[go: up one dir, main page]

WO2004099733A1 - コリオリ流量計 - Google Patents

コリオリ流量計 Download PDF

Info

Publication number
WO2004099733A1
WO2004099733A1 PCT/JP2004/006397 JP2004006397W WO2004099733A1 WO 2004099733 A1 WO2004099733 A1 WO 2004099733A1 JP 2004006397 W JP2004006397 W JP 2004006397W WO 2004099733 A1 WO2004099733 A1 WO 2004099733A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
coriolis
forced
amplitude
flow rate
Prior art date
Application number
PCT/JP2004/006397
Other languages
English (en)
French (fr)
Inventor
Ryoji Doihara
Masaki Takamoto
Yoshiya Terao
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to US10/556,678 priority Critical patent/US7258025B2/en
Publication of WO2004099733A1 publication Critical patent/WO2004099733A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • G01F1/8418Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments motion or vibration balancing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8422Coriolis or gyroscopic mass flowmeters constructional details exciters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8427Coriolis or gyroscopic mass flowmeters constructional details detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8481Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having loop-shaped measuring conduits, e.g. the measuring conduits form a loop with a crossing point
    • G01F1/8486Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having loop-shaped measuring conduits, e.g. the measuring conduits form a loop with a crossing point with multiple measuring conduits

Definitions

  • the present invention relates to a Coriolis flowmeter that measures a mass flow rate of a fluid by detecting a torsional vibration caused by the action of a Coriolis force generated by a fluid in a vibrating flow path.
  • the present invention relates to a Coriolis flowmeter capable of measuring a mass flow rate with higher sensitivity to a low density fluid.
  • a Coriolis flowmeter has been conventionally used as a flowmeter for directly measuring a mass flow rate. This is the force that receives the Coriolis force proportional to the product of the flow velocity vector and the angular velocity of rotation when the fluid flowing in the pipe is rotated. It detects the mass flow rate and measures the mass flow rate.
  • the Coriolis flow meter is a direct type mass flow meter, and among the mass flow meters, the accuracy is rapidly increased with the recent advance in digital signal processing technology, which has relatively high accuracy.
  • most fluids such as liquids, gases, slurries, and solid-gas-liquid mixed-phase flows can be measured.Bubble flows can be accurately measured in a minute and uniform state, and there is no exposed matter in the piping. It has the feature that there is no mechanical moving part and the maintainability is high.
  • it is a composite instrument that can simultaneously measure volume flow, density, viscosity, and temperature, and has the characteristic that it is basically unaffected by density, viscosity, etc., and is expected to be used in a wide range of fields. I have.
  • Fig. 7 shows a general structure of a Coriolis mass flowmeter that has been conventionally put into practical use and its operation principle.
  • 1 is a U-shaped pipe through which the fluid flows, which is provided at the center of the U-shaped pipe at the position of the electromagnetic force for vibration 3 ⁇ 4.
  • the U-shaped pipe generates a small rotational vibration (forced vibration) in the ⁇ or 1 ⁇ direction. Let it. Fluid flows along the U-shaped pipe in the direction of V in the figure, and the Coriolis force acts in the direction of twisting the U-shaped pipe because the flow direction is opposite between the left and right pipes.
  • a Coriolis flowmeter as shown in Fig. 8 is used.
  • a base end of a U-shaped tube 41 is supported by a wall 42, and a fluid flows toward an outlet 44 with an inlet 43 force.
  • a support plate 46 is fixed to the tip of the U-shaped tube 41, and a permanent magnet 47 is fixed downward on the lower surface thereof.
  • the permanent magnet 47 is magnetized in the vertical direction in the figure, and an electromagnetic coil 49 is disposed on a base 48 so as to face the lower end surface of the permanent magnet 47.
  • the tip of the U-tube 41 is vibrated by alternately supplying current.
  • Permanent magnets 52 and 53 are fixed to the outer side surfaces of the straight tube portions 50 and 51 on both sides of the U-shaped tube 41, respectively.
  • a pickup 55 formed of a coil is arranged on a fixed support plate 54.
  • a pickup 57 similar to the pickup 55 is disposed on a support plate 56 fixed to a base 48 so as to face the side end surface of the permanent magnet 53.
  • the electromagnetic coil 49 is operated in a state in which a fluid is flowing in the U-shaped pipe 41 according to the principle of the Coriolis flow meter, and the curved pipe section 45 is moved downward as described above. causes a slight rotation. Since the fluid flows along the U-shaped pipe in the direction of the arrow in the figure, the flow direction is opposite in the left and right pipes, and a force is generated in the straight pipe part 50 as Coriolis force in the lower part of the figure. A force is generated in the pipe portion 51 upward in the figure. Conversely, when the curved tube portion 45 is moved upward, a force is generated in the straight tube portion 50 upward, and a force is generated in the straight tube portion 51 downward. Therefore, the Coriolis force acts in the direction of twisting the U-tube.
  • the U-shaped tube 41 moves as shown in FIG. 9, for example.
  • the left and right straight pipe portions move as shown in the schematic diagram of the operation state of FIG. . That is, when the tip is vibrated up and down while the fluid is flowing inside the U-shaped pipe 41 as described above, for example, as shown in the left column of FIG.
  • the straight pipe section 50 on the right side of the drawing When moving downward as indicated by the arrow, the straight pipe section 50 on the right side of the drawing generates a downward force while the straight pipe section 51 generates an upward force.
  • the pipe 51 moves downward later than the straight pipe on the right.
  • the straight pipe parts are provided in each of the straight pipe parts as shown in Figs. 8 and 9.
  • the permanent magnets 52 and 53 move in the same way.
  • the detection signals from the left and right pickups 55 and 57 for detecting this movement become signals having a phase difference as shown in FIG. 10 (b), and the phase difference time ⁇ increases as the mass flow rate flowing through the pipe increases.
  • the mass flow rate is measured by detecting this phase difference time.
  • the pipe diameter is 1.5mm 600mm
  • the flow rate range is OkgZh 680, 000kg / h
  • the density measurement is OkgZm 3 — 3
  • OOOkgZm 3 range
  • the operating temperature range is _240 ° C 204 ° C
  • operating pressure range is 0.12MPa-39.3MPa
  • measuring instrument weight is 8kg-635kg
  • the main material is stainless steel, hastelloy, titanium, zirconium, etc.
  • the angle at which the U-tube twists is less than 0.01 degrees.
  • the mass flow rate can be measured with extremely high accuracy by measuring the amount of twist of the U-shaped tube as a phase difference time. This is an advantage over Coriolis or gyro mass flowmeters before 1980.
  • Q is the mass flow rate
  • K is the spring constant in the torsional direction ( ⁇ direction) by Coriolis
  • is m ⁇ ⁇ the natural frequency in the same direction (Coriolis natural frequency)
  • is the forced vibration direction ( ⁇ direction).
  • the frequency (drive frequency), d is the distance between the parallel pipes, and ⁇ is the time of the phase difference appearing between the signals from the two pickups (here, positions 3 and 4 in Fig. 7).
  • d is the distance between the parallel pipes
  • is the time of the phase difference appearing between the signals from the two pickups (here, positions 3 and 4 in Fig. 7).
  • the tan function of ⁇ is used, but the expression is approximated because ⁇ is very small.
  • the main Coriolis flowmeters so far have been successful as extremely accurate flowmeters because they measure time.
  • digital signal processing using DSP etc. is also used, and it is considered that the improvement of the time accuracy has been improved to some extent.
  • FIG. 11 shows the numerical ratio ⁇ .
  • the graph depicts the ⁇ -intercept, 2Q d 2 / K, as 1.
  • the graph shows that viscous m ⁇
  • is the damping ratio due to viscosity, and the damping ratio is not zero but very small in a normal Coriolis flowmeter.
  • the main point of the design is to a good flowmeter-performance, decide how and that increase the value of 2Q d 2 / K, good characteristics, the value of ⁇ the frequency ratio That
  • Patent Document 1 Japanese Patent No. 2704768
  • Patent Document 2 JP-A-58-117416
  • Patent Document 3 JP-A-54-4168
  • Patent Document 1 Japanese Patent No. 2704768
  • Patent Document 2 Japanese Patent No.58-117416
  • Patent Document 3 Japanese Unexamined Patent Application Publication No.
  • Fig. 11 (a) the sensitivity greatly fluctuates near line 1; Frequency is also the most affected by external vibration noise, and there are problems such as forced vibration being easily mixed into Coriolis vibration.
  • the actual product uses a region with a natural frequency ratio ⁇ ⁇ 1, which is a region that has some sensitivity and a gradual change, and has a value of about 0.2 to 0.6. Often set in a tubular shape.
  • the entire graph can be pushed upward by increasing d, but in the case of a general U-shaped tube, it becomes difficult to twist by increasing the width.
  • And K increases at the same time. Also, as the width d increases, the inertia
  • the drive frequency ⁇ becomes smaller. There must be. If the driving frequency is too low, it is susceptible to external vibration noise, and the response speed is low. As a result, the width d is also limited to some extent.
  • fuel cell vehicles are attracting attention, and various types of fuel cell vehicles are being developed.
  • One of them is a method of mounting a super-hydrogen fuel high-pressure tank on a vehicle. . It is said that it is necessary to store hydrogen at around 700 atm from the allowable size of the hydrogen fuel tank for a practical mileage. For such applications, it is necessary to measure the flow rate of high-pressure hydrogen at various places.
  • the gas has a very low volume and a very large volume at the same mass flow rate. For this reason, gas can be measured if the pressure is moderate and the density is sufficiently high, but when the pressure is 10 atmospheres or less, the flow velocity becomes too fast before flowing until the mass flow becomes sufficiently large. In addition, the pressure loss is too large, or choke occurs and the flow rate cannot be increased. As described above, it is necessary to make the piping as thin as possible. At that time, the pressure loss becomes large, so that a large flow rate of gas cannot be flowed here. As a result, normal pressure gas cannot be measured.
  • the pipe wall thickness will be increased, and if the pipe is made thicker to flow the flow rate, the spring constant will increase. Otherwise, the sensitivity will be further increased in gas measurement where the density is low and the sensitivity is insufficient. It gets worse.
  • the force required to vibrate at a frequency ratio of about 0.4 In the condition of the frequency ratio as described above, when driven at about 80Hz-200Hz, it is easily affected by external vibration.
  • the present invention provides a high sensitivity even if the pressure resistance is increased so that an ultra-high pressure fluid can be measured, such as a measurement of a hydrogen flow rate of an ultra-high pressure hydrogen fuel tank of a fuel cell vehicle, which is less affected by external vibration noise.
  • an ultra-high pressure fluid such as a measurement of a hydrogen flow rate of an ultra-high pressure hydrogen fuel tank of a fuel cell vehicle, which is less affected by external vibration noise.
  • the feature of the present invention is that an amplitude ratio measurement method is used first.
  • the amplitude ratio measurement method detects the mass flow rate by measuring the amplitude of the run-out rather than measuring the phase difference time by a Coriolis flow meter, and has been known since the early days of Coriolis flow meter development. That is the way.
  • Japanese Patent Publication No. 60-34683, Japanese Patent Publication No. Hei 8-20295, Japanese Patent Publication No. Hei 2-501006, etc. detect the amplitude of Coriolis vibration and the amplitude of forced vibration by some method and take the ratio between them.
  • the mass flow rate is calculated by performing calculations such as these.
  • the U-shaped tube is twisted in the ⁇ direction as shown in FIG. 7 because Coriolisa works in different directions in a portion where the fluid is directed outward and a portion where the fluid is returned inward.
  • Torsion is caused by Coriolisa torque And Coriolis are proportional to the product of mass and flow velocity as shown in the above equation (3). By measuring this torsion in some way, the mass flow can be determined.
  • a general product vibrates the U-tube in accordance with the natural angular frequency ⁇ in the ⁇ direction.
  • Arranging the coefficients for the mass flow rate can be expressed as follows.
  • the mass flow rate can be measured directly with the Coriolis mass flow meter if it can know each amount on the right side.
  • Equation (9) is arranged for the maximum torsion angle ⁇ .
  • the frequency is referred to as a frequency, and the angular frequency at this time can be defined as follows.
  • the maximum angle ⁇ must be measured, but it is actually a very small angle.
  • the measurement physical quantity is set to time based on the following concept.
  • the fact that the U-tube passes through its neutral position at the maximum torsion angle can be used. Assuming that the vibrations of the left and right tubes of the U-tube are detected at the position of length L, the speed at the neutral position of these points is roughly Leo ⁇ , and the difference between the positions of both tubes is ⁇ d. .
  • the mass flow rate can be known by measuring the time difference ⁇ when each vibration detection point passes through the neutral plane.
  • coefficients other than ⁇ include those that change with temperature, such as the panel constant, and must be corrected by temperature.
  • the present invention provides a Coriolis flowmeter having a new feature using the above-described amplitude ratio measurement method.
  • vibration measurement the higher the frequency, the higher the displacement amplitude than the displacement amplitude.
  • the sensitivity is higher when measuring the acceleration amplitude than the speed amplitude and the speed amplitude. This characteristic is because the relationship between displacement, velocity, and acceleration is given by the following equation.
  • the mass flow can be measured by the measurement.
  • the mass flow rate can be measured.
  • the horizontal axis frequency ratio ⁇ is plotted on the vertical axis with the respective amplitudes, and the sensitivity coefficient is rewritten.
  • the frequency ratio ⁇ explicitly,
  • the graph of Fig. 1 shows the change of the term related to each equation.
  • Each sensitivity is this function multiplied by the previous term.
  • the sensitivity is increased in the region where the frequency ratio is 1 or more, and when the acceleration sensor is used, the sensitivity is increased by increasing the frequency ratio. It shows that it gets bigger.
  • the present invention employs a configuration in which a reinforcing frame is inserted in the Coriolis vibration direction in order to positively utilize a region having a frequency ratio of 1 or more. This is because, when the pipe itself, which is a continuum, is vibrated in the region where the natural frequency is 1 or more, the higher-order vibration modes become strong, making it difficult for appropriate vibrations and vibrations that reproduce the above theory to be made. It is in.
  • the Coriolis flow meter according to the present invention while paying attention to the following, it is possible to have characteristics superior to conventional Coriolis flow meters. That is, focusing on the right-hand side of the equation (21) and considering a design guideline for increasing the sensitivity, the following is obtained. In this equation, the amplitude ⁇ of the forced oscillation appears explicitly in the molecule. Therefore, the amplitude of the forced vibration can be
  • the panel constant ⁇ ⁇ ⁇ in the Coriolis oscillation direction that appeared in the denominator in the phase difference time measurement method appears in the numerator in the amplitude ratio measurement method. For this reason, hardening the Bonne constant and increasing the Coriolis frequency contributes to the improvement of sensitivity, which is opposite to the phase difference time measurement method.
  • the design is optimized based on the measurement method according to the present invention, it is possible to improve the sensitivity, the pressure resistance, and the diameter of the pipe at the same time. Since the flow velocity of the fluid with respect to the mass flow rate can be reduced, a large amount of gas can flow particularly.
  • the filling of hydrogen at 700 atm has become a technical issue, especially for hydrogen filling devices for fuel cell vehicles, and a flow meter that can appropriately measure the mass flow rate of gas at such a high pressure is very useful.
  • the features of the Coriolis flow meter according to the invention are particularly advantageous.
  • the denominator shows the moment of inertia I raised to the power of 3/2. This is about ⁇
  • the conventional Coriolis flowmeter secured a certain width to improve the sensitivity by increasing d and to reduce the torsion panel constant. For this reason, there was a disadvantage that the size of the Coriolis flowmeter body became very large when the pipe diameter became large. In contrast, the Coriolis flow meter according to the present invention is compact for the above reasons. In addition, there is a problem that the sensitivity changes due to the change of the moment of inertia when the density changes. However, this is not a problem when the density changes only to the extent that it does not affect the measurement. Even if it does, the inertia moment I in the Coriolis direction changes due to the design of the piping.
  • noise vibration can be removed by passing through an appropriate filter for measuring the amplitude. If a phase demodulator is used, only the effective amplitude at that frequency can be extracted, so that noise immunity is stronger. This can be performed with high precision not only by analog circuits but also by digital signal processing.
  • the technique of the Coriolis flow meter disclosed in the above-mentioned Patent No. 2575203 and the like is a technique for compensating for the effect of viscosity, whereas in the present invention, it is driven at a frequency much higher than the Coriolis frequency. Therefore, as shown in the phase diagram of FIG. 11 (b), even if the viscosity is changed, even if the viscosity is changed, the phase is close to 180 degrees and the change does not greatly change. Therefore, even if the viscosity changes, the sensitivity is affected. Therefore, the necessity of correction as in the technique disclosed in the above-mentioned patent publication is reduced.
  • the Coriolis flowmeter of the present invention has a frame in the Coriolis vibration direction, and the deforming portion that vibrates to approach uniaxial vibration concentrates on the elastically deforming portion that is designed to be easily deformed intentionally. Therefore, the panel part that affects the panel constant in the Coriolis vibration direction is mainly this elastically deformed part, not the pipe. Since the panel constant is affected by the temperature, it is usually corrected by measuring the pipe temperature. Therefore, the correction is performed using the temperature of the elastically deformed portion, but unlike the piping, the Coriolis flowmeter according to the present invention is not immediately affected by the liquid temperature. This is because the elastically deformed portion is far from the piping and is less susceptible to the direct influence of the liquid temperature, and changes slowly even if it is.
  • the flow meter can be constituted by one measuring tube, but it can be a symmetrical two tube. .
  • This consists of two conduits through which the fluid under test flows, and two conduits that flow in parallel in the same direction.
  • the conduits, the forced vibration means, the frame of the means for suppressing higher-order vibrations, the means for determining the vibration amplitude, etc. The same thing is provided in plane symmetry, and the forced vibration vibrates in the opposite direction like a tuning fork.
  • the Coriolis flowmeter of the present invention is a symmetrical two pipe
  • the following features can be obtained.
  • these two symmetric pipes are connected in series.
  • the fluid that flows in from the outside flows in from the inlet of one of the pipelines that does not shunt the fluid, passes through the pipeline on one side, and then flows out, and is connected to the inlet of the other pipeline by the return channel,
  • the flow paths are connected in series so as to flow out of the flow meter after passing through the other pipeline.
  • two pipes vibrate in opposite directions, but the flow rate can be calculated with one pipe because an acceleration sensor is used. Therefore, the calibration coefficient can be determined for each flow meter calibration.
  • each of the pipes is a pipe 1 and a pipe 2
  • calibration can be performed simultaneously under the condition that the same flow rate flows through each.
  • the same flow rate was measured by two flow meters at the same time during measurement, and if the average value of the two is output as a flow measurement value, stability and accuracy can be improved. If there is a large difference between the measured values of the two pipes, the difference can be used to diagnose a failure based on the difference.
  • the temperature of the elastically deformable portion which requires temperature correction such as panel constant, can be performed for each pipe, fine correction can be performed for each pipe, and the accuracy is improved.
  • the pressure loss increases and the maximum flow rate is relatively limited.
  • branch pipes for dividing the fluid into approximately equal parts, each having a merging pipe which separates and flows into two pipes, and merges again after passing through the pipes.
  • It is a Coriolis flowmeter that has a branch and a merging pipe that flows out of the flowmeter, and has a parallel flow path. This can double the cross-sectional area of the flow path, so that the pressure loss can be reduced as compared with the serial type and with the same pipe diameter as compared to a single pipe.
  • the maximum flow rate also increases. This is a state in which the flow meters are arranged in parallel, and the sum of the flow signals of the respective pipes 1 and 2 is the measured flow value.
  • Q is the flow rate
  • A is the span calibration factor
  • X is the output value
  • B is the output value at zero flow rate
  • the subscripts represent piping 1 and piping 2, respectively.
  • the unknown coefficient forces A and A are two.
  • the respective calibration coefficients can be calculated. If the type of flow rate is increased by this method, it is also possible to determine a coefficient that is suitable for each flow rate. If each pipe can have a calibration coefficient, it can be corrected individually when the temperature of each pipe is different, etc. You can do it. Also, by comparing the values of the main system, it is possible to diagnose a diversion abnormality due to turbulence or turbulence in the upstream.
  • the Coriolis flowmeter that has been optimized and designed based on the measurement method of the present invention can have advantageous characteristics completely different from the conventional time phase difference measurement method.
  • a characteristic experiment of a sensor tube was performed using a prototype manufactured based on the basic principle of the present invention as described above.
  • this prototype has a forced vibration frame in the center, the piping that becomes the Coriolis vibration frame is held by a self-aligning ball bearing, and the connection to the Coriolis frame uses a flexible tube.
  • the structure is very easy to twist in the vibration direction.
  • Arbitrary panels can be installed separately for the Coriolis vibration direction and the forced vibration direction, and experiments can be performed with any natural frequency ratio.
  • the moment of inertia in the Coriolis vibration direction is very large because it has not been optimized by the above theory.
  • the characteristic force sensitivity, such as low Coriolis frequency, is not sufficiently high, but the features of the present invention have appeared.
  • Fig. 6 (a) shows the measurement performed by changing the Coriolis natural frequency to 15Hz and changing the forced frequency to 5Hz by setting the panel constant and moment of inertia at 15Hz. The output is divided by the value corresponding to the amplitude ⁇ L of the forced vibration measured by the laser vibrometer.
  • the result measured at Okg / h from the measurement result at a constant 200 kg / h is the bow I. Forced to show components only for phase angles where Coriolis oscillations should appear The phase angle force with the vibration signal is corrected. The amplitude of forced oscillation ⁇ L is determined by the control circuit.
  • Fig. 6 (b) shows that Coriolis vibration should appear under the same conditions as above by dividing the difference output from the kamen speed sensor by the value corresponding to the amplitude ⁇ 0L of the forced vibration measured by the laser vibrometer. The components only for the phase angle of are shown.
  • Fig. 6 (c) shows that the ballast is added and the moment of inertia I is changed so as to increase.
  • the sensitivity was measured under the condition that the natural frequency ratio a was fixed at 2.7 while the drive frequency was changed. It can be seen that if the ballast is removed and the Coriolis natural frequency is increased in this way, the sensitivity is improved in proportion to the cube of the Coriolis natural frequency.
  • the Coriolis natural frequency has a relationship with the moment of inertia I as shown in equation (18). Since there is a relationship between the moment of inertia I and the sensitivity, as shown in
  • FIG. 6 (d) shows a condition under which the natural frequency ratio ⁇ is fixed at 2.7 by changing the driving frequency while changing the Coriolis natural frequency by changing the panel constant in the Coriolis vibration direction. It is a measurement of sensitivity. It can be seen that the sensitivity increases in proportion to the Coriolis natural frequency. This indicates that the sensitivity increases in proportion to the square root of the panel constant in the Coriolis direction, as can be seen from equations (18) and (20). This also experimentally proves the theoretical properties of Eq. (20).
  • the Coriolis flowmeter according to the present invention comprises a forced vibration means for vibrating a pipe through which a fluid under test flows from the outside and a minute rotational vibration to generate Coriolis in the fluid, and a vibration axis of the forced vibration.
  • the Coriolis vibration induced by the Coriolis vibration that vibrates on a vibration axis different from that of the Coriolis vibration caused by the combination of the rigid frame that is difficult to deform and the elastically deformable portion that is responsible for the deformation is close to one axis of vibration.
  • a forced vibration control means driven by the forcible vibration means, a means for determining the vibration amplitude of the forced vibration generated by the forced vibration means, and a force generated by the forced vibration.
  • two vibration amplitude detecting means for detecting the vibration amplitude of a pipe line generated by Coriolisers in opposite directions generated by the forced vibration.
  • the means for determining the vibration amplitude of the forced vibration means is obtained by a sum signal of the two vibration amplitude detecting means
  • the means for determining the vibration amplitude caused by the vibration signal is obtained from the difference signal between the two vibration amplitude detection means
  • the mass flow rate calculating means calculates the vibration amplitude of the fluid flowing through the pipe by the ratio between the sum signal and the difference signal. The flow rate is calculated.
  • another Coriolis flowmeter includes two vibration amplitude detecting means for detecting the vibration amplitude of the Coriolis vibration generated by the Coriolis vibrator generated by the forced vibration, and these are provided with the forced vibration.
  • the vibration components around the vibration axis of the Coriolis vibration are obtained by obtaining a difference signal between the vibration components and the noise vibration from the outside and the vibration other than the rotational vibration of the vibration axis of the Coriolis vibration.
  • the apparatus further comprises two vibration amplitude detection means for detecting vibrations from outside and rotation vibration around the vibration axis of the forced vibration. The arrangement is such that the vibration can be effectively removed, and the forcible vibration amplitude is obtained by obtaining the difference signal.
  • another Coriolis flowmeter has two pipes in which the fluid flows in the Coriolis flowmeter, and the fluid includes a pipe in which the fluid flows in parallel in the same direction.
  • Forced vibration means, frame of means for suppressing higher-order vibration, means for determining vibration amplitude, etc. are provided in plane symmetry, and forced vibration oscillates in the opposite direction like a tuning fork. The influence and the transmission of the forced vibration to the outside are reduced.
  • Coriolis flowmeter is the Coriolis flowmeter, wherein the vibration amplitude detecting means is a relative speed sensor comprising a combination of a magnet and a coil fixed to a plane symmetric position, respectively.
  • the mass flow rate calculating means calculates the mass flow rate based on the speed amplitude by the speed sensor.
  • Coriolis flowmeter is the Coriolis flowmeter, wherein the vibration amplitude detecting means is an angular velocity sensor, and the mass flow rate calculating means is a mass flow rate detecting means for detecting mass based on a velocity amplitude by the angular velocity sensor. The flow rate is calculated.
  • the forcible vibration means is configured to select and vibrate a region of a driving frequency in which a change in sensitivity is small with respect to a change in the frequency ratio. Things.
  • Coriolis flowmeter is the Coriolis flowmeter, wherein
  • the amplitude detecting means is an acceleration sensor, and the mass flow rate calculating means calculates the mass flow rate based on the acceleration amplitude by the acceleration sensor.
  • another Coriolis flowmeter in the Coriolis flowmeter, performs phase detection based on a driving frequency at the time of measuring the vibration amplitude, and performs an influence of a frequency other than the vibration caused by the Coriolis, the Coriolis vibration.
  • Signal processing means for removing the influence of the vibration phase other than the phase in which the vibration occurs.
  • another Coriolis flow meter is the Coriolis flow meter, wherein the pipe through which the fluid to be measured flows is a U-shaped pipe having both bases supported, A forced vibration frame disposed between two straight pipe portions of the U-shaped pipe in parallel with the straight pipe portion and supporting a tip end of the U-shaped pipe, and a forced vibration means for vibrating the forced vibration frame A Coriolis vibration frame supported by the forced vibration frame and supporting the two straight pipe portions; and vibration amplitude detection means provided at both ends of the Coriolis vibration frame.
  • the forced vibration frame has a notch in a vibration direction, and the notch portion forms a vibration center of the forced vibration frame. It is like that.
  • the forced vibration control means compares the phase of the driving voltage with the phase of the forced vibration and determines the forced vibration direction from the value of the forced vibration amplitude.
  • Means for controlling the forced vibration so as to resonate at the natural frequency is provided.
  • a change in the calibration coefficient expected based on the value of the natural frequency of the forced vibration that changes when the density of the fluid under test changes is determined in advance. It is provided with arithmetic means for correcting from the stored correction coefficient formula or correction coefficient table.
  • the rate of change of each of the inertia moment in the Coriolis vibration direction and the inertia moment of the forced vibration is the same with respect to a change in density.
  • the weight distribution and the piping shape of the frame etc. are set so that the ratio of the natural frequency in the forced vibration direction to the Coriolis natural frequency in the Coriolis vibration direction does not change with changes in the density of the fluid.
  • the Coriolis flow rate according to claim 1 when the forcible frequency is equal to or more than one time the Coriolis natural frequency, the detected vibration amplitude in the direction of the Coriolis vibration is zero when the flow rate is zero.
  • another Coriolis flowmeter is a means for measuring a temperature at a main elastic deformation portion which affects the natural frequency of forced vibration and the natural frequency in the Coriolis vibration direction in the Coriolis flowmeter. And an arithmetic means for correcting the elastic coefficient based on the measured temperature, and thereby correcting the calibration coefficient of the flow meter.
  • Coriolis flowmeter is the Coriolis flowmeter, wherein the Coriolis flowmeter flows from an inlet of a one-sided pipe that does not divide the fluid, After passing through the channel, it is connected to the inlet of the other channel by the return channel, and after passing through the other channel, it flows out of the flow meter and connects the channels in series. It is intended to be continued.
  • another Coriolis flowmeter includes means for monitoring and calculating outputs of respective pipelines serialized in the Coriolis flowmeter, and determines a relationship between the respective values. This makes it possible to diagnose an abnormal state of the flow meter.
  • another Coriolis flowmeter is provided with branch pipes that divide the fluid almost equally in the Coriolis flowmeter. It is provided with a merging pipe that merges again after passing through the channel, and has a branch and a merging pipe that merge and flow out of the flowmeter, and the flow paths are arranged in parallel.
  • another Coriolis flowmeter provides a detection value and a flow rate of a detected value output from each pipe at zero flow when the flow of the fluid is stopped in the calibration of the Coriolis flowmeter.
  • Calibration is performed at a plurality of different flow rates, and from the results of the plurality of flow rate calibrations, the relational expression between the calibration result, the calibration coefficient, and the measured value is calculated in order to calculate the calibration coefficient for each pipe that exists in plane symmetry. This is calculated by solving simultaneous equations.
  • another Coriolis flowmeter includes a temperature measuring means for each pipe in calibrating the Coriolis flowmeter, and affects the frequency of each pipe.
  • the correction accuracy is improved by individually performing temperature correction in pipelines 1 and 2.
  • another Coriolis flowmeter is the Coriolis flowmeter, wherein the Coriolis flowmeter includes a pipe line having at least two straight pipe sections in which the directions of fluids flowing parallel to each other are different from each other.
  • a first horizontal frame and a second horizontal frame respectively supporting both end portions of the pipe portion, and an intermediate portion between the first horizontal frame and the second horizontal frame, wherein the straight pipe is provided between both straight pipe portions.
  • a vertical frame arranged in parallel, a support base for fixing an intermediate portion of the vertical frame and supporting the vertical frame so as to be able to oscillate in the axial direction of the vertical frame; a forced vibration means for vibrating the vertical frame; It has two vibration amplitude detection means fixed to one end of the horizontal frame.
  • FIG. 2 shows a first embodiment of the present invention, in which a straight pipe portion 12, 13 of a U-shaped 11 is supported by a Coriolis vibration frame 16 composed of two parallel reinforcing plates 14, 15.
  • the acceleration sensors 17 and 18 are fixed between the reinforcing plates 14 and 15 at both ends. Note that a speed sensor may be used instead of the acceleration sensors 17 and 18.
  • the Coriolis vibration frame 16 composed of the reinforcing plates 14, 15 for reinforcing the U-shaped pipe 11 in the torsional direction provides a certain panel constant (K
  • the forced vibration frame 19 can be supported from the support base 22 with a stronger panel constant (K).
  • K panel constant
  • the panel constant in the direction of the forced vibration from the support base 22 very strong, a frequency ratio of 1 or more (preferably, for example, 1.5 or more, and preferably 5 or more) can be realized.
  • the support base other than the one shown in the figure had only a pipe support member, or had exactly the same U-shaped pipe in plane symmetry with a plane parallel to the U-shaped face as the reference plane.
  • the present invention can be carried out in various modes. This is the same in various Coriolis flow meters described below.
  • the method in which the forced vibration frame 19 supports the Coriolis vibration frame 16 can be used in any form as long as the natural frequency of the forced vibration is several times larger than the Coriolis frequency. Can be replaced with a type that supports a rotating shaft fixed to a Coriolis vibrating frame.
  • An exciter 20 composed of an electromagnetic coil is placed between the forced vibration frame 19 and the support base 22, or a counterbalanced vibration member having the same natural frequency or a plane-symmetrical pipe, and driven at the natural frequency. Vibrate. Thereby, the U-tube is forcibly vibrated in the bending direction through the forced vibration frame 19. The generated Coriolis vibrates the Coriolis vibration frame 16 in a twisting direction.
  • the angular acceleration of the Coriolis vibration rotation is measured by the differential vibration of the two acceleration sensors 17 and 18 fixed to the Coriolis vibration frame 16.
  • the signal of the sum of the two acceleration sensors indicates the magnitude of the acceleration of the forced vibration.
  • the vibration of forced vibration which is the sum of the effective amplitude detected and demodulated at the driving frequency of the differential signal related to Coriolis vibration, is divided by the execution amplitude detected and demodulated by the driving frequency, and the drive frequency value, calibration correction value, etc.
  • the mass flow rate can be calculated by calculating the following, and the details will be described in detail below with reference to FIG.
  • the amplitude of the forced vibration can be omitted by strictly controlling the excitation amplitude and keeping it constant.
  • two acceleration sensors can be replaced by one angular acceleration sensor. In that case, attach a separate acceleration sensor or speed sensor that measures the amplitude of the forced vibration.
  • the width b is made as small as possible so as to reduce the 1-poor moment in the ⁇ direction, and it is not necessary to reduce the panel constant in the torsional direction. Therefore, it is possible to make the pipe thickness thicker than the Coriolis flow meter of the general phase difference time measurement method, and if it is a normal U-shaped pipe, the torsion ( Where the panel constant in the Coriolis vibration direction is larger, the natural frequency in the bending direction is being increased by adjusting the shape of the support frame.
  • the bent portion of the forced vibration and the notch portion are elastically deformed so that the influence of the panel constant by the pipe is reduced. It is made at one-third of the piping between the oscillating frame and the support base. This minimizes the magnitude of the bending moment generated at the root of the Coriolis frame.
  • the signals from the two kneading speed sensors 17, 18 are processed by, for example, a mass flow rate calculation circuit shown in Fig. 5 (a).
  • the signals of the accelerometers 61 and 62 as the acceleration sensors are input to the operational amplifier 63 and the adder 64, respectively, and the signals having the waveforms shown Output to lock-in amplifiers 65 and 66 as demodulators.
  • Each of the lock-in amplifiers 65 and 66 receives a vibration signal 67 as a drive signal of a vibrator 72 for forcibly vibrating the Coriolis flowmeter, and uses this as a synchronization signal.
  • phase information and the amplitude signal from each lock-in amplifier 65, 66 are output to the mass flow rate calculation unit 70, and the difference signal from the operational amplifier 63 is detected by the detection output at the 90-degree phase. Is obtained.
  • the sum signal from the adder 64 is obtained as an amplitude signal proportional to the forced vibration at the 0-degree phase, and the mass flow rate is calculated by performing the division as shown in the mass flow rate calculation unit 70. Is done.
  • the signal of the excitation signal 67 is used as a synchronization signal, similarly to the lock-in amplifier.
  • the variable amplifier 69 receives the signal of the accelerometer 62 in the illustrated example, and the amplification factor is adjusted by the signal. After that, it is amplified as a drive signal by the power amplifier 71, and the vibrator 72 is driven to forcibly vibrate the Coriolis flowmeter.
  • the amplitude of the Coriolis vibration and the forced vibration can be easily and accurately measured using the signals of the accelerometers provided at the two force points that vibrate in the opposite directions.
  • the ratio of the amplitude can be calculated.
  • FIG. 5B shows an example of a signal processing circuit in a case where a total of four acceleration sensors, two for Coriolis vibration detection and two for forced vibration detection, are attached to one pipe.
  • two accelerometers for detecting Coriolis vibration are installed.
  • the first and second accelerometers 17 and 18 are installed as close as possible to the extension of the rotation axis 0 of the forced vibration. Is arranged to receive as little as possible.
  • the signal is The amplitude is input as accelerometers 74 and 75 in Fig. 5 (b), and the amplitude of the difference signal is measured by a lock-in amplifier to measure the amplitude of Coriolis vibration.
  • the in-phase noise signal mixed into the signal due to the entire flow meter vibrating up and down is removed.
  • an acceleration sensor with a small range suitable for the magnitude of Coriolis vibration amplitude to be measured, and to improve the measurement resolution. Can be done.
  • Acceleration sensors for detecting forced vibration are installed at two locations on the frame of forced vibration at different distances from the rotation axis 0. These are input as accelerometers 76 and 77 in Fig. 5 (b), and the amplitude of the forced vibration is measured by the lock-in amplifier after removing the common-mode noise by taking the difference signal.
  • FIG. 3 shows an example of a linear Coriolis flowmeter as a second embodiment.
  • the pipe is divided into a bent part that is easily deformed by changing the wall thickness of the pipe and a frame part that can be considered as almost a rigid frame.
  • the central Coriolis vibrating portion 25 is a thin portion so as to be able to swing by Coriolis vibration, and is vibrated at a frequency higher than the Coriolis frequency from the supporting member 27 capable of swinging there. .
  • This causes the left and right pipes to vibrate up and down.
  • This is the same principle as the conventional linear type Coriolis flowmeter as shown in Fig. 12, which has a force bending section and a frame section. Even if vibration is applied at a frequency higher than the natural vibration frequency of the Coriolis frame, higher-order mode vibration is less likely to occur.
  • the left and right rigid frames 28, 29 receive Corioliska in opposite directions up and down due to the rocking motion. Therefore, the Coriolis vibrating section 25 at the center moves up and down while oscillating when there is a flow rate in the pipe.
  • the rotational angular acceleration is detected by the differential between two acceleration sensors 30 and 31 fixed to the Coriolis vibrator 25. Instead of the two acceleration sensors 30 and 31, one angular acceleration sensor can be provided on the side surface.
  • the pressure loss is very small because the pipe is a straight pipe type
  • the size of the flow meter is too large even if the pipe diameter is large.
  • it has properties such as good cleaning properties.
  • FIG. 4 shows a Coriolis flow comprising a so-called “B-type” sensor tube as a third embodiment.
  • the meter is shown. This flow meter is seemingly similar to that shown in Japanese Patent Publication No. 2-5010006, but differs in the direction of forced vibration.
  • the substantially central portion of the vertical frame 35 is fixed on a swinging support base 34 fixed on a base 33, and the end of the vertical frame 35 is A first horizontal frame 36 extending at a right angle is fixed, and a second horizontal frame 39 supporting a first outer straight pipe 37 and a second outer straight pipe 38 is fixed to the other end. Further, between the first horizontal frame 36 and the second horizontal frame 39, a third horizontal frame 42 supporting the first inner straight pipe 40 and the second inner straight pipe 41 is fixed. In the illustrated example, the first inner straight pipe 40 and the second inner straight pipe 41 are supported by pipe support members 43 and 44, respectively.
  • the base 33 is used in this embodiment, two bases may be supported without using the base 33.
  • a forced vibration driving member 45 is provided below a portion of the vertical frame 35 near the first horizontal frame 36 in the figure, and the center of the swing center 46 of the swing support base 34 formed by the cutout is provided.
  • the vertical frame 35 is forcibly vibrated. This causes Coriolis vibration force to be generated in the pipes 47 by the fluid flowing in the first outer straight pipe 37 and the second outer straight pipe 38 particularly in the direction of the arrow in the drawing, and the first horizontal frame 36 The second horizontal frame vibrates.
  • the acceleration is measured by accelerometers 48 and 49 provided at the left and right end portions of the first horizontal frame 36, respectively.
  • the processing of the signals obtained by these accelerometers 48 and 49 is the same as that in each of the above embodiments, and the description thereof will be omitted.
  • the center notch defines the panel constant in the forced vibration direction, and the forced vibration frame above it supports the Coriolis vibration frame so that the natural frequency is lower than the natural frequency of the forced vibration.
  • the Coriolis flowmeter according to the present invention requires a mass flow measurement of a low-density fluid, which cannot be measured by a conventional one, and particularly requires a mass flow measurement at an ultra-high pressure.
  • measurement of gas flow with low density such as hydrogen flow
  • flow meter fields where long-term stability is required and measurement accuracy must be high such as those related to the trading of oil, natural gas, etc., and also in the fields of environmental analysis, medical care, semiconductor manufacturing, etc. You can do it.
  • FIG. 1 is a graph illustrating sensitivity characteristics with respect to a frequency ratio representing the characteristics of the present invention, and illustrating the characteristics thereof.
  • FIG. 2 is a perspective view of an embodiment in which the present invention is applied to a U-shaped Coriolis flowmeter.
  • FIG. 3 is a perspective view of an embodiment in which the present invention is applied to a straight tube type Coriolis flowmeter.
  • FIG. 4 is a perspective view of an embodiment in which the present invention is applied to a B-type Coriolis flowmeter.
  • FIG. 5 is a block diagram showing two examples of processing of a measurement signal according to the present invention.
  • FIG. 6 is a graph showing an experimental example based on the present invention.
  • FIG. 7 is a view showing the principle of a Coriolis flow meter using a U-shaped tube.
  • FIG. 8 is a perspective view showing an example of a Coriolis flowmeter using a U-shaped tube.
  • FIG. 9 (a) is a plan view of the Coriolis flowmeter in an operating state, (b) is a side view thereof, and (c) is a front view thereof.
  • FIG. 10 (a) is a diagram sequentially showing the vibration state of the Coriolis flowmeter, and (b) is a graph showing the state when the vibration phase is measured.
  • FIG. 11 is a graph showing a relationship between a natural frequency ratio as a frequency ratio of a driving frequency to a Coriolis frequency in a phase difference time measurement method and sensitivity.
  • FIG. 12 is a view showing the operating principle of a straight pipe Coriolis flowmeter.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

 コリオリ流量計において2つの振動検出センサーの出力を位相差時間として測定する場合、感度を計測できる程度にするためには管を細くしなければならず流速が大きくなり圧力損失が大きくなることや、薄くしなければならないので耐圧を強くしにくい問題があり、特に流量に対する信号の感度を大きくしにくいために低密度の気体流量が精度よく流量測定することができない。そこで本発明においては、支持基盤22に固定した強制振動フレーム19に、U字管を支持したコリオリ振動フレーム16を揺動自在に固定することにより、コリオリ振動方向の1自由度に制限する高剛性フレーム構造とする。管路のコリオリ振動数に対する強制振動数の振動数比が少なくとも1倍から10倍程度になるように、加振器20で強制振動フレーム19を振動させる。このときの2個の加速度センサー17、18等の振動センサーの信号により強制振動とコリオリ振動との振動振幅比を演算し、管路を流れる流体の質量流量を計測する。  

Description

明 細 書
コリオリ流量計
技術分野
[0001] 本発明は、振動する流路中の流体により発生するコリオリの力の作用による捩り振 動を検出することによって、流体の質量流量を測定するコリオリ流量計に関し、特に、 超高圧気体や低密度流体に対してより感度を高くして質量流量を計測することがで きるようにしたコリオリ流量計に関する。
背景技術
[0002] 直接的に質量流量を計測する流量計として従来よりコリオリ流量計が用いられてい る。これは配管内を流れる流体が回転運動させられた場合には流れの速度ベクトル と回転の角速度べタトノレのベクトル積に比例するコリオリの力を受ける力 この慣性力 によって生じる配管の弾性変形を何らかの方法で検出して質量流量を計測するもの である。
[0003] コリオリ流量計は直接型質量流量計であり、質量流量計の中では比較的精度が高 ぐ近年の信号のデジタル処理技術の進歩と共に急速に高精度化されている。また、 液体、気体、スラリー、固気液混相流等、ほとんどの流体が計測可能であり、気泡流 でも微小で均一な状態なら正確に質量流量を計測でき、且つ配管内に露出物が無く 、機械的可動部もなく保守性が高いという特徴を備えている。更に、体積流量、密度 粘度、温度も同時に計測できる複合計器であり、密度、粘性等の影響を基本的には 受けないという特徴も備えており、広範囲の分野で利用されることが期待されている。
[0004] 図 7には従来より実用化されているコリオリ式質量流量計の一般的な構造及びその 作動原理を示している。 1は流体が流れる U字管でその中央部に加振用電磁コィノレ 力 ¾の位置に設けられてレ、て、 U字管を φ方向または一 φ方向に微小な回転振動( 強制振動)をさせる。流体は U字管に沿って図中 Vの方向に流れており、左右の配管 で流れの方向が逆であるためにコリオリの力は U字管を捩る方向に働く。
[0005] 回転方向が- φであるときは逆の方向にねじりトルクが働く。流れが無い場合は U字 管は平行に振動するが、流れがある場合には土 φ方向に振動しながら質量流量に 比例した大きさで Θ方向(コリオリ振動方向)に捩れ振動を生じる。この捩れ量を 3、 4 の場所で振動の位相差として検知して質量流量を求めている。
[0006] より具体的には例えば図 8に示すようなコリオリ流量計が用いられる。図示するコリオ リ流量計においては、 U字管 41の基端部が壁体 42に支持され、入口 43力も出口 44 に向けて流体が流れている。 U字管 41の先端に支持板 46を固定し、その下面には 下方に向けて永久磁石 47を固定している。この永久磁石 47は図中上下方向に着磁 されており、基台 48上にはこの永久磁石 47の下端面に対向して電磁コイル 49を配 置し、この電磁コイル 49に正と負の電流を交互に供給することにより U字管 41の先 端を振動させている。
[0007] U字管 41の両側の直管部 50、 51にはその外側の側面に各々永久磁石 52、 53を 固定しており、永久磁石 52の側端面に対向して、基台 48に固定された支持板 54に コイルで形成したピックアップ 55を配置している。同様に永久磁石 53の側端面に対 向して、基台 48に固定された支持板 56に前記ピックアップ 55と同様のピックアップ 5 7を配置している。
[0008] 上記装置において、前記コリオリ流量計の原理により U字管 41内に流体を流した 状態で電磁コイル 49を作動し、前記のように曲管部 45を下方に移動させると U字管 が微小な回転を生じる。流体は U字管に沿って図中矢印方向に流れているため、左 右の配管で流れの方向が逆であり、直管部 50にはコリオリの力として図中下方に力 を生じ、直管部 51には図中上方に力を生じる。逆に曲管部 45を上方に移動させると 、直管部 50には上方に力を生じ、直管部 51には下方に力を生じる。そのため、コリ オリの力は U字管を捩る方向に働く。
[0009] 上記作用によりこの U字管 41は例えば図 9に示すような動きを行レ、、特に左右の直 管部については図 10 (a)の作動状態模式図に示すような動きをなす。即ち、 U字管 41の内部に前記のように流体が流れている状態で、その先端を上下に振動させると 、例えば図 10左欄に示すように、 U字管先端の曲管部が白抜き矢印のように下方に 移動するとき、図中右側の直管部 50は下方への力を生じているのに対して直管部 5 1は上方への力を生じているので左側の直管部 51は右側の直管部より遅れて下方 に移動する。逆に同図右欄に示すように、 U字管先端が上方に移動するとき、図中 右側の直管部 50は上方への力を生じているのに対して図中左側の直管部 51は下 方への力を生じているので、左側の直管部 51は右側の直管部より遅れて上方に移 動し、以降同様の作動を繰り返す。
[0010] U字管 41の先端における曲管部 45の振動により、各直管部が上記のような相対的 移動を行うため、図 8及び図 9に示すような各直管部に設けた永久磁石 52、 53も同 様の移動を行う。それにより、この移動を検出する左右のピックアップ 55、 57からの 検出信号は図 10 (b)に示すような位相差をもった信号となり、この位相差時間 τは 管内を流れる質量流量が大きいほど大きくなるため、この位相差時間を検出すること により質量流量を測定している。
[0011] 実際の装置においては、配管径は 1. 5mm 600mm、流量範囲は OkgZh 680, 000kg/h、密度計測の場合は OkgZm3— 3, OOOkgZm3の範囲、使用温度範囲は _240°C 204°C、使用圧力範囲は 0. 12MPa— 39. 3MPa、計測器重量は 8kg— 6 35kg,要部の材質はステンレス鋼、ハステロィじ、チタニウム、ジルコニウム等が用い られる。このようなコリオリ流量計において、 U字管が捩れる角度は 0. 01度以下であ る。
[0012] 上記のような従来の U字管を用いたコリオリ流量計において、その U字管の捩れ量 を位相差時間として測定することで非常に高精度に質量流量を計測することができる 。 1980年以前のコリオリ流量計もしくはジャイロ式質量流量計に比べて有利な点とな つている。
[0013] このようなコリオリ流量計について、特に感度の向上の観点でその特性を検討する と次のようなことがわかる。即ち、上記コリオリ流量計において質量流量 Q を算出す
m
る理論式は位相差時間 τを使って以下の式のように表される。
[数 1]
Figure imgf000005_0001
(1) ここで、 Qは質量流量、 K はコリオリカによる捩れ方向(Θ方向)のバネ定数、 ω は m θ Θ 同方向の固有振動数 (コリオリ固有振動数)、 ω は強制振動方向(φ方向)の固有
Φ
振動数 (駆動振動数)、 dは平行配管の間隔、 τは二つのピックアップ (ここでは図 7 の 3、 4の位置)からの信号間に現れる位相差の時間である。より厳密に表記した場 合 τの tan関数が用いられるが、 τが非常に小さいので近似して表現している。
[0014] 上述のようにこれまでの主なコリオリ流量計は時間計測をすることから非常に精度の 高い流量計として成功してきた。時間分解能については DSPなどを利用したデジタル 信号処理等も駆使されており、時間精度の向上についてはある程度限界に近い改 良がなされていると考えられる。し力、しながら、感度はり正確には、流量に対する位 相差時間の感度係数)の向上という点に関しては特に大きな改善はされていない。
[0015] 感度の向上という点に注目して上記式(1)を考えると、同じ Q に対して τ以外の係 m
数が出来るだけ小さくなればてが大きくなる。式(1)を τと振動数比ひ = (駆動振動 数 /コリオリ振動数 ω )で整理しなおすと以下の式 (2)のようになり、横軸を振動 φ Θ
数比 αで示すと図 11のようになる。
[数 2] τ = 2 2Qmd2 ωφ\
Κθ ( - ω /ωΐ) Κθ {1 ~ αη ' —;^ソ
(2)
グラフは Υ切片である 2Q d2/K を 1として描いている。同グラフには振動系に粘性 m Θ
減衰があった場合の感度の線も書き加えている。 λは粘性による減衰比であり、通常 のコリオリ流量計では減衰比はゼロではないが非常に小さい。
[0016] このため、性能の良い流量計とするためには設計の要点として、いかに 2Q d2/K の値を大きくするかということと、特性の良い、振動数比 αの値を決めるかということ
Θ
になる。
[0017] 感度を向上させるためにはこれらから次のようなことが考えられる。
(1)固有振動数の比であるひを 1に近づけて感度を大きくする。
(2)幅 dを出来るだけ大きくする。 (3)捩れパネ定数である Κ Θを小さくする。 (捩れやすくする。 )
なお、コリオリ流量計にっレ、ては下記のような文献が存在する。
特許文献 1:特許第 2704768号公報
特許文献 2 :特開昭 58 - 117416号公報
特許文献 3 :特開昭 54 - 4168号公報
発明の開示
発明が解決しょうとする課題
[0018] し力しながら、これらは様々な条件で制約を受けるので極端な設定は出来ず、ある 限界内に制限されてしまう。実際のコリオリ流量計の上記設計パラメータは次のような 制限を受けながら設計されていると考えられる。
[0019] まず、前記(1)に関しては、例えば前記特許文献 1 (特許第 2704768号公報)、特 許文献 2 (特開昭 58— 117416号公報)、特許文献 3 (特開昭 54— 4168号公報)など に開示されているような提案もある。し力 ながらこれらは固有振動数比を常に制御し なければならないこと、及び図 11 (a)に示されるようにひ 1付近では感度の変動が 激しく僅かなひの変化でも大きく値が変化してしまうこと、外部からの振動ノイズも最も 影響を受ける周波数であり、強制振動がコリオリ振動に混入してしまいやすいなどの 問題点がある。図 11 (b)の位相グラフからも明らかなように、ここは位相も急激に変化 する領域であり、 ひ = 1で 90° になる。
[0020] したがってそこでは一方だけが大きく振動するようになり、片方の配管は振動せず、 位相差時間を検出するための二つ目の振動信号が出力されなくなってしまう問題も ある。これらのことから実際の製品ではある程度感度があり、且つ変化の緩やかな領 域である固有振動数比 α < 1の領域を使用しており、 0. 2-0. 6程度の値になる配 管形状に設定されることが多い。
[0021] また、前記(2)に関しては、 dを大きくすることでグラフ全体を上方へ押し上げること が出来るが、一般的な U字管のような形状の場合、幅を広げることでねじり難くなり、 同時に K が大きくなつてしまう。また、幅 dが大きくなると、コリオリ振動方向の慣性モ
Θ
一メント I が大きくなつてしまい、コリオリ振動数が小さくなる。前記のように αは 1以下
Θ
に制限されてしまうので、コリオリ振動数 ω Θが小さくなると駆動振動数 ω を小さくし なければならない。駆動振動数が小さくなりすぎると外部からの振動ノイズに弱くなる 上、応答速度が小さくなるためにあまり小さくすることは望ましくない。その結果、幅 d もある程度の大きさで制限されてしまう。
[0022] 更に前記(3)に関しては、捩ればね定数 Κ Θを小さくするために、配管は出来るだ け細ぐ肉厚を薄くすることが求められる。そのため、既製品のコリオリ流量計は計測 チューブが出来る限り、細く薄いものになっている。しかし、細くすれば圧力損失が大 きくなり、実質的に最大流量が制限されてしまう。逆にいうと、計測したい流量に対し て許される圧力損失力 配管内径が決められてしまう。また、仕様として求められる耐 圧から最小肉厚が決まることになる。
[0023] 現在、燃料電池車が注目され、各種の形式の燃料電池車の開発が進められている が、その一つとして、車両に超水素燃料高圧タンクを搭載する方法の開発が進んで いる。実用的な走行距離のためには水素燃料タンクの許容できる大きさから 700気 圧程度で水素を貯蔵する必要があるとされている。この様な用途には様々なところで 高圧の水素流量を計測する必要が出てくる。
[0024] この流量計としてコリオリ流量計を用いることが考えられるが、コリオリ流量計は前記 のような理由により、出来るだけ肉厚を薄くしている。通常のコリオリ流量計で超高圧 の流体を計測することは困難となる。耐圧を上げるために肉厚を厚くするとパネ定数 が大きくなり感度が小さくなる。
[0025] また、気体は密度が低ぐ同じ質量流量では体積が非常に大きい。そのため中程 度の圧力があり密度が十分に大きければ気体も計測可能であるが、圧力が 10気圧以 下である場合などでは質量流量が十分に大きくなるまで流す前に流速が速くなりす ぎ、圧損が大きすぎたり、チョークしてしまい流量を増やすことが出来なかったりする。 このように、出来るだけ配管を細くする必要があり、その際には圧損が大きくなるため 、大流量の気体をここに流すことが出来なくなる。その結果、常圧の気体などは計測 することが出来ない。
[0026] 超高圧対応にすれば配管肉厚が大きくなり、流量を流すために配管を太くするとバ ネ定数が大きくなり、それでなくても密度が低く感度が不足する気体計測でさらに感 度が悪くなつてしまう。 [0027] 上記のように、従来の位相差時間計測によるコリオリ流量計においては、このコリオ リ流量計を高感度にするためには振動数比は 0. 4程度で振動させることとなる力 こ のような振動数比の状態では 80Hz— 200Hz程度で駆動したとき外部振動の影響を 受けやすくなる。
[0028] したがって本発明は、外部からの振動ノイズの影響が少なぐ燃料電池車の超高圧 水素燃料タンクの水素流量測定等、超高圧流体を測定できるように耐圧を高くしても 高感度であり、常圧の流体のように低密度の流体が測定できるように管路を太くして も高感度であり、小型に製作しても高感度であり、ノイズや粘性の影響が少なぐ安価 に製造することが出来るコリオリ流量計を提供することを主たる目的とする。
課題を解決するための手段
[0029] 以下、上記従来のコリオリ流量計の各種課題を解決するために、コリオリ流量計の 特性の検討を行い、本発明に至った過程を説明する。本発明の特徴は、まず振幅比 計測法を用いるものである。振幅比計測法とはコリオリ流量計にぉレ、て位相差時間を 計測するのではなぐ振れの振幅を何らかの方法で計測して質量流量を検出するも ので、コリオリ流量計の開発当初から知られている方法である。例えば特公昭 60-34 683号公報ゃ特公平 8 - 20295号公報、特表平 2—501006号公報などはコリオリ振 動の振幅と強制振動の振幅を何らかの方法で検出し、これらの比をとるなどの演算を することで質量流量を算出している。
[0030] この計測原理は以下のとおりである。図 7の座標系を使う時、コリオリ捩れ振動方向 に対する運動方程式をたてると以下のようになる。
[数 3]
5FC = 2δπιυφ
(3)
流速を ν、微小長さ当たりの流体の質量を δ とするとコリオリカ Fcが前記図 7におい m
て説明したように、流れに対して垂直に働く。
[0031] 流体が外へ向力う部分と内へ戻る部分では異なる方向にコリオリカが働くために U 字管は図 7のように Θ方向に捩れることになる。捩れはコリオリカによるトルクで生じる 、コリオリカは前記(3)式のように質量と流速の積に比例する。この捩れを何らかの 方法で計測することで質量流量を求めることができる。
[0032] 流体の密度を p、チューブの断面積を Aとし、図 10の座標系で考えると、両チュー ブが Θ方向に発生するトノレク Tは以下のよう表される。
[数 4]
Figure imgf000010_0001
(4)
[0033] 一般的な製品は φ方向の固有角振動数 ω φにあわせて U字管を振動させている。
Φ方向の振動角の最大を Φ とすると φを正弦波で振動させた時、角度と角速度は
0
各々、
[数 5] 角 flc
Φ # 纖應
(5)
[数 6]
Figure imgf000010_0002
(6)
と表すことができる。また、 Θに関する U字管(内部の流体も含む)の慣性モーメントを I 、ばね定数を K とすると(4)式、(6)式を使って捩れ角の運動方程式を得ることが θ Θ
できる。
[数 7] - τ
2άρΑΙυωφΦο cos ω ΐ
(7)
[0034] 十分に時間が経過した後には Φの過渡応答は減衰して無くなるとする。また、定常 応答に位相差が出る程には減衰が大きくないと簡単化すると φのねじり振動は強制 振動と同調する定常応答のみが残ると考えられる。 (7)式に特解として下の式を採用 すると係数について整理することができる。
[数 8]
Figure imgf000011_0001
(8)
[0035] ここで質量流量 Q は p Avと置くことができるので(8)式を代入した(7)式の両辺の
m
係数を質量流量について整理すると次の様に表すことができる。
[数 9]
Figure imgf000011_0002
(9)
このようにコリオリ式質量流量計では右辺の各量について知ることができれば、直接 質量流量を計測することができる。
[0036] 更に振動の様子について考える。ここでは特解として(8)式を使用した。つまり、捩 れ角 Θが φ方向の回転速度と同調している。このため回転速度が最小値になる時に 捩れが 0になり、この時、 U字管が水平になることを示している。これは U字管が φ方 向に最大に曲げられているときである。また逆に回転速度が最大値になる時、すなわ ち U字管が中立位置( φ = 0)を通過するときに最大捩れ角になることを示してレ、る。 これを図で表現すると図 10 (a) のように描くことができる。
[0037] 最大捩れ角の大きさについて知るために(9)式を最大捩れ角 Θ について整理す
0
る。
Figure imgf000012_0001
(10)
[0038] これは ω 力 =Ι Θ の条件を満たすとき、捩れ振動(Θ方向の振動)と共振して
φ θ φ
しまい捩れ角 Θ が発散することを示している。この捩れ方向の固有振動数をコリオリ
0
振動数などと呼び、このときの角振動数を以下のように定義することができる。
[数 11]
Figure imgf000012_0002
(11)
[0039] 流体の密度が決まればコリオリ振動数は決まるので、慣性モーメント I Θの代わりに 代入すると(9)式は
[数 12]
Κθ(1 - ωφ 22 θ0
Qm— _
(12)
とすることができる。 (12)式からでは U字管の φ方向の最大角 Φ と θ方向(捩れ)の
0
最大角 Θ を計測しなければならないが、実際には非常に微小角である。
0
[0040] ここで位相差時間計測法では以下の概念で計測物理量を時間にしている。 U字管 がその中立位置を最大捩れ角で通過することを利用することができる。 U字管の左右 のチューブの振動をそれぞれ長さ Lの位置で検出したとすると、これらの点の中立位 置での速度は大まかに L eo Φ 、両チューブの位置の差は Θ dとおける。中立面の
0 0
通過時間差 τは θ d/L co Φ と考えることができる。これを使い(12)式を書き直す
0 φ 0
と最終的に以下のようになる。
[数 13] ^ Κθ(1 - ωΐ/ω!) 80d ― Κ9{\ - ω%ΙωΙ)
(13)
[0041] この式を利用すれば各振動検出点が中立面を通過する時間差 τを計ることで質量 流量を知ることができる。ただし、 τ以外の係数にはパネ定数のように温度により変 化するものも含まれており、温度による補正を行う必要がある。
[0042] 振幅比計測法ではてに変換する前の Θ と Φ に関係する量を個別に計測し、割り
0 0
算することで算出するものである。
[0043] 本発明は上記のような振幅比計測法を利用して新しい特徴をもったコリオリ流量計 を得たものであって、振動計測においては周波数が高ければ高いほど、変位振幅よ りも速度振幅、速度振幅よりも加速度振幅を計測するほうが感度が高くなる特性を利 用するものである。この特性は変位と速度、加速度の関係が以下の式によるためであ る。
[0044] 即ち、 θの変位が θ = Θ cos ( co t)で振動する時、振動速度は 1回微分したもの、
0 φ
振動加速度は 2回微分したものになるので、
[数 14] θ = θ0 cos(o^i) , ν = ω θ0 . Βϊη{ωφί), =— ¾θ0 · cos(o^i)
(14)
したがって、振幅 ν θ 、Α Θ は
ο ο
[数 15]
(15)
[0045] 式(13)の振幅項に分母分子に ω をかけると速度計測、 ω 2 をかけると加速度
Φ Φ
測によって質量流量が計測できることが分かる。
[数 16] Κθ(1 - u /' ) θ0άωφ Veod _
2cP ΙωΪ ο
Figure imgf000014_0001
LV≠QUi
(16)
[数 17]
Figure imgf000014_0002
(17)
[0046] のように変形すると、コリオリ振動の振動速度 V と回転加速度 A d = ω dと強 制振動の回転加速度 A L- Φ Lと強制振動の振動数 ω φを計測すればこれ らを演算することで質量流量が計測できることになる。ここで位相差時間てと同様に 横軸振動数比 α縦軸にそれぞれの振幅をとつて感度係数の表記に書き直す。ここで 振動数比 αを陽に表示するために
[数 18]
Figure imgf000014_0003
(18)
として代入すると。
[数 19]
Q .2QmdLωφ o 2QmdL$0
θ。 = ¾{1_q2)
Figure imgf000014_0004
(19)
[0047] 同様に速度及び加速度についてまとめると式(15)の関係から、
[数 20] '
h (1 - a2)
(20) o = ωί2.θ( 0n 2 oQnmd jLr A 0_
Ie ΐθ (1一 2)
(21)
[0048] 図 1のグラフは、各式のひに関係する項の変化を示したものである。各感度はこの 関数にそれぞれ前の項をかけたものになる。これ力 も分かるように、前記位相差時 間の計測と異なり、振動数比 1以上の領域で感度が大きくなり、加速度センサーを利 用した場合には振動数比を大きくすることで感度がより大きくなることを示している。な お、同図から明ら力なように、振動数比 1の近辺では振動数比の変化による感度に対 する影響が大きすぎる部分が存在するため、使用状態によっても異なるが、振動数 比が 1. 3以上、好ましくは 1. 5以上が選択される。
[0049] なお、前記従来の振幅比計測法の特公昭 60 - 34683号公報ゃ特公平 8 - 20295 号公報、特表平 2-501006号公報に開示された技術においては、同様に振動数比 力 よりも大きい領域で使用することを前提としていることが伺われる力 S、これらの多く は速度センサーによる計測が行われており、 a = 2— 3程度が 1以下と比べて比較的 に大きいことを利用しているに過ぎなレ、。また、一部に検出手段を加速度センサーに 置き換えることも出来る旨の記載も見られるが、本発明のように加速度センサーで計 測した場合にはさらに感度が増し、例えば振動数比を 2以上のような大きい領域を積 極的に利用するという概念は存在しない。
[0050] 特に本発明では積極的に振動数比 1以上の領域を活用するために、コリオリ振動 方向に補強フレームを入れる構成を採用している。これは固有振動数 1以上の領域 で連続体である配管そのものを振動させた場合、高次の振動モードが強くなり、適切 な加振や、上記の理論を再現するような振動になりにくいことにある。
[0051] また、本発明によるコリオリ流量計は次のようなことに注目して設計することで、これ までのコリオリ流量計よりも優れた特徴をもつことが出来る。即ち、前記式(21)の最 右辺に注目し、感度を増すための設計指針を考察すると次のようになる。この式では 分子に強制振動の振幅 Φ が陽に現れている。そのため、強制振動の振幅はできる
0
だけ大きいほうが良いことが分かる。その点、従来の位相差時間計測法では、強制振 動の振幅は感度に影響しない。密度が大きく感度がそれほど必要ない場合には影 響を受けないほうが計測精度を向上させやすく位相差時間計測法が有利とされてい るが、逆に強制振動の振幅を大きくして、角振動数を大きくし、コリオリカを大きくして も感度を良くすることが出来ない。それはコリオリカが大きくなり振れが大きくなつても 、その分、強制振動の通過速度が大きくなり、それらの効果はキャンセルされ位相差 時間計測法では現れないためである。その点上記手法は、感度を大きくすることに着 目した時には不利な計測法となる。
[0052] また、位相差時間計測法では分母に現れていたコリオリ振動方向のパネ定数 Κ Θ が振幅比計測法では分子に現れていることは特筆するべきことである。このため、バ ネ定数を硬くし、コリオリ振動数を大きくすることが、感度の向上に寄与するという、位 相差時間計測法とは逆の関係にある。つまり本発明による計測方法に基づき最適化 した設計を行えば感度の向上と同時に耐圧の向上と、配管径の拡大を実現できる。 質量流量に対する流体の流速を小さく出来るため、特に気体でも大量に流すことが 出来る。したがって特に燃料電池車用の水素充填器などは 700気圧での充填が技 術的課題になっており、そのような高圧で気体の質量流量を適切に計測できる流量 計は大変に有用であり、本発明によるコリオリ流量計の特徴は特に有利であるといえ る。
[0053] さらに、分母に慣性モーメント I の 3/2乗が現れている。これは Θ周りについて出
Θ
来るだけ慣性モーメントを小さくし、コンパクトにすることが有利になるということを示し ている。従来のコリオリ流量計は dの増大による感度の向上と、ねじりパネ定数を小さ くするために、ある程度の幅を確保していた。このため配管径が大きくなると、コリオリ 流量計本体の大きさが非常に大きくなつてしまうという欠点を持っていた。これに対し て本発明によるコリオリ流量計は上記理由によりコンパクトなものになる。なお、密度 が変化した時に慣性モーメントが変化して感度が変化するという特性が出る問題もあ るが、計測に影響しない程度にしか密度が変化しない場合には問題とならない。また 影響する場合でも配管デザインの工夫でコリオリ方向の慣性モーメント I が変化する
Θ
分を打ち消すような量で強制振動方向の慣性モーメント I が変化し固有振動数比ひ が変化しないように設計することも可能である。同様の技術が特表平 2—504671号 公報に開示されている。また、強制振動の固有振動数である ω の変化は慣性モー
Φ
メント I の変化を反映しており、これを計測することで同時に変化している 1貧性モーメ
Φ
ン Η についても間接的に知ることが出来る。よって ω を計測することでこの変化か
Θ Φ
ら必要な校正係数の補正係数をあらかじめ記憶された補正係数式もしくは補正係数 テーブルより演算して補正することも可能である。
[0054] また、本発明においてはできるだけコリオリ振動数は高いほうが良ぐ計測を行う駆 動振動数はさらに大きい方がよい。これは前記位相差時間計測法と異なり計測周波 数を大きくするように働く。そのためこれまでの 60Hz— 200Hz程度の駆動周波数に 比べ、非常に大きい周波数で計測できることを示している。配管から伝わるノイズ振 動は高々 200Hz程度といわれており、これよりも高い周波数で計測することで外部ノ ィズの影響を小さく出来る。しかも、本発明では振幅を計測するために適切なフィル ターを通すことでノイズ振動を除去することが可能である。位相復調器を使えばその 周波数の実効振幅のみを抽出できるため耐ノイズ性がより強くなる。これはアナログ 回路だけでなくデジタル信号処理によっても高精度に行うことが出来る。
[0055] 前記特許第 2575203号公報などに開示されたコリオリ流量計の技術は粘性の影 響を補正する技術であるが、それに対して本発明ではコリオリ振動数よりもずっと高 い周波数で駆動するために、前記図 11 (b)の位相図に見られるように、粘性があつ たり、それが変化したとしても位相はほぼ 180度へ近づいており大きく変化はしなレ、。 そのために粘性が変化した場合でも感度に影響を与えに《なっている。したがって 前記特許公報に開示された技術のような補正の必要性は小さくなる。
[0056] また、本発明のコリオリ流量計はコリオリ振動方向についてフレームを持っており、 1 軸振動に近づけるために振動する変形部は意図的に変形しやすく設計された弾性 変形部に集中する。そのためコリオリ振動方向のパネ定数に影響を与えるパネ部分 は主に配管ではなくこの弾性変形部になる。このパネ定数は温度による影響を受け るので通常は配管の温度を計測して補正している。そのため、この弾性変形部の温 度を使って補正することになるが、本発明によるコリオリ流量計では配管と異なり、液 温の影響をすぐには受けない。それは弾性変形部が配管と離れているために液温の 直接の影響を受けにくいことや受けたとしても緩やかに変化するからである。 [0057] また、本発明のコリオリ流量計において加速度センサーを用いた場合、 1本の計測 管によっても流量計を構成することは可能であるが、対称 2本管にすることも可能であ る。これは被試験流体が流れる管路が 2本あり、それらを平行に同じ方向に流れる管 路を備え、管路、強制振動手段、高次振動を抑制する手段のフレーム、振動振幅を 求める手段など同様のものが面対称に備えられ、強制振動が音叉のように反対向き に振動するものである。このように設計することで振動状況が改善され、外部振動か らの影響や、強制振動が外部へ伝わることを低減することが出来る。
[0058] さらに本発明のコリオリ流量計において対称 2本管にした場合には、次のような特徴 を持つことが出来る。まず、この対称 2本管を直列的に配管した場合である。つまり、 外部から流入する流体を分流することなぐ片側の管路の流入口から流入し、片側の 管路を通過して流出した後に戻り流路によりもう一方の管路の流入口へ接続され、も う一方の管路を通過した後に流量計から流出してレ、くように流路を直列に接続される 場合である。先に述べたように 2本管で反対振動させているが、加速度センサーを使 用しているために 1本でも流量を算出することが出来る。そのため流量計の校正には それぞれ 1本ずつに校正係数を決めることが出来る。ここで、それぞれの配管を配管 1、配管 2とすると、配管 1と 2を直列に接続した場合にはそれぞれに同じ流量が流れ る条件で同時に校正することができる。これは 2台の流量計を直列に並べて同時校正 したことになる。さらに計測時には同じ流量を同時に 2台の流量計で計測したことにな り、 2本の平均値を流量計測値として出力すれば安定度や精度を向上させることが出 来る。また、両配管の計測値に大きな違いが生じた場合には、この違いを元に故障 の診断に応用することが出来る。さらにパネ定数などの温度補正が必要な弾性変形 部の温度をそれぞれの配管で行うことが出来るため、配管ごとに細かい補正が可能 になり精度が向上する。ただし、圧力損失は増大し、最大流量は比較的に制限され ることになる。
[0059] 既に市販のコリオリ流量計でも同様な対称 2本管を直列に配管するものは存在する が、 2本の配管に磁石とコイルが分けて取り付けられており、配管同士の相対速度を 計測している。このため 2本で 1つの流量計であることには変わらず、一つの流量値し か出力されない。したがって、 2つの出力の比較による診断機能や平均値をとることに よる精度の向上、温度計測によるパネ定数などの個別補正などは出来ない。
[0060] 次に流体をほぼ等分に分流する分岐管路を備え、それぞれが 2本の管路に別れて 流入し、管路を通過した後に再び合流する合流管路を備え、合流して流量計から流 出するようになる、分岐と合流の管路を備え、流路を並列にされたコリオリ流量計であ る。これは流路の断面積を 2倍にすることができるので直列型に比べても、 1本管に比 ベても同じ配管径であれば圧力損失は小さくすることが出来る。最大流量も大きくな る。これは流量計を並列にならべた状態であり、それぞれの配管 1と 2の流量信号の 和が計測された流量値となる。
[0061] 市販のコリオリ流量計の多くが並列型の 2本管になっている力 必ずしも配管 1と 2に 等分の流量が流れているとは限らなレ、。分流部に工夫がなされていても上流から強 い旋回流や渦流が流れてきた場合には分流比が異なる恐れもある。 2本で 1つの流 量計であるために、分流比が等しくないときでもこれを区別することが出来なレ、。とこ ろが本発明の並列型コリオリ流量計では、それぞれが流量値を算出することができる ので、分流比が変化したときでも正確に計測することが出来る。
[0062] ただし、流量計の校正時、それぞれの並歹 本管に校正係数を決めるときに問題が 生じる。上流条件を整えて等分に流れるような条件下で、等分に流れていると仮定し て校正係数を決めることも可能であるが、次のような方法でそれぞれの校正係数を確 認し、決めることも可能である。
[0063] それぞれの配管 1と 2に流れる流量を Q、 Qとしたときに、それぞれの流量と振幅計
1 2
測による流量の出力値、校正係数の簡略な関係は以下のようになる。
Q = A X (X - B )
1 1 1 1
Q = A X (X - B )
2 2 2 2
Qは流量、 Aはスパンの校正係数、 Xは出力値、 Bはゼロ流量時の出力値で、添え 字はそれぞれ配管 1、配管 2を表す。配管 1と 2に分流した場合にはそれぞれの配管 の算出値の足し算として
全流量 Qは
Q = Q + Q
1 2
となる。 校正 α回目の流量 Qを Q aとするとそれぞれの校正結果は
Q = A X (X - B ) + A X (X - B )
同様に3回目の校正結果の流量 Q のときには
Q = A X (X - B ) + A X (X — B )
バルブを閉めて流量ゼロにした時、 Qも Qもゼロと考えられるので、その時の出力 値 X とすると、
B = X 、
B = X
となる。したがって
Q = A X (X - X ) + A X (X - X )
Q = A X (X - X ) + A X (X - X )
となり、式が 2つで未知係数力 Aと Aの 2つになる。この連立方程式を解くことでそれ ぞれの校正係数を算出することが出来る。この方法で流量の種類を多くした場合、も つとも各流量にわたって適合する係数を決めることも出来る。それぞれの配管に校正 係数をもつことができればそれぞれの配管の温度が違ってしまった場合などにそれ ぞれに補正することが出来るので温度変化などにたして、より精度の高い補正をかけ ること力 s出来るようになる。また、並歹 本管のそれぞれの値の比較から上流の渦や流 れの乱れによる分流異常の診断も可能になる。
[0064] 以上のように、本発明の計測法に基づいて最適化した設計を行ったコリオリ流量計 は、これまでの時間位相差計測法とは全く異なった有利な特徴をもつことが出来る。
[0065] また、これら全ての加速度センサーを速度センサーに置き換えた場合、固有振動 数比を大きくすることによって得られる感度の向上というメリットはないが、固有振動数 比の変化による感度の変化ということは避けることが出来る。また、固有振動数比が 高いということはコリオリ振動に混入するノイズ振動が小さいところでフィルターまたは 検波復調を行うことになり SN比が向上するという効果もある。速度センサーを使用す る場合、式(20)の右辺で示されるとおり捩れ方向のパネ定数が感度に影響しない。
[0066] 従来の位相差時間計測法では直接このパネ定数が感度に影響を与えていたため に温度の変化による感度の補正を配管温度を計測することで行っていた。また、従来 のものにおいては圧力が校正した条件に比べて異なった場合に配管内の応力の変 化や、管の膨張による断面 2次モーメントの変化、即ちパネ定数の変化の影響を受け やすかつた。その点速度センサーを用いた場合にはこの影響も無くなり、長期安定性 の面から性能が向上する。したがって対象流体の密度が大きぐ感度がある程度確 保される場合には、速度センサーを使用したコリオリ流量計においても従来のもので は得られない特有の効果を生じることがわかる。
[0067] なお、特表平 2—501006号公報に開示された技術においても固有振動数比が 1 以上のところで計測を行い、同様の効果を得ていると考えられるが、固有振動数比を さらに大きくし、数倍から 10倍などにした場合には更に SN比の改善が期待され、こ の点は上記公報には示唆されていない。このように大きな固有振動数比の適用時に 高次モードの節のある複雑な振動状態を避けることが出来るのは、本発明のようにコ リオリ振動方向に補強フレームが無ければ実現できない。その意味で補強フレームを 使用して数倍以上の固有振動数比を使用することは、従来は考えられていないことと いえる。
[0068] 上記のような本発明の基本原理に基づき作製した試作機によるセンサーチューブ の特性実験を行った。なお、この試作機は中央に強制振動フレームを持ち、コリオリ 振動フレームとなる配管を自動調心玉軸受けで保持しており、また、コリオリフレーム への接続はフレキシブルチューブを使ったこともあり、コリオリ振動方向に非常に捩れ やすい構造になっている。コリオリ振動方向と強制振動方向について個別に任意の パネを設置することが可能で、任意の固有振動数比で実験できるようになつている。 但し、上記理論で最適化されていないため、コリオリ振動方向についての慣性モーメ ントが非常に大きい。コリオリ振動数が低いなどの特性力 感度は十分には大きくな いが、本発明の特徴は現れている。
[0069] 図 6 (a)はコリオリ固有振動数が 15Hzのパネ定数と慣性モーメントの設定で強制振 動数 5Hz力、ら 55Hzまで変化させて計測を行レ、、両速度センサーからの差の出力を 、レーザ振動計で計測した強制振動の振幅 Φ Lにあたる値で除したもので、流量に
0
っレ、ては 200kg/hで一定とした計測結果から Okg/hで計測した結果を弓 Iレ、たものであ る。コリオリ振動が現れるはずの位相角についてだけの成分を表示するために強制 振動の信号との位相角力 補正を行っている。強制振動の振幅 Φ Lは制御回路によ
0
つて一定に保たれている。理論的感度曲線とはここでは式(22)を表計算で描かせ、 大きさをフィッティングしたものである。したがって絶対値についての一致を示したも のではない。しかし、曲線の形状については完全に一致しているものと思われる。振 動数比 3のところに現れている理論曲線に乗らない部分については、コリオリ振動フ レームの強度が足りず最適設計されていないため、何らかのフレームの共振振動が 起きたものと思われる。
[数 22]
(22)
[0070] 図 6 (b)は上記とほぼ同じ条件でカ卩速度センサーからの差の出力を、レーザ振動計 で計測した強制振動の振幅 Φ 0Lにあたる値で除して、コリオリ振動が現れるはずの 位相角についてだけの成分を表示したものである。
[0071] 図中の理論的感度曲線は式(23)を表計算ソフトにより描かせ、大きさをフイツティ ングしたものである。したがって絶対値についての一致を示したものではない。しかし
、曲線の形状については完全に一致しているものと思われる。
[数 23] ト (1
(23)
図 6(c)はバラストを付加させて慣性モーメント I が大きくなるように変化させると同時
Θ
に駆動振動数を変化させて固有振動数比 aは 2.7で固定するような条件で感度を計 測したものである。このようにバラストを除去しコリオリ固有振動数を大きくしていけば コリオリ固有振動数の 3乗に比例して感度が良くなつていることが分かる。コリオリ固有 振動数は式(18)のように慣性モーメント I との関係があり、加速度計測では式(21) のように慣性モーメント I と感度の関係があるので慣性モーメントだけを変化させてコ
Θ
リオリ固有振動数を変化させた場合、固有振動数比 αが一定ならば感度は慣性モー メントの平方根の 3乗に反比例している。式(20)の理論的な特性を実験的に証明し ているものである。
[0073] 図 6 (d)はコリオリ振動方向のパネ定数を変化させてコリオリ固有振動数を変化させ ると同時に駆動振動数を変化させて固有振動数比 αは 2.7で固定するような条件で 感度を測定したものである。コリオリ固有振動数に比例して感度が大きくなつているこ とが分かる。これは式(18)と(20)からわかるようにコリオリ方向のパネ定数の平方根 に比例して感度が大きくなつていることを示している。これも式(20)の理論的な特性 を実験的に証明しているものである。
[0074] 上記のような観点に基づいて得られる本発明のコリオリ流量計の主要構成は次のよ うなものとなる。即ち、本発明に係るコリオリ流量計は、被試験流体が流れる管路を外 部から振動させ、該流体にコリオリカを発生させるように微小な回転振動させる強制 振動手段と、前記強制振動の振動軸とは異なる振動軸で振動する前記コリオリカに よって誘起されるコリオリ振動を、変形しにくい剛性フレームおよび変形を受け持つ弾 性変形部の組み合わせによって、前記コリオリ振動の振動方向については 1軸回りに 近い振動に制限し、高次振動を抑制する手段と、前記強制振動手段による前記管路 の強制振動数が前記コリオリ振動の方向の固有振動数であるコリオリ固有振動数の 1 倍以上になる駆動振動数で駆動する強制振動制御手段と、前記強制振動手段によ つて生じた強制振動の振動振幅を求める手段と、前記強制振動により発生するコリオ リカによって生じるコリオリ振動の振動振幅を求める手段と、前記管路における強制 振動手段による強制振動振幅とコリオリカによって生じるコリオリ振動振幅の比と強制 振動数の値により管路を流れる流体の流量を演算する質量流量演算手段とを備えた ものである。
[0075] また、本発明に係る他のコリオリ流量計は、前記コリオリ流量計において、前記強制 振動により発生する互いに逆方向のコリオリカによって生じる管路の振動振幅を検出 する 2個の振動振幅検出手段を備え、前記強制振動手段の振動振幅を求める手段 は、前記 2個の振動振幅検出手段の和信号により求めるものであり、前記コリオリカ によって生じる振動振幅を求める手段は、前記 2個の振動振幅検出手段の差信号に より求めるものであり、前記質量流量演算手段は、前記和信号と差信号の比により、 管路を流れる流体の流量を演算するようにしたものである。
[0076] また、本発明に係る他のコリオリ流量計は前記強制振動により発生するコリオリカに よって生じる前記コリオリ振動の振動振幅を検出するための 2個の振動振幅検出手段 を備え、それらは強制振動の振動成分および外部からのノイズ振動および前記コリオ リ振動の振動軸の回転振動以外の振動を有効に除去できるように配置され、その差 信号を求めることによって前記コリオリ振動の振動軸の周りの振動振幅を求めるもの であり、前記強制振動手段の振動振幅を検出するために、さらに 2個の振動振幅検 出手段を備え、それらは外部からの振動および強制振動の振動軸回りの回転振動 以外の振動を有効に除去できるように配置され、その差信号を求めることによって前 記強制振動振幅を求めるようにしたものである。
[0077] また、本発明に係るほかのコリオリ流量計は前記コリオリ流量計において該流体が 流れる管路が 2本あり、該流体はそれらを平行に同じ方向に流れる管路を備え、該管 路、強制振動手段、高次振動を抑制する手段のフレーム、振動振幅を求める手段な ど同様のものが面対称に備えられ、強制振動が音叉のように反対向きに振動し、外 部振動からの影響や、強制振動が外部へ伝わることを低減したものである。
[0078] また、本発明に係る他のコリオリ流量計は前記コリオリ流量計において前記振動振 幅検出手段は面対称位置にそれぞれ固定された磁石とコイルの組み合わせからな る相対速度センサーであり、前記質量流量演算手段は前記速度センサーによる速度 振幅により質量流量を演算するようにしたものである。
[0079] また、本発明に係る他のコリオリ流量計は、前記コリオリ流量計において、 前記振 動振幅検出手段は角速度センサーであり、前記質量流量演算手段は前記角速度セ ンサ一による速度振幅により質量流量を演算するようにしたものである。
[0080] また、本発明に係る他のコリオリ流量計は、前記強制振動手段は、前記振動数比の 変化に対して感度の変化が少ない駆動振動数の領域を選択して振動させるようにし たものである。
[0081] また、本発明に係る他のコリオリ流量計は、前記コリオリ流量計において、前記振動 振幅検出手段は加速度センサーであり、前記質量流量演算手段は前記加速度セン サ一による加速度振幅により質量流量を演算するようにしたものである。
[0082] また、本発明に係る他のコリオリ流量計は、前記コリオリ流量計において、前記振動 振幅の計測時に駆動振動数による位相検波を行い、コリオリカによる振動以外の振 動数の影響、コリオリ振動が発生する位相以外の振動位相の影響を除去する信号処 理手段を備えたものである。
[0083] また、本発明に係る他のコリオリ流量計は、前記コリオリ流量計において、前記被計 測流体が流れる管路が両基部が支持された U字型をなす U字管であり、前記 U字管 の 2本の直管部の間において、該直管部と平行に配置し、前記 U字管の先端部を支 持する強制振動フレームと、前記強制振動フレームを振動させる強制振動手段と、 前記強制振動フレームに支持され、前記 2本の直管部を支持するコリオリ振動フレー ムと、前記コリオリ振動フレームの両端部に設けた振動振幅検出手段とを備えたもの である。
[0084] また、本発明に係る他のコリオリ流量計は、前記コリオリ流量計において、前記強制 振動フレームは、振動方向に切り欠きを備え、該切り欠き部分で強制振動フレームの 振動中心を形成するようにしたものである。
[0085] また、本発明に係る他のコリオリ流量計は、前記コリオリ流量計において、前記強制 振動制御手段において駆動電圧の位相と強制振動の位相の比較と強制振動振幅 の値から強制振動方向の固有振動数で共振させるように強制振動を制御する手段を 備え 該被試験流体の密度が変化したときに変化する強制振動の固有振動数の値 をもとに予想される校正係数の変化をあらかじめ記憶された補正係数式もしくは補正 係数テーブルより補正する演算手段を備えたものである。
[0086] また、本発明に係る他のコリオリ流量計は、前記コリオリ流量計において、前記コリ オリ振動方向の慣性モーメントと強制振動の慣性モーメントのそれぞれの変化率が 密度の変化に対して同じになるようにフレーム等の重量配分や配管形状が設定され ていて、該流体の密度変化に対して強制振動方向の固有振動数とコリオリ振動方向 のコリオリ固有振動数の比が変化しないことを特徴とする請求項 1記載のコリオリ流量 [0087] また、本発明に係る他のコリオリ流量計は、強制振動数がコリオリ固有振動数の 1倍 以上の振動数において、検知されたコリオリ振動の方向の振動振幅が、流量ゼロの 時に記憶された大きさになるように、コリオリ振動を抑制する手段を備え、その抑制手 段に対して投入されたエネルギーの大きさをと強制振動の振動振幅の値、駆動振動 数の値を使って流量を演算する手段を備えたものである。
[0088] また、本発明に係る他のコリオリ流量計は、前記コリオリ流量計において強制振動 の固有振動数とコリオリ振動方向の固有振動数に影響を及ぼす主要な弾性変形箇 所に温度計測する手段を備え、計測された温度により、弾性係数を補正し、それによ り流量計の校正係数を補正する演算手段を備えたものである。
[0089] また、本発明に係る他のコリオリ流量計は、前記コリオリ流量計において、前記コリ オリ流量計において、該流体を分流することなぐ片側の管路の流入口から流入し、 片側の管路を通過して流出した後に戻り流路によりもう一方の管路の流入口へ接続 され、もう一方の管路を通過した後に流量計から流出してレ、くように流路を直列に接 続されるようにしたものである。
[0090] また、本発明に係る他のコリオリ流量計は、前記コリオリ流量計において直列化され たそれぞれの管路の出力を監視し、演算する手段を備え、それぞれの値の関係性を 判断することで流量計の異常状態を診断することが出来るようにしたものである。
[0091] また、本発明に係る他のコリオリ流量計は、前記コリオリ流量計において該流体をほ ぼ等分に分流する分岐管路を備え、それぞれ力 本の管路に別れて流入し、管路を 通過した後に再び合流する合流管路を備え、合流して流量計から流出するようにな る、分岐と合流の管路を備え、流路を並列にされたものである。
[0092] また、本発明に係る他のコリオリ流量計は、前記コリオリ流量計の校正において該 流体の流れを止めたときのゼロ流量時のそれぞれの管路から出力される検出値と流 量の異なる複数の流量における校正を行レ、、その複数の流量校正結果から面対称 に存在するそれぞれの管路別の校正係数を算出するために、校正結果と校正係数 、計測値との関係式を連立方程式を解くことによって算出するようにしたものである。
[0093] また、本発明に係る他のコリオリ流量計は、前記コリオリ流量計の校正において温 度計測手段をそれぞれの管路について備え、それぞれの管路の振動数に影響を与 える弾性変形部の温度が異なった時に管路 1と管路 2で個別に温度補正を行うことで 補正精度と高めたものである。
[0094] また、本発明に係る他のコリオリ流量計は、前記コリオリ流量計において、互いに平 行で内部を流れる流体の向きが異なる少なくとも 2本の直管部を備えた管路と、両直 管部の両端部を各々支持する第 1横フレーム及び第 2横フレームと、前記第 1横フレ ーム及び第 2横フレームの中間部を支持し、両直管部の間に該直管と平行に配置し た縦フレームと、前記縦フレームの中間部を固定し、該縦フレームの軸線方向に振 動自在に支持するする支持台と、前記縦フレームを振動させる強制振動手段と、前 記横フレームの一つの両端に固定した 2個の振動振幅検出手段とを備えたものであ る。
発明を実施するための最良の形態
[0095] 本発明は上記のような基本的思想によりなされたものであるが、以下、本発明をより 具体化した実施の形態、即ち実施例について説明する。図 2には本発明の第 1実施 例を示しており、 U字型 11の直管部 12、 13は 2枚の平行な補強板 14、 15からなるコ リオリ振動フレーム 16で支持されており、両補強板 14と 15の間にはその両端部に加 速度センサー 17、 18を固定している。なお、この加速度センサー 17、 18に代えて速 度センサーとすることもできる。また、両補強板 14、 15の中間部で U字管の直管部 1 2、 13の中心位置、即ち U字管 11の捩れ中心には、コリオリ振動フレーム 16を振動 自在に支持する強制振動フレーム 19を固定している。
[0096] この装置において、 U字型の配管 11の捩れ方向に対する補強を行う補強板 14、 1 5からなるコリオリ振動フレーム 16は、コリオリ振動方向にはある程度のパネ定数 (K
Θ
)で支え、強制振動フレーム 19は支持基盤 22からこれよりも強いパネ定数 (K )で支 えること力出来るようにしてレ、る。支持基盤 22からの強制振動方向のパネ定数だけを 非常に強くすることにより、振動数比 1以上 (好ましくは例えば 1. 5以上、 目標として は 5以上)を実現することが可能となる。なお、支持基盤は図示するもの以外に、単に 配管支持部材のみからなるものや、 U字型の面に対して平行な平面を基準面として 面対称に全く同じ U字型の管路を持ったもの等、種々の態様で実施することができる 。この点は以下に述べる種々のコリオリ流量計においても同様である。 [0097] 強制振動フレーム 19がコリオリ振動フレーム 16を支える方法は強制振動の固有振 動数の方がコリオリ振動数よりも数倍以上大きくなればどのような形式でも良ぐ強制 振動フレーム上に固定されたベアリングによって、コリオリ振動フレームに固定された 回転軸を支える形式にも置き換えることが出来る。
[0098] 強制振動フレーム 19と支持基盤 22、もしくは同じ固有振動数を持つカウンターバラ ンスの振動部材もしくは面対称な管路の間に電磁コイルからなる加振器 20をおき、 固有振動数で駆動振動させる。それにより U字管は強制振動フレーム 19を通して曲 げ方向に強制振動させられる。発生したコリオリカはコリオリ振動フレーム 16を捩る方 向に振動させる。
[0099] これをコリオリ振動フレーム 16に固定された 2つの加速度センサー 17、 18の差動 振動によって、コリオリ振動回転の角加速度を計測する。 2つの加速度センサーの和 の信号は強制振動の加速度の大きさを示している。コリオリ振動に関係する差動信 号の駆動振動数における検波復調した実効振幅を和算した強制振動の振動を駆動 振動数で検波復調した実行振幅で割り算し、駆動周波数の値、校正補正値などと演 算することで質量流量を算出することができるものでありが、その詳細は図 5とともに 以下に詳述する。
[0100] また、強制振動の振幅は厳密に加振振幅を制御し一定に保つことで計測を省略す ることも可能である。さらに 2つの加速度センサーは一つの角加速度センサーに置き 換えることも出来る。その際には強制振動の振幅を計測する別個の加速度センサー または速度センサーを取り付ける。
[0101] 従来の U字タイブと異なるのは出来るだけ Θ方向の 1貧性モーメントを小さくするよう に幅 bを出来るだけ小さく取っていること、捩れ方向のパネ定数を小さくする必要がな レ、ので配管肉厚が一般の位相差時間計測法のコリオリ流量計と異なり厚くすることが 可能であること、通常の U字管であれば曲げ (強制振動方向)の固有振動数より、捩 れ (コリオリ振動方向)のパネ定数の方が大きくなるところを支持フレームの形状をェ 夫することで曲げ方向の固有振動数を大きくしているところである。
[0102] また、この実施例では支配的なパネを配管以外とするために配管によるパネ定数 の影響が小さくなるように、強制振動の曲がり部、(切欠き部)は弾性変形させるコリオ リ振動フレームと支持基盤の間の配管の 3分の 1のところに作られている。このことに よりコリオリ振動フレームの配管付け根部分で発生する曲げモーメントの大きさを最小 にしている。
[0103] 上記のようなコリオリ流量計において、両カ卩速度センサー 17、 18からの信号は、例 えば図 5 (a)に示される質量流量演算回路によって処理される。図 5 (a)に示す例に おいては、前記加速度センサーとしての加速度計 61、 62の信号を各々作動増幅器 63と加算器 64に入力し、図示するような波形の信号を得て各々同期復調器としての ロックインアンプ 65、 66に出力する。各ロックインアンプ 65、 66では、コリオリ流量計 を強制加振する加振器 72の駆動信号としての加振信号 67を入力しており、これを同 期信号として用いている。
[0104] 各ロックインアンプ 65、 66からの位相情報と振幅信号は質量流量演算部 70に出力 し、作動増幅器 63からの差信号はここで、 90度位相での検波出力によってコリオリの 捩れ振動に比例する振幅信号が求められる。また、同様に加算器 64からの和信号 はここで、 0度位相での強制振動に比例する振幅信号が求められ、質量流量演算部 70で図示するような割り算を行うことにより質量流量が演算される。その際、前記ロッ クインアンプと同様に、加振信号 67の信号を同期信号として用いている。
[0105] 一方、強制振動を行う加振信号 67は、可変増幅器 69において図示の例では加速 度計 62の信号を入力し、その信号により増幅率を調節している。その後パワーアン プ 71で駆動信号として増幅し、加振器 72を駆動してコリオリ流量計の強制振動を行 つている。
[0106] 上記のような信号処理回路を用いることにより、互いに逆方向にコリオリ振動する 2 力所に設けた加速度計の信号を用いて、容易に、且つ正確にコリオリ振動の振幅と 強制振動の振幅の比を演算することが出来る。
[0107] また、図 5 (b)は一つの配管にコリオリ振動検出用と強制振動検出用にそれぞれ 2 つずつ、合計 4つの加速度センサーを取り付けた場合の信号処理回路の例である。 4つ加速度センサーを配置する場合にはコリオリ振動検出用の 2つの加速度センサ 一は加速度センサー 17、 18を強制振動の回転軸 0の延長線上に出来るだけ近い場 所に設置し、強制振動の影響を出来るだけ受けないように配置される。その信号は 図 5 (b)の加速度計 74、 75として入力され、差信号の振幅をロックインアンプにより計 測することでコリオリ振動の振幅を計測する。これにより流量計全体が上下に震動す るなどの原因で信号に混入する同相ノイズ信号が除去される。また、強制振動による 大きな加速度が生じにくい位置に設置されるため、計測すべきコリオリ振動振幅の大 きさに適した小さいレンジの加速度センサーを使用することができ、計測の分解能を 良好にすることが出来る。強制振動検出用の加速度センサーは強制振動のフレーム 上の 2箇所に回転軸 0から距離の異なる場所に設置される。これらは図 5 (b)の加速 度計 76、 77として入力され、差信号をとることで同相ノイズを除去した後にロックイン アンプで強制振動の振幅が計測される。
[0108] 図 3には第 2実施例としての直線型コリオリ流量計の例を示している。この流量計に おいては、配管の肉厚を変化させて変形しやすい曲がり部とほとんど剛体フレームと 考えてよいフレーム部とに分けている。
[0109] 中央のコリオリ振動部 25はコリオリ振動によって揺動できるように薄肉部となってお り、そこで揺動できるようになった支持部材 27からコリオリ振動数よりも高い周波数で 加振される。これにより左右の配管が上下に振動させられる。これは前記図 12に示 すような従来より用いられている直線型コリオリ流量計と同じ原理である力 曲がり部 とフレーム部を備えているために、配管の固有振動数よりも、また中央部のコリオリ振 動フレームの振れ固有振動数よりも高い周波数で加振しても、高次モードの振動を 生じにくい。
[0110] 左右の剛体フレーム 28、 29は揺動運動のため、上下に反対方向のコリオリカを受 ける。そのために中央のコリオリ振動部 25は、管内に流量があるときには揺動しなが ら上下動することになる。これを図示実施例においてはコリオリ振動部 25に固定した 2つの加速度センサー 30、 31の差動で回転角加速度を検出する。また、この 2つの 加速度センサー 30、 31に代えて側面に角加速度センサーを一つ設けることも可能 である。
[0111] この実施例においては、直管型なので非常に圧力損失が小さぐ配管径が大きくな つても流量計の大きさが大きくなり過ぎなレ、。また、洗浄性が良いなどの性質がある。
[0112] 図 4には第 3実施例としての、いわゆる「B型」のセンサーチューブからなるコリオリ流 量計を示している。この流量計は特表平 2— 5010006号公報に示されるものと一見 類似しているが、強制振動させる方向が異なっている。
[0113] 図 4に示すコリオリ流量計においては、基台 33上に固定した揺動用支持台 34上に 縦フレーム 35の略中心部を固定し、縦フレーム 35の端部にこの縦フレームに対して 直角に延びる第 1横フレーム 36を固定し、他端部には第 1外側直管 37と第 2外側直 管 38とを支持する第 2横フレーム 39を固定している。更に、第 1横フレーム 36と第 2 横フレーム 39の間には、第 1内側直管 40と第 2内側直管 41を支持している第 3横フ レーム 42を固定している。また、図示の例においては、第 1内側直管 40と第 2内側直 管 41は、各々管支持部材 43、 44によって支持されている。なお、この実施例におい ては基台 33を用いているが、これを用いることなく 2本の管路を支持するようにしても 良い。
[0114] 縦フレーム 35における図中第 1横フレーム 36寄り部分の下方には、強制振動駆動 部材 45を備え、切り欠きによって形成される揺動用支持台 34の揺動中心部 46を中 心として、縦フレーム 35を強制振動させる。それにより管路 47において特に第 1外側 直管 37と第 2外側直管 38部分を図中矢印方向に流れる流体によって各管にコリオリ 振動の力が発生し、その力によって第 1横フレーム 36と第 2横フレームが振動する。
[0115] この振動によって第 1横フレーム 36が振動するため、第 1横フレーム 36の左右端部 に設けた加速度計 48、 49によってそれぞれ加速度を計測する。これらの加速度計 4 8及び 49により得られた信号の処理は、前記各実施例と同様であるのでその説明は 省略する。このコリオリ流量計においては、強制振動方向の慣性モーメントとコリオリ 方向の慣性モーメントの比を調整することが容易である。また、中央の切り欠き部で 強制振動方向のパネ定数を決め、その上部の強制振動フレームがコリオリ振動フレ ームを強制振動の固有振動数よりも小さい固有振動数になるように支える。
産業上の利用可能性
[0116] 以上のように、本発明によるコリオリ流量計においては、従来のものでは計測できな かった低密度流体の質量流量計測を必要とする分野、特に超高圧での質量流量計 測が要求される燃料電池車用水素充填器、また今後需要が急速に拡大すると思わ れる常圧の気体計測分野において、特に水素流量などの密度の低い気体流量計測 分野、石油、天然ガスなどの取り引きに関係するような長期安定性が要求され且つ計 測精度が高くなければならない流量計側分野、また、環境分析や医療、半導体製造 等の分野に有効に利用することが出来る。 図面の簡単な説明
[図 1]本発明の特性を表す周波数比に対する感度特性のグラフと、その特徴を例示 した図である。
[図 2]本発明を U字型コリオリ流量計に適用した実施例の斜視図である。
[図 3]本発明を直管型コリオリ流量計に適用した実施例の斜視図である。
[図 4]本発明を B型コリオリ流量計に適用した実施例の斜視図である。
[図 5]本発明の計測信号の 2種類の処理例を示すブロック図である。
[図 6]本発明に基づく実験例を示すグラフである。
[図 7]U字管を用いたコリオリ流量計の原理を示す図である。
[図 8]U字管を用いたコリオリ流量計の一例を示す斜視図である。
[図 9] (a)は同コリオリ流量計の作動状態における平面図、 (b)は同側面図、(c)は同 正面図である。
[図 10] (a)は同コリオリ流量計の振動状態を順に示した図であり、 (b)は振動位相を 測定したときの状態を示すグラフである。
[図 11]位相差時間計測法でのコリオリ振動数に対する駆動振動数の振動数比として の固有振動数比と感度の関係を示すグラフである。
[図 12]直管型コリオリ流量計の作動原理を示す図である。

Claims

請求の範囲
[1] 被試験流体が流れる管路を外部から振動させ、該流体にコリオリカを発生させるよ うに微小な回転振動させる強制振動手段と、
前記強制振動の振動軸とは異なる振動軸で振動する前記コリオリカによって誘起さ れるコリオリ振動を、変形しにくい剛性フレームおよび変形を受け持つ弾性変形部の 組み合わせによって、前記コリオリ振動の振動方向については 1軸回りに近い振動に 制限し、高次振動を抑制する手段と、
前記強制振動手段による前記管路の強制振動数が前記コリオリ振動の方向の固有 振動数であるコリオリ固有振動数の 1倍以上になる駆動振動数で駆動する強制振動 制御手段と、
前記強制振動手段によって生じた強制振動の振動振幅を求める手段と、 前記強制振動により発生するコリオリカによって生じるコリオリ振動の振動振幅を求 める手段と、
前記管路における強制振動手段による強制振動振幅とコリオリカによって生じるコリ オリ振動振幅の比と強制振動数の値により管路を流れる流体の流量を演算する質量 流量演算手段とを備えたことを特徴とするコリオリ流量計。
[2] 前記強制振動により発生する互いに逆方向のコリオリカによって生じる管路の振動 振幅を検出する 2個の振動振幅検出手段を備え、
前記強制振動手段の振動振幅を求める手段は、前記 2個の振動振幅検出手段の 和信号により求めるものであり、
前記コリオリカによって生じる振動振幅を求める手段は、前記 2個の振動振幅検出 手段の差信号により求めるものであり、
前記質量流量演算手段は、前記和信号と差信号の比により、管路を流れる流体の 流量を演算することを特徴とする請求項 1記載のコリオリ流量計。
[3] 前記強制振動により発生するコリオリカによって生じる前記コリオリ振動の振動振幅を 検出するための 2個の振動振幅検出手段を備え、
それらは強制振動の振動成分および外部からのノイズ振動および前記コリオリ振動 の振動軸の回転振動以外の振動を有効に除去できるように配置され、その差信号を 求めることによって前記コリオリ振動の振動軸の周りの振動振幅を求めるものであり、 前記強制振動手段の振動振幅を検出するために、さらに 2個の振動振幅検出手段 を備え、
それらは外部からの振動および強制振動の振動軸回りの回転振動以外の振動を 有効に除去できるように配置され、その差信号を求めることによって前記強制振動振 幅を求めることを特徴とする請求項 1記載のコリオリ流量計。
[4] 該流体が流れる管路が 2本あり、該流体はそれらを平行に同じ方向に流れる管路を 備え、
該管路、強制振動手段、高次振動を抑制する手段のフレーム、振動振幅を求める 手段など同様のものが面対称に備えられ、
強制振動が音叉のように反対向きに振動し、外部振動からの影響や、強制振動が 外部へ伝わることを低減した請求項 1のコリオリ流量計。
[5] 前記振動振幅検出手段は面対称位置にそれぞれ固定された磁石とコイルの組み合 わせからなる相対速度センサーであり、前記質量流量演算手段は前記速度センサー による速度振幅により質量流量を演算することを特徴とする請求項 4記載のコリオリ流 量計。
[6] 前記強制振動手段は、前記振動数比の変化に対して感度の変化が少ない駆動振 動数の領域を選択して振動させることを特徴とする請求項 5記載のコリオリ流量計。
[7] 前記振動振幅検出手段は角速度センサーであり、前記質量流量演算手段は前記角 速度センサーによる速度振幅により質量流量を演算することを特徴とする請求項 1記 載のコリオリ流量計。
[8] 前記振動振幅検出手段は加速度センサーであり、前記質量流量演算手段は前記加 速度センサーによる加速度振幅により質量流量を演算することを特徴とする請求項 2 または請求項 3記載のコリオリ流量計。
[9] 前記振動振幅の計測時に駆動振動数による位相検波を行い、コリオリカによる振動 以外の振動数の影響、コリオリ振動が発生する位相以外の振動位相の影響を除去 する信号処理手段を備えたことを特徴とする請求項 2または請求項 3のコリオリ流量
[10] 前記被計測流体が流れる管路は、両基部が支持された U字型をなす U字管であり、 前記 U字管の 2本の直管部の間において、該直管部と平行に配置し、前記 U字管 の先端部を支持する強制振動フレームと、
前記強制振動フレームを振動させる強制振動手段と、
前記強制振動フレームに支持され、前記 2本の直管部を支持するコリオリ振動フレ ームと、
前記コリオリ振動フレームの両端部に設けた振動振幅検出手段とを備えたことを特 徴とする請求項 1記載のコリオリ流量計。
[11] 前記強制振動フレームは、振動方向に切り欠きを備え、該切り欠き部分で強制振動 フレームの振動中心を形成することを特徴とする請求項 10記載のコリオリ流量計。
[12] 前記強制振動制御手段において駆動電圧の位相と強制振動の位相の比較と強制 振動振幅の値から強制振動方向の固有振動数で共振させるように強制振動を制御 する手段を備え、
該被試験流体の密度が変化したときに変化する強制振動の固有振動数の値をもと に予想される校正係数の変化をあらかじめ記憶された補正係数式もしくは補正係数 テーブルより補正する演算手段を備えた請求項 1のコリオリ流量計。
[13] 前記コリオリ振動方向の慣性モーメントと強制振動の慣性モーメントのそれぞれの変 化率が密度の変化に対して同じになるようにフレーム等の重量配分や配管形状が設 定されていて、該流体の密度変化に対して強制振動方向の固有振動数とコリオリ振 動方向のコリオリ固有振動数の比が変化しないことを特徴とする請求項 1記載のコリ オリ流量計。
[14] 強制振動数がコリオリ固有振動数の 1倍以上の振動数において、検知されたコリオリ 振動の方向の振動振幅が、流量ゼロの時に記憶された大きさになるように、コリオリ振 動を抑制する手段を備え、その抑制手段に対して投入されたエネルギーの大きさを と強制振動の振動振幅の値、駆動振動数の値を使って流量を演算する手段を備え た請求項 1のコリオリ流量計。
[15] 強制振動の固有振動数とコリオリ振動方向の固有振動数に影響を及ぼす主要な弾 性変形箇所に温度計測する手段を備え、計測された温度により、弾性係数を補正し 、それにより流量計の校正係数を補正する演算手段を備えた請求項 1のコリオリ流量
[16] 請求項 4のコリオリ流量計で該流体を分流することなぐ片側の管路の流入口から流 入し、片側の管路を通過して流出した後に戻り流路によりもう一方の管路の流入口へ 接続され、もう一方の管路を通過した後に流量計力 流出してレ、くように流路を直列 に接続された請求項 4のコリオリ流量計。
[17] 請求項 16のコリオリ流量計で直列化されたそれぞれの管路の出力を監視し、演算す る手段を備え、それぞれの値の関係性を判断することで流量計の異常状態を診断す ることが出来る請求項 16のコリオリ流量計。
[18] 請求項 4のコリオリ流量計で該流体をほぼ等分に分流する分岐管路を備え、それぞ れが 2本の管路に別れて流入し、管路を通過した後に再び合流する合流管路を備え 、合流して流量計から流出するようになる、分岐と合流の管路を備え、流路を並列に された請求項 4のコリオリ流量計。
[19] 請求項 18のコリオリ流量計の校正において該流体の流れを止めたときのゼロ流量時 のそれぞれの管路から出力される検出値と流量の異なる複数の流量における校正を 行レ、、その複数の流量校正結果から面対称に存在するそれぞれの管路別の校正係 数を算出するために、校正結果と校正係数、計測値との関係式を連立方程式を解く ことによって算出する請求項 18のコリオリ流量計を校正する際の校正方法。
[20] 請求項 4のコリオリ流量計において請求項 15の温度計測手段をそれぞれの管路に ついて備え、それぞれの管路の振動数に影響を与える弾性変形部の温度が異なつ た時に管路 1と管路 2で個別に温度補正を行うことで補正精度と高めた請求項 4と請 求項 15のコリオリ流量計。
[21] 互いに平行で内部を流れる流体の向きが異なる少なくとも 2本の直管部を備えた管 路と、
両直管部の両端部を各々支持する第 1横フレーム及び第 2横フレームと、 前記第 1横フレーム及び第 2横フレームの中間部を支持し、両直管部の間に該直 管と平行に配置した縦フレームと、
前記縦フレームの中間部を固定し、該縦フレームの軸線方向に振動自在に支持す るする支持台と、
前記縦フレームを振動させる強制振動手段と、
前記横フレームの一つの両端に固定した 2個の振動振幅検出手段とを備えたこと を特徴とする請求項 1記載のコリオリ流量計。
PCT/JP2004/006397 2003-05-12 2004-05-12 コリオリ流量計 WO2004099733A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/556,678 US7258025B2 (en) 2003-05-12 2004-05-12 Coriolis flowmeter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003133362 2003-05-12
JP2003-133362 2003-05-12
JP2004119950A JP4565150B2 (ja) 2003-05-12 2004-04-15 コリオリ流量計
JP2004-119950 2004-04-15

Publications (1)

Publication Number Publication Date
WO2004099733A1 true WO2004099733A1 (ja) 2004-11-18

Family

ID=33436444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006397 WO2004099733A1 (ja) 2003-05-12 2004-05-12 コリオリ流量計

Country Status (3)

Country Link
US (1) US7258025B2 (ja)
JP (1) JP4565150B2 (ja)
WO (1) WO2004099733A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1869415B1 (en) * 2005-04-06 2018-01-10 Micro Motion, Inc. Compact vibratory flowmeter for measuring flow characteristics of a cement flow material
CN111263881A (zh) * 2017-10-27 2020-06-09 恩德斯+豪斯流量技术股份有限公司 包括两个测量管对的科里奥利质量流量计以及确定质量流量的方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060211981A1 (en) * 2004-12-27 2006-09-21 Integrated Sensing Systems, Inc. Medical treatment procedure and system in which bidirectional fluid flow is sensed
US20090075129A1 (en) * 2004-12-27 2009-03-19 Integrated Sensing Systems, Inc. Microfluidic device and method of use
US7259574B2 (en) * 2005-04-15 2007-08-21 Vaidya Avinash Shrikrishna Sensor device for measuring frequency and amplitude of varying force signals
US7628082B2 (en) * 2007-06-25 2009-12-08 Integrated Sensing Systems, Inc. Microfluidic device and microtube therefor
US7784359B2 (en) * 2008-04-17 2010-08-31 Rosemount Aerospace Inc. Coriolis effect mass flow meter and gyroscope
KR101231108B1 (ko) * 2008-05-01 2013-02-07 마이크로 모우션, 인코포레이티드 초저주파수 진동 유량계 그리고 그 작동 방법 및 형성 방법
EP2279393B1 (en) * 2008-05-09 2021-06-30 Micro Motion, Inc. Dual tube coriolis flow meter with a central printed circuit board serving as support for driver and pick-off components
JP5039654B2 (ja) * 2008-07-09 2012-10-03 株式会社キーエンス 流量計
NL1036341C2 (nl) 2008-12-19 2010-06-22 Berkin Bv Coriolis flowsensor met verend opgehangen balansmassa.
JP5542355B2 (ja) * 2009-03-24 2014-07-09 トキコテクノ株式会社 振動式測定装置
DE102009028007A1 (de) * 2009-07-24 2011-01-27 Endress + Hauser Flowtec Ag Meßumwandler vom Vibrationstyp sowie Meßgerät mit einem solchen Meßwandler
DE102009028006A1 (de) * 2009-07-24 2011-01-27 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp sowie Meßgerät mit einem solchen Meßwandler
NL1038047C2 (en) 2010-06-16 2011-12-20 Berkin Bv Coriolis flowsensor.
JP5267530B2 (ja) * 2010-10-01 2013-08-21 トヨタ自動車株式会社 配管の支持構造
RU2492427C1 (ru) * 2012-03-23 2013-09-10 Александр Львович Дондошанский Массовый расходомер
JP5774572B2 (ja) * 2012-11-02 2015-09-09 株式会社堀場製作所 燃料測定システム
NL2012498B1 (en) * 2014-03-24 2016-01-19 Berkin Bv Coriolis flowsensor.
US9368264B2 (en) * 2014-09-08 2016-06-14 Micro Motion, Inc. Magnet keeper assembly and related method
US9865673B2 (en) 2015-03-24 2018-01-09 International Business Machines Corporation High resistivity soft magnetic material for miniaturized power converter
US10571322B2 (en) * 2015-04-10 2020-02-25 Micro Motion, Inc. Measuring a spatiotemporal relationship between two of more positions of a vibratory element
TWI625507B (zh) * 2015-10-08 2018-06-01 壓電股份有限公司 柯氏力式質量流量計
DE102015122439A1 (de) * 2015-12-21 2017-06-22 Endress + Hauser Flowtec Ag Durchflussmessgerät mit gyroskopischem Sensor
JP2017181214A (ja) * 2016-03-29 2017-10-05 岩谷産業株式会社 調整済みガス流量計
US11774944B2 (en) 2016-05-09 2023-10-03 Strong Force Iot Portfolio 2016, Llc Methods and systems for the industrial internet of things
US10754334B2 (en) 2016-05-09 2020-08-25 Strong Force Iot Portfolio 2016, Llc Methods and systems for industrial internet of things data collection for process adjustment in an upstream oil and gas environment
US10983507B2 (en) 2016-05-09 2021-04-20 Strong Force Iot Portfolio 2016, Llc Method for data collection and frequency analysis with self-organization functionality
US11327475B2 (en) 2016-05-09 2022-05-10 Strong Force Iot Portfolio 2016, Llc Methods and systems for intelligent collection and analysis of vehicle data
EP3382351B1 (en) * 2017-03-31 2019-10-09 Ryusok Co., Ltd Ultrasonic flow meter
JP6178033B1 (ja) * 2017-04-03 2017-08-09 株式会社アツデン コリオリ式質量流量計
US11131989B2 (en) 2017-08-02 2021-09-28 Strong Force Iot Portfolio 2016, Llc Systems and methods for data collection including pattern recognition
US10429224B2 (en) * 2017-12-05 2019-10-01 General Electric Company Interface for a Coriolis flow sensing assembly
US10598531B2 (en) 2018-04-23 2020-03-24 General Electric Company Coriolis flow meter with multiple actuators arranged on a flow tube and driven in different planes
CN110806240B (zh) * 2019-11-21 2025-06-06 沃森测控技术(河北)有限公司 一种用于流量计部件的固定装置
DE102020122583A1 (de) 2020-08-28 2022-03-03 H2 Mobility Deutschland GmbH & Co. KG Verfahren und Vorrichtung zum Eichen einer Wasserstofftankstelle
CN114061678B (zh) * 2022-01-10 2022-03-25 中国空气动力研究与发展中心设备设计与测试技术研究所 一种科氏流量计数字驱动方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915015A (ja) * 1995-07-03 1997-01-17 Fuji Electric Co Ltd 質量流量計
JP2001241987A (ja) * 2000-03-01 2001-09-07 Endress & Hauser Frohtec Ag ただ1つの湾曲した測定管を有するコリオリの質量流量/密度センサ
JP7072693B2 (ja) * 2020-03-02 2022-05-20 ノキア テクノロジーズ オーユー 接続性の信頼性向上のための未来位置推定

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA82345B (en) * 1981-02-17 1983-02-23 J Smith Method and apparatus for mass flow measurement
US5323658A (en) * 1992-06-19 1994-06-28 Fuji Electric Co., Ltd. Coriolis mass flowmeter
DE59700185D1 (de) * 1996-12-11 1999-07-08 Flowtec Ag Coriolis-Massendurchfluss-/-Dichte-Aufnehmer mit einem einzigen geraden Messrohr
JP3689738B2 (ja) * 2002-02-26 2005-08-31 独立行政法人産業技術総合研究所 コリオリ式流量計

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915015A (ja) * 1995-07-03 1997-01-17 Fuji Electric Co Ltd 質量流量計
JP2001241987A (ja) * 2000-03-01 2001-09-07 Endress & Hauser Frohtec Ag ただ1つの湾曲した測定管を有するコリオリの質量流量/密度センサ
JP7072693B2 (ja) * 2020-03-02 2022-05-20 ノキア テクノロジーズ オーユー 接続性の信頼性向上のための未来位置推定

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1869415B1 (en) * 2005-04-06 2018-01-10 Micro Motion, Inc. Compact vibratory flowmeter for measuring flow characteristics of a cement flow material
CN111263881A (zh) * 2017-10-27 2020-06-09 恩德斯+豪斯流量技术股份有限公司 包括两个测量管对的科里奥利质量流量计以及确定质量流量的方法
US11428559B2 (en) 2017-10-27 2022-08-30 Endress+Hauser Flowtec Ag Coriolis mass flow meter with two pair of measuring tubes having two excitation mode natural frequencies and method of use

Also Published As

Publication number Publication date
US20070034019A1 (en) 2007-02-15
US7258025B2 (en) 2007-08-21
JP2004361392A (ja) 2004-12-24
JP4565150B2 (ja) 2010-10-20

Similar Documents

Publication Publication Date Title
WO2004099733A1 (ja) コリオリ流量計
US8695439B2 (en) Dual pick-off vibratory flowmeter
CN101858765B (zh) 类直管型科里奥利质量流量计
CN106233099B (zh) 具有指引凸台的流量计量器歧管
CN106461443B (zh) 改进的振动流量计量器以及相关方法
WO2016141628A1 (zh) 一种质量流量传感器
JPH02504671A (ja) 密度変化の影響を受けないコリオリ質量流量計
KR100797728B1 (ko) 코리올리 유량계
JP3812844B2 (ja) 三次モード振動式コリオリ流量計
EP1129324A4 (en) CORIOLIS FLUID FLOW METER
JP2003247878A (ja) コリオリ式流量計
JPH067324Y2 (ja) 質量流量計
JP3555652B2 (ja) コリオリ質量流量計
JPH11166845A (ja) コリオリ質量流量計
HK1234485A1 (en) Improved vibrating flowmeter and related methods
JPS63314415A (ja) 質量流量計
JP2004108916A (ja) コリオリ質量流量計
HK1234485B (zh) 改進的振動流量計量器以及相關方法
HK1234484B (zh) 流體動量檢測方法和相關裝置
HK1232283B (zh) 具有指引凸台的流量計量器歧管
JPH0783719A (ja) 質量流量計
HK1209180B (en) Coriolis flowmeter and method with improved meter zero
HK1209180A1 (en) Coriolis flowmeter and method with improved meter zero
JPH11166846A (ja) コリオリ質量流量計
JPH02136715A (ja) コリオリカ直管質量流量計

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007034019

Country of ref document: US

Ref document number: 10556678

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10556678

Country of ref document: US