WO2005026253A2 - Labile linkage for compound delivery to a cell - Google Patents
Labile linkage for compound delivery to a cell Download PDFInfo
- Publication number
- WO2005026253A2 WO2005026253A2 PCT/US2004/028349 US2004028349W WO2005026253A2 WO 2005026253 A2 WO2005026253 A2 WO 2005026253A2 US 2004028349 W US2004028349 W US 2004028349W WO 2005026253 A2 WO2005026253 A2 WO 2005026253A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- acetal
- polynucleotide
- delivery
- group
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 96
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims abstract description 50
- 238000001727 in vivo Methods 0.000 claims abstract description 7
- 102000040430 polynucleotide Human genes 0.000 claims description 64
- 108091033319 polynucleotide Proteins 0.000 claims description 64
- 229920000642 polymer Polymers 0.000 claims description 63
- 239000002157 polynucleotide Substances 0.000 claims description 63
- 239000012528 membrane Substances 0.000 claims description 39
- 239000003795 chemical substances by application Substances 0.000 claims description 29
- -1 carboxy acetal Chemical class 0.000 claims description 25
- 238000001890 transfection Methods 0.000 claims description 25
- 150000002632 lipids Chemical class 0.000 claims description 19
- 239000003814 drug Substances 0.000 claims description 18
- 230000003993 interaction Effects 0.000 claims description 17
- 125000000217 alkyl group Chemical group 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- 239000001257 hydrogen Substances 0.000 claims description 16
- 230000008685 targeting Effects 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 15
- 239000003599 detergent Substances 0.000 claims description 15
- 229940079593 drug Drugs 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 14
- 229940124447 delivery agent Drugs 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 239000000178 monomer Substances 0.000 claims description 13
- 125000005842 heteroatom Chemical group 0.000 claims description 10
- 239000003446 ligand Substances 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 7
- 239000003607 modifier Substances 0.000 claims description 7
- 125000002252 acyl group Chemical group 0.000 claims description 6
- 150000001412 amines Chemical class 0.000 claims description 6
- 238000004132 cross linking Methods 0.000 claims description 6
- 150000002431 hydrogen Chemical class 0.000 claims description 6
- 238000000338 in vitro Methods 0.000 claims description 6
- ZNZYKNKBJPZETN-WELNAUFTSA-N Dialdehyde 11678 Chemical compound N1C2=CC=CC=C2C2=C1[C@H](C[C@H](/C(=C/O)C(=O)OC)[C@@H](C=C)C=O)NCC2 ZNZYKNKBJPZETN-WELNAUFTSA-N 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 claims 2
- 125000003277 amino group Chemical group 0.000 claims 2
- 150000001241 acetals Chemical class 0.000 abstract description 58
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 abstract description 16
- 238000003776 cleavage reaction Methods 0.000 abstract description 14
- 230000007017 scission Effects 0.000 abstract description 14
- 230000007062 hydrolysis Effects 0.000 abstract description 10
- 238000006460 hydrolysis reaction Methods 0.000 abstract description 10
- 239000000203 mixture Substances 0.000 abstract description 10
- 210000004027 cell Anatomy 0.000 description 60
- 108020004414 DNA Proteins 0.000 description 32
- 102000053602 DNA Human genes 0.000 description 32
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 27
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 18
- 108090000623 proteins and genes Proteins 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 239000002245 particle Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 210000001163 endosome Anatomy 0.000 description 11
- 230000014509 gene expression Effects 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 125000002091 cationic group Chemical group 0.000 description 9
- 102000039446 nucleic acids Human genes 0.000 description 9
- 108020004707 nucleic acids Proteins 0.000 description 9
- 150000007523 nucleic acids Chemical class 0.000 description 9
- 229920002477 rna polymer Polymers 0.000 description 9
- 230000002209 hydrophobic effect Effects 0.000 description 8
- 239000002773 nucleotide Substances 0.000 description 8
- 125000003729 nucleotide group Chemical group 0.000 description 8
- 108090000765 processed proteins & peptides Proteins 0.000 description 8
- 238000009833 condensation Methods 0.000 description 7
- 230000005494 condensation Effects 0.000 description 7
- 239000002502 liposome Substances 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 229960001860 salicylate Drugs 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 6
- 230000003834 intracellular effect Effects 0.000 description 6
- 210000003712 lysosome Anatomy 0.000 description 6
- 230000001868 lysosomic effect Effects 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 229920002873 Polyethylenimine Polymers 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 150000007942 carboxylates Chemical class 0.000 description 5
- 210000000170 cell membrane Anatomy 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 239000000306 component Substances 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 210000004940 nucleus Anatomy 0.000 description 5
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 5
- 229920000447 polyanionic polymer Polymers 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 230000000692 anti-sense effect Effects 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 230000027455 binding Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 210000000805 cytoplasm Anatomy 0.000 description 4
- 230000012202 endocytosis Effects 0.000 description 4
- 150000008195 galaktosides Chemical class 0.000 description 4
- 230000025308 nuclear transport Effects 0.000 description 4
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 229940002612 prodrug Drugs 0.000 description 4
- 239000000651 prodrug Substances 0.000 description 4
- 238000002390 rotary evaporation Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 4
- 150000008163 sugars Chemical class 0.000 description 4
- 239000012096 transfection reagent Substances 0.000 description 4
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 3
- 239000004971 Cross linker Substances 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical group O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 3
- 239000007995 HEPES buffer Substances 0.000 description 3
- 108700011259 MicroRNAs Proteins 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 108010039918 Polylysine Proteins 0.000 description 3
- 108020004459 Small interfering RNA Proteins 0.000 description 3
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 125000003636 chemical group Chemical group 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 125000004185 ester group Chemical group 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 125000001165 hydrophobic group Chemical group 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 229920000831 ionic polymer Polymers 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 239000002679 microRNA Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 210000003463 organelle Anatomy 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 150000004707 phenolate Chemical class 0.000 description 3
- 229940031826 phenolate Drugs 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 229920000768 polyamine Polymers 0.000 description 3
- 229920000656 polylysine Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000012312 sodium hydride Substances 0.000 description 3
- 229910000104 sodium hydride Inorganic materials 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 150000003573 thiols Chemical class 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 108010033040 Histones Proteins 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- 239000000232 Lipid Bilayer Substances 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- NEZJDVYDSZTRFS-RMPHRYRLSA-N Phenyl beta-D-glucopyranoside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC=CC=C1 NEZJDVYDSZTRFS-RMPHRYRLSA-N 0.000 description 2
- 108091027967 Small hairpin RNA Proteins 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 208000034953 Twin anemia-polycythemia sequence Diseases 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- PPQRONHOSHZGFQ-LMVFSUKVSA-N aldehydo-D-ribose 5-phosphate Chemical group OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PPQRONHOSHZGFQ-LMVFSUKVSA-N 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 235000012501 ammonium carbonate Nutrition 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000006037 cell lysis Effects 0.000 description 2
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 2
- 229960003677 chloroquine Drugs 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- RCJVRSBWZCNNQT-UHFFFAOYSA-N dichloridooxygen Chemical compound ClOCl RCJVRSBWZCNNQT-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 230000000021 endosomolytic effect Effects 0.000 description 2
- 230000008497 endothelial barrier function Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical group N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 210000004020 intracellular membrane Anatomy 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-M phenolate Chemical compound [O-]C1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-M 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 150000003212 purines Chemical class 0.000 description 2
- 150000003230 pyrimidines Chemical class 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000004007 reversed phase HPLC Methods 0.000 description 2
- 238000010898 silica gel chromatography Methods 0.000 description 2
- 239000004055 small Interfering RNA Substances 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000003153 stable transfection Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- KQGAIKIRKNMYOR-UHFFFAOYSA-N 1-tert-butyl-4-(4-tert-butylphenoxy)benzene Chemical compound C1=CC(C(C)(C)C)=CC=C1OC1=CC=C(C(C)(C)C)C=C1 KQGAIKIRKNMYOR-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- XDZMPRGFOOFSBL-UHFFFAOYSA-N 2-ethoxybenzoic acid Chemical compound CCOC1=CC=CC=C1C(O)=O XDZMPRGFOOFSBL-UHFFFAOYSA-N 0.000 description 1
- GXYBNDFTSMDZLO-UHFFFAOYSA-N 2-hydroxy-4,6-dimethylbenzene-1,3-dicarboxylic acid Chemical compound CC1=CC(C)=C(C(O)=O)C(O)=C1C(O)=O GXYBNDFTSMDZLO-UHFFFAOYSA-N 0.000 description 1
- ZRWAPLTWCQQSAN-UHFFFAOYSA-N 2-methoxybenzene-1,3-dicarboxylic acid Chemical compound COC1=C(C(O)=O)C=CC=C1C(O)=O ZRWAPLTWCQQSAN-UHFFFAOYSA-N 0.000 description 1
- BGJOTKHBFYMJST-UHFFFAOYSA-N 2-methylprop-2-enoic acid;n-propan-2-ylprop-2-enamide Chemical class CC(=C)C(O)=O.CC(C)NC(=O)C=C BGJOTKHBFYMJST-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 1
- NNPLPIIEFPCNST-UHFFFAOYSA-N 4-(2-ethenoxyethyl)isoindole-1,3-dione Chemical compound C=COCCC1=CC=CC2=C1C(=O)NC2=O NNPLPIIEFPCNST-UHFFFAOYSA-N 0.000 description 1
- GEKRISJWBAIIAA-UHFFFAOYSA-N 5-methylhexanal Chemical compound CC(C)CCCC=O GEKRISJWBAIIAA-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 101800002011 Amphipathic peptide Proteins 0.000 description 1
- 102000005427 Asialoglycoprotein Receptor Human genes 0.000 description 1
- 108010002913 Asialoglycoproteins Proteins 0.000 description 1
- KZMGYPLQYOPHEL-UHFFFAOYSA-N Boron trifluoride etherate Chemical compound FB(F)F.CCOCC KZMGYPLQYOPHEL-UHFFFAOYSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 108700034637 EC 3.2.-.- Proteins 0.000 description 1
- GYCKQBWUSACYIF-UHFFFAOYSA-N Ethyl salicylate Chemical compound CCOC(=O)C1=CC=CC=C1O GYCKQBWUSACYIF-UHFFFAOYSA-N 0.000 description 1
- 229940122498 Gene expression inhibitor Drugs 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 101710154606 Hemagglutinin Proteins 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 102100039869 Histone H2B type F-S Human genes 0.000 description 1
- 102000006947 Histones Human genes 0.000 description 1
- 101001035372 Homo sapiens Histone H2B type F-S Proteins 0.000 description 1
- 101001000116 Homo sapiens Unconventional myosin-Ig Proteins 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 101710128836 Large T antigen Proteins 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108010036176 Melitten Proteins 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 208000009869 Neu-Laxova syndrome Diseases 0.000 description 1
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 1
- 102000002488 Nucleoplasmin Human genes 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 1
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002564 Polyethylene Glycol 3500 Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 101710098940 Pro-epidermal growth factor Chemical group 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 101710176177 Protein A56 Proteins 0.000 description 1
- 101000781681 Protobothrops flavoviridis Disintegrin triflavin Chemical group 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 239000012506 Sephacryl® Substances 0.000 description 1
- 102000042773 Small Nucleolar RNA Human genes 0.000 description 1
- 108020003224 Small Nucleolar RNA Proteins 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Chemical group 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 102100035824 Unconventional myosin-Ig Human genes 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 125000004036 acetal group Chemical group 0.000 description 1
- 208000037919 acquired disease Diseases 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical class O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 108010006523 asialoglycoprotein receptor Proteins 0.000 description 1
- 239000012131 assay buffer Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 102000012012 beta Karyopherins Human genes 0.000 description 1
- 108010075890 beta Karyopherins Proteins 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- WLNARFZDISHUGS-MIXBDBMTSA-N cholesteryl hemisuccinate Chemical compound C1C=C2C[C@@H](OC(=O)CCC(O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 WLNARFZDISHUGS-MIXBDBMTSA-N 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 210000003674 cytoplasmic vesicle Anatomy 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 125000001295 dansyl group Chemical group [H]C1=C([H])C(N(C([H])([H])[H])C([H])([H])[H])=C2C([H])=C([H])C([H])=C(C2=C1[H])S(*)(=O)=O 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- VILAVOFMIJHSJA-UHFFFAOYSA-N dicarbon monoxide Chemical compound [C]=C=O VILAVOFMIJHSJA-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- UQOUOXLHXPHDHF-UHFFFAOYSA-N diethyl 2,5-dihydroxybenzene-1,4-dicarboxylate Chemical compound CCOC(=O)C1=CC(O)=C(C(=O)OCC)C=C1O UQOUOXLHXPHDHF-UHFFFAOYSA-N 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- NLEBIOOXCVAHBD-QKMCSOCLSA-N dodecyl beta-D-maltoside Chemical compound O[C@@H]1[C@@H](O)[C@H](OCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 NLEBIOOXCVAHBD-QKMCSOCLSA-N 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 229940005667 ethyl salicylate Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 229940014144 folate Drugs 0.000 description 1
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical group C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 1
- 239000011724 folic acid Chemical group 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000000185 hemagglutinin Substances 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 210000003093 intracellular space Anatomy 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- VDXZNPDIRNWWCW-JFTDCZMZSA-N melittin Chemical compound NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(N)=O)CC1=CNC2=CC=CC=C12 VDXZNPDIRNWWCW-JFTDCZMZSA-N 0.000 description 1
- 230000034217 membrane fusion Effects 0.000 description 1
- 230000036630 mental development Effects 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 1
- CSJDCSCTVDEHRN-UHFFFAOYSA-N methane;molecular oxygen Chemical compound C.O=O CSJDCSCTVDEHRN-UHFFFAOYSA-N 0.000 description 1
- YQCIWBXEVYWRCW-UHFFFAOYSA-N methane;sulfane Chemical compound C.S YQCIWBXEVYWRCW-UHFFFAOYSA-N 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 210000000865 mononuclear phagocyte system Anatomy 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 210000004492 nuclear pore Anatomy 0.000 description 1
- 108060005597 nucleoplasmin Proteins 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000014207 opsonization Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 210000004738 parenchymal cell Anatomy 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 125000001095 phosphatidyl group Chemical group 0.000 description 1
- 150000008299 phosphorodiamidates Chemical class 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229920000724 poly(L-arginine) polymer Polymers 0.000 description 1
- 108010011110 polyarginine Proteins 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 108010055896 polyornithine Proteins 0.000 description 1
- 229920002714 polyornithine Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940070353 protamines Drugs 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 238000012207 quantitative assay Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- NESLWCLHZZISNB-UHFFFAOYSA-M sodium phenolate Chemical compound [Na+].[O-]C1=CC=CC=C1 NESLWCLHZZISNB-UHFFFAOYSA-M 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000001508 sulfur Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 239000012581 transferrin Chemical group 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 210000003956 transport vesicle Anatomy 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 210000000605 viral structure Anatomy 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 239000011782 vitamin Chemical group 0.000 description 1
- 229930003231 vitamin Chemical group 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/192—Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
Definitions
- the route of entry into cells for most membrane impermeable molecules is endocytosis. After internalization, the contents of an endosome are typically recycled back to the cell surface or delivered to another intracellular membrane bound vesicle, such as a lysosome. Delivery to a lysosome occurs concomitantly with a drop in pH of the vesicle interior, from pH about 7.5 outside the cell, to pH 7-6 in early and late endosomes, to pH about 5 or less in lysosomes. To deliver endocytosed membrane impermeable molecules to the cell cytoplasm, the molecule must therefore be co-delivered with compounds that facilitate release of the molecule from an internal membrane bound vesicle or facilitate membrane permeability of the molecule.
- Endosomal contents can occur through disruption of the vesicle membrane or rupture of the vesicle.
- Agents used to accomplish endosomal release include compounds which are proposed to act as proton sponges and membrane active compounds that directly disrupt membrane structure. These compounds , e.g., adenoviral coat proteins, often rely upon the environment of the endosome/lysosome to trigger their activation. For example, these compounds may be substrates for lysosomal degradative enzymes such as proteases, nucleases and glycosylases. Proteolysis can result a activation of a membrane active compound which then destabilizes the bilayer. The drop in pH as an endosome matures into a lysosome may also be utilized to trigger membrane disruption and content release. pH-sensitive compounds, including polymers and lipids, have found broad application in the area of drug delivery.
- Agents that are weakly basic, pKa 5-7, can be reversibly protonated in the acidic environment of the endosome.
- Examples include chloroquine, polyethyleneimine, and histidylated poly-L- lysine.
- the effect of these buffering compounds is to increase the number of protons required for a drop in pH. It is postulated that the increased number of protons, and as a consequence their counterions, causes an increase in the osmotic pressure of the endosome that leads to membrane rupture, the proton sponge effect.
- Another mechanism for pH-dependent membrane disruption is the use of agents whose interaction with a membrane is dependent upon protonation, e.g. cholesterol hemisuccinate, viral coat peptides and their derivatives, and polypropylacrylic acid (PPA).
- agents whose interaction with a membrane is dependent upon protonation e.g. cholesterol hemisuccinate, viral coat peptides and their derivatives, and polypropylacrylic acid (PPA).
- PPA polypropylacrylic acid
- pH-sensitive polymers have found broad application in the area of drug delivery, exploiting various physiological and intracellular pH gradients for the purpose of controlled or targeted release of drugs (both low molecular weight conventional drugs as well as membrane impermeable biologically active compounds).
- pH sensitivity can be broadly defined as any change in polymer's physico-chemical properties over certain range of pH. A more narrow definition demands significant changes in a compound's or polymer's interaction with biological components or its ability to retain (release) a bioactive substance (drug) in a physiologically tolerated pH range (usually pH 5.5 - 8) .
- Drugs may be administered to a patient in an inactive form, a called a prodrug.
- the prodrug is converted into the biologically active compound upon interaction with specific enzymes in the body or upon exposure to specific environments in the body.
- anticancer drugs are quite toxic and are administered as prodrugs which do not become active until they come in contact with the cancerous cell (Sezaki et al. 1989).
- hydrophobically-modified N-isopropylacrylamide- methacrylic acid copolymer can render regular egg phosphatidyl chloline liposomes pH- sensitive by pH-dependent interaction of grafted aliphatic chains with lipid bilayer (Meyer et al. 1998).
- Polyions can be divided into three categories based on their ability to donate or accept protons in aqueous solutions: polyacids, polybases and polyampholytes.
- Polybases polycations
- polyacids i.e., nucleic acid
- An example is polyethyleneimine (PEI). This polymer facilitates nucleic acid condensation, and electrostatic adsorption on the cell surface followed by endocytosis. Subsequent endosomal release of the nucleic acid is proposed to occur though the so-called proton sponge effect.
- Polycations can facilitate DNA condensation.
- the volume which one DNA molecule occupies in a complex with polycations is lower than the volume of the free DNA molecule.
- a significant number of multivalent cations with widely different molecular structures have been shown to induce condensation of DNA.
- Multivalent cations with a charge of three or higher have been shown to condense DNA.
- Analysis has shown DNA condensation to be favored when 90% or more of the charges along the sugar-phosphate backbone are neutralized.
- the electrophoretic mobility of nucleic acid-polycation complexes can change from negative to positive in excess of polycation.
- the size of a DNA/polymer complex is important for gene delivery in vivo.
- the polynucleotide-containing complex needs to be able to cross the endothelial barrier and reach the parenchymal cells of interest.
- the largest endothelia fenestrae holes in the endothelial barrier
- the endothelium can be described as a structure that has a large number of small pores with a radius of 4 nm and a low number of larger pores with a radius of 20-30 nm.
- the size of the DNA complexes is also important for the cellular uptake process. Since endocytic vesicles typically have an internal diameter of about 100 nm, complexes smaller than about 100 nm in diameter are preferred.
- toroidal structures containing as little as a single polynucleotide molecule
- microaggregates that remain in suspension and can be toroids
- rods or small aggregates and large aggregates that sediment readily.
- a polycation also can form a cross-bridge between an anionic polynucleotide and the anionic surface of a cell.
- the main mechanism of polynucleotide/polycation complex translocation to the intracellular space may be non-specific adsorptive endocytosis.
- Polycations are furthermore a convenient linker for attaching functional groups.
- Polymer/polynucleotide complexes can also protect the polynucleotide against nuclease degradation.
- Optimal transfection activity in vitro and in vivo can require an excess of polycation molecules.
- the presence of excess polycations may be toxic to cells and tissues.
- DNA/cation particles have been created to circumvent the nonspecific interactions of the DNA/cation particle and the toxicity of cationic particles. Examples of these modifications include attachment of steric stabilizers.
- Another example is recharging the DNA particle by the addition of polyanions which interact with the cationic particle, thereby lowering its surface charge, i.e. recharging of the DNA particle (U.S. Application No. 09/328,975).
- Another example is cross-linking the polymers and thereby caging the complex (U.S. Application Nos. 08/778,657, 09/000,692, 9/724,089, 09/070,299, and 09/464,871).
- Linkages that are rapidly cleavable or reversible under specific environments, such as the reduced pH of an intracellular endosome/lysosome or tumor, are useful in developing deliver vectors for a variety of biologically active compounds.
- the acetal linkage has been used extensively as an acid-labile bond in the delivery of drugs.
- the acetal bond has been used in the construction of drug carriers and to link drug with carriers.
- Acetals have also been used to construct acid-cleavable surfactants, to separate the detergent into hydrophobic tail and hydrophilic head group.
- acetal linkages created to date have half-lives of hours to days in aqueous conditions at pH 4-7. Acetals which cleave at faster rates would make better linkages agents in certain applications.
- the compounds comprise acid labile ortho carboxy phenol derived acetals.
- the acetals can be used to reversibly link up to three different molecules which are rapidly cleaved from each other upon exposure to an acidic pH environment.
- the described ortho carboxy phenol derived acetals may be used to form acid cleavable transfection agents.
- the transfection agent can be a compound which is non-covalently associated with a biologically active compound to be delivered to a cell.
- the transfection agent can be a compound which is covalently linked to a biologically active compound. Cleavage of the transfection agent can release either a non- covalently associated or covalently linked biologically active compound from the transfection agent.
- the transfection agent may be designed such that cleavage of the transfection agent increases membrane activity of the agent.
- a composition for delivering a biologically active compound to a cell comprising: the biologically active compound electrostatically associated with a pH sensitive ortho carboxy acetal containing delivery agent to fo ⁇ n a complex.
- a preferred delivery agent is a polycation or a lipid.
- the ortho carboxy acetal may be present in a polymer or lipid prior to association of the polymer or lipid with a polynucleotide.
- the ortho carboxy acetal may be used to crosslink a polymer or lipid after association of the polymer or lipid with a polynucleotide.
- the ortho carboxy acetal may also be used to attach a functional group to a polynucleotide/delivery agent complex.
- a variety of groups can be attached to an ortho carboxy phenol derived acetal. These groups may be selected from the group comprising: polynucleotide, biologically active compound, targeting moiety, ligand, interaction modifier, polycation, polymer, polymer monomer, membrane active compound, hydrophobic group, detergent, and lipid.
- labile crosslinking agents comprising: ortho carboxy acetal dialdehydes.
- the dialdehydes may be used to link amines via a pH sensitive linkage. In this way, the dialdehydes may be used to reversibly crosslink amines present in polynucleotide/polyamine complexes, thus stabilizing the complexes.
- the dialdehydes may be used as an acid-labile building block to synthesize lipids, polymers, and/or crosslinking reagents that may be useful in the delivery of biologically active compounds.
- FIG. 1 Illustration of an ortho carboxy acetal and the acid cleavage of an ortho carboxy acetal linkage.
- R, R ⁇ can be hydrogen, any carbon-containing group (including, but not limited to any alkyl, aryl, or acyl group) or a heteroatom.
- R' may be any carbon-containing group (including, but not limited to any alkyl, aryl, or acyl group) or a heteroatom but not hydrogen
- FIG. 2 Illustration of the structure or three exemplary ortho carboxy acetals used to test cleavage rates.
- R carboxyl (carbon-containing group);
- R 3 hydroxyl (heteroatom).
- R' alkyl;
- FIG. 3 Illustration of synthesis of a salicylic galactoside, an ortho carboxy phenol-derived acetal.
- FIG. 4 Illustration of oxidation of sugars with ortho carboxy derived phenolates to produce dialdehydes.
- the present invention relates to the delivery of biologically active compounds to cells using pH-labile linkages and compounds incorporating these pH-labile linkages.
- the present invention provides compositions and methods for delivery and release of a compound of interest to a cell.
- R, R ⁇ -4 can be hydrogen, any carbon-containing group (including, but not limited to any alkyl, aryl, or acyl group) or a heteroatom and R' may be any carbon-containing group (including, but not limited to any alkyl, aryl, or acyl group) or a heteroatom but not hydrogen.
- one of the compounds is R or R' and the other is R or R ⁇ -4 .
- the other compound may be R' or Ri, R 2 , R 3 or R
- the other compound may be R or Ri, R 2 , R or Ri.
- the other compound may be R or R'.
- the other compound may be R or R'.
- to link three compounds by rapidly hydrolyzed bonds one of the compounds is R, a second compound is R' and a third compound is Ri, R 2 , R or R ⁇ .
- the compounds attached to the acetal may be selected from the group comprising: biologically active compounds, polynucleotides, pharmaceutical agents, peptides, proteins, membrane active compounds, polymers, polymer monomers, transfection agents, lipids, detergents, targeting moieties, and interaction modifiers.
- the rate of acetal hydrolysis is dependent upon several critical characteristics of the ortho- substituted phenol-derived acetal structures including the aldehyde and the phenol from which the acetal is derived.
- acetals derived from formaldehyde acetal 3
- acetals derived from alkyl-substituted aldehydes such as acetaldehyde (acetals 1 and 2).
- substitution of the phenol with another ortho carboxy groups increases the rate above that observed for the monocarboxylate (Dunn et al. 1970).
- Saccharides are a well-known class of acetals which have established routes of synthesis.
- ortho carboxy acetal R and R' are linked to make the sugar.
- dialdehydes e.g. glutaraldehyde groups (Adami et al. 1999), are capable of efficient crosslinking.
- a simple method for synthesizing dialdehydes is the oxidation of cyclic compounds containing vicinal alcohol groups, such as on sugars, by sodium periodate.
- sugars with ortho carboxy derived phenolates may be oxidized to produce dialdehydes (see FIG. 4).
- the dialdehyde may be added to a polyamine- containing particle to crosslink (i.e., cage) the polyamine, thereby stabilizing the particle.
- the dialdehyde may be used as an acid-labile building block to synthesize lipids, polymers, and/or crosslinking reagents that may be useful in delivery of biologically active compounds.
- Ortho carboxy phenol derived acetals may be incorporated into polynucleotide (or other biologically active compound) delivery complexes. Many different molecules can be attached to ortho carboxy phenol derived acetals, at positions R, R', and R ⁇ 4 . Biologically active compounds and a variety of functional groups may be attached to the acetal. The acetal may also be used in the construction on polymers useful for biologically active compound delivery to cells. A plurality of ortho carboxy phenol derived acetals can be incorporated into a polymer to facilitate release of side groups from the polymer or to facilitate cleavage of the polymer backbone.
- a polymer can also be designed such that its presence in an endosome prevents acidification of the endosome or facilitates disruption of the endosomal membrane.
- the polymer can contain endosomolytic properties or have endosomolytic agents or membrane fusion agents attached to it.
- the labile acetal bonds described herein may be incorporated into systems that are amphipathic and increase in hydrophobicity and membrane activity upon bond cleavage.
- the acetal may contain acetals derived from ortho carboxylate phenols having a hydrophilic, negative charge. Cleavage of the acetal separates R ⁇ -4 from R and R', which removes the link between R and R' and the carboxylate group of the ortho-substituted carboxy phenol. This loss of associated charge may make R and/or R' more hydrophobic, and therefore more likely to interact with and lyse a membrane.
- lipids where R and R' are long chain, C>10, alkyl groups
- detergents where R or R' are long chain, C>10, alkyl groups
- Functional groups include cell targeting signals, nuclear localization signals, compounds that enhance release of contents from endosomes or other intracellular vesicles (releasing signals), membrane active compounds, lipids, charged groups, polymers and polymer monomers, transfection enhancing agents, and other compounds that alter the behavior or interactions of the compound or complex to which they are attached.
- Charged groups include cationic groups which may be used to ionically interact with nucleic acid.
- the present invention provides compositions of matter and methods for facilitating the delivery of biologically active compounds to the cells.
- biologically active compound is intended to encompass all naturally-occurring or synthetic compounds capable of eliciting a biological response or having an effect on biological systems, particularly cells and cellular organelles.
- a biologically active compound typically has some specific and intended pharmaceutical or biological action.
- the term thus means any substance intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease or in the enhancement of desirable physical or mental development and conditions in a cell or tissue.
- the cell may be in vivo or in vitro.
- Biologically active compounds include, but are not limited to: pharmaceuticals, proteins, peptides, polypeptides, proteins, enzymes, enzyme inhibitors, hormones, cytokines, antigens, viruses, and polynucleotides.
- the term biologically active compound includes therapeutic agents that provide a therapeutically desirable effect when administered to an animal (e.g., a mammal, such as a human, see Physicians' Desk Reference, 58 ed., 2004, Medical Economics Company, Inc., Montvale, N.J., pages 201-202).
- the polynucleotide For polynucleotide delivery, it is desirable for the polynucleotide to be dissociated from components of the complex in the cell in order for the polynucleotide to be active. This dissociation may occur outside the cell, within cytoplasmic vesicles or organelles (i.e. endosomes), in the cytoplasm, or in the nucleus.
- the disclosed acetal linkages can be utilized in forming cleavable components of polynucleotide delivery complexes to facilitate this dissociation of the polynucleotide.
- acetals and acetal-containing compounds can be used with a variety of delivery routes, including: intravascular (intravenous, intra-arterial), intramuscular, intraparenchymal, intradermal, subdermal, subcutaneous, intratumor, intraperitoneal, intralymphatic, transdermal, oral, nasal, respiratory, and mucosal routes of administration.
- intravascular intravenous, intra-arterial
- intramuscular intraparenchymal
- intradermal subdermal
- subcutaneous intratumor
- intratumor intraperitoneal
- intralymphatic transdermal
- oral nasal, respiratory, and mucosal routes of administration.
- Targeting moieties are used for targeting a compound or composition to cells, to specific cells, to tissues or to specific locations in a cell. Targeting moieties enhance the association of compounds or compositions with a cell. The moiety may increase binding of the compound to the cell surface and/or its association with an intracellular compartment. By modifying the cell or tissue localization of a compound, the function of the compound can be enhanced.
- the targeting moieties can be, but is not limited to, a protein, peptide, lipid, steroid, sugar, carbohydrate, or synthetic compound. Targeting moieties such as ligands enhance binding to cellular receptors. A variety of ligands have been used to target drugs and genes to cells and to specific cellular receptors.
- the ligand may have affinity for a target within the cell membrane, on the cell membrane or near a cell. Binding of ligands to receptors typically initiates endocytosis.
- Ligands include agents that target the asialoglycoprotein receptor by using asialoglycoprotein or galactose residues. Other moieties such as insulin, EGF, RGD- containing peptides, folate and other vitamins, and transferrin are other examples of cell receptor targeting ligands.
- Chemical groups that react with thiols or disulfide groups on cells can also be used to target many types of cells. Other targeting groups include molecules that interact with membranes such as lipids, fatty acids, cholesterol, dansyl compounds, and amphotericin derivatives. In addition viral proteins could be used to bind cells.
- nuclear localizing signals enhance delivery into proximity of the nucleus and/or entry into the nucleus.
- Nuclear transport signals can be proteins or peptides, such as the SV40 large T antigen NLS or the nucleoplasmin NLS, that interact with the nuclear transport machinery in the cell.
- Nuclear transport signals can also be proteins that make up the nuclear transport machinery.
- karyopherin beta can be used to target compounds the nuclear pore complex.
- Membrane active polymers or compounds are molecules that are able to alter membrane structure. This change in structure can be shown by the compound inducing one or more of the following effects upon a membrane: an alteration that allows small molecule permeability, pore formation in the membrane, a fusion and/or fission of membranes, an alteration that allows large molecule permeability, or a dissolving of the membrane. This alteration can be functionally defined by the compound's activity in at least one the following assays: red blood cell lysis (hemolysis), liposome leakage, liposome fusion, cell fusion, cell lysis and endosomal release. More specifically membrane active compounds allow for the transport of molecules with molecular weight greater than 50 atomic mass units to cross a membrane.
- Membrane active compounds can enhance the release of endocytosed material from intracellular membrane enclosed vesicles. Release includes movement out of an intracellular compartment into the cytoplasm or into an organelle such as the nucleus. Chemicals such as chloroquine, bafilornycin or Brefeldin Al, viruses and viral components such as influenza virus hemagglutinin subunit HA-2 peptides, and other types of amphipathic peptides such as melittin are examples of molecules which have been shown to enhance release of endosomal contents.
- Steric stabilizers are hydrophilic polymers that decrease electrostatic interactions between molecules and themselves and with other molecules. Steric stabilizers such as polyethylene glycol have been used to reduce interactions with blood components to increase circulatory time of a compound or composition to which they are attached by preventing opsonization, phagocytosis and uptake by the reticuloendothelial system. Other steric stabilizers include: alkyl groups, and polysaccharides.
- a transfection agent or transfection reagent or delivery vehicle, is a compound or compounds that bind(s) to or complex(es) with oligonucleotides and polynucleotides, and mediates their entry into cells.
- transfection reagents include, but are not limited to, cationic liposomes and lipids, polyamines, calcium phosphate precipitates, histone proteins, polyethylenimine, polylysine, and polyampholyte complexes.
- the transfection reagent has a component with a net positive charge that binds to the oligonucleotide's or polynucleotide's negative charge.
- the transfection reagent mediates binding of oligonucleotides and polynucleotides to cells via its positive charge (that binds to the cell membrane's negative charge) or via ligands that bind to receptors in the cell.
- cationic liposomes or polylysine complexes have net positive charges that enable them to bind to DNA or RNA.
- polynucleotides can be incorporated into lipid vesicles (liposomes), complexed with polymers (polyplexes) or a combination of lipids and polymers (lipopolyplexes).
- Hydrophilic, or amphipathic, compounds have both hydrophilic (water-soluble) and hydrophobic (water-insoluble) parts.
- Hydrophilic groups indicate in qualitative terms that the chemical moiety is water-preferring. Typically, such chemical groups are water soluble, and are hydrogen bond donors or acceptors with water. Examples of hydrophilic groups include compounds with the following chemical moieties; carbohydrates, polyoxyethylene, peptides, oligonucleotides and groups containing amines, amides, alkoxy amides, carboxylic acids, sulfurs, or hydroxyls.
- Hydrophobic groups indicate in qualitative terms that the chemical moiety is water-avoiding. Typically, such chemical groups are not water soluble, and tend not to hydrogen bonds. Hydrocarbons are hydrophobic groups.
- Detergents or surfactants are water-soluble molecules containing a hydrophobic portion (tail) and a hydrophilic portion (head), which upon addition to water decrease water's surface tension.
- the hydrophobic portion can be alkyl, alkenyl, alkynyl or aromatic.
- the hydrophilic portion can be charged with either net positive (cationic detergents), negative (anionic detergents), uncharged (nonionic detergents), or charge neutral (zwitterionic detergent).
- anionic detergents are sodium dodecyl sulfate, glycolic acid ethoxylate(4 units) 4-tert-butylphenylether, palmitic acid, and oleic acid.
- Examples of cationic detergents are cetyltrimethylammonium bromide and oleylamine.
- nonionic detergents include, laurylmaltoside, Triton X-100, and Tween.
- Examples of zwitterionic detergents include 3- [(3-cholamidopropyl)dimthylammonio]l-propane-sulfonate (CHAPS), and N-tetradecyl- N,N-dimethyl-3 -ammoniu- 1 -propanesulfonate.
- a polymer is a molecule built up by repetitive bonding together of smaller units called monomers.
- a polymer can be linear, branched network, star, comb, or ladder types of polymer.
- a polymer can be a homopolymer in which a single monomer is used or can be copolymer in which two or more monomers are used.
- the main chain of a polymer is composed of the atoms whose bonds are required for propagation of polymer length.
- the carbonyl carbon, -carbon, and ⁇ -amine groups are required for the length of the polymer and are therefore main chain atoms.
- the side chain of a polymer is composed of the atoms whose bonds are not required for propagation of polymer length.
- the ⁇ , ⁇ , ⁇ and ⁇ -carbons, and ⁇ -nitrogen are not required for the propagation of the polymer and are therefore side chain atoms.
- Polymers may have functional groups that enhance their utility. These groups can be incorporated into monomers prior to polymer formation or attached to the polymer after its formation. Functional groups may be selected from the list consisting of: targeting groups, interaction modifiers, steric stabilizers, and membrane active compounds, affinity groups and reactive groups.
- a polyion is a polymer possessing charge, i.e. the polymer contains a group (or groups) that has either gained or lost one or more electrons.
- the term polyion includes polycations, polyanions, zwitterionic polymers, and neutral polymers.
- the term zwitterionic refers to the product (salt) of the reaction between an acidic group and a basic group that are part of the same molecule.
- Salts are ionic compounds that dissociate into cations and anions when dissolved in solution. Salts increase the ionic strength of a solution, and consequently decrease interactions between nucleic acids with other cations.
- a charged polymer is a polymer that contains residues, monomers, groups, or parts with a positive or negative charge and whose net charge can be neutral, positive, or negative.
- a polycation can be a polymer possessing net positive charge, for example poly-L-lysine hydrobromide or a histone.
- the polymeric polycation can contain monomer units that are charge positive, charge neutral, or charge negative, however, the net charge of the polymer must be positive.
- a polycation also can be a non-polymeric molecule that contains two or more positive charges.
- a polyanion can be a polymer containing a net negative charge, for example polyglutamic acid.
- the polymeric polyanion can contain monomer units that are charge negative, charge neutral, or charge positive, however, the net charge on the polymer must be negative.
- a polyanion can also be a non-polymeric molecule that contains two or more negative charges.
- a labile bond is a covalent bond that is capable of being selectively broken. That is, the labile bond may be broken in the presence of other covalent bonds without the breakage of the other covalent bonds.
- a disulfide bond is capable of being broken in the presence of thiols without cleavage of any other bonds, such as carbon-carbon, carbon-oxygen, carbon- sulfur, carbon-nitrogen bonds, which may also be present in the molecule.
- pH-labile refers to the selective breakage of a covalent bond under acidic conditions (pH ⁇ 7). That is, the pH-labile bond may be broken under acidic conditions in the presence of other covalent bonds without their breakage.
- polynucleotide or nucleic acid or polynucleic acid, is a term of art that refers to a polymer containing at least two nucleotides. Nucleotides are the monomeric units of polynucleotide polymers. Polynucleotides with less than 120 monomeric units are often called oligonucleotides. Natural nucleic acids have a deoxyribose- or ribose-phosphate backbone. An artificial or synthetic polynucleotide is any polynucleotide that is polymerized in vitro or in a cell free system and contains the same or similar bases but may contain a backbone of a type other than the natural ribose-phosphate backbone.
- Bases include purines and pyrimidines, which further include the natural compounds adenine, thymine, guanine, cytosine, uracil, inosine, and natural analogs. Synthetic derivatives of purines and pyrimidines include, but are not limited to, modifications which place new reactive groups such as, but not limited to, amines, alcohols, thiols, carboxylates, and alkylhalides.
- the term base encompasses any of the known base analogs of DNA and RNA.
- polynucleotide includes deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) and combinations of DNA, RNA and other natural and synthetic nucleotides.
- a polynucleotide can be delivered to a cell to express an exogenous nucleotide sequence, to inhibit, eliminate, augment, or alter expression of an endogenous nucleotide sequence, or to affect a specific physiological characteristic not naturally associated with the cell.
- Polynucleotides can be delivered to cells to treat genetic disorders, treat acquired diseases such as cancer, induce an immune reaction (such as in vaccination or immunization), treat infectious disorders, add a new cellular function, or study gene function.
- a polynucleotide-based gene expression inhibitor comprises any polynucleotide containing a sequence whose presence or expression in a cell causes the degradation of or inhibits the function, transcription, or translation of a gene in a sequence-specific manner.
- Polynucleotide-based expression inl ibitors may be selected from the group comprising: siRNA, microRNA (miRNA), small non-messenger RNAs (snmRNA), utRNA (untranslated), snoRNAs (24-mers, modified snmRNA that act by an anti-sense mechanism), tiny non-coding RNAs (tncRNAs), interfering RNA or RNAi, dsRNA, ribozymes, antisense polynucleotides, and DNA expression cassettes encoding the like.
- SiRNA comprises a double stranded structure typically containing 15-50 base pairs and preferably 19-25 base pairs and having a nucleotide sequence identical or nearly identical to an expressed target gene or RNA within the cell.
- An siRNA may be composed of two annealed polynucleotides or a single polynucleotide that forms a hairpin structure (small hairpin RNA, shRNA).
- shRNA small hairpin RNA
- MicroRNAs are small noncoding polynucleotides, about 22 nucleotides long, that direct destruction or translational repression of their mRNA targets.
- Antisense polynucleotides comprise sequence that is complimentary to a gene or mRNA.
- Antisense polynucleotides include, but are not limited to: morpholinos, 2'-0-methyl polynucleotides, DNA, RNA and the like.
- the polynucleotide-based expression inhibitor may be polymerized in vitro, recombinant, contain chimeric sequences, or derivatives of these groups.
- the polynucleotide-based expression inhibitor may contain ribonucleotides, deoxyribonucleotides, synthetic nucleotides, or any suitable combination such that the target RNA and/or gene is inhibited.
- transfection The process of delivering a polynucleotide to a cell has been commonly termed transfection or the process of transfecting and also it has been termed transformation.
- transfecting refers to the introduction of a polynucleotide or other biologically active compound into cells.
- the polynucleotide may be used for research potposes or to produce a change in a cell that can be therapeutic.
- the delivery of a polynucleotide for therapeutic purposes is commonly called gene therapy.
- the delivery of a polynucleotide can lead to modification of the genetic material present in the target cell.
- stable transfection or stably transfected generally refers to the introduction and integration of an exogenous polynucleotide into the genome of the transfected cell.
- stable transfectant refers to a cell which has stably integrated the polynucleotide into the genomic DNA. Stable transfection can also be obtained by using episomal vectors that are replicated during the eukaryotic cell division (e.g., plasmid DNA vectors containing a papilloma virus origin of replication, artificial chromosomes).
- transient transfection or transiently transfected refers to the introduction of a polynucleotide into a cell where the polynucleotide does not integrate into the genome of the transfected cell.
- the expression cassette is subject to the regulatory controls that govern the expression of endogenous genes in the chromosomes.
- transient transfectant refers to a cell which has taken up a polynucleotide but has not integrated the polynucleotide into its genomic DNA.
- Example 1 Synthesis of model acetals 1-2: To a solution of 100 mg of isoamyl alcohol and 55 mg (1.1 eq) of acetaldehyde in 2 mL of anhydrous methylene chloride at 4°C was added 200 mg of hydrochloric acid. The reaction was sealed with a rubber septum and stirred at RT for 24 hours. The solvent was then removed by rotary evaporation to produce the chloroether as a clear oil.
- the phenolate anion of ethyl salicylate (for acetal 1; FIG. 1) and diethyl 2,5- dihydroxyterephthalate (for acetal 2; FIG. 1) were generated by addition of phenol to 0.9 equivalents of sodium hydride in anhydrous dimethylformamide. To the phenolate was then added 1.1 equivalents of the isoamyl-acetaldehyde chloroether. After 24 hours at room temperature (RT), the reaction was partitioned between water and ethyl acetate. The ethyl acetate was isolated, dried with sodium sulfate and concentrated to a solid.
- ester groups were then removed by addition of 2 equivalents of potassium hydroxide in methanol. After 3 hours, the ortho carboxy phenolate acetal was purified by reverse phase HPLC using a C ⁇ 8 column using methanol and water containing 0.1 wt% ammonium carbonate as eluents.
- Example 2 Synthesis of model acetal 3: Synthesis of dimethyl-2-hydroxyisophthalic acid: 200 mg of 2-methoxyisophthalic acid was placed in a screw cap vial with 1.1 equivalents of sodium iodide and 10 mL of hydrogen bromide solution (48%). The vial was sealed and heated to 100°C in a water bath for 2 hours. The white precipitate was isolated by centrifugation and washed with dilute aqueous hydrochloric acid solution. The methyl diester was synthesized by reaction with methanol (100 mL) and concentrated sulfuric acid (10 mL) refluxing for 3 hours. The methanol was then removed by rotary evaporation and the mixture was partitioned between water and ethyl acetate.
- the rate constant was determined by determining the slope of the line derived from plotting ln[l-((A ⁇ -A t )/( A ⁇ -A 0 ))] as a function of time t, where A ⁇ is absorbance after >3 hours of hydrolysis, A t is the absorbance at time t, and A 0 is the initial absorbance.
- the half-life of the hydrolysis equals ln[2] divided by the rate constant.
- Example 5 Removal of ester groups and oxidation of galactose-salicylate: To a solution of ester galactose-salicylate in methanol was added 1 vol equivalent of water and 10 equivalents of potassium hydroxide. To this solution was added 5 equivalents of sodium periodate (FIG. 4).
- Example 6 Synthesis of polycation DW561 andDW921: 2-Vinyloxy Ethyl Phthalimide (1 g, 4.6 mmol) was added to an oven dried round bottom flask under a blanket of nitrogen in anhydrous dichloromethane. To this solution was added butyl vinyl ether (0.368 g 3.68 mmol (DW921), or 0.460 g, 4.6 mmol (DW561)). The solution was then brought to -78°C and BF 3 OEt 2 (0.065 g, 0.46 mmol) is added and the reaction is allowed to proceed for 2 hours at -78°C. The polymerization was stopped by the addition of 50/50 mixture of ammonium hydroxide in methanol.
- Example 7 PEGylation ofDW921: 100 mg of purified DW921 was reacted with 20 mg of PEG(3500) NHS ester in 1 mL HEPES pH 7.5. The polymer was then purified by size exclusion chromatography using sephacryl S-200 to remove unreacted PEG.
- Example 8 Crosslinking and decondensation assay: The condensation of TMR-labeled DNA was assessed using a quantitative assay based on condensation-induced quenching of a fluorophore covalently attached to DNA. Briefly, TMR-DNA (3 ⁇ g/mL) was mixed 30 ⁇ g/mL DW921 in 0.8 ml of 10 mM HEPES, pH 7.5. After condensation with the polycation, periodate oxidized galactose-salicylate was added to 5 ⁇ g/mL.
- the TMR fluorescence of the samples was then measured using a Cary spectrofluorometer (excitation wavelength ( ⁇ ex ) of 555 nm; emission wavelength ( ⁇ em ) of 585 nm) at RT. Relative signal was calculated as the percentage of fluorescence of noncondensed TMR-DNA. After 10 minutes, the condensed DNA particle was "challenged” by the addition of sodium chloride to 2.5 M. The level of fluorescence was compared to DNA particles without the addition of galactose-salicylate.
- the increase in fluorescence after addition of sodium chloride is due to the decondensation of the DNA as the salt displaces the polycation, and therefore, is a measurement of crosslinking when comparing the noncrosslinked (no galactose-salicylate) to crosslinked samples (with galactose-salicylate).
- Example 9 DNA transfection: To a solution of plasmid DNA pCIluc (10 ⁇ g/mL, 0.075 mM in phosphate, 2.6 ⁇ g/ ⁇ L pCIluc; prepared according to Danko et al. 1997) in 0.5 mL of 150 mM NaCl and 5 mM TAPS pH 9 was added 100 ⁇ g/mL DW921. The complexes were then reacted with glutaraldehyde, periodate oxidized phenyl glucoside (another crosslinker containing a labile bond), or periodate oxidized salicylic galactoside at 1, 2, 4, 8, or 16 ⁇ g/mL.
- the complexes were then added (200 ⁇ L) to wells containing Hepa mouse hepatoma cells in Dulbecco's modified Eagle's Media containing 10% fetal bovine serum. The cells were allowed to incubate for 48 h. The cells were then harvested and assayed for luciferase expression as previously reported. The amount of transfection was reported in relative light units and is the average transfection for two separate wells of cells.
- Example 10 In vivo DNA delivery (mouse): To a solution of plasmid DNA pCIluc (3.33 ⁇ g/mL) in 3 mL of 5 mM TAPS pH 9 was added 33.3 ⁇ g/mL DW921. The complexes were then reacted with glutaraldehyde, periodate oxidized phenyl glucoside, or periodate oxidized salicylic galactoside at 1.66, 3.33, or 8.33 ⁇ g/mL respectively. The complexes were then injected into the tail vein of 32 g mice using a 27 gauge needle in ⁇ 10 seconds.
- mice All mice were euthanized at one day post-injection and livers were collected and homogenized in luciferase assay buffer. Luciferase activity was assayed from each liver homogenate sample (i.e. each mouse) as previously reported (Wolff et al. 1990). The amount of transfection was reported in relative light units and is the average for two mice.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Epidemiology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Biochemistry (AREA)
- Public Health (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Described are ortho carboxy phenol derived acetals and compositions containing ortho carboxy phenol derived acetals which are useful for delivering biologically active compounds to cells. The acetals can be used to reversibly link up to three different molecules and have rapid hydrolysis kinetics in conditions which are present in a cell as well as in vivo. Cleavage of the acetal enhances delivery of the biologically active compound.
Description
LABILE LINKAGE FOR COMPOUND DELIVERY TO A CELL
CROSS-REFBRENCE TO RELATED APPLICATIONS This application claims the benefit of U.S. Provisional Application No. 60/500,213, filed September 4, 2003.
BACKGROUND OF THE INVENTION The route of cellular entry for most conventional drugs is diffusion across the biological membrane. For this reason, drugs tend to be small (MW<500) and amphipathic, containing both hydrophobic and hydrophilic functionalities. These characteristics engender molecules with water solubility, while allowing them to cross the nonpolar lipid bilayer of the cell membrane. However, many potential drugs, including those used in gene therapy are too hydrophilic and/or too large to be delivered to cells by diffusion across a cell membrane. For this reason, a major barrier to gene therapy is the delivery of the large hydrophilic drugs to the cellular cytoplasm or nucleus.
The route of entry into cells for most membrane impermeable molecules is endocytosis. After internalization, the contents of an endosome are typically recycled back to the cell surface or delivered to another intracellular membrane bound vesicle, such as a lysosome. Delivery to a lysosome occurs concomitantly with a drop in pH of the vesicle interior, from pH about 7.5 outside the cell, to pH 7-6 in early and late endosomes, to pH about 5 or less in lysosomes. To deliver endocytosed membrane impermeable molecules to the cell cytoplasm, the molecule must therefore be co-delivered with compounds that facilitate release of the molecule from an internal membrane bound vesicle or facilitate membrane permeability of the molecule.
Release of endosomal contents can occur through disruption of the vesicle membrane or rupture of the vesicle. Agents used to accomplish endosomal release include compounds which are proposed to act as proton sponges and membrane active compounds that directly disrupt membrane structure. These compounds , e.g., adenoviral coat proteins, often rely upon the environment of the endosome/lysosome to trigger their activation. For example, these compounds may be substrates for lysosomal degradative enzymes such as proteases, nucleases and glycosylases. Proteolysis can result a activation of a membrane active compound which then destabilizes the bilayer.
The drop in pH as an endosome matures into a lysosome may also be utilized to trigger membrane disruption and content release. pH-sensitive compounds, including polymers and lipids, have found broad application in the area of drug delivery.
Agents that are weakly basic, pKa 5-7, can be reversibly protonated in the acidic environment of the endosome. Examples include chloroquine, polyethyleneimine, and histidylated poly-L- lysine. The effect of these buffering compounds is to increase the number of protons required for a drop in pH. It is postulated that the increased number of protons, and as a consequence their counterions, causes an increase in the osmotic pressure of the endosome that leads to membrane rupture, the proton sponge effect.
Another mechanism for pH-dependent membrane disruption is the use of agents whose interaction with a membrane is dependent upon protonation, e.g. cholesterol hemisuccinate, viral coat peptides and their derivatives, and polypropylacrylic acid (PPA). A common characteristic of these agents is that they are carboxylic acid- and hydrophobic group- containing molecules that become less charged as the pH drops. The decrease in charge renders the molecules more hydrophobic, and thus more membrane disruptive.
Still other compounds rely on pH dependent cleavage events to facilitate membrane disruptive activation, prodrug activation, or drug release. pH-sensitive polymers have found broad application in the area of drug delivery, exploiting various physiological and intracellular pH gradients for the purpose of controlled or targeted release of drugs (both low molecular weight conventional drugs as well as membrane impermeable biologically active compounds). The controlled release of pharmaceuticals after their administration is under intensive development. pH sensitivity can be broadly defined as any change in polymer's physico-chemical properties over certain range of pH. A more narrow definition demands significant changes in a compound's or polymer's interaction with biological components or its ability to retain (release) a bioactive substance (drug) in a physiologically tolerated pH range (usually pH 5.5 - 8) .
Drugs may be administered to a patient in an inactive form, a called a prodrug. The prodrug is converted into the biologically active compound upon interaction with specific enzymes in the body or upon exposure to specific environments in the body. For example, anticancer
drugs are quite toxic and are administered as prodrugs which do not become active until they come in contact with the cancerous cell (Sezaki et al. 1989). Studies have found that the pH in solid tumors is 0.5 to 1 unit lower than in normal tissue and the use of pH-sensitive polymers for targeting tumors has been shown in vitro (Potineni et al 2003). pH-sensitive polymers have also been used in conjunction with liposomes for the triggered release of an encapsulated drug. For example, hydrophobically-modified N-isopropylacrylamide- methacrylic acid copolymer can render regular egg phosphatidyl chloline liposomes pH- sensitive by pH-dependent interaction of grafted aliphatic chains with lipid bilayer (Meyer et al. 1998).
Polyions can be divided into three categories based on their ability to donate or accept protons in aqueous solutions: polyacids, polybases and polyampholytes. Polybases (polycations) have found broad applications as transfection agents for nucleic acid delivery applications due to the fact they readily interact with polyacids (i.e., nucleic acid). An example is polyethyleneimine (PEI). This polymer facilitates nucleic acid condensation, and electrostatic adsorption on the cell surface followed by endocytosis. Subsequent endosomal release of the nucleic acid is proposed to occur though the so-called proton sponge effect.
Polycations can facilitate DNA condensation. The volume which one DNA molecule occupies in a complex with polycations is lower than the volume of the free DNA molecule. A significant number of multivalent cations with widely different molecular structures have been shown to induce condensation of DNA. Multivalent cations with a charge of three or higher have been shown to condense DNA. Analysis has shown DNA condensation to be favored when 90% or more of the charges along the sugar-phosphate backbone are neutralized. The electrophoretic mobility of nucleic acid-polycation complexes can change from negative to positive in excess of polycation.
The size of a DNA/polymer complex is important for gene delivery in vivo. In terms of intravenous injection, the polynucleotide-containing complex needs to be able to cross the endothelial barrier and reach the parenchymal cells of interest. The largest endothelia fenestrae (holes in the endothelial barrier) occur in the liver and have an average diameter of 100 nm under normal conditions. In other organs, the endothelium can be described as a structure that has a large number of small pores with a radius of 4 nm and a low number of larger pores with a radius of 20-30 nm. The size of the DNA complexes is also important for
the cellular uptake process. Since endocytic vesicles typically have an internal diameter of about 100 nm, complexes smaller than about 100 nm in diameter are preferred.
Depending upon conditions used to condense polynucleotide, three main types of structures can be formed: toroidal structures containing as little as a single polynucleotide molecule, microaggregates that remain in suspension and can be toroids, rods or small aggregates, and large aggregates that sediment readily.
A polycation also can form a cross-bridge between an anionic polynucleotide and the anionic surface of a cell. As a result the main mechanism of polynucleotide/polycation complex translocation to the intracellular space may be non-specific adsorptive endocytosis.
Polycations are furthermore a convenient linker for attaching functional groups.
Polymer/polynucleotide complexes can also protect the polynucleotide against nuclease degradation.
Optimal transfection activity in vitro and in vivo can require an excess of polycation molecules. However, the presence of excess polycations may be toxic to cells and tissues.
Moreover, the non-specific binding of cationic particles to all cells interferes with cell type specific targeting. Positive charge also has an adverse influence on biodistribution of the complexes in vivo.
Several modifications of DNA/cation particles have been created to circumvent the nonspecific interactions of the DNA/cation particle and the toxicity of cationic particles. Examples of these modifications include attachment of steric stabilizers. Another example is recharging the DNA particle by the addition of polyanions which interact with the cationic particle, thereby lowering its surface charge, i.e. recharging of the DNA particle (U.S. Application No. 09/328,975). Another example is cross-linking the polymers and thereby caging the complex (U.S. Application Nos. 08/778,657, 09/000,692, 9/724,089, 09/070,299, and 09/464,871).
Linkages that are rapidly cleavable or reversible under specific environments, such as the reduced pH of an intracellular endosome/lysosome or tumor, are useful in developing deliver vectors for a variety of biologically active compounds. The acetal linkage has been used extensively as an acid-labile bond in the delivery of drugs. The acetal bond has been used in
the construction of drug carriers and to link drug with carriers. Acetals have also been used to construct acid-cleavable surfactants, to separate the detergent into hydrophobic tail and hydrophilic head group. However, acetal linkages created to date have half-lives of hours to days in aqueous conditions at pH 4-7. Acetals which cleave at faster rates would make better linkages agents in certain applications.
SUMMARY OF THE INVENTION Compounds and methods are described for enhancing the delivery of a biologically active compound to a cell. In a preferred embodiment, the compounds comprise acid labile ortho carboxy phenol derived acetals. The acetals can be used to reversibly link up to three different molecules which are rapidly cleaved from each other upon exposure to an acidic pH environment.
In a preferred embodiment, the described ortho carboxy phenol derived acetals may be used to form acid cleavable transfection agents. The transfection agent can be a compound which is non-covalently associated with a biologically active compound to be delivered to a cell. Alternatively, the transfection agent can be a compound which is covalently linked to a biologically active compound. Cleavage of the transfection agent can release either a non- covalently associated or covalently linked biologically active compound from the transfection agent. The transfection agent may be designed such that cleavage of the transfection agent increases membrane activity of the agent.
In a preferred embodiment, we describe a composition for delivering a biologically active compound to a cell comprising: the biologically active compound electrostatically associated with a pH sensitive ortho carboxy acetal containing delivery agent to foπn a complex. For delivery of a polynucleotide, a preferred delivery agent is a polycation or a lipid. The ortho carboxy acetal may be present in a polymer or lipid prior to association of the polymer or lipid with a polynucleotide. Alternatively, the ortho carboxy acetal may be used to crosslink a polymer or lipid after association of the polymer or lipid with a polynucleotide. The ortho carboxy acetal may also be used to attach a functional group to a polynucleotide/delivery agent complex.
A variety of groups can be attached to an ortho carboxy phenol derived acetal. These groups may be selected from the group comprising: polynucleotide, biologically active compound,
targeting moiety, ligand, interaction modifier, polycation, polymer, polymer monomer, membrane active compound, hydrophobic group, detergent, and lipid.
In a preferred embodiment, we describe labile crosslinking agents comprising: ortho carboxy acetal dialdehydes. In one embodiment, the dialdehydes may be used to link amines via a pH sensitive linkage. In this way, the dialdehydes may be used to reversibly crosslink amines present in polynucleotide/polyamine complexes, thus stabilizing the complexes. In another embodiment, the dialdehydes may be used as an acid-labile building block to synthesize lipids, polymers, and/or crosslinking reagents that may be useful in the delivery of biologically active compounds.
Further objects, features, and advantages of the invention will be apparent from the following detailed description when taken in conjunction with the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1. Illustration of an ortho carboxy acetal and the acid cleavage of an ortho carboxy acetal linkage. R, Rμ can be hydrogen, any carbon-containing group (including, but not limited to any alkyl, aryl, or acyl group) or a heteroatom. R' may be any carbon-containing group (including, but not limited to any alkyl, aryl, or acyl group) or a heteroatom but not hydrogen
FIG. 2. Illustration of the structure or three exemplary ortho carboxy acetals used to test cleavage rates. 1. R', R = alkyl; and Rj, R2, R3, R = hydrogen. 2. R', R = alkyl; Ri, Rt = hydrogen; R = carboxyl (carbon-containing group); R3 = hydroxyl (heteroatom). 3. R' = alkyl; R, R2, R3, Rt = hydrogen; and Ri = carboxyl (carbon-containing group)
FIG. 3. Illustration of synthesis of a salicylic galactoside, an ortho carboxy phenol-derived acetal.
FIG. 4. Illustration of oxidation of sugars with ortho carboxy derived phenolates to produce dialdehydes.
DETAILED DESCRIPTION The present invention relates to the delivery of biologically active compounds to cells using pH-labile linkages and compounds incorporating these pH-labile linkages. The present invention provides compositions and methods for delivery and release of a compound of interest to a cell.
It has been shown that acid groups near an acetal group can facilitate cleavage of the acetal. In particular, ortho carboxy substituted acetals derived from ortho carboxy phenols hydrolyze 105-106 times faster than the corresponding acetals without ortho carboxy substitution (Fife et al. 1971). The protonated carboxylate accelerates the hydrolysis of the acetal and the carboxylate group is key to rapid hydrolysis kinetics. The corresponding acetals with ortho- substituted ester groups are approximately 22-fold slower in their hydrolysis kinetics (Dunn et al. 1970) The acid cleavage of an ortho carboxy substituted acetal derived from ortho carboxy phenol, is shown in FIG. 1. In an ortho carboxy substituted acetal, R, Rι-4 can be hydrogen, any carbon-containing group (including, but not limited to any alkyl, aryl, or acyl group) or a heteroatom and R' may be any carbon-containing group (including, but not limited to any alkyl, aryl, or acyl group) or a heteroatom but not hydrogen.
Therefore, to covalently link two compounds via a rapidly hydrolyzed bond, one of the compounds is R or R' and the other is R or Rι-4. For example, if one compound is R, the other compound may be R' or Ri, R2, R3 or R If one compound is R', the other compound may be R or Ri, R2, R or Ri. If one compound is Ri, R2, R or R4, the other compound may be R or R'. Similarly, to link three compounds by rapidly hydrolyzed bonds, one of the compounds is R, a second compound is R' and a third compound is Ri, R2, R or R^. The compounds attached to the acetal may be selected from the group comprising: biologically active compounds, polynucleotides, pharmaceutical agents, peptides, proteins, membrane active compounds, polymers, polymer monomers, transfection agents, lipids, detergents, targeting moieties, and interaction modifiers.
To illustrate the rate of cleavage of several example ortho carboxy phenol derived acetals, we synthesized the molecules 1-3 (shown in FIG. 2) and measured the rates of acetal hydrolysis for each at pH 5.2-7.3. Acetal 1. R, R = alkyl; and Ri, R2, R3, Ri = hydrogen
Acetal 2. R', R = alkyl; Ri, t = hydrogen; R2 = carboxyl (carbon-containing group); R3 = hydroxyl (heteroatom) Acetal 3. R' = alkyl; R, R2, R , R^t = hydrogen; and Ri = carboxyl (carbon-containing group)
Cleavage rates measured for ortho carboxy phenol derived acetals 1-3
The rate of acetal hydrolysis is dependent upon several critical characteristics of the ortho- substituted phenol-derived acetal structures including the aldehyde and the phenol from which the acetal is derived. In particular, acetals derived from formaldehyde (acetal 3) hydrolyze more slowly than acetals derived from alkyl-substituted aldehydes such as acetaldehyde (acetals 1 and 2). Also, substitution of the phenol with another ortho carboxy groups increases the rate above that observed for the monocarboxylate (Dunn et al. 1970).
As can be seen by half-lives of the ortho carboxy phenol derived acetals, the rate of cleavage is rapid at pH 4-7.5. The lability of these acetals allows their use in the construction of agents that disassemble under physiological conditions to aid in drug delivery.
Saccharides are a well-known class of acetals which have established routes of synthesis. In particular, reaction of 1-bromo protected sugars with ortho carboxy derived phenolates, followed by deprotection, results in a salicylic galactoside, an ortho carboxy phenol derived acetal (FIG. 3; Capon 1963). For this ortho carboxy acetal, R and R' are linked to make the sugar.
Compounds containing multiple aldehyde groups, e.g. glutaraldehyde groups (Adami et al. 1999), are capable of efficient crosslinking. A simple method for synthesizing dialdehydes is the oxidation of cyclic compounds containing vicinal alcohol groups, such as on sugars, by sodium periodate. In particular, sugars with ortho carboxy derived phenolates may be
oxidized to produce dialdehydes (see FIG. 4). The dialdehyde may be added to a polyamine- containing particle to crosslink (i.e., cage) the polyamine, thereby stabilizing the particle. Alternatively, the dialdehyde may be used as an acid-labile building block to synthesize lipids, polymers, and/or crosslinking reagents that may be useful in delivery of biologically active compounds.
Ortho carboxy phenol derived acetals may be incorporated into polynucleotide (or other biologically active compound) delivery complexes. Many different molecules can be attached to ortho carboxy phenol derived acetals, at positions R, R', and Rι4. Biologically active compounds and a variety of functional groups may be attached to the acetal. The acetal may also be used in the construction on polymers useful for biologically active compound delivery to cells. A plurality of ortho carboxy phenol derived acetals can be incorporated into a polymer to facilitate release of side groups from the polymer or to facilitate cleavage of the polymer backbone.
A polymer can also be designed such that its presence in an endosome prevents acidification of the endosome or facilitates disruption of the endosomal membrane. For example, the polymer can contain endosomolytic properties or have endosomolytic agents or membrane fusion agents attached to it.
The labile acetal bonds described herein may be incorporated into systems that are amphipathic and increase in hydrophobicity and membrane activity upon bond cleavage. For example, the acetal may contain acetals derived from ortho carboxylate phenols having a hydrophilic, negative charge. Cleavage of the acetal separates Rι-4 from R and R', which removes the link between R and R' and the carboxylate group of the ortho-substituted carboxy phenol. This loss of associated charge may make R and/or R' more hydrophobic, and therefore more likely to interact with and lyse a membrane. Using this strategy one may use acetals derived from ortho carboxylate phenol to construct lipids (where R and R' are long chain, C>10, alkyl groups), or detergents (where R or R' are long chain, C>10, alkyl groups) that become membrane active upon hydrolysis.
Functional groups include cell targeting signals, nuclear localization signals, compounds that enhance release of contents from endosomes or other intracellular vesicles (releasing signals), membrane active compounds, lipids, charged groups, polymers and polymer monomers,
transfection enhancing agents, and other compounds that alter the behavior or interactions of the compound or complex to which they are attached. Charged groups include cationic groups which may be used to ionically interact with nucleic acid.
The present invention provides compositions of matter and methods for facilitating the delivery of biologically active compounds to the cells. For the purposes of this invention, the term biologically active compound is intended to encompass all naturally-occurring or synthetic compounds capable of eliciting a biological response or having an effect on biological systems, particularly cells and cellular organelles. A biologically active compound typically has some specific and intended pharmaceutical or biological action. The term thus means any substance intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease or in the enhancement of desirable physical or mental development and conditions in a cell or tissue. The cell may be in vivo or in vitro. Biologically active compounds include, but are not limited to: pharmaceuticals, proteins, peptides, polypeptides, proteins, enzymes, enzyme inhibitors, hormones, cytokines, antigens, viruses, and polynucleotides. The term biologically active compound includes therapeutic agents that provide a therapeutically desirable effect when administered to an animal (e.g., a mammal, such as a human, see Physicians' Desk Reference, 58 ed., 2004, Medical Economics Company, Inc., Montvale, N.J., pages 201-202).
For polynucleotide delivery, it is desirable for the polynucleotide to be dissociated from components of the complex in the cell in order for the polynucleotide to be active. This dissociation may occur outside the cell, within cytoplasmic vesicles or organelles (i.e. endosomes), in the cytoplasm, or in the nucleus. The disclosed acetal linkages can be utilized in forming cleavable components of polynucleotide delivery complexes to facilitate this dissociation of the polynucleotide.
The described acetals and acetal-containing compounds can be used with a variety of delivery routes, including: intravascular (intravenous, intra-arterial), intramuscular, intraparenchymal, intradermal, subdermal, subcutaneous, intratumor, intraperitoneal, intralymphatic, transdermal, oral, nasal, respiratory, and mucosal routes of administration.
Targeting moieties are used for targeting a compound or composition to cells, to specific cells, to tissues or to specific locations in a cell. Targeting moieties enhance the association of
compounds or compositions with a cell. The moiety may increase binding of the compound to the cell surface and/or its association with an intracellular compartment. By modifying the cell or tissue localization of a compound, the function of the compound can be enhanced. The targeting moieties can be, but is not limited to, a protein, peptide, lipid, steroid, sugar, carbohydrate, or synthetic compound. Targeting moieties such as ligands enhance binding to cellular receptors. A variety of ligands have been used to target drugs and genes to cells and to specific cellular receptors. The ligand may have affinity for a target within the cell membrane, on the cell membrane or near a cell. Binding of ligands to receptors typically initiates endocytosis. Ligands include agents that target the asialoglycoprotein receptor by using asialoglycoprotein or galactose residues. Other moieties such as insulin, EGF, RGD- containing peptides, folate and other vitamins, and transferrin are other examples of cell receptor targeting ligands. Chemical groups that react with thiols or disulfide groups on cells can also be used to target many types of cells. Other targeting groups include molecules that interact with membranes such as lipids, fatty acids, cholesterol, dansyl compounds, and amphotericin derivatives. In addition viral proteins could be used to bind cells.
After interaction of a compound or complex with the cell, other targeting groups can be used to increase the delivery of the biologically active compound to certain parts of the cell. For example, nuclear localizing signals enhance delivery into proximity of the nucleus and/or entry into the nucleus. Nuclear transport signals can be proteins or peptides, such as the SV40 large T antigen NLS or the nucleoplasmin NLS, that interact with the nuclear transport machinery in the cell. Nuclear transport signals can also be proteins that make up the nuclear transport machinery. For example, karyopherin beta can be used to target compounds the nuclear pore complex.
Membrane active polymers or compounds are molecules that are able to alter membrane structure. This change in structure can be shown by the compound inducing one or more of the following effects upon a membrane: an alteration that allows small molecule permeability, pore formation in the membrane, a fusion and/or fission of membranes, an alteration that allows large molecule permeability, or a dissolving of the membrane. This alteration can be functionally defined by the compound's activity in at least one the following assays: red blood cell lysis (hemolysis), liposome leakage, liposome fusion, cell fusion, cell lysis and endosomal release. More specifically membrane active compounds allow for the transport of molecules with molecular weight greater than 50 atomic mass units to cross a
membrane. This transport may be accomplished by either the total loss of membrane structure, the formation of holes (or pores) in the membrane structure, or the assisted transport of compound through the membrane. Membrane active compounds can enhance the release of endocytosed material from intracellular membrane enclosed vesicles. Release includes movement out of an intracellular compartment into the cytoplasm or into an organelle such as the nucleus. Chemicals such as chloroquine, bafilornycin or Brefeldin Al, viruses and viral components such as influenza virus hemagglutinin subunit HA-2 peptides, and other types of amphipathic peptides such as melittin are examples of molecules which have been shown to enhance release of endosomal contents.
An interaction modifier changes the way that a molecule interacts with itself or other molecules relative to molecule containing no interaction modifier. The result of this modification is that self-interactions or interactions with other molecules are either increased or decreased. Steric stabilizers are hydrophilic polymers that decrease electrostatic interactions between molecules and themselves and with other molecules. Steric stabilizers such as polyethylene glycol have been used to reduce interactions with blood components to increase circulatory time of a compound or composition to which they are attached by preventing opsonization, phagocytosis and uptake by the reticuloendothelial system. Other steric stabilizers include: alkyl groups, and polysaccharides.
A transfection agent, or transfection reagent or delivery vehicle, is a compound or compounds that bind(s) to or complex(es) with oligonucleotides and polynucleotides, and mediates their entry into cells. Examples of transfection reagents include, but are not limited to, cationic liposomes and lipids, polyamines, calcium phosphate precipitates, histone proteins, polyethylenimine, polylysine, and polyampholyte complexes. It has been shown that cationic proteins like histones and protamines, or synthetic polymers like polylysine, polyarginine, polyornithine, DEAE dextran, polybrene, and polyethylenimine may be effective intracellular delivery agents. Typically, the transfection reagent has a component with a net positive charge that binds to the oligonucleotide's or polynucleotide's negative charge. The transfection reagent mediates binding of oligonucleotides and polynucleotides to cells via its positive charge (that binds to the cell membrane's negative charge) or via ligands that bind to receptors in the cell. For example, cationic liposomes or polylysine complexes have net positive charges that enable them to bind to DNA or RNA. For non-viral delivery,
polynucleotides can be incorporated into lipid vesicles (liposomes), complexed with polymers (polyplexes) or a combination of lipids and polymers (lipopolyplexes).
Amphiphilic, or amphipathic, compounds have both hydrophilic (water-soluble) and hydrophobic (water-insoluble) parts. Hydrophilic groups indicate in qualitative terms that the chemical moiety is water-preferring. Typically, such chemical groups are water soluble, and are hydrogen bond donors or acceptors with water. Examples of hydrophilic groups include compounds with the following chemical moieties; carbohydrates, polyoxyethylene, peptides, oligonucleotides and groups containing amines, amides, alkoxy amides, carboxylic acids, sulfurs, or hydroxyls. Hydrophobic groups indicate in qualitative terms that the chemical moiety is water-avoiding. Typically, such chemical groups are not water soluble, and tend not to hydrogen bonds. Hydrocarbons are hydrophobic groups.
Detergents or surfactants are water-soluble molecules containing a hydrophobic portion (tail) and a hydrophilic portion (head), which upon addition to water decrease water's surface tension. The hydrophobic portion can be alkyl, alkenyl, alkynyl or aromatic. The hydrophilic portion can be charged with either net positive (cationic detergents), negative (anionic detergents), uncharged (nonionic detergents), or charge neutral (zwitterionic detergent). Examples of anionic detergents are sodium dodecyl sulfate, glycolic acid ethoxylate(4 units) 4-tert-butylphenylether, palmitic acid, and oleic acid. Examples of cationic detergents are cetyltrimethylammonium bromide and oleylamine. Examples of nonionic detergents include, laurylmaltoside, Triton X-100, and Tween. Examples of zwitterionic detergents include 3- [(3-cholamidopropyl)dimthylammonio]l-propane-sulfonate (CHAPS), and N-tetradecyl- N,N-dimethyl-3 -ammoniu- 1 -propanesulfonate.
A polymer is a molecule built up by repetitive bonding together of smaller units called monomers. A polymer can be linear, branched network, star, comb, or ladder types of polymer. A polymer can be a homopolymer in which a single monomer is used or can be copolymer in which two or more monomers are used.
The main chain of a polymer is composed of the atoms whose bonds are required for propagation of polymer length. For example in poly-L-lysine, the carbonyl carbon, -carbon, and α-amine groups are required for the length of the polymer and are therefore main chain atoms. The side chain of a polymer is composed of the atoms whose bonds are not required
for propagation of polymer length. For example in poly-L-lysine, the β, γ, δ and ε-carbons, and ε -nitrogen are not required for the propagation of the polymer and are therefore side chain atoms.
Other Components of the Monomers and Polymers: Polymers may have functional groups that enhance their utility. These groups can be incorporated into monomers prior to polymer formation or attached to the polymer after its formation. Functional groups may be selected from the list consisting of: targeting groups, interaction modifiers, steric stabilizers, and membrane active compounds, affinity groups and reactive groups.
A polyion (or polyelectrolyte), is a polymer possessing charge, i.e. the polymer contains a group (or groups) that has either gained or lost one or more electrons. The term polyion includes polycations, polyanions, zwitterionic polymers, and neutral polymers. The term zwitterionic refers to the product (salt) of the reaction between an acidic group and a basic group that are part of the same molecule. Salts are ionic compounds that dissociate into cations and anions when dissolved in solution. Salts increase the ionic strength of a solution, and consequently decrease interactions between nucleic acids with other cations. A charged polymer is a polymer that contains residues, monomers, groups, or parts with a positive or negative charge and whose net charge can be neutral, positive, or negative.
A polycation can be a polymer possessing net positive charge, for example poly-L-lysine hydrobromide or a histone. The polymeric polycation can contain monomer units that are charge positive, charge neutral, or charge negative, however, the net charge of the polymer must be positive. A polycation also can be a non-polymeric molecule that contains two or more positive charges.
A polyanion can be a polymer containing a net negative charge, for example polyglutamic acid. The polymeric polyanion can contain monomer units that are charge negative, charge neutral, or charge positive, however, the net charge on the polymer must be negative. A polyanion can also be a non-polymeric molecule that contains two or more negative charges.
A labile bond is a covalent bond that is capable of being selectively broken. That is, the labile bond may be broken in the presence of other covalent bonds without the breakage of the other covalent bonds. For example, a disulfide bond is capable of being broken in the presence of
thiols without cleavage of any other bonds, such as carbon-carbon, carbon-oxygen, carbon- sulfur, carbon-nitrogen bonds, which may also be present in the molecule.
pH-labile refers to the selective breakage of a covalent bond under acidic conditions (pH<7). That is, the pH-labile bond may be broken under acidic conditions in the presence of other covalent bonds without their breakage.
The term polynucleotide, or nucleic acid or polynucleic acid, is a term of art that refers to a polymer containing at least two nucleotides. Nucleotides are the monomeric units of polynucleotide polymers. Polynucleotides with less than 120 monomeric units are often called oligonucleotides. Natural nucleic acids have a deoxyribose- or ribose-phosphate backbone. An artificial or synthetic polynucleotide is any polynucleotide that is polymerized in vitro or in a cell free system and contains the same or similar bases but may contain a backbone of a type other than the natural ribose-phosphate backbone. These backbones include: PNAs (peptide nucleic acids), phosphorothioates, phosphorodiamidates, morpholinos, and other variants of the phosphate backbone of native nucleic acids. Bases include purines and pyrimidines, which further include the natural compounds adenine, thymine, guanine, cytosine, uracil, inosine, and natural analogs. Synthetic derivatives of purines and pyrimidines include, but are not limited to, modifications which place new reactive groups such as, but not limited to, amines, alcohols, thiols, carboxylates, and alkylhalides. The term base encompasses any of the known base analogs of DNA and RNA. The term polynucleotide includes deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) and combinations of DNA, RNA and other natural and synthetic nucleotides.
A polynucleotide can be delivered to a cell to express an exogenous nucleotide sequence, to inhibit, eliminate, augment, or alter expression of an endogenous nucleotide sequence, or to affect a specific physiological characteristic not naturally associated with the cell. Polynucleotides can be delivered to cells to treat genetic disorders, treat acquired diseases such as cancer, induce an immune reaction (such as in vaccination or immunization), treat infectious disorders, add a new cellular function, or study gene function.
A polynucleotide-based gene expression inhibitor comprises any polynucleotide containing a sequence whose presence or expression in a cell causes the degradation of or inhibits the function, transcription, or translation of a gene in a sequence-specific manner.
Polynucleotide-based expression inl ibitors may be selected from the group comprising: siRNA, microRNA (miRNA), small non-messenger RNAs (snmRNA), utRNA (untranslated), snoRNAs (24-mers, modified snmRNA that act by an anti-sense mechanism), tiny non-coding RNAs (tncRNAs), interfering RNA or RNAi, dsRNA, ribozymes, antisense polynucleotides, and DNA expression cassettes encoding the like. SiRNA comprises a double stranded structure typically containing 15-50 base pairs and preferably 19-25 base pairs and having a nucleotide sequence identical or nearly identical to an expressed target gene or RNA within the cell. An siRNA may be composed of two annealed polynucleotides or a single polynucleotide that forms a hairpin structure (small hairpin RNA, shRNA). MicroRNAs are small noncoding polynucleotides, about 22 nucleotides long, that direct destruction or translational repression of their mRNA targets. Antisense polynucleotides comprise sequence that is complimentary to a gene or mRNA. Antisense polynucleotides include, but are not limited to: morpholinos, 2'-0-methyl polynucleotides, DNA, RNA and the like. The polynucleotide-based expression inhibitor may be polymerized in vitro, recombinant, contain chimeric sequences, or derivatives of these groups. The polynucleotide-based expression inhibitor may contain ribonucleotides, deoxyribonucleotides, synthetic nucleotides, or any suitable combination such that the target RNA and/or gene is inhibited.
The process of delivering a polynucleotide to a cell has been commonly termed transfection or the process of transfecting and also it has been termed transformation. The term transfecting as used herein refers to the introduction of a polynucleotide or other biologically active compound into cells. The polynucleotide may be used for research puiposes or to produce a change in a cell that can be therapeutic. The delivery of a polynucleotide for therapeutic purposes is commonly called gene therapy. The delivery of a polynucleotide can lead to modification of the genetic material present in the target cell. The term stable transfection or stably transfected generally refers to the introduction and integration of an exogenous polynucleotide into the genome of the transfected cell. The term stable transfectant refers to a cell which has stably integrated the polynucleotide into the genomic DNA. Stable transfection can also be obtained by using episomal vectors that are replicated during the eukaryotic cell division (e.g., plasmid DNA vectors containing a papilloma virus origin of replication, artificial chromosomes). The term transient transfection or transiently transfected refers to the introduction of a polynucleotide into a cell where the polynucleotide does not integrate into the genome of the transfected cell. If the polynucleotide contains an expressible gene, then the expression cassette is subject to the regulatory controls that govern
the expression of endogenous genes in the chromosomes. The term transient transfectant refers to a cell which has taken up a polynucleotide but has not integrated the polynucleotide into its genomic DNA. EXAMPLES
Example 1. Synthesis of model acetals 1-2: To a solution of 100 mg of isoamyl alcohol and 55 mg (1.1 eq) of acetaldehyde in 2 mL of anhydrous methylene chloride at 4°C was added 200 mg of hydrochloric acid. The reaction was sealed with a rubber septum and stirred at RT for 24 hours. The solvent was then removed by rotary evaporation to produce the chloroether as a clear oil.
The phenolate anion of ethyl salicylate (for acetal 1; FIG. 1) and diethyl 2,5- dihydroxyterephthalate (for acetal 2; FIG. 1) were generated by addition of phenol to 0.9 equivalents of sodium hydride in anhydrous dimethylformamide. To the phenolate was then added 1.1 equivalents of the isoamyl-acetaldehyde chloroether. After 24 hours at room temperature (RT), the reaction was partitioned between water and ethyl acetate. The ethyl acetate was isolated, dried with sodium sulfate and concentrated to a solid.
The ester groups were then removed by addition of 2 equivalents of potassium hydroxide in methanol. After 3 hours, the ortho carboxy phenolate acetal was purified by reverse phase HPLC using a Cι8 column using methanol and water containing 0.1 wt% ammonium carbonate as eluents.
Example 2. Synthesis of model acetal 3: Synthesis of dimethyl-2-hydroxyisophthalic acid: 200 mg of 2-methoxyisophthalic acid was placed in a screw cap vial with 1.1 equivalents of sodium iodide and 10 mL of hydrogen bromide solution (48%). The vial was sealed and heated to 100°C in a water bath for 2 hours. The white precipitate was isolated by centrifugation and washed with dilute aqueous hydrochloric acid solution. The methyl diester was synthesized by reaction with methanol (100 mL) and concentrated sulfuric acid (10 mL) refluxing for 3 hours. The methanol was then removed by rotary evaporation and the mixture was partitioned between water and ethyl acetate. The organic layer was isolated, dried with sodium sulfate and concentrated to a white solid, which was purified by silica gel chromatography eluting with a hexane/ethyl acetate gradient.
Acetal 3 (FIG. 1) was synthesized by alkylation of chloromethyl menthol (0.5 equivalent from Aldrich) in dimethylformamide using sodium hydride (1 equivalent) as a base. The diester acetal was converted to diacid acetal by 5 eq potassium hydroxide in methanol. After 3 hours, the ortho carboxy phenolate acetal 3 was purified by reverse phase HPLC using a Cis column using methanol and water containing 0.1 wt% ammonium carbonate as eluents.
Example 3. Measurement of acetal kinetics: To determine the rate of acetal hydrolysis, compounds 1-3 were added to buffered solutions (pH 7-8 with 5mM HEPES, or pH 5-7 with 5 mM acetate) at various pH values and the absorbance of the solution was measured as a function of time (λ= 302 nm for 1 and 2 and 310 nm for 3). The rate constant was determined by determining the slope of the line derived from plotting ln[l-((A∞-At)/( A∞-A0))] as a function of time t, where A∞ is absorbance after >3 hours of hydrolysis, At is the absorbance at time t, and A0 is the initial absorbance. The half-life of the hydrolysis equals ln[2] divided by the rate constant.
Example 4. Synthesis of Galactose-salicylate: The sodium phenolate of ethyl salicylic acid was generated by 1 equivalent of sodium hydride in dimethylformamide. To the phenolate was added acetobromo-β-D-galactose (Sigma). The solution was stirred at RT for 10 days. The reaction mixture was partitioned between ethyl acetate and water, and the product was isolated by silica gel chromatography elution with hexane/ethyl acetate (see FIG. 3).
Example 5. Removal of ester groups and oxidation of galactose-salicylate: To a solution of ester galactose-salicylate in methanol was added 1 vol equivalent of water and 10 equivalents of potassium hydroxide. To this solution was added 5 equivalents of sodium periodate (FIG. 4).
Example 6. Synthesis of polycation DW561 andDW921: 2-Vinyloxy Ethyl Phthalimide (1 g, 4.6 mmol) was added to an oven dried round bottom flask under a blanket of nitrogen in anhydrous dichloromethane. To this solution was added butyl vinyl ether (0.368 g 3.68 mmol (DW921), or 0.460 g, 4.6 mmol (DW561)). The solution was then brought to -78°C and BF3OEt2 (0.065 g, 0.46 mmol) is added and the reaction is allowed to proceed for 2 hours at -78°C. The polymerization was stopped by the addition of 50/50 mixture of ammonium
hydroxide in methanol. The solvents were then removed by rotary evaporation. The polymer was then dissolved in 30 mL of 1,4-dioxane/methanol (2:1). To this solution was added hydrazine (0.147 g, 46 mmol) and the mixture was heated to reflux for 3 hours. The solvents were then removed by rotary evaporation and the resulting solid was brought up in 20 mL of 0.5M HC1 and refluxed for 15 minutes, diluted with 20 mL distilled water, and refluxed for additional hour. This solution was then neutralized with NaOH, cooled to RT, transferred to 3,500 molecular weight cutoff cellulose tubing, dialyzed for 24 h (2*20L) against distilled water, and freeze dried.
Example 7. PEGylation ofDW921: 100 mg of purified DW921 was reacted with 20 mg of PEG(3500) NHS ester in 1 mL HEPES pH 7.5. The polymer was then purified by size exclusion chromatography using sephacryl S-200 to remove unreacted PEG.
Example 8. Crosslinking and decondensation assay: The condensation of TMR-labeled DNA was assessed using a quantitative assay based on condensation-induced quenching of a fluorophore covalently attached to DNA. Briefly, TMR-DNA (3 μg/mL) was mixed 30 μg/mL DW921 in 0.8 ml of 10 mM HEPES, pH 7.5. After condensation with the polycation, periodate oxidized galactose-salicylate was added to 5 μg/mL. The TMR fluorescence of the samples was then measured using a Cary spectrofluorometer (excitation wavelength (λex) of 555 nm; emission wavelength (λem) of 585 nm) at RT. Relative signal was calculated as the percentage of fluorescence of noncondensed TMR-DNA. After 10 minutes, the condensed DNA particle was "challenged" by the addition of sodium chloride to 2.5 M. The level of fluorescence was compared to DNA particles without the addition of galactose-salicylate.
The increase in fluorescence after addition of sodium chloride is due to the decondensation of the DNA as the salt displaces the polycation, and therefore, is a measurement of crosslinking when comparing the noncrosslinked (no galactose-salicylate) to crosslinked samples (with galactose-salicylate).
Example 9. DNA transfection: To a solution of plasmid DNA pCIluc (10 μg/mL, 0.075 mM in phosphate, 2.6 μg/μL pCIluc; prepared according to Danko et al. 1997) in 0.5 mL of 150 mM NaCl and 5 mM TAPS pH 9 was added 100 μg/mL DW921. The complexes were then reacted with glutaraldehyde, periodate oxidized phenyl glucoside (another crosslinker containing a labile bond), or periodate oxidized salicylic galactoside at 1, 2, 4, 8, or 16 μg/mL. The complexes were then added (200 μL) to wells containing Hepa mouse hepatoma cells in Dulbecco's modified Eagle's Media containing 10% fetal bovine serum. The cells were allowed to incubate for 48 h. The cells were then harvested and assayed for luciferase expression as previously reported. The amount of transfection was reported in relative light units and is the average transfection for two separate wells of cells.
These data show that caging (i.e. crosslinking) the DNA-containing particles with a cleavable crosslinker results in better expression of the reporter transgene that caging with a non- hydrolyzable crosslinker.
Example 10. In vivo DNA delivery (mouse): To a solution of plasmid DNA pCIluc (3.33 μg/mL) in 3 mL of 5 mM TAPS pH 9 was added 33.3 μg/mL DW921. The complexes were then reacted with glutaraldehyde, periodate oxidized phenyl glucoside, or periodate oxidized salicylic galactoside at 1.66, 3.33, or 8.33 μg/mL respectively. The complexes were then
injected into the tail vein of 32 g mice using a 27 gauge needle in <10 seconds. All mice were euthanized at one day post-injection and livers were collected and homogenized in luciferase assay buffer. Luciferase activity was assayed from each liver homogenate sample (i.e. each mouse) as previously reported (Wolff et al. 1990). The amount of transfection was reported in relative light units and is the average for two mice.
The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. Therefore, all suitable modifications and equivalents fall within the scope of the invention.
Claims
1. An ortho carboxy acetal for delivering a biologically active compound to a cell comprising a structure represented by:
2. The ortho carboxy acetal of claim 1 wherein said carbon-containing group is selected from the list comprising: alkyl group, aryl group and acyl group.
3. The ortho carboxy acetal of claim 1 wherein R, R', and R^ are independently selected from the list comprising: drug, transfection agent, targeting group, ligand, interaction modifier, polymer, polymer monomer, membrane active compound, detergent, and lipid.
4. The ortho carboxy acetal of claim 1 wherein the biologically active compound consists of a polynucleotide.
5. An acid labile delivery agent comprising the structure:
6. The delivery agent of claim 5 wherein said association is electrostatic.
7. The delivery agent of claim 6 wherein said delivery agent consists of a transfection agent.
8. The delivery agent of claim 7 wherein said transfection agent consists of a polycation.
9. The delivery agent of claim 5 wherein said carbon-containing group is selected from the list comprising: alkyl group, aryl group, acyl group, poly.
10. The delivery agent of claim 5 wherein R, R', and R1- are independently selected from the list comprising: drug, transfection agent, targeting group, ligand, interaction modifier, polymer, polymer monomer, membrane active compound, detergent, and lipid.
11. The delivery agent of claim 5 wherein the biologically active compound consists of a polynucleotide.
12. A method for forming a labile linkage between amine groups present in one or more compounds comprising: a) forming an ortho carboxy acetal dialdehyde, and b) reacting said dialdehyde with said amine groups.
13. The method of claim 12 wherein said compound consists of a transfection agent.
14. The method of claim 12 wherein said transfection agent is associated with a polynucleotide.
15. A method for forming a polynucleotide delivery complex comprising: a) associating said polynucleotide with an amine-containing transfection agent to form a complex; b) adding an ortho carboxy acetal dialdehyde to said complex thereby crosslinking amines of said transfection agent to form a crosslinked complex; and, c) associating said crosslinked complex with a cell thereby delivery said polynucleotide to said cell.
16. The method of claim 15 wherein said cell is in vivo.
17. The method of claim 15 wherein said cell is in vitro.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US50021303P | 2003-09-04 | 2003-09-04 | |
US60/500,213 | 2003-09-04 | ||
US10/929,707 | 2004-08-30 | ||
US10/929,707 US7348453B2 (en) | 2003-09-04 | 2004-08-30 | Labile linkage for compound delivery to a cell |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005026253A2 true WO2005026253A2 (en) | 2005-03-24 |
WO2005026253A3 WO2005026253A3 (en) | 2005-09-01 |
Family
ID=34228668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/028349 WO2005026253A2 (en) | 2003-09-04 | 2004-09-01 | Labile linkage for compound delivery to a cell |
Country Status (2)
Country | Link |
---|---|
US (1) | US7348453B2 (en) |
WO (1) | WO2005026253A2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006044986A1 (en) * | 2004-10-18 | 2006-04-27 | Nitto Denko Corporation | Intracellular peptide delivery |
US20110177154A1 (en) | 2008-09-15 | 2011-07-21 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Tubular nanostructure targeted to cell membrane |
US20100081954A1 (en) * | 2008-09-30 | 2010-04-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Method, device, and system to control pH in pulmonary tissue of a subject |
WO2011120053A1 (en) | 2010-03-26 | 2011-09-29 | Mersana Therapeutics, Inc. | Modified polymers for delivery of polynucleotides, method of manufacture, and methods of use thereof |
US11541514B2 (en) | 2016-03-23 | 2023-01-03 | Milwaukee Electric Tool Corporation | Locking pliers |
CN115042103B (en) | 2017-09-11 | 2024-07-09 | 米沃奇电动工具公司 | Locking pliers, pliers and tool for gripping a workpiece |
USD910395S1 (en) | 2019-03-11 | 2021-02-16 | Milwaukee Electric Tool Corporation | Pliers |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4957998A (en) | 1988-08-22 | 1990-09-18 | Pharmaceutical Delivery Systems, Inc. | Polymers containing acetal, carboxy-acetal, ortho ester and carboxyortho ester linkages |
US4946931A (en) | 1989-06-14 | 1990-08-07 | Pharmaceutical Delivery Systems, Inc. | Polymers containing carboxy-ortho ester and ortho ester linkages |
US6126964A (en) * | 1996-01-04 | 2000-10-03 | Mirus Corporation | Process of making a compound by forming a polymer from a template drug |
JP4316787B2 (en) | 2000-01-11 | 2009-08-19 | 壽製薬株式会社 | An ether or amide derivative, a process for producing the same, and a therapeutic agent for diabetes containing the same, |
-
2004
- 2004-08-30 US US10/929,707 patent/US7348453B2/en not_active Expired - Fee Related
- 2004-09-01 WO PCT/US2004/028349 patent/WO2005026253A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US7348453B2 (en) | 2008-03-25 |
US20050054604A1 (en) | 2005-03-10 |
WO2005026253A3 (en) | 2005-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1594977B1 (en) | Reversible attachment of a membrane active polymer to a polynucleotide | |
US8211468B2 (en) | Endosomolytic polymers | |
US8217015B2 (en) | Endosomolytic polymers | |
US6919091B2 (en) | Compositions and methods for drug delivery using pH sensitive molecules | |
US7985406B2 (en) | Membrane active heteropolymers | |
US10022456B2 (en) | Reversibly masked polymers | |
US7098032B2 (en) | Compositions and methods for drug delivery using pH sensitive molecules | |
US8313772B2 (en) | Compositions for targeted delivery of siRNA | |
US7737108B1 (en) | Enhanced transport using membrane disruptive agents | |
Behr | Synthetic gene transfer vectors II: back to the future. | |
US8541548B2 (en) | Compounds and methods for reversible modification of biologically active molecules | |
US7682626B2 (en) | Polyvinylethers for delivery of polynucleotides to mammalian cells | |
US8138383B2 (en) | Membrane active heteropolymers | |
US20040162235A1 (en) | Delivery of siRNA to cells using polyampholytes | |
Akita et al. | Improving in vivo hepatic transfection activity by controlling intracellular trafficking: the function of GALA and maltotriose | |
Schlenk et al. | Recent developments and perspectives on gene therapy using synthetic vectors | |
US7348453B2 (en) | Labile linkage for compound delivery to a cell | |
Blagbrough et al. | Asymmetrical N 4, N 9-diacyl spermines: SAR studies of nonviral lipopolyamine vectors for efficient siRNA delivery with silencing of EGFP reporter gene | |
US20080132689A1 (en) | Labile Linkage for Compound Delivery to a Cell | |
US20020052335A1 (en) | Charge reversal of polyion complexes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |