[go: up one dir, main page]

WO2005021571A1 - Method for producing n4-benzoylcytidine derivative - Google Patents

Method for producing n4-benzoylcytidine derivative Download PDF

Info

Publication number
WO2005021571A1
WO2005021571A1 PCT/JP2004/012161 JP2004012161W WO2005021571A1 WO 2005021571 A1 WO2005021571 A1 WO 2005021571A1 JP 2004012161 W JP2004012161 W JP 2004012161W WO 2005021571 A1 WO2005021571 A1 WO 2005021571A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
formula
compound represented
carbon atoms
group
Prior art date
Application number
PCT/JP2004/012161
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Umetani
Katsutoshi Tsuchiya
Kiyoshi Takahashi
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Publication of WO2005021571A1 publication Critical patent/WO2005021571A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/073Pyrimidine radicals with 2-deoxyribosyl as the saccharide radical

Definitions

  • the present invention relates to a method for producing an N 4 -benzoylcytidine derivative.
  • nucleoside derivatives are required as raw materials.
  • nucleoside derivatives for example,? ⁇ 4 _ base Nzoiru _5, _ ⁇ _ (4, 4, over dimethoxy tri chill) _2 '- Dokishi _5- N 4, such as methyl cytidine - base Nzoirushichijin derivatives important production intermediate for the production of antisense DNA One.
  • a conventional method for producing N 4 _benzoyl_5'_0_ (4,4'_dimethoxytrityl) _2'-deoxy_5-methylcytidine includes, for example, N 4 -benzoyl 5-methyl_2 'as a starting material.
  • a method is known in which _ deoxycytidine is used and 4,4'-dimethoxytrityl chloride is reacted therewith (Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3).
  • Non-Patent Document 2 Non-Patent Document 2
  • Patent Document 3 Patent Document 3
  • Non-Patent Document 1 Nucleic Acid Research, Vol. 15, No. 1, 219-232 (published in 1987) (Nucleic Acids Research, Vol. 15, No. 1, pp. 219-232 1987)
  • Non-Patent Document 2 Photochemistry And Photobiology Vol. 45, No. 5, pp. 571-574, published in 1987 (Photochemistry and Photobiology Vol. 45, No. 5, pp. 571-574 1987)
  • Non-Patent Document 3 Chemical Pharmaceutical Bulletin Vol. 34 No. 1 51- 60 pages Published in 1986 (Chemical Pharmaceutical Bulletin, Vol. 34, No. 1, pp. 51—60 1986)
  • the present inventors produced N 4 -benzoyl-5′-0- (4,4, -dimethoxytrityl) -2, -deoxy-5-methylcytidine according to the method described in Non-Patent Document 1.
  • N 4 —benzoyl 3 ′, 5, - ⁇ -bis (4,4, -dimethoxytrityl)-in which an excessive protecting group was introduced at the 3′-position was found.
  • 2 Deoxy-5-methylcytidine was found to be present as an impurity.
  • it was difficult to separate these impurities from the target substance and purification by column chromatography according to the methods described in Non-Patent Documents 2 and 3 was necessary.
  • purification by column chromatography is not preferable because a large amount of solvent and its removal are required.
  • the present invention relates to a method for producing _benzoyl_5, _ ⁇ _ (4,4, dimethoxytrityl) -1_5-substituted cytidine derivatives by introducing impurities having an excessively protective group introduced at the 3'-position. It is an object of the present invention to provide a novel production method for reducing the amount.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, unlike the above-mentioned conventional method, the cytidine derivative having a trityl group introduced into the 5'-hydroxyl group has The method of introducing a benzoyl group into an amino group is effective in solving the above-mentioned problem.
  • a crystal of a cytidine derivative in which a trityl group is introduced into a hydroxyl group at the 5′-position, and the derivative and a specific solvent are solvated.
  • the present inventors have found that the crystals are useful for producing a cytidine derivative in which a trityl group has been introduced into the 5′-hydroxyl group and a benzyl group has been introduced into the 4-amino group, and have completed the present invention.
  • the present invention provides
  • R 1 is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an alkynyl group having 2 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, or A halogen atom
  • R 2 represents a hydrogen atom, an alkoxyl group having 1 to 4 carbon atoms, an alkoxyxylene group having 1 to 4 carbon atoms having a substituent, or a halogen atom.
  • R 1 is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 24 carbon atoms, an alkynyl group having 2 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, or halogen
  • R 2 represents a hydrogen atom, a C 1-4 alkoxyl group, a C 1-4 alkoxylinole group having a substituent, or a halogen atom
  • R 1 is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 24 carbon atoms, an alkynyl group having 2 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, or halogen
  • R 2 represents a hydrogen atom, a C 1-4 alkoxyl group, a C 1-4 alkoxylinole group having a substituent, or a halogen atom.
  • a compound represented by the formula (3) is reacted with a compound represented by (X represents a halogen atom).
  • n and n are each an integer up to 110, Rl and R2 are as described above, and Q is a general formula (8)
  • R 3 represents an alkyl group having 13 to 13 carbon atoms
  • R 4 represents an alkyl group having 2 to 5 carbon atoms
  • a compound represented by the general formula (9) [0052]
  • R5 and R6 each represent an alkyl group having 13 to 13 carbon atoms
  • R 7 represents an alkyl group having 13 to 13 carbon atoms
  • a novel compound represented by the general formula (5) such as N 4 _benzoyl_5, _0_ (4,4, -dimethoxytrityl) _2, _doxy-5-methylcytidine is provided.
  • a compound represented by the general formula (3) such as 5′-0- (4,4′-dimethoxytrityl) -12′-deoxy-5-methylcytidine is Crystallization is possible by forming a solvate with an ester solvent, a ketone solvent or a nitrile solvent.
  • the present invention is suitable for an industrial production method because a high-purity product can be efficiently produced with a simple operation.
  • FIG. 1 is a chart showing a chart obtained by measuring an object obtained in Example 1 by XRD.
  • FIG. 2 is a view showing a chart obtained by measuring an object obtained in Example 2 by XRD.
  • R1 is an alkyl having 1 to 4 carbon atoms.
  • R1 represents an alkynyl group having 2 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, or a halogen atom
  • R2 represents a hydrogen atom, 1 to 4 carbon atoms.
  • the general formula (1), the general formula (3), the general formula (5), the general formula (6), and the general formula (7), with respect to the alkoxyl group having a substituent of R2 and having 14 carbon atoms It represents an alkoxyl group belonging to the range in which the number of carbon atoms falls within the applicable range and represents a group having a plurality of substituents at arbitrary positions.
  • the substituent include an alkoxy group, an aryl group and the like.
  • Specific examples include methoxymethoxy group, butoxymethoxyl group, pentyloxymethoxyl group, trichloroethoxymethoxyl group, methoxyethoxymethoxyl group, methoxyethoxyl group, benzyloxyl group, benzyloxymethyl group, methoxybenzyloxymethoxyl group. And the like.
  • R2 in the compounds represented by the general formulas (1), (3), (5), (6) and (7) is not particularly limited. Or you can take the S configuration.
  • the compound represented by the general formula (1) or a salt thereof is reacted with the compound represented by the general formula (2) to isolate the compound represented by the general formula (3).
  • the compound represented by the general formula (5) is reacted with the compound represented by the general formula (4) in an organic solvent. ) Can be produced.
  • a compound in which R1 in the general formula (1) is a methyl group and R2 is a hydrogen atom can be preferably applied to the production method of the present invention.
  • the salt of the compound represented by the general formula (1) usually, a salt composed of the compound represented by the general formula (1) and an acid is used.
  • the acid may be an organic acid or an inorganic acid.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, etc., methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, trifluoromethanesulfonic acid, dichloroacetic acid And the like, among which hydrochloric acid is preferred.
  • the salt of the compound represented by the general formula (1) can be produced by reacting the compound represented by the general formula (1) with the above-mentioned acid.
  • X in the general formula (2) represents a halogen atom.
  • the compound represented by the general formula (2) is not particularly limited as long as it is at least 1 equivalent to the compound represented by the general formula (1) or a salt thereof. Use equivalents.
  • the solvent is not limited as long as it does not react with the compound represented by the general formula (2), but may be an aliphatic solvent such as hexane, pentane, heptane, or cyclohexane.
  • Hydrocarbon solvents aromatic solvents such as benzene, toluene, xylene, tamene, cymene, and anisol; halogen solvents such as chloroform, dichloromethane and dichloroethane; ester solvents such as ethyl acetate, isopropyl acetate and butyl acetate; Ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; nitrile solvents such as acetonitrile and propionitrile; amide solvents such as dimethylformamide; urea solvents such as dimethyl imidazoline and dimethyl propylene urea; pyridine , Collidine and other
  • the reaction between the compound represented by the general formula (1) or a salt thereof and the compound represented by the general formula (2) is usually performed in the presence of a base in order to trap hydrogen halide generated in the reaction.
  • a base include organic bases such as pyridine, lutidine, collidine, triethylamine and tributylamine. Of these, pyridine is preferred.
  • the amount of the base used is not particularly limited as long as it is at least 1 equivalent to the compound represented by the general formula (1) or a salt thereof. I do.
  • the reaction temperature may be any temperature that is sufficient for the reaction to proceed, and may be any temperature as long as it does not cause decomposition, but is preferably from -10 ° C to 40 ° C, more preferably -5 ° C. More than 2
  • reaction pressure is not particularly limited, but the reaction is usually performed under atmospheric pressure.
  • the compound represented by the general formula (3) or the compound represented by the general formula (3) is obtained from a reaction solution obtained by reacting the compound represented by the general formula (1) or a salt thereof with the compound represented by the general formula (2).
  • Each of the compounds represented by the formula (7) can be isolated as crystals.
  • M and n in the general formula (7) are each an integer of up to 110, and R1 and R2 in the general formula (7) are as described above.
  • R3 represents an alkyl group having 13 to 13 carbon atoms
  • R4 represents an alkyl group having 25 carbon atoms.
  • R3 in the general formula (8) is a methyl group; Is preferably an ethyl or butyl group.
  • R5 and R6 in the general formula (9) each represent an alkyl group having 13 to 13 carbon atoms.
  • R7 represents an alkyl group having 13 to 13 carbon atoms.
  • the solvent used for producing the crystal of the compound represented by the general formula (3) or the crystal of the compound represented by the general formula (7) includes hexane, isohexane, pentane, heptane, and cyclohexane.
  • Aliphatic hydrocarbon solvents such as xane, aromatic hydrogen solvents such as benzene, toluene, xylene, tamene, cymene, and anisol; halogen solvents such as chloroform, dichloromethane, and dichloroethane; ethyl acetate, isopropyl acetate, and butyl acetate Ester solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, etc., nitrile solvents such as acetonitrile, propionitrile, alcohol solvents such as methanol, ethanol, isopropyl alcohol, etc.
  • Amide solvents such as dimethylformamide, dimethylimidazoline, dimethylpropyl
  • urea solvents such as urea
  • nitrogen-containing aromatic solvents such as pyridine and collidine
  • ether solvents such as t-butyl methyl ether, dioxane, and tetrahydrofuran, and water.
  • the compound represented by the general formula (3) forms a solvate to form a crystal of the compound represented by the general formula (7). can get.
  • a single solvent or a mixed solvent may be used in any ratio as long as the solubility is sufficient for crystallization.
  • ethyl ethyl acetate, butyl acetate, acetonitrile, and methyl isobutyl ketone are preferred, and methyl isobutyl ketone is more preferred.
  • the temperature for producing the crystal of the compound represented by the general formula (3) or the crystal of the compound represented by the general formula (7) is arbitrary as long as it is a temperature sufficient for crystallization. However, a range of -10 ° C to 50 ° C is desirable, more preferably -10 ° C to 40 ° C.
  • the compound represented by the general formula (3) is dissolved. By adding a new solvent to the solution, the solubility of the compound represented by the general formula (3) is reduced, thereby making it possible to manufacture the compound. Further, in order to reduce the solubility, the compound can be produced by removing the solvent from a solution in which the compound represented by the general formula (3) is dissolved.
  • the amount of the solvent at this time may be arbitrary as long as it is an amount sufficient for crystallization, but is preferably between 3 times and 100 times the amount of the compound of the general formula (3), more preferably 5 times.
  • the double power is also 50 times.
  • Crystals of the compound represented by the general formula (7) can be converted into crystals of the compound represented by the general formula (3) by solvent replacement or drying under reduced pressure.
  • the compound represented by the general formula (3) or (7) obtained as described above is obtained by removing the impurity represented by the general formula (5). Can be used for manufacturing.
  • the compound represented by the general formula (5) can be produced by reacting the compound represented by the general formula (3) and the compound represented by the general formula (4) in an organic solvent.
  • X in the general formula (4) represents a benzoyloxy group or a halogen atom.
  • benzoic anhydride and benzoyl chloride are preferred because they are easily available.
  • the compound represented by the general formula (4) is not particularly limited as long as it is at least 1 equivalent to the compound represented by the general formula (3), but from the viewpoint of economy, 115 equivalents are used.
  • the organic solvent is not particularly limited as long as the reaction proceeds, but examples thereof include ketone solvents such as acetate, methyl ethyl ketone, and methyl isobutyl ketone, t-butyl methyl ether, tetrahydrofuran, and the like.
  • Ether solvents aromatic solvents such as benzene, toluene, xylene, cumene, cymene, and anisol
  • alcohol solvents such as isopropyl alcohol and butanol
  • halogen solvents such as methylene chloride, chloroform, and dichloroethane
  • ethyl acetate Isopropyl acetate, butyl acetate and other ester solvents, acetonitrile Nitrile solvents and the like can be mentioned.
  • the amount of the organic solvent to be used is not limited as long as it does not hinder the reaction, but is usually 3 to 20 times the amount of the reaction substrate.
  • the reaction temperature may be set to an arbitrary temperature if the reaction between the compound represented by the general formula (3) and the compound represented by the general formula (4) proceeds and the decomposition of the general formula (3) does not occur. Can be set. Usually, it is 30 ° C. or higher and the boiling point of the solvent or lower.
  • reaction pressure is not particularly limited, but the reaction is usually performed under atmospheric pressure.
  • reaction between the compound represented by the general formula (3) and the compound represented by the general formula (4) is performed using an organic solvent that is immiscible with water as an organic solvent, and The reaction can be carried out in the presence of a basic compound of an alkali metal or an alkaline earth metal.
  • water-immiscible organic solvent examples include ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and ether solvents such as t-butyl methyl ether and tetrahydrofuran.
  • Aromatic solvents such as benzene, toluene, xylene, tamene, cymene, and anisol; halogen solvents such as methylene chloride, chloroform, dichloroethane; and ester solvents such as ethyl acetate, isopropyl acetate, and butyl acetate.
  • the amount of the organic solvent to be used is not limited as long as it does not hinder the reaction, but usually it is 3 to 20 times the amount of the reaction substrate.
  • Examples of the basic compound of an alkali metal or an alkaline earth metal include sodium hydrogen carbonate, sodium carbonate, sodium hydroxide, potassium hydrogen carbonate, potassium carbonate, potassium hydroxide and the like.
  • alkaline metal or alkaline earth metal compound is to be used after dissolving in water.
  • the amount of the alkali metal or alkaline earth metal basic compound used is not particularly limited as long as it is set so as to maintain alkalinity at the end of the reaction.
  • organic amine those having low reactivity with benzoic anhydride are preferred.
  • Such organic amines include, for example, symmetric amines, but are not particularly limited. Specific examples include dicyclohexynoleamine.
  • the amount of the organic amine is not particularly limited, but is usually 1 equivalent or more and 3 equivalents or less from an economic viewpoint.
  • the compound represented by the general formula (3) By reacting the compound represented by the general formula (3) with the compound represented by the general formula (4), the compound represented by the general formula (5) is mainly produced, and is represented by the general formula (6). Compounds are by-produced.
  • the compound represented by the general formula (6) can be selectively converted to the compound represented by the general formula (5).
  • the base used for the conversion of the compound represented by the general formula (6) to the compound represented by the general formula (5) includes a benzoyl group at the N 4 position which is not hydrolyzed and a benzoyl group at the 3′-position. There is no particular limitation as long as the group can be hydrolyzed. Examples of such a base include alkali metal hydroxides and alkali metal hydroxides and alkoxides.
  • the amount of the base used is not particularly limited as long as it is set so that the hydrolysis reaction proceeds, but is from 1 equivalent to 10 equivalents from an economic viewpoint.
  • the reaction temperature is not particularly limited as long as it is set so that the benzoyl group at the N 4 position is not hydrolyzed, and is usually preferably ⁇ 20 ° C. or more and 20 ° C. or less.
  • the column oven temperature is 40 ° C
  • the flow rate is 1.0 OmlZ
  • N 4 -Benzoyl 2'-doxy-5-methylcytidine (0.3 g) was azeotropically dehydrated twice with dehydrated pyridine (20 ml) and then dissolved in dehydrated pyridine (30 ml). After adding 328 mg of 4,4'-dimethoxytrityl chloride, the mixture was reacted at room temperature for 10 hours. After stirring methanol for 1 hour, the solvent was distilled off under reduced pressure. To the concentrated residue were added 20 ml of black-mouthed form and 30 ml of a 5% by weight aqueous sodium hydrogen carbonate solution, and the layers were separated. The organic layer was filtered through a membrane filter and then concentrated under reduced pressure.
  • an N 4 -benzoinolecitidine derivative can be synthesized with a high degree of purity by simple means, so that it can be produced industrially advantageously and has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Disclosed is a method for producing a compound represented by the general formula (5) below wherein a compound represented by the general formula (1) below or a salt thereof is reacted with a dimethoxytrityl halide for isolating a compound represented by the general formula (3) below, and then the isolated compound represented by the general formula (3) below is reacted with a benzoic anhydride or a benzoic acid halide in an organic solvent.

Description

明 細 書  Specification
N4 -べンゾィルシチジン誘導体の製造法 Method for producing N 4 -benzoyl cytidine derivative
技術分野  Technical field
[0001] 本発明は、 N4—べンゾィルシチジン誘導体の製造法に関する。 The present invention relates to a method for producing an N 4 -benzoylcytidine derivative.
背景技術  Background art
[0002] 近年、ゲノム創薬の進展に伴い、アンチセンス DNA医薬が急速に開発されている 。そのため、原料となる DNAオリゴマー、さらに、そのオリゴマーの原料となるヌクレオ シド誘導体の需要が増大してレ、る。  [0002] In recent years, with the progress of genomic drug discovery, antisense DNA drugs have been rapidly developed. Therefore, the demand for DNA oligomers as raw materials and nucleoside derivatives as raw materials for the oligomers is increasing.
オリゴマーの製造には、原料として高純度なヌクレオシド誘導体が求められる。特に、 原料となるヌクレオシド誘導体の化学構造に非常に近い化合物の原料中への混入 は回避する必要がある。  For the production of oligomers, high-purity nucleoside derivatives are required as raw materials. In particular, it is necessary to avoid the incorporation of compounds very similar to the chemical structure of the starting nucleoside derivative into the starting material.
[0003] ヌクレオシド誘導体として、例えば、?^4_べンゾィル_5,_〇_ (4, 4,ージメトキシトリ チル) _2 '—デォキシ _5—メチルシチジン等の N4—べンゾィルシチジン誘導体はアン チセンス DNAを製造するための重要な製造中間体の一つである。 [0003] As nucleoside derivatives, for example,? ^ 4 _ base Nzoiru _5, _〇_ (4, 4, over dimethoxy tri chill) _2 '- Dokishi _5- N 4, such as methyl cytidine - base Nzoirushichijin derivatives important production intermediate for the production of antisense DNA One.
[0004] N4_ベンゾィル _5 ' _0_ (4, 4' _ジメトキシトリチル)_2 '—デォキシ _5—メチルシチ ジンの従来の製造方法としては、例えば、出発原料として N4—べンゾィルー 5—メチル _2 ' _デォキシシチジンを用い、これに対して 4, 4 'ージメトキシトリチルクロリドを反応 させる方法が知られている (非特許文献 1、非特許文献 2、非特許文献 3)。 [0004] A conventional method for producing N 4 _benzoyl_5'_0_ (4,4'_dimethoxytrityl) _2'-deoxy_5-methylcytidine includes, for example, N 4 -benzoyl 5-methyl_2 'as a starting material. A method is known in which _ deoxycytidine is used and 4,4'-dimethoxytrityl chloride is reacted therewith (Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3).
[0005] これらの方法を具体的に示せば、反応溶媒としてピリジンを用い、得られた反応混 合物をカラムクロマトグラフィー処理することにより目的物を分離精製している(非特 許文献 2、非特許文献 3)。  [0005] Specifically describing these methods, the target product is separated and purified by using pyridine as a reaction solvent and subjecting the obtained reaction mixture to column chromatography (Non-Patent Document 2, Non-Patent Document 2). Patent Document 3).
非特許文献 1 :ヌクレイック アシッド リサーチ 15卷(1号) 219— 232項(1987年 発行) (Nucleic Acids Research, Vol. 15, No. 1 , pp. 219-232 1987) 非特許文献 2 :フォトケミストリー アンド フォトバイオロジー 第 45卷 第 5号 571— 574頁 1987年発行(Photochemistry and Photobiology Vol. 45, No. 5, pp. 571-574 1987)  Non-Patent Document 1: Nucleic Acid Research, Vol. 15, No. 1, 219-232 (published in 1987) (Nucleic Acids Research, Vol. 15, No. 1, pp. 219-232 1987) Non-Patent Document 2: Photochemistry And Photobiology Vol. 45, No. 5, pp. 571-574, published in 1987 (Photochemistry and Photobiology Vol. 45, No. 5, pp. 571-574 1987)
非特許文献 3 :ケミカル ファーマシューティカル ブルティン 第 34卷 第 1号 51— 60頁 1986年発行(Chemical Pharmaceutical Bulletin, Vol. 34, No. 1 , p p. 51— 60 1986) Non-Patent Document 3: Chemical Pharmaceutical Bulletin Vol. 34 No. 1 51- 60 pages Published in 1986 (Chemical Pharmaceutical Bulletin, Vol. 34, No. 1, pp. 51—60 1986)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明者らは、非特許文献 1に記載の方法に従って、 N4—べンゾィルー 5 ' -0— (4 , 4,-ジメトキシトリチル) -2,-デォキシ -5-メチルシチジンを製造したところ、この方 法で得られる目的物中には、 3 '位へ過剰に保護基が導入された N4—べンゾィルー 3 ' , 5,-〇-ビス(4, 4,-ジメトキシトリチル) -2 デォキシ -5-メチルシチジンが不純 物として含まれることが判明した。さらに、 目的物からこの不純物を分離することが困 難であり、非特許文献 2、 3に記載の方法ごとぐカラムクロマトグラフィーによる精製 が必要であった。工業的製法を目指した場合には、カラムクロマトグラフィーによる精 製は大量の溶媒やその留去が必要となるので、好ましいとは言い難い。 The present inventors produced N 4 -benzoyl-5′-0- (4,4, -dimethoxytrityl) -2, -deoxy-5-methylcytidine according to the method described in Non-Patent Document 1. As a result, in the target product obtained by this method, N 4 —benzoyl 3 ′, 5, -〇-bis (4,4, -dimethoxytrityl)-in which an excessive protecting group was introduced at the 3′-position was found. 2 Deoxy-5-methylcytidine was found to be present as an impurity. Furthermore, it was difficult to separate these impurities from the target substance, and purification by column chromatography according to the methods described in Non-Patent Documents 2 and 3 was necessary. When aiming at an industrial production method, purification by column chromatography is not preferable because a large amount of solvent and its removal are required.
[0007] 従って、本発明は、 _べンゾィル_5,_〇_ (4, 4,ージメトキシトリチル)一 5_置換 シチジン誘導体に関して、 3 '位へ過剰に保護基が導入された不純物の混入量を低 減化するための新規な製造方法を提供することを目的とする。  [0007] Accordingly, the present invention relates to a method for producing _benzoyl_5, _〇_ (4,4, dimethoxytrityl) -1_5-substituted cytidine derivatives by introducing impurities having an excessively protective group introduced at the 3'-position. It is an object of the present invention to provide a novel production method for reducing the amount.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、前記課題を解決すべく鋭意検討した結果、前記の従来技術の方法 とは異なり、 5 '位の水酸基にトリチル基を導入したシチジン誘導体に対して、 4位のァ ミノ基にベンゾィル基を導入する方法が前記課題の解決に有効であること、更に、 5 ' 位の水酸基にトリチル基を導入したシチジン誘導体の結晶および該誘導体と特定の 溶媒とが溶媒和した結晶が、 5 '位の水酸基にトリチル基が導入され、かつ 4位のアミ ノ基にベンジル基が導入されたシチジン誘導体の製造に有用であることを見出し、本 発明を完成するに至った。  [0008] The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, unlike the above-mentioned conventional method, the cytidine derivative having a trityl group introduced into the 5'-hydroxyl group has The method of introducing a benzoyl group into an amino group is effective in solving the above-mentioned problem.In addition, a crystal of a cytidine derivative in which a trityl group is introduced into a hydroxyl group at the 5′-position, and the derivative and a specific solvent are solvated. The present inventors have found that the crystals are useful for producing a cytidine derivative in which a trityl group has been introduced into the 5′-hydroxyl group and a benzyl group has been introduced into the 4-amino group, and have completed the present invention.
[0009] すなわち、本発明は、  That is, the present invention provides
1.一般式 (1) [0010] 1.General formula (1) [0010]
Figure imgf000005_0001
Figure imgf000005_0001
[0011] (式中、 R1は炭素数 1一 4のアルキル基、炭素数 2— 4のアルケニル基、炭素数 2— 4 のアルキニル基、炭素数 1一 4のペルフルォロアルキル基、またはハロゲン原子を、 R 2は水素原子、炭素数 1一 4のアルコキシル基、置換基を有する炭素数 1一 4のアル コキシノレ基、またはハロゲン原子を表す。)で表される化合物またはその塩と、一般式 (2)  (Wherein, R 1 is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an alkynyl group having 2 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, or A halogen atom, R 2 represents a hydrogen atom, an alkoxyl group having 1 to 4 carbon atoms, an alkoxyxylene group having 1 to 4 carbon atoms having a substituent, or a halogen atom.) Or a salt thereof; General formula (2)
[0012] [化 2]  [0012] [Formula 2]
Figure imgf000005_0002
Figure imgf000005_0002
[0013] (Xはハロゲン原子を表す。)で表される化合物を反応させて、一般式(3) [0013] (X represents a halogen atom.) The compound represented by the general formula (3)
[0014] [化 3] [0014] [Formula 3]
Figure imgf000006_0001
Figure imgf000006_0001
[0015] (式中、 Rl、 R2は前記に同じ。)で表される化合物を単離した後に、  (Wherein R1 and R2 are the same as described above),
さらに、一般式 (3)で表される化合物と一般式 (4)  Further, the compound represented by the general formula (3) and the compound represented by the general formula (4)
[0016] [化 4] ( 4 )[0016] [Formula 4] (4)
Figure imgf000006_0002
Figure imgf000006_0002
[0017] (式中、 Xはベンゾィルォキシ基、またはハロゲン原子を表す。)で表される化合物を 有機溶媒中で反応させる、一般式 (5)  (Wherein X represents a benzoyloxy group or a halogen atom). A compound represented by the following general formula (5):
[0018] [化 5] [0018] [Formula 5]
Figure imgf000006_0003
Figure imgf000006_0003
[0019] (式中、 R1と R2は前記の通り。)で表される化合物の製造方法、  (Wherein R 1 and R 2 are as defined above),
2.一般式(1) [0020] [化 6] 2. General formula (1) [0020] [Formula 6]
Figure imgf000007_0001
Figure imgf000007_0001
[0021] (式中、 R1は炭素数 1一 4のアルキル基、炭素数 2 4のアルケニル基、炭素数 2— 4 のアルキニル基、炭素数 1一 4のペルフルォロアルキル基、またはハロゲン原子を、 R 2は水素原子、炭素数 1一 4のアルコキシル基、置換基を有する炭素数 1一 4のアル コキシノレ基、またはハロゲン原子を表す。)で表される化合物またはその塩と、一般式 (2)  (Wherein, R 1 is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 24 carbon atoms, an alkynyl group having 2 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, or halogen R 2 represents a hydrogen atom, a C 1-4 alkoxyl group, a C 1-4 alkoxylinole group having a substituent, or a halogen atom), and a salt thereof, Equation (2)
[0022] [化 7]  [0022] [Formula 7]
Figure imgf000007_0002
Figure imgf000007_0002
[0023] (Xはハロゲン原子を表す。)で表される化合物を反応させる、一般式(3) (X represents a halogen atom), a compound represented by the general formula (3)
[0024] [化 8] [0024] [Formula 8]
Figure imgf000008_0001
Figure imgf000008_0001
[0025] (式中、 Rl、 R2は前記に同じ。)で表される化合物の製造方法、  (Wherein R1 and R2 are the same as described above),
3.一般式(1)  3. General formula (1)
[0026] [化 9] [0026] [Formula 9]
Figure imgf000008_0002
Figure imgf000008_0002
[0027] (式中、 R1は炭素数 1一 4のアルキル基、炭素数 2 4のアルケニル基、炭素数 2— 4 のアルキニル基、炭素数 1一 4のペルフルォロアルキル基、またはハロゲン原子を、 R 2は水素原子、炭素数 1一 4のアルコキシル基、置換基を有する炭素数 1一 4のアル コキシノレ基、またはハロゲン原子を表す。)で表される化合物またはその塩と、一般式 (2) [0028] [化 10] (Wherein, R 1 is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 24 carbon atoms, an alkynyl group having 2 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, or halogen R 2 represents a hydrogen atom, a C 1-4 alkoxyl group, a C 1-4 alkoxylinole group having a substituent, or a halogen atom.) Equation (2) [0028] [Formula 10]
Figure imgf000009_0001
Figure imgf000009_0001
[0029] (Xはハロゲン原子を表す。)で表される化合物を反応させる、一般式(3) [0030] [化 11]  [0029] A compound represented by the formula (3) is reacted with a compound represented by (X represents a halogen atom).
Figure imgf000009_0002
Figure imgf000009_0002
[0031] (式中、 R1、 R2は前記【 :同じ。)で表される化合物の結晶の製造方法、 (Wherein R 1 and R 2 are the same as above :).
4.一般式 (3) 4.General formula (3)
[0032] [化 12] [0032] [Formula 12]
Figure imgf000009_0003
Figure imgf000009_0003
[0033] (式中、 Rl、 R2は前記に同じ。)で表される化合物と一般式 (4) [0034] [化 13]
Figure imgf000010_0001
(Wherein R1 and R2 are the same as described above) and a compound represented by the general formula (4) [0034] [Formula 13]
Figure imgf000010_0001
[0035] (式中、 Xはベンゾィルォキシ基、またはハロゲン原子を表す。)で表される化合物を 有機溶媒中で反応させる、一般式 (5)  (Wherein X represents a benzoyloxy group or a halogen atom), a compound represented by the general formula (5)
[0036] [化 14] [0036] [Formula 14]
Figure imgf000010_0002
Figure imgf000010_0002
[0037] (式中、 R1と R2は前記の通り。)で表される化合物の製造方法、  (Wherein R 1 and R 2 are as defined above),
5.一般式(3)  5. General formula (3)
[0038] [化 15] [0038] [Formula 15]
Figure imgf000010_0003
Figure imgf000010_0003
[0039] (式中、 R1と R2は前記の通り。)で表される化合物と一般式 (4) [0040] [化 16]
Figure imgf000011_0001
(Wherein R 1 and R 2 are as defined above) and a compound represented by the general formula (4) [0040] [Formula 16]
Figure imgf000011_0001
[0041] (式中、 Xはベンゾィルォキシ基、またはハロゲン原子を表す。)で表される化合物の 反応で副生する一般式 (6) (Wherein X represents a benzoyloxy group or a halogen atom). The general formula (6) by-produced in the reaction of the compound represented by
[0042] [化 17] [0042] [Formula 17]
Figure imgf000011_0002
Figure imgf000011_0002
[0043] (式中、 R1と R2は前記の通り。)で表される化合物を塩基で処理して、一般式(5) (Wherein R 1 and R 2 are as defined above), and the compound represented by the general formula (5)
[0044] [化 18] [0044]
Figure imgf000012_0001
Figure imgf000012_0001
[0045] (式中、 Rlと R2は前記の通り。)で表される化合物に変換する工程を含む、前記 1ま たは 4に記載の製造方法、  [0045] The production method according to the above 1 or 4, comprising a step of converting the compound into a compound represented by the formula (wherein, R1 and R2 are as defined above).
6.有機溶媒として、水と混和しない有機溶媒を用レ、、かつ、アルカリ金属またはアル カリ土類金属の塩基性化合物の存在下で反応を行う前記 1、 4、 5のいずれか 1項に 記載の製造方法、  6.The method according to any one of the above items 1, 4, and 5, wherein the reaction is carried out using an organic solvent immiscible with water as an organic solvent, and performing the reaction in the presence of a basic compound of an alkali metal or an alkaline earth metal. Described manufacturing method,
7.一般式 (4)で表される化合物として無水安息香酸を使用する反応において、該反 応を有機ァミンの存在下で行う前記 1、 4、 5のいずれか 1項に記載の製造方法、 7.The method according to any one of the above items 1, 4, and 5, wherein in the reaction using benzoic anhydride as the compound represented by the general formula (4), the reaction is performed in the presence of an organic amine.
8.有機ァミンとして、安息香酸と該有機アミンとが形成する塩が反応に用いる有機溶 媒中に析出するものを使用する前記 7に記載の製造方法、 8. The method according to the above item 7, wherein a salt formed by benzoic acid and the organic amine is precipitated in an organic solvent used for the reaction, as the organic amine.
9.有機ァミンがジシクロへキシノレアミンである前記 8に記載の製造方法、  9. The production method according to the above 8, wherein the organic amine is dicyclohexynoleamine,
10.一般式(1)、一般式 (3)、一般式 (5)、一般式 (6)中の R1がメチル基、 R2が水 素である前記 1一 9のいずれか 1項に記載の製造方法、  10. The method according to any one of items 1 to 9, wherein R1 in the general formulas (1), (3), (5), and (6) is a methyl group and R2 is hydrogen. Production method,
11.一般式(3) [0046] [化 19] 11. General formula (3) [0046]
Figure imgf000013_0001
Figure imgf000013_0001
[0047] (式中、 R1と R2は前記の通り。)で表される化合物の結晶、 (Wherein R 1 and R 2 are as defined above),
12.一般式(7)  12. General formula (7)
[0048] [化 20] [0048]
Figure imgf000013_0002
Figure imgf000013_0002
[0049] 〔式中、 mおよび nはそれぞれ 1一 10までの整数、 Rl、 R2は前記の通りであり、 Qは 一般式 (8)  [In the formula, m and n are each an integer up to 110, Rl and R2 are as described above, and Q is a general formula (8)
[0050] [化 21] [0050] [Formula 21]
0  0
R3 ( 8 ) R3 ( 8 )
[0051] (式中、 R3は炭素数 1一 3のアルキル基、 R4は炭素数 2— 5のアルキル基を表す)で 表される化合物、一般式 (9) [0052] [化 22]
Figure imgf000014_0001
Wherein R 3 represents an alkyl group having 13 to 13 carbon atoms, and R 4 represents an alkyl group having 2 to 5 carbon atoms, and a compound represented by the general formula (9) [0052] [Formula 22]
Figure imgf000014_0001
[0053] (式中、 R5、 R6は炭素数 1一 3のアルキル基を表す)で表される化合物、または一般 式(10)  (Wherein R5 and R6 each represent an alkyl group having 13 to 13 carbon atoms), or a compound represented by the general formula (10)
[0054] [化 23] [0054] [Formula 23]
R7- CN ( 1 0 )  R7- CN (10)
[0055] (式中、 R7は炭素数 1一 3のアルキル基を表す)で表される化合物のいずれかを表す(Wherein, R 7 represents an alkyl group having 13 to 13 carbon atoms)
。〕で表される化合物の結晶、 . A crystal of the compound represented by
13.一般式(9)中の R5および R6がともにメチル基である請求項 12記載の化合物の 結晶、  13. The crystal of the compound according to claim 12, wherein R5 and R6 in the general formula (9) are both methyl groups.
14.一般式(3)または一般式(7)中の R1がメチル基、 R2が水素である前記 11一 13 のいずれ力 1項に記載の化合物の結晶、  14. A crystal of the compound according to any one of 1-11 above, wherein R1 in the general formula (3) or (7) is a methyl group, and R2 is hydrogen,
である。  It is.
発明の効果  The invention's effect
[0056] 本発明によれば、 N4_ベンゾィル _5,_0_ (4, 4,—ジメトキシトリチル) _2,_デォキ シ - 5 -メチルシチジン等の一般式 (5)で表される化合物の新規な製造方法を提供す ること力 Sできる。また、本発明の一実施態様によれば、 5 ' -0-(4, 4 '一ジメトキシトリ チル)一 2'—デォキシー 5—メチルシチジン等の一般式(3)で表される化合物は、エス テル系溶媒、ケトン系溶媒や二トリル系溶媒と溶媒和を形成して結晶化が可能となる 。この化合物を中間体として経由する本発明が提供する製造ルートは、分離困難な 不純物である N4—ベンゾィル—3,, 5,—〇_ビス(4, 4,—ジメトキシトリチル ) _2,—デォ キシ _5—メチルシチジンの前駆体となる 3,, 5,_〇—ビス(4, 4,—ジメトキシトリチル)― 2'-デォキシ -5-メチルシチジンを再結晶等により簡便に除去することができる。さら に、次工程において、一般式(5)で表される化合物を製造する際に副生する 5'_0_ (4, 4'-ジメトキシトリチル) -3, N4—ジベンゾィルー 2' -デォキシー 5—メチルシチジン 等の一般式 (6)で表される化合物を、一般式(5)で表される化合物に変換することが できる。そのため、副生物を有効利用しながら高品質の製品を製造することが可能で ある。 According to the present invention, a novel compound represented by the general formula (5) such as N 4 _benzoyl_5, _0_ (4,4, -dimethoxytrityl) _2, _doxy-5-methylcytidine is provided. The ability to provide manufacturing methods. According to one embodiment of the present invention, a compound represented by the general formula (3) such as 5′-0- (4,4′-dimethoxytrityl) -12′-deoxy-5-methylcytidine is Crystallization is possible by forming a solvate with an ester solvent, a ketone solvent or a nitrile solvent. The production route provided by the present invention via this compound as an intermediate is that N 4 -benzoyl-3,5,5-〇_bis (4,4, -dimethoxytrityl) _2, -de 3,5, __- bis (4,4, -dimethoxytrityl) -2'-deoxy-5-methylcytidine, a precursor of oxy-5-methylcytidine, can be easily removed by recrystallization or the like. it can. Furthermore, in the next step, 5′_0_ (4,4′-dimethoxytrityl) -3, N 4 —dibenzoyl 2′-dexoxy 5—by-produced when the compound represented by the general formula (5) is produced. It is possible to convert a compound represented by the general formula (6) such as methylcytidine into a compound represented by the general formula (5). it can. Therefore, it is possible to manufacture high-quality products while effectively using by-products.
[0057] 以上から明らかなように、本発明は、簡便な操作で効率良く高純度な製品を製造す ることが可能であるので、工業的製法に適してレ、る。  [0057] As is clear from the above, the present invention is suitable for an industrial production method because a high-purity product can be efficiently produced with a simple operation.
図面の簡単な説明  Brief Description of Drawings
[0058] [図 1]実施例 1で得られた目的物を XRDにより測定して得られたチャートを示す図で ある。  FIG. 1 is a chart showing a chart obtained by measuring an object obtained in Example 1 by XRD.
[図 2]実施例 2で得られた目的物を XRDにより測定して得られたチャートを示す図で ある。  FIG. 2 is a view showing a chart obtained by measuring an object obtained in Example 2 by XRD.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0059] 一般式(1)、一般式 (3)、一般式 (5)、一般式 (6)、一般式 (7)で表される化合物に おいて、 R1は炭素数 1一 4のアルキル基、炭素数 2— 4のアルキニル基、炭素数 2— 4のアルケニル基、炭素数 1一 4のペルフルォロアルキル基、またはハロゲン原子を 表し、 R2は水素原子、炭素数 1一 4のアルコキシル基、置換基を有する炭素数 1一 4 のアルコキシル基、またはハロゲン原子を表す。 In the compounds represented by the general formula (1), the general formula (3), the general formula (5), the general formula (6), and the general formula (7), R1 is an alkyl having 1 to 4 carbon atoms. Represents an alkynyl group having 2 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, or a halogen atom, and R2 represents a hydrogen atom, 1 to 4 carbon atoms. Represents an alkoxyl group, an alkoxyl group having 1 to 4 carbon atoms having a substituent, or a halogen atom.
一般式(1)、一般式 (3)、一般式 (5)、一般式 (6)、一般式 (7)における R2の置換基 を有する炭素数 1一 4のアルコキシル基に関しては、主鎖の炭素数が該当する範囲 に属するアルコキシル基を表し、任意の位置に複数の置換基を有するものを表す。 置換基としては、アルコキシノレ基、ァリール基等を表す。具体例として、メトキシメトキ シノレ基、ブトキシメトキシル基、ペンチルォキシメトキシル基、トリクロ口エトキシメトキシ ル基、メトキシエトキシメトキシル基、メトキシェトキシル基、ベンジルォキシル基、ベン ジルォキシメチル基、メトキシベンジルォキシメトキシル基等である。  In the general formula (1), the general formula (3), the general formula (5), the general formula (6), and the general formula (7), with respect to the alkoxyl group having a substituent of R2 and having 14 carbon atoms, It represents an alkoxyl group belonging to the range in which the number of carbon atoms falls within the applicable range and represents a group having a plurality of substituents at arbitrary positions. Examples of the substituent include an alkoxy group, an aryl group and the like. Specific examples include methoxymethoxy group, butoxymethoxyl group, pentyloxymethoxyl group, trichloroethoxymethoxyl group, methoxyethoxymethoxyl group, methoxyethoxyl group, benzyloxyl group, benzyloxymethyl group, methoxybenzyloxymethoxyl group. And the like.
一般式(1)、一般式(3)、一般式 (5)、一般式 (6)、一般式(7)で表される化合物中 の R2の立体配置は特に限定されることはなぐ R配置または S配置を取ることができ る。  The configuration of R2 in the compounds represented by the general formulas (1), (3), (5), (6) and (7) is not particularly limited. Or you can take the S configuration.
一般式(1)で表される化合物またはその塩と、一般式(2)で表される化合物を反応さ せて一般式(3)で表される化合物を単離した後に、さらに、一般式 (3)で表される化 合物と一般式 (4)で表される化合物を有機溶媒中で反応させることにより、一般式 (5 )で表される化合物を製造することができる。 The compound represented by the general formula (1) or a salt thereof is reacted with the compound represented by the general formula (2) to isolate the compound represented by the general formula (3). The compound represented by the general formula (5) is reacted with the compound represented by the general formula (4) in an organic solvent. ) Can be produced.
一般式(1)で表される化合物として、一般式(1)中の R1がメチル基であり、 R2が水 素原子である化合物は、本発明の製造方法に好ましく適用できる。  As the compound represented by the general formula (1), a compound in which R1 in the general formula (1) is a methyl group and R2 is a hydrogen atom can be preferably applied to the production method of the present invention.
[0060] 一般式(1)で表される化合物は、通常、市販品を使用することができる。 [0060] As the compound represented by the general formula (1), a commercially available product can be usually used.
一般式(1)で表される化合物の塩としては、通常、一般式(1)で表される化合物と酸 とからなる塩が用いられる。  As the salt of the compound represented by the general formula (1), usually, a salt composed of the compound represented by the general formula (1) and an acid is used.
酸としては、有機酸、無機酸のいずれでもよぐ具体的には、塩酸、硫酸、リン酸等の 無機酸や、メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、トリフルォロ メタンスルホン酸、ジクロロ酢酸等が例示され、中でも、塩酸が好ましい。  The acid may be an organic acid or an inorganic acid.Specifically, inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, etc., methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, trifluoromethanesulfonic acid, dichloroacetic acid And the like, among which hydrochloric acid is preferred.
一般式(1)で表される化合物の塩は、一般式(1)で表される化合物と前記の酸とを 反応させることにより製造することができる。  The salt of the compound represented by the general formula (1) can be produced by reacting the compound represented by the general formula (1) with the above-mentioned acid.
一般式(2)中の Xはハロゲン原子を表す。  X in the general formula (2) represents a halogen atom.
一般式(2)で表される化合物は、一般式(1)で表される化合物またはその塩に対し て 1当量以上であれば特に制限はないが、経済的観点から、 1- 1. 5当量を使用す る。  The compound represented by the general formula (2) is not particularly limited as long as it is at least 1 equivalent to the compound represented by the general formula (1) or a salt thereof. Use equivalents.
一般式(1)で表される化合物またはその塩と、一般式(2)で表される化合物から一般 式(3)を得る反応には、通常、溶媒を用いる。  In the reaction for obtaining the general formula (3) from the compound represented by the general formula (1) or a salt thereof and the compound represented by the general formula (2), a solvent is usually used.
[0061] 溶媒としては、一般式(2)で表される化合物と反応しなレ、ものであれば限定されるこ とはないが、へキサン、ペンタン、ヘプタン、シクロへキサン等の脂肪族炭化水素系 溶媒、ベンゼン、トルエン、キシレン、タメン、シメン、ァニソール等の芳香族系溶媒、 クロ口ホルム、ジクロロメタン、ジクロロェタン等のハロゲン系溶媒、酢酸ェチル、酢酸 イソプロピル、酢酸ブチル等のエステル系溶媒、アセトン、メチルェチルケトン、メチル イソブチルケトン等のケトン系溶媒、ァセトニトリル、プロピオ二トリル等の二トリル系溶 媒、ジメチルホルムアミド等のアミド系溶媒、ジメチルイミダゾリン、ジメチルプロピレン ゥレア等のウレァ系溶媒、ピリジン、コリジン等の含窒素芳香族系溶媒、 t一プチルメチ ルエーテル、ジォキサン、テトラヒドロフラン等のエーテル系溶媒等が例示され、中で も、ピリジン、ジメチノレホノレムアミド、ジメチルイミダゾリン、テトラヒドロフラン、ジォキサ ンが好ましい。さらに好適には、ピリジンである。 [0062] 溶媒の使用量は、反応に支障のない限りに制限されることはないが、通常、基質に 対して、 3倍量から 20倍量を使用する。 [0061] The solvent is not limited as long as it does not react with the compound represented by the general formula (2), but may be an aliphatic solvent such as hexane, pentane, heptane, or cyclohexane. Hydrocarbon solvents, aromatic solvents such as benzene, toluene, xylene, tamene, cymene, and anisol; halogen solvents such as chloroform, dichloromethane and dichloroethane; ester solvents such as ethyl acetate, isopropyl acetate and butyl acetate; Ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; nitrile solvents such as acetonitrile and propionitrile; amide solvents such as dimethylformamide; urea solvents such as dimethyl imidazoline and dimethyl propylene urea; pyridine , Collidine and other nitrogen-containing aromatic solvents, t-butyl methyl ether, dioxa And ether-based solvents such as tetrahydrofuran, among which pyridine, dimethinolephonoremamide, dimethylimidazoline, tetrahydrofuran, and dioxane are preferred. More preferably, it is pyridine. [0062] The amount of the solvent to be used is not limited as long as it does not hinder the reaction, but usually it is used in an amount of 3 to 20 times the amount of the substrate.
一般式(1)で表される化合物またはその塩と、一般式(2)で表される化合物との反応 は、通常、反応で生成するハロゲン化水素をトラップするため塩基の存在下で行う。 塩基としては、ピリジン、ルチジン、コリジン、トリェチルァミン、トリブチルァミン等の有 機塩基が例示できる。なかでも、ピリジンが好ましい。  The reaction between the compound represented by the general formula (1) or a salt thereof and the compound represented by the general formula (2) is usually performed in the presence of a base in order to trap hydrogen halide generated in the reaction. Examples of the base include organic bases such as pyridine, lutidine, collidine, triethylamine and tributylamine. Of these, pyridine is preferred.
[0063] 塩基の使用量は、一般式(1)で表される化合物またはその塩に対して 1当量以上 であれば特に制限はないが、経済的観点から、 1-1. 5当量を使用する。 [0063] The amount of the base used is not particularly limited as long as it is at least 1 equivalent to the compound represented by the general formula (1) or a salt thereof. I do.
[0064] 反応温度は、反応の進行に十分な温度であり、かつ分解を起こさなければ任意の 温度でかまわないが、 _10°C以上 40°C以下が望ましぐさらに望ましくは- 5°C以上 2[0064] The reaction temperature may be any temperature that is sufficient for the reaction to proceed, and may be any temperature as long as it does not cause decomposition, but is preferably from -10 ° C to 40 ° C, more preferably -5 ° C. More than 2
5°Cである。 5 ° C.
[0065] 反応圧力は特に限定されることはないが、通常、反応は大気圧下で行う。  [0065] The reaction pressure is not particularly limited, but the reaction is usually performed under atmospheric pressure.
[0066] 一般式(1)で表される化合物またはその塩と、一般式(2)で表される化合物との反 応により得られる反応液から一般式(3)で表される化合物または一般式(7)で表され る化合物をそれぞれ結晶として単離することができる。  The compound represented by the general formula (3) or the compound represented by the general formula (3) is obtained from a reaction solution obtained by reacting the compound represented by the general formula (1) or a salt thereof with the compound represented by the general formula (2). Each of the compounds represented by the formula (7) can be isolated as crystals.
[0067] 一般式(3)で表される化合物または一般式 (7)で表される化合物をそれぞれ結晶と して単離するに際しては、結晶の製造前に反応液中における過剰の一般式(2)で表 される化合物を分解操作することや、不純物や無機塩をろ過や分液によって低減す ることや、反応溶媒を留去することが可能である。 When each of the compound represented by the general formula (3) or the compound represented by the general formula (7) is isolated as a crystal, an excess of the general formula ( It is possible to decompose the compound represented by 2), reduce impurities or inorganic salts by filtration or liquid separation, and distill off the reaction solvent.
[0068] 一般式(3)で表される化合物の結晶または一般式(7)で表される化合物の結晶の な The crystal of the compound represented by the general formula (3) or the crystal of the compound represented by the general formula (7)
かでも、一般式(3)および一般式(7)中の R1がメチル基であり、 R2が水素原子であ る化合物の結晶が好ましい。  Of these, a crystal of a compound in which R1 in the general formulas (3) and (7) is a methyl group and R2 is a hydrogen atom is preferable.
一般式(7)中の mおよび nは、それぞれ 1一 10までの整数であり、一般式(7)中の R1 、 R2は前記の通りである。  M and n in the general formula (7) are each an integer of up to 110, and R1 and R2 in the general formula (7) are as described above.
[0069] 一般式(8)中の R3は、炭素数 1一 3のアルキル基を表し、 R4は炭素数 2 5のアル キル基を表す。 [0069] In Formula (8), R3 represents an alkyl group having 13 to 13 carbon atoms, and R4 represents an alkyl group having 25 carbon atoms.
[0070] 一般式(8)で表される化合物のなかでも、一般式(8)中の R3がメチル基であり、 R4 がェチル基またはブチル基である化合物が好ましい。 [0070] Among the compounds represented by the general formula (8), R3 in the general formula (8) is a methyl group; Is preferably an ethyl or butyl group.
一般式(9)中の R5および R6は、それぞれ炭素数 1一 3のアルキル基を表す。  R5 and R6 in the general formula (9) each represent an alkyl group having 13 to 13 carbon atoms.
[0071] 一般式(9)で表される化合物のなかでも、一般式(9)中の R5および R6がメチル基 である化合物が好ましい。 [0071] Among the compounds represented by the general formula (9), a compound in which R5 and R6 in the general formula (9) are methyl groups is preferable.
[0072] 一般式(10)中の R7は、炭素数 1一 3のアルキル基を表す。 [0072] In the general formula (10), R7 represents an alkyl group having 13 to 13 carbon atoms.
[0073] 一般式(10)で表される化合物のなかでも、一般式(10)中の R7がメチル基である 化合物が好ましい。 [0073] Among the compounds represented by the general formula (10), a compound in which R7 in the general formula (10) is a methyl group is preferable.
[0074] 一般式(3)で表される化合物の結晶または一般式(7)で表される化合物の結晶の 製造に用いられる溶媒としては、へキサン、イソへキサン、ペンタン、ヘプタン、シクロ へキサン等の脂肪族炭化水素系溶媒、ベンゼン、トルエン、キシレン、タメン、シメン、 ァニソール等の芳香族水素系溶媒、クロ口ホルム、ジクロロメタン、ジクロロェタン等の ハロゲン系溶媒、酢酸ェチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒、 アセトン、メチルェチルケトン、メチルイソプチルケトン等のケトン系溶媒、ァセトニトリ ノレ、プロピオ二トリル等の二トリル系溶媒、メタノーノレ、エタノール、イソプロピルアルコ ール等のアルコール系溶媒、ジメチルホルムアミド等のアミド系溶媒、ジメチルイミダ ゾリン、ジメチルプロピレンゥレア等のウレァ系溶媒、ピリジン、コリジン等の含窒素芳 香族系溶媒、 t一ブチルメチルエーテル、ジォキサン、テトラヒドロフラン等のエーテル 系溶媒、水等が挙げられる。なかでも、エステル系溶媒、二トリル系溶媒、ケトン系溶 媒を使用すると、一般式 (3)で表される化合物が溶媒和を形成して一般式(7)で表さ れる化合物の結晶として得られる。結晶製造の際の溶媒については単一であっても 混合溶媒であってもよぐその比率は結晶化に十分な溶解度であれば任意で力まわ ない。  [0074] The solvent used for producing the crystal of the compound represented by the general formula (3) or the crystal of the compound represented by the general formula (7) includes hexane, isohexane, pentane, heptane, and cyclohexane. Aliphatic hydrocarbon solvents such as xane, aromatic hydrogen solvents such as benzene, toluene, xylene, tamene, cymene, and anisol; halogen solvents such as chloroform, dichloromethane, and dichloroethane; ethyl acetate, isopropyl acetate, and butyl acetate Ester solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, etc., nitrile solvents such as acetonitrile, propionitrile, alcohol solvents such as methanol, ethanol, isopropyl alcohol, etc. Amide solvents such as dimethylformamide, dimethylimidazoline, dimethylpropyl Examples include urea solvents such as urea, nitrogen-containing aromatic solvents such as pyridine and collidine, ether solvents such as t-butyl methyl ether, dioxane, and tetrahydrofuran, and water. In particular, when an ester solvent, a nitrile solvent, or a ketone solvent is used, the compound represented by the general formula (3) forms a solvate to form a crystal of the compound represented by the general formula (7). can get. Regarding the solvent used for crystal production, a single solvent or a mixed solvent may be used in any ratio as long as the solubility is sufficient for crystallization.
[0075] 一般式(7)で表される化合物の結晶を調製する際には、酢酸ェチル、酢酸ブチル 、ァセトニトリル、メチルイソプチルケトンが好ましぐさらに好ましくは、メチルイソプチ ルケトンである。  When preparing a crystal of the compound represented by the general formula (7), ethyl ethyl acetate, butyl acetate, acetonitrile, and methyl isobutyl ketone are preferred, and methyl isobutyl ketone is more preferred.
[0076] 一般式(3)で表される化合物の結晶または一般式(7)で表される化合物の結晶製 造の際の温度については、結晶化に十分な温度であれば任意で力 わないが、 -1 0°Cから 50°Cの範囲が望ましぐさらに望ましくは _10°C 40°Cの範囲である。 [0077] 一般式(3)で表される化合物の結晶または一般式(7)で表される化合物の結晶製 造の際には、一般式(3)で表される化合物が溶解している溶液に対して、新たに溶 媒を添加することにより一般式(3)で表される化合物の溶解度を低下させることにより 製造すること力 Sできる。また、溶解度を低下させるために一般式(3)に示された化合 物が溶解している溶液から溶媒を除去することにより製造することもできる。 [0076] The temperature for producing the crystal of the compound represented by the general formula (3) or the crystal of the compound represented by the general formula (7) is arbitrary as long as it is a temperature sufficient for crystallization. However, a range of -10 ° C to 50 ° C is desirable, more preferably -10 ° C to 40 ° C. [0077] In producing crystals of the compound represented by the general formula (3) or crystals of the compound represented by the general formula (7), the compound represented by the general formula (3) is dissolved. By adding a new solvent to the solution, the solubility of the compound represented by the general formula (3) is reduced, thereby making it possible to manufacture the compound. Further, in order to reduce the solubility, the compound can be produced by removing the solvent from a solution in which the compound represented by the general formula (3) is dissolved.
[0078] 一般式(3)で表される化合物の結晶または一般式(7)で表される化合物の結晶製 造  [0078] Production of crystals of the compound represented by the general formula (3) or crystals of the compound represented by the general formula (7)
の際の溶媒量は結晶化に十分な量であれば任意でかまわないが、一般式(3)の化 合物に対して 3倍量から 100倍量の間が望ましぐさらに望ましくは 5倍量力も 50倍量 である。  The amount of the solvent at this time may be arbitrary as long as it is an amount sufficient for crystallization, but is preferably between 3 times and 100 times the amount of the compound of the general formula (3), more preferably 5 times. The double power is also 50 times.
[0079] 一般式(7)で表される化合物の結晶を溶媒置換や減圧乾燥を行うことにより、一般 式(3)で表される化合物の結晶に変換することができる。  [0079] Crystals of the compound represented by the general formula (7) can be converted into crystals of the compound represented by the general formula (3) by solvent replacement or drying under reduced pressure.
前記のようにして得られる一般式(3)または一般式(7)で表される化合物は、不純物 が除去されてレ、るために、高純度な一般式(5)で表される化合物の製造に用いること ができる。  The compound represented by the general formula (3) or (7) obtained as described above is obtained by removing the impurity represented by the general formula (5). Can be used for manufacturing.
一般式(3)で表される化合物と一般式 (4)であらわされる化合物を有機溶媒中で反 応させることにより、一般式(5)で表される化合物を製造することができる。  The compound represented by the general formula (5) can be produced by reacting the compound represented by the general formula (3) and the compound represented by the general formula (4) in an organic solvent.
[0080] 一般式(4)中の Xは、ベンゾィルォキシ基またはハロゲン原子を表す。 [0080] X in the general formula (4) represents a benzoyloxy group or a halogen atom.
一般式 (4)で表される化合物のなかでも、無水安息香酸および塩化べンゾィルは容 易に入手できる点で好ましレ、。  Of the compounds represented by the general formula (4), benzoic anhydride and benzoyl chloride are preferred because they are easily available.
一般式 (4)で表される化合物は、一般式(3)で表される化合物に対して 1当量以上 であれば特に制限はないが、経済的観点から、 1一 5当量を使用する。  The compound represented by the general formula (4) is not particularly limited as long as it is at least 1 equivalent to the compound represented by the general formula (3), but from the viewpoint of economy, 115 equivalents are used.
[0081] 有機溶媒としては、反応が進行すれば特に限定されることはなレ、が、例えば、ァセト ン、メチルェチルケトン、メチルイソブチルケトン等のケトン系溶媒、 tーブチルメチルェ 一テル、テトラヒドロフラン等のエーテル系溶媒、ベンゼン,トルエン,キシレン,クメン ,シメン,ァニソール等の芳香族系溶媒、イソプロピルアルコール、ブタノール等のァ ルコール系溶媒、塩化メチレン、クロ口ホルム、ジクロロェタン等のハロゲン系溶媒、 酢酸ェチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒、ァセトニトリル等の 二トリル系溶媒等が挙げられる。 The organic solvent is not particularly limited as long as the reaction proceeds, but examples thereof include ketone solvents such as acetate, methyl ethyl ketone, and methyl isobutyl ketone, t-butyl methyl ether, tetrahydrofuran, and the like. Ether solvents, aromatic solvents such as benzene, toluene, xylene, cumene, cymene, and anisol; alcohol solvents such as isopropyl alcohol and butanol; halogen solvents such as methylene chloride, chloroform, and dichloroethane; and ethyl acetate , Isopropyl acetate, butyl acetate and other ester solvents, acetonitrile Nitrile solvents and the like can be mentioned.
[0082] 有機溶媒の使用量は、反応に支障のない限り制限されないが、通常、反応基質に 対して 3倍から 20倍量を使用する。  [0082] The amount of the organic solvent to be used is not limited as long as it does not hinder the reaction, but is usually 3 to 20 times the amount of the reaction substrate.
反応温度は、一般式 (3)で表される化合物と一般式 (4)で表される化合物との反応 が進行し、かつ、一般式(3)の分解を起こさなければ、任意の温度を設定することが できる。通常、 30°C以上溶媒の沸点以下である。  The reaction temperature may be set to an arbitrary temperature if the reaction between the compound represented by the general formula (3) and the compound represented by the general formula (4) proceeds and the decomposition of the general formula (3) does not occur. Can be set. Usually, it is 30 ° C. or higher and the boiling point of the solvent or lower.
[0083] 反応圧力は特に制限されないが、通常、反応は大気圧下で行う。 [0083] The reaction pressure is not particularly limited, but the reaction is usually performed under atmospheric pressure.
[0084] 一般式(3)で表される化合物と一般式 (4)で表される化合物との反応にぉレ、ては、 有機溶媒として、水と混和しない有機溶媒を用レ、、かつ、アルカリ金属またはアルカリ 土類金属の塩基性化合物の存在下で行うことができる。 [0084] The reaction between the compound represented by the general formula (3) and the compound represented by the general formula (4) is performed using an organic solvent that is immiscible with water as an organic solvent, and The reaction can be carried out in the presence of a basic compound of an alkali metal or an alkaline earth metal.
[0085] 水と混和しない有機溶媒の例としては、メチルェチルケトン、メチルイソブチルケトン 等のケトン系溶媒、 t一ブチルメチルエーテル、テトラヒドロフラン等のエーテル系溶媒Examples of the water-immiscible organic solvent include ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and ether solvents such as t-butyl methyl ether and tetrahydrofuran.
、ベンゼン, トルエン,キシレン,タメン,シメン,ァニソール等の芳香族系溶媒、塩化 メチレン、クロ口ホルム、ジクロロェタン等のハロゲン系溶媒、酢酸ェチル、酢酸イソプ 口ピル、酢酸ブチル等のエステル系溶媒等が挙げられる。 Aromatic solvents such as benzene, toluene, xylene, tamene, cymene, and anisol; halogen solvents such as methylene chloride, chloroform, dichloroethane; and ester solvents such as ethyl acetate, isopropyl acetate, and butyl acetate. No.
[0086] 有機溶媒の使用量は、反応に支障のない限り制限されないが、通常、反応基質に 対して 3倍から 20倍量を使用する。 [0086] The amount of the organic solvent to be used is not limited as long as it does not hinder the reaction, but usually it is 3 to 20 times the amount of the reaction substrate.
アルカリ金属またはアルカリ土類金属の塩基性化合物としては、炭酸水素ナトリウム、 炭酸ナトリウム、水酸化ナトリウム、炭酸水素カリウム、炭酸カリウム、水酸化カリウム等 が挙げられる。  Examples of the basic compound of an alkali metal or an alkaline earth metal include sodium hydrogen carbonate, sodium carbonate, sodium hydroxide, potassium hydrogen carbonate, potassium carbonate, potassium hydroxide and the like.
アル力リ金属またはアル力リ土類金属の塩基性化合物の使用形態は、水に溶解して 使用す  The basic form of alkaline metal or alkaline earth metal compound is to be used after dissolving in water.
る。  The
アルカリ金属またはアルカリ土類金属の塩基性化合物の使用量は、反応終了時にァ ルカリ性に維持されるように設定すれば、特に限定されることはない。  The amount of the alkali metal or alkaline earth metal basic compound used is not particularly limited as long as it is set so as to maintain alkalinity at the end of the reaction.
[0087] 一般式(3)で表される化合物と一般式 (4)で表される化合物との反応にぉレ、て、一 般式 (4)で表される化合物として無水安息香酸を使用する場合は、有機ァミンの存 在下で行うのが好ましい。 有機ァミンとしては、無水安息香酸と反応性が乏しいものが好ましぐ例えば、ジイソ プロピルァミン、トリェチルァミン、トリプロピノレアミン、トリブチルァミン、トリアミルァミン 、トリへキシルァミン、トリヘプチノレアミン、トリオクチルァミン、ジイソプロピルェチルァ ミン、ピリジン、コリジン、ジメチルァニリン等の 3級のァミンであり、ジイソプロピルアミ ン、ジシクロへキシルァミン等の 2級ァミンが挙げられる。 [0087] In the reaction between the compound represented by the general formula (3) and the compound represented by the general formula (4), benzoic anhydride was used as the compound represented by the general formula (4). In this case, the reaction is preferably performed in the presence of an organic amine. As the organic amine, those having low reactivity with benzoic anhydride are preferred.For example, diisopropylamine, triethylamine, trippropinoleamine, tributylamine, triamylamine, trihexylamine, triheptinolamine, trioctylamine, Tertiary amines such as diisopropylethylamine, pyridine, collidine and dimethylaniline, and secondary amines such as diisopropylamine and dicyclohexylamine.
有機ァミンのなかでも、副生する安息香酸と該有機アミンとが反応して形成する塩が 前記の反応に使用する有機溶媒中に析出するものを使用すると目的物の収率が向 上する傾向があるので特に好ましい。 Among the organic amines, when a salt formed by reacting benzoic acid by-produced with the organic amine precipitates in the organic solvent used in the above reaction, the yield of the target compound tends to be improved. This is particularly preferred because
このような有機ァミンとして、例えば、対称性のァミンなどが挙げられるが、特に限定さ れることはなレ、。具体例として、ジシクロへキシノレアミン等である。 Such organic amines include, for example, symmetric amines, but are not particularly limited. Specific examples include dicyclohexynoleamine.
有機ァミンの使用量は、特に限定されることはないが、経済的観点から、通常、 1当 量以上 3当量以下である。 The amount of the organic amine is not particularly limited, but is usually 1 equivalent or more and 3 equivalents or less from an economic viewpoint.
一般式(3)で表される化合物と一般式 (4)で表される化合物を反応させることにより、 一般式(5)で表される化合物が主として生成し、一般式 (6)で表される化合物が副生 する。 By reacting the compound represented by the general formula (3) with the compound represented by the general formula (4), the compound represented by the general formula (5) is mainly produced, and is represented by the general formula (6). Compounds are by-produced.
一般式(3)で表される化合物と一般式 (4)で表される化合物を有機溶媒中で反応さ せて一般式(5)で表される化合物を製造する方法にぉレ、て、反応で副生する一般式A method for producing a compound represented by the general formula (5) by reacting a compound represented by the general formula (3) with a compound represented by the general formula (4) in an organic solvent, General formula by-produced in the reaction
(6)で表される化合物を塩基で処理する工程を含むことにより、選択的に一般式 (6) で表される化合物を一般式(5)で表される化合物に変換することができる。 By including the step of treating the compound represented by (6) with a base, the compound represented by the general formula (6) can be selectively converted to the compound represented by the general formula (5).
一般式(6)で表される化合物から一般式(5)で表される化合物への変換に用いられ る塩基としては、 N4位のベンゾィル基が加水分解を受けず、 3 '位のベンゾィル基を 加水分解できるものであれば特に限定されなレ、。このような塩基としては、例えば、ァ ルカリ金属、アルカリ金属の水酸化物およびアルコキシド等が挙げられる。 The base used for the conversion of the compound represented by the general formula (6) to the compound represented by the general formula (5) includes a benzoyl group at the N 4 position which is not hydrolyzed and a benzoyl group at the 3′-position. There is no particular limitation as long as the group can be hydrolyzed. Examples of such a base include alkali metal hydroxides and alkali metal hydroxides and alkoxides.
塩基の使用量としては、加水分解反応が進行するように設定すれば、特に限定され ることはないが、経済的観点から、 1当量以上 10当量以下である。 The amount of the base used is not particularly limited as long as it is set so that the hydrolysis reaction proceeds, but is from 1 equivalent to 10 equivalents from an economic viewpoint.
反応温度は、 N4位のベンゾィル基が加水分解を受けないように、設定すれば特に限 定されることはなく、通常、— 20°C以上、 20°C以下が好ましい。 The reaction temperature is not particularly limited as long as it is set so that the benzoyl group at the N 4 position is not hydrolyzed, and is usually preferably −20 ° C. or more and 20 ° C. or less.
一般式(3)で表される化合物の回収方法にっレ、ては、実施例や非特許文献 1に記 載の方法を参考にして行うことができる。 The method for recovering the compound represented by the general formula (3) is described in Examples and Non-Patent Document 1. This can be done with reference to the method described above.
[0088] このようにして、高純度の N4—べンゾィルー 5, _0_ (4, 4,ージメトキシトリチル ) _5_ 置換シチジン誘導体を工業的に生産することが可能になった。 実施例 [0088] In this way, it has become possible to industrially produce high-purity N 4 -benzoyl-5, _0_ (4,4, dimethoxytrityl) _5_-substituted cytidine derivatives. Example
[0089] 以下に実施例により、本発明を更に詳細に示すが、本発明はこれらに限定されるも のではない。なお、以下、 5,_〇_ (4, 4,ージメトキシトリチル )_2,—デォキシー 5—メチ ルシチジンを(I)と、 3,, 5,-0-ビス(4, 4,-ジメトキシトリチル) -2 デォキシ -5-メ チルシチジンを(II)と、 N4—べンゾィルー 5'_〇_ (4, 4'—ジメトキシトリチル)_2 '—デ ォキシ—5-メチルシチジンを(III)と、 5,— O— (4, 4,-ジメトキシトリチノレ) -3, N4-ジ ベンゾィルー 2'—デォキシー 5_メチルシチジンを(IV)と、 3 ' , 5'_ビス(4, 4'_ジメト キシトリチル)一 4_ (N—ベンゾィル)_5—メチルー 2' _デォキシシチジンを(V)と、メチ ルイソブチルケトンを MIBKと略記する。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto. In the following, 5, _〇_ (4,4, dimethoxytrityl) _2, -deoxy-5-methylcytidine is referred to as (I) and 3,, 5, -0-bis (4,4, -dimethoxytrityl) -2 Deoxy-5-methyl cytidine (II), N 4 -benzoyl-5 '_'_ (4,4'-dimethoxytrityl) _2'-Doxy-5-methyl cytidine (III), 5 , — O— (4,4, -Dimethoxytritinol) -3, N 4 -dibenzoyl-2′-doxy-5_methylcytidine (IV) and 3 ′, 5′_bis (4,4′_dimet (Xithrityl) -14_ (N-benzoyl) _5-methyl-2'-deoxycytidine is abbreviated as (V), and methyl isobutyl ketone is abbreviated as MIBK.
[0090] (1)、(II)の HPLC条件に関しては、 YMC_Pack CN A512 (サイズ 6.0 X 150 mm 株式会社ヮイエムシィ製)のカラムを使用し、カラムオーブンの温度を 40°C、溶 離液をァセトニトリル: lOOmMトリェチルァミン酢酸塩水溶液 =42 : 58、流速を 1.0m 1Z分、観測波長を I = 254nmに設定して行った。  [0090] Regarding the HPLC conditions of (1) and (II), a column of YMC_Pack CN A512 (size 6.0 X 150 mm manufactured by YMC) was used, the temperature of the column oven was 40 ° C, and the eluate was acetonitrile. : LOOmM aqueous solution of triethylamine acetate = 42:58, the flow rate was set to 1.0m1Z, and the observation wavelength was set to I = 254nm.
[0091] (111)、(IV)、(V)の HPLC条件に関しては、 Develosil 〇DS_MG_5 (サィズ4·6  [0091] Regarding the HPLC conditions of (111), (IV) and (V), Develosil 〇DS_MG_5 (size 4.6
X 250mm 野村化学株式会社製)のカラムを使用し、カラムオーブンの温度を 40°C 、溶離液をァセトニトリル: lOOmMトリェチルァミン酢酸塩水溶液 = 90 : 10、流速を 1 .OmlZ分、観測波長を I = 254nmに設定して行った。  X 250mm column (manufactured by Nomura Chemical Co., Ltd.), the column oven temperature is 40 ° C, the eluent is acetonitrile: lOOmM aqueous solution of triethylamine acetate = 90:10, the flow rate is 1.0 OmlZ, and the observation wavelength is I = The measurement was performed at 254 nm.
[実施例 1]  [Example 1]
5_メチル _2'_デォキシシチジン 塩酸塩 l l. lg (40mmol)をピリジン(200ml) で 2回共沸脱水を行った後、ピリジン 160mlに溶解した。室温にて 4, 4'-ジメトキシト リチルクロリド 14.22gを装入したのち、室温にて 3時間撹拌した。この反応液を HP LCで分析したところ、最大不純物は(II)であり、 (I) / (II) = 92.0/8.0 (面積比)で あった。炭酸水素ナトリウム 8.74gを加え室温で 2時間撹拌後、ピリジンを減圧下濃縮 した。濃縮残渣に酢酸ェチル 300mlと水 200mlを加え分液したのち、有機層を飽和 重曹水 50mlと水 150mlの混合溶媒で 1回、飽和食塩水 100mlと水 100mlの混合 溶媒で 1回洗浄した。有機層を濃縮後 MIBK200mlを加え、得られた結晶をろ過、 洗浄した。室温で乾燥した後にその結晶を1 H— NMRで観測すると、(I)は (I) /MIB K= 3/2の組成で、 ΜΙΒΚの溶媒和物として得られた。さらに、 40°Cで乾燥すると、 その組成は、(I) : MIBK= 1 : 6となり、 19.3g (純度換算を行い収率 85。/。)の収量で 得られた。本品を HPLCにて分析したところ、生成物の面積が 99.5% (面積)、最大 不純物は(II)であり、 0.3% (面積)と非常に高純度であった。 5_Methyl_2'_doxycytidine hydrochloride l.lg (40 mmol) was subjected to azeotropic dehydration twice with pyridine (200 ml), and then dissolved in 160 ml of pyridine. After charging 14.22 g of 4,4'-dimethoxytrityl chloride at room temperature, the mixture was stirred at room temperature for 3 hours. When the reaction mixture was analyzed by HP LC, the largest impurity was (II), and (I) / (II) = 92.0 / 8.0 (area ratio). After adding 8.74 g of sodium hydrogen carbonate and stirring at room temperature for 2 hours, pyridine was concentrated under reduced pressure. After adding 300 ml of ethyl acetate and 200 ml of water to the concentrated residue and separating the mixture, the organic layer is mixed once with a mixed solvent of 50 ml of saturated aqueous sodium bicarbonate and 150 ml of water, and mixed with 100 ml of saturated saline and 100 ml of water. Washed once with solvent. After concentrating the organic layer, 200 ml of MIBK was added, and the obtained crystals were filtered and washed. After drying at room temperature and observing the crystals by 1 H-NMR, (I) was obtained as a solvate of (I) having a composition of (I) / MIB K = 3/2. Further, when dried at 40 ° C., the composition was (I): MIBK = 1: 6, and a yield of 19.3 g (purity conversion yield: 85./.) Was obtained. When this product was analyzed by HPLC, the product area was 99.5% (area), the maximum impurity was (II), and the purity was very high, 0.3% (area).
[0092] 以下に、(I) : MIBK= 1 : 6の結晶の分析値を示す。 [0092] The analysis values of the crystal of (I): MIBK = 1: 6 are shown below.
[0093] 'H-NMR (DMSO-d6) δ ppm: 0.85 (6H,d : MIBK),,1.49(3H,s), 2.00 (1 H,m : MIBK) ,2. 06 (3H,s: MIBK) ,2.0-2.2(2H,m),  [0093] 'H-NMR (DMSO-d6) δ ppm: 0.85 (6H, d: MIBK), 1.49 (3H, s), 2.00 (1H, m: MIBK), 2.06 (3H, s: MIBK), 2.0-2.2 (2H, m),
2. 29 (2H,d : MIBK) ,3.19-3.22(2H,m), 3.73(6H,s), 3.82_3.89(lH,m), 4.2 5— 4.29(lH,m), 5.29(lH,d),  2.29 (2H, d: MIBK), 3.19-3.22 (2H, m), 3.73 (6H, s), 3.82_3.89 (lH, m), 4.25—4.29 (lH, m), 5.29 (lH , d),
6.23(1H, t) 6.7-6.8(lH,br), 6.90(4H, d), 7.2_7.45(10H,m), 7.49(lH,s). 目的物を XRDにより測定して得られたチャートを図 1に示した。  6.23 (1H, t) 6.7-6.8 (lH, br), 6.90 (4H, d), 7.2_7.45 (10H, m), 7.49 (lH, s). Obtained by measuring the target substance by XRD The chart is shown in FIG.
[実施例 2]  [Example 2]
5-メチルー 2'-デォキシシチジン 塩酸塩 0.55gをピリジン 10mlで 2回共沸脱水 を行った後、ピリジン 5mlに溶解した。室温にて 4, 4'ージメトキシトリチルクロリド 0.7 4gを装入したのち、室温にて 4.5時間撹拌した。炭酸水素ナトリウムを加え室温で 2 時間撹拌後、ピリジンを減圧下濃縮した。濃縮残渣に酢酸ェチル 10mlと水 10mlを 加え分液したのち、有機層を飽和食塩水 1 Omlと水 100mlの混合溶媒で 1回洗浄し た。有機層を硫酸ナトリウムで乾燥したのち、溶媒留去した。得られた残渣にァセトニ トリル 10mlを加え、室温で晶析させた後にろ過し、乾燥した。得られた結晶を1 H-N MRで観測すると、(I)はァセトニトリルの溶媒和物として(1) /ァセトニトリル = 3Zl の組成であった。また、その収量は 0.55gであった。本品を HPLCにて分析したとこ ろ、生成物の面積が 99.6% (面積)、最大不純物は(II)で 0.2% (面積)であった。 目的物を XRDにより測定して得られたチャートを図 2に示した。 0.55 g of 5-methyl-2'-deoxycytidine hydrochloride was subjected to azeotropic dehydration twice with 10 ml of pyridine, and then dissolved in 5 ml of pyridine. After charging 0.74 g of 4,4'-dimethoxytrityl chloride at room temperature, the mixture was stirred at room temperature for 4.5 hours. After adding sodium hydrogen carbonate and stirring at room temperature for 2 hours, pyridine was concentrated under reduced pressure. After adding 10 ml of ethyl acetate and 10 ml of water to the concentrated residue and separating the mixture, the organic layer was washed once with a mixed solvent of 1 Oml of saturated saline and 100 ml of water. After the organic layer was dried over sodium sulfate, the solvent was distilled off. Acetonitrile (10 ml) was added to the obtained residue, and the mixture was crystallized at room temperature, filtered, and dried. Observation of the obtained crystals by 1 HN MR revealed that (I) had a composition of (1) / acetonitrile = 3Zl as an acetonitrile solvate. The yield was 0.55 g. When this product was analyzed by HPLC, the area of the product was 99.6% (area), and the maximum impurity was (II), 0.2% (area). The chart obtained by measuring the target product by XRD is shown in FIG.
[0094]  [0094]
[実施例 3]  [Example 3]
2,-デォキシ -5-メチルシチジン塩酸塩 8. Ogをピリジン 100mlで共沸した後に、ピ リジン 120ml、 4, 4'ージメトキシトリチルクロリド 10.2gを加えて、室温で 4時間反応し た。この反応液を HPCLにて分析すると、(I) / (II) = 93.7/6.3 (面積比)であった 。これに、炭酸水素ナトリウム 6. lgを加えて 1時間攪拌した後に、 80gまで減圧濃縮し た。続いて、 MIBKlOOmlを加えて、水 130mlで 3回洗浄した。得られた MIBK層を 減圧濃縮して、析出物を濾取し、 MIBKlOOmlとピリジン 50mlで再結晶を行うことに より、(I)を 12.7g得た。得られた(I)を HPLCにて分析すると(Ι) / (Π) = 100/0で あり、(II)は除去されていた。 2, -Deoxy-5-methylcytidine hydrochloride 8. After azeotroping Og with 100 ml of pyridine, 120 ml of lysine and 10.2 g of 4,4'-dimethoxytrityl chloride were added and reacted at room temperature for 4 hours. When this reaction solution was analyzed by HPCL, it was (I) / (II) = 93.7 / 6.3 (area ratio). To this was added 6. lg of sodium bicarbonate, and the mixture was stirred for 1 hour, and then concentrated under reduced pressure to 80 g. Subsequently, MIBK100 ml was added, and the mixture was washed three times with 130 ml of water. The obtained MIBK layer was concentrated under reduced pressure, the precipitate was collected by filtration, and recrystallized from MIBK100 ml and pyridine 50 ml to obtain 12.7 g of (I). When the obtained (I) was analyzed by HPLC, (Ι) / (Π) = 100/0, and (II) was removed.
[実施例 4]  [Example 4]
実施例 1で合成した(I) 582mg (1.07mmol)を脱水ピリジン 1 Omlで 2回共沸脱水 した。ピリジン 4mlに溶解した後、室温で無水安息香酸 292mgを加え室温で 6時間 反応後、さらに無水安息香酸 30mgを加えて一晩放置した。 40°Cで 1時間攪拌した 後、冷却し氷冷下水 50 z Lを添カ卩した。さらに一 5°Cにて 30%水酸化ナトリウム水溶 液 0. 8mlを添加して、ピリジン lml,エタノール 2ml, 7 100 /i Lを力卩ぇー 5°C— 0°Cで 3時間攪拌した。 7%塩酸水溶液を添加して中和した後、水 1 Omlと酢酸ェチル 1 Oml をカ卩えて分液した。有機層を飽和重曹水 10ml、飽和食塩水 10mlで 1回洗浄した後 、有機層を濃縮した。濃縮後の有機層に MIBK2. 5gを添加して、へキサン 40ml中 に室温で滴下した。析出した固体をろ過、へキサン洗浄したのち、減圧乾燥に付すこ とにより、 (III)を 0.48gで淡褐色固体として得た。 HPLCの分析により、 (III)は 99. 4% (面積)、最大の不純物は (V)の 0.2% (面積)であり、非常に高純度であった。  582 mg (1.07 mmol) of (I) synthesized in Example 1 was azeotropically dehydrated twice with 1 Oml of dehydrated pyridine. After dissolving in 4 ml of pyridine, 292 mg of benzoic anhydride was added at room temperature, and the mixture was reacted at room temperature for 6 hours. Then, 30 mg of benzoic anhydride was added, and the mixture was allowed to stand overnight. After stirring at 40 ° C for 1 hour, the mixture was cooled and added with 50 zL of water under ice cooling. Further, 0.8 ml of a 30% aqueous solution of sodium hydroxide was added at 15 ° C, and 1 ml of pyridine, 2 ml of ethanol and 7 100 / iL were stirred at 5 ° C to 0 ° C for 3 hours. . After neutralization by adding a 7% aqueous hydrochloric acid solution, 1 Oml of water and 1 Oml of ethyl acetate were added and separated. The organic layer was washed once with 10 ml of a saturated aqueous sodium hydrogen carbonate solution and 10 ml of a saturated saline solution, and then the organic layer was concentrated. To the organic layer after concentration, 2.5 g of MIBK was added, and the mixture was added dropwise to 40 ml of hexane at room temperature. The precipitated solid was filtered, washed with hexane, and dried under reduced pressure to obtain 0.48 g of (III) as a light brown solid. According to the HPLC analysis, (III) was 99.4% (area), and the largest impurity was (V) 0.2% (area), indicating that it was very high purity.
[0095] [実施例 5] [Example 5]
MIBK20mlに(I) 2.0gと無水安息香酸 0.92gを加えて、 70°Cで 2時間反応した。  2.0 g of (I) and 0.92 g of benzoic anhydride were added to 20 ml of MIBK and reacted at 70 ° C for 2 hours.
HPLCにて観測すると、(III)の収率 85% (IV)の収率が 1 %であった。次いで、 5重 量%の炭酸ナトリウム溶液で有機層を洗浄した後に、分離した有機層を氷冷した。こ れに、水酸化ナトリウム 0.44gを溶解した 80%エタノール水溶液 10mlを滴下して、同 温で 4時間反応して、(IV)を (III)に変換した。 2規定の塩酸水で中和した後に、 HP LCにて観測すると(IV)は検出されず、 (III)が収率 86%で得られた。  When observed by HPLC, the yield of (III) was 85% and the yield of (IV) was 1%. Next, the organic layer was washed with a 5% by weight sodium carbonate solution, and the separated organic layer was ice-cooled. To this was added dropwise 10 ml of an 80% ethanol aqueous solution in which 0.44 g of sodium hydroxide was dissolved, and the mixture was reacted at the same temperature for 4 hours to convert (IV) to (III). After neutralization with 2N aqueous hydrochloric acid, (IV) was not detected by HP LC observation, and (III) was obtained in a yield of 86%.
[0096] [実施例 6] [Example 6]
MIBKlOOmlと 5重量%の炭酸水素ナトリウム水溶液 100gに、実施例 3で合成した (I) 10.0g、無水安息香酸 5. Ogを加えて、 70°Cで 4時間反応した。反応終了後、室 温まで冷却した。 HPLCにて観測すると、(II)の収率は 97%であり、 (IV)の収率は 2 %であった。分液した有機層を氷冷して、水酸化ナトリウム 2.21gを溶解した 80%ェ タノール水を 5°C以下で滴下した。氷冷下で 4時間反応した後に、酢酸 3.34gを溶解 した水 10mlを 5°C以下で滴下した。 HPLCにて観測すると、 (IV)は消失しており、 (I II)力 ¾8%であった。有機層を分離して、次いで飽和炭酸水素ナトリウム溶液で洗浄 した後に、減圧濃縮を行い、 MIBK25mlを加えた。この MIBK溶液をへキサン 650 mlにゆっくり滴下した。析出物を濾取し減圧下で乾燥すると、(III)が 11.3g (収率 94 %)で得られた。得られた化合物を HPLCにて観測すると、 99.4% (面積)であった。 Synthesized in Example 3 in MIBK100 ml and 100 g of a 5% by weight aqueous sodium hydrogen carbonate solution (I) 10.0 g and 5.Og of benzoic anhydride were added and reacted at 70 ° C. for 4 hours. After the completion of the reaction, the resultant was cooled to room temperature. Observation by HPLC revealed that the yield of (II) was 97% and the yield of (IV) was 2%. The separated organic layer was ice-cooled, and 80% aqueous ethanol in which 2.21 g of sodium hydroxide was dissolved was added dropwise at 5 ° C or lower. After reacting for 4 hours under ice cooling, 10 ml of water in which 3.34 g of acetic acid was dissolved was added dropwise at 5 ° C or lower. Observation by HPLC revealed that (IV) had disappeared and (I II) power was about 8%. The organic layer was separated, washed with a saturated sodium hydrogen carbonate solution, concentrated under reduced pressure, and added with 25 ml of MIBK. This MIBK solution was slowly dropped into 650 ml of hexane. The precipitate was collected by filtration and dried under reduced pressure to obtain 11.3 g of (III) (yield 94%). Observation of the obtained compound by HPLC revealed that it was 99.4% (area).
[実施例 7] [Example 7]
炭酸水素ナトリウムを炭酸ナトリウムにする以外は、実施例 6と同様に行った。反応 終了後の(ΠΙ)の収率は 75%であり、(IV)の収率は 21 %であった。加水分解終 了後は、(IV)は観測されずに(III)に変換されて、収率 96%であった。得られた化合 物は 10.8g (収率 90%)であった。得られた化合物を HPLCにて観測すると、 99.2% (面積)であった。  The procedure was performed in the same manner as in Example 6 except that sodium hydrogen carbonate was changed to sodium carbonate. After the reaction was completed, the yield of (ΠΙ) was 75%, and the yield of (IV) was 21%. After completion of the hydrolysis, (IV) was converted to (III) without being observed, and the yield was 96%. The obtained compound was 10.8 g (yield 90%). Observation of the obtained compound by HPLC revealed that it was 99.2% (area).
[実施例 8] [Example 8]
MIBKlOmlに、 5重量%の炭酸水素ナトリウム水溶液 10g、 (1) 1. Og、塩化べンゾ ィノレ 289 μ 1を加えて 70°Cで 3時間反応した。さらに塩化ベンゾィル 96 μ 1を加えて 2 時間反応して、室温まで冷却し分液した。 HPLCにて観測すると、(III)の収率は 95 %であり、(IV)の収率は 1%であった。分離した有機層を氷冷し、 0.22gの水酸化ナ トリウムを含む 80%エタノール水溶液 5mlを滴下して 4時間反応した。反応混合液は 2層に分離し、その有機層を HPLCにて観測すると、 (IV)は消失しており、(III)が 9 6%であった。有機層を飽和炭酸水素ナトリウム溶液で洗浄した後に、減圧濃縮を行 レ、、 MIBK3mlを加えた。この MIBK溶液をへキサン 70mlにゆっくり滴下した。析出 物を濾取し減圧下で乾燥すると、(III)が l.Og (収率 90%)で得られた。得られた化 合物を HPLCにて観測すると、 99.1 % (面積)であった。  To MIBKlOml, 10 g of a 5% by weight aqueous solution of sodium hydrogencarbonate, (1) 1.Og, and 289 μl of benzoinole chloride were added and reacted at 70 ° C. for 3 hours. Further, benzoyl chloride (96 μl) was added and reacted for 2 hours, cooled to room temperature, and separated. Observation by HPLC revealed that the yield of (III) was 95% and the yield of (IV) was 1%. The separated organic layer was ice-cooled, and 5 ml of an 80% aqueous ethanol solution containing 0.22 g of sodium hydroxide was added dropwise and reacted for 4 hours. The reaction mixture was separated into two layers, and when the organic layer was observed by HPLC, (IV) had disappeared and (III) was 96%. The organic layer was washed with a saturated sodium hydrogen carbonate solution, concentrated under reduced pressure, and added with 3 ml of MIBK. This MIBK solution was slowly added dropwise to 70 ml of hexane. The precipitate was collected by filtration and dried under reduced pressure to obtain (III) in l.Og (yield 90%). Observation of the obtained compound by HPLC revealed that it was 99.1% (area).
[実施例 9]  [Example 9]
MIBK20mlに(I) 2.0g、トリ _n—ブチルァミン l. lml、無水安息香酸 0.92gを加え て、 70°Cで 2時間反応した。 HPLCにて観測すると、 (III)の収率 87%、(IV)の収率 が 3%であった。次いで、 5重量%の炭酸ナトリウム溶液、飽和塩化アンモニゥム水溶 液の順で有機層を洗浄した後に、分離した有機層を氷冷した。これに、水酸化ナトリ ゥム 0.44gを溶解した 80%エタノール水溶液 10mlを滴下して、同温で 4時間反応し て、(IV)を (III)に変換した。 2規定の塩酸水で中和した後に、 HPLCにて観測する と(III)が収率 89%で得られた。 2.0 g of (I), l.lml of tri-n-butylamine and 0.92 g of benzoic anhydride were added to 20 ml of MIBK. And reacted at 70 ° C for 2 hours. Observation by HPLC revealed that the yield of (III) was 87% and that of (IV) was 3%. Next, the organic layer was washed with a 5% by weight sodium carbonate solution and a saturated aqueous solution of ammonium chloride in this order, and the separated organic layer was ice-cooled. To this, 10 ml of an 80% aqueous ethanol solution in which 0.44 g of sodium hydroxide was dissolved was added dropwise, and the mixture was reacted at the same temperature for 4 hours to convert (IV) into (III). After neutralization with 2 N aqueous hydrochloric acid, HPLC observation showed that (III) was obtained in a yield of 89%.
[実施例 10] [Example 10]
MIBKlOOmlに、(I) 10.6g、ジシクロへキシルァミン 4.45g、無水安息香酸 5.28g を加えて、 70°Cで 4時間反応した。反応終了時、安息香酸のジシクロへキシノレアミン 塩が析出した状態であった。また、反応マスを HPLCにて観測すると、 (III)の収率 9 3%、(IV)の収率が 3%であった。次に、析出した安息香酸のジシクロへキシノレアミン 塩を濾過し、濾液を 3°Cまで冷却した。これに、水酸化ナトリウム 2.34gを溶解した 80 %エタノール 50mlを 5°C以下に維持して滴下し、氷冷下で 4時間攪拌した。 2規定の 塩酸水 29mlで中和して、有機層を HPLCにて観測すると、(IV)は完全に消失して おり、(III)が収率 94%で得られた。  10.6 g of (I), 4.45 g of dicyclohexylamine, and 5.28 g of benzoic anhydride were added to MIBKlOOml, and reacted at 70 ° C. for 4 hours. At the end of the reaction, the dicyclohexynoleamine salt of benzoic acid was in a precipitated state. When the reaction mass was observed by HPLC, the yield of (III) was 93%, and the yield of (IV) was 3%. Next, the precipitated dicyclohexynoleamine salt of benzoic acid was filtered, and the filtrate was cooled to 3 ° C. To this, 50 ml of 80% ethanol in which 2.34 g of sodium hydroxide was dissolved was added dropwise while maintaining the temperature at 5 ° C or lower, and the mixture was stirred under ice cooling for 4 hours. Neutralized with 2 ml of 2N hydrochloric acid, and the organic layer was observed by HPLC. As a result, (IV) had completely disappeared and (III) was obtained in a yield of 94%.
[比較例] [Comparative example]
N4—べンゾィルー 2'—デォキシー 5—メチルシチジン(0· 3g)を脱水ピリジン(20ml )にて 2回共沸脱水した後に、脱水ピリジン(30ml)に溶解した。 4, 4' -ジメトキシトリ チルクロリド 328mgを加えた後に室温で 10時間反応させた。メタノールをカ卩えて 1時 間撹拌した後に、溶媒を減圧下留去した。濃縮残渣にクロ口ホルム 20mlおよび 5重 量%の炭酸水素ナトリウム水溶液 30mlを加え、分液した。有機層をメンブランフィル ターで濾過した後に、減圧濃縮した。濃縮残渣にジェチルエーテル 7mlをカ卩え、析 出した成分をメンブランフィルターで濾過した後、へキサン 100ml中に滴下して、さら に 2時間撹拌した。析出物を濾過し、さらにへキサンで洗浄した後に、減圧下で乾燥 すると、 0. 42gの固体を得た。本固体を HPLCにて分析したところ、(III)はわず力、に 77.0% (面積)であり、原料が 21.0% (面積)、また不純物である 3,, 5,_〇—ビス(4, 4,—ジメトキシトリチル) _N4_ベンゾィル _2,—デォキシ— 5—メチルシチジンが 1 · 6 % ( 面積)含まれていた。 産業上の利用可能性 N 4 -Benzoyl 2'-doxy-5-methylcytidine (0.3 g) was azeotropically dehydrated twice with dehydrated pyridine (20 ml) and then dissolved in dehydrated pyridine (30 ml). After adding 328 mg of 4,4'-dimethoxytrityl chloride, the mixture was reacted at room temperature for 10 hours. After stirring methanol for 1 hour, the solvent was distilled off under reduced pressure. To the concentrated residue were added 20 ml of black-mouthed form and 30 ml of a 5% by weight aqueous sodium hydrogen carbonate solution, and the layers were separated. The organic layer was filtered through a membrane filter and then concentrated under reduced pressure. 7 ml of getyl ether was added to the concentrated residue, and the precipitated component was filtered through a membrane filter. The mixture was added dropwise to 100 ml of hexane and further stirred for 2 hours. The precipitate was filtered, washed with hexane, and dried under reduced pressure to obtain 0.42 g of a solid. When this solid was analyzed by HPLC, it was found that (III) was 77.0% (area), the raw material was 21.0% (area), and the impurities 3, 5, 5, 5-bis (4 , 4, - dimethoxytrityl) _N 4 _ Benzoiru _2, - Dokishi - 5-methyl cytidine have been included 1 2.6% (area). Industrial applicability
本発明によると、簡便な手段で N4—べンゾイノレシチジン誘導体を純度よく合成でき るために、工業的に有利に生産可能であり産業上の利用可能性が高い。 According to the present invention, an N 4 -benzoinolecitidine derivative can be synthesized with a high degree of purity by simple means, so that it can be produced industrially advantageously and has high industrial applicability.

Claims

請求の範囲 [1] 一般式 (1) Claims [1] General formula (1)
[化 1]  [Chemical 1]
Figure imgf000028_0001
Figure imgf000028_0001
(式中、 R1は炭素数 1一 4のアルキル基、炭素数 2 4のアルケニル基、炭素数 2— 4 のアルキニル基、炭素数 1一 4のペルフルォロアルキル基、またはハロゲン原子を、 R 2は水素原子、炭素数 1一 4のアルコキシル基、置換基を有する炭素数 1一 4のアル コキシノレ基、またはハロゲン原子を表す。)で表される化合物またはその塩と、一般式 (2)  (In the formula, R1 is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 24 carbon atoms, an alkynyl group having 2 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, or a halogen atom. R 2 represents a hydrogen atom, an alkoxyl group having 14 to 14 carbon atoms, an alkoxyxylene group having 14 to 14 carbon atoms having a substituent, or a halogen atom), or a salt thereof, and a compound represented by the general formula (2 )
[化 2]  [Formula 2]
Figure imgf000028_0002
Figure imgf000028_0002
(Xはハロゲン原子を表す。)で表される化合物を反応させて、一般式(3)  (X represents a halogen atom) to react with a compound represented by the general formula (3)
[化 3] [Formula 3]
Figure imgf000029_0001
Figure imgf000029_0001
(式中、 Rl、 R2は前記に同じ。)で表される化合物を単離した後に、  (Wherein R1 and R2 are the same as described above).
さらに、一般式 (3)で表される化合物と一般式 (4) Further, the compound represented by the general formula (3) and the compound represented by the general formula (4)
[化 4]
Figure imgf000029_0002
[Formula 4]
Figure imgf000029_0002
(式中、 Xはベンゾィルォキシ基、またはハロゲン原子を表す。)で表される化合物を 有機溶媒中で反応させる、一般式 (5)  (Wherein X represents a benzoyloxy group or a halogen atom). A compound represented by the general formula (5)
[化 5] [Formula 5]
Figure imgf000029_0003
Figure imgf000029_0003
(式中、 R1と R2は前記の通り。)で表される化合物の製造方法。  (Wherein R1 and R2 are as defined above).
一般式 (1) General formula (1)
[化 6] [Formula 6]
Figure imgf000030_0001
Figure imgf000030_0001
(式中、 Rlは炭素数 1一 4のアルキル基、炭素数 2— 4のアルケニル基、炭素数 2— 4 のアルキニル基、炭素数 1一 4のペルフルォロアルキル基、またはハロゲン原子を、 R 2は水素原子、炭素数 1一 4のアルコキシル基、置換基を有する炭素数 1一 4のアル コキシノレ基、またはハロゲン原子を表す。)で表される化合物またはその塩と、一般式 (2)  (In the formula, Rl represents an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an alkynyl group having 2 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, or a halogen atom. And R 2 represents a hydrogen atom, an alkoxyl group having 14 to 14 carbon atoms, an alkoxyxylene group having 14 to 14 carbon atoms having a substituent, or a halogen atom, or a salt thereof, and a compound represented by the general formula ( 2)
[化 7] [Formula 7]
Figure imgf000030_0002
Figure imgf000030_0002
(Xはハロゲン原子を表す。)で表される化合物を反応させて、一般式(3)  (X represents a halogen atom) to react with a compound represented by the general formula (3)
[化 8] [Formula 8]
Figure imgf000030_0003
Figure imgf000030_0003
(式中、 Rl、 R2は前記に同じ。)で表される化合物を製造する方法。 [3] 一般式 (1) (Wherein, R1 and R2 are the same as described above). [3] General formula (1)
[化 9]  [Formula 9]
Figure imgf000031_0001
Figure imgf000031_0001
(式中、 R1は炭素数 1一 4のアルキル基、炭素数 2 4のアルケニル基、炭素数 2— 4 のアルキニル基、炭素数 1一 4のペルフルォロアルキル基、またはハロゲン原子を、 R 2は水素原子、炭素数 1一 4のアルコキシル基、置換基を有する炭素数 1一 4のアル コキシノレ基、またはハロゲン原子を表す。)で表される化合物またはその塩と、一般式 (2)  (In the formula, R1 is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 24 carbon atoms, an alkynyl group having 2 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, or a halogen atom. R 2 represents a hydrogen atom, an alkoxyl group having 14 to 14 carbon atoms, an alkoxyxylene group having 14 to 14 carbon atoms having a substituent, or a halogen atom), or a salt thereof, and a compound represented by the general formula (2 )
[化 10]  [Formula 10]
Figure imgf000031_0002
Figure imgf000031_0002
(Xはハロゲン原子を表す。)で表される化合物を反応させて、一般式(3)  (X represents a halogen atom) to react with a compound represented by the general formula (3)
[化 11]  [Formula 11]
Figure imgf000031_0003
(式中、 Rl R2は前記に同じ。)で表される化合物の結晶を製造する方法。
Figure imgf000031_0003
(Wherein, R1 R2 is the same as described above).
[4] 一般式(3) [4] General formula (3)
[化 12]  [Formula 12]
Figure imgf000032_0001
と一般式 (4)
Figure imgf000032_0001
And general formula (4)
[化 13]
Figure imgf000032_0002
[Formula 13]
Figure imgf000032_0002
(式中、 Xはベンゾィルォキシ基、またはハロゲン原子を表す。)で表される化合物を 有機溶媒中で反応させる、一般式 (5) (Wherein X represents a benzoyloxy group or a halogen atom). A compound represented by the general formula (5)
[化 14] [Formula 14]
Figure imgf000033_0001
Figure imgf000033_0001
(式中、 Rlと R2は前記の通り。)で表される化合物の製造方法。  (Wherein, R1 and R2 are as described above).
[5] 一般式 (3)  [5] General formula (3)
[化 15]  [Formula 15]
Figure imgf000033_0002
Figure imgf000033_0002
(式中、 Rlと R2は前記の通り。)で表される化合物と一般式 (4)  (Wherein, R1 and R2 are as described above) and a compound represented by the general formula (4)
[化 16]
Figure imgf000033_0003
[Formula 16]
Figure imgf000033_0003
(式中、 Xはベンゾィルォキシ基、またはハロゲン原子を表す。)で表される化合物の 反応で副生する一般式 (6) (Wherein, X represents a benzoyloxy group or a halogen atom).
[化 17] [Formula 17]
Figure imgf000034_0001
Figure imgf000034_0001
(式中、 Rlと R2は前記の通り t )で表される化合物を塩基で処理して、一般式(5) (Wherein R1 and R2 are t 1 as described above) by treating the compound represented by the general formula (5)
[化 18] [Formula 18]
Figure imgf000034_0002
Figure imgf000034_0002
(式中、 R1と R2は前記の通り。)で表される化合物に変換する工程を含む、請求項 1 または 4に記載の製造方法。  5. The production method according to claim 1, comprising a step of converting into a compound represented by the formula (wherein R1 and R2 are as defined above).
[6] 有機溶媒として、水と混和しない有機溶媒を用レ、、かつ、アルカリ金属またはアル力 リ土類金属の塩基性化合物の存在下で反応を行う請求項 1、 4、 5のいずれか 1項に 記載の製造方法。 [6] The method according to any one of claims 1, 4, and 5, wherein the organic solvent is an organic solvent that is immiscible with water, and the reaction is performed in the presence of a basic compound of an alkali metal or an alkaline earth metal. The production method according to item 1.
[7] 一般式 (4)で表される化合物として無水安息香酸を使用する反応にぉレ、て、該反 応を有機ァミンの存在下で行う請求項 1、 4、 5のいずれか 1項に記載の製造方法。  [7] The reaction according to any one of claims 1, 4, and 5, wherein the reaction is carried out in the presence of an organic amine, in a reaction using benzoic anhydride as the compound represented by the general formula (4). The method according to 1.
[8] 有機ァミンとして、安息香酸と該有機アミンとが形成する塩が反応に用いる有機溶 媒中に析出するものを使用する請求項 7に記載の製造方法。 [8] As the organic amine, a salt formed between benzoic acid and the organic amine is used as an organic solvent for the reaction. 8. The production method according to claim 7, wherein a substance precipitated in a medium is used.
有機ァミンがジシクロへキシノレアミンである請求項 8に記載の製造方法。 一般式(1)、一般式(3)、一般式(5)、一般式(6)中の R1がメチル基、 R2が水素で ある請求項 1一 9のいずれか 1項に記載の製造法。  9. The method according to claim 8, wherein the organic amine is dicyclohexynoleamine. 10. The method according to claim 11, wherein R1 in the general formulas (1), (3), (5), and (6) is a methyl group and R2 is hydrogen. .
一般式 (3)  General formula (3)
[化 19]  [Formula 19]
Figure imgf000035_0001
Figure imgf000035_0001
(式中、 R1と R2は前記の通り。)で表される化合物の結 93 c (Wherein R1 and R2 are as defined above).
[12] 一般式 (7) [12] General formula (7)
[化 20]  [Formula 20]
Figure imgf000035_0002
Figure imgf000035_0002
〔式中、 mおよび nはそれぞれ 1一 10までの整数、 Rl、 R2は前記の通りであり、 Qは 一般式 (8)  Wherein m and n are each an integer from 1 to 10, Rl and R2 are as described above, and Q is a general formula (8)
[化 21]
Figure imgf000036_0001
[Formula 21]
Figure imgf000036_0001
(式中、 R3は炭素数 1一 3のアルキル基、 R4は炭素数 2— 5のアルキル基を表す)で 表される化合物、一般式 (9)  (Wherein R3 represents an alkyl group having 13 to 13 carbon atoms, and R4 represents an alkyl group having 2 to 5 carbon atoms), a general formula (9)
[化 22]
Figure imgf000036_0002
[Formula 22]
Figure imgf000036_0002
(式中、 R5、 R6は炭素数 1一 3のアルキル基を表す)  (Wherein, R5 and R6 represent an alkyl group having 13 carbon atoms)
で表される化合物、または一般式(10)  Or a compound represented by the general formula (10)
[化 23]  [Formula 23]
R7- CN ( 1 0 )  R7- CN (10)
(式中、 R7は炭素数 1一 3のアルキル基を表す)  (Wherein, R7 represents an alkyl group having 13 to 13 carbon atoms)
で表される化合物のレ、ずれかを表す。〕で表される化合物の結晶。  Represents the amount of the compound represented by. ] The crystal | crystallization of the compound represented by this.
[13] 一般式(9)中の R5および R6がともにメチル基である請求項 12記載の化合物の結 晶。 [13] The crystal of the compound according to claim 12, wherein R5 and R6 in the general formula (9) are both methyl groups.
[14] 一般式(3)または一般式(7)中の R1がメチル基、 R2が水素である請求項 11一 13 のレ、ずれか 1項に記載の化合物の結晶。  [14] The crystal of the compound according to any one of [11] to [13], wherein R1 in the general formula (3) or (7) is a methyl group, and R2 is hydrogen.
PCT/JP2004/012161 2003-08-29 2004-08-25 Method for producing n4-benzoylcytidine derivative WO2005021571A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-209503 2003-08-29
JP2003209503 2003-08-29
JP2004037707 2004-02-16
JP2004-037707 2004-02-16

Publications (1)

Publication Number Publication Date
WO2005021571A1 true WO2005021571A1 (en) 2005-03-10

Family

ID=34277380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012161 WO2005021571A1 (en) 2003-08-29 2004-08-25 Method for producing n4-benzoylcytidine derivative

Country Status (1)

Country Link
WO (1) WO2005021571A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308294A (en) * 1988-06-03 1989-12-12 Yamasa Shoyu Co Ltd Method for protecting hydroxyl group at 5'-position of cytidine derivative
JP2000510446A (en) * 1996-06-06 2000-08-15 アイシス・ファーマシューティカルス・インコーポレーテッド Oligoribonucleotides and ribonucleases that cleave RNA
JP2000264897A (en) * 1999-01-14 2000-09-26 Yamasa Shoyu Co Ltd Production of 5'-o-tritylnucleosides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308294A (en) * 1988-06-03 1989-12-12 Yamasa Shoyu Co Ltd Method for protecting hydroxyl group at 5'-position of cytidine derivative
JP2000510446A (en) * 1996-06-06 2000-08-15 アイシス・ファーマシューティカルス・インコーポレーテッド Oligoribonucleotides and ribonucleases that cleave RNA
JP2000264897A (en) * 1999-01-14 2000-09-26 Yamasa Shoyu Co Ltd Production of 5'-o-tritylnucleosides

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GAFFNEY G.S. ET AL.: "Trensient protection: efficient one-flask syntheses of protected deoxynucleosides", J. AM. CHEM. SOC., vol. 104, 1982, pages 1316 - 1319, XP002136167 *
MARASCO C.J. ET AL.: "A convenient method for the direct incorporation of 5-fluoro-2'-deoxycytidine into oligodeoxynucleotides", J. ORG. CHEM., vol. 57, 1992, pages 6363 - 6365, XP002983307 *
SEELA F.ET AL.: "Phosphoramidites and oligonucleotides contaning 7-deazapurines and pyrimidines carrying aminopropargyl side chains", NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS, vol. 20, 2001, pages 1421 - 1424, XP002983308 *

Similar Documents

Publication Publication Date Title
CN108101934B (en) Process for the preparation of trabectedin and intermediates thereof
WO2005021571A1 (en) Method for producing n4-benzoylcytidine derivative
EP1253154B1 (en) Method for purifying 5'-protected 2'-deoxypurine nucleosides
JPS61263995A (en) Production of cytosine nucleoside
JP4326841B2 (en) Method for purifying protected 2'-deoxycytidines
CN108101881B (en) Process for the preparation of trabectedin and intermediates thereof
EP0400610A1 (en) 5-Fluorouracil derivatives
EP1258489B1 (en) Method for purifying 5'-protected thymidines
JPWO2010079813A1 (en) Method for producing inosine derivative
US20170313735A1 (en) Improved Fluorination Process
JP2007513134A (en) Improved synthesis of 2-substituted adenosine
KR100741310B1 (en) Novel naphthalene-2-carboxylate derivatives useful for the synthesis of gemcitabine and preparation methods thereof
EP3313821B1 (en) Process for the preparation of carbamoylamino pyrazole derivatives
JP5192807B2 (en) Stable crystals of protected pseudouridine
US20030162957A1 (en) Protected deoxyadenosines and deoxyguanosines
EP3310796A1 (en) Synthesis of phosphoramidates
WO1997006179A1 (en) Process for producing azido nucleoside derivatives
JP4071991B2 (en) Purification method and novel derivative of 5'-protected thymidines
KR20240050303A (en) Method for producing 2’ modified guanosine compounds
WO1991013901A1 (en) 3'-o-tosylcytidine and cytosine compounds, and process for production thereof
WO2024190907A1 (en) Production methods for 2'-o-modified adenosine phosphoramidite and intermediate thereof
CA2012096C (en) Cytosine compounds and a process for the production thereof
HU198949B (en) Process for producing 5-substituted-3'azido-2',3'-dideoxyribonucleosides
JP2004123641A (en) Method for producing n4-benzoyl-2'-deoxycytidines
JP2002371093A (en) Method for purifying 5'-protected 2'-deoxypurine nucleosides

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP