高温ポル卜材 技術分野 High-temperature port materials Technical field
この出願の発明は、 高温での耐応力緩和特性に優れたフェライト系高 温ポルト材に関するものであり、 耐応力緩和特性を向上させるための熱 処理方法とそれにより製作されたフェライ ト系高温ポルト材に関する ものである。 背景技術 The invention of this application relates to a ferrite-based high-temperature port material having excellent stress relaxation resistance at high temperatures, and a heat treatment method for improving the stress relaxation resistance and a ferrite-based high-temperature port manufactured by the same. It is about wood. Background art
火力発電用蒸気タービンプラントに用いられるボルト材としては、 主 に低温域 (5 0 0で以下) で使用される 1 2 C r鋼や高温域で使用され る N i基超合金がある。低温域用の 1 2 C r鋼は応力緩和が大きくなる ため、 5 0 0で以上の温度での使用は困難であり、 5 0 0 を超える高 温では N i基超合金が用いられている。 Bolt materials used in steam turbine plants for thermal power generation include 12Cr steel used mainly in low-temperature regions (500 or less) and Ni-base superalloys used in high-temperature regions. Since 12 Cr steel for low-temperature regions has a large stress relaxation, it is difficult to use it at temperatures above 500 and above, and Ni-based superalloys are used at temperatures above 500 .
しかし、 タービンケーシングはフェライト鋼で製作されるため、 ケー シングとポルトの熱膨脹率が異なり、 設計が複雑かつ困難である。 高温 で使用可能なフェライト系高温ポルト材を実用化することができれば、 熱膨脹率の違いを考慮する必要が無くなり、 蒸気夕一ビンの設計を容易 にするとともに、 構造を簡素化することが可能となる。 However, since the turbine casing is made of ferritic steel, the case and port have different coefficients of thermal expansion, making the design complicated and difficult. If a ferrite-based high-temperature port material that can be used at high temperatures can be put to practical use, there is no need to consider differences in the coefficient of thermal expansion, making it easier to design the steam bin and simplifying the structure. Become.
また、 N i基超合金の場合にはどうしても高価となり、 その製造、 加 ェは必ずしも容易ではない。 このため、 5 0 0で以上の高温域でも使用 可能な鋼材の実現が望まれている。 In the case of a Ni-based superalloy, it is inevitably expensive, and its manufacture and addition are not always easy. Therefore, realization of a steel material which can be used even in a high temperature range of 500 or more is desired.
実際、 フェライト鋼の価格は N i基超合金の 1 0分の 1以下である。 しかも、 たとえばフェライト鋼を高温ポルト材に採用することができれ ば、 前記のようにタービンの設計が容易になり、 構造も簡素化する。 発 電のエネルギー効率向上の観点から、 蒸気温度は年々上昇する傾向にあ
り、 高温で使用可能なポルト材の需要は高い。 したがって、 高温で使用 可能なフェライト系高温ボルト材の必要性は極めて高く、 その経済的効 果も多大である。 In fact, the price of ferritic steel is less than one-tenth that of Ni-base superalloys. In addition, if ferrite steel can be used for the high-temperature port material, for example, the design of the turbine is facilitated and the structure is simplified as described above. From the viewpoint of improving the energy efficiency of power generation, the steam temperature tends to increase year by year. Therefore, the demand for high-temperature usable port material is high. Therefore, the need for ferritic high-temperature bolts that can be used at high temperatures is extremely high, and their economic effects are also great.
そこで、 この出願の発明者らは、 従来の 12 C r鋼のポルト材につい て詳細に検討を行ってきた, そして従来技術については以下のことが把 握される。 Therefore, the inventors of the present application have studied in detail the conventional port material of 12Cr steel, and the following can be understood about the conventional technology.
12 C r系高温ポルト材の規格 (非特許文献 1および 2) では、 焼戻 し熱処理の条件として、 最低温度 (593であるいは 620で) のみが 規定されている。 しかし、 耐カ等の強度特性を維持する観点から、 焼戻 し熱処理は一般に 70 O 以下の温度(非特許文献 3)で行われている。 これに対して、 火力発電ボイラー用材料は、 長時間の組織安定性を考 慮して、ポルト材よりも高い、 730 以上で焼戻し熱処理が行われる。 730で以上の高温で焼戻しを行うと、 数十時間程度の短時間での応力 緩和が大きく、 従来の 12 C r高温ポルト材ょりも残留応力は小さい。 しかし、 組織安定性が高いため、 数百時間を超える長時間では応力緩 和の程度が減少し、 従来の 12 C r高温ポルト材ょりも高い残留応力を 長時間安定に示す。 The standards for 12Cr-based high-temperature port materials (Non-patent Documents 1 and 2) specify only the minimum temperature (593 or 620) as the condition for tempering heat treatment. However, from the viewpoint of maintaining strength characteristics such as heat resistance, tempering heat treatment is generally performed at a temperature of 70 O or less (Non-Patent Document 3). On the other hand, in the case of thermal power boilers, tempering heat treatment is performed at 730 or more, which is higher than port material, in consideration of long-term structural stability. When tempering at 730 or higher temperatures, stress relaxation in a short time of about several tens of hours is large, and the residual stress of conventional 12Cr high-temperature port material is also small. However, due to the high structural stability, the degree of stress relaxation is reduced over a long period of time exceeding several hundred hours, and the conventional 12Cr high-temperature port material exhibits high residual stress for a long time.
また、 N i基超合金について改良の検討が加えられており、 たとえば C r l 8〜21%, T i l. 3〜1. 8%、 A 1 0. 7〜1. 3 %を含 有する N i基超合金からなる高温ボルト材も提案されている (特許文献 1)。 しかし、 このものは超合金であって、 より安価に高温特性に優れ た鋼を実現するものではない。 Improvements have also been considered for Ni-based superalloys, such as N containing Crl 8 to 21%, Til. 3 to 1.8%, and A10.7 to 1.3%. A high-temperature bolt material made of an i-base superalloy has also been proposed (Patent Document 1). However, this is a superalloy and does not make steel with excellent high-temperature properties at a lower cost.
非特許文献 1 : ASTMA 193/A 193M- 98a, Grade B6, B6X Non-patent document 1: ASTMA 193 / A 193M-98a, Grade B6, B6X
非特許文献 2 : ASTMA 437/A 437M-99, Grade B4B, B4C Non-patent document 2: ASTMA 437 / A 437M-99, Grade B4B, B4C
非特許文献 3 : H. Schaff, Perfonance of Bolting Materials in Non-Patent Document 3: H. Schaff, Perfonance of Bolting Materials in
High Temperature Plant Applications, p.410. 特許文献 1 : 特許第 3281685号公報 High Temperature Plant Applications, p.410. Patent Document 1: Patent No. 3281685
この出願の発明は、 以上のような背景を踏まえてなされたものであつ
て、 5 0 0 以上の高温域においても使用することができる、 耐応力緩 和特性に優れたフェライ ト鋼高温ポルト材とその製造方法を提供する ことを課題としている。 発明の開示 The invention of this application has been made in view of the above background. It is another object of the present invention to provide a ferritic steel high-temperature port material excellent in stress relaxation resistance, which can be used even in a high-temperature region of 500 or more, and a method for producing the same. Disclosure of the invention
この出願の発明は、 上記の課題を解決するものとして、 第 1には、 C rを 8重量%以上含有し、 焼戻しマルテンサイト組織を有するフェライ ト鋼であって、 5 0 O :を超える高温域において使用可能であることを 特徵とする高温ポルト材を提供し、 第 2には、 上記の高温ポルト材の製 造方法であって、 C rを 8重量%以上含有する鋼材を 1 0 0 0で以上の 温度にて焼入れ、 または焼ならしを行い、 次いで 7 3 0 ^以上の温度に おいて焼戻しを行うことを特徴とする高温ポルト材の製造方法を提供 する。 The invention of this application solves the above-mentioned problems. First, it is a ferritic steel containing at least 8% by weight of Cr and having a tempered martensitic structure. Secondly, a high-temperature port material characterized in that it can be used in a high temperature region. A method for producing a high-temperature port material characterized by quenching or normalizing at a temperature of 0 or more and then tempering at a temperature of 70 or more.
以上のとおりこの出願の発明の高温ポルト材は、 5 0 0でを超える高 温域においても使用可能をボルト材であるとの意味から 「高温ボルト 材」 と称されているものである。 As described above, the high-temperature port material of the invention of this application is referred to as a "high-temperature bolt material" in the sense that it is a bolt material that can be used even in a high temperature range exceeding 500.
この出願の発明によって、 従来の技術からは予見、 予期することので きないポルト材として、 5 0 0で以上の高温域においても使用すること ができる、 耐応力緩和特性に優れたフェライト鋼高温ポルト材とその製 造方法が提供される。 By the invention of this application, a ferrite steel high-temperature port with excellent stress relaxation resistance that can be used even in a high temperature range of 500 or more as a port material that cannot be foreseen or expected from the conventional technology. Materials and methods for their manufacture are provided.
現状のフェライト系高温ポルト材は、 高温での耐応力緩和特性が低く、 5 0 0で以上の高温では使用できないため、 5 0 0で以上の高温では、 高温強度の高い N i基超合金が使用されているが、 タービンケーシング はフェライト鋼で製作されるため、 ケーシングとポルトの熱膨脹率が異 なり、 設計が複雑かつ困難である。 そこで、 この出願の発明によって 、 高温で使用可能なフェライト系高温ポルト材を実用化することにより、 熱膨脹率の違いを考慮する必要が無くなり、 蒸気タービンの設計を容易 にするとともに、 構造を簡素化することが可能となる。
しかも、 フェライト鋼であることによって、 従来の高温ポルト材であ る N i基超合金の 1ノ 1 0以下のコストとしてこの出願の発明の高温 ポル卜材が提供される。 図面の簡単な説明 At present, ferrite-based high-temperature port materials have low stress relaxation resistance at high temperatures and cannot be used at temperatures above 50,000, so Ni-based superalloys with high high-temperature strength cannot be used at temperatures above 50,000. Although used, the turbine casing is made of ferritic steel, so the casing and port have different coefficients of thermal expansion, making the design complicated and difficult. Therefore, the invention of this application makes it practical to use a ferrite-based high-temperature port material that can be used at a high temperature, which eliminates the need to consider the difference in thermal expansion coefficient, simplifies the design of the steam turbine, and simplifies the structure. It is possible to do. In addition, the ferrite steel provides the high-temperature port material of the present invention at a cost of not more than 10 times less than that of a conventional high-temperature port material Ni-based superalloy. Brief Description of Drawings
図 1は、 本発明鋼の組織を例示した顕微鏡写真である。 FIG. 1 is a micrograph illustrating the structure of the steel of the present invention.
図 2は、 発明の高温ボルト材と比較材との応力緩和特性を例示した図 あ 。 発明を実施するための最良の形態 FIG. 2 is a diagram illustrating stress relaxation characteristics of the high-temperature bolt material of the invention and a comparative material. BEST MODE FOR CARRYING OUT THE INVENTION
この出願の発明は上記のとおりの特徵をもつものであるが、 以下にそ の実施形態について説明する。 The invention of this application has the features as described above, and an embodiment thereof will be described below.
この出願の発明の高温ポルト材は、 化学組成において 8重量%以上の C r (クロム) を含有し、 その組織として、 焼戻しマルテンサイト組織 を有するフェライト鋼である。 このもののより好適な化学組成について は、 たとえば以下のような各成分の含有割合が考慮される。 The high-temperature port material of the invention of this application is a ferritic steel containing Cr (chromium) in a chemical composition of 8% by weight or more and having a tempered martensite structure as its structure. Regarding a more preferable chemical composition, for example, the content ratio of each of the following components is considered.
C :炭化物あるいは炭窒化物を形成し、 強度向上のために 0 . 0 4重 量%以上の添加が有効であるが、 0 . 2重量%を超えての添加は、 長時 間域での強度を低下させる。 C: Carbide or carbonitride is formed, and addition of more than 0.04% by weight is effective for improving strength, but addition over 0.2% by weight is Decrease strength.
S i :耐酸化性の確保に重要な元素であって、 0 . 0 1重量%以上であ ることが望ましいが、 0 . 9 %を超えると靱性を低下させ、 クリープ破 断強度を低下させることになる。 S i: an important element for securing oxidation resistance, preferably 0.1% by weight or more, but if it exceeds 0.9%, toughness is reduced and creep rupture strength is reduced. Will be.
M n :脱酸剤として機能する元素であって、 0 . 3 ~ 1 . 5重量%とす るのが好ましい。 M n: an element functioning as a deoxidizing agent, preferably in an amount of 0.3 to 1.5% by weight.
C r :耐酸化性の確保のため、 8 . 0重量%以上の添加が必要である が、 1 3 . 5重量%を超えての添加は、デルタフェライ ト相を生成させ、 強度を低下させる。 Cr: 8.0% by weight or more must be added to ensure oxidation resistance. However, if it exceeds 13.5% by weight, a delta ferrite phase is formed and the strength is reduced. .
M o :固溶強化のため、 添加は有効であるが、 2 . 0重量%を超えて
の添加は脆化を促進する。 Mo: Addition is effective for solid solution strengthening, but exceeds 2.0% by weight Addition promotes embrittlement.
W:固溶強化のため、 添加は有効であるが、 4. 0重量%を超えての 添加は脆化を促進する。 W: Addition is effective for solid solution strengthening, but adding more than 4.0% by weight promotes embrittlement.
V:炭窒化物を形成し、 強度向上のために 0. 02重量%以上の添加 が有効であるが、 未固溶析出物が増加するため、 0. 35重量% を超えての添加は、 強度向上に有効ではない。 V: Addition of 0.02% by weight or more is effective for forming carbonitride and improving the strength, but addition of more than 0.35% by weight increases the amount of undissolved precipitates. It is not effective for improving strength.
Nb :炭窒化物を形成し、 強度向上のために 0. 01重量%以上の添 加が有効であるが、 未固溶析出物が増加するため、 0. 2重量% を超えての添加は、 強度向上に有効ではない。 Nb: It forms carbonitrides, and it is effective to add 0.01% by weight or more to improve the strength. However, the amount of undissolved precipitates increases. However, it is not effective for improving strength.
C o :デルタフェライト相の生成を抑制するため、 高強度確保に有効 であるが、 長時間強度を低下させるため、 4. 0重量%を超えて の添加は有効ではない。 C o: Effective for securing high strength to suppress the formation of delta ferrite phase, but adding over 4.0% by weight is not effective to reduce long-term strength.
N i :デルタフェライト相の生成を抑制するため、 高強度確保に有効 であるが、 フェライ卜とオーステナイトの変態温度を下げるため、 Ni: effective in ensuring high strength to suppress the formation of delta ferrite phase, but to lower the transformation temperature of ferrite and austenite,
3. 0重量%を超えての添加は有効ではない。 Additions exceeding 3.0% by weight are not effective.
A 1 :脱酸剤として重要な元素であって、 0. 01 %以下で含有させ ることが望ましい。 A1: An important element as a deoxidizer, it is desirable to contain it at 0.01% or less.
N:窒化物あるいは炭窒化物を形成し、 強度向上のために 0. 002 重量%以上の添加が有効であるが、 0. 15重量%を超えての添 加は製造上困難である。 N: Nitride or carbonitride is formed, and addition of 0.002% by weight or more is effective for improving the strength, but addition over 0.15% by weight is difficult in manufacturing.
B :析出物を微細化させ、 高温での安定性を向上させるため、 0. 0 B: 0.0 to reduce the size of precipitates and improve stability at high temperatures
2重量%程度までの添加は、 強度向上に有効である。 Addition of up to about 2% by weight is effective for improving strength.
そして、 この出願の発明の前記の製造方法においては、 次のことが留 意される。 And, in the manufacturing method of the invention of this application, the following is noted.
すなわち、 焼入れ、 あるいは焼ならしの温度は 1000で以上とし、 焼戻しは 730で以上の温度とする。 焼入れ、 あるいは焼ならしにおい ては、 オーステナイト単相とし、 V, Nb等の合金添加元素を母相中に 固溶させるために、 1000で以上の温度に保持する必要がある。
また、 焼戻しでは、 焼戻しマルテンサイト組織の高温安定性を高める ためには、 7 3 0で以上の温度での焼戻し熱処理が必要である。 なお、 従来のフェライト系高温ポルト材の一般的な焼戻し温度は 7 0 0で以 下 (前記非特許文献 3 ) であり、 組織の高温安定性を重視する火力発電 ボイラー用の高 C rフェライ ト耐熱鋼の一般的な焼戻し温度は 7 3 O t以上と規定されている (発電用火力設備規格、 日本機械学会、 (2 0 0 2 )丄 That is, the quenching or normalizing temperature is 1000 or more, and the tempering is 730 or more. In quenching or normalizing, it is necessary to maintain the temperature at 1000 or more in order to form a single phase of austenite and dissolve alloying elements such as V and Nb in the matrix. Further, in the tempering, in order to enhance the high-temperature stability of the tempered martensite structure, a tempering heat treatment at a temperature of 70 or more is necessary. The general tempering temperature of the conventional ferritic high-temperature port material is 700 or less (Non-patent Document 3), and the high Cr ferrite for a thermal power generation boiler that emphasizes the high-temperature stability of the structure. The general tempering temperature of heat-resistant steel is specified to be 73 Ot or more. (Standards for thermal power equipment for power generation, The Japan Society of Mechanical Engineers, (2 002) 丄
そこで以下に実施例を示し、 さらに詳しくこの出願の発明について説 明する。 もちろん以下の例によって発明が限定されることはない。 実施例 Therefore, examples are shown below, and the invention of this application will be described in more detail. Of course, the invention is not limited by the following examples. Example
表 1に示す化学組成を有する供試材を作成した。 供試材について、 表 2に示す条件の熱処理を行った。 比較材の焼戻し温度は 6 4 0 である のに対して、 本発明鋼の焼戻し温度は 8 0 0でであり、 比較材よりも高 温で焼戻し熱処理を行っていることが本発明高温ポルト材の特長であ る。 図 1は本発明鋼の組織を示した顕微鏡写真である。 マルテンサイト 相の粒径は約 5 0 i mである。 表 1 Test materials having the chemical compositions shown in Table 1 were prepared. The test material was heat-treated under the conditions shown in Table 2. The tempering temperature of the comparative material is 640, whereas the tempering temperature of the steel of the present invention is 800, indicating that the tempering heat treatment is performed at a higher temperature than the comparative material. This is the feature. FIG. 1 is a micrograph showing the structure of the steel of the present invention. The particle size of the martensite phase is about 50 im. table 1
供弒材 C Si, Mn P s Ni Cr Mo w Supply material C Si, Mn Ps Ni Cr Mo w
•本発明鋼 0.077 0.29 0.50 0.Q02 0.002 -' 9.28 - 3:13Inventive steel 0.077 0.29 0.50 0.Q02 0.002-'9.28-3:13
• 比較材 0,21 0.44 0.62 : Q.023. 0.004 0.85 11,46 0.9.7 0.94. 供試材' Co V N Ti Sn Al N B Fe 本発明鋼 3.03 0.20 0.045; - - 0:002 0.0024 0.0130 残部 比较材 0,10 0.2S - 0.090 0.027 4.033 0.0239 - 残部
表 2 • Comparative material 0,21 0.44 0.62: Q.023. 0.004 0.85 11,46 0.9.7 0.94. Test material 'Co VN Ti Sn Al NB Fe Steel of the present invention 3.03 0.20 0.045;--0: 002 0.0024 0.0130 Rest ratio 较Material 0,10 0.2S-0.090 0.027 4.033 0.0239-Remainder Table 2
供試材の 6 5 0 におる応力緩和挙動を図 2に示した。 試験開始直後 は、 本発明鋼の残留応力は比較材に比べて小さい。 しかし、 保持時間が 約 1 0 0時間を超えると、 本発明鋼では残留応力の低下の程度が減少し、 約 4 O M P aのほぼ一定値を示す。 これに対して比較材では、 試験開始 直後から数十時間までは、 本発明鋼よりも高い残留応力を示すが、 保 持時間が 1 0 0時間を超えても残留応力は大きく低下する。 そのため、 保持時間が 1 0 0時間以上の長時間域では、 比較材よりも本発明鋼の方 が残留応力は高く、 本発明鋼の方が耐応力緩和特性に優れていることが わかる。 このように、 1 0 0時間以上の長時間域において耐応力緩和特 性に優れていることが、 本発明鋼の高温ポルト材の大きな特徴である。 産業上の利用可能性 Figure 2 shows the stress relaxation behavior of the test material at 650. Immediately after the start of the test, the residual stress of the steel of the present invention is smaller than that of the comparative material. However, when the holding time exceeds about 100 hours, the degree of decrease in the residual stress of the steel of the present invention decreases, and the steel exhibits an almost constant value of about 4 OMPa. On the other hand, in the comparative material, the residual stress is higher than that of the steel of the present invention from immediately after the start of the test to several tens of hours, but the residual stress is significantly reduced even if the holding time exceeds 100 hours. Therefore, in the long-term region where the holding time is 100 hours or more, it is understood that the steel of the present invention has higher residual stress than the comparative material, and the steel of the present invention has better stress relaxation resistance. As described above, it is a great feature of the high-temperature port material of the steel of the present invention that it has excellent stress relaxation resistance in a long time range of 100 hours or more. Industrial applicability
この出願の発明の高温ポルト材によって、 安価で、 しかも高温特性に 優れたフェライト系ポルト材が提供される。 The high-temperature port material of the present invention provides a ferrite-based port material that is inexpensive and has excellent high-temperature characteristics.
実際、 フェライ ト鋼の価格は N i基超合金の 1 0分の 1以下である。 しかも、 たとえばフェライト鋼を高温ポルト材に採用することで、 夕一 ビンの設計が容易になり、 構造も簡素化する。 発電のエネルギー効率向 上の観点から、 蒸気温度は年々上昇する傾向にあり、 高温で使用可能な ポルト材の需要は高い。 したがって、 高温で使用可能なフェライト系高 温ポルト材の必要性は極めて高く、 その経済的効果も多大である。
In fact, the price of ferritic steel is less than one-tenth that of Ni-base superalloys. In addition, adopting ferrite steel as the high-temperature port material, for example, facilitates the design of the bottle and simplifies the structure. From the viewpoint of improving the energy efficiency of power generation, the steam temperature tends to increase year by year, and the demand for high-temperature usable port material is high. Therefore, the need for ferrite-based high-temperature port materials that can be used at high temperatures is extremely high, and their economic effects are significant.