WO2005028590A1 - ガラスシンチレータ - Google Patents
ガラスシンチレータ Download PDFInfo
- Publication number
- WO2005028590A1 WO2005028590A1 PCT/JP2004/010223 JP2004010223W WO2005028590A1 WO 2005028590 A1 WO2005028590 A1 WO 2005028590A1 JP 2004010223 W JP2004010223 W JP 2004010223W WO 2005028590 A1 WO2005028590 A1 WO 2005028590A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- rare earth
- group
- rays
- scintillator
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 81
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 14
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 14
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 12
- 239000011159 matrix material Substances 0.000 claims abstract description 12
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 11
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 11
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 10
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052792 caesium Inorganic materials 0.000 claims abstract description 9
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 9
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 9
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 9
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 9
- 229910052701 rubidium Inorganic materials 0.000 claims abstract description 9
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 9
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 8
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 8
- 229910052689 Holmium Inorganic materials 0.000 claims abstract description 8
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 8
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 8
- 229910052775 Thulium Inorganic materials 0.000 claims abstract description 8
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 8
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 7
- 229910052765 Lutetium Inorganic materials 0.000 claims abstract description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 6
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 6
- 238000010894 electron beam technology Methods 0.000 claims description 11
- 239000000835 fiber Substances 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 abstract description 5
- 230000005855 radiation Effects 0.000 description 25
- 239000000203 mixture Substances 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 14
- 239000000463 material Substances 0.000 description 9
- 150000002910 rare earth metals Chemical class 0.000 description 9
- 239000012190 activator Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 239000002585 base Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000005865 ionizing radiation Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- -1 Tb〇 Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 125000004436 sodium atom Chemical group 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000005461 Bremsstrahlung Effects 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006063 cullet Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7783—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
- C09K11/779—Halogenides
- C09K11/7791—Halogenides with alkali or alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/06—Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/095—Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/12—Compositions for glass with special properties for luminescent glass; for fluorescent glass
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7715—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
- C09K11/7719—Halogenides
- C09K11/772—Halogenides with alkali or alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7743—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing terbium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7772—Halogenides
- C09K11/7773—Halogenides with alkali or alkaline earth metal
Definitions
- the present invention relates to a glass scintillator used for a radiation detector or the like.
- Patent Document 1 As a fiber-shaped scintillator, as disclosed in Patent Document 1, use of an optical fiber scintillator in which a fluorescent substance is added to a core can be considered.
- Patent Document 2 discloses that a glass scintillator is manufactured by using an inorganic glass as a matrix material and adding a rare earth element thereto.
- Patent Document 3 also proposes a glass scintillator using an inorganic glass as a matrix.
- Patent Document 4 focusing on the glass-like phosphor, discloses a luminescent glass for improving the strength of glass as a matrix component.
- Patent Document 5 discloses a casket of a rare earth element added to silica glass.
- Patent Document 1 UK Patent Application Publication No. 2253070
- Patent Document 2 Japanese Patent Application Laid-Open No. 9-188543
- Patent Document 3 Japanese Patent Application Laid-Open No. 9-145845
- Patent Document 4 JP-A-2000-86283
- Patent Document 5 Japanese Patent Application Laid-Open No. 2001-282153
- Patent Document 1 the core material of the optical fiber and The plastics used for the measurement are actually used for radiation measurement by measuring the etch pits, so that there is a problem that they are left scratched when exposed to radiation.
- Patent Document 2 the material used for the glass scintillator is a halogen glass, and not only is the raw material expensive, but also the danger to the human body during the production must be considered.
- the improvement in Patent Document 4 is a means for improving laser resistance, and it is considered that the guidelines are different from the means for improving radiation resistance.
- Patent Document 5 practically, only one kind of rare earth element is added to glass, and therefore, the wavelength region of a photon that can be detected is limited to 100 to 400 nm.
- the present invention provides a glass scintillator that achieves various problems in the prior art, that is, both a sufficiently excellent radiation resistance and a calorie property, and that can sufficiently efficiently detect photons having a wavelength of less than 100 nm. .
- the present inventors have studied to solve the above-mentioned problems, and have found that the glass scintillator contains two or more rare earth elements in silica glass or silicate glass to efficiently reduce the scintillation effect. I found it to happen. This has revealed that the glass scintillator can effectively detect short wavelength photons, that is, ionizing radiation such as X-rays and ⁇ -rays. Further, they have found that such a glass scintillator also satisfies the workability, and have led to the invention of a glass scintillator that can solve the above-mentioned problems.
- a first embodiment of the present invention comprises a glass component having silica or silicate as a matrix, a rare earth element, and a glass modifying component, wherein the rare earth element is selected from Y, La, Gd, and Lu. And one or more elements selected from the group consisting of Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm and Yb,
- the glass modifying component contains one or more elements selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, B and Al forces, and is irradiated with photons having a wavelength of less than 100 nm. Then, it is a glass scintillator that emits light in an ultraviolet light region, a visible light region, or an infrared light region.
- Y, La, Gd, and Lu play a role as a base material element
- Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb are activators. It plays a role as an element.
- this glass scintillator Energy transfer from the material element to the activator element is performed efficiently. Therefore, when X-rays, ⁇ -rays, etc. hit (irradiate) the glass scintillator, fluorescence is obtained sufficiently efficiently, and it becomes possible to detect ionizing radiation with excellent sensitivity.
- the glass scintillator of the present invention was effective not only for detecting photons, but also for detecting rays, / rays or neutron rays.
- a second embodiment of the present invention contains a glass component containing silica or silicate as a matrix, a rare earth element and a glass modifying component, wherein the rare earth element is selected from Y, La, Gd and Lu. And one or more elements selected from the group consisting of Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm and Yb,
- the glass-modifying component includes one or more elements selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, B, and Al forces. It is a glass scintillator that emits light in the ultraviolet, visible, or infrared regions when irradiated with + rays, electron beams, positron beams, charged particle beams, or neutron beams.
- the glass scintillator of the present invention is preferred because Gd is used as a base material element among the rare earth elements because radiation resistance is improved.
- a third embodiment of the present invention comprises a glass component having a matrix of silica or silicate, a rare earth element, and a glass modifying component, wherein the rare earth element is Ce, Pr, Nd, S m , Eu, Tb, Dy, Ho, Er, Tm, and at least one element selected from the group consisting of Yb and Gd, and the glass modifying component includes Li, Na, K, Rb, Cs, It contains one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, B and Al, and when irradiated with X-rays, ⁇ -rays, ⁇ -rays, electron beams or thermal neutrons, it emits ultraviolet light. Is a glass scintillator that emits light in the visible light region or the infrared light region.
- a more preferable activator is Ce, Tb, or Eu.
- a fourth embodiment of the present invention includes a glass component having a matrix of silica or silicate, a rare earth element, and a glass modifying component, and the rare earth element is a group consisting of Ce, Eu, and Tb.
- the rare earth element is a group consisting of Ce, Eu, and Tb.
- One or more elements selected from the group consisting of Gd and the above glass modifying component is selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, B and Al
- One or more A glass scintillator that contains elements and emits light in the ultraviolet or visible light range when irradiated with X-rays, ⁇ -rays, ⁇ -rays, electron beams, or thermal neutrons.
- the shape is not particularly limited, but it is preferably processed into a fiber shape.
- the present invention is preferably any one of the above glass scintillators obtained by processing into a fiber shape.
- the glass scintillator of the present invention is a scintillator having both workability and radiation resistance, and can be used for efficiently detecting ionizing radiation such as ⁇ -rays, X-rays, and neutron rays.
- FIG. 1 is a partial schematic perspective view of a glass scintillator of the present invention obtained by processing into a fiber shape.
- the glass scintillator of the present invention can be produced by mixing the rare earth component, the silica component, and the glass modifying component to obtain a mixture, and heating the mixture.
- the chemical forms of the rare earth component, the silica component, and the glass modifying component to be mixed are not particularly limited as long as they contain the above-mentioned elements or compounds, or can be a source of the above-mentioned elements or a raw material of the compounds.
- an oxide or a nitrate may be used as a raw material of the rare earth component.
- SiO, silicate as raw material of silica component
- Sodium hydroxide, sodium oxide, boric acid, or the like may be used as a glass modifying component. After the mixture is heated, it is cooled once, melted by heating again, and then or simultaneously processed into an arbitrary shape such as a fiber. Also, by preparing a mold in advance, it is possible to finish it to the desired shape with one heating. it can.
- the composition ratio when the raw materials are mixed is preferably the ratio of the rare earth component and the silica component within the range described below.
- the quotient (LZS) is Preferably it is less than 1. This means that when (L / S) becomes 1 or more, LnSi ⁇ or LnSiO (Ln is a rare earth element in general), which is a crystal component, is generated.
- the ratio between the base material element such as gadolinium (Gd) and the activator element such as cerium is preferably in the range described below.
- the quotient (CZG) is 0 (C / G) ⁇ (50/50) It is more preferable that (C / G) ⁇ (20/80).
- the value of (C / G) is particularly preferred, and there is a value (optimum value) .
- a value (optimum value) if gadolinium is selected as the base material element and cerium is selected as the activator element, It is particularly preferable that (8/92) ⁇ (C / G) ⁇ (12/88).
- the force S which is the type and amount of the glass modifying component, is preferably as described below. It is preferable to add an alkali metal such as Na to the glass scintillator because the workability of the glass scintillator can be improved.
- the number of sodium atoms is N [mol]
- the total amount of rare earth atoms and silicon atoms is (L + S) [mol]
- the quotient ⁇ N / (L + S) ⁇ is preferably in the range of (10/245) ⁇ ⁇ (N / (L + S) ⁇ ⁇ (200/245), more preferably (80/245) ⁇ ⁇ N / (L + S) ⁇ ⁇ (100/245) B may be used in place of Na, or Na and B may be added at the same time. When added, foaming suppression effect appears, so it is more preferable.
- the shape of the glass scintillator of the present invention obtained as described above.
- Use of the glass scintillator in a rectangular parallelepiped shape, a cylindrical shape, a flat plate shape, a fiber shape, or the like can be mentioned. Among them, if it is a fiber shape as shown by reference numeral 100 in Fig. 1, the mobility for fine adjustment of the measurement point Is preferred.
- the glass scintillator of the present embodiment can be used, for example, in a radiation detection device, a radiation spectrum measurement device, a positron emission nuclide tomographic imaging device, and the like.
- the numbers of atoms of Gd, Ce, and Si were 10.8 mmol, 1.2 mmol, and 233 mmol, respectively.
- the obtained mixture was placed in a crucible, and 3.87 g of NaOH (97 mmol of Na atoms) and 3 mg of carbon powder were further added to the crucible, and the crucible was heated at 1500 ° C for 24 hours.
- the resulting sample was visually observed after cooling, and was found to be transparent and free of visible air bubbles.
- a part of the sample was taken out and reheated using a gas parner, which melted and facilitated fiber processing. That is, it was confirmed that the glass scintillator of this example can be processed into various shapes by heating and melting.
- the mixture was obtained.
- the obtained mixture was placed in a crucible, and 3.87 g of Na ⁇ H and 3 mg of carbon powder were further added to the crucible, and the crucible was heated at 1500 ° C. for 24 hours.
- the resulting sample was visually observed after cooling, and was found to be transparent and free of visible air bubbles.
- a part of the sample was pulverized and irradiated with Cu ⁇ -rays, that is, X-rays
- green light emission from the sample was confirmed even from a position lm away from the sample.
- the emission was measured by X-ray irradiation.
- a plurality of sharp, upwardly convex curves (peaks) were obtained, showing the highest intensity. This was the peak showing the peak at around 540 nm.
- the mixture was obtained.
- the obtained mixture was placed in a crucible, and 3.87 g of Na ⁇ H and 3 mg of carbon powder were further added to the crucible, and the crucible was heated at 1500 ° C. for 24 hours.
- the resulting sample was visually observed after cooling, and was found to be transparent and free of visible air bubbles.
- a part of the sample was pulverized and irradiated with Cu K-rays, that is, X-rays
- red light emission from the sample was confirmed even from a position lm away from the sample.
- the emission was measured by X-ray irradiation.
- a plurality of sharp, upwardly convex curves (peaks) were obtained, showing the highest intensity. This was the peak showing the peak at around 620 nm.
- CeO and SiO were each weighed in 2 g and 14.00 g and mixed in a mortar to obtain a mixture.
- the obtained mixture was placed in a crucible, and 3.87 g of NaOH and 3 mg of carbon powder were further added to the crucible, and the crucible was heated at 1500 ° C for 24 hours.
- the resulting sample was visually observed after cooling, and was found to be transparent and free of visible air bubbles.
- a part of the sample was crushed and irradiated with Cu K-line, that is, X-ray, it was not confirmed that the sample emitted light from a position lm away from the sample. Under these conditions, a camera was installed at a position 5 cm away from the sample, and a blue emission from the sample was barely confirmed. Further, a part of the sample was processed into a cube of approximately 10 mm square, and the possibility of radiation measurement was examined using the X- ray source used in Example 1. It was judged.
- the glass scintillator of the present invention can be used for, for example, a radiation detection device, a radiation spectrum measuring device, a positron emission nuclide tomographic imaging device, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Luminescent Compositions (AREA)
- Glass Compositions (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005514001A JP4640176B2 (ja) | 2003-09-24 | 2004-07-16 | ガラスシンチレータ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-332171 | 2003-09-24 | ||
JP2003332171 | 2003-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005028590A1 true WO2005028590A1 (ja) | 2005-03-31 |
Family
ID=34373066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/010223 WO2005028590A1 (ja) | 2003-09-24 | 2004-07-16 | ガラスシンチレータ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4640176B2 (ja) |
WO (1) | WO2005028590A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008062797A1 (fr) * | 2006-11-21 | 2008-05-29 | National Institute Of Advanced Industrial Science And Technology | Substance fluorescente pour une excitation ultraviolette sous vide |
JP2010018460A (ja) * | 2008-07-09 | 2010-01-28 | National Institute Of Advanced Industrial & Technology | 赤色蛍光ガラス |
CN102424522A (zh) * | 2011-09-13 | 2012-04-25 | 徐传龙 | 大口径激光石英棒及其制备方法 |
US8617422B2 (en) * | 2008-09-26 | 2013-12-31 | Siemens Medical Solutions Usa, Inc. | Use of codoping to modify the scintillation properties of inorganic scintillators doped with trivalent activators |
JP2016125880A (ja) * | 2014-12-26 | 2016-07-11 | 国立大学法人 東京大学 | 放射線計測システム及び光学系 |
WO2017038378A1 (ja) * | 2015-09-03 | 2017-03-09 | 株式会社日立製作所 | ガラス組成物及びそれを用いた中性子吸収材料、溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 |
JP2021525639A (ja) * | 2018-06-08 | 2021-09-27 | ケイエイ イメージング インコーポレイテッド | マルチエネルギx線撮影装置の仮想出力を決定するための方法およびシステム |
CN115572064A (zh) * | 2022-10-17 | 2023-01-06 | 闽都创新实验室 | 一种镥基氟氧闪烁玻璃及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS593040A (ja) * | 1982-06-16 | 1984-01-09 | シヨツト・グラスヴエルケ | シンチレ−シヨン・ガラス |
JPH0940440A (ja) * | 1995-07-25 | 1997-02-10 | Nikon Corp | シンチレーターガラス |
JPH09188543A (ja) * | 1995-12-30 | 1997-07-22 | Kagaku Gijutsu Shinko Jigyodan | Eu2+含有青色発光ガラス |
JP2003082346A (ja) * | 2001-09-13 | 2003-03-19 | Hitachi Chem Co Ltd | 蛍光体組成物 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3870418B2 (ja) * | 2002-03-28 | 2007-01-17 | 日立化成工業株式会社 | 蛍光体及びこれを含む蛍光体組成物 |
-
2004
- 2004-07-16 WO PCT/JP2004/010223 patent/WO2005028590A1/ja active Application Filing
- 2004-07-16 JP JP2005514001A patent/JP4640176B2/ja not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS593040A (ja) * | 1982-06-16 | 1984-01-09 | シヨツト・グラスヴエルケ | シンチレ−シヨン・ガラス |
JPH0940440A (ja) * | 1995-07-25 | 1997-02-10 | Nikon Corp | シンチレーターガラス |
JPH09188543A (ja) * | 1995-12-30 | 1997-07-22 | Kagaku Gijutsu Shinko Jigyodan | Eu2+含有青色発光ガラス |
JP2003082346A (ja) * | 2001-09-13 | 2003-03-19 | Hitachi Chem Co Ltd | 蛍光体組成物 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008062797A1 (fr) * | 2006-11-21 | 2008-05-29 | National Institute Of Advanced Industrial Science And Technology | Substance fluorescente pour une excitation ultraviolette sous vide |
JP2010018460A (ja) * | 2008-07-09 | 2010-01-28 | National Institute Of Advanced Industrial & Technology | 赤色蛍光ガラス |
US8617422B2 (en) * | 2008-09-26 | 2013-12-31 | Siemens Medical Solutions Usa, Inc. | Use of codoping to modify the scintillation properties of inorganic scintillators doped with trivalent activators |
CN102424522A (zh) * | 2011-09-13 | 2012-04-25 | 徐传龙 | 大口径激光石英棒及其制备方法 |
JP2016125880A (ja) * | 2014-12-26 | 2016-07-11 | 国立大学法人 東京大学 | 放射線計測システム及び光学系 |
WO2017038378A1 (ja) * | 2015-09-03 | 2017-03-09 | 株式会社日立製作所 | ガラス組成物及びそれを用いた中性子吸収材料、溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 |
JPWO2017038378A1 (ja) * | 2015-09-03 | 2018-03-29 | 株式会社日立製作所 | ガラス組成物及びそれを用いた中性子吸収材料、溶融燃料の管理方法、溶融燃料の取り出し方法及び原子炉の停止方法 |
CN107922246A (zh) * | 2015-09-03 | 2018-04-17 | 株式会社日立制作所 | 玻璃组合物和使用该玻璃组合物的中子吸收材料、熔融燃料的管理方法、熔融燃料的取出方法以及反应堆的停止方法 |
JP2021525639A (ja) * | 2018-06-08 | 2021-09-27 | ケイエイ イメージング インコーポレイテッド | マルチエネルギx線撮影装置の仮想出力を決定するための方法およびシステム |
JP2024045424A (ja) * | 2018-06-08 | 2024-04-02 | ケイエイ イメージング インコーポレイテッド | マルチエネルギx線撮影装置の仮想出力を決定するための方法およびシステム |
CN115572064A (zh) * | 2022-10-17 | 2023-01-06 | 闽都创新实验室 | 一种镥基氟氧闪烁玻璃及其制备方法和应用 |
CN115572064B (zh) * | 2022-10-17 | 2023-12-05 | 闽都创新实验室 | 一种镥基氟氧闪烁玻璃及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
JP4640176B2 (ja) | 2011-03-02 |
JPWO2005028590A1 (ja) | 2007-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9279891B2 (en) | Transparent glass scintillators, methods of making same and devices using same | |
JP5281742B2 (ja) | シンチレータ物質及びシンチレータ物質を含む放射線検出器 | |
US20070045555A1 (en) | Glass | |
WO2009119378A1 (ja) | 中性子検出用シンチレーターおよび中性子検出装置 | |
EP0779254B1 (en) | Radiation imaging device comprising a photostimulable luminescence glass | |
Kawano et al. | Scintillation and dosimetric properties of Ce-doped strontium aluminoborate glasses | |
Okada et al. | Optically-and thermally-stimulated luminescences of Ce-doped SiO2 glasses prepared by spark plasma sintering | |
US5122671A (en) | Terbium activated silicate luminescent glasses for use in converting x-ray radiation into visible radiation | |
JP2007197249A (ja) | ガラスセラミックスおよびガラスセラミックスの製造方法 | |
Beckert et al. | Medical imaging scintillators from glass-ceramics using mixed rare-earth halides | |
Samizo et al. | X-ray induced luminescence properties of Ce-doped BaF2-Al2O3-B2O3 glasses | |
Yanagida et al. | Phosphors for radiation detectors | |
Fu et al. | Study on luminescent properties of Ce3+ sensitized Tb3+ doped gadolinium borosilicate scintillating glass | |
US5391320A (en) | Terbium activated silicate luminescent glasses | |
Isokawa et al. | Radiation induced luminescence properties of Ce-doped Y2O3-Al2O3-SiO2 glass prepared using floating zone furnace | |
Isokawa et al. | Radiation-induced luminescence properties of Tb-doped Li3PO4-B2O3 glasses | |
Isokawa et al. | Characterization of Ce-doped lithium borosilicate glasses as tissue-equivalent phosphors for radiation measurements | |
WO2005028590A1 (ja) | ガラスシンチレータ | |
US20070045564A1 (en) | Glass | |
Sui et al. | Glass scintillator: A window to future high energy radiation detection | |
Rim et al. | Concentration dependence of Tb in Na2O–B2O3–SiO2 glass on dosimetric properties | |
Yamaguchi et al. | Thermoluminescence properties of Dy3+-Doped Li2O–CaO–P2O5 glasses for neutron detection | |
US4259587A (en) | X-ray luminescent glasses | |
CN110451798B (zh) | 一种二价铕激活锂硼酸盐闪烁玻璃及其制备方法 | |
Shinozaki et al. | High quantum yield luminescence and scintillation properties of high-Ce-doped MgF2–Al2O3–B2O3 glasses and their glass structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG |
|
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005514001 Country of ref document: JP |
|
122 | Ep: pct application non-entry in european phase |