[go: up one dir, main page]

WO2004103878A1 - Elevator control device - Google Patents

Elevator control device Download PDF

Info

Publication number
WO2004103878A1
WO2004103878A1 PCT/JP2003/006283 JP0306283W WO2004103878A1 WO 2004103878 A1 WO2004103878 A1 WO 2004103878A1 JP 0306283 W JP0306283 W JP 0306283W WO 2004103878 A1 WO2004103878 A1 WO 2004103878A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluctuation component
traveling speed
command
speed command
elevator
Prior art date
Application number
PCT/JP2003/006283
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Yonemoto
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2003/006283 priority Critical patent/WO2004103878A1/en
Priority to JP2004570611A priority patent/JPWO2004103878A1/en
Publication of WO2004103878A1 publication Critical patent/WO2004103878A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • B66B11/026Attenuation system for shocks, vibrations, imbalance, e.g. passengers on the same side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/285Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical with the use of a speed pattern generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor

Definitions

  • the present invention relates to a control device for an elevator, and more particularly to a control device for an elevator that adds a healing vibration effect to a car when the elevator travels.
  • a conventional speed command circuit generates a trapezoidal wave by receiving a rectangular wave reference command signal as described in, for example, Japanese Patent Application Laid-Open No. 52-63582, and generates a reference command by the trapezoidal wave.
  • a trapezoidal acceleration signal is formed by limiting the signal, and the acceleration signal is integrated to output a speed command signal to control the acceleration of the entire elevator.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to prevent a passenger from feeling uncomfortable and awkward even when riding with an unknown passenger. It is intended to obtain a control device that can be operated every day.
  • the control device for the entire elevator includes a traveling speed command means for generating a traveling speed command for the entire elevator, and a controller for controlling the entire elevator based on the traveling speed command.
  • control device for the elevator every night monitors the traveling speed command and determines whether the command speed of the traveling speed command is a predetermined speed or not.
  • a fluctuation component generating means for generating a fluctuation component waveform having fluctuation characteristics
  • an adding means for adding the fluctuation component waveform to the traveling speed command.
  • the control means controls the elevator every time based on the running speed command to which the fluctuation component waveform is added by the adding means.
  • FIG. 1 is a diagram illustrating an entire system of an elevator according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing output signals of a traveling speed command unit, a fluctuation component generating unit, and an adding unit in the control device of the erepeater according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a Silvinsky gasket figure used when the flux calculating means of the control device for the elevator in accordance with the first embodiment of the present invention extracts a fluctuation component waveform.
  • FIG. 4 is a diagram showing a fluctuation component waveform extracted by the fractal calculation means of the control device for the entire elevator according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a hardware configuration of the control device for the entire elevator according to the first embodiment of the present invention.
  • FIG. 6 is a flowchart showing the operation of the CPU of the control device for the entire elevator according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing an overall system for an entire element according to a second embodiment of the present invention.
  • AC power supply 1 supplies AC power to Comparator 1 and Comparator 1 converts AC to DC.
  • the inverter 3 converts the direct current from the converter 2 into an alternating current and outputs it to the alternating current motor 4 based on a command from the control device 10 of the elevator.
  • the AC motor 4 is driven based on the output of the inverter 3 and raises and lowers the car 6 via the sheave 5 of the hoist.
  • the car 6 is connected to a counterweight 8 via a rope 7 wrapped around a sheave 5.
  • the control device 10 of the elevator includes a traveling speed command means 11, a traveling speed command determining means 12, a fluctuation component generating means 13, an adding means 14, and a control means 15.
  • the traveling speed command means 11 generates a traveling speed command Vp0 for the elevator.
  • This traveling speed command V p 0 is shown in FIG. According to this traveling speed command Vp0, the elevator is accelerated from time 0 to t1, accelerated at full speed from time t1 to t2, and decelerated and stopped from time t2. I do.
  • the above “full speed” refers to a constant speed from time t1 to time t2.
  • the traveling speed command determining means 12 monitors the traveling speed command Vp 0 from the traveling speed command means 11 and determines the command speed of the traveling speed command Vp 0.
  • the fluctuation component generation means 13 has a random number generation means 131, a fractal calculation means 132, and a waveform shaping means 133, and generates a fluctuation component waveform Vf0.
  • the random number generating means 131 generates a random number R continuously.
  • This random number R is a so-called pseudo random number taking a value of 0 or more and less than 1.
  • the fractal operation unit 132 performs a fractal operation based on the random number R generated by the random number generation unit 131, and extracts a fluctuation component waveform V f.
  • FIG. 3 shows a “Sylvinsky gasket” figure as a fractal used by the fractal calculation means 132 to extract the fluctuation component waveform Vf.
  • This figure is drawn using three reduced mapping functions.
  • the fractal calculation means 132 calculates a coordinate value based on the random number R generated by the random number generation means 131, using one reduced mapping function selected from the above three reduced mapping functions. Then, the fraction calculating means 132 repeats the process of drawing the above calculation result on the XY coordinates tens of thousands of times. Note that the initial values of the XY coordinates are set in advance.
  • the fractal operation means 132 extracts a time series signal composed of the X coordinate values of the figure shown in FIG.
  • This extracted signal is the fluctuation component waveform Vf.
  • Figure 4 shows the fluctuation component and waveform Vf.
  • This fluctuation component waveform Vf includes 1 / f (frequency) fluctuation.
  • This l / f fluctuation is named because its frequency component is reduced to one-tenth when the frequency is increased ten times, and is said to have an effect of healing the human body.
  • the waveform shaping unit 133 smoothes the fluctuation component waveform Vf extracted by the fractal calculation unit 132.
  • FIG. 2B shows the fluctuation component waveform Vf 0 after the smoothing.
  • the fluctuation component waveform Vf 0 is obtained by smoothly shaping the fluctuation component waveform Vf.
  • the adding unit 14 adds the fluctuation waveform Vf 0 to the traveling speed command Vp 0.
  • the control means 15 controls the inverter 3 to control the elevator every one time.
  • a CPU (Central Processing Unit) 16 is via path 17: OM1 8 and RAM 19 are all connected.
  • the ROM 18 stores a control program for operating the CPU 16.
  • the RAMI 9 stores calculation data such as the above-described traveling speed command Vp0, traveling speed command Vpl, random number R, and fluctuation component waveform Vf.
  • the CPU 16, the ROM 18, and the RAM 19 function as the traveling speed command unit 11, the traveling speed command determining unit 12, the fluctuation component generating unit 13, the adding unit 14, and the control unit 15.
  • step 100 the traveling speed command Vp 0 is generated by the traveling speed commanding means 11 every night.
  • step 101 the traveling speed command determining means 12 constantly monitors the traveling speed command Vp0 generated by the traveling speed commanding means 11, and determines whether the commanded speed of the traveling speed command Vp0 is full speed. I do.
  • step 101 If it is determined in step 101 that the command speed of the traveling speed command Vp 0 is not the full speed, the adding means 14 does not add the fluctuation component waveform V f 0 to the traveling speed command VpO, and the control means 15 Inverter 3 is controlled based on the speed command VpO. As a result, the AC motor 4 is driven based on the output value of the inverter 3 and the car 6 is moved up and down.
  • the random number generating means 131 generates a random number R (step 102).
  • step 103 the fractal calculation means 132 performs a fractal calculation based on the random number R to extract a fluctuation component waveform Vf.
  • step 104 the waveform shaping means 133 smoothes the fluctuation 'component waveform Vf extracted by the fractal calculating means 132.
  • step 105 the adding means 14 adds the fluctuation component waveform Vf 0 smoothed by the waveform shaping means 133 to the traveling speed command Vp 0 generated by the traveling speed command means 11. Then, the control means 15 controls the chamber 3 based on the traveling speed command Vp 1 to which the fluctuation component waveform Vf 0 has been added by the adding means 14. As a result, AC motor 4 is driven based on the output value of inverter 3 and l / f Vibration equivalent to rags is applied to the car 6 and the car 6 moves up and down.
  • the traveling speed command V p O generated by the traveling speed command means 11 includes a fluctuation component waveform V f 0 from time t 1 to t 2 as shown in FIG. 2 (c). Superimposed. As a result, between time t1 and t2, the fluctuation vibration having a healing effect on the human body is applied to the car 6, and the car 6 moves up and down.
  • the traveling speed command means 11 for generating the traveling speed command Vp 0 and the elevator control every day based on the traveling speed command VpO.
  • the control device 10 for controlling the operation of the elevator which includes a control means 15 for monitoring the running speed, further monitors the running speed command Vp0 and determines whether or not the running speed command Vp0 is at full speed Traveling speed command judging means 1 and 2, a fluctuation component generating means 13 for generating a fluctuation component waveform V f 0 when the above command speed is full speed, and a fluctuation component waveform V f O to the traveling speed command V p O.
  • the control means 15 includes an adding means 14 for adding, and when the command speed is the full speed, the control means 15 performs an entire operation based on the traveling speed command Vp1 to which the fluctuation component waveform Vf0 is added. Inva overnight control. For this reason, when the elevator 1 is traveling, vibration corresponding to the fluctuation component waveform Vf0 is added to the car 6, and the passenger can feel comfortable. Therefore, even if an unknown passenger rides on the elevator, the passenger is less likely to feel uncomfortable or awkward. Also, when the command speed of the traveling speed command Vp0 is the full speed, the wiggle vibration is applied to the car 6, so that the passenger can surely feel comfortable at the full speed.
  • the control device 1 OA for the entire elevator is provided with a fluctuation amount adjusting means for adjusting the fluctuation amount of the fluctuation component waveform V f0 to the control device 10 for the entire elevator according to the first embodiment. 16 is added.
  • the fluctuation amount adjusting means 16 adjusts the fluctuation amount (gain) of the fluctuation component waveform V f0 smoothed by the waveform shaping means 133. This makes it possible to increase or decrease the amplitude of the fluctuation component waveform Vf0.
  • the adding means 14 includes a fluctuation component adjusted by the fluctuation amount adjusting means 16.
  • the control unit 15 adds the waveform Vf1 to the traveling speed command Vp0, and the control unit 15 outputs the signal based on the traveling speed command Vp2 to which the fluctuation component waveform Vf1 is added by the adding unit 14. Control 3 to raise and lower car 6.
  • the vibration applied to the car 6 can be adjusted and the optimum vibration can be applied to the car 6, so that passengers can feel more comfortable.
  • vibration corresponding to the fluctuation component waveform is added to the car 6 when the command speed (predetermined speed) of the speed traveling command Vp0 is full speed. It is not limited to this.
  • the vibration corresponding to the fluctuation component waveform may be added to the car 6 when the command speed of the traveling speed command Vp0 is accelerating or decelerating. Even in this case, passengers can feel comfortable when accelerating or decelerating.
  • the fractal calculating means 13 2 uses the ⁇ silpinski gasket '' as the fractal when extracting the fluctuation component waveform V f
  • a fractal such as a fractal Brown function may be used.
  • the fluctuation component generation means 13 may generate the fluctuation component waveform using chaos instead of the fractal in the fractal calculation means 13 2.
  • control apparatus for an elevator system is suitable for realizing an elevator system that allows passengers to feel comfortable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Elevator Control (AREA)

Abstract

An elevator control device includes: running speed instruction means for generating an elevator running speed instruction; control means for inverter-controlling the elevator according to the running speed instruction; running speed instruction judgment means for monitoring the running speed instruction and judging whether the instructed speed of the running speed instruction is a predetermined speed; fluctuation component generation means for generating a fluctuation component waveform having a fluctuation characteristic when the instructed speed is the predetermined speed; and addition means for adding the fluctuation component waveform to the running speed instruction. When the instructed speed is the predetermined speed, the control means inverter-controls the elevator according to the running speed instruction added by the fluctuation component waveform.

Description

明 細 書  Specification
エレべ一夕一の制御装置  Elevator control system
技術分野  Technical field
この発明は、 エレべ一夕一の制御装置に係り、 特に、 エレべ一夕一の走行時、 癒し効果のあるゆらぎ振動をかごに付加するエレべ一夕一の制御装置に関するも のである。  BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an elevator, and more particularly to a control device for an elevator that adds a healing vibration effect to a car when the elevator travels.
背景技術  Background art
従来の速度指令回路は、 例えば特開昭 5 2 - 6 3 5 8 2号公報に記載されてい るように、 矩形波の基準指令信号を受けて台形波を発生させ、 この台形波により 基準指令信号に制限を加えて台形波の加速度信号を形成し、 この加速度信号を積 分して速度指令信号を出力して、 エレべ一夕一の加速度制御を行っている。 これ により、 エレペータ一の走行時間を可能な限り短く、 かつ、 乗り心地をよくして いる。  A conventional speed command circuit generates a trapezoidal wave by receiving a rectangular wave reference command signal as described in, for example, Japanese Patent Application Laid-Open No. 52-63582, and generates a reference command by the trapezoidal wave. A trapezoidal acceleration signal is formed by limiting the signal, and the acceleration signal is integrated to output a speed command signal to control the acceleration of the entire elevator. As a result, the running time of the erepeater is as short as possible and the riding comfort is improved.
しかしながら、 従来の速度指令回路においては、 乗り心地が向上するものの、 エレべ一夕—の走行時にかご内が静かになりすぎ、 見知らぬ乗客と乗り合わせた 場合、 乗客が気まずさやぎこちなさを感じるという問題があつた。  However, with the conventional speed command circuit, although the ride comfort is improved, the inside of the car becomes too quiet when driving in an elevator, and when riding with an unknown passenger, the passenger feels uncomfortable and awkward. There was.
発明の開示  Disclosure of the invention
本発明は、 上述のような不具合を解決するためになされたもので、 その目的は、 見知らぬ乗客と乗り合わせた場合であっても、 気まずさやぎこちなさを乗客に感 じさせないようにすることができるエレべ一夕一の制御装置を得るものである。 本発明によれば、 エレべ一夕一の制御装置は、 エレべ一夕一の走行速度指令を 発生させる走行速度指令手段と、 走行速度指令に基づいてエレべ一夕一をィンバ The present invention has been made in order to solve the above-described problems, and an object of the present invention is to prevent a passenger from feeling uncomfortable and awkward even when riding with an unknown passenger. It is intended to obtain a control device that can be operated every day. According to the present invention, the control device for the entire elevator includes a traveling speed command means for generating a traveling speed command for the entire elevator, and a controller for controlling the entire elevator based on the traveling speed command.
—夕制御する制御手段とを備える。 さらに、 このエレべ一夕一の制御装置は、 走 行速度指令を監視し、 走行速度指令の指令速度が所定の速度か否かを判断する走 行速度指令判断手段と、 指令速度が所定の速度の場合に、 ゆらぎ特性を有するゆ らぎ成分波形を発生させるゆらぎ成分発生手段と、 走行速度指令にゆらぎ成分波 形を加算する加算手段とを備える。 そして、 制御手段は、 指令速度が所定の速度 の場合に、 加算手段によりゆらぎ成分波形が加算された走行速度指令に基づいて エレべ一夕一をィンバ一夕制御するものである。 図面の簡単な説明 —Equipped with control means for evening control. Further, the control device for the elevator every night monitors the traveling speed command and determines whether the command speed of the traveling speed command is a predetermined speed or not. In the case of a speed, there are provided a fluctuation component generating means for generating a fluctuation component waveform having fluctuation characteristics, and an adding means for adding the fluctuation component waveform to the traveling speed command. When the command speed is a predetermined speed, the control means controls the elevator every time based on the running speed command to which the fluctuation component waveform is added by the adding means. BRIEF DESCRIPTION OF THE FIGURES
図 1はこの発明の実施例 1に係るエレべ一夕一の全体システムを示す図である。 図 2はこの発明の実施例 1に係るエレペータ一の制御装置のうち走行速度指令 手段、 ゆらぎ成分発生手段及び加算手段の出力信号を示す図である。  FIG. 1 is a diagram illustrating an entire system of an elevator according to a first embodiment of the present invention. FIG. 2 is a diagram showing output signals of a traveling speed command unit, a fluctuation component generating unit, and an adding unit in the control device of the erepeater according to the first embodiment of the present invention.
図 3はこの発明の実施例 1に係るエレベ一夕一の制御装置のフラク夕ル演算手 段がゆらぎ成分波形を抽出する際に用いるシルビンスキーのガスケヅ 卜図形を示 す図である。  FIG. 3 is a diagram showing a Silvinsky gasket figure used when the flux calculating means of the control device for the elevator in accordance with the first embodiment of the present invention extracts a fluctuation component waveform.
図 4はこの発明の実施例 1に係るエレべ一夕一の制御装置のフラクタル演算手 段が抽出したゆらぎ成分波形を示す図である。  FIG. 4 is a diagram showing a fluctuation component waveform extracted by the fractal calculation means of the control device for the entire elevator according to the first embodiment of the present invention.
図 5はこの発明の実施例 1に係るエレべ一夕一の制御装置のハードウエア構成 を示す図である。  FIG. 5 is a diagram illustrating a hardware configuration of the control device for the entire elevator according to the first embodiment of the present invention.
図 6はこの発明の実施例 1に係るエレべ一夕一の制御装置の C P Uの動作を示 すフローチャートである。  FIG. 6 is a flowchart showing the operation of the CPU of the control device for the entire elevator according to the first embodiment of the present invention.
図 7はこの発明の実施例 2に係るエレぺ一夕一の全体システムを示す図である。  FIG. 7 is a diagram showing an overall system for an entire element according to a second embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
実施例 1 . Example 1
図 1において、 交流電源 1は、 コンパ一夕 2に交流電源を供給し、 コンパ'一夕 2は交流を直流に変換する。 インバー夕 3は、 エレべ一夕一の制御装置 1 0から の指令に基づいて、 コンバータ 2からの直流を交流に変換して交流モー夕 4に出 力する。 交流モー夕 4は、 インバー夕 3の出力に基づいて駆動し、 卷上機の綱車 5を介してかご 6を昇降させる。 かご 6は、 綱車 5に巻き掛けられたロープ 7を 介してつり合いおもり 8とつながれている。  In FIG. 1, AC power supply 1 supplies AC power to Comparator 1 and Comparator 1 converts AC to DC. The inverter 3 converts the direct current from the converter 2 into an alternating current and outputs it to the alternating current motor 4 based on a command from the control device 10 of the elevator. The AC motor 4 is driven based on the output of the inverter 3 and raises and lowers the car 6 via the sheave 5 of the hoist. The car 6 is connected to a counterweight 8 via a rope 7 wrapped around a sheave 5.
エレべ一夕—の制御装置 1 0は、 走行速度指令手段 1 1、 走行速度指令判断手 段 1 2、 ゆらぎ成分発生手段 1 3、 加算手段 1 4及び制御手段 1 5を備えている。 走行速度指令手段 1 1は、 エレべ一ターの走行速度指令 V p 0を発生させる。 この走行速度指令 V p 0を図 2 ( a ) に示す。 この走行速度指令 V p 0によると、 エレべ一夕一は、 時間 0から t 1までは加速し、 時間 t 1から t 2までは全速で 走行した後、 時間 t 2からは減速して停止する。 上記 「全速」 とは、 時間 t 1か ら時間 t 2までの一定速度を指す。 走行速度指令判断手段 12は、 走行速度指令手段 1 1からの走行速度指令 Vp 0を監視し、 走行速度指令 Vp 0の指令速度を判断する。 The control device 10 of the elevator includes a traveling speed command means 11, a traveling speed command determining means 12, a fluctuation component generating means 13, an adding means 14, and a control means 15. The traveling speed command means 11 generates a traveling speed command Vp0 for the elevator. This traveling speed command V p 0 is shown in FIG. According to this traveling speed command Vp0, the elevator is accelerated from time 0 to t1, accelerated at full speed from time t1 to t2, and decelerated and stopped from time t2. I do. The above “full speed” refers to a constant speed from time t1 to time t2. The traveling speed command determining means 12 monitors the traveling speed command Vp 0 from the traveling speed command means 11 and determines the command speed of the traveling speed command Vp 0.
ゆらぎ成分発生手段 13は、 乱数発生手段 13 1、 フラク夕ル演算手段 132 及び波形整形手段 133を有し、 ゆらぎ成分波形 Vf 0を発生させる。  The fluctuation component generation means 13 has a random number generation means 131, a fractal calculation means 132, and a waveform shaping means 133, and generates a fluctuation component waveform Vf0.
乱数発生手段 131は、 乱数 Rを連続的に発生させる。 この乱数 Rは、 0以上 1未満の値をとる、 いわゆる疑似乱数である。  The random number generating means 131 generates a random number R continuously. This random number R is a so-called pseudo random number taking a value of 0 or more and less than 1.
フラクタル演算手段 132は、 乱数発生手段 131が発生させた乱数 Rを基に フラクタル演算を行い、 ゆらぎ成分波形 V f を抽出する。  The fractal operation unit 132 performs a fractal operation based on the random number R generated by the random number generation unit 131, and extracts a fluctuation component waveform V f.
このフラクタル演算手段 132がゆらぎ成分波形 Vf を抽出する際に用いるフ ラクタルとしての 「シルビンスキーのガスケヅト」 図形を図 3に示す。 この図形 は、 3つの縮小写像関数を用いて描かれる。 フラクタル演算手段 132は、 乱数 発生手段 13 1が発生させた乱数 Rを基に、 上述の 3つの縮小写像関数の中から 選択した 1つの縮小写像関数を用いて座標値を演算する。 そして、 このフラク夕 ル演算手段 132が、 上記演算結果を XY座標上に作図する処理を数万回繰り返 す。 なお、 XY座標の初期値は、 予め設定しておく。  FIG. 3 shows a “Sylvinsky gasket” figure as a fractal used by the fractal calculation means 132 to extract the fluctuation component waveform Vf. This figure is drawn using three reduced mapping functions. The fractal calculation means 132 calculates a coordinate value based on the random number R generated by the random number generation means 131, using one reduced mapping function selected from the above three reduced mapping functions. Then, the fraction calculating means 132 repeats the process of drawing the above calculation result on the XY coordinates tens of thousands of times. Note that the initial values of the XY coordinates are set in advance.
フラクタル演算手段 132は、 上記図 3に示した図形の X座標値からなる時系 列信号を抽出する。 この抽出信号がゆらぎ成分波形 Vfである。 このゆらぎ成分 ,, 波形 Vfを図 4に示す。 このゆらぎ成分波形 Vf には、 1/f (周波数) ゆらぎ が含まれている。 この l/fゆらぎは、 周波数が 10倍になるとその周波数成分 が 10分の 1になる性質から命名されたものであり、 人体を癒す効果があるとい われている。  The fractal operation means 132 extracts a time series signal composed of the X coordinate values of the figure shown in FIG. This extracted signal is the fluctuation component waveform Vf. Figure 4 shows the fluctuation component and waveform Vf. This fluctuation component waveform Vf includes 1 / f (frequency) fluctuation. This l / f fluctuation is named because its frequency component is reduced to one-tenth when the frequency is increased ten times, and is said to have an effect of healing the human body.
•波形整形手段 133は、 フラクタル演算手段 132が抽出したゆらぎ成分波形 Vfを平滑化する。 この平滑化後のゆらぎ成分波形 Vf 0を図 2 (b) に示す。  • The waveform shaping unit 133 smoothes the fluctuation component waveform Vf extracted by the fractal calculation unit 132. FIG. 2B shows the fluctuation component waveform Vf 0 after the smoothing.
このゆらぎ成分波形 Vf 0は、 上記ゆらぎ成分波形 Vfが滑らかに整形されてい 加算手段 14は、 走行速度指令 Vp 0にゆらぎ波形 V f 0を加算する。 The fluctuation component waveform Vf 0 is obtained by smoothly shaping the fluctuation component waveform Vf. The adding unit 14 adds the fluctuation waveform Vf 0 to the traveling speed command Vp 0.
制御手段 15は、 インバー夕 3を制御して、 エレべ一夕一をインバー夕制御す  The control means 15 controls the inverter 3 to control the elevator every one time.
Ό  Ό
図 5において、 CPU (中央演算処理装置) 16がパス 17を介して: OM1 8及び RAM 19とそれそれ接続されている。 ROM 18は、 CPU 16を動作 させるための制御プログラムを格納する。 RAMI 9は、 上述した走行速度指令 Vp0、 走行速度指令 Vp l、 乱数 R、 ゆらぎ成分波形 Vfなどの演算用デ一夕 を格納する。 これら CPU 16、 ROM 18及び RAM 19により、 上述した走 行速度指令手段 1 1、 走行速度指令判断手段 12、 ゆらぎ成分発生手段 13、 加 算手段 14及び制御手段 15が機能する。 In FIG. 5, a CPU (Central Processing Unit) 16 is via path 17: OM1 8 and RAM 19 are all connected. The ROM 18 stores a control program for operating the CPU 16. The RAMI 9 stores calculation data such as the above-described traveling speed command Vp0, traveling speed command Vpl, random number R, and fluctuation component waveform Vf. The CPU 16, the ROM 18, and the RAM 19 function as the traveling speed command unit 11, the traveling speed command determining unit 12, the fluctuation component generating unit 13, the adding unit 14, and the control unit 15.
つぎに、 ェレベ一夕一の制御装置 10の CPU16が ROM18の制御プログ ラムに従って処理する動作を図 6に基づいて説明する。  Next, an operation in which the CPU 16 of the control device 10 of the present invention processes according to the control program of the ROM 18 will be described with reference to FIG.
まず、 ステップ 100において、 走行速度指令手段 11により、 エレべ一夕一 の走行速度指令 Vp 0が発生する。  First, in step 100, the traveling speed command Vp 0 is generated by the traveling speed commanding means 11 every night.
次に、 ステップ 101において、 走行速度指令判断手段 12は、 走行速度指令 手段 11が発生させた走行速度指令 Vp 0を常時監視し、 この走行速度指令 Vp 0の指令速度が全速か否かを判断する。  Next, in step 101, the traveling speed command determining means 12 constantly monitors the traveling speed command Vp0 generated by the traveling speed commanding means 11, and determines whether the commanded speed of the traveling speed command Vp0 is full speed. I do.
そして、 ステップ 101において、 上記走行速度指令 Vp 0の指令速度が全速 でないと判断されると、 加算手段 14は走行速度指令 VpOにゆらぎ成分波形 V f 0を加算せず、 制御手段 15は、 走行速度指令 VpOに基づいてインバー夕 3 を制御する。 これにより、 交流モー夕 4がインバ一夕 3の出力値に基づいて駆動 し、 かご 6が昇降する。  If it is determined in step 101 that the command speed of the traveling speed command Vp 0 is not the full speed, the adding means 14 does not add the fluctuation component waveform V f 0 to the traveling speed command VpO, and the control means 15 Inverter 3 is controlled based on the speed command VpO. As a result, the AC motor 4 is driven based on the output value of the inverter 3 and the car 6 is moved up and down.
一方、 ステップ 101において、 上記走行速度指令 Vp 0の指令速度が全速の 場合は、 乱数発生手段 131により乱数 Rが発生する (ステップ 102) 。  On the other hand, if the command speed of the traveling speed command Vp 0 is full speed in step 101, the random number generating means 131 generates a random number R (step 102).
次に、 ステップ 103において、 フラクタル演算手段 132は、 上記乱数 Rを 基にフラク夕ル演算を行い、 ゆらぎ成分波形 V fを抽出する。  Next, in step 103, the fractal calculation means 132 performs a fractal calculation based on the random number R to extract a fluctuation component waveform Vf.
次に、 ステップ 104において、 波形整形手段 133は、 フラクタル演算手段 132が抽出したゆらき'成分波形 Vfを平滑化する。  Next, in step 104, the waveform shaping means 133 smoothes the fluctuation 'component waveform Vf extracted by the fractal calculating means 132.
次に、 ステップ 105において、 加算手段 14は、 走行速度指令手段 11が発 生させた走行速度指令 Vp 0に、 波形整形手段 133が平滑化したゆらぎ成分波 形 Vf 0を加算する。 そして、 制御手段 15は、 加算手段 14によりゆらぎ成分 波形 Vf 0が加算された走行速度指令 Vp 1に基づいてィンバ一夕 3を制御する。 これにより、 交流モー夕 4がインバー夕 3の出力値に基づいて駆動し、 l/fゆ らぎに相当する振動がかご 6に付加されてかご 6が昇降する。 Next, in step 105, the adding means 14 adds the fluctuation component waveform Vf 0 smoothed by the waveform shaping means 133 to the traveling speed command Vp 0 generated by the traveling speed command means 11. Then, the control means 15 controls the chamber 3 based on the traveling speed command Vp 1 to which the fluctuation component waveform Vf 0 has been added by the adding means 14. As a result, AC motor 4 is driven based on the output value of inverter 3 and l / f Vibration equivalent to rags is applied to the car 6 and the car 6 moves up and down.
そしてその後も、 エレべ一夕一の制御装置 1 0の C P U 1 6が、 上記ステップ 1 0 0から 1 0 5までの処理を繰り返し実行する。 このようにすると、 走行速度 指令手段 1 1により発生した走行速度指令 V p Oには、 図 2 ( c ) に示すように、 時間 t 1から t 2までの間、 ゆらぎ成分波形 V f 0が重畳される。 これにより、 時間 t 1から t 2までの間、 人体を癒す効果のあるゆらぎ振動がかご 6に付加さ れて、 かご 6が昇降することになる。  Then, after that, the CPU 16 of the control device 10 of the entire elevator repeatedly executes the processing of the above steps 100 to 105. In this way, the traveling speed command V p O generated by the traveling speed command means 11 includes a fluctuation component waveform V f 0 from time t 1 to t 2 as shown in FIG. 2 (c). Superimposed. As a result, between time t1 and t2, the fluctuation vibration having a healing effect on the human body is applied to the car 6, and the car 6 moves up and down.
以上説明したように、 この実施例 1によれば、 走行速度指令 Vp 0を発生させ る走行速度指令手段 1 1と、 走行速度指令 V p Oに基づいてエレべ一夕一をイン バー夕制御する制御手段 1 5とを備えるエレべ一夕一の制御装置 1 0において、 さらに、 走行速度指令 V p 0を監視し、 この走行速度指令 V p 0の指令速度が全 速か否かを判断する走行速度指令判断手段 1 2と、 上記指令速度が全速の場合に、 ゆらぎ成分波形 V f 0を発生させるゆらぎ成分発生手段 1 3と、 ゆらぎ成分波形 V f Oを走行速度指令 V p Oに加算する加算手段 1 4とを備え、 制御手段 1 5が、 上記指令速度が全速の場合に、 ゆらぎ成分波形 V f 0が加算された走行速度指令 V p 1に基づいてエレべ一夕一をインバ一夕制御する。 このため、 エレペータ一 の走行時、 ゆらぎ成分波形 V f 0に相当する振動がかご 6に付加されることにな り、 乗客に快適感を感じさせることができる。 従って、 見知らぬ乗客がエレべ一 ターに乗り合わせても、 乗客が気まずさやぎこちなさを感じることが少なくなる。 また、 走行速度指令 V p 0の指令速度が全速の場合にゆちぎ振動がかご 6に付 加されるので、 全速の時は確実に乗客に快適感を感じさせることができる。  As described above, according to the first embodiment, the traveling speed command means 11 for generating the traveling speed command Vp 0 and the elevator control every day based on the traveling speed command VpO. In addition, the control device 10 for controlling the operation of the elevator, which includes a control means 15 for monitoring the running speed, further monitors the running speed command Vp0 and determines whether or not the running speed command Vp0 is at full speed Traveling speed command judging means 1 and 2, a fluctuation component generating means 13 for generating a fluctuation component waveform V f 0 when the above command speed is full speed, and a fluctuation component waveform V f O to the traveling speed command V p O. The control means 15 includes an adding means 14 for adding, and when the command speed is the full speed, the control means 15 performs an entire operation based on the traveling speed command Vp1 to which the fluctuation component waveform Vf0 is added. Inva overnight control. For this reason, when the elevator 1 is traveling, vibration corresponding to the fluctuation component waveform Vf0 is added to the car 6, and the passenger can feel comfortable. Therefore, even if an unknown passenger rides on the elevator, the passenger is less likely to feel uncomfortable or awkward. Also, when the command speed of the traveling speed command Vp0 is the full speed, the wiggle vibration is applied to the car 6, so that the passenger can surely feel comfortable at the full speed.
実施例 2 . Example 2.
図 7において、 エレべ一夕一の制御装置 1 O Aは、 上記実施例 1に係るエレべ 一夕一の制御装置 1 0に、 ゆらぎ成分波形 V f 0のゆらぎ量を調整するゆらぎ量 調整手段 1 6が付加されている。 その他の構成は、 上記実施例 1と同様である。 この実施例 2の場合、 ゆらぎ量調整手段 1 6は、 波形整形手段 1 3 3により平 滑化されたゆらぎ成分波形 V f 0のゆらぎ量 (利得) を調整する。 これにより、 ゆらぎ成分波形 V f 0の振幅を大きくし、 又は小さくすることが可能となる。 そして、 加算手段 1 4は、 ゆらぎ量調整手段 1 6により調整されたゆらぎ成分 波形 V f 1を走行速度指令 V p 0に加算し、 制御手段 1 5は、 加算手段 1 4によ りゆらぎ成分波形 V f 1が加算された走行速度指令 V p 2に基づいてィンバ一夕 3を制御して、 かご 6を昇降させる。 In FIG. 7, the control device 1 OA for the entire elevator is provided with a fluctuation amount adjusting means for adjusting the fluctuation amount of the fluctuation component waveform V f0 to the control device 10 for the entire elevator according to the first embodiment. 16 is added. Other configurations are the same as those in the first embodiment. In the case of the second embodiment, the fluctuation amount adjusting means 16 adjusts the fluctuation amount (gain) of the fluctuation component waveform V f0 smoothed by the waveform shaping means 133. This makes it possible to increase or decrease the amplitude of the fluctuation component waveform Vf0. Then, the adding means 14 includes a fluctuation component adjusted by the fluctuation amount adjusting means 16. The control unit 15 adds the waveform Vf1 to the traveling speed command Vp0, and the control unit 15 outputs the signal based on the traveling speed command Vp2 to which the fluctuation component waveform Vf1 is added by the adding unit 14. Control 3 to raise and lower car 6.
このようにすると、 かご 6に付加する振動を調整して最適な振動をかご 6に付 加することができるので、 より一層の快適感を乗客に感じさせることができる。 なお、 上記各実施例 1、 2では、 速度走行指令 V p 0の指令速度 (所定の速 度) が全速の時にかご 6にゆらぎ成分波形に相当する振動を付加する場合につい て説明したが、 これに限られない。 例えば、 走行速度指令 V p 0の指令速度が加 速や減速の時にかご 6にゆらぎ成分波形に相当する振動を付加してもよい。 この ようにしても、 加速時や減速時に乗客が快適感を感じることができる。  In this way, the vibration applied to the car 6 can be adjusted and the optimum vibration can be applied to the car 6, so that passengers can feel more comfortable. In each of the first and second embodiments, the case where vibration corresponding to the fluctuation component waveform is added to the car 6 when the command speed (predetermined speed) of the speed traveling command Vp0 is full speed has been described. It is not limited to this. For example, the vibration corresponding to the fluctuation component waveform may be added to the car 6 when the command speed of the traveling speed command Vp0 is accelerating or decelerating. Even in this case, passengers can feel comfortable when accelerating or decelerating.
また、 上記各実施例 1、 2では、 フラクタル演算手段 1 3 2は、 ゆらぎ成分波 形 V f を抽出する際、 フラクタルとして 「シルピンスキーのガスケット」 を用い る場合について説明したが、 例えば、 フラクタルブラウン関数等のフラクタルを 用いてもよい。 さらに、 ゆらぎ成分発生手段 1 3は、 ゆらぎ成分波形を発生させ る際、 フラクタル演算手段 1 3 2におけるフラクタルに代えてカオスを用いてゆ らぎ成分波形を発生させてもよい。  Further, in each of the first and second embodiments, the case where the fractal calculating means 13 2 uses the `` silpinski gasket '' as the fractal when extracting the fluctuation component waveform V f has been described. A fractal such as a fractal Brown function may be used. Furthermore, when generating the fluctuation component waveform, the fluctuation component generation means 13 may generate the fluctuation component waveform using chaos instead of the fractal in the fractal calculation means 13 2.
産業上の利用の可能性  Industrial potential
以上説明したように、 本発明に係るエレべ一夕一の制御装置は、 乗客に快適感 を感じさせるエレべ一夕一の実現に好適である。 '  As described above, the control apparatus for an elevator system according to the present invention is suitable for realizing an elevator system that allows passengers to feel comfortable. '

Claims

請 求 の 範 囲 The scope of the claims
1 . エレベーターの走行速度指令を発生させる走行速度指令手段と、 前記走 行速度指令に基づいてエレべ一夕一をインバ一夕制御する制御手段とを備えたェ レベータ一の制御装置において、 前記走行速度指令を監視し、 前記走行速度指令の指令速度が所定の速度か否か を判断する走行速度指令判断手段と、  1. A control device for an elevator, comprising: a traveling speed command means for generating a traveling speed command for an elevator; and a control means for controlling the elevator every one hour based on the traveling speed command. A traveling speed command determining unit that monitors a traveling speed command and determines whether the command speed of the traveling speed command is a predetermined speed;
前記指令速度が所定の速度の場合に、 ゆらぎ特性を有するゆらぎ成分波形を発 生させるゆらぎ成分発生手段と、  A fluctuation component generating means for generating a fluctuation component waveform having fluctuation characteristics when the command speed is a predetermined speed;
前記ゆらぎ成分波形を前記走行速度指令に加算する加算手段とをさらに備え、 前記制御手段が、  An adding unit that adds the fluctuation component waveform to the traveling speed command, wherein the control unit includes:
前記指令速度が所定の速度の場合に、 前記加算手段により前記ゆらぎ成分波形 が加算された走行速度指令に基づいてエレべ一夕一をインバー夕制御するように 構成されているエレべ一夕一の制御装置。  When the command speed is a predetermined speed, the elevator is configured to perform inver / night control based on a traveling speed command to which the fluctuation component waveform has been added by the adding means. Control device.
2 . 前記所定の速度は全速であるように構成されている請求項 1記載のエレ ベー夕一の制御装置。  2. The control device according to claim 1, wherein the predetermined speed is a full speed.
3 . 前記ゆらぎ成分発生手段が発生させた前記ゆらぎ成分波形のゆらぎ量を 調整するゆらぎ量調整手段を備え、  3. A fluctuation amount adjusting means for adjusting the fluctuation amount of the fluctuation component waveform generated by the fluctuation component generating means,
前記加算手段が、  The adding means,
前記ゆらぎ量調整手段によりゆらぎ量が調整されたゆらぎ成分波形を前記走行 速度指令に加算するように構成されている請求項 1記載のエレべ一夕一の制御装  2. The control device according to claim 1, wherein the fluctuation component waveform, the fluctuation amount of which is adjusted by the fluctuation amount adjusting means, is added to the traveling speed command.
PCT/JP2003/006283 2003-05-20 2003-05-20 Elevator control device WO2004103878A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2003/006283 WO2004103878A1 (en) 2003-05-20 2003-05-20 Elevator control device
JP2004570611A JPWO2004103878A1 (en) 2003-05-20 2003-05-20 Elevator control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/006283 WO2004103878A1 (en) 2003-05-20 2003-05-20 Elevator control device

Publications (1)

Publication Number Publication Date
WO2004103878A1 true WO2004103878A1 (en) 2004-12-02

Family

ID=33463129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006283 WO2004103878A1 (en) 2003-05-20 2003-05-20 Elevator control device

Country Status (2)

Country Link
JP (1) JPWO2004103878A1 (en)
WO (1) WO2004103878A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263582A (en) * 1975-11-19 1977-05-26 Toshiba Corp Speed instruction circuit
JPS60167868A (en) * 1984-02-06 1985-08-31 三菱電機株式会社 Speed controller for elevator
JPH0570046A (en) * 1991-07-11 1993-03-23 Mitsubishi Electric Corp Control device for elevator
JPH05201660A (en) * 1992-01-23 1993-08-10 Mitsubishi Electric Corp Display device in elevator cage
JPH05330747A (en) * 1992-06-02 1993-12-14 Mitsubishi Electric Corp Elevator controller
JPH0690593A (en) * 1992-09-07 1994-03-29 Toshiba Corp Dynamic braking controller for linear motor driven electric rolling stock
JPH08169652A (en) * 1994-12-20 1996-07-02 Hitachi Ltd Linear motor elevator control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263582A (en) * 1975-11-19 1977-05-26 Toshiba Corp Speed instruction circuit
JPS60167868A (en) * 1984-02-06 1985-08-31 三菱電機株式会社 Speed controller for elevator
JPH0570046A (en) * 1991-07-11 1993-03-23 Mitsubishi Electric Corp Control device for elevator
JPH05201660A (en) * 1992-01-23 1993-08-10 Mitsubishi Electric Corp Display device in elevator cage
JPH05330747A (en) * 1992-06-02 1993-12-14 Mitsubishi Electric Corp Elevator controller
JPH0690593A (en) * 1992-09-07 1994-03-29 Toshiba Corp Dynamic braking controller for linear motor driven electric rolling stock
JPH08169652A (en) * 1994-12-20 1996-07-02 Hitachi Ltd Linear motor elevator control method

Also Published As

Publication number Publication date
JPWO2004103878A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
CN103534932B (en) System and method for quick start feeling induction motor
WO2007013448A1 (en) Elevator device
JP5121200B2 (en) Control device for permanent magnet motor
JPH0612954B2 (en) Synchronous motor control method
WO2004103878A1 (en) Elevator control device
JP2011136785A5 (en)
JPH11299012A (en) Controller of dc electric vehicle
JPS601268B2 (en) AC elevator control device
JPH0923506A (en) Drive control method for DC electric vehicle
JPS63283493A (en) Controller for elevator
JPH10265140A (en) Elevator controller
JP3898254B2 (en) Motor control device and air conditioner using the same
JP5385730B2 (en) Regenerative brake control method and regenerative brake control device
CN105084179B (en) Elevator system using parallel power converter
JPH09219993A (en) AC elevator control device
CN119298651A (en) Motor controller, powertrain, vehicle and method for reducing electromagnetic radiation
KR101674295B1 (en) Apparatus for driving electric motor
JPS6013490A (en) Speed controller of elevator
JPS632867B2 (en)
JP6611909B2 (en) Elevator control device and elevator control method
JP2022123682A (en) Switching control method and switching control device
JPS6133324B2 (en)
JPH0833394A (en) Inverter apparatus
JPH04371470A (en) Speed control device for elevator
JPS62131793A (en) Motor controller for elevator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004570611

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase