の値は、 1前後の値 (vl < 1、 ν2> 1)であり、ユーザが適 宜設定することができる力 それぞれ 0. 8、 1. 2とすることが好ましい。 The values of the evaluation thresholds vl and v2 here are values around 1 (vl <1, ν2> 1), and the forces that the user can appropriately set are 0.8 and 1.2, respectively. Is preferred.
[0135] ピーク対検出部 15は、 X軸、 y軸、 z軸の各軸方向について、全ての関数を以下の 式のように乗じた値を算出し、 X軸、 y軸、 z軸のいずれかの軸方向についてこの乗じ た値が 0とならないピーク nおよび nの組み合わせをピーク対として検出する。  [0135] The peak pair detection unit 15 calculates a value obtained by multiplying all the functions in the X-axis, y-axis, and z-axis directions by the following equation, and calculates the X-axis, y-axis, and z-axis values. A combination of peaks n and n for which the multiplied value does not become 0 in any axis direction is detected as a peak pair.
[0136] [数 17] y軸: LHN(nl,s)*LHN(n2,s)*PHC(n1,s)*PHC(n2,s)*SHC(n1,n2,s)*W(n1,n2)≠0 x軸: LHC,N(nい s)*LHC,N(n2,s)*PH(nい s)*PH(n2,s)*SH(nい n2,s)*W(nい n2)≠0 z軸: LHHC(n1;s)*LHHC(n2!s)*PN(n1;s)*PN(n2,s)*SN(n1,n2,s)*W(n1,n2)≠0 [0136] [Number 17] y-axis: L HN (n l , s) * L HN (n 2 s) * P HC (n 1 s) * P HC (n 2 s) * S HC (n 1 , n 2 s) * W (n 1 , n 2 ) ≠ 0 x-axis: L HC , N (n i s) * L HC , N (n 2 s) * P H (n i s) * P H (n 2 , s ) * S H (n n 2 , s) * W (n n 2 ) ≠ 0 z-axis: L HHC (n 1; s) * L HHC (n 2! S) * P N (n 1; s ) * P N (n 2 , s) * S N (n 1 , n 2 , s) * W (n 1 , n 2 ) ≠ 0
[0137] ピーク対検出部 15は、ピーク対を検出した場合 (ステップ S204 Yes)、検出したピ 一ク対を構成するピーク nおよび nのピーク IDをノイズデータとして第 2のノイズ除去 [0137] When a peak pair is detected (Step S204 Yes), the peak pair detection unit 15 uses the peak IDs of the peaks n and n constituting the detected peak pair as noise data to perform second noise removal.
1 2  1 2
部 16に送信する(ステップ S205)。  The information is transmitted to the unit 16 (step S205).
[0138] 設定した上位ピーク sについて、ピーク対が検出されな力つた場合 (ステップ S204 No)またはピーク対を検出しノイズデータを送信した場合 (ステップ S 204 Yes,ステ ップ S205)、ピーク対検出部 15は、上位ピークテーブルの中のすべての上位ピーク についてピーク対を検索したかを判断する(ステップ S206)。上位ピークテーブルの 中にまだピーク対を検索して 、な 、上位ピークが存在する場合は (ステップ S 206 N o)、上位ピークテーブルの中力もピーク強度の順位がひとつ下位に相当する上位ピ ークを選択し、ピーク対を検出する上位ピークとして設定する (ステップ S207)。そし て、設定した上位ピークについて、ピーク対を検出する処理を繰り返す (ステップ S20 3)。上位ピークテーブルの中のすべての上位ピーク検索した場合は (ステップ S 206[0138] For the set upper peak s, when a peak pair is not detected (step S204 No) or when a peak pair is detected and noise data is transmitted (step S204 Yes, step S205), the peak pair is detected. The detecting unit 15 determines whether a peak pair has been searched for all upper peaks in the upper peak table (step S206). If a peak pair is still found in the upper peak table, and there is a higher peak (step S206 No), the upper peak table in which the strength of the upper peak table corresponds to the lower rank of the peak intensity by one level. Then, a peak is selected and set as an upper peak for detecting a peak pair (step S207). Then, the process of detecting a peak pair is repeated for the set upper peak (step S203). If all upper peaks in the upper peak table have been searched (step S206
Yes)、ピーク対検出部 15は、ピーク対検出が完了したものとしてピーク対検出処 理を終了する。 Yes), the peak pair detection unit 15 determines that the peak pair detection is completed, and ends the peak pair detection processing.
[0139] 第 2のノイズ除去部 16は、記憶部 12からピークテーブルのデータを読み出し、ノィ ズに該当するピークの情報をピークテーブルから除去する(図 17、ステップ S21)。第 2のノイズ除去部 16は、ノイズに該当するピークの情報を除去した新たなピークテー ブルを記憶部 12に送信する。  [0139] The second noise removing unit 16 reads the data of the peak table from the storage unit 12, and removes the information of the peak corresponding to the noise from the peak table (FIG. 17, step S21). The second noise removing unit 16 transmits to the storage unit 12 a new peak table from which information on the peak corresponding to the noise has been removed.
[0140] (ティルノイズ除去)  [0140] (Til noise removal)
次に連続ピーク群検出部 17は、記憶部 12に保存されたピークテーブルのデータを 読み出し、ピークテーブルの中から、対角ピークに相当するピークを検出し、対角ピ ークから y軸方向に向かって所定の範囲内に所定の個数以上の同じ符号を持つピー クがほぼ直線上に並ぶ連続ピーク群を検出する (ステップ S22)。  Next, the continuous peak group detection unit 17 reads the data of the peak table stored in the storage unit 12, detects a peak corresponding to a diagonal peak from the peak table, and detects the peak corresponding to the diagonal peak in the y-axis direction. Then, a continuous peak group in which a predetermined number or more of peaks having the same sign are arranged substantially on a straight line within a predetermined range is detected (step S22).
[0141] 図 20に連続ピーク群の検出のフローチャートを示す。連続ピーク群検出部 17は、 ピークテーブルの中から、対角ピークに相当するピークを抽出し、対角ピークテープ ルを作成する(ステップ S220)。 FIG. 20 shows a flowchart for detecting a continuous peak group. The continuous peak group detection unit 17 extracts a peak corresponding to the diagonal peak from the peak table, and File (step S220).
[0142] ピーク nが対角ピークである力否かの評価は、関数 X (n)によって与えられる。こ  [0142] The evaluation of whether or not the force is such that the peak n is a diagonal peak is given by a function X (n). This
Η,Ν  Η, Ν
の関数 X (η)によって評価値が 1となるピーク ηは、対角ピークであることを意味し、  The peak η at which the evaluation value becomes 1 by the function X (η) of means a diagonal peak,
Η,Ν  Η, Ν
この関数 X (η)によって評価値が 0となるピーク ηは、非対角ピークであることを意味  The peak η at which the evaluation value becomes 0 by this function X (η) is a non-diagonal peak
Η,Ν  Η, Ν
する。  I do.
[0143] [数 18]  [0143] [Number 18]
0 if |CH(n) - CHC (n)| > t + wH(n) + wHC (n) 0 if | C H (n)-C HC (n) |> t + w H (n) + w HC (n)
ΧΗ.Ν (η) = 1 if |CH(n) - CHC (n)| < t + wH(n) + wHC (n) Η Η .Ν ( η ) = 1 if | C H (n)-C HC (n) | <t + w H (n) + w HC (n)
[0144] ここで用いられる閾値 tは 0. Olppmの値を使用することが好ましい。 The threshold value t used here is preferably a value of 0.1 Olppm.
[0145] 連続ピーク群検出部 17は、対角ピークであると判定したピークについて、対角ピー ク IDとして「a」(aは自然数)を付け、各対角ピークについて、対角ピーク ID、 3次元基 準座標 (C (a) , C (a) , C (a) )、各軸方向の半値幅 (w (a) , w (a) , w (a) )、 [0145] The continuous peak group detection unit 17 assigns "a" (a is a natural number) as a diagonal peak ID to a peak determined to be a diagonal peak, and assigns a diagonal peak ID, 3D reference coordinates (C (a), C (a), C (a)), FWHM in each axis direction (w (a), w (a), w (a)),
H HC N H HC N  H HC N H HC N
およびピーク強度 I (a)を対応させて、ピークテーブルを作成する。図 21に対角ピーク テープノレの一例を示す。  A peak table is created in correspondence with the peak intensity I (a). Figure 21 shows an example of the diagonal peak taper.
[0146] 次に、対角ピークテーブルに含まれる各対角ピークについて、対角ピーク ID順に 連続ピーク群を検出する。まず、連続ピーク群を検出する対角ピークを、対角ピーク 1 に設定する (ステップ S221)。そして、ピークテーブルの中から、設定した対角ピーク について、対角ピークから y軸方向に向力つて所定の範囲内に所定の個数以上の同 じ符号を持つピークがほぼ直線上に連続的に並ぶ連続ピーク群を検出する (ステツ プ S222)。  [0146] Next, for each diagonal peak included in the diagonal peak table, a continuous peak group is detected in the order of diagonal peak IDs. First, a diagonal peak for detecting a continuous peak group is set to diagonal peak 1 (step S221). From the peak table, for the set diagonal peak, peaks having a predetermined number or more of the same sign within a predetermined range and directed in the y-axis direction from the diagonal peak continuously substantially linearly. The continuous peak group arranged is detected (step S222).
[0147] ピーク nが対角ピーク aに対する連続ピーク群に含まれるか否かの評価は、以下の 方法によって行う。  [0147] Whether the peak n is included in the continuous peak group with respect to the diagonal peak a is evaluated by the following method.
[0148] まず、ピーク nが対角ピーク aから y軸方向に向力つてほぼ直線上に並んでいるか否 かを評価する。ピーク nが対角ピーク aから y軸方向に向力つてほぼ直線上に並んで いる力否かの評価は、 0か 1を結果とする下記の関数 L (n, a)で与えられる。この関  [0148] First, it is evaluated whether or not the peak n is arranged substantially linearly from the diagonal peak a in the y-axis direction. The evaluation of whether or not the force of the peak n is substantially linear on the diagonal peak a from the diagonal peak a in the y-axis direction is given by the following function L (n, a) that results in 0 or 1. This function
Η,Ν  Η, Ν
¾L (n, a)によって評価値が 1となるピーク nは対角ピーク aから y軸方向に向かつ ピ ー ク The peak n whose evaluation value is 1 due to L (n, a) is directed from the diagonal peak a to the y-axis direction and
Η,Ν Η, Ν
てほぼ直線上に並んでいることを意味し、評価値が 0となるピーク ηは対角ピーク aと 同じ y軸ライン上には存在しな 、ことを意味する。 Means that they are almost aligned on a straight line, and the peak η where the evaluation value is 0 is the diagonal peak a It does not exist on the same y-axis line.
[0149] [数 19] [0149] [Number 19]
Figure imgf000035_0001
Figure imgf000035_0001
[0150] x軸、 z軸ラインに対して同様に検討するには関数 L (n, a)、L (n, a)を用い [0150] Similarly, for the x-axis and z-axis lines, the functions L (n, a) and L (n, a) are used.
HC,N H,HC  HC, NH, HC
る。  The
[0151] [数 20]  [0151] [number 20]
「0 if |CHC (n)― CHC (a)| > tHC + HC (n) + wHC (a) or |CN(n) - CN(a)| > tN + wN(n) + wN(a)"0 if | C HC (n)-C HC (a) |> t HC + HC (n) + w HC (a) or | C N (n)-C N (a) |> t N + w N (n) + w N (a)
Figure imgf000035_0002
1 if |CHC (n)― CHC (a)| < tHC + wHC (n) + wHC (a)
Figure imgf000035_0002
1 if | C HC (n)-C HC (a) | <t HC + w HC (n) + w HC (a)
and |CN(n) - CN(a)| < tN + wN(n) + wN(a) and | C N (n)-C N (a) | <t N + w N (n) + w N (a)
[0152] [数 21] [0152] [Number 21]
0 if |CH (n) - CH (a)| > tH + wH (n) + wH (a) 0 if | C H (n)-C H (a) |> t H + w H (n) + w H (a)
0r |CHC (n) - C HC (a)| > lHC + wHC(n) + wHC(a)
Figure imgf000035_0003
0r | C HC ( n )-C HC (a) |> l HC + w HC (n) + w HC (a)
Figure imgf000035_0003
1 if |CH(n) - CH(a)| < tH + wH(n) + wH(a) 1 if | C H (n)-C H (a) | <t H + w H (n) + w H (a)
[and |CHC(n) - CHC(a)| < tHC + wHC(n) + wHC(a) で用いられる閾値 t 、 t 、 tはそれぞれ 0. 01ppm、 0. 02ppm、 0. lppmの値 を使用することが好ましい。 [and | C HC (n)-C HC (a) | <t HC + w HC (n) + w HC (a) have thresholds t, t, and t of 0.01 ppm, 0.02 ppm, and 0, respectively. It is preferred to use lppm values.
さらにピーク nが対角ピーク aに y軸方向に所定の範囲内に存在するか否かを評価 する。ピーク nが対角ピーク aに y軸方向に所定の範囲内に存在する力否かの評価は 、 0か 1を結果とする下記の関数 D (n, a)で与えられる。関数 D (n, a)によって評  Furthermore, it is evaluated whether the peak n exists within a predetermined range in the y-axis direction with respect to the diagonal peak a. The evaluation of whether or not the force of the peak n is within the predetermined range in the y-axis direction at the diagonal peak a is given by the following function D (n, a), which results in 0 or 1. Evaluated by the function D (n, a)
HC HC  HC HC
価値が 1となるピーク nは対角ピーク aから十分に近い距離にあることを意味する。ま た、評価値が 0となるピーク nは対角ピーク aからの距離が遠いことを意味し、対角ピ ーク aのティルノイズである可能性が否定される。 Peak n with a value of 1 means that it is sufficiently close to diagonal peak a. Peak n with an evaluation value of 0 means that the distance from diagonal peak a is long, and The possibility that the noise is a tilt noise of a is denied.
[数 22]  [Number 22]
0 if |CHc (n)一 CHc (a)| > dHC + wHC(n) + wHC(a) 0 if | C Hc ( n ) -C Hc ( a ) |> d HC + w HC (n) + w HC (a)
DHC(n,a) = D HC (n, a) =
1 if|CHC(n)— CHC(a)|≤dHC + W HC (n) + wHC(a) 1 if | C HC (n) — C HC (a) | ≤d HC + W HC (n) + w HC (a)
[0156] x軸、 z軸ラインに対して同様に検討するには関数 D (n, a)、 D (n, a)を用いる。 [0156] Similarly, functions D (n, a) and D (n, a) are used for the x-axis and z-axis lines.
H N  H N
[0157] [数 23]  [0157] [Number 23]
0 if |CH (n) - CH (a)| > dH + wH (n) + wH (a) 0 if | C H (n)-C H (a) |> d H + w H (n) + w H (a)
DH(n,a) = D H (n, a) =
{ 1 if |CH (n) - CH (a)| < dH + wH (n) + wH (a) {1 if | C H (n)-C H (a) | <d H + w H (n) + w H (a)
[0158] [数 24] [0158] [Number 24]
0 if |CN(n) - CN(a)| > dN + wN(n) + wN(a) 0 if | C N (n)-C N (a) |> d N + w N (n) + w N (a)
DN(n,a) = D N (n, a) =
1 if|CN(n) - CN(a)|≤dN + wN(n) + wN(a) 1 if | C N (n)-C N (a) | ≤d N + w N (n) + w N (a)
[0159] ここで d、 d 、 dは閾値であり、ユーザが設定することができる。例えば、 600-80 Here, d, d, and d are thresholds, which can be set by the user. For example, 600-80
H HC N H HC N
OMHzの NMRで測定されたスペクトルで適切なノイズ検索を行うには、 3. Oppm、 3 . Oppm、 3. Oppmとすること力好まし!/、。 To perform an appropriate noise search on the spectrum measured by OMHz NMR, 3. Oppm, 3. Oppm, 3. Oppm is preferred!
[0160] ここで対角ピーク aについて、 L (n, a) * D (n, a) = 1となるピークの集団をピー [0160] Here, for the diagonal peak a, the peak group where L (n, a) * D (n, a) = 1 is peaked.
H,N HC  H, N HC
ク群 rとおき、ピーク群 rに含まれるピークについて rl、 r2、 · · ·とピーク IDを付け、ピー ク群 rに含まれるピークが連続的に重なり合っているかを評価する。  Set peak group r, assign peak IDs rl, r2, ... for the peaks contained in peak group r, and evaluate whether the peaks contained in peak group r overlap continuously.
[0161] ピーク群 rに含まれるピーク rlとピーク r2が y軸上で重なっているかどうかの評価は、 0か 1を結果とする下記の関数 O (rl, r2)で与えられる。 [0161] The evaluation of whether the peak rl and the peak r2 included in the peak group r overlap on the y-axis is given by the following function O (rl, r2) that results in 0 or 1.
[0162] [数 25]  [0162] [Number 25]
0 if |CHC(rl) - CHC(r2)| > vHC + wHC(rl) + wHC(r2)0 if | C HC (rl)-C HC (r2) |> v HC + w HC (rl) + w HC (r2)
0HC(rl,r2) = 0 HC (rl, r 2) =
1 if |CHC(rl) - CHC(r2)| < vHC + wHC(rl) + wHC(r2) 1 if | C HC (rl)-C HC (r2) | <v HC + w HC (rl) + w HC (r2)
[0163] x軸、 z軸ラインに対して同様に検討するには、それぞれ、 L (n, a) * D (n, a) = 1、または、 L (n, a) * D (n, a) = 1となるピークの集団をピーク群 rとおき、ピ [0163] To similarly consider the x-axis and z-axis lines, L (n, a) * D (n, a) = 1 or L (n, a) * D (n, a) = 1
H,HC N  H, HC N
ーク群 rに含まれるピーク rlとピーク r2について、下記の関数 O (rl, r2)、0 (rl, r  For the peak rl and peak r2 included in the peak group r, the following functions O (rl, r2) and 0 (rl, r
H N  H N
2)を用いて y軸の場合と同様にして連続ピーク群を検出する。  The continuous peak group is detected in the same manner as in the case of the y-axis using 2).
[数 26]  [Number 26]
0 if |CH(rl) - CH(r2)| > vH + wH(rl) + w 0 if | C H (rl)-C H (r2) |> v H + w H (rl) + w
0H(rl,r2) = 0 H (rl, r2) =
1 if |CH(rl) - CH(r2)| < vH + wH(rl) + w 1 if | C H (rl)-C H (r2) | <v H + w H (rl) + w
[0165] [数 27] [0165] [Number 27]
0 if |CN(rl)一 CN(r2)| > vN + wN(rl) + wN(r2) 0 if | C N (rl) -C N (r2) |> v N + w N (rl) + w N (r2)
0N(rl,r2) = 0 N (rl, r2) =
.1 if |CN (rl)一 CN (r2)| < vN + wN (rl) + wN (r2) .1 if | C N (rl)-C N (r2) | <v N + w N (rl) + w N (r2)
[0166] ここでのピーク間重複度に対する閾値 v、 V 、 Vは、ユーザが設定する値であり、 [0166] Here, the thresholds v, V, and V for the degree of overlap between peaks are values set by the user,
H HC N  H HC N
例えば、 600MHzの NMR装置で 0. 01ppm、 0. 03ppm、 0. Ippmを使用すること が好ましい。検索されたピークの組 rl、 に対して、ピーク rlあるいはピーク r2に重 なる第 3のピーク r3を同様に検索する。この操作を繰返すことでピーク群 rの中力も連 続的に重なるピーク、 rl、 r2、 r3、 r4 を検索する。連続的に重なるピーク の合計数が基準値 (通常 8個に設定)を超えると連続ピーク群として検出される。  For example, it is preferable to use 0.01 ppm, 0.03 ppm, and 0.1 ppm in a 600 MHz NMR apparatus. A third peak r3 overlapping with the peak rl or the peak r2 is similarly searched for the searched peak set rl. By repeating this operation, peaks rl, r2, r3, and r4 are searched for the peaks r that overlap continuously. If the total number of consecutive overlapping peaks exceeds the reference value (usually set to 8), it is detected as a continuous peak group.
[0167] 連続ピーク群検出部 17は、連続ピーク群を検出した場合 (ステップ S223 Yes) , 検出した連続ピーク群に含まれるピークのうち対角ピークを除くすべてのピークのピ ーク IDをノイズデータとして第 3のノイズ除去部 18に送信する(ステップ S224)。  [0167] When a continuous peak group is detected (Step S223 Yes), the continuous peak group detection unit 17 determines the peak IDs of all the peaks included in the detected continuous peak group except for the diagonal peaks as noise. The data is transmitted to the third noise removing unit 18 as data (step S224).
[0168] 設定した対角ピーク aについて、連続ピーク群が検出されな力つた場合 (ステップ S 223 No)または連続ピーク群を検出しノイズデータを送信した場合 (ステップ S223 Yes,ステップ S224)、連続ピーク群検出部 17は、対角ピークテーブルの中のす ベての対角ピークについて連続ピーク群を検索したかを判断する (ステップ S225)。 対角ピークテーブルの中にまだ連続ピーク群を検索して 、な 、対角ピークが存在す る場合は (ステップ S225 No)、対角ピーク IDをひとつ上げ、連続ピーク群を検索す る対角ピークとして設定する (ステップ S226)。そして、設定した対角ピークについて 、連続ピーク群を検索する(ステップ S222)。対角ピークテーブルの中のすべての対 角ピークについて連続ピーク群を検索した場合は (ステップ S225 Yes)、連続ピー ク群検出部 17は、連続ピーク群検索が完了したものとして連続ピーク群検索処理を 終了する。 [0168] For the set diagonal peak a, if a continuous peak group is not detected (step S223 No) or if a continuous peak group is detected and noise data is transmitted (step S223 Yes, step S224), the continuous The peak group detection unit 17 determines whether a continuous peak group has been searched for all diagonal peaks in the diagonal peak table (step S225). If the continuous peak group is still searched in the diagonal peak table, and there is a diagonal peak (step S225 No), the diagonal peak ID is increased by one and the diagonal to search for the continuous peak group is increased. Set as peak (step S226). Then, a continuous peak group is searched for the set diagonal peak (step S222). All pairs in the diagonal peak table If a continuous peak group has been searched for the angular peak (Step S225 Yes), the continuous peak group detection unit 17 determines that the continuous peak group search has been completed and ends the continuous peak group search processing.
[0169] なお、ここでは、対角ピークテーブル中のすべての対角ピークについて連続ピーク 群を検索した力 対角ピークテーブルに含まれる対角ピークのうち、ピーク強度の強 V、対角ピークにつ 、てのみ連続ピーク群を検索してもよ!/、。連続ピーク群を検索する 対角ピークの個数はユーザが設定することができるが、通常、ピーク強度の強い順に 、上位 20— 30個程度の対角ピークにっ 、て検索することが好まし!/、。  [0169] Here, the force obtained by searching a continuous peak group for all the diagonal peaks in the diagonal peak table, among the diagonal peaks included in the diagonal peak table, the strongest peak intensity V and the diagonal peak. You can also search for a group of continuous peaks only! Searching for consecutive peak groups The number of diagonal peaks can be set by the user. Usually, however, it is preferable to search the top 20 to 30 diagonal peaks in descending order of peak intensity! / ,.
[0170] 第 3のノイズ除去部 18は、記憶部 12からピークテーブルのデータを読み出し、ノィ ズに該当するピークの情報をピークテーブルから除去する(図 17、ステップ S23)。第 3のノイズ除去部 18は、ノイズに該当するピークの情報を除去した新たなピークテー ブルを記憶部 12に送信する。  [0170] The third noise removing unit 18 reads the data of the peak table from the storage unit 12, and removes the information of the peak corresponding to the noise from the peak table (FIG. 17, step S23). The third noise removing unit 18 transmits to the storage unit 12 a new peak table from which information on the peak corresponding to the noise has been removed.
[0171] (異符号ノイズ除去)  [0171] (Removal of different sign noise)
次に非対角ピーク群検出部 19は、記憶部 12に保存されたピークテーブルのデー タを読み出し、ピークテーブルの中力も対角ピークに該当するピークを抽出し、対角 ピークから y軸方向に向力つて所定の個数以上のピークがほぼ直線上に並ぶ非対角 ピーク群を検出する(図 17、ステップ S24)。  Next, the non-diagonal peak group detection unit 19 reads the data of the peak table stored in the storage unit 12, extracts the peak corresponding to the diagonal peak also in the peak table, and calculates the peak from the diagonal peak in the y-axis direction. Then, a non-diagonal peak group in which a predetermined number or more of peaks are arranged substantially on a straight line is detected (FIG. 17, step S24).
[0172] 図 22に非対角ピーク群の検出のフローチャートを示す。なお、図 20で説明した連 続ピーク群の検出のフローチャートと同様の処理については、同一の符号を付し、説 明を省略することにする。  FIG. 22 shows a flowchart of detecting a non-diagonal peak group. Note that the same processes as those in the flowchart of detecting the continuous peak group described in FIG. 20 are denoted by the same reference numerals, and description thereof will be omitted.
[0173] まず、非対角ピーク群検出部 17は、非対角ピーク群を検出する対角ピークを、対角 ピーク 1に設定する (ステップ S221)。そして、ピークテーブルの中から、設定した対 角ピークについて、対角ピークから y軸方向に向力つて所定の個数以上のピークがほ ぼ直線上に並ぶ非対角ピーク群を検出する (ステップ S250)。  First, the off-diagonal peak group detection unit 17 sets the diagonal peak for detecting the off-diagonal peak group to diagonal peak 1 (step S221). Then, from the peak table, for the set diagonal peaks, a non-diagonal peak group in which a predetermined number or more of peaks are arranged substantially linearly in the y-axis direction from the diagonal peak is detected (step S250). ).
[0174] ピーク nが対角ピーク aに対する非対角ピーク群に含まれるか否かの評価は、以下 の方法によって行う。  [0174] The following method is used to evaluate whether peak n is included in the off-diagonal peak group for diagonal peak a.
[0175] まず、ピーク nが対角ピーク aから y軸方向に向力つてほぼ直線上に並んでいるか否 かを評価する。ピーク nが対角ピーク aから y軸方向に向力つてほぼ直線上に並んで いる力否かの評価は、 0か 1を結果とする下記の関数 L (n, a)で与えられる。この関 First, it is evaluated whether or not the peak n is arranged substantially linearly from the diagonal peak a in the y-axis direction. Peak n is aligned almost linearly from diagonal peak a in the y-axis direction. The evaluation of the presence or absence of the force is given by the following function L (n, a), which results in 0 or 1. This function
Η,Ν  Η, Ν
¾L (n, a)によって評価値が 1となるピーク nは対角ピーク aから y軸方向に向かつ ピ ー ク The peak n whose evaluation value is 1 due to L (n, a) is directed from the diagonal peak a to the y-axis direction and
Η,Ν Η, Ν
てほぼ直線上に並んでいることを意味し、評価値が 0となるピーク ηは対角ピーク aと 同じ y軸ライン上には存在しな 、ことを意味する。  Means that the peak η where the evaluation value is 0 does not exist on the same y-axis line as the diagonal peak a.
[0176] [数 28]  [0176] [Number 28]
「0 if |CH(n) - CH(a)| > tH + wH(n) + wH(a) "0 if | C H (n)-C H (a) |> t H + w H (n) + w H (a)
or |CN(n) - CN(a)| > tN + wN(n) + wN(a) or | C N (n)-C N (a) |> t N + w N (n) + w N (a)
LH,N(n,a) = L H, N (n, a) =
1 if |CH (n) - CH (a)| < t H + wH (n) + wH (a) 1 if | C H (n)-C H (a) | <t H + w H (n) + w H (a)
and |CN (n) - CN (a)| < tN + wN(n) + wN (a) and | C N (n)-C N (a) | <t N + w N (n) + w N (a)
[0177] ここで用いられる閾値 t、 tはユーザが適宜設定することができる。例えば、 600-8 [0177] The threshold values t and t used here can be appropriately set by the user. For example, 600-8
H N H N
OOMHzの NMRで測定されたスペクトルで適切なノイズ検索を行うには、それぞれ 0 . 01ppm、0. lppmの値を使用することが好ましい。 To perform an appropriate noise search on the spectrum measured by OOMHz NMR, it is preferable to use 0.01 ppm and 0.1 ppm, respectively.
[0178] 非対角ピーク群検出部 17は、対角ピーク aと同じ y軸ライン上にある対角ピーク aを 除くピークの集団を対角ピーク aに対する非対角ピーク群として検出し、当該非対角 ピーク群に含まれる X個のピークについて r、 r、 · · 'rとピーク IDを付け、ピーク IDを [0178] The off-diagonal peak group detection unit 17 detects a group of peaks other than the diagonal peak a on the same y-axis line as the diagonal peak a as a off-diagonal peak group for the diagonal peak a, and For the X peaks included in the off-diagonal peak group, assign r , r,
1 2  1 2
符号決定部 20に送信する (ステップ S251)。  The data is transmitted to the code determination unit 20 (step S251).
[0179] 符号決定部 20は、対角ピークを除いた非対角ピーク群が正負のどちらのピーク nを 多く含むかを判別し、多く含まれるピークの符号を当該非対角ピーク群の符号として 決定する(ステップ S252)。 [0179] The sign determination unit 20 determines which of the positive and negative peaks n the off-diagonal peak group excluding the diagonal peaks includes, and determines the sign of the most contained peak n as the sign of the off-diagonal peak group. Is determined (step S252).
[0180] 非対角ピーク群の符号は下記の判定式 S (a)によって決定される。 [0180] The sign of the off-diagonal peak group is determined by the following determination equation S (a).
HC  HC
[0181] [数 29]  [0181] [Number 29]
1 if LH N (^ ^) = 1 811(1 1(Γ; ) > 0 1 if L HN (^ ^) = 1 811 (1 1 (Γ;)> 0
PHc (r, , ) = SHC (a) = ∑Ρ η , &) PHc (r,,) = S HC (a) = ∑Ρ η, &)
一 1 if LH N (Γ; , a) = 1 and Ι( ) < 0 x i=i 1 1 if L HN (Γ;, a) = 1 and Ι () <0 xi = i
[0182] S (a) >0. 7のとき符号は正に、あるいは S (a)く 0. 7のとき符号は負にピーク [0182] The sign peaks positively when S (a)> 0.7, or negative sign when S (a)> 0.7
HC HC  HC HC
群の正しい符号が決定される。 | S (a) I ≤0. 7の場合は符合が決定できないこと  The correct sign of the group is determined. | S (a) If I ≤0.7, sign cannot be determined
HC  HC
になる。このとき、個々のピークの 7割以上のピークが同符合を示すとき、多いほうの ピークの符号を当該非対角ピーク群の符号として決定する。 become. At this time, when 70% or more of the individual peaks show the same sign, The sign of the peak is determined as the sign of the off-diagonal peak group.
[0183] 非対角ピーク群の符号が正の場合 (ステップ S253 Yes)、符号決定部 20は、非 対角ピーク群に含まれるピークの中から、負のピーク強度を有するピークのピーク ID をノイズデータとして第 4のノイズ除去部 21に送信する (ステップ S254)。  [0183] If the sign of the off-diagonal peak group is positive (Step S253 Yes), the sign determination unit 20 determines the peak ID of the peak having the negative peak intensity from among the peaks included in the off-diagonal peak group. The data is transmitted to the fourth noise removing unit 21 as noise data (step S254).
[0184] 非対角ピーク群の符号が負の場合 (ステップ S253 No)、符号決定部 20は、非対 角ピーク群に含まれるピークの中から、正のピーク強度を有するピークのピーク IDを ノイズデータとして第 4のノイズ除去部 21に送信する (ステップ S255)。  [0184] If the sign of the off-diagonal peak group is negative (No in step S253), the sign determination unit 20 determines the peak ID of the peak having a positive peak intensity from among the peaks included in the off-diagonal peak group. The data is transmitted to the fourth noise removing unit 21 as noise data (step S255).
[0185] 非対角ピーク群検出部 19は、対角ピークテーブルの中のすべての対角ピークにつ Vヽて非対角ピーク群を検索したかを判断する (ステップ S256)。対角ピークテーブル の中にまだ非対角ピーク群を検索して!/ヽな 、対角ピークが存在する場合は (ステップ S256 No)、対角ピーク IDをひとつ上げ、非対角ピーク群を検索する対角ピークと して設定する (ステップ S226)。そして、非対角ピーク群検出部 19は、設定した対角 ピークについて、非対角ピーク群を検出する (ステップ S250)。対角ピークテーブル の中のすべての対角ピークについて非対角ピーク群を検索した場合は (ステップ S2 56 Yes)、非対角ピーク群検出部 19は、非対角ピーク群検出が完了したものとして 非対角ピーク群検出処理を終了する。  The off-diagonal peak group detection unit 19 determines whether the off-diagonal peak group has been searched for all the diagonal peaks in the diagonal peak table (step S256). Search the non-diagonal peak group in the diagonal peak table yet! / ヽ If there is a diagonal peak (No in step S256), increase the diagonal peak ID by one and delete the non-diagonal peak group. Set as the diagonal peak to search (step S226). Then, the non-diagonal peak group detection unit 19 detects a non-diagonal peak group for the set diagonal peak (step S250). If the non-diagonal peak group has been searched for all the diagonal peaks in the diagonal peak table (step S2 56 Yes), the non-diagonal peak group detection unit 19 determines that the non-diagonal peak group detection has been completed. Then, the off-diagonal peak group detection processing ends.
[0186] 第 4のノイズ除去部 21は、記憶部 12からピークテーブルのデータを読み出し、ノィ ズに該当するピークの情報をピークテーブルから除去する(図 17、ステップ S26)。第 4のノイズ除去部 21は、ノイズに該当するピークの情報を除去した新たなピークテー ブルを記憶部 12に送信する。  [0186] The fourth noise removing unit 21 reads the data of the peak table from the storage unit 12, and removes the information of the peak corresponding to the noise from the peak table (FIG. 17, step S26). The fourth noise removing unit 21 transmits a new peak table from which information of the peak corresponding to the noise has been removed to the storage unit 12.
[0187] (ウォーターノイズ除去)  [0187] (Water noise removal)
次にウォーターノイズ検出部 22は、記憶部 12に保存されたピークテーブルのデー タを読み出し、ピークテーブルの中力も軽水由来のノイズに相当するピークを検出す る(図 17、ステップ S27)。  Next, the water noise detection unit 22 reads the data of the peak table stored in the storage unit 12, and detects a peak corresponding to the noise derived from light water in the peak table (FIG. 17, step S27).
[0188] ウォーターノイズ検出部 22は、 C =4. 7ppm近傍に観測される軽水シグナルの中  [0188] The water noise detector 22 detects the light water signal observed near C = 4.7 ppm.
H  H
心 X座標を決定し、ピークテーブル力 X座標がこの中心 X座標力 所定の閾値の範 囲内にあるピークを検出する。ここで、閾値はユーザが適宜設定することができるが、 通常 0. 1-0. 2ppmの範囲で設定することが好ましい。 [0189] ウォーターノイズ検出部 22は、ピークテーブルの中力も軽水由来のノイズに相当す るピークをノイズと判定し、ノイズに該当するピークのピーク IDをノイズデータとして第 5のノイズ除去部 23に送信する。 The center X coordinate is determined, and a peak whose peak table force X coordinate is within the range of this center X coordinate force predetermined threshold value is detected. Here, the threshold can be appropriately set by the user, but is preferably set in the range of 0.1 to 0.2 ppm. [0189] The water noise detection unit 22 determines the peak corresponding to the light water-derived noise as the noise in the peak table as noise, and sends the peak ID of the peak corresponding to the noise to the fifth noise removal unit 23 as noise data. Send.
[0190] 第 5のノイズ除去部 23は、記憶部 12からピークテーブルのデータを読み出し、ノィ ズに該当するピークの情報をピークテーブルから除去する(図 17、ステップ S28)。第 5のノイズ除去部 23は、ノイズに該当するピークの情報を除去した新たなピークテー ブルを記憶部 12に送信する。  [0190] The fifth noise removing unit 23 reads the data of the peak table from the storage unit 12, and removes the information of the peak corresponding to the noise from the peak table (FIG. 17, step S28). The fifth noise removing unit 23 transmits to the storage unit 12 a new peak table from which information on the peak corresponding to the noise has been removed.
[0191] 図 23— 1、図 24— 1、図 25— 1、図 26— 1は、図 2の1 H— 13N HSQC— NOESYスぺ タトルの部分拡大図である。 [0191] FIG. 23- 1, FIG. 24 1, Fig. 25 1, Fig. 26-1 is a partially enlarged view of the 1 H- 13 N HSQC- NOESY space Tuttle in FIG.
図 23— 1は、インコンプリートデカップリングノイズおよびウイグルノイズを含む部分 拡大図であり、インコンプリートデカップリングノイズまたはウイグルノイズに該当するピ ークに Xを、 NOEピークに *を付してある。また、図 24— 1は、ティルノイズを含む部 分拡大図であり、ティルノイズに該当するピークに Xを付してある。図 25— 1は、異符 号ノイズを含む部分拡大図であり、異符号ノイズに該当するピークに Xを、 NOEピー クに *を付してある。また、図 26— 1は、ウォーターノイズを含む部分拡大図であり、ゥ オーターノイズの存在領域の境界線に矢印を付してある。  Figure 23-1 is an enlarged view of the part including incomplete decoupling noise and Uyghur noise, where X corresponding to the incomplete decoupling noise or Uighur noise and * for the NOE peak. Fig. 24-1 is an enlarged view of a part including the tile noise, and an X is added to the peak corresponding to the tile noise. Fig. 25-1 is a partially enlarged view including the sign noise, where the peak corresponding to the sign noise is marked with X, and the NOE peak is marked with *. FIG. 26A is a partially enlarged view including water noise, and an arrow is attached to the boundary line of the existence region of the water noise.
図 23—2、図 24— 2、図 25—2、図 26— 2は、それぞれ図 23— 1、図 24— 1、図 25— 1、 図 26— 1から、第 3の実施の形態のノイズフィルター装置によってノイズを除去した後 の図である。図 23— 2、図 24— 2、図 25—2、図 26— 2をそれぞれ図 23—1、図 24— 1、 図 25— 1、図 26— 1と比較すると、第 3の実施の形態のノイズフィルター装置によって インコンプリートデカップリングノイズ、ウイグルノイズ、ティルノイズ、異符号ノイズ、ゥ オーターノイズの各ノイズが効率的に除去されていることが分かる。  Figure 23-2, Figure 24-2, Figure 25-2, and Figure 26-2 show the third embodiment from Figure 23-1, Figure 24-1, Figure 25-1, and Figure 26-1, respectively. FIG. 4 is a diagram after noise has been removed by a noise filter device. Fig. 23-2, Fig. 24-2, Fig. 25-2, and Fig. 26-2 are compared with Fig. 23-1, Fig. 24-1, Fig. 25-1, and Fig. 26-1, respectively. It can be seen that the incomplete decoupling noise, the Uighur noise, the Til noise, the different sign noise, and the ゥ -outer noise are efficiently removed by the noise filter device.
[0192] 以上述べた第 3の実施の形態のノイズフィルター装置およびノイズフィルター方法 は、インコンプリートデカップリングノイズ、ウイグルノイズ、ティルノイズ、異符号ノイズ 、ウォーターノイズ等、マスクフィルタ一法では除去しきれない各種のノイズを、シグナ ルの帰属前に効率的かつ正確に除去できる。  The noise filter device and the noise filter method according to the third embodiment described above can be completely removed by a mask filter method, such as incomplete decoupling noise, wiggle noise, tile noise, different sign noise, and water noise. Noise can be removed efficiently and accurately before signal assignment.
[0193] なお、第 3の実施の形態においては、(1)オフシグナルノイズ、(2)インコンプリート デカップリングノイズ ウイグルノイズ、(3)ティルノイズ、(4)異符号ノイズ、(5)ウォー ターノイズの順にノイズを除去した力 ノイズの除去順序はこれに限定されるものでは なぐノイズ検索を効率的に行うため適宜ノイズの除去順序を入れ替えることができる のは言うまでもない。 In the third embodiment, (1) off signal noise, (2) incomplete decoupling noise, wiggle noise, (3) tile noise, (4) different sign noise, and (5) war signal noise The order of removing noise is not limited to this. It goes without saying that the order of removing noise can be changed as appropriate for efficient noise search.
[0194] また、実施の形態 1から実施の形態 3で説明したノイズフィルター方法は、ノイズフィ ルター方法をコンピュータに実行させるためのノイズフィルタープログラムとして提供 することができる。実施の形態 1から実施の形態 3のノイズフィルタープログラムは、ィ ンストール可能な形式又は実行可能な形式のファイルで CD— ROM、フロッピー (R) ディスク (FD)、 DVD等のコンピュータで読み取り可能な記録媒体に記録されて提供 される。また、実施の形態 1から実施の形態 3のノイズフィルタープログラムを、インタ 一ネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダ ゥンロードさせることにより提供するように構成しても良 、。  [0194] Further, the noise filter method described in Embodiments 1 to 3 can be provided as a noise filter program for causing a computer to execute the noise filter method. The noise filter program according to the first to third embodiments is a computer-readable recording medium such as a CD-ROM, a floppy (R) disk (FD), or a DVD in an installable or executable file. It is provided by being recorded on a medium. Further, the noise filter program according to the first to third embodiments may be stored on a computer connected to a network such as the Internet, and provided by being downloaded via the network. ,.
産業上の利用可能性  Industrial applicability
[0195] 以上のように、本発明にカゝかるノイズフィルター装置、ノイズフィルター方法およびノ ィズフィルタープログラムは、 3次元異種核相関 NMR ^ベクトルにおいて、シグナル の帰属を必要とすることなく、簡単かつ短時間にノイズを除去することが可能である。 力かる特徴を有する本発明のノイズフィルター装置、ノイズフィルター方法およびノィ ズフィルタープログラムは、タンパク質の NMR立体構造解析の分野にお!、て極めて 有用である。 [0195] As described above, the noise filter device, the noise filter method, and the noise filter program according to the present invention can be easily performed without requiring signal assignment in a three-dimensional heteronuclear correlation NMR ^ vector. In addition, noise can be removed in a short time. The noise filter device, the noise filter method, and the noise filter program of the present invention having powerful features are extremely useful in the field of protein NMR three-dimensional structure analysis.

Claims

請求の範囲 The scope of the claims
[1] 直接観測している1 H核の化学シフト値 C に対応する X軸、時間展開して得られる1 [1] X-axis corresponding to chemical shift value C of 1 H nucleus directly observed, obtained by time expansion 1
H  H
H核以外の異種核の化学シフト値 Cに対応する z軸、および、その他のパラメータに  Chemical shift values of heterogeneous nuclei other than H nuclei The z-axis corresponding to C and other parameters
X  X
対応する y軸の 3軸カゝらなる 3次元異種核相関 NMR ^ベクトルカゝらノイズを除去する ノイズフィルター装置であって、  A noise filter device for removing three-dimensional heteronuclear correlation NMR ^ vector color noise corresponding to the three-axis color of the y-axis,
前記 3次元異種核相関 NMRスペクトルにおいて、予め定められた個数以上のピー クが前記 y軸の軸方向にほぼ直線上に並んで観測されるピーク群 G (m) (mは自然 数)の X— z平面基準座標(P (m) , P (m) )をマスクピーク mの座標と定義し、このマ  In the three-dimensional heteronuclear correlation NMR spectrum, the peaks G (m) (m is a natural number) of the peak group G (m) (m is a natural number) in which a predetermined number or more peaks are observed in a substantially straight line in the axial direction of the y-axis. — Define the z-plane reference coordinates (P (m), P (m)) as the coordinates of the mask peak m.
H X  H X
スクピーク mの座標を予め記録したマスクファイルを有し、  It has a mask file in which the coordinates of the peak m are recorded in advance,
前記 3次元異種核相関 NMRスペクトルにおける各ピーク n (nは自然数)について ピーク nごとにそのピーク nの X— z平面基準座標(C (n) , C (n) )を対応させたピーク  For each peak n (n is a natural number) in the three-dimensional heteronuclear correlation NMR spectrum, a peak corresponding to the X-z plane reference coordinates (C (n), C (n)) of each peak n for each peak n
H X  H X
テーブルを記憶する記憶手段と、  Storage means for storing a table;
前記ピークテーブルの各ピーク nについて、当該ピーク nの X— z平面基準座標(C (  For each peak n in the peak table, the X-z plane reference coordinates (C (
H  H
n), C (n) )と前記マスクファイルの各マスクピーク mの座標(P (m), P (m) )との座 n), C (n)) and the coordinates (P (m), P (m)) of each mask peak m in the mask file
X H X X H X
標差 (C (n)-P (m) , C (n)-P (m) )を算出し、当該座標差が所定の範囲内に入 Calculate the difference (C (n) -P (m), C (n) -P (m)), and enter the coordinate difference within a predetermined range.
H H X X H H X X
るマスクピークをこのピーク nの対応マスクピークとして検索する対応マスクピーク検索 手段と、  Corresponding mask peak searching means for searching for a corresponding mask peak as a corresponding mask peak of this peak n;
前記対応マスクピーク検索手段にぉ 、て、対応マスクピークが検索できな力つたピ ークをノイズと判別し、ノイズと判別されたピークの情報を前記記憶手段に記憶された 前記ピークテーブルから除去する第 1のノイズ除去手段と、  The corresponding mask peak searching means determines that a peak that cannot be searched for a corresponding mask peak is noise, and removes information on the peak determined to be noise from the peak table stored in the storage means. A first noise removing means,
を備えることを特徴とするノイズフィルター装置。  A noise filter device comprising:
[2] 前記ピークテーブルを作成するピークテーブル作成手段を備えたことを特徴とする 請求項 1に記載のノイズフィルター装置。 [2] The noise filter device according to claim 1, further comprising a peak table creating means for creating the peak table.
[3] 前記マスクファイルを作成するマスクファイル作成手段を備えたことを特徴とする請 求項 1または 2に記載のノイズフィルター装置。 [3] The noise filter device according to claim 1 or 2, further comprising a mask file creating means for creating the mask file.
[4] 前記所定の範囲は、各ピーク nの半値幅に対応して設定されることを特徴とする請 求項 1一 3のいずれか一項に記載のノイズフィルター装置。 [4] The noise filter device according to any one of claims 13 to 13, wherein the predetermined range is set corresponding to a half width of each peak n.
[5] 前記 z軸は、 15N核または13 C核の化学シフト値に対応する軸であることを特徴とする 請求項 1一 4のいずれか一項に記載のノイズフィルター装置。 [5] The z-axis is an axis corresponding to a chemical shift value of a 15 N nucleus or a 13 C nucleus. The noise filter device according to claim 14.
[6] 前記 3次元異種核相関 NMRスペクトルは、 3次元 HSQC— NOESYスペクトルであ り、前記 y軸は時間展開して得られる1 H核の化学シフト値 C に対応することを特徴と [6] The three-dimensional heteronuclear correlation NMR spectrum is a three-dimensional HSQC-NOESY spectrum, and the y-axis corresponds to a chemical shift value C of 1 H nucleus obtained by time expansion.
HC  HC
する請求項 1一 5のいずれか一項に記載のノイズフィルター装置。  The noise filter device according to any one of claims 11 to 15, wherein:
[7] 前記ピークテーブル力もピーク強度の強 、順に所定の個数だけピークを上位ピー クとして抽出し、抽出した上位ピークごとに、当該上位ピークを中心として、前記 X軸、 y軸および z軸の 3軸のうちいずれかの軸方向に対してほぼ対称的な座標に存在し、 かつ、ほぼ同じピーク強度を有する一対のピークのピーク対を検出するピーク対検出 手段と、 [7] The peak table force is also the intensity of the peak intensity, and a predetermined number of peaks are sequentially extracted as upper peaks, and for each of the extracted upper peaks, the X-axis, y-axis, and z-axis are centered on the upper peak. Peak pair detecting means for detecting a peak pair of a pair of peaks present at coordinates substantially symmetric with respect to any one of the three axis directions and having substantially the same peak intensity,
前記ピーク対を構成するピークをノイズと判別し、ノイズと判別したピークの情報を 前記記憶手段に記憶された前記ピークテーブルから除去する第 2のノイズ除去手段 と、  A second noise removing unit that determines peaks forming the peak pair as noise, and removes information of the peak determined as noise from the peak table stored in the storage unit;
を備えたことを特徴とする請求項 1一 6のいずれか一項に記載のノイズフィルター装 置。  17. The noise filter device according to claim 16, comprising:
[8] 前記ピークテーブルからほぼ同じ値の X座標および y座標を有するピークを対角ピ ークとして抽出し、抽出した対角ピークごとに、当該対角ピークから、前記 X軸、 y軸お よび z軸の 3軸のうちいずれかの軸方向に対して同じ符号を持つピークが連続するピ 一ク群を連続ピーク群として検出する連続ピーク群検出手段と、  [8] Peaks having substantially the same values of the X and y coordinates are extracted from the peak table as diagonal peaks, and for each of the extracted diagonal peaks, the X axis, y axis, and A continuous peak group detecting means for detecting, as a continuous peak group, a group of peaks having consecutive peaks having the same sign in any one of the three axis directions of the z axis and the z axis;
前記連続ピーク群に含まれる対角ピーク以外のピークをノイズと判別し、ノイズと判 別したピークの情報を前記記憶手段に記憶された前記ピークテーブルから除去する 第 3のノイズ除去手段と、  Third noise removing means for determining peaks other than diagonal peaks included in the continuous peak group as noise, and removing information of the peak determined as noise from the peak table stored in the storage means;
を備えることを特徴とする請求項 1一 7のいずれか一項に記載のノイズフィルター装 置。  The noise filter device according to any one of claims 17 to 17, further comprising:
[9] 前記ピークテーブルから、ほぼ同じ値の X座標および y座標を有するピークを対角ピ ークとして抽出し、抽出した対角ピークごとに当該対角ピークから前記 y軸の軸方向 に所定の個数以上のピークがほぼ直線状に並ぶ対角ピーク以外のピーク群を非対 角ピーク群として検出する非対角ピーク群検出手段と、  [9] From the peak table, peaks having substantially the same values of the X coordinate and the y coordinate are extracted as diagonal peaks, and for each extracted diagonal peak, a predetermined value is determined from the diagonal peak in the axial direction of the y axis. A non-diagonal peak group detecting means for detecting peak groups other than diagonal peaks in which peaks equal to or more than a number are arranged substantially linearly as non-diagonal peak groups;
検出された非対角ピーク群ごとに、当該非対角ピーク群が正負のどちらのピークを 多く含むかを判別し、多く含まれるピークの符号を当該非対角ピーク群の符号として 決定する符号決定手段と、 For each detected off-diagonal peak group, the off-diagonal peak group Sign determining means for judging whether or not the peak is included a lot, and determining the sign of the peak that is included as a sign of the off-diagonal peak group;
前記符号決定手段によって当該非対角ピーク群について決定された符合と、当該 非対角ピーク群に含まれる各ピークの符号とを比較し、当該非対角ピーク群につい て決定された符合と異なる符合を有するピークをノイズとして前記ピークテーブルから 除去する第 4のノイズ除去手段と、  The sign determined by the sign determining means for the off-diagonal peak group is compared with the sign of each peak included in the off-diagonal peak group, and is different from the sign determined for the off-diagonal peak group. Fourth noise removing means for removing a peak having a sign as noise from the peak table;
を備えたことを特徴とする請求項 5— 8のいずれか一項に記載のノイズフィルター装 置。  The noise filter device according to any one of claims 5 to 8, further comprising:
[10] さらに、軽水由来のノイズに該当するピークを前記ピークテーブルから除去する第 5 のノイズ除去手段を備えたことを特徴とする請求項 1一 9のいずれか一項に記載のノ ィズフィルター装置。  [10] The noise according to any one of [11] to [19], further comprising fifth noise removing means for removing a peak corresponding to noise derived from light water from the peak table. Filter device.
[11] 直接観測している1 H核の化学シフト値 C に対応する X軸、時間展開して得られる1 [11] X-axis corresponding to the chemical shift value C of 1 H nucleus directly observed, obtained by time expansion 1
H  H
H核以外の異種核の化学シフト値 Cに対応する z軸、および、その他のパラメータに  Chemical shift values of heterogeneous nuclei other than H nuclei The z-axis corresponding to C and other parameters
X  X
対応する y軸の 3軸カゝらなる 3次元異種核相関 NMR ^ベクトルカゝらノイズを除去する ノイズフィルター方法であって、  A noise filter method for removing three-dimensional heteronuclear correlation NMR ^ vector color noise corresponding to the three y-axis colors,
実測した前記 3次元異種核相関 NMRスペクトルから、所定のピーク強度以上のピ ークをピーク n (nは自然数)として抽出し、抽出したピークごとにそのピーク nの X— z平 面基準座標(C (n) , C (n) )を対応させてピークテーブルを作成するピークテープ  From the actually measured three-dimensional heteronuclear correlation NMR spectrum, a peak having a predetermined peak intensity or more is extracted as a peak n (n is a natural number), and for each extracted peak, the X-z plane reference coordinates of that peak n ( C (n), C (n)) corresponding peak tape to create a peak table
H X  H X
ル作成ステップと、  File creation step,
前記ピークテーブルを記憶する記憶ステップと、  A storing step of storing the peak table;
前記 3次元異種核相関 NMRスペクトルにおいて、予め定められた個数以上のピー クが前記 y軸の軸方向にほぼ直線上に並んで観測されるピーク群 G (m) (mは自然 数)につ ヽて、各ピーク群 G (m)の X— z平面基準座標 (P (m) , P (m) )を決定し、決  In the three-dimensional heteronuclear correlation NMR spectrum, a peak group G (m) (m is a natural number) in which more than a predetermined number of peaks are observed in a substantially straight line in the axial direction of the y-axis. Then, the X-z plane reference coordinates (P (m), P (m)) of each peak group G (m) are determined and determined.
H X  H X
定された各 X— z平面基準座標(P (m) , P (m) )をマスクピーク mの座標として記録し  Record the specified X-z plane reference coordinates (P (m), P (m)) as the coordinates of the mask peak m.
H X  H X
たマスクファイルを作成するマスクファイル作成ステップと、  Creating a mask file for creating a mask file,
前記ピークテーブルの各ピーク nについて、当該ピーク nの X— z平面基準座標(C (  For each peak n in the peak table, the X-z plane reference coordinates (C (
H  H
n) , C (n) )と前記各マスクピーク mの座標(P (m) , P (m) )との座標差 (C (n)— P n), C (n)) and the coordinate difference (C (n) —P (m) between the coordinates (P (m), P (m)) of each mask peak m.
X H X H H X H X H H
(m) , C (n)— P (m) )を算出し、前記マスクファイルのな力から当該座標差が予め定 められた範囲内に入るマスクピークをこのピーク nの対応マスクピークとして検索する 対応マスクピーク検索ステップと、 (m), C (n) —P (m)), and the coordinate difference is determined in advance from the force of the mask file. A corresponding mask peak search step of searching for a mask peak falling within the determined range as a corresponding mask peak of this peak n;
前記対応マスクピーク検索ステップにお 、て、対応マスクピークが検索できなかつ たピークをノイズと判別し、ノイズと判別されたピークの情報を前記記憶ステップにお いて記憶された前記ピークテーブルから除去する第 1のノイズ除去ステップと、 を含むことを特徴とするノイズフィルター方法。  In the corresponding mask peak search step, a peak for which a corresponding mask peak could not be searched is determined as noise, and information on the peak determined as noise is removed from the peak table stored in the storage step. A noise filtering method, comprising: a first noise removing step.
直接観測している1 H核の化学シフト値 C に対応する X軸、時間展開して得られる1 X-axis corresponding to chemical shift value C of 1 H nucleus directly observed, obtained by time expansion 1
H  H
H核以外の異種核の化学シフト値 Cに対応する z軸、および、その他のパラメータに  Chemical shift values of heterogeneous nuclei other than H nuclei The z-axis corresponding to C and other parameters
X  X
対応する y軸の 3軸カゝらなる 3次元異種核相関 NMR ^ベクトルカゝらノイズを除去する ノイズフィルター方法をコンピュータに実行させるプログラムであって、 A program for causing a computer to execute a noise filter method for removing three-dimensional heteronuclear correlation NMR ^ vector color noise corresponding to the three-axis color of the y-axis,
実測した前記 3次元異種核相関 NMRスペクトルから、所定のピーク強度以上のピ ークをピーク n (nは自然数)として抽出し、抽出したピークごとにそのピーク nの X— z平 面基準座標(C (n) , C (n) )を対応させてピークテーブルを作成するピークテープ  From the actually measured three-dimensional heteronuclear correlation NMR spectrum, a peak having a predetermined peak intensity or more is extracted as a peak n (n is a natural number), and for each extracted peak, the X-z plane reference coordinates of that peak n ( C (n), C (n)) corresponding peak tape to create a peak table
H X  H X
ル作成ステップと、 File creation step,
前記ピークテーブルを記憶する記憶ステップと、  A storing step of storing the peak table;
前記 3次元異種核相関 NMRスペクトルにおいて、予め定められた個数以上のピー クが前記 y軸の軸方向にほぼ直線上に並んで観測されるピーク群 G (m) (mは自然 数)につ ヽて、各ピーク群 G (m)の X— z平面基準座標 (P (m) , P (m) )を決定し、決  In the three-dimensional heteronuclear correlation NMR spectrum, a peak group G (m) (m is a natural number) in which more than a predetermined number of peaks are observed in a substantially straight line in the axial direction of the y-axis. Then, the X-z plane reference coordinates (P (m), P (m)) of each peak group G (m) are determined and determined.
H X  H X
定された各 X— z平面基準座標(P (m) , P (m) )をマスクピーク mの座標として記録し Record the specified X-z plane reference coordinates (P (m), P (m)) as the coordinates of the mask peak m.
H X  H X
たマスクファイルを作成するマスクファイル作成ステップと、 Creating a mask file for creating a mask file,
前記ピークテーブルの各ピーク nについて、当該ピーク nの X— z平面基準座標(C (  For each peak n in the peak table, the X-z plane reference coordinates (C (
H  H
n) , C (n) )と前記各マスクピーク mの座標(P (m) , P (m) )との座標差 (C (n)— Pn), C (n)) and the coordinate difference (C (n) —P (m) between the coordinates (P (m), P (m)) of each mask peak m.
X H X H H X H X H H
(m) , C (n)— P (m) )を算出し、前記マスクファイルのな力から当該座標差が予め定 (m), C (n) —P (m)), and the coordinate difference is determined in advance from the force of the mask file.
X X X X
められた範囲内に入るマスクピークをこのピーク nの対応マスクピークとして検索する 対応マスクピーク検索ステップと、 A corresponding mask peak search step of searching for a mask peak falling within the determined range as a corresponding mask peak of this peak n;
前記対応マスクピーク検索ステップにお 、て、対応マスクピークが検索できなかつ たピークをノイズと判別し、ノイズと判別されたピークの情報を前記記憶ステップにお いて記憶された前記ピークテーブルから除去する第 1のノイズ除去ステップと、 をコンピュータに実行させることを特徴とするノイズフィルタープログラム。 In the corresponding mask peak search step, a peak for which a corresponding mask peak could not be searched is determined as noise, and information on the peak determined as noise is removed from the peak table stored in the storage step. A first denoising step; A noise filter program that causes a computer to execute the program.
PCT/JP2004/013811 2003-09-22 2004-09-22 Noise filter for three-dimensional heterogeneous nuclear correlation nmr spectrum, noise filter method, and noise filter program WO2005029109A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-330418 2003-09-22
JP2003330418A JP4381077B2 (en) 2003-09-22 2003-09-22 Noise filter device, noise filter method, and noise filter program in three-dimensional heteronuclear correlation NMR spectrum

Publications (1)

Publication Number Publication Date
WO2005029109A1 true WO2005029109A1 (en) 2005-03-31

Family

ID=34372992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013811 WO2005029109A1 (en) 2003-09-22 2004-09-22 Noise filter for three-dimensional heterogeneous nuclear correlation nmr spectrum, noise filter method, and noise filter program

Country Status (2)

Country Link
JP (1) JP4381077B2 (en)
WO (1) WO2005029109A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110751671A (en) * 2018-07-23 2020-02-04 中国科学院长春光学精密机械与物理研究所 A Target Tracking Method Based on Kernel Correlation Filtering and Motion Estimation
CN110785682A (en) * 2017-05-24 2020-02-11 斯伦贝谢技术有限公司 Fast measurement and interpretation of downhole multidimensional measurements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287452A (en) * 1988-05-13 1989-11-20 Hitachi Ltd Nuclear magnetic resonance spectroscope and automatic qualitative analysis
JP2000510243A (en) * 1996-05-15 2000-08-08 カラゲン コーポレーション Distance measuring method and apparatus by solid-state NMR
JP2003139832A (en) * 2001-10-31 2003-05-14 Hokkaido Univ NMR signal assignment support system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287452A (en) * 1988-05-13 1989-11-20 Hitachi Ltd Nuclear magnetic resonance spectroscope and automatic qualitative analysis
JP2000510243A (en) * 1996-05-15 2000-08-08 カラゲン コーポレーション Distance measuring method and apparatus by solid-state NMR
JP2003139832A (en) * 2001-10-31 2003-05-14 Hokkaido Univ NMR signal assignment support system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110785682A (en) * 2017-05-24 2020-02-11 斯伦贝谢技术有限公司 Fast measurement and interpretation of downhole multidimensional measurements
CN110785682B (en) * 2017-05-24 2022-08-26 斯伦贝谢技术有限公司 Rapid measurement and interpretation of downhole multi-dimensional measurements
CN110751671A (en) * 2018-07-23 2020-02-04 中国科学院长春光学精密机械与物理研究所 A Target Tracking Method Based on Kernel Correlation Filtering and Motion Estimation

Also Published As

Publication number Publication date
JP4381077B2 (en) 2009-12-09
JP2005098753A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
CN101221150B (en) Multi-frequency image processing for inspecting parts having complex geometric shapes
Koradi et al. Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY
Young et al. Automated spectral analysis II: application of wavelet shrinkage for characterization of non‐parameterized signals
Ubertini et al. Automated modal identification in operational conditions and its application to bridges
Feeney et al. First observational tests of eternal inflation: analysis methods and WMAP 7-year results
CN110956613B (en) Image quality-based target detection algorithm performance normalization evaluation method and system
US20100027848A1 (en) Structure-independent analysis of 3-D seismic random noise
WO2017071407A1 (en) Method and system for determining pcb positioning point
CN113079466B (en) Fingerprint database construction method, device, equipment and computer storage medium
WO2005029109A1 (en) Noise filter for three-dimensional heterogeneous nuclear correlation nmr spectrum, noise filter method, and noise filter program
CN116484184A (en) Method and device for enhancing partial discharge defect sample of power equipment
US11656199B2 (en) System and method for obtaining and analyzing flux leakage data in the inspection of oil and gas wells
Holland et al. Structural damping identification for mistuned bladed disks and blisks
CN109313700A (en) The adaptive signal detection of tracking data and synthesis
JP2005352543A (en) Template matching device
Fernández et al. Experimental evaluation of mass change approaches for scaling factors estimation
JP6599733B2 (en) Magnetic resonance apparatus and program
CN114252914B (en) A method and device for determining the distribution of a fracture system
RU2826188C1 (en) Underwater vehicle magnetic navigation method
JP4198690B2 (en) Noise measurement method, noise measurement program, and noise measurement device
CN119846072B (en) Anchor rod quality defect detection method
Monakhova et al. Methodology of chemometric modeling of spectrometric signals in the analysis of complex samples
CN107490460A (en) Method and apparatus for determining modal frequency
CN113050156B (en) Method and device for optimizing earthquake acquisition detection point in desert area
KR101162585B1 (en) Trianglulation, system, and storage using bias modelling of measured distance

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NA NI NO NZ OM PG PL PT RO RU SC SD SE SG SK SL SY TM TN TR TT TZ UA UG US UZ VC YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase