[go: up one dir, main page]

WO2004104254A1 - Tole laminee a froid et aluminiee en acier dual phase a tres haute resistance pour ceinture anti-implosion de televiseur, et procede de fabrication de cette tole - Google Patents

Tole laminee a froid et aluminiee en acier dual phase a tres haute resistance pour ceinture anti-implosion de televiseur, et procede de fabrication de cette tole Download PDF

Info

Publication number
WO2004104254A1
WO2004104254A1 PCT/FR2004/001149 FR2004001149W WO2004104254A1 WO 2004104254 A1 WO2004104254 A1 WO 2004104254A1 FR 2004001149 W FR2004001149 W FR 2004001149W WO 2004104254 A1 WO2004104254 A1 WO 2004104254A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
steel
sheet
cooled
aluminized
Prior art date
Application number
PCT/FR2004/001149
Other languages
English (en)
Inventor
Antoine Moulin
Christophe Degand
Dominique Spehner
Original Assignee
Usinor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usinor filed Critical Usinor
Priority to EP04742705A priority Critical patent/EP1627092A1/fr
Publication of WO2004104254A1 publication Critical patent/WO2004104254A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/87Arrangements for preventing or limiting effects of implosion of vessels or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/02Vessels; Containers; Shields associated therewith; Vacuum locks
    • H01J5/03Arrangements for preventing or mitigating effects of implosion of vessels or containers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing

Definitions

  • the present invention relates to the field of anti-implosion belts for cathode ray screens.
  • These elements play an essential role in televisions, because they prevent deformation of the front surface of the tube under the effect of the pressure difference between the inside of the tube (10 "7 torr) and atmospheric pressure.
  • the tensioning by hooping of the belt counterbalances the effect of the atmospheric pressure.In the absence of this correction, the colors on the screen are disturbed due to the modification of the distance grid-phosphorescent panel.
  • Anti-implosion belts are usually made from calm aluminum steels or non-interstitial aluminized steels, this coating providing protection against corrosion. These traditional solutions do not however allow very high levels to be reached, since the elastic limit Rp0,2 is close to 400 MPa after final positioning of the belt on the tube under these conditions. However, the current trend towards large screens or flat screens leads to particularly high service efforts. We can then increase the section of the anti-implosion belts, but this runs up against the concern of reducing the weight of the televisions. The use of materials with higher mechanical characteristics (an important parameter being the elastic limit after fitting the belt on the tube) is in turn limited by the fact that the elongation of these materials is generally reduced , which leads to formatting problems (cracks) in the folding areas. It should therefore be noted that there has so far been no anti-implosion belt with high mechanical characteristics (elastic limit after fitting greater than 500 MPa, good resistance-ductility compromise)
  • the object of the present invention is to provide an anti-implosion belt with high mechanical characteristics, in particular with an elastic limit greater than 500 MPa after the band has been placed on the tube, a process and a sheet of steel for making this belt economically.
  • the invention relates to a process for manufacturing a steel sheet Dual Phase (that is to say steel whose structure consists of a hard phase, essentially martensitic, dispersed within a more deformable ferritic matrix) capable of being used for the manufacture of a television anti-implosion belt, characterized in that a steel is produced, the chemical composition of which comprises, the contents being expressed in weight: 0.03% ⁇ C ⁇ 0.3%, 1% ⁇ Mn ⁇ 3%, 0.05% ⁇ If ⁇ 2%, 0.02% ⁇ Al ⁇ 2%, 0.02% ⁇ Cr ⁇ 1 %, Mo ⁇ 1%, S ⁇ 0.02%, P ⁇ 0.2%, N ⁇ 0.01% and, optionally, one or more elements chosen from Ti, V, Zr
  • a steel slab or ingot of said composition is brought to a temperature between 1100 and 1300 ° C., the slab or the ingot is hot rolled, the temperature at the end of hot rolling being higher than the temperature Ar3 of l steel, the sheet thus obtained is cooled at a speed V R of between 1 and 500 ° C / s, the sheet is wound at a temperature T bob such that 300 ⁇ T b0b ⁇ 720 ° C, the sheet is cold rolled , the cold-rolled sheet is subjected to continuous annealing at a temperature T m such that T m > Ad, the sheet is cooled at a speed greater than 2 ° C / s to the aluminizing temperature, said aluminized sheet by soaking in an aluminum-based bath at a temperature between 650 and 720 ° C, and said sheet is cooled to room temperature at a speed greater than 2 ° C / s.
  • a skin-pass treatment is applied to said aluminized sheet with a reduction rate of less than 5%.
  • the subject of the invention is also a steel sheet manufactured according to the process described above, characterized in that the structure of the steel consists of a ferritic matrix containing a proportion of martensite of between 5 and 30%, and less than 2% of phases with carbides.
  • the invention also relates to an anti-implosion television belt, characterized in that it is produced from a strip of said sheet steel.
  • FIG. 2 shows, in the form of a continuous cooling transformation diagram, the metallurgical structures formed under annealing conditions with continuous aluminizing or galvanizing cycles.
  • FIG. 3 and 4 illustrate the microstructures corresponding respectively to the thermal galvanizing and aluminizing cycles.
  • manganese is an element which stabilizes the austenite and provides satisfactory hardenability. A minimum content of 1% is necessary to obtain the desired mechanical properties. However, beyond 3%, its gammagenic nature leads to the formation of an overly marked band structure and also degrades the weldability.
  • Silicon is an element participating in the deoxidation of liquid steel and hardening in solid solution. In addition, it prevents the precipitation of carbides by promoting the formation of martensitic phase. It plays an effective role from 0.05%. However, beyond an Si content of
  • Chromium acts on hardening in solid solution and on hardenability. In this latter respect, it therefore makes it possible to obtain a dual-phase structure with lower cooling rates than for compositions containing no chromium. It is effective from a content of 0.02%. Above 1%, there is an increase in the risk of dusting during stamping, as well as a deterioration in the compromise between strength and ductility.
  • Molybdenum acts on hardening in solid solution and on hardenability. In this latter respect, it therefore makes it possible to obtain a dual-phase structure with lower cooling rates than for compositions not containing molybdenum. Above 1%, it significantly degrades the weldability of the steel.
  • - Phosphorus is an element that reduces the ability to spot weld and hot ductility, particularly because of its tendency to segregate or co-segregate with manganese. For these reasons, its content must be limited to 0.2%.
  • microalloy elements Ti, Nb, V, Zr
  • the implementation of the manufacturing process according to the invention is as follows: - Slabs or steel ingots of the above composition are first brought to a temperature between 1100 and 1300 ° C.
  • the initial temperature should therefore be limited to 1300 ° C in order to maintain a fine austenitic grain at this stage.
  • the rolling is carried out in the austenitic domain and must be finished at a temperature higher than Ar3, depending on the composition of the steel.
  • the cooling rate after maintenance must be greater than 2 ° C / s.
  • FIG. 1 presents an example (1 1) of associated annealing to an aluminizing cycle.
  • a proportion of martensite greater than 5% guarantees a minimum resistance of 450 MPa after 2% of cold deformation. Through against the ductility properties are lowered when the proportion of martensite is greater than 30% and when the proportion of phases containing carbides is more than 2%.
  • the example is based on steel sheets whose composition is shown in Table 1 (analyzes in% by weight)
  • Steels A1 to A3 were heated to a temperature of 1250 ° C, then subjected to hot rolling with an end of rolling temperature of 900 ° C followed by cooling at a speed v R of 25 ° C / s and a winding at 570 ° C.
  • the cold-rolled sheets to a thickness of 1 mm were then subjected to continuous annealing at a temperature of 800 ° C for 60 s, to an aluminizing cycle (reference “I” in Table 2, corresponding conditions to the invention) at 680 ° C, then cooled to 20 ° C / s to ambient.
  • the properties were also indicated after annealing and then galvanizing cycle at 450 ° C. (reference “R” in table 2)
  • the mechanical properties measured on 12.5 ⁇ 50 mm 2 test pieces and the microstructures were reported in the table 2, with:
  • a manufacturing process according to the invention leads to structures composed almost entirely of ferrite and martensite, practically without phases containing carbides. This point is illustrated in Figures 3 and 4 where we can compare the structures of A3 steel in the case of a cycle galvanizing and aluminizing respectively.
  • These microstructures obtained after the aluminizing cycle are associated with mechanical characteristics superior to those resulting from a reference treatment: low Re / Rm ratio, absence of plateau, high values of the parameter associating resistance and elongation.
  • the application of the invention makes it possible to increase the resistance from 40 to 80 MPa compared to a treatment with annealing with galvanization.
  • the steels make it possible to obtain a guaranteed minimum resistance of 450, 500 and 600 MPa respectively.
  • Example 2 Example 2:
  • Table 3 presents the composition (analysis in% by weight) of a steel making it possible to obtain a resistance of 750 MPa when the latter is subjected to a galvanizing cycle (cf. conditions of the "R" cycle above)
  • a galvanizing cycle cf. conditions of the "R" cycle above
  • These conditions, respectively designated by 11 and 12 therefore correspond to those of the invention.
  • microstructure is practically free of phases containing carbides
  • the resistance obtained under the conditions of the invention is much higher than that of the reference treatment, since the latter goes from 750 MPa to more than 850 MPa.
  • the implementation of the invention makes it possible to lower the content of alloying elements necessary to obtain these properties, which is advantageous in terms of costs and subsequent ease of implementation. of the product (welding, shaping)
  • Table 5 presents two examples of compositions (analyzes in% by weight) of reference steels: These reference steels R1 (calmed aluminum) or without interstitials (reference R2) are usually used for the manufacture of television belts.
  • the table also presents two compositions of dual phase steels corresponding to the invention (references 13 and 14) Steel sheets of approximately 1 mm thick were produced on the bases indicated in Example 1. These sheets were then continuously annealed in a range between 780 and 820 ° C, subjected to an aluminizing treatment at 680 ° C, then to a skin-pass treatment with a deformation of between 1 to 3%.
  • the microstructure of the reference steel R1 consists of ferrite and precipitates of titanium carbonitrides, that of the steel R2 of ferrite and cementite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

L'invention concerne une tôle d'acier dual phase laminée à froid, susceptible d'être utilisée pour la fabrication d'une ceinture anti-implosion de téléviseur, dont la composition chimique comprend (teneurs exprimées en poids) : 0,03% ≤ C≤ 0,3%, 1 % ≤ Mn ≤ 3%, 0,05% ≤ Si ≤ 2%, 0,02% ≤ Al ≤ 2%, 0,02% ≤ Cr ≤ 1%, Mo ≤ 1 %, S ≤ 0,02%, P ≤ 0,2%, N ≤ 0,01%, et, à titre optionnel, un ou plusieurs éléments choisis parmi Ti, V, Zr, Nb, la teneur en chaque élément étant comprise entre 0,001 et 0,2%, le reste de la composition étant constitué de fer et d'impuretés résultant de l'élaboration. On réchauffe une brame ou un lingot d'acier de composition ci-dessus à une température comprise entre 1100 et 1300°C, on lamine à chaud cette brame ou ce lingot de telle sorte que la température de fin de laminage soit supérieure à la température Ar3 de l'acier, on refroidit la tôle ainsi obtenue à une vitesse VR comprise entre 1 et 500°C/s, puis on la bobine à une température comprise entre 300 et 720°C. Après laminage à froid, la tôle est soumise à un recuit continu à une température Tm supérieure à Ac1, refroidie à une vitesse supérieure à 2°C/s jusqu'à la température de l'opération d'aluminiage, puis à un passage au trempé dans un bain à base d'aluminium à une température comprise entre 650 et 720 °C, puis à un refroidissement à une vitesse supérieure à 2°C/s jusqu'à température ambiante. La microstructure de l'acier est constituée de ferrite et de 5 à 30% de martensite et moins de 2% de phases avec des carbures.

Description

Tôle laminée à froid et aluminiée en acier Dual Phase à très haute résistance pour ceinture anti-implosion de téléviseur, et procédé de fabrication de cette tôle
La présente invention concerne le domaine des ceintures antiimplosion d'écrans cathodiques. Ces éléments jouent un rôle essentiel dans les téléviseurs, car ils permettent d'éviter la déformation de la surface avant du tube sous l'effet de la différence de pression entre l'intérieur du tube (10"7 torr) et la pression atmosphérique. La mise sous tension par frettage de la ceinture contrebalance l 'effet de la pression atmosphérique. A défaut de cette correction, les couleurs sur l 'écran sont perturbées en raison de la modification de la distance grille-panneau phosphorescent. La fabrication de la ceinture comporte une opération d'expansion pour mise aux dimensions du tube cathodique, qui se traduit par un durcissement, puis un chauffage vers 500°C environ avant la mise en place par frettage. Cette dernière opération conduit à une déformation résiduelle d'environ 0,3 à 0,4% qui subsiste après fixation de la ceinture.
Les ceintures anti-implosion sont habituellement fabriquées à partir d'aciers calmés aluminium ou d'aciers sans interstitiels aluminiés, ce revêtement permettant d'assurer une protection contre la corrosion. Ces solutions traditionnelles ne permettent cependant pas d'atteindre des niveaux très élevés, puisque la limite d'élasticité Rp0,2 est voisine de 400 MPa après mise en place finale de la ceinture sur le tube dans ces conditions. Or l'évolution actuelle vers des grands écrans ou des écrans plats conduit à des efforts en service particulièrement élevés. On peut alors augmenter la section des ceintures anti-implosion, mais ceci se heurte au souci de réduction du poids des téléviseurs. L'utilisation de matériaux à caractéristiques mécaniques plus élevées (un paramètre important étant la limite d'élasticité après mise en place de la ceinture sur le tube) est quant à elle limitée par le fait que l'allongement de ces matériaux est en généralement réduit, ce qui conduit à des problèmes de mise en forme (fissures) dans les zones de pliage. On notera donc qu'il n'existe pas jusqu'à présent de ceinture anti-implosion à hautes caractéristiques mécaniques (limite d'élasticité après mise en place supérieure à 500 MPa, bon compromis résistance-ductilité)
Le but de la présente invention est de mettre à disposition une ceinture anti-implosion à hautes caractéristiques mécaniques, en particulier à limite d'élasticité supérieure à 500 MPa après mise en place de la bande sur le tube, un procédé et une tôle d'acier pour la fabrication de cette ceinture de façon économique. - A cet effet, l'invention a pour objet un procédé de fabrication d'une tôle d'acier Dual Phase (c'est-à-dire d'acier dont la structure est constituée d'une phase dure, essentiellement martensitique, dispersée au sein d'une matrice ferritique plus déformable) susceptible d'être utilisée pour la fabrication d'une ceinture anti-implosion de téléviseur, caractérisé par le fait que l'on élabore un acier dont la composition chimique comprend, les teneurs étant exprimées en poids : 0,03% < C < 0,3%, 1%≤ Mn < 3%, 0,05% < Si < 2%, 0,02% < Al < 2%, 0,02% ≤Cr < 1 %, Mo < 1 %, S < 0,02%, P< 0,2%, N < 0,01% et, à titre optionnel, un ou plusieurs éléments choisis parmi Ti, V, Zr, Nb, la teneur en chaque élément étant comprise entre 0,001 et 0,2%, le reste de la composition étant constitué de fer et d'impuretés résultant de l'élaboration. On porte une brame ou un lingot d'acier de ladite composition à une température comprise entre 1100 et 1300 °C, on lamine à chaud la brame ou le lingot, la température de fin de laminage à chaud étant supérieure à la température Ar3 de l'acier, on refroidit la tôle ainsi obtenue à une vitesse VR comprise entre 1 et 500°C/s, on bobine la tôle à une température Tbob telle que 300 <Tb0b < 720°C, on lamine à froid la tôle, on soumet la tôle laminée à froid à un recuit continu à une température Tm telle que Tm> Ad , on refroidit la tôle à une vitesse supérieure à 2°C/s jusqu'à la température d'aluminiage, on aluminie ladite tôle au trempé dans un bain à base d'aluminium à une température comprise entre 650 et 720°C, et on refroidit ladite tôle jusqu'à température ambiante à une vitesse supérieure à 2°C/s. Selon une caractéristique préférée, on applique à ladite tôle aluminiée un traitement de skin-pass avec un taux de réduction inférieur à 5% L'invention a également pour objet une tôle d'acier fabriquée selon le procédé décrit ci-dessus, caractérisée en ce que la structure de l'acier est constituée d'une matrice ferritique contenant une proportion de martensite comprise entre 5 et 30%, et moins de 2% de phases avec des carbures. L'invention a également pour objet une ceinture anti-implosion de téléviseur caractérisée en ce qu'elle est élaborée à partir d'une bande de ladite tôle d'acier. D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description ci-dessous, donnée à titre d'exemple et faite en référence aux figures annexées suivantes : - La figure 1 présente des cycles thermiques correspondant à des recuits en continu avec cycles de galvanisation ou d'aluminiage de tôles laminées à froid.
- La figure 2 présente, sous forme de diagramme de transformation en refroidissement continu, les structures métallurgiques formées dans les conditions de recuit avec cycles d'aluminiage ou de galvanisation en continu.
- Les figures 3 et 4 illustrent les microstructures correspondant respectivement aux cycles thermiques de galvanisation et d'aluminiage. Après de nombreux essais, les inventeurs ont montré que les différentes exigences rapportées ci-dessus peuvent être satisfaites en observant les conditions suivantes :
- En ce qui concerne la composition chimique de l'acier, le carbone joue un rôle très important sur la formation de la microstructure. Au-dessous de 0,03%, la trempabilité est cependant insuffisante pour obtenir les caractéristiques de limite d'élasticité et de résistance souhaitées. Au-delà de 0,30%, les propriétés d'emboutissabilité et de soudabilité sont très limitées.
- Outre un effet durcissant par solution solide, le manganèse est un élément qui stabilise l'austénite et procure une trempabilité satisfaisante. Une teneur minimale de 1 % est nécessaire pour obtenir les propriétés mécaniques désirées. Cependant, au-delà de 3%, son caractère gammagène conduit à la formation d'une structure en bandes trop marquée et dégrade également la soudabilité. - Le silicium est un élément participant à la désoxydation de l'acier liquide et au durcissement en solution solide. De plus, il empêche la précipitation des carbures en favorisant la formation de phase martensitique. Il joue un rôle effectif à partir de 0,05%. Cependant, au-delà d'une teneur en Si de
2%, la formation d'oxydes adhérents à la surface des produits devient excessive et la soudabilité est réduite.
- L'aluminium est un élément efficace pour la désoxydation de l'acier liquide à partir d'une teneur de 0,02%. Au-delà de 2% la soudabilité est dégradée, et son addition n'est plus effective
- Le chrome agit sur le durcissement en solution solide et sur la trempabilité. A ce dernier titre, il permet donc d'obtenir une structure dual- phase avec des vitesses de refroidissement moins élevées que pour des compositions ne contenant pas de chrome. Il est efficace à partir d'une teneur de 0,02%. Au-delà de 1 %, on observe une augmentation du risque de poudrage lors de l'emboutissage, ainsi qu'une dégradation du compromis entre la résistance et la ductilité.
- Le molybdène agit sur le durcissement en solution solide et sur la trempabilité. A ce dernier titre, il permet donc d'obtenir une structure dual- phase avec des vitesses de refroidissement moins élevées que pour des compositions ne contenant pas de molybdène. Au-delà de 1%, il dégrade sensiblement la soudabilité de l'acier.
- Au-delà d'une teneur en soufre de 0,02%, la ductilité est réduite en raison de la présence de sulfures qui diminuent l'aptitude à la déformation, en particulier lors de l'essai d'expansion de trou.
- Le phosphore est un élément qui diminue l'aptitude au soudage par points et la ductilité à chaud, particulièrement en raison de sa tendance à la ségrégation ou à la co-ségrégation avec le manganèse. Pour ces raisons, sa teneur doit être limitée à 0,2 %. - Lorsqu'ils sont présents, des éléments de microalliage (Ti, Nb, V, Zr) dans des teneurs comprises entre 0,001% et 0,2% durcissent l'acier en précipitant sous forme de carbures ou nitrures. La mise en œuvre du procédé de fabrication selon l'invention est la suivante : - Des brames ou des lingots d'acier de composition ci-dessus sont tout d'abord portés à une température comprise entre 1 100 et 1300°C. Ceci a pour but d'atteindre en tout point les domaines de température favorables aux fortes déformations que va subir l'acier lors du laminage, ainsi que de remettre en solution les carbures formés après solidification. Cependant, si la température est trop importante, les grains austénitiques croissent de façon indésirable. Il convient donc de limiter la température initiale à 1300°C afin de maintenir un grain austénitique fin à ce stade.
- Le laminage est effectué dans le domaine austénitique et doit être terminé à une température supérieure à Ar3, fonction de la composition de l'acier.
- Le laminage est suivi d'un refroidissement à une vitesse VR comprise entre 1 et 500°C/s, puis d'un bobinage à une température comprise entre 300 et 720°C. Ces conditions permettent d'éviter le développement de structures de bandes perlitiques sur la tôle à chaud.
- Le laminage à froid est réalisé dans des conditions identiques à celles des aciers conventionnels, par exemple avec un taux de réduction compris entre 30 et 80%.
- On effectue ensuite un recuit dans le domaine biphasé (température de recuit comprise entre Ad et Ac3) ou dans le domaine austénitique
(température supérieure à Ac3) afin de permettre la transformation de l'austénite formée lors de ce recuit en constituants de dureté élevée lors du refroidissement.
- Afin de garder des proportions suffisantes de cette austénite lors du refroidissement et avant l'opération d'aluminiage, la vitesse de refroidissement après maintien doit être supérieure à 2°C/s.
- La température de maintien après recuit, qui est la température d'aluminiage dans le cas de la fabrication de produits aluminiés, est un élément important de l'invention : en effet, la figure 1 présente un exemple (1 1 ) de recuit associé à un cycle d'aluminiage. Pour comparaison, on a également fait figurer un cycle thermique typique correspondant à un recuit avec galvanisation ultérieure (12) Après un maintien dans le domaine biphasé, on notera que l'étape de revêtement s'effectue vers 680°C (aluminiage) ou 450°C (galvanisation) La superposition des cycles précédents à un diagramme de transformation en refroidissement continu (« TRC ») d'une nuance (C = 0,12%, Mn = 1 ,4%, Si = 0,35%) met en évidence que ces deux types de cycles conduisent à des microstructures bien différentes : en effet, lorsque le revêtement est réalisé aux températures typiques de galvanisation, on assiste à l'apparition de phases comportant des carbures, en particulier des phases bainitiques. Par contre dans le cas où l'étape de revêtement est effectuée à une température suffisamment importante (supérieure à 650°C pour les compositions évoquées ici), seule la ferrite est susceptible de se former partiellement à haute température. Cette transformation ferritique partielle ne peut être cependant très importante, puisque les températures de maintien associées au cycle d'aluminiage sont proches de la température Ar1 des compositions d'aciers dual-phase. Après maintien, un refroidissement ininterrompu jusqu'à température ambiante avec une vitesse suffisante (supérieure à 2°C/s) permet d'obtenir une proportion appréciable de martensite. De la sorte, il est possible de fabriquer des aciers dual-phase à caractère presque totalement ferrito-martensitique, à l'exclusion pratiquement de toutes autres phases contenant des carbures, telles que la bainite ou la perlite.
On observera en effet dans la figure 2 que les zones bainitiques et surtout perlitiques du diagramme sont traversées rapidement lors du refroidissement, ce qui implique que ces phases ne seront éventuellement présentes qu'en très petite quantité. En d'autres termes, grâce au recuit avec cycle d'aluminiage, il est possible de fabriquer avantageusement des aciers à structure essentiellement ferrito- martensitique (Dual Phase) dont les propriétés intéressantes sont :
- Un rapport (limite d'élasticité/résistance) plus faible
- Un accroissement du paramètre (résistance x Allongement) - Une absence systématique de palier à l'état brut de recuit, ce qui élimine pratiquement la nécessité d'un skin-pass.
Une proportion de martensite supérieure à 5% permet de garantir une résistance minimale de 450 MPa après 2% de déformation à froid. Par contre les propriétés de ductilité sont abaissées lorsque la proportion de martensite est supérieure à 30% et lorsque la proportion de phases contenant des carbures est de plus de 2%.
- Après aluminiage, il peut être néanmoins avantageux d'effectuer un traitement de skin-pass : Cette opération, qui peut être effectuée avec un taux allant de 0 à 5%, permet la réalisation de tôles avec différents niveaux de limite d'élasticité en fonction du niveau de caractéristiques mécaniques souhaité. Cette déformation vient naturellement se cumuler avec l'écrouissage éventuel ultérieur lors des opérations de fabrication de pièces à partir de ces tôles, ce qui contribue à l'obtention de très hautes limites d'élasticité sur pièce à l'état final. A titre d'exemple, les résultats suivants vont montrer que l'invention décrite permet d'obtenir des propriétés mécaniques nettement supérieures à celles de tôles d'aciers de même composition, mais avec un cycle de recuit différent, ou à celles de matériaux utilisés conventionnellement dans la fabrication de ceintures de téléviseur avec des cycles identiques (recuit avec aluminiage). On notera bien entendu que les avantages conférés par l'invention peuvent être également exploités dans d'autres applications industrielles combinant la nécessité d'une haute limite d'élasticité, d'une bonne aptitude à la déformation, et d'une protection par aluminiage.
Exemple 1 :
L'exemple s'appuie sur des tôles d'aciers dont la composition figure au tableau 1 (analyses en % pondéral)
Figure imgf000009_0001
Tableau 1
Les aciers A1 à A3 ont été réchauffés à une température de 1250°C, puis soumis à un laminage à chaud avec une température de fin de laminage de 900°C suivi d'un refroidissement à une vitesse vR de 25°C/s et d'un bobinage à 570°C.
Les tôles laminées à froid jusqu'à une épaisseur de 1 mm ont été ensuite soumises à un recuit continu à une température de 800°C pendant 60 s, à un cycle d'aluminiage (repère « I» dans le tableau 2, conditions correspondant à l'invention) à 680°C, puis refroidis à 20°C/s jusqu'à l'ambiante. A titre de comparaison, on a également indiqué les propriétés après recuit puis cycle de galvanisation à 450°C (repère « R » dans le tableau 2) Les propriétés mécaniques mesurées sur éprouvettes de 12,5x50 mm2 et les microstructures ont été reportées au tableau 2, avec :
Re : limite d'élasticité
Rm : Résistance
P : longueur du palier
A : allongement total
M : Proportion de martensite
(P+B) : Proportion de perlite et de bainite
Figure imgf000010_0001
Ces résultats font apparaître clairement que :
- Un procédé de fabrication selon l'invention conduit à des structures composées presque uniquement de ferrite et de martensite, pratiquement sans phases contenant des carbures. Ce point est illustré aux figures 3 et 4 où l'on peut comparer les structures de l'acier A3 dans le cas d'un cycle de galvanisation et d'aluminiage respectivement. - Ces microstructures obtenues après cycle d'aluminiage sont associées à des caractéristiques mécaniques supérieures à celles issues d'un traitement de référence : faible rapport Re/Rm, absence de palier, valeurs élevées du paramètre associant la résistance et l'allongement. On notera par exemple que l'application de l'invention permet d'augmenter la résistance de 40 à 80 MPa par rapport à un traitement avec recuit avec galvanisation. On notera également dans les trois exemples ci-dessus que les aciers permettent d'obtenir une résistance minimale garantie de 450, 500 et 600 MPa respectivement. Exemple 2 :
Le tableau 3 présente la composition (analyse en % pondéral) d'un acier permettant d'obtenir une résistance de 750 MPa lorsque celui-ci est soumis à un cycle de galvanisation (cf. conditions du cycle « R » ci-dessus) Une tôle d'acier laminée à froid de 1 mm, élaborée dans des conditions identiques à celles précisées ci-dessus, a été soumise à un recuit continu à 800°C pendant 50 s ou 100 s puis à un cycle d'aluminiage à 680°C pendant 10 ou 20s, puis refroidie respectivement à 40°C/s ou 20°C/s jusqu'à l'ambiante. Ces conditions, respectivement désignées par 11 et 12, correspondent donc à celles de l'invention.
Figure imgf000011_0001
Tableau 3
Les propriétés mécaniques et les microstructures ont été reportées au tableau 4, avec les mêmes conventions qu'au tableau 2
Figure imgf000011_0002
Tableau 4 Ces résultats font là encore apparaître les avantages conférés par l'invention :
- La microstructure est pratiquement exempte de phases contenant des carbures
- A allongement comparable, la résistance obtenue dans les conditions de l'invention est très supérieure à celle du traitement de référence, puisque celle-ci passe de 750 MPa à plus de 850 MPa. A caractéristiques mécaniques données, on comprend donc que la mise en œuvre de l'invention permet d'abaisser la teneur en éléments d'alliage nécessaire pour obtenir ces propriétés, ce qui est avantageux en termes de coûts et de facilité ultérieure de mise en œuvre du produit (soudage, mise en forme)
Exemple 3 :
Le tableau 5 présente deux exemples de compositions (analyses en % pondéral) d'aciers de référence : Ces aciers de repère R1 (calmé aluminium) ou sans interstitiels (repère R2) sont mis en œuvre usuellement pour la fabrication de ceintures de téléviseur. Le tableau présente également deux compositions d'aciers dual phase correspondant à l'invention (repères 13 et 14) Des tôles d'aciers d'environ 1 mm d'épaisseur ont été élaborées sur les bases indiquées dans l'exemple 1. Ces tôles ont été ensuite recuites en continu dans une gamme comprise entre 780 et 820°C, soumises à un traitement d'aluminiage à 680°C, puis à un traitement de skin-pass avec une déformation comprise entre 1 à 3%.
Figure imgf000012_0001
Tableau 5 Les tôles obtenues ont subi ensuite un traitement correspondant à un cycle de fabrication de ceintures de téléviseur : ε=3% (opération d'expansion pour mise en place de la ceinture) et chauffage à 375-550°C pour frettage. La limite d'élasticité mesurée dans ces conditions est indiquée au tableau 6.
Figure imgf000013_0001
Tableau 6 La microstructure de l'acier de référence R1 est constituée de ferrite et de précipités de carbonitrures de titane, celle de l'acier R2 de ferrite et de cémentite.
Ces résultats mettent bien en évidence que les aciers selon les caractéristiques de l'invention permettent d'obtenir une limite d'élasticité nettement plus élevée que les solutions conventionnelles, supérieure à 500MPa. A caractéristiques mécaniques données, Il est donc possible de réaliser un gain de poids significatif dans la réalisation de ceintures antiimplosion de tubes cathodiques.

Claims

REVENDICATIONS
1 - Procédé de fabrication d'une tôle d'acier Dual Phase susceptible d'être utilisée pour la fabrication d'une ceinture anti-implosion de téléviseur, caractérisé en ce que :
- On élabore un acier dont la composition chimique comprend, les teneurs étant exprimées en poids :
0,03% < C < 0,3% 1 %< Mn < 3%
0,05% < Si < 2%
0,02% < Al < 2%
0,02% <Cr < 1 %
Mo ≤ 1 % S < 0,02%
P< 0,2%
N ≤ 0,01 % et, à titre optionnel, un ou plusieurs éléments choisis parmi Ti, V, Zr, Nb, la teneur en chaque élément étant comprise entre 0,001 et 0,2%, le reste de la composition étant constitué de fer et d'impuretés résultant de l'élaboration,
- On porte une brame ou un lingot d'acier de ladite composition à une température comprise entre 1100 et 1300 °C
- On lamine à chaud ladite brame ou ledit lingot, la température de fin de laminage à chaud étant supérieure à la température Ar3 de l'acier
- On refroidit la tôle ainsi obtenue à une vitesse VR comprise entre 1 et 500°C/s
- On bobine ladite tôle à une température Tbob telle que 300 <Tbob< 720°C
- On lamine à froid ladite tôle - On soumet ladite tôle laminée à froid à un recuit continu à une température Tm telle que Tm> Ad - On refroidit ladite tôle à une vitesse supérieure à 2°C/s jusqu'à la température d'aluminiage
- On aluminie ladite tôle au trempé dans un bain à base d'aluminium à une température comprise entre 650 et 720°C - On refroidit ladite tôle jusqu'à température ambiante à une vitesse supérieure à 2°C/s
2 - Procédé de fabrication selon la revendication 1 , caractérisé en ce qu'on applique à ladite tôle aluminiée un traitement de skin-pass avec un taux de réduction inférieur à 5%
3 - Tôle d'acier fabriquée selon la revendication 1 ou 2, caractérisée en ce que la structure dudit acier est constituée d'une matrice ferritique contenant une proportion de martensite comprise entre 5 et 30%, et moins de 2% de phases avec des carbures.
4- Ceinture anti-implosion de téléviseur caractérisée en ce qu'elle est élaborée à partir d'une bande de tôle d'acier fabriquée selon la revendication 3.
PCT/FR2004/001149 2003-05-19 2004-05-12 Tole laminee a froid et aluminiee en acier dual phase a tres haute resistance pour ceinture anti-implosion de televiseur, et procede de fabrication de cette tole WO2004104254A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04742705A EP1627092A1 (fr) 2003-05-19 2004-05-12 Tole laminee a froid et aluminiee en acier dual phase a tres haute resistance pour ceinture anti-implosion de televiseur, et procede de fabrication de cette tole

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR03/06004 2003-05-19
FR0306004A FR2855184B1 (fr) 2003-05-19 2003-05-19 Tole laminee a froid et aluminiee en acier dual phase a tres haute resistance pour ceinture anti-implosion de televiseur, et procede de fabrication de cette tole

Publications (1)

Publication Number Publication Date
WO2004104254A1 true WO2004104254A1 (fr) 2004-12-02

Family

ID=33396576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/001149 WO2004104254A1 (fr) 2003-05-19 2004-05-12 Tole laminee a froid et aluminiee en acier dual phase a tres haute resistance pour ceinture anti-implosion de televiseur, et procede de fabrication de cette tole

Country Status (4)

Country Link
EP (1) EP1627092A1 (fr)
CN (1) CN1791695A (fr)
FR (1) FR2855184B1 (fr)
WO (1) WO2004104254A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009021897A1 (fr) * 2007-08-15 2009-02-19 Thyssenkrupp Steel Ag Acier biphasé, produit plat constitué d'un tel acier biphasé et procédé de fabrication d'un produit plat
JP2010535947A (ja) * 2007-08-15 2010-11-25 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト 2相スチール、2相スチールで作られたフラット製品およびフラット製品の製造方法
US7968210B2 (en) 2005-02-10 2011-06-28 Nippon Steel Corporation Aluminum type plated steel sheet and heat shrink band using the same
CN104046892A (zh) * 2013-03-15 2014-09-17 上海梅山钢铁股份有限公司 一种用于显像管防爆带的冷轧热镀铝锌钢板及其生产方法
EP2955238A1 (fr) * 2014-06-13 2015-12-16 ThyssenKrupp Rasselstein GmbH Procédé de fabrication d'un acier aluminé pour emballage
WO2017169940A1 (fr) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Tôle d'acier mince et tôle d'acier plaquée, procédé de production de tôle d'acier laminée à chaud, procédé de production de tôle d'acier entièrement durcie laminée à froid, procédé de production de tôle d'acier traitée thermiquement, procédé de production de tôle d'acier mince et procédé de production de tôle d'acier plaquée
WO2017169939A1 (fr) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Tôle d'acier mince et tôle d'acier plaquée, procédé de production de tôle d'acier laminée à chaud, procédé de production de tôle d'acier totalement dure laminée à froid, procédé de production de tôle traitée thermiquement, procédé de production de tôle d'acier mince et procédé de production de tôle d'acier plaquée
EP3655560B1 (fr) 2017-07-21 2021-09-15 ThyssenKrupp Steel Europe AG Produit plat en acier possédant une bonne résistance au vieillissement et son procédé de fabrication
US11377711B2 (en) * 2013-01-22 2022-07-05 Baoshan Iron & Steel Co., Ltd. 780MPa cold-rolled duel-phase strip steel and method for manufacturing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2325964T3 (es) * 2006-10-30 2009-09-25 Thyssenkrupp Steel Ag Procedimiento para fabricar productos planos de acero a partir de un acero multifasico aleado con silicio.
KR101008042B1 (ko) * 2009-01-09 2011-01-13 주식회사 포스코 내식성이 우수한 알루미늄 도금강판, 이를 이용한 열간 프레스 성형 제품 및 그 제조방법
CN101880823A (zh) * 2010-07-05 2010-11-10 北京科技大学 一种热轧铌微合金化多相钢及其制备方法
WO2014157822A1 (fr) * 2013-03-28 2014-10-02 현대제철 주식회사 Tôle d'acier et procédé pour sa production
CN105908090B (zh) * 2016-04-20 2018-02-13 本钢板材股份有限公司 一种热轧双相钢及预防该热轧双相钢扁卷的制造方法
CN106011631B (zh) * 2016-07-11 2018-01-26 攀钢集团攀枝花钢铁研究院有限公司 一种800MPa级低碳热镀锌双相钢及其制备方法
CN112030064A (zh) * 2020-08-24 2020-12-04 宜兴市鑫源辊业有限公司 高耐磨十八辊轧机工作辊

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2071144A (en) * 1980-01-18 1981-09-16 British Steel Corp Dual-phase steel
US4325751A (en) * 1979-05-09 1982-04-20 Ssab Svenskt Stal Aktiebolag Method for producing a steel strip composed of a dual-phase steel
EP0969112A1 (fr) * 1997-03-17 2000-01-05 Nippon Steel Corporation Tole d'acier biphase a haute resistance ayant d'excellentes proprietes de deformation dynamique et son procede de preparation
FR2790009A1 (fr) * 1999-02-22 2000-08-25 Lorraine Laminage Acier dual-phase a haute limite d'elasticite
EP1041167A1 (fr) * 1998-09-29 2000-10-04 Kawasaki Steel Corporation Feuille mine d'acier haute resistance, feuille d'acier allie haute resistance revetue de zinc et galvanisee a chaud et procede de production correspondant
JP2001011574A (ja) * 1999-06-23 2001-01-16 Nippon Steel Corp Tvブラウン管フレーム用熱延鋼板およびその製造方法
DE10130774C1 (de) * 2001-06-26 2002-12-12 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von hochfesten, aus einem Warmband kaltverformten Stahlprodukten mit guter Dehnbarkeit
EP1319726A1 (fr) * 2001-12-14 2003-06-18 Usinor Procédé de fabrication de tôles laminées à froid à très haute résistance d'aciers dual phase micro-alliés

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325751A (en) * 1979-05-09 1982-04-20 Ssab Svenskt Stal Aktiebolag Method for producing a steel strip composed of a dual-phase steel
GB2071144A (en) * 1980-01-18 1981-09-16 British Steel Corp Dual-phase steel
EP0969112A1 (fr) * 1997-03-17 2000-01-05 Nippon Steel Corporation Tole d'acier biphase a haute resistance ayant d'excellentes proprietes de deformation dynamique et son procede de preparation
EP1041167A1 (fr) * 1998-09-29 2000-10-04 Kawasaki Steel Corporation Feuille mine d'acier haute resistance, feuille d'acier allie haute resistance revetue de zinc et galvanisee a chaud et procede de production correspondant
FR2790009A1 (fr) * 1999-02-22 2000-08-25 Lorraine Laminage Acier dual-phase a haute limite d'elasticite
JP2001011574A (ja) * 1999-06-23 2001-01-16 Nippon Steel Corp Tvブラウン管フレーム用熱延鋼板およびその製造方法
DE10130774C1 (de) * 2001-06-26 2002-12-12 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von hochfesten, aus einem Warmband kaltverformten Stahlprodukten mit guter Dehnbarkeit
EP1319726A1 (fr) * 2001-12-14 2003-06-18 Usinor Procédé de fabrication de tôles laminées à froid à très haute résistance d'aciers dual phase micro-alliés

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 2001-205654, XP002256891 *
ERIC BUSCARLET: "Galvanisation et aluminiage en continu", April 1996, TECHNIQUES DE L'INGENIEUR, VOL. MD, PAGES M 1 536 1-15; DOC M 1 536 1-2, PARIS, FR, XP002256890 *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 16 8 May 2001 (2001-05-08) *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7968210B2 (en) 2005-02-10 2011-06-28 Nippon Steel Corporation Aluminum type plated steel sheet and heat shrink band using the same
WO2009021897A1 (fr) * 2007-08-15 2009-02-19 Thyssenkrupp Steel Ag Acier biphasé, produit plat constitué d'un tel acier biphasé et procédé de fabrication d'un produit plat
EP2028282A1 (fr) * 2007-08-15 2009-02-25 ThyssenKrupp Steel AG Acier en phase double, produit plat à partir d'un tel acier en phase double et son procédé de fabrication
JP2010535946A (ja) * 2007-08-15 2010-11-25 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト 2相スチール、この形式の2相スチールで作られたフラット製品およびフラット製品の製造方法
JP2010535947A (ja) * 2007-08-15 2010-11-25 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト 2相スチール、2相スチールで作られたフラット製品およびフラット製品の製造方法
US11377711B2 (en) * 2013-01-22 2022-07-05 Baoshan Iron & Steel Co., Ltd. 780MPa cold-rolled duel-phase strip steel and method for manufacturing the same
CN104046892A (zh) * 2013-03-15 2014-09-17 上海梅山钢铁股份有限公司 一种用于显像管防爆带的冷轧热镀铝锌钢板及其生产方法
RU2621941C2 (ru) * 2014-06-13 2017-06-08 ТиссенКрупп Рассельштайн ГмбХ Способ изготовления упаковочной алюминированной стали и применение листа алюминированной стали
US20150360444A1 (en) * 2014-06-13 2015-12-17 Thyssenkrupp Rasselstein Gmbh Method for the production of an aluminized packaging steel
EP2955238A1 (fr) * 2014-06-13 2015-12-16 ThyssenKrupp Rasselstein GmbH Procédé de fabrication d'un acier aluminé pour emballage
WO2017169940A1 (fr) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Tôle d'acier mince et tôle d'acier plaquée, procédé de production de tôle d'acier laminée à chaud, procédé de production de tôle d'acier entièrement durcie laminée à froid, procédé de production de tôle d'acier traitée thermiquement, procédé de production de tôle d'acier mince et procédé de production de tôle d'acier plaquée
WO2017169939A1 (fr) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Tôle d'acier mince et tôle d'acier plaquée, procédé de production de tôle d'acier laminée à chaud, procédé de production de tôle d'acier totalement dure laminée à froid, procédé de production de tôle traitée thermiquement, procédé de production de tôle d'acier mince et procédé de production de tôle d'acier plaquée
JPWO2017169939A1 (ja) * 2016-03-31 2018-04-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JPWO2017169940A1 (ja) * 2016-03-31 2018-04-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
US10900096B2 (en) 2016-03-31 2021-01-26 Jfe Steel Corporation Steel sheet and plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing plated steel sheet
US10961600B2 (en) 2016-03-31 2021-03-30 Jfe Steel Corporation Steel sheet and plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
US11939640B2 (en) 2016-03-31 2024-03-26 Jfe Steel Corporation Method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, and method for producing heat-treated sheet
EP3655560B1 (fr) 2017-07-21 2021-09-15 ThyssenKrupp Steel Europe AG Produit plat en acier possédant une bonne résistance au vieillissement et son procédé de fabrication

Also Published As

Publication number Publication date
FR2855184A1 (fr) 2004-11-26
EP1627092A1 (fr) 2006-02-22
CN1791695A (zh) 2006-06-21
FR2855184B1 (fr) 2006-05-19

Similar Documents

Publication Publication Date Title
EP3307921B1 (fr) Acier à haute résistance et procédé de fabrication
EP1929053B1 (fr) Procede de fabrication d une piece en acier de microstructure multi-phasee
EP1819461B1 (fr) Procede de fabrication de toles d&#39; acier austenitique , fer-carbone-manganese a tres hautes caracteristiques de resistance et excellente homogénéité.
EP3084014B1 (fr) Acier à haute résistance et procédé de fabrication
EP2155915B2 (fr) Procédé de fabrication de tôles d&#39;acier laminées à froid et recuites à très haute résistance, et tôles ainsi produites
EP2291547B1 (fr) Procede de fabrication de toles d&#39;aciers dual phase laminees a froid a tres haute resistance et toles ainsi produites
CA2680623C (fr) Acier pour formage a chaud ou trempe sous outil, a ductilite amelioree
EP1913169B1 (fr) Procede de fabrication de tôles d&#39;acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites
EP2171112B1 (fr) Procede de fabrication de tôles d&#39;acier a hautes caracteristiques de resistance et de ductilite, et tôles ainsi produites
EP3146083B1 (fr) Tôle d&#39;acier doublement recuite a hautes caracteristiques mecaniques de resistance et de ductilite, procede de fabrication et utilisation de telles tôles
RU2684655C1 (ru) Сверхпрочная многофазная сталь и способ производства холоднокатаной стальной полосы из нее
WO2004104254A1 (fr) Tole laminee a froid et aluminiee en acier dual phase a tres haute resistance pour ceinture anti-implosion de televiseur, et procede de fabrication de cette tole
FR2536765A1 (fr) Procede de fabrication de plaques d&#39;acier ayant une resistance elevee a la traction
WO2011104443A1 (fr) Procédé de fabrication d&#39;une pièce a partir d&#39;une tôle revêtue d&#39;aluminium ou d&#39;alliage d&#39;aluminium
EP1587963B1 (fr) Acier laminé à chaud à très haute résistance et procédé de fabrication de bandes
EP1534869B1 (fr) Acier a tres haute resistance mecanique et procede de fabrication d une feuille de cet acier revetue de zinc ou d alliag e de zinc
EP1099769B1 (fr) Procédé de réalisation d&#39;une bande de tôle laminée à chaud à très haute résistance, utilisable pour la mise en forme et notamment pour l&#39;emboutissage
FR2833617A1 (fr) Procede de fabrication de toles laminees a froid a tres haute resistance d&#39;aciers dual phase micro-allies
EP1138796A1 (fr) Acier laminé à chaud à très haute limite d&#39;élasticité et résistance mécanique utilisable notamment pour la réalisation de pièce de véhicules automobiles
FR2864108A1 (fr) Tole en acier inoxydable presentant une grande resistance et un bon allongement, et procede de fabrication
EP0922777A1 (fr) Produit plat, tel que tÔle, d&#39;un acier à haute limite d&#39;élasticité montrant une bonne ductilité et procédé de fabrication de ce produit
BE1011557A4 (fr) Acier a haute limite d&#39;elasticite montrant une bonne ductilite et procede de fabrication de cet acier.
WO2000003041A1 (fr) Produit plat, tel que tole, d&#39;un acier a haute limite d&#39;elasticite montrant une bonne ductilite et procede de fabrication de ce produit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004742705

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2148/KOLNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20048136082

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004742705

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2004742705

Country of ref document: EP