WO2005012347A2 - Novel insulin derivatives - Google Patents
Novel insulin derivatives Download PDFInfo
- Publication number
- WO2005012347A2 WO2005012347A2 PCT/DK2004/000511 DK2004000511W WO2005012347A2 WO 2005012347 A2 WO2005012347 A2 WO 2005012347A2 DK 2004000511 W DK2004000511 W DK 2004000511W WO 2005012347 A2 WO2005012347 A2 WO 2005012347A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insulin
- glu
- asp
- des
- hglu
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/62—Insulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/28—Insulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/542—Carboxylic acids, e.g. a fatty acid or an amino acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/48—Drugs for disorders of the endocrine system of the pancreatic hormones
- A61P5/50—Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
Definitions
- the present invention relates to novel human insulin derivatives which are soluble at physiological pH values and have a prolonged profile of action.
- the invention also relates to methods of providing such derivatives, to pharmaceutical compositions containing them, to a method of treating diabetes and hyperglycaemia using the insulin derivatives of the invention and to the use of such insulin derivatives in the treatment of diabetes and hyperglycaemia.
- the treatment of diabetes both type 1 diabetes and type 2 diabetes, relies to an increasing extent on the so-called intensive insulin treatment.
- the patients are treated with multiple daily insulin injections comprising one or two daily injections of a long acting insulin to cover the basal insulin requirement supplemented by bolus injections of a rapid acting insulin to cover the insulin requirement related to meals.
- Long acting insulin compositions are well known in the art.
- one main type of long acting insulin compositions comprises injectable aqueous suspensions of insulin crystals or amorphous insulin.
- the insulin compounds utilized typically are protamine insulin, zinc insulin or protamine zinc insulin. Certain drawbacks are associated with the use of insulin suspensions.
- the insulin particles in order to secure an accurate dosing, the insulin particles must be suspended homogeneously by gentle shaking before a defined volume of the suspension is withdrawn from a vial or expelled from a cartridge. Also, for the storage of insulin suspensions, the temperature must be kept within more narrow limits than for insulin solutions in order to avoid lump formation or coagulation. While it was earlier believed that protamines were non-immunogenic, it has now turned out that protamines can be immunogenic in man and that their use for medical purposes may lead to formation of antibodies. Also, evidence has been found that the protamine-insulin complex is itself immunogenic. Therefore, with some patients the use of long acting insulin compositions containing protamines must be avoided.
- Another type of long acting insulin compositions are solutions having a pH value below physiological pH from which the insulin will precipitate because of the rise in the pH value when the solution is injected.
- a drawback with these solutions is that the particle size distribution of the precipitate formed in the tissue on injection, and thus the release profile of the medication, depends on the blood flow at the injection site and other parameters in a somewhat unpredictable manner.
- a further drawback is that the solid particles of the insulin may act as a local irritant causing inflammation of the tissue at the site of injection.
- WO 91/12817 discloses soluble insulin compositions comprising insulin complexes of cobalt(lll). The action profile of these complexes is only moderately prolonged and the bioavailability is reduced relative to human insulin.
- WO 95/07931 discloses human insulin derivatives wherein the ⁇ - amino group of Lys B29 has a lipophilic substituent. These insulin derivatives have a prolonged profile of action and are soluble at physiological pH values.
- EP 894095 discloses insulin derivatives wherein the N-terminal group of the B-chain and/or the ⁇ -amino group of Lys in position B28, B29 or B30 has a substituent of the formula -CO-W-COOH where W can be a long chain hydrocarbon group. These insulin derivatives have a prolonged profile of action and are soluble at physiological pH values. However, there is still a need for insulins having a more prolonged profile of action than the insulin derivatives known up till now and which at the same time are soluble at physiological pH values and have a potency which is comparable to that of human insulin.
- the present invention is based on the recognition that the overall hydrophobicity of an insulin derivative molecule plays an important role for the in vivo potency of the derivative.
- the present invention relates to an insulin derivative which is a naturally occurring insulin or an analogue thereof which has a side chain attached either to the ⁇ - amino group of the N-terminal amino acid residue of the B chain or to the ⁇ -amino group of a Lys residue present in the B chain of the parent insulin, the side chain being of the general formula: -W-X-Y-Z wherein W is: • an ⁇ -amino acid residue having a carboxylic acid group in the side chain which residue forms, with one of its carboxylic acid groups, an amide group together with the ⁇ -amino group of the N-terminal amino acid residue of the B chain or together with the ⁇ -amino group of a Lys residue present in the B chain of the parent insulin; • a chain composed of two, three or four ⁇ -amin
- X is: -CO-; • -CH(COOH)CO-; -N(CH 2 COOH)CH 2 CO-; -N(CH 2 COOH)CH 2 CON(CH 2 COOH)CH 2 CO-; -N(CH 2 CH 2 COOH)CH 2 CH 2 CO-; -N(CH 2 CH 2 COOH)CH 2 CH 2 CON(CH 2 CH 2 COOH)CH 2 CH 2 CO-; • -NHCH(COOH)(CH 2 ) 4 NHCO-; -N(CH 2 CH 2 COOH)CH 2 CO-; or -N(CH 2 COOH)CH 2 CH 2 CO-. that a) when W is an amino acid residue or a chain of amino acid residues, via a bond from the underscored carbonyl carbon forms an amide bond with an amino group in W, or
- Z is: -COOH; -CO-Asp; -CO-Glu; -CO-Gly; -CO-Sar; -CH(COOH) 2 ; -N(CH 2 COOH) 2 ; -SO 3 H; or -PO 3 H; and any Zn 2+ complexes thereof, provided that when W is a covalent bond and X is -CO-, then Z is different from -COOH.
- the side chain -W-X-Y-Z is attached to the ⁇ - amino group of the N-terminal amino acid residue of the B chain of the parent insulin.
- side chain -W-X-Y-Z is attached to the ⁇ - amino group of a Lys residue present in the B chain of the parent insulin.
- the side chain -W-X-Y-Z is attached to the ⁇ -amino group of a Lys residue present in position 28 of the B chain.
- the side chain -W-X-Y-Z is attached to the ⁇ -amino group of a Lys residue present in position 29 of the B chain.
- the side chain -W-X-Y-Z is attached to the ⁇ -amino group of a Lys residue present in position 30 of the B chain.
- the substructure W of the side chain -W-X-Y-Z can be a covalent bond.
- W can be a residue of an ⁇ -amino acid having a carboxylic acid group in the side chain and comprising a total of from 4 to 10 carbon atoms.
- W can be the residue of an ⁇ -amino acid, that can be coded for by the genetic code.
- W can, for example, be selected from the group consisting of ⁇ -Asp, ⁇ -Asp, ⁇ -Glu, and ⁇ -Glu. Further options for W are for example ⁇ -hGlu and ⁇ -hGlu.
- W is a chain composed of two ⁇ -amino acid residues of which one has from 4 to 10 carbon atoms and a carboxylic acid group in the side chain while the other has from 2 to 11 carbon atoms but no free carboxylic acid group.
- the ⁇ -amino acid residue with no free carboxylic acid group can be a neutral, codable ⁇ -amino acid residue.
- W examples are: ⁇ -Asp-Gly; Gly- ⁇ -Asp; ⁇ -Asp-Gly; Gly- ⁇ - Asp; ⁇ -Glu-Gly; Gly- ⁇ -Glu; ⁇ -Glu-Gly; Gly- ⁇ -Glu; ⁇ -hGlu-Gly; Gly- ⁇ -hGlu; ⁇ -hGlu-Gly; and Gly- ⁇ -hGlu.
- W is a chain composed of two ⁇ -amino acid residues, independently having from 4 to 10 carbon atoms, and both having a carboxylic acid group in the side chain. One of these ⁇ -amino acid residues or both of them can be codable ⁇ -amino acid residues.
- W examples are: ⁇ -Asp- ⁇ -Asp; ⁇ -Asp- ⁇ -Glu; ⁇ -Asp- ⁇ -hGlu; ⁇ -Asp- ⁇ -Asp; ⁇ -Asp- ⁇ -Glu; ⁇ -Asp- ⁇ -hGlu; ⁇ -Asp- ⁇ -Asp; ⁇ -Asp- ⁇ -Glu; ⁇ - Asp- ⁇ -hGlu; ⁇ -Asp- ⁇ -Asp; ⁇ -Asp- ⁇ -Glu; ⁇ -Glu- ⁇ -Asp; ⁇ -Glu- ⁇ -Glu; ⁇ -Glu- ⁇ -Glu; ⁇ -Glu- ⁇ -hGlu; ⁇ -Glu- ⁇ -Asp; ⁇ -Glu- ⁇ -Asp; ⁇ -Glu- ⁇ -Asp; ⁇ -Glu- ⁇ -Asp; ⁇ -Glu- ⁇ -Asp; ⁇ -Glu- ⁇ -Asp; ⁇ -Glu- ⁇ -Asp; ⁇ -
- W is a chain composed of three ⁇ -amino acid residues, independently having from 4 to 10 carbon atoms, the amino acid residues of the chain being selected from the group of residues having a neutral side chain and residues having a carboxylic acid group in the side chain so that the chain has at least one residue which has a carboxylic acid group in the side chain.
- the amino acid residues are codable residues.
- W is a chain composed of four ⁇ -amino acid residues, independently having from 4 to 10 carbon atoms, the amino acid residues of the chain being selected from the group having a neutral side chain and residues having a carboxylic acid group in the side chain so that the chain has at least one residue which has a carboxylic acid group in the side chain.
- the amino acid residues are codable residues.
- W can be connected to the ⁇ -amino group of the Lys residue in the B-chain via an urea derivative.
- the substructure X of the side chain -W-X-Y-Z can be a group of the formula -CO- that, via a bond from the underscored carbonyl carbon, forms an amide bond with an amino group in W or, when W is a covalent bond, with the N-terminal ⁇ -amino group in the B chain or with the ⁇ -amino group of a Lys residue present in the B chain of the parent insulin.
- the substructure X of the side chain can be a group of the formula -CH(COOH)CO- that, via a bond from the underscored carbonyl carbon, forms an amide bond with an amino group in W or, when W is a covalent bond, with the N-terminal ⁇ - amino group in the B chain or with the ⁇ -amino group of a Lys residue present in the B chain of the parent insulin.
- the substructure X of the side chain can be a group of the formula -N(CH 2 COOH)CH 2 CO- that, via a bond from the underscored carbonyl carbon, forms an amide bond with an amino group in W or, when W is a covalent bond, with the N- terminal ⁇ -amino group in the B chain or with the ⁇ -amino group of a Lys residue present in the B chain of the parent insulin.
- the substructure X of the side chain can be a group of the formula -N(CH 2 CH 2 COOH)CH 2 CO- that, via a bond from the underscored carbonyl carbon, forms an amide bond with an amino group in W or, when W is a covalent bond, with the N- terminal ⁇ -amino group in the B chain or with the ⁇ -amino group of a Lys residue present in the B chain of the parent insulin.
- the substructure X of the side chain can be a group of the formula -N(CH 2 COOH)CH 2 CH ⁇ O- that, via a bond from the underscored carbonyl carbon, forms an amide bond with an amino group in W or, when W is a covalent bond, with the N- terminal ⁇ -amino group in the B chain or with the ⁇ -amino group of a Lys residue present in the B chain of the parent insulin.
- the substructure X of the side chain can be a group of the formula -N(CH 2 COOH)CH 2 CON(CH 2 COOH)CH 2 CO- that, via a bond from the underscored carbonyl carbon, forms an amide bond with an amino group in W or, when W is a covalent bond, with the N-terminal ⁇ -amino group in the B chain or with the ⁇ -amino group of a Lys residue present in the B chain of the parent insulin.
- the substructure X of the side chain can be a group of the formula -N(CH 2 CH 2 COOH)CH CH 2 CO- that, via a bond from the underscored carbonyl car- bon, forms an amide bond with an amino group in W or, when W is a covalent bond, with the N-terminal ⁇ -amino group in the B chain or with the ⁇ -amino group of a Lys residue present in the B chain of the parent insulin.
- the substructure X of the side chain can be a group of the formula -NfC ⁇ CHsCOOHJCHaC ⁇ CONfCHaCHaCOOHJCHaCH ⁇ O- that, via a bond from the underscored carbonyl carbon, forms an amide bond with an amino group in W or, when W is a covalent bond, with the N-terminal ⁇ -amino group in the B chain or with the ⁇ -amino group of a Lys residue present in the B chain of the parent insulin.
- the substructure Y of the side chain -W-X-Y-Z can be a group of the formula -(CH 2 ) m - where m is an integer in the range of from 6 to 32, from 8 to 20, from 12 to 20, or from 12-16.
- Y is a divalent hydrocarbon chain of the formula
- the substructure Z of the side chain -W-X-Y-Z is -COOH provided that when W is a covalent bond and X is -CO-, then Z is different from -COOH.
- Z is -CO-Asp.
- Z is -CO-Glu.
- Z is -CO-Gly.
- Z is -CO-Sar.
- Z is -CH(COOH) .
- Z is -N(CH 2 COOH) 2 .
- Z is -SO 3 H.
- Z is -PO 3 H.
- W is selected from the group consisting of ⁇ -Asp, ⁇ -Asp, ⁇ - Glu, and ⁇ -Glu;
- X is -CO- or -CH(COOH)CO;
- Y is -(CH 2 ) m - where m is an integer in the range of 12-18 and Z is -COOH or -CH(COOH) 2 .
- the insulin moiety - in the present text also referred to as the parent insulin - of an insulin derivative according to the invention can be a naturally occurring insulin such as human insulin or porcine insulin.
- the parent insulin can be an insulin analogue.
- the amino acid residue at position A21 is Asn.
- the amino acid residue at position A21 is Gly. Specific examples from this group of analogues are Gly* 21 human insulin, Gly* 21 des(B30)human insulin; and Gly ⁇ Arg ⁇ Arg 632 human insulin.
- the amino acid residue at position B1 has been deleted. A specific example from this group of parent insulin analogues is des(B1 ) human insulin.
- the amino acid residue at position B30 has been deleted. A specific example from this group of parent insulin analogues is des(B30) human insulin.
- the amino acid residue at position B28 is Asp.
- a specific example from this group of parent insulin analogues is Asp B28 human insulin.
- the amino acid residue at position B28 is Lys and the amino acid residue at position B29 is Pro.
- a specific example from this group of parent insulin analogues is Lys B28 Pro B29 human insulin.
- the amino acid residue in position B30 is Lys and the amino acid residue in position B29 is any codable amino acid except Cys, Met, Arg and Lys.
- An example is an insulin analogue where the amino acid residue at position B29 is Thr and the amino acid residue at position B30 is Lys.
- a specific example from this group of parent insulin analogues is Thr B29 Lys B30 human insulin.
- the amino acid residue at position B3 is Lys and the amino acid residue at position B29 is Glu.
- a specific example from this group of parent insulin analogues is Lys B3 Glu B29 human insulin.
- insulin derivatives according to the invention are the following compounds: N ⁇ B 9 -(N ⁇ -(HOOC(CH 2 ) ⁇ 4 CO)- ⁇ -Glu) des(B30) human insulin; N ⁇ B29 -(N ⁇ -(HOOC(CH 2 ) ⁇ 5 CO)- ⁇ -Glu) des(B30) human insulin; N ⁇ B29 -(N ⁇ -(HOOC(CH 2 ) ⁇ 6 CO)- ⁇ -Glu) des(B30) human insulin; N ⁇ B 9 -(N ⁇ -(HOOC(CH 2 ) ⁇ 7 CO)- ⁇ -Glu) des(B30) human insulin; N ⁇ B29 -(N ⁇ -(HOOC(CH 2 ) ⁇ 8 CO)- ⁇ -Glu
- N-HOOC(CH 2 ) ⁇ 4 CO-IDA des(B30) human insulin
- NN ⁇ B2;d9a --[N-(HOOC(CH 2 ) 16 CO)-N-(carboxyethyl)-Gly] des(B30) human insulin
- Insulin derivatives according to the invention may be provided in the form of essentially zinc free compounds or in the form of zinc complexes.
- zinc complexes of an insu- lin derivative according to the invention When zinc complexes of an insu- lin derivative according to the invention are provided, two Zn 2+ ions, three Zn + ions or four Zn 2+ ions can be bound to each insulin hexamer. Solutions of zinc complexes of the insulin derivatives will contain mixtures of such species.
- a pharmaceutical composition comprising a therapeutically effective amount of an insulin derivative according to the invention together with a pharmaceutically acceptable carrier can be provided for the treatment of type 1 diabetes, type 2 diabetes and other states that cause hyperglycaemia in patients in need of such a treatment.
- An insulin derivative according to the invention can be used for the manufacture of a pharmaceutical composition for use in the treatment of type 1 diabetes, type 2 diabetes and other states that cause hyperglycaemia.
- a pharmaceutical composition for treating type 1 diabetes, type 2 diabetes and other states that cause hyperglycaemia in a patient in need of such a treatment comprising a therapeutically effective amount of an insulin derivative according to the invention in mixture with an insulin or an insulin analogue which has a rapid onset of action, together with pharmaceutically acceptable carriers and additives.
- the invention provides a pharmaceutical composition being a mixture of an insulin derivative according to the invention and a rapid acting insulin analogue selected group consisting of Asp 628 human insulin; Lys B 8 Pro B29 human insulin and Lys B3 Glu B29 human insulin. In one embodiment the invention provides a pharmaceutical composition comprising
- the insulin derivative according to the invention and the rapid acting insulin analogue can be mixed in a ratio from about 90 /10%; about 70/30% or about 50/50%.
- a method of treating type 1 diabetes, type 2 diabetes and other states that cause hyperglycaemia in a patient in need of such a treatment comprising administering to the patient a therapeutically effective amount of an insulin derivative according to the invention together with a pharmaceutically acceptable carrier and pharmaceutical acceptable additives.
- a method of treating type 1 diabetes, type 2 diabetes and other states that cause hyperglycaemia in a patient in need of such a treatment comprising administering to the patient a therapeutically effective amount of an insulin derivative according to the invention in mixture with an insulin or an insulin analogue which has a rapid onset of action, together with a pharmaceutically acceptable carrier and pharmaceu- tical acceptable additives.
- the present invention relates to insulin derivatives which have an overall hydrophobicity which is essentially similar to that of human insulin.
- the present invention relates to insulin derivatives which have a hydrophobic index, k' re ⁇ , which is in the range of from about 2 to about 200.
- the insulin derivatives of the present invention have a hydrophobic index, k' re i, which is in the range from about 0.02 to aboutl O, from about 0.1 to about 5; from about 0.5 to about 5; or from about 0.5 to about 2.
- the insulin derivatives will comprise a side chain -W-X-Y-Z as defined above which has at least one hydrophilic and at least one hydrophobic region.
- the insulin derivatives will comprise a side chain -W-X-Y-Z as defined above which has at least one free carboxylic acid group and according to a further embodiment, the side chain will have at least two free carboxylic acid groups.
- the invention relates to a pharmaceutical composition comprising an insulin derivative according to the invention which is soluble at physiological pH values. In another embodiment, the invention relates to a pharmaceutical composition comprising an insulin derivative according to the invention which is soluble at pH values in the interval from about 6.5 to about 8.5. In another embodiment, the invention relates to a pharmaceutical composition with a prolonged profile of action which comprises an insulin derivative according to the invention.
- the invention in another embodiment, relates to a pharmaceutical composition which is a solution containing from about 120 nmol/ml to about 2400 nmol/ml, from about 400 nmol/ml to about 2400 nmol/ml, from about 400 nmol/ml to about 1200 nmol/ml, from about 600 nmol/ml to about 2400 nmol/ml, or from about 600 nmol/ml to about 1200 nmol/ml of an insulin derivative according to the invention or of a mixture of the insulin derivative according to the invention with a rapid acting insulin analogue.
- Hydrophobicity data on insulin derivatives according to the invention The hydrophobicity (hydrophobic index) of the insulin derivatives of the invention relative to human insulin, k' re ⁇ , was measured on a LiChrosorb RP18 (5 ⁇ m, 250x4 mm) HPLC column by isocratic elution at 40 °C using mixtures of A) 0.1 M sodium phosphate buffer, pH 7.3, containing 10% acetonitrile, and B) 50% acetonitrile in water as eluents. The elution was monitored by following the UV absorption of the eluate at 214 nm. Void time, to, was found by injecting 0.1 mM sodium nitrate.
- Retention time for human insulin, t human was adjusted to at least 2to by varying the ratio between the A and B solutions.
- k' re ⁇ found for a number of insulin derivatives according to the invention are given in Table 1.
- compositions containing an insulin derivative according to the present invention may be administered parenterally to patients in need of such a treatment.
- Parenteral administration may be performed by subcutaneous, intramuscular or intravenous injection by means of a syringe, optionally a pen-like syringe.
- parenteral administration can be performed by means of an infusion pump.
- Further options are to administer the insulin nasally or pulmonally, preferably in compositions, powders or liquids, specifically designed for the purpose.
- injectable compositions of the insulin derivatives of the invention can be prepared using the conventional techniques of the pharmaceutical industry which involve dissolving and mixing the ingredients as appropriate to give the desired end product.
- an insulin derivative according to the invention is dissolved in an amount of water which is somewhat less than the final volume of the composition to be prepared.
- An isotonic agent, a preservative and a buffer is added as required and the pH value of the solution is adjusted - if necessary - using an acid, e.g. hydrochloric acid, or a base, e.g. aqueous sodium hydroxide as needed.
- the volume of the solution is adjusted with water to give the desired concentration of the ingredients.
- the buffer is selected from the group consisting of sodium acetate, sodium carbonate, citrate, glycylglycine, histidine, glycine, lysine, arginine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, and tris(hydroxymethyl)-aminomethan, bicine, tricine, malic acid, succinate, maleic acid, fumaric acid, tartaric acid, aspartic acid or mixtures thereof.
- Each one of these specific buffers constitutes an alternative embodiment of the invention.
- the formulation further comprises a pharmaceutically acceptable preservative which may be selected from the group consisting of phenol, o-cresol, m-cresol, p-cresol, methyl p-hydroxybenzoate, propyl p- hydroxybenzoate, 2-phenoxyethanol, butyl p-hydroxybenzoate, 2-phenylethanol, benzyl alcohol, chlorobutanol, and thiomerosal, bronopol, benzoic acid, imidurea, chlorohexidine, sodium dehydroacetate, chlorocresol, ethyl p-hydroxybenzoate, benzethonium chloride, chlorphenesine (3p-chlorphenoxypropane-1 ,2-diol) or mixtures thereof.
- a pharmaceutically acceptable preservative which may be selected from the group consisting of phenol, o-cresol, m-cresol, p-cresol, methyl p-hydroxybenzoate, propyl p- hydroxybenzoate, 2-
- the preservative is present in a concentration from 0.1 mg/ml to 20 mg/ml. In a further embodiment of the invention the preservative is present in a concentration from 0.1 mg/ml to 5 mg/ml. In a further embodiment of the invention the preservative is present in a concentration from 5 mg/ml to 10 mg/ml. In a further embodiment of the invention the preservative is present in a concentration from 10 mg/ml to 20 mg/ml. Each one of these specific preservatives constitutes an alternative embodiment of the invention.
- the use of a preservative in pharmaceutical compositions is well-known to the skilled person. For convenience reference is made to Remington: The Science and Practice of Pharmacy, 19 th edition, 1995.
- the formulation further comprises an isotonic agent which may be selected from the group consisting of a salt (e.g. sodium chloride), a sugar or sugar alcohol, an amino acid (e.g. L-glycine, L-histidine, arginine, lysine, isoleucine, aspartic acid, tryptophan, threonine), an alditol (e.g. glycerol (glycerine), 1 ,2- propanediol (propyleneglycol), 1 ,3-propanediol, 1 ,3-butanediol) polyethyleneglycol (e.g. PEG400), or mixtures thereof.
- a salt e.g. sodium chloride
- a sugar or sugar alcohol e.g. L-glycine, L-histidine, arginine, lysine, isoleucine, aspartic acid, tryptophan, threonine
- an alditol e
- Any sugar such as mono-, di-, or polysaccharides, or water- soluble glucans, including for example fructose, glucose, mannose, sorbose, xylose, maltose, lactose, sucrose, trehalose, dextran, pullulan, dextrin, cyclodextrin, soluble starch, hydroxyethyl starch and carboxymethylcellulose-Na may be used.
- the sugar additive is sucrose.
- Sugar alcohol is defined as a C4-C8 hydrocarbon having at least one -OH group and includes, for example, mannitol, sorbitol, inositol, galactitol, dulcitol, xylitol, and arabitol.
- the sugar alcohol additive is mannitol.
- the sugars or sugar alcohols mentioned above may be used individually or in combination. There is no fixed limit to the amount used, as long as the sugar or sugar alcohol is soluble in the liquid preparation and does not adversely effect the stabilizing effects achieved using the methods of the invention.
- the sugar or sugar alcohol concentration is between about 1 mg/ml and about 150 mg/ml.
- the isotonic agent is present in a concentration from 1 mg/ml to 50 mg/ml. In a further embodiment of the invention the isotonic agent is present in a concentration from 1 mg/ml to 7 mg/ml. In a further embodiment of the invention the isotonic agent is present in a concentration from 8 mg/ml to 24 mg/ml. In a further embodiment of the invention the isotonic agent is present in a concentration from 25 mg/ml to 50 mg/ml. Each one of these specific isotonic agents constitutes an alternative embodiment of the invention. The use of an isotonic agent in pharmaceutical compositions is well-known to the skilled person.
- Typical isotonic agents are sodium chloride, mannitol, dimethyl sulfone and glycerol and typical preservatives are phenol, m-cresol, methyl p-hydroxybenzoate and benzyl alcohol.
- suitable buffers are sodium acetate, glycylglycine, HEPES (4-(2- hydroxyethyl)-1 -piperazineethanesulfonic acid) and sodium phosphate.
- a composition for nasal administration of an insulin derivative according to the present invention may, for example, be prepared as described in European Patent No. 272097 (to Novo Nordisk A/S).
- compositions containing insulins of this invention can be used in the treatment of states which are sensitive to insulin. Thus, they can be used in the treatment of type 1 diabetes, type 2 diabetes and hyperglycaemia for example as sometimes seen in seriously injured persons and persons who have undergone major surgery.
- the optimal dose level for any patient will depend on a variety of factors including the efficacy of the specific insulin derivative employed, the age, body weight, physical activity, and diet of the patient, on a possible combination with other drugs, and on the severity of the state to be treated. It is recommended that the daily dosage of the insulin derivative of this invention be determined for each individual patient by those skilled in the art in a similar way as for known insulin compositions. Where expedient, the insulin derivatives of this invention may be used in mixture with other types of insulin, e.g.
- insulin analogues with a more rapid onset of action.
- Examples of such insulin analogues are described e.g. in the European patent applications having the publication Nos. EP 214826 (Novo Nordisk A/S), EP 375437 (Novo Nordisk A/S) and EP 383472 (Eli Lilly & Co.).
- the present invention is further illustrated by the following examples which, however, are not to be construed as limiting the scope of protection.
- insulin analogue as used herein is meant a polypeptide which has a molecular structure which formally can be derived from the structure of a naturally occurring insulin, for example that of human insulin, by deleting and/or exchanging at least one amino acid residue occurring in the naturally occurring insulin and/or adding at least one amino acid residue.
- the added and/or exchanged amino acid residues can either be codable amino acid residues or other naturally occurring residues or purely synthetic amino acid residues
- the insulin analogues may be such wherein position 28 of the B chain may be modified from the natural Pro residue to one of Asp, Lys, or lie. In another embodiment Lys at position B29 is modified to Pro.
- B30 may be Lys and then B29 can be any codable amino acid except Cys, Met, Arg and Lys. Also, Asn at position A21 may be modified to Ala, Gin, Glu, Gly, His, lie, Leu, Met,
- Asn at position B3 may be modified to Lys or Asp.
- Further examples of insulin analogues are des(B30) human insulin; des(B30) human insulin analogues; insulin analogues wherein PheB1 has been deleted; insulin analogues wherein the A-chain and/or the B-chain have an N-terminal extension and insulin analogues wherein the A-chain and/or the B-chain have a C-terminal extension.
- one or two Arg may be added to position B1.
- insulin derivative as used herein is meant a naturally occurring insulin or an insulin analogue which has been chemically modified, e.g. by introducing a side chain in one or more positions of the insulin backbone or by oxidizing or reducing groups of the amino acid residues in the insulin or by converting a free carboxylic group to an ester group or acylating a free amino group or a hydroxy group.
- a codable amino acid or "a codable amino acid residue” is used to indicate an amino acid or amino acid residue which can be coded for by a triplet ("codon") of nucleotides.
- hGlu is homoglutamic acid.
- ⁇ -Asp is the L-form of -HNCH(CO-)CH 2 COOH.
- ⁇ -Asp is the L-form of -HNCH(COOH)CH 2 CO-.
- ⁇ -Glu is the L-form of -HNCH(CO-)CH 2 CH 2 COOH.
- Y-Glu is the L-form of -HNCH(COOH)CH 2 CH 2 CO-.
- ⁇ -hGlu is the L-form of -HNCH(CO-)CH 2 CH 2 CH 2 COOH.
- ⁇ -hGlu is the L-form of -HNCH(COOH)CH 2 CH 2 CH 2 CO-.
- ⁇ -Ala is -NH-CH 2 -CH 2 -COOH.
- Sar is sarcosine (N-methylglycine).
- an amino acid residue having a carboxylic acid group in the side chain designates amino acid residues like Asp, Glu and hGlu.
- the amino acids can be in either the L- or D-configuration. If nothing is specified it is understood that the amino acid residue is in the L configuration.
- an amino acid residue having a neutral side chain designates amino acid residues like Gly, Ala, Val, Leu, lie, Phe, Pro, Ser, Thr, Cys, Met, Tyr, Asn and Gin.
- Such favourable solubility may either be due to the inherent properties of the insulin derivative alone or a result of a fa- vourable interaction between the insulin derivative and one or more ingredients contained in the vehicle.
- the yield of the reaction was 37% as determined by RP-HPLC.
- the product precipitated after addition of 2.5 volumes of water and adjustment of pH to 5.5.
- the precipitate was then dissolved in 10 ml of water at pH 8 and placed in ice.
- To this solution was added 10 ml of ice cold 0.2 M NaOH for saponification and the mixture was incubated for 40 min with ice cooling and then adjusted to pH 5.5 to precipitate the product.
- the precipitate was isolated and dissolved in 5 ml of A-buffer (see below) and diluted with 33 ml of 42.5% w/w aqueous ethanol divided in three and subjected to anion exchange chromatography employing a ResourceTM 6 ml anion exchange column eluted with a buffer system consisting of A-buffer: Tris 0.24%w/w, NH4Ac 0.25%, 42% ethanol w/w, pH 7.5 and B-buffer: Tris 0.24%w/w,
- NH4Ac 1.25%, 42% ethanol w/w pH 7.5 The sample was eluted by a flow of 6 ml/min in a gradient from 0 to 100% of B- buffer in 30 min. The fractions containing the desired compound were identified by RP-HPLC. The yield of the desired product was 15.3 mg (purity: 72.9%). The volume of the pooled fractions containing the desired compound was reduced to 20 ml under vacuum and this solution was then subjected to purification by RP- HPLC employing a reversed phase HPLC column Nucleosil, C4 250/10 mm, 10 vm, 30 ⁇ A.
- the buffer system consisted of A-buffer: 10 mM Tris, 15mM (NH4)2SO4, 10% ethanol, pH 7.3 and B-buffer: 70% vol/vol ethanol.
- the product was eluted with a gradient of from 10% to 60% of B-buffer in 120 min at a flow of 2 ml/min. The appropriate fractions were pooled and the compound was precipitated and lyophilized. The yield was 7.7 mg (purity: 99.4%).
- Molecular weight found by mass spectroscopy: 6097.2, calculated 6104.1.
- B- terminal peptide containing the side chain was obtained after digestion with staphylococcus aureus protease. Molecular weight, found by mass spectroscopy: 1413.1 , calculated: 1413.5.
- Methyl hexadecandioyl-Glu-OMe 200 mg, 0.45 mmol was dissolved in dichloromethane (4 ml), cooled with an ice-bath and treated with dicyclohexylcarbodiimide (93 mg, 0.45 mmol) and N-hydroxysuccinimide (52 mg, 0.45 mmol). The mixture was stirred for 20 hours, filtered and evaporated in vacuo, to give 243 mg (100 %) of the desired intermediate.
- the volume of the fractions containing the desired product was reduced in vacuo and the resulting solution was subjected to purification by RP-HPLC employing a reversed phase HPLC Jupiter column, C4 250/10 mm,10 //m, 300 A from Phenomerex.
- the buffer system consisted of A-buffer: 0.1 % TFA, 10% vol/vol ethanol and B-buffer: 80% vol/vol ethanol.
- the sample was eluted by a gradient from 40% to 60% B-buffer at 40 °C for 120 min at a flow of 2 ml/min.
- the appropriate fractions were pooled and lyophilized and 31.1 mg of the title compound was obtained (purity: 94%).
- the mono-ester can be purified by silica chromatography in AcOEt/heptane.
- the mono tert-butyl ester (2 g, 5.8 mmol) was dissolved in THF (20 ml) and treated with TSTU (2.1 g, 7.0 mmol) and DIEA (1.2 ml, 7.0 mmol) and stirred overnight. The mixture was filtered, and the filtrate was evaporated in vacuo. The residue was dissolved in AcOEt and washed twice with cold 0.1 M HCI and water. Drying over MgSO 4 and evaporation in vacuo gave succinimidyl tert-butyl hexadecandioate, 2.02 g (79%).
- Succinimidyl mono-benzyl octadecandioate_(95 mg, 0.19 mmol) was dissolved DMF (1.5 ml) and treated with L-Glu-OBzl (49 mg, 0.21 mmol) and DIEA (50 DI, 0.28 mmol) and the mixture was stirred overnight.
- the solvent was evaporated in vacuo, and the crude prod- uct was dissolved in AcOEt, and washed twice with 0.2M HCI, with water and brine. Drying over MgSO 4 and evaporation in vacuo gave BzlO-octadecandioyl-L-Glu-OBzl, 114 mg (97%).
- EXAMPLE 12 Synthesis of N ⁇ B29 -(N-(L-Sar-OC(CH 2 ) 13 CO- ⁇ -L-Glu) des(B30) human insulin This compound was prepared in analogy with example 4, via reaction of L-Sar-OtBu with succinimidyl octadecandioate, followed by activation with TSTU, reaction with L- GluOtBu, activation with TSTU, coupling with Des(B30) human insulin and deprotection by TFA. LCMS 6161.0, calculated 6161.1. EXAMPLE 13
- the coupling yield was 74% (LCMS m/z: 2148.9 [(M+3)/3], rt 5.04.)
- the protected product was dissolved in TFA (2.5 ml) and left for 1 h and evaporated in vacuo.
- the crude product was purified by RP-HPLC on C4-column, buffer A: 0.1 % TFA, buffer B: MeCN + 0.1 % TFA; gradient 10-70 % B. The collected fractions were freeze-dried. The yield was 75 mg, 52 %.
- the purity as evaluated by HPLC was 97.2
- Succinimidyl tert-butyl octadecandioate (0,15 g, 0.32 mmol) and N-(tert- butoxycarbonylmethyl)- ⁇ -Ala-OBn (0.10 g, 0,32 mmol) were dissolved in dry DMF (2.5 ml) and DIEA (0,070 ml, 0.38 mmol) was added. After stirring under nitrogen for 30 min HOAt (0,045 g, 0.32 mmol) was added and the mixture turned yellow. Stirring was continued at RT under nitrogen for convinience reasons for13 days. The reaction mixture was concentrated.
- the crude product was purified by RP-HPLC on C18-column, buffer A: 0.1 % TFA, buffer B: MeCN + 0.1 % TFA; gradient 20-90 % B. The collected fractions were freeze-dried. The unoptimized coupling yield was 15 mg, 11 % (MALDI-MS 6441 , calculated: 6444.5) The protected product was dissolved in TFA (1 ml) and lef for 1 h and evaporated in vacuo.
- the crude product was purified by RP-HPLC on C4- column, buffer A: 0.1 % TFA, buffer B: MeCN + 0.1 % TFA; gradient 10-80 % B, and by RP- HPLC on C4-column, buffer A: 20 % EtOH + 0.1 % TFA, buffer B: 80 % EtOH + 0.1 % TFA; gradient 15-60 % B, followed by HPLC on C4-column, buffer A: 10 mM Tris + 15 mM ammonium sulphate in 20 % EtOH, pH 7.3, buffer B: 80 % EtOH, gradient 15-60 % B.
- the 12-aminododecanoic acid methyl ester hydrochloride (1 g, 3.8 mmol) was suspended in THF (15 ml) and added glutaric acid anhydride (1.29 g, 3.8 mmol) and TEA (0.52 ml, 3.8 mmol) and the resulting mixture (suspension) was stirred at room temperature for 16 hours. Water (75 ml) was added gradually. After 25 ml, a solution was obtained and later a suspension appeared. The mixture was stirred at room temperature for 1 hour and filtered. The solid was washed with water and dried in vacuo.
- the 12-(4-carboxybutyrylamino)dodecanoic acid methyl ester (0.33 g, 0.95 mmol) was dissolved in a mixture of THF and DMF (2:1 , 6 ml), and added DIEA (0.178 ml, 1.04 mmol). The mixture was cooled to 0-5 °C and TSTU (0.314 g, 1.04 mmol) was added. The mixture was stirred at 0-5 °C for 1 hour and at room temperature for 16 hours. The mixture was concentrated to dryness in vacuo.
- H-Gly-Glu-O'Bu (0.15 g, 0.58 mmol) was suspended in DMF (5 ml) and DIEA (0.15 ml, 0.86 mmol) and succinimidyl tert-butyl octadecandioate (0.27 g, 0.58 mmol) were added and the resulting mixture was stirred at room temperature for 16 hours.
- AcOEt 50 ml was added and the mixture was washed with 0.2N hydrochloric acid (100 ml) and water (3 x 100 ml).
- Hexadecanedioic acid monomethyl ester 150 mg, 0.5 mmol was dissolved in DMF (5 mL). HOAt (102 mg, 0.75 mmol) and EDAC (143 mg, 0.75 mmol) was added and the reaction was stirred at 50°C for 1 hour. After cooling to room temperature, DIEA (0.256 mL, 1.5 mmol) and N-(2-(methoxycarbonyl)ethyl)- ⁇ -Ala-OtBu (139 mg, 0.6 mmol) was added. The reaction was stirred overnight at room temperature. The mixture was partitioned between water (2 x 50 mL) and AcOEt (100 mL).
- Methyl hexadecandioyl N-(2-(methoxycarbonyl)ethyl- ⁇ -Ala-OH (161 mg, 0.351 mmol) was dissolved in THF (10 mL) DIEA (0.073 mL, 0.42 mmol) and TSTU (127 mg, 0.42 mmol) was added. The mixture was stirred while cooled on an icebath for 30 min, followed by stirring for 2 hours at room temperature. The mixture was partitioned between and AcOEt , , increment concentrate O 2005/012347 38
- Insulin receptor binding of the insulin derivatives of the invention was determined by a SPA assay (Scintillation Proximity Assay) microtiterplate antibody capture assay.
- SPA-PVT antibody-binding beads, anti-mouse reagent (Amersham Biosciences, Cat No. PRNQ0017) were mixed with 25 ml of binding buffer (100 mM HEPES pH 7.8; 100 mM sodium chloride, 10 mM MgSO 4 , 0.025% Tween-20).
- Reagent mix for a single Packard Optiplate Packard No.
- 6005190 is composed of 2.4 ⁇ l of a 1 :5000 diluted purified recombi- nant human insulin receptor - exon 11 , an amount of a stock solution of A14 Tyr[ 125 l]-human insulin corresponding to 5000 cpm per 100 ⁇ l of reagent mix, 12 ⁇ l of a 1 :1000 dilution of F12 antibody, 3 ml of SPA-beads and binding buffer to a total of 12 ml. A total of 100 ⁇ l was then added and a dilution series is made from appropriate samples. To the dilution series was then added 100 ⁇ l of reagent mix and the samples were incubated for 16 hours while gently shaken.
- Spleen cells were fused with the myeloma Fox cell line (K ⁇ hler, G & Milstein C. (1976), European J. Immunology, 6:511-19; Taggart RT et al (1983), Science 219:1228-30). Supematants were screened for antibody production in a mlR specific ELISA. Positive wells were cloned and tested in Western blotting.
- rats were weighed and connected to the sampling syringes and infusion system (Harvard 22 Basic pumps, Harvard, and Perfectum Hypodermic glass syringe, Aldrich) and then placed into individual clamp cages where they rested for ca. 45 min before start of experiment.
- the rats were able to move freely on their usual bedding during the entire experiment and had free access to drinking water.
- the insulin derivative to be tested and human insulin were infused (i.v.) at a constant rate for 300 min.
- Plasma glucose levels were meas- ured at 10 min intervals throughout and infusion of 20% aqueous glucose was adjusted accordingly in order to maintain euglyceamia.
- Samples of re-suspended erythrocytes were pooled from each rat and returned in about V ⁇ ml volumes via the carotid catheter.
- samples of the solutions of the individual insulin derivatives to be tested and the human insulin solution were taken before and at the end of the clamp experiments and the concentrations of the peptides were confirmed by HPLC. Plasma concentrations of rat insulin and C-peptide as well as of the insulin derivative to be tested and human insulin were measured at relevant time points before and at the end of the studies.
- Rats were killed at the end of experiment using a pentobarbital overdose.
- Test compounds and doses Insulins to be tested were diluted from a stock solution containing 97 ⁇ M of the insulin derivative in 5mM phosphate pH 7.7. The final concentration in the solution ready for use was 0.45 ⁇ M of the insulin derivative, 5 mM of phosphate, 100 mM of sodium chloride, 0.007% of polysorbate 20. The pH was 7.7 and the i.v. infusion rate was 15 and 20 pmol min "1 kg "1 .
- a stock solution of human insulin that was used as reference compound was formulated in a similar medium and infused i.v. at 6, 15 or 30 pmol min '1 kg "1 . Both stock solutions were stored at -20 S C and thawed overnight at 4 Q C before use. The solutions were gently turned upside down several times 15 min before they were transferred to the infusion syringes.
- T 5 oo t> is the time when 50% of an injected amount of the A14 Tyr[ 125 l] labelled derivative of an insulin to be tested has disappeared from the injection site as measured with an external ⁇ -counter.
- the principles of laboratory animal care were followed, Specific pathogen-free LYYD, non-diabetic female pigs, cross-breed of Danish Landrace, Yorkshire and Duroc, were used (Holmenlund, Haarloev, Denmark) for pharmacokinetic and pharmacodynamic studies.
- the pigs were conscious, 4-5 months of age and weighing 70-95 kg. The animals were fasted overnight for 18 h before the experiment.
- Formulated preparations of insulin derivatives labelled in Tyr* 14 with 1 5 l were injected sc. in pigs as previously described (Ribel, U., J ⁇ rgensen, K, Brange, J, and Henriksen, U. The pig as a model for subcutaneous insulin absorption in man. Serrano-Rios, M and Le- febvre, P. J. 891-896. 1985. Amsterdam; New York; Oxford, Elsevier Science Publishers. 1985 (Conference Proceeding)).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Diabetes (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Endocrinology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Emergency Medicine (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
Claims
Priority Applications (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2004800217338A CN1829738B (en) | 2003-08-05 | 2004-07-22 | Novel insulin derivatives |
MXPA06001283A MXPA06001283A (en) | 2003-08-05 | 2004-07-22 | Novel insulin derivatives. |
BRPI0413276A BRPI0413276B8 (en) | 2003-08-05 | 2004-07-22 | insulin derivative, zinc complex thereof, and pharmaceutical composition |
CA2531988A CA2531988C (en) | 2003-08-05 | 2004-07-22 | Novel insulin derivatives |
EP04739008A EP1660531A2 (en) | 2003-08-05 | 2004-07-22 | Novel insulin derivatives |
AU2004261353A AU2004261353B2 (en) | 2003-08-05 | 2004-07-22 | Novel insulin derivatives |
JP2006522233A JP4463814B2 (en) | 2003-08-05 | 2004-07-22 | New insulin derivatives |
KR1020067002551A KR101159559B1 (en) | 2003-08-05 | 2004-07-22 | Novel insulin derivatives |
KR1020127002621A KR101186851B1 (en) | 2003-08-05 | 2004-07-22 | Novel insulin derivatives |
IL172980A IL172980A (en) | 2003-08-05 | 2006-01-05 | Insulin derivatives, pharmaceutical compositions comprising them and uses thereof |
US11/343,005 US7615532B2 (en) | 2003-08-05 | 2006-01-30 | Insulin derivatives |
NO20061026A NO340925B1 (en) | 2003-08-05 | 2006-03-02 | New insulin derivatives |
US12/560,833 US8828923B2 (en) | 2003-08-05 | 2009-09-16 | Insulin derivatives |
US14/453,276 US20140349925A1 (en) | 2003-08-05 | 2014-08-06 | Novel insulin derivatives |
NO2018002C NO2018002I2 (en) | 2003-08-05 | 2018-01-11 | Insulin degludec in all its forms as protected by the basic patent |
NO2018003C NO2018003I1 (en) | 2003-08-05 | 2018-01-11 | Combination of insulin degludec and insulin aspart |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200301129 | 2003-08-05 | ||
DKPA200301129 | 2003-08-05 | ||
US49545103P | 2003-08-14 | 2003-08-14 | |
US60/495,451 | 2003-08-14 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/343,005 Continuation US7615532B2 (en) | 2003-08-05 | 2006-01-30 | Insulin derivatives |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2005012347A2 true WO2005012347A2 (en) | 2005-02-10 |
WO2005012347A3 WO2005012347A3 (en) | 2005-04-14 |
Family
ID=34117520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DK2004/000511 WO2005012347A2 (en) | 2003-08-05 | 2004-07-22 | Novel insulin derivatives |
Country Status (18)
Country | Link |
---|---|
US (3) | US7615532B2 (en) |
EP (3) | EP2264065B1 (en) |
JP (1) | JP4463814B2 (en) |
KR (1) | KR101159559B1 (en) |
AU (2) | AU2004261353B2 (en) |
BE (2) | BE2013C035I2 (en) |
BR (1) | BRPI0413276B8 (en) |
CA (1) | CA2531988C (en) |
CY (5) | CY1113850T1 (en) |
FR (2) | FR13C0035I2 (en) |
HU (1) | HUS1300033I1 (en) |
IL (1) | IL172980A (en) |
LU (2) | LU92213I2 (en) |
MX (1) | MXPA06001283A (en) |
NO (5) | NO340925B1 (en) |
PL (1) | PL2107069T3 (en) |
RU (1) | RU2518460C2 (en) |
WO (1) | WO2005012347A2 (en) |
Cited By (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1648933A1 (en) * | 2003-07-25 | 2006-04-26 | ConjuChem, Inc. | Long lasting insulin derivatives and methods thereof |
WO2006082205A1 (en) * | 2005-02-02 | 2006-08-10 | Novo Nordisk A/S | Insulin derivatives |
WO2006082204A1 (en) * | 2005-02-02 | 2006-08-10 | Novo Nordisk A/S | Insulin derivatives |
WO2007074133A2 (en) | 2005-12-28 | 2007-07-05 | Novo Nordisk A/S | Compositions comprising an acylated insulin and zinc and method of making the said compositions |
WO2007096431A1 (en) * | 2006-02-27 | 2007-08-30 | Novo Nordisk A/S | Insulin derivatives |
WO2007104736A2 (en) * | 2006-03-13 | 2007-09-20 | Novo Nordisk A/S | Acylated single chain insulin |
WO2007128817A2 (en) * | 2006-05-09 | 2007-11-15 | Novo Nordisk A/S | Insulin derivative |
WO2007128815A1 (en) | 2006-05-09 | 2007-11-15 | Novo Nordisk A/S | Insulin derivative |
JP2008007425A (en) * | 2006-06-27 | 2008-01-17 | National Institute For Materials Science | A method for producing an active ester of an organic acid or a derivative thereof. |
WO2010049488A1 (en) * | 2008-10-30 | 2010-05-06 | Novo Nordisk A/S | Treating diabetes melitus using insulin injections with less than daily injection frequency |
WO2010084169A2 (en) | 2009-01-23 | 2010-07-29 | Novo Nordisk A/S | Fgf21 derivatives with albumin binder a-b-c-d-e- and their use |
JP2010530368A (en) * | 2007-06-13 | 2010-09-09 | ノボ・ノルデイスク・エー/エス | Pharmaceutical preparation containing an insulin derivative |
JP2010535849A (en) * | 2007-08-15 | 2010-11-25 | ノボ・ノルデイスク・エー/エス | Insulin having an acyl moiety containing an amino acid-containing alkylene glycol repeating unit |
JP2010535851A (en) * | 2007-08-15 | 2010-11-25 | ノボ・ノルデイスク・エー/エス | Insulin analogues having acyl and alkylene glycol moieties |
JP2011503033A (en) * | 2007-11-08 | 2011-01-27 | ノボ・ノルデイスク・エー/エス | Insulin derivative |
WO2011051312A1 (en) | 2009-10-30 | 2011-05-05 | Novo Nordisk A/S | Derivatives of cgrp |
WO2011086093A2 (en) | 2010-01-12 | 2011-07-21 | Novo Nordisk A/S | Pharmaceutical compositions for oral administration of insulin peptides |
WO2011101277A1 (en) | 2010-02-16 | 2011-08-25 | Novo Nordisk A/S | Conjugated proteins |
WO2011101261A2 (en) | 2010-02-16 | 2011-08-25 | Novo Nordisk A/S | Purification method |
WO2011141407A1 (en) | 2010-05-10 | 2011-11-17 | Novo Nordisk A/S | Process for the preparation of insulin-zinc complexes |
WO2011161125A1 (en) * | 2010-06-23 | 2011-12-29 | Novo Nordisk A/S | Insulin derivatives containing additional disulfide bonds |
WO2012049307A2 (en) | 2010-10-15 | 2012-04-19 | Novo Nordisk A/S | Novel n-terminally modified insulin derivatives |
WO2012055967A2 (en) | 2010-10-27 | 2012-05-03 | Novo Nordisk A/S | Treating diabetes melitus using insulin injections administered with varying injection intervals |
WO2012080320A1 (en) | 2010-12-14 | 2012-06-21 | Novo Nordisk A/S | Fast-acting insulin in combination with long-acting insulin |
CN101157725B (en) * | 2007-10-24 | 2012-07-25 | 中国药科大学 | Preparation method of human insulin analogue and usage thereof |
WO2012110422A1 (en) | 2011-02-15 | 2012-08-23 | Novo Nordisk A/S | Long-acting il-1 receptor antagonists |
EP2502618A2 (en) | 2007-04-30 | 2012-09-26 | Novo Nordisk A/S | Method for drying a protein composition, a dried protein composition and a pharmaceutical composition comprising the dried protein |
WO2012130866A1 (en) * | 2011-03-28 | 2012-10-04 | Novo Nordisk A/S | Novel glucagon analogues |
WO2012140155A1 (en) | 2011-04-14 | 2012-10-18 | Novo Nordisk A/S | Fatty acid acylated amino acids for oral peptide delivery |
EP2514406A1 (en) | 2007-06-01 | 2012-10-24 | Novo Nordisk A/S | Spontaneously dispersible preconcentrates including a peptide drug in a solid or semisolid carrier |
WO2012171994A1 (en) | 2011-06-15 | 2012-12-20 | Novo Nordisk A/S | Multi substituted insulins |
WO2013041678A1 (en) * | 2011-09-23 | 2013-03-28 | Novo Nordisk A/S | Novel glucagon analogues |
EP2597103A1 (en) | 2007-11-16 | 2013-05-29 | Novo Nordisk A/S | Pharmaceutical compositions containing insulin and an insulinotropic peptide |
WO2013093009A1 (en) | 2011-12-21 | 2013-06-27 | Novo Nordisk A/S | N -terminally modified insulin derivatives |
WO2013164375A1 (en) | 2012-05-01 | 2013-11-07 | Novo Nordisk A/S | Pharmaceutical composition |
WO2014009316A1 (en) | 2012-07-09 | 2014-01-16 | Novo Nordisk A/S | Novel use of insulin derivatives |
US8637647B2 (en) | 2008-09-12 | 2014-01-28 | Novo Nordisk A/S | Method of acylating a peptide or protein |
WO2014060447A1 (en) | 2012-10-17 | 2014-04-24 | Novo Nordisk A/S | Fatty acid acylated d-amino acids for oral peptide delivery |
US8748570B2 (en) | 2010-05-25 | 2014-06-10 | Syngene Limited | Insulin analogues |
US8815798B2 (en) | 2010-06-23 | 2014-08-26 | Novo Nordisk A/S | Insulin analogues containing additional disulfide bonds |
WO2014147141A1 (en) * | 2013-03-20 | 2014-09-25 | Novo Nordisk A/S | Insulin dosing regimen |
US8883722B2 (en) | 2010-06-23 | 2014-11-11 | Novo Nordisk A/S | Human insulin containing additional disulfide bonds |
US9018161B2 (en) | 2006-09-22 | 2015-04-28 | Novo Nordisk A/S | Protease resistant insulin analogues |
EP2910570A1 (en) | 2008-03-18 | 2015-08-26 | Novo Nordisk A/S | Protease stabilized, acylated insulin analogues |
CN101437849B (en) * | 2006-05-09 | 2015-09-30 | 诺沃-诺迪斯克有限公司 | Insulin derivates |
US9260502B2 (en) | 2008-03-14 | 2016-02-16 | Novo Nordisk A/S | Protease-stabilized insulin analogues |
US9474790B2 (en) | 2013-04-18 | 2016-10-25 | Novo Nordisk A/S | Stable, protracted GLP-1/glucagon receptor co-agonists for medical use |
US9481721B2 (en) | 2012-04-11 | 2016-11-01 | Novo Nordisk A/S | Insulin formulations |
WO2017032797A1 (en) | 2015-08-25 | 2017-03-02 | Novo Nordisk A/S | Novel insulin derivatives and the medical uses hereof |
WO2017032795A1 (en) | 2015-08-25 | 2017-03-02 | Novo Nordisk A/S | Novel insulin derivatives and the medical uses hereof |
US9670261B2 (en) | 2012-12-21 | 2017-06-06 | Sanofi | Functionalized exendin-4 derivatives |
US9694053B2 (en) | 2013-12-13 | 2017-07-04 | Sanofi | Dual GLP-1/glucagon receptor agonists |
US9751926B2 (en) | 2013-12-13 | 2017-09-05 | Sanofi | Dual GLP-1/GIP receptor agonists |
US9750788B2 (en) | 2013-12-13 | 2017-09-05 | Sanofi | Non-acylated exendin-4 peptide analogues |
US9758561B2 (en) | 2014-04-07 | 2017-09-12 | Sanofi | Dual GLP-1/glucagon receptor agonists derived from exendin-4 |
US9771406B2 (en) | 2014-04-07 | 2017-09-26 | Sanofi | Peptidic dual GLP-1/glucagon receptor agonists derived from exendin-4 |
US9775904B2 (en) | 2014-04-07 | 2017-10-03 | Sanofi | Exendin-4 derivatives as peptidic dual GLP-1/glucagon receptor agonists |
US9789165B2 (en) | 2013-12-13 | 2017-10-17 | Sanofi | Exendin-4 peptide analogues as dual GLP-1/GIP receptor agonists |
US9896496B2 (en) | 2013-10-07 | 2018-02-20 | Novo Nordisk A/S | Derivative of an insulin analogue |
US9932381B2 (en) | 2014-06-18 | 2018-04-03 | Sanofi | Exendin-4 derivatives as selective glucagon receptor agonists |
US9963496B2 (en) | 2014-02-18 | 2018-05-08 | Novo Nordisk A/S | Stable glucagon analogues and use for treatment of hypoglycaemia |
US20180125946A1 (en) * | 2010-10-27 | 2018-05-10 | Novo Nordisk A/S | Treating Diabetes Melitus Using Insulin Injections Administered With Varying Injection Intervals |
US9982029B2 (en) | 2015-07-10 | 2018-05-29 | Sanofi | Exendin-4 derivatives as selective peptidic dual GLP-1/glucagon receptor agonists |
WO2018096162A1 (en) | 2016-11-28 | 2018-05-31 | Novo Nordisk A/S | Insulin degludec in cardiovascular conditions |
WO2018096163A1 (en) | 2016-11-28 | 2018-05-31 | Novo Nordisk A/S | Insulin degludec for improvement of glycaemic control and reduction of acute and long-term diabetes complications |
WO2018096164A1 (en) | 2016-11-28 | 2018-05-31 | Novo Nordisk A/S | Insulin degludec for treating diabetes |
US10040839B2 (en) | 2014-02-28 | 2018-08-07 | Novo Nordisk A/S | Insulin derivatives and the medical uses hereof |
US10137172B2 (en) | 2013-04-30 | 2018-11-27 | Novo Nordisk A/S | Administration regime |
US10265385B2 (en) | 2016-12-16 | 2019-04-23 | Novo Nordisk A/S | Insulin containing pharmaceutical compositions |
US10335464B1 (en) | 2018-06-26 | 2019-07-02 | Novo Nordisk A/S | Device for titrating basal insulin |
WO2019154311A1 (en) | 2018-02-09 | 2019-08-15 | 江苏恒瑞医药股份有限公司 | Codon optimized precursor gene and signal peptide gene of human insulin analogue |
US10400021B2 (en) | 2017-05-26 | 2019-09-03 | Eli Lilly And Company | Acylated insulin compound |
WO2019223752A1 (en) | 2018-05-24 | 2019-11-28 | 江苏恒瑞医药股份有限公司 | Method for preparing precursor of recombinant human insulin or analogue thereof |
WO2020002428A1 (en) | 2018-06-26 | 2020-01-02 | Novo Nordisk A/S | System providing dose recommendations for basal insulin titration |
US10570184B2 (en) | 2014-06-04 | 2020-02-25 | Novo Nordisk A/S | GLP-1/glucagon receptor co-agonists for medical use |
EP3495384A4 (en) * | 2016-08-02 | 2020-02-26 | Jiangsu Hengrui Medicine Co., Ltd. | Acylated derivative of human insulin or analogue thereof |
US10758592B2 (en) | 2012-10-09 | 2020-09-01 | Sanofi | Exendin-4 derivatives as dual GLP1/glucagon agonists |
US10806797B2 (en) | 2015-06-05 | 2020-10-20 | Sanofi | Prodrugs comprising an GLP-1/glucagon dual agonist linker hyaluronic acid conjugate |
WO2021022149A1 (en) | 2019-07-31 | 2021-02-04 | Eli Lilly And Company | Insulin analogs and methods of using the same |
WO2021136296A1 (en) | 2019-12-30 | 2021-07-08 | 甘李药业股份有限公司 | Insulin derivative |
US11634455B2 (en) | 2013-08-29 | 2023-04-25 | Chemical & Biopharmaceutical Laboratories Of Patras S.A. | Amino diacids containing peptide modifiers |
EP4180060A1 (en) | 2021-11-15 | 2023-05-17 | Adocia | Solid compositions comprising a peptide or a protein and an acylated amino acid |
WO2023084118A1 (en) | 2021-11-15 | 2023-05-19 | Adocia | Solid compositions comprising a peptide or a protein and an acylated amino acid |
WO2023143458A1 (en) | 2022-01-28 | 2023-08-03 | 甘李药业股份有限公司 | Acylated insulin |
EP4299071A1 (en) | 2022-07-01 | 2024-01-03 | Adocia | Compositions comprising a peptide or a protein and an acylated amino acid |
EP4299057A1 (en) | 2022-06-30 | 2024-01-03 | Adocia | Solid compositions comprising a peptide or a protein and an acylated amino acid |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2264065B1 (en) | 2003-08-05 | 2017-03-08 | Novo Nordisk A/S | Novel insulin derivatives |
US8293965B2 (en) | 2006-04-28 | 2012-10-23 | Kimberly-Clark Worldwide, Inc. | Antimicrobial site dressings |
WO2008015099A2 (en) | 2006-07-31 | 2008-02-07 | Novo Nordisk A/S | Pegylated, extended insulins |
EP2164459A1 (en) * | 2007-06-01 | 2010-03-24 | Novo Nordisk A/S | Stable non-aqueous pharmaceutical compositions |
KR20140104994A (en) * | 2011-12-15 | 2014-08-29 | 샹하이 헨그루이 파마수티컬 컴퍼니 리미티드 | Human Insulin Analogue and Acylated Derivative thereof |
US20160031962A1 (en) * | 2012-04-20 | 2016-02-04 | Kleomenis K. Barlos | Solid phase peptide synthesis of insulin using side chain achored lysine |
FR3013049B1 (en) | 2013-11-14 | 2015-11-13 | You-Ping Chan | ANALOGUE OF INSULIN GLARGINE |
KR102666154B1 (en) | 2018-08-08 | 2024-05-20 | 주식회사 대웅제약 | Long-acting Insulin Analog and Derivatives Thereof |
KR20200080748A (en) | 2018-12-27 | 2020-07-07 | 주식회사 폴루스 | A Method for Purifying Proinsulin Using Anion Exchange Chromatography |
KR20200080747A (en) | 2018-12-27 | 2020-07-07 | 주식회사 폴루스 | An Enzymatic Conversion Composition for Producing Insulin from Proinsulin and a Method for Producing Insulin from Proinsulin Using the Same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995007931A1 (en) * | 1993-09-17 | 1995-03-23 | Novo Nordisk A/S | Acylated insulin |
WO1998002460A1 (en) * | 1996-07-11 | 1998-01-22 | Novo Nordisk A/S | Selective acylation method |
EP0894095A1 (en) * | 1996-02-21 | 1999-02-03 | Novo Nordisk A/S | Insulin derivatives and their use |
US5898067A (en) * | 1997-02-07 | 1999-04-27 | Novo Nordisk A/S | Crystallization of proteins |
US6251856B1 (en) * | 1995-03-17 | 2001-06-26 | Novo Nordisk A/S | Insulin derivatives |
Family Cites Families (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1212679B (en) | 1957-08-03 | 1966-03-17 | Novo Terapeutisk Labor As | Process for the preparation of insulin solutions |
GB1042194A (en) | 1962-04-30 | 1966-09-14 | Olin Mathieson | Insulin preparations |
US3528960A (en) | 1968-10-07 | 1970-09-15 | Lilly Co Eli | N-carboxyaroyl insulins |
US3868358A (en) | 1971-04-30 | 1975-02-25 | Lilly Co Eli | Protamine-insulin product |
GB1492997A (en) | 1976-07-21 | 1977-11-23 | Nat Res Dev | Insulin derivatives |
JPS5767548A (en) | 1980-10-14 | 1982-04-24 | Shionogi & Co Ltd | Insulin analog and its preparation |
FI78616C (en) | 1982-02-05 | 1989-09-11 | Novo Industri As | Process for preparing an infused stabilized insulin solution having an elevated zinc content |
PH25772A (en) | 1985-08-30 | 1991-10-18 | Novo Industri As | Insulin analogues, process for their preparation |
NZ222907A (en) | 1986-12-16 | 1990-08-28 | Novo Industri As | Preparation for intranasal administration containing a phospholipid absorption enhancing system |
US5605884A (en) | 1987-10-29 | 1997-02-25 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Factor VIII formulations in high ionic strength media |
US4877608A (en) | 1987-11-09 | 1989-10-31 | Rorer Pharmaceutical Corporation | Pharmaceutical plasma protein formulations in low ionic strength media |
JPH01254699A (en) | 1988-04-05 | 1989-10-11 | Kodama Kk | Insulin derivative and use thereof |
DE3827533A1 (en) | 1988-08-13 | 1990-02-15 | Hoechst Ag | PHARMACEUTICAL PREPARATION FOR TREATING THE DIABETES MELLITUS |
JPH04502465A (en) | 1988-12-23 | 1992-05-07 | ノボ ノルディスク アクティーゼルスカブ | human insulin analogue |
NZ232375A (en) | 1989-02-09 | 1992-04-28 | Lilly Co Eli | Insulin analogues modified at b29 |
IT1240314B (en) | 1989-09-28 | 1993-12-07 | Immunobiology Research Institutes, Inc. | STABILIZED AQUEOUS FORMULATIONS OF SMALL PEPTIDES. |
DE69019534T2 (en) | 1989-12-21 | 1995-09-21 | Novonordisk As | INSULIN PREPARATIONS CONTAINING NICOTIC ACID OR NICOTINAMIDE. |
DK45590D0 (en) | 1990-02-21 | 1990-02-21 | Novo Nordisk As | |
JP3193398B2 (en) | 1991-07-23 | 2001-07-30 | サンデン株式会社 | Showcase |
WO1993012812A1 (en) | 1991-12-20 | 1993-07-08 | Novo Nordisk A/S | A stabilized pharmaceutical formulation comprising growth hormone and histidine |
US6011007A (en) | 1993-09-17 | 2000-01-04 | Novo Nordisk A/S | Acylated insulin |
US6869930B1 (en) | 1993-09-17 | 2005-03-22 | Novo Nordisk A/S | Acylated insulin |
US5652216A (en) | 1994-05-26 | 1997-07-29 | Novo Nordisk A/S | Pharmaceutical preparation |
AU3562195A (en) | 1994-10-04 | 1996-04-26 | Novo Nordisk A/S | Preparations containing aspb28 human insulin and nicotinamide |
US5646242A (en) | 1994-11-17 | 1997-07-08 | Eli Lilly And Company | Selective acylation of epsilon-amino groups |
US5830999A (en) | 1995-01-26 | 1998-11-03 | Regents Of The University Of California | Stabilization of insulin through ligand binding interations |
ATE245659T1 (en) | 1995-03-17 | 2003-08-15 | Novo Nordisk As | INSULIN DERIVATIVES |
EP2275119B1 (en) | 1995-07-27 | 2013-09-25 | Genentech, Inc. | Stable isotonic lyophilized protein formulation |
US5898267A (en) * | 1996-04-10 | 1999-04-27 | Mcdermott; Kevin | Parabolic axial lighting device |
US5866538A (en) | 1996-06-20 | 1999-02-02 | Novo Nordisk A/S | Insulin preparations containing NaCl |
US5905140A (en) | 1996-07-11 | 1999-05-18 | Novo Nordisk A/S, Novo Alle | Selective acylation method |
US5763401A (en) | 1996-07-12 | 1998-06-09 | Bayer Corporation | Stabilized albumin-free recombinant factor VIII preparation having a low sugar content |
EP0821006B1 (en) | 1996-07-26 | 2004-04-21 | Aventis Pharma Deutschland GmbH | Derivatives of insulin having enhanced zinc binding activity |
IL119029A0 (en) | 1996-08-07 | 1996-11-14 | Yeda Res & Dev | Long-acting drugs and pharamaceutical compositions comprising them |
ES2260832T3 (en) * | 1997-03-20 | 2006-11-01 | Novo Nordisk A/S | INSULIN CRYSTALS DESPROVISTOS DE ZINC USED IN PULMONARY COMPOSITIONS. |
DE69806582T2 (en) | 1997-03-20 | 2003-02-13 | Novo Nordisk A/S, Bagsvaerd | METHOD FOR PRODUCING A THERAPEUTIC POWDER BY COPRECIPITATING INSULIN AND AN ABSORPTION AMPLIFIER |
JP2001518916A (en) | 1997-03-20 | 2001-10-16 | ノボ ノルディスク アクティーゼルスカブ | Therapeutic powder formulation for pulmonary administration containing crystalline insulin |
US7097845B2 (en) | 1997-04-23 | 2006-08-29 | Jacob Sten Petersen | Combinations of antigen and mucosal binding component for inducing specific immunological tolerance |
EP1283051B1 (en) | 1997-06-13 | 2006-06-14 | Eli Lilly And Company | Stable insulin formulations |
IL135400A0 (en) * | 1997-10-24 | 2001-05-20 | Novo Nordisk As | Aggregates of human insulin derivatives |
BR9813111A (en) | 1997-10-24 | 2000-08-15 | Lilly Co Eli | Insoluble insulin compositions |
US20020155994A1 (en) | 1997-10-24 | 2002-10-24 | Svend Havelund | Aggregates of human insulin derivatives |
US6451762B1 (en) | 1997-10-24 | 2002-09-17 | Novo Nordisk A/S | Aggregates of human insulin derivatives |
ZA989744B (en) | 1997-10-31 | 2000-04-26 | Lilly Co Eli | Method for administering acylated insulin. |
CO4970787A1 (en) | 1997-12-23 | 2000-11-07 | Lilly Co Eli | INSOLUBLE COMPOSITIONS OF INSULIN AND INSULIN DERIVATIVES THAT CONTROL BLOOD GLUCOSE |
AU1870099A (en) | 1998-01-09 | 1999-07-26 | Novo Nordisk A/S | Stabilised insulin compositions |
ATE218364T1 (en) | 1998-10-16 | 2002-06-15 | Novo Nordisk As | STABLE CONCENTRATED INSULIN PREPARATIONS FOR PULMONARY ADMINISTRATION |
US6211144B1 (en) | 1998-10-16 | 2001-04-03 | Novo Nordisk A/S | Stable concentrated insulin preparations for pulmonary delivery |
ATE365052T1 (en) | 1999-02-22 | 2007-07-15 | Univ Connecticut | NEW ALBUMINE-FREE FACTOR VIII FORMULATIONS |
WO2000064940A1 (en) | 1999-04-27 | 2000-11-02 | Eli Lilly And Company | Insulin crystals for pulmonary administration |
GB9930882D0 (en) | 1999-12-30 | 2000-02-23 | Nps Allelix Corp | GLP-2 formulations |
DE10022092A1 (en) | 2000-05-08 | 2001-11-15 | Aventis Behring Gmbh | Stabilized protein preparation and process for its preparation |
US6652886B2 (en) | 2001-02-16 | 2003-11-25 | Expression Genetics | Biodegradable cationic copolymers of poly (alkylenimine) and poly (ethylene glycol) for the delivery of bioactive agents |
DE10114178A1 (en) | 2001-03-23 | 2002-10-10 | Aventis Pharma Gmbh | Zinc-free and low-zinc insulin preparations with improved stability |
US20030119734A1 (en) | 2001-06-28 | 2003-06-26 | Flink James M. | Stable formulation of modified GLP-1 |
CA2468100A1 (en) | 2001-12-20 | 2003-07-03 | Eli Lilly And Company | Insulin molecule having protracted time action |
AU2003208316A1 (en) | 2002-03-13 | 2003-09-22 | Novo Nordisk A/S | Minimising body weight gain in insulin treatment |
EP1506230B1 (en) | 2002-05-07 | 2011-01-19 | Novo Nordisk A/S | Soluble formulations comprising monomeric insulin and acylated insulin |
US20050232899A1 (en) | 2002-05-31 | 2005-10-20 | Aradigm Corporation | Compositions methods and systems for pulmonary delivery of recombinant human interferon alpha-2b |
US20040002451A1 (en) | 2002-06-20 | 2004-01-01 | Bruce Kerwin | Compositions of pegylated soluble tumor necrosis factor receptors and methods of preparing |
KR100615389B1 (en) | 2002-08-23 | 2006-08-25 | (주)헬릭서 | Health food comprising the extract of Actinidia arguta and related species for the prevention and improvement of allergic disease and non-allergic inflammatory disease |
US20060198894A1 (en) | 2002-10-29 | 2006-09-07 | Johanna Bentz | Stabilized, solid-state polypeptide particles |
US20040138099A1 (en) | 2002-11-29 | 2004-07-15 | Draeger Eberhard Kurt | Insulin administration regimens for the treatment of subjects with diabetes |
JPWO2004069259A1 (en) | 2003-02-07 | 2006-05-25 | 味の素株式会社 | Diabetes treatment |
CN100422328C (en) | 2003-02-19 | 2008-10-01 | 诺瓦提斯公司 | Glycoprotein antigen SIMA135 expressed in human metastatic tumor cells |
EA200501422A1 (en) | 2003-03-04 | 2006-04-28 | Дзе Текнолоджи Девелопмент Компани Лтд. | DURABLE INJECTABLE COMPOSITION OF INSULIN AND METHODS OF ITS MANUFACTURE AND APPLICATION |
WO2004112828A1 (en) | 2003-06-25 | 2004-12-29 | Novo Nordisk Health Care Ag | Liquid composition of factor vii polypeptides |
US20050054818A1 (en) | 2003-07-02 | 2005-03-10 | Brader Mark Laurence | Crystalline compositions for controlling blood glucose |
EP2264065B1 (en) * | 2003-08-05 | 2017-03-08 | Novo Nordisk A/S | Novel insulin derivatives |
KR101186851B1 (en) | 2003-08-05 | 2012-10-02 | 노보 노르디스크 에이/에스 | Novel insulin derivatives |
CA2534028A1 (en) | 2003-08-14 | 2005-02-24 | Novo Nordisk Health Care Ag | Liquid, aqueous pharmaceutical composition of factor vii polypeptides |
WO2005021022A2 (en) | 2003-09-01 | 2005-03-10 | Novo Nordisk A/S | Stable formulations of peptides |
ES2229931B1 (en) | 2003-10-03 | 2006-01-16 | Grifols, S.A. | BILOGICALLY STABLE LIQUID COMPOSITION OF FVIII, FVW OR HUMAN FVIII / FVW COMPLEX. |
JP2007532096A (en) | 2003-11-14 | 2007-11-15 | ノボ ノルディスク アクティーゼルスカブ | Method for producing acylated insulin |
JP4845741B2 (en) | 2003-12-23 | 2011-12-28 | ファルマシア コーポレーション | Stable growth hormone liquid formulation |
US7279457B2 (en) | 2004-03-12 | 2007-10-09 | Biodel, Inc. | Rapid acting drug delivery compositions |
MXPA06014079A (en) | 2004-06-01 | 2007-02-15 | Ares Trading Sa | Method of stabilizing proteins. |
MX2007001663A (en) | 2004-08-12 | 2007-04-10 | Schering Corp | Stable pegylated interferon formulation. |
SI1778723T1 (en) | 2004-08-17 | 2013-02-28 | Regeneron Pharmaceuticals, Inc. | Il-1 antagonist formulations |
ES2575984T3 (en) | 2004-11-12 | 2016-07-04 | Novo Nordisk A/S | Stable formulations of peptides containing an acylated GLP-1 analogue and a basal insulin |
CN101060856B (en) | 2004-11-22 | 2011-01-19 | 诺和诺德公司 | Soluble, stable insulin-containing preparations |
CA2593112A1 (en) | 2005-01-21 | 2006-07-27 | Alza Corporation | Therapeutic peptide formulations for coating microneedles with improved stability containing at least one counterion |
ES2428510T3 (en) * | 2005-02-02 | 2013-11-08 | Novo Nordisk A/S | Insulin derivatives |
US20090074882A1 (en) | 2005-12-28 | 2009-03-19 | Novo Nordisk A/S | Insulin compositions and method of making a composition |
EP1991576B1 (en) | 2006-02-27 | 2010-09-29 | Novo Nordisk A/S | Insulin derivatives |
AU2007238114B2 (en) | 2006-04-12 | 2010-10-14 | Biodel, Inc. | Rapid acting and long acting insulin combination formulations |
AU2007247109B2 (en) | 2006-05-09 | 2012-03-15 | Novo Nordisk A/S | Insulin derivative |
ES2744384T3 (en) | 2007-06-13 | 2020-02-24 | Novo Nordisk As | Pharmaceutical formulation comprising an insulin derivative |
PT2597103T (en) | 2007-11-16 | 2017-02-08 | Novo Nordisk As | Stable pharmaceutical compositions comprising liraglutide and degludec |
TWI451876B (en) | 2008-06-13 | 2014-09-11 | Lilly Co Eli | Pegylated insulin lispro compounds |
-
2004
- 2004-07-22 EP EP10174490.2A patent/EP2264065B1/en not_active Expired - Lifetime
- 2004-07-22 EP EP09165072A patent/EP2107069B1/en not_active Expired - Lifetime
- 2004-07-22 AU AU2004261353A patent/AU2004261353B2/en active Active
- 2004-07-22 BR BRPI0413276A patent/BRPI0413276B8/en active IP Right Grant
- 2004-07-22 WO PCT/DK2004/000511 patent/WO2005012347A2/en active Application Filing
- 2004-07-22 MX MXPA06001283A patent/MXPA06001283A/en active IP Right Grant
- 2004-07-22 CA CA2531988A patent/CA2531988C/en not_active Expired - Fee Related
- 2004-07-22 EP EP04739008A patent/EP1660531A2/en not_active Withdrawn
- 2004-07-22 JP JP2006522233A patent/JP4463814B2/en not_active Expired - Lifetime
- 2004-07-22 KR KR1020067002551A patent/KR101159559B1/en active Protection Beyond IP Right Term
- 2004-07-22 PL PL09165072T patent/PL2107069T3/en unknown
-
2006
- 2006-01-05 IL IL172980A patent/IL172980A/en active Protection Beyond IP Right Term
- 2006-01-30 US US11/343,005 patent/US7615532B2/en active Active
- 2006-03-02 NO NO20061026A patent/NO340925B1/en active Protection Beyond IP Right Term
-
2008
- 2008-12-29 RU RU2008152033/04A patent/RU2518460C2/en active
-
2009
- 2009-09-16 US US12/560,833 patent/US8828923B2/en not_active Expired - Lifetime
-
2010
- 2010-02-10 AU AU2010200497A patent/AU2010200497B2/en active Active
-
2013
- 2013-03-28 CY CY20131100259T patent/CY1113850T1/en unknown
- 2013-06-10 LU LU92213C patent/LU92213I2/en unknown
- 2013-06-11 BE BE2013C035C patent/BE2013C035I2/fr unknown
- 2013-06-19 BE BE2013C038C patent/BE2013C038I2/fr unknown
- 2013-06-19 LU LU92226C patent/LU92226I2/en unknown
- 2013-07-04 CY CY2013027C patent/CY2013027PI2/en unknown
- 2013-07-04 FR FR13C0035C patent/FR13C0035I2/en active Active
- 2013-07-05 FR FR13C0038C patent/FR13C0038I1/en active Active
- 2013-07-08 CY CY2013029C patent/CY2013029PI1/en unknown
- 2013-07-18 HU HUS1300033C patent/HUS1300033I1/en unknown
-
2014
- 2014-08-06 US US14/453,276 patent/US20140349925A1/en not_active Abandoned
-
2018
- 2018-01-11 NO NO2018002C patent/NO2018002I2/en unknown
- 2018-01-11 NO NO2018003C patent/NO2018003I1/en unknown
-
2023
- 2023-12-28 CY CY2013029C patent/CY2013029I2/en unknown
-
2024
- 2024-01-16 NO NO2024003C patent/NO2024003I1/en unknown
- 2024-01-16 NO NO2024004C patent/NO2024004I1/en unknown
- 2024-01-31 CY CY2013027C patent/CY2013027I2/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995007931A1 (en) * | 1993-09-17 | 1995-03-23 | Novo Nordisk A/S | Acylated insulin |
US6251856B1 (en) * | 1995-03-17 | 2001-06-26 | Novo Nordisk A/S | Insulin derivatives |
EP0894095A1 (en) * | 1996-02-21 | 1999-02-03 | Novo Nordisk A/S | Insulin derivatives and their use |
WO1998002460A1 (en) * | 1996-07-11 | 1998-01-22 | Novo Nordisk A/S | Selective acylation method |
US5898067A (en) * | 1997-02-07 | 1999-04-27 | Novo Nordisk A/S | Crystallization of proteins |
Cited By (146)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2085406A1 (en) * | 2003-07-25 | 2009-08-05 | ConjuChem Biotechnologies Inc. | Long lasting insulin derivatives and methods thereof |
EP1648933A4 (en) * | 2003-07-25 | 2007-02-28 | Conjuchem Biotechnologies Inc | Long lasting insulin derivatives and methods thereof |
EP1648933A1 (en) * | 2003-07-25 | 2006-04-26 | ConjuChem, Inc. | Long lasting insulin derivatives and methods thereof |
WO2006082205A1 (en) * | 2005-02-02 | 2006-08-10 | Novo Nordisk A/S | Insulin derivatives |
WO2006082204A1 (en) * | 2005-02-02 | 2006-08-10 | Novo Nordisk A/S | Insulin derivatives |
EP2256130A1 (en) * | 2005-02-02 | 2010-12-01 | Novo Nordisk A/S | Novel insulin derivatives |
US8476228B2 (en) | 2005-02-02 | 2013-07-02 | Novo Nordisk A/S | Insulin derivatives |
EP2292653A1 (en) * | 2005-02-02 | 2011-03-09 | Novo Nordisk A/S | Novel insulin derivatives |
US8859493B2 (en) | 2005-02-02 | 2014-10-14 | Novo Nordisk A/S | Insulin derivatives |
US8067362B2 (en) | 2005-02-02 | 2011-11-29 | Novo Nordisk As | Insulin derivatives |
USRE46170E1 (en) | 2005-02-02 | 2016-10-04 | Novo Nordisk A/S | Insulin derivatives |
JP2011121963A (en) * | 2005-12-28 | 2011-06-23 | Novo Nordisk As | Insulin composition and method for manufacturing the composition |
JP2009522231A (en) * | 2005-12-28 | 2009-06-11 | ノボ・ノルデイスク・エー/エス | Insulin composition and method for producing the composition |
JP4808785B2 (en) * | 2005-12-28 | 2011-11-02 | ノボ・ノルデイスク・エー/エス | Insulin composition and method for producing the composition |
EP2505593A1 (en) | 2005-12-28 | 2012-10-03 | Novo Nordisk A/S | Compositions comprising an acylated insulin and zinc and method of making the said compositions |
US11167035B2 (en) | 2005-12-28 | 2021-11-09 | Novo Nordisk A/S | Insulin compositions and method of making a composition |
JP2011006428A (en) * | 2005-12-28 | 2011-01-13 | Novo Nordisk As | Insulin composition and method for producing the composition |
WO2007074133A2 (en) | 2005-12-28 | 2007-07-05 | Novo Nordisk A/S | Compositions comprising an acylated insulin and zinc and method of making the said compositions |
JP2009528325A (en) * | 2006-02-27 | 2009-08-06 | ノボ・ノルデイスク・エー/エス | New insulin derivatives |
US8722620B2 (en) | 2006-02-27 | 2014-05-13 | Novo Nordisk A/S | Insulin derivatives |
WO2007096431A1 (en) * | 2006-02-27 | 2007-08-30 | Novo Nordisk A/S | Insulin derivatives |
EP2256129A1 (en) | 2006-02-27 | 2010-12-01 | Novo Nordisk A/S | Insulin derivatives |
WO2007104736A3 (en) * | 2006-03-13 | 2007-12-13 | Novo Nordisk As | Acylated single chain insulin |
WO2007104736A2 (en) * | 2006-03-13 | 2007-09-20 | Novo Nordisk A/S | Acylated single chain insulin |
US8933021B2 (en) | 2006-05-09 | 2015-01-13 | Novo Nordisk A/S | Insulin derivative |
EP2386572A1 (en) | 2006-05-09 | 2011-11-16 | Novo Nordisk A/S | Insulin derivative |
US8796205B2 (en) | 2006-05-09 | 2014-08-05 | Novo Nordisk A/S | Insulin derivative |
CN101437849B (en) * | 2006-05-09 | 2015-09-30 | 诺沃-诺迪斯克有限公司 | Insulin derivates |
AU2007247109B2 (en) * | 2006-05-09 | 2012-03-15 | Novo Nordisk A/S | Insulin derivative |
KR101441444B1 (en) * | 2006-05-09 | 2014-09-18 | 노보 노르디스크 에이/에스 | Insulin derivative |
JP2009536179A (en) * | 2006-05-09 | 2009-10-08 | ノボ・ノルデイスク・エー/エス | Insulin derivative |
RU2451029C2 (en) * | 2006-05-09 | 2012-05-20 | Ново Нордиск А/С | Insulin derivative |
JP2009536178A (en) * | 2006-05-09 | 2009-10-08 | ノボ・ノルデイスク・エー/エス | Insulin derivative |
WO2007128817A3 (en) * | 2006-05-09 | 2008-03-06 | Novo Nordisk As | Insulin derivative |
WO2007128817A2 (en) * | 2006-05-09 | 2007-11-15 | Novo Nordisk A/S | Insulin derivative |
WO2007128815A1 (en) | 2006-05-09 | 2007-11-15 | Novo Nordisk A/S | Insulin derivative |
JP2008007425A (en) * | 2006-06-27 | 2008-01-17 | National Institute For Materials Science | A method for producing an active ester of an organic acid or a derivative thereof. |
US9018161B2 (en) | 2006-09-22 | 2015-04-28 | Novo Nordisk A/S | Protease resistant insulin analogues |
EP2502618A2 (en) | 2007-04-30 | 2012-09-26 | Novo Nordisk A/S | Method for drying a protein composition, a dried protein composition and a pharmaceutical composition comprising the dried protein |
EP2514406A1 (en) | 2007-06-01 | 2012-10-24 | Novo Nordisk A/S | Spontaneously dispersible preconcentrates including a peptide drug in a solid or semisolid carrier |
JP2010530368A (en) * | 2007-06-13 | 2010-09-09 | ノボ・ノルデイスク・エー/エス | Pharmaceutical preparation containing an insulin derivative |
US9034818B2 (en) | 2007-06-13 | 2015-05-19 | Novo Nordisk A/S | Pharmaceutical formulations comprising an insulin derivative |
US8962794B2 (en) | 2007-08-15 | 2015-02-24 | Novo Nordisk A/S | Insulins with an acyl moiety comprising repeating units of alkylene glycol containing amino acids |
JP2010535849A (en) * | 2007-08-15 | 2010-11-25 | ノボ・ノルデイスク・エー/エス | Insulin having an acyl moiety containing an amino acid-containing alkylene glycol repeating unit |
JP2010535851A (en) * | 2007-08-15 | 2010-11-25 | ノボ・ノルデイスク・エー/エス | Insulin analogues having acyl and alkylene glycol moieties |
US9150633B2 (en) | 2007-08-15 | 2015-10-06 | Novo Nordisk A/S | Insulin analogues with an acyl and alkylene glycol moiety |
US9035020B1 (en) | 2007-08-15 | 2015-05-19 | Novo Nordisk A/S | Insulins with an acyl moiety comprising repeating units of alkylene glycol containing amino acids |
CN101157725B (en) * | 2007-10-24 | 2012-07-25 | 中国药科大学 | Preparation method of human insulin analogue and usage thereof |
US8710000B2 (en) | 2007-11-08 | 2014-04-29 | Novo Nordisk A/S | Insulin derivative |
JP2011503033A (en) * | 2007-11-08 | 2011-01-27 | ノボ・ノルデイスク・エー/エス | Insulin derivative |
EP2597103A1 (en) | 2007-11-16 | 2013-05-29 | Novo Nordisk A/S | Pharmaceutical compositions containing insulin and an insulinotropic peptide |
US9260502B2 (en) | 2008-03-14 | 2016-02-16 | Novo Nordisk A/S | Protease-stabilized insulin analogues |
EP2910569A1 (en) | 2008-03-18 | 2015-08-26 | Novo Nordisk A/S | Protease stabilized, acylated insulin analogues |
EP2910571A1 (en) | 2008-03-18 | 2015-08-26 | Novo Nordisk A/S | Protease stabilized, acylated insulin analogues |
US10259856B2 (en) | 2008-03-18 | 2019-04-16 | Novo Nordisk A/S | Protease stabilized acylated insulin analogues |
US9688737B2 (en) | 2008-03-18 | 2017-06-27 | Novo Nordisk A/S | Protease stabilized acylated insulin analogues |
EP2910570A1 (en) | 2008-03-18 | 2015-08-26 | Novo Nordisk A/S | Protease stabilized, acylated insulin analogues |
US8791236B2 (en) | 2008-09-12 | 2014-07-29 | Novo Nordisk A/S | Method of acylating a peptide or protein |
US8637647B2 (en) | 2008-09-12 | 2014-01-28 | Novo Nordisk A/S | Method of acylating a peptide or protein |
CN102202683A (en) * | 2008-10-30 | 2011-09-28 | 诺沃-诺迪斯克有限公司 | Treating diabetes melitus using insulin injections with less than daily injection frequency |
US9603904B2 (en) | 2008-10-30 | 2017-03-28 | Novo Nordisk A/S | Treating diabetes melitus using insulin injections with less than daily injection frequency |
WO2010049488A1 (en) * | 2008-10-30 | 2010-05-06 | Novo Nordisk A/S | Treating diabetes melitus using insulin injections with less than daily injection frequency |
AU2009309623B2 (en) * | 2008-10-30 | 2014-09-18 | Novo Nordisk A/S | Treating diabetes melitus using insulin injections with less than daily injection frequency |
WO2010084169A2 (en) | 2009-01-23 | 2010-07-29 | Novo Nordisk A/S | Fgf21 derivatives with albumin binder a-b-c-d-e- and their use |
WO2011051312A1 (en) | 2009-10-30 | 2011-05-05 | Novo Nordisk A/S | Derivatives of cgrp |
WO2011086093A2 (en) | 2010-01-12 | 2011-07-21 | Novo Nordisk A/S | Pharmaceutical compositions for oral administration of insulin peptides |
WO2011101261A2 (en) | 2010-02-16 | 2011-08-25 | Novo Nordisk A/S | Purification method |
WO2011101277A1 (en) | 2010-02-16 | 2011-08-25 | Novo Nordisk A/S | Conjugated proteins |
WO2011101261A3 (en) * | 2010-02-16 | 2012-02-02 | Novo Nordisk A/S | Purification method |
WO2011141407A1 (en) | 2010-05-10 | 2011-11-17 | Novo Nordisk A/S | Process for the preparation of insulin-zinc complexes |
US8748570B2 (en) | 2010-05-25 | 2014-06-10 | Syngene Limited | Insulin analogues |
US8853155B2 (en) | 2010-06-23 | 2014-10-07 | Novo Nordisk A/S | Insulin derivatives containing additional disulfide bonds |
US8883722B2 (en) | 2010-06-23 | 2014-11-11 | Novo Nordisk A/S | Human insulin containing additional disulfide bonds |
US8815798B2 (en) | 2010-06-23 | 2014-08-26 | Novo Nordisk A/S | Insulin analogues containing additional disulfide bonds |
US9512195B2 (en) | 2010-06-23 | 2016-12-06 | Novo Nordisk A/S | Insulin derivatives containing additional disulfide bonds |
WO2011161125A1 (en) * | 2010-06-23 | 2011-12-29 | Novo Nordisk A/S | Insulin derivatives containing additional disulfide bonds |
WO2012049307A2 (en) | 2010-10-15 | 2012-04-19 | Novo Nordisk A/S | Novel n-terminally modified insulin derivatives |
US20180125946A1 (en) * | 2010-10-27 | 2018-05-10 | Novo Nordisk A/S | Treating Diabetes Melitus Using Insulin Injections Administered With Varying Injection Intervals |
WO2012055967A2 (en) | 2010-10-27 | 2012-05-03 | Novo Nordisk A/S | Treating diabetes melitus using insulin injections administered with varying injection intervals |
US10596229B2 (en) | 2010-10-27 | 2020-03-24 | Novo Nordisk A/S | Method of treating diabetes mellitus by administration, at specifically defined intervals, of a derivative of a naturally occurring insulin or insulin analogue, the derivative having a prolonged profile of action |
AU2016202917B2 (en) * | 2010-10-27 | 2017-07-20 | Novo Nordisk A/S | Treating diabetes melitus using insulin injections administered with varying injection intervals |
WO2012080320A1 (en) | 2010-12-14 | 2012-06-21 | Novo Nordisk A/S | Fast-acting insulin in combination with long-acting insulin |
WO2012110422A1 (en) | 2011-02-15 | 2012-08-23 | Novo Nordisk A/S | Long-acting il-1 receptor antagonists |
WO2012130866A1 (en) * | 2011-03-28 | 2012-10-04 | Novo Nordisk A/S | Novel glucagon analogues |
CN103596583A (en) * | 2011-03-28 | 2014-02-19 | 诺沃—诺迪斯克有限公司 | Novel glucagon analogues |
WO2012140155A1 (en) | 2011-04-14 | 2012-10-18 | Novo Nordisk A/S | Fatty acid acylated amino acids for oral peptide delivery |
WO2012171994A1 (en) | 2011-06-15 | 2012-12-20 | Novo Nordisk A/S | Multi substituted insulins |
US9486506B2 (en) | 2011-09-23 | 2016-11-08 | Novo Nordisk A/S | Glucagon analogues |
US9486505B2 (en) | 2011-09-23 | 2016-11-08 | Novo Nordisk A/S | Glucagon analogues |
WO2013041678A1 (en) * | 2011-09-23 | 2013-03-28 | Novo Nordisk A/S | Novel glucagon analogues |
WO2013093009A1 (en) | 2011-12-21 | 2013-06-27 | Novo Nordisk A/S | N -terminally modified insulin derivatives |
US9481721B2 (en) | 2012-04-11 | 2016-11-01 | Novo Nordisk A/S | Insulin formulations |
US9884094B2 (en) | 2012-05-01 | 2018-02-06 | Novo Nordisk A/S | Method of treating diabetes mellitus |
WO2013164375A1 (en) | 2012-05-01 | 2013-11-07 | Novo Nordisk A/S | Pharmaceutical composition |
WO2014009316A1 (en) | 2012-07-09 | 2014-01-16 | Novo Nordisk A/S | Novel use of insulin derivatives |
US10758592B2 (en) | 2012-10-09 | 2020-09-01 | Sanofi | Exendin-4 derivatives as dual GLP1/glucagon agonists |
WO2014060447A1 (en) | 2012-10-17 | 2014-04-24 | Novo Nordisk A/S | Fatty acid acylated d-amino acids for oral peptide delivery |
US9670261B2 (en) | 2012-12-21 | 2017-06-06 | Sanofi | Functionalized exendin-4 derivatives |
US9745360B2 (en) | 2012-12-21 | 2017-08-29 | Sanofi | Dual GLP1/GIP or trigonal GLP1/GIP/glucagon agonists |
US10253079B2 (en) | 2012-12-21 | 2019-04-09 | Sanofi | Functionalized Exendin-4 derivatives |
WO2014147141A1 (en) * | 2013-03-20 | 2014-09-25 | Novo Nordisk A/S | Insulin dosing regimen |
US9474790B2 (en) | 2013-04-18 | 2016-10-25 | Novo Nordisk A/S | Stable, protracted GLP-1/glucagon receptor co-agonists for medical use |
US9751927B2 (en) | 2013-04-18 | 2017-09-05 | Novo Nordisk A/S | Stable, protracted GLP-1/glucagon receptor co-agonists for medical use |
US10137172B2 (en) | 2013-04-30 | 2018-11-27 | Novo Nordisk A/S | Administration regime |
US11634455B2 (en) | 2013-08-29 | 2023-04-25 | Chemical & Biopharmaceutical Laboratories Of Patras S.A. | Amino diacids containing peptide modifiers |
US9896496B2 (en) | 2013-10-07 | 2018-02-20 | Novo Nordisk A/S | Derivative of an insulin analogue |
US9789165B2 (en) | 2013-12-13 | 2017-10-17 | Sanofi | Exendin-4 peptide analogues as dual GLP-1/GIP receptor agonists |
US9750788B2 (en) | 2013-12-13 | 2017-09-05 | Sanofi | Non-acylated exendin-4 peptide analogues |
US9751926B2 (en) | 2013-12-13 | 2017-09-05 | Sanofi | Dual GLP-1/GIP receptor agonists |
US9694053B2 (en) | 2013-12-13 | 2017-07-04 | Sanofi | Dual GLP-1/glucagon receptor agonists |
US9963496B2 (en) | 2014-02-18 | 2018-05-08 | Novo Nordisk A/S | Stable glucagon analogues and use for treatment of hypoglycaemia |
US10040839B2 (en) | 2014-02-28 | 2018-08-07 | Novo Nordisk A/S | Insulin derivatives and the medical uses hereof |
US9775904B2 (en) | 2014-04-07 | 2017-10-03 | Sanofi | Exendin-4 derivatives as peptidic dual GLP-1/glucagon receptor agonists |
US9758561B2 (en) | 2014-04-07 | 2017-09-12 | Sanofi | Dual GLP-1/glucagon receptor agonists derived from exendin-4 |
US9771406B2 (en) | 2014-04-07 | 2017-09-26 | Sanofi | Peptidic dual GLP-1/glucagon receptor agonists derived from exendin-4 |
US10570184B2 (en) | 2014-06-04 | 2020-02-25 | Novo Nordisk A/S | GLP-1/glucagon receptor co-agonists for medical use |
US9932381B2 (en) | 2014-06-18 | 2018-04-03 | Sanofi | Exendin-4 derivatives as selective glucagon receptor agonists |
US10806797B2 (en) | 2015-06-05 | 2020-10-20 | Sanofi | Prodrugs comprising an GLP-1/glucagon dual agonist linker hyaluronic acid conjugate |
US9982029B2 (en) | 2015-07-10 | 2018-05-29 | Sanofi | Exendin-4 derivatives as selective peptidic dual GLP-1/glucagon receptor agonists |
WO2017032795A1 (en) | 2015-08-25 | 2017-03-02 | Novo Nordisk A/S | Novel insulin derivatives and the medical uses hereof |
WO2017032797A1 (en) | 2015-08-25 | 2017-03-02 | Novo Nordisk A/S | Novel insulin derivatives and the medical uses hereof |
TWI747929B (en) * | 2016-08-02 | 2021-12-01 | 大陸商江蘇恆瑞醫藥股份有限公司 | An acylation derivative of human insulin or analog thereof |
US10815287B2 (en) | 2016-08-02 | 2020-10-27 | Jiangsu Hengrui Medicine Co., Ltd. | Acylated derivative of human insulin or analogue thereof |
EP3495384A4 (en) * | 2016-08-02 | 2020-02-26 | Jiangsu Hengrui Medicine Co., Ltd. | Acylated derivative of human insulin or analogue thereof |
WO2018096163A1 (en) | 2016-11-28 | 2018-05-31 | Novo Nordisk A/S | Insulin degludec for improvement of glycaemic control and reduction of acute and long-term diabetes complications |
WO2018096164A1 (en) | 2016-11-28 | 2018-05-31 | Novo Nordisk A/S | Insulin degludec for treating diabetes |
WO2018096162A1 (en) | 2016-11-28 | 2018-05-31 | Novo Nordisk A/S | Insulin degludec in cardiovascular conditions |
US10596231B2 (en) | 2016-12-16 | 2020-03-24 | Novo Nordisk A/S | Insulin containing pharmaceutical compositions |
US10265385B2 (en) | 2016-12-16 | 2019-04-23 | Novo Nordisk A/S | Insulin containing pharmaceutical compositions |
US10597436B2 (en) | 2017-05-26 | 2020-03-24 | Eli Lilly And Company | Acylated insulin compound |
US10400021B2 (en) | 2017-05-26 | 2019-09-03 | Eli Lilly And Company | Acylated insulin compound |
WO2019154311A1 (en) | 2018-02-09 | 2019-08-15 | 江苏恒瑞医药股份有限公司 | Codon optimized precursor gene and signal peptide gene of human insulin analogue |
WO2019223752A1 (en) | 2018-05-24 | 2019-11-28 | 江苏恒瑞医药股份有限公司 | Method for preparing precursor of recombinant human insulin or analogue thereof |
US10335464B1 (en) | 2018-06-26 | 2019-07-02 | Novo Nordisk A/S | Device for titrating basal insulin |
WO2020002428A1 (en) | 2018-06-26 | 2020-01-02 | Novo Nordisk A/S | System providing dose recommendations for basal insulin titration |
US12226458B2 (en) | 2018-06-26 | 2025-02-18 | Novo Nordisk A/S | System for providing an up-to-date and long-acting or ultra-long-acting insulin dose guidance recommendation to treat diabetes mellitus |
WO2021022149A1 (en) | 2019-07-31 | 2021-02-04 | Eli Lilly And Company | Insulin analogs and methods of using the same |
WO2021136302A1 (en) | 2019-12-30 | 2021-07-08 | 甘李药业股份有限公司 | Insulin derivative |
WO2021136293A1 (en) | 2019-12-30 | 2021-07-08 | 甘李药业股份有限公司 | Insulin derivative |
WO2021136296A1 (en) | 2019-12-30 | 2021-07-08 | 甘李药业股份有限公司 | Insulin derivative |
EP4180060A1 (en) | 2021-11-15 | 2023-05-17 | Adocia | Solid compositions comprising a peptide or a protein and an acylated amino acid |
WO2023084118A1 (en) | 2021-11-15 | 2023-05-19 | Adocia | Solid compositions comprising a peptide or a protein and an acylated amino acid |
WO2023143458A1 (en) | 2022-01-28 | 2023-08-03 | 甘李药业股份有限公司 | Acylated insulin |
EP4299057A1 (en) | 2022-06-30 | 2024-01-03 | Adocia | Solid compositions comprising a peptide or a protein and an acylated amino acid |
EP4299071A1 (en) | 2022-07-01 | 2024-01-03 | Adocia | Compositions comprising a peptide or a protein and an acylated amino acid |
WO2024003400A1 (en) | 2022-07-01 | 2024-01-04 | Adocia | Compositions comprising a peptide or a protein and an acylated amino acid |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7615532B2 (en) | Insulin derivatives | |
EP2275439B1 (en) | Novel insulin derivatives | |
US11167035B2 (en) | Insulin compositions and method of making a composition | |
US6869930B1 (en) | Acylated insulin | |
RU2164520C2 (en) | Insulin derivative, soluble prolonged pharmaceutical composition, method of prolongation of hypoglycaemic effect in treatment of diabetic patients | |
EP1846446B1 (en) | Insulin derivatives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480021733.8 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004261353 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004739008 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2531988 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006/00846 Country of ref document: ZA Ref document number: 200600846 Country of ref document: ZA Ref document number: 11343005 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2006/001283 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2004261353 Country of ref document: AU Date of ref document: 20040722 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 563/DELNP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006522233 Country of ref document: JP Ref document number: 1020067002551 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006103280 Country of ref document: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 2004739008 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 11343005 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0413276 Country of ref document: BR |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067002551 Country of ref document: KR |