WO2004098282A2 - Sequences de type e de sous-unites de l'atp-synthase de nematodes - Google Patents
Sequences de type e de sous-unites de l'atp-synthase de nematodes Download PDFInfo
- Publication number
- WO2004098282A2 WO2004098282A2 PCT/US2003/011717 US0311717W WO2004098282A2 WO 2004098282 A2 WO2004098282 A2 WO 2004098282A2 US 0311717 W US0311717 W US 0311717W WO 2004098282 A2 WO2004098282 A2 WO 2004098282A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polypeptide
- atp synthase
- synthase subunit
- seq
- amino acid
- Prior art date
Links
- 241000244206 Nematoda Species 0.000 title abstract description 208
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 220
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 216
- 229920001184 polypeptide Polymers 0.000 claims abstract description 213
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 135
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 127
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 127
- 238000000034 method Methods 0.000 claims abstract description 84
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 63
- 239000002773 nucleotide Substances 0.000 claims abstract description 61
- 150000001875 compounds Chemical class 0.000 claims description 119
- 230000000694 effects Effects 0.000 claims description 83
- 238000012360 testing method Methods 0.000 claims description 51
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 47
- 230000008859 change Effects 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 3
- 239000013598 vector Substances 0.000 abstract description 19
- 239000003112 inhibitor Substances 0.000 abstract description 17
- 238000012216 screening Methods 0.000 abstract description 11
- 239000012190 activator Substances 0.000 abstract description 3
- 230000002407 ATP formation Effects 0.000 abstract description 2
- 230000016784 immunoglobulin production Effects 0.000 abstract 1
- 238000010188 recombinant method Methods 0.000 abstract 1
- 108090000623 proteins and genes Proteins 0.000 description 125
- 235000018102 proteins Nutrition 0.000 description 61
- 102000004169 proteins and genes Human genes 0.000 description 61
- 241000196324 Embryophyta Species 0.000 description 59
- 210000004027 cell Anatomy 0.000 description 55
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 44
- 235000001014 amino acid Nutrition 0.000 description 44
- 241000243785 Meloidogyne javanica Species 0.000 description 42
- 229940024606 amino acid Drugs 0.000 description 40
- 150000001413 amino acids Chemical class 0.000 description 38
- 241000498254 Heterodera glycines Species 0.000 description 37
- 241001465754 Metazoa Species 0.000 description 37
- 241000228066 Zeldia punctata Species 0.000 description 34
- 239000002299 complementary DNA Substances 0.000 description 31
- 239000012634 fragment Substances 0.000 description 28
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 24
- 108020004414 DNA Proteins 0.000 description 24
- 230000003071 parasitic effect Effects 0.000 description 22
- 108091034117 Oligonucleotide Proteins 0.000 description 17
- 239000000203 mixture Substances 0.000 description 17
- 230000009261 transgenic effect Effects 0.000 description 17
- 230000001105 regulatory effect Effects 0.000 description 16
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 15
- 230000000507 anthelmentic effect Effects 0.000 description 15
- 230000035899 viability Effects 0.000 description 15
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 14
- 230000009368 gene silencing by RNA Effects 0.000 description 14
- 108700026244 Open Reading Frames Proteins 0.000 description 13
- 230000000692 anti-sense effect Effects 0.000 description 13
- 238000003556 assay Methods 0.000 description 13
- 241000894007 species Species 0.000 description 13
- 238000006467 substitution reaction Methods 0.000 description 13
- 108020004705 Codon Proteins 0.000 description 11
- 241000282412 Homo Species 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 11
- 235000013601 eggs Nutrition 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 10
- 108090000790 Enzymes Proteins 0.000 description 10
- 241000588724 Escherichia coli Species 0.000 description 10
- 241000282414 Homo sapiens Species 0.000 description 10
- 108091028043 Nucleic acid sequence Proteins 0.000 description 10
- 108700019146 Transgenes Proteins 0.000 description 10
- 235000014113 dietary fatty acids Nutrition 0.000 description 10
- 229940088598 enzyme Drugs 0.000 description 10
- 239000000194 fatty acid Substances 0.000 description 10
- 229930195729 fatty acid Natural products 0.000 description 10
- 150000004665 fatty acids Chemical class 0.000 description 10
- 239000003446 ligand Substances 0.000 description 10
- 239000002689 soil Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 9
- 229940079593 drug Drugs 0.000 description 9
- 239000003814 drug Substances 0.000 description 9
- 230000002401 inhibitory effect Effects 0.000 description 9
- 239000013612 plasmid Substances 0.000 description 9
- 238000003752 polymerase chain reaction Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 8
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 8
- 108091093037 Peptide nucleic acid Proteins 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 239000005090 green fluorescent protein Substances 0.000 description 8
- 238000009396 hybridization Methods 0.000 description 8
- 244000045947 parasite Species 0.000 description 8
- 230000001225 therapeutic effect Effects 0.000 description 8
- 238000007792 addition Methods 0.000 description 7
- 244000144972 livestock Species 0.000 description 7
- 230000001069 nematicidal effect Effects 0.000 description 7
- 229910001868 water Inorganic materials 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- 108090000994 Catalytic RNA Proteins 0.000 description 6
- 102000053642 Catalytic RNA Human genes 0.000 description 6
- 102000053602 DNA Human genes 0.000 description 6
- 244000068988 Glycine max Species 0.000 description 6
- 235000010469 Glycine max Nutrition 0.000 description 6
- 241001143352 Meloidogyne Species 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 230000000361 pesticidal effect Effects 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 108091092562 ribozyme Proteins 0.000 description 6
- 238000012163 sequencing technique Methods 0.000 description 6
- 230000014616 translation Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 108091060211 Expressed sequence tag Proteins 0.000 description 5
- 241001480224 Heterodera Species 0.000 description 5
- 231100000674 Phytotoxicity Toxicity 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 150000002611 lead compounds Chemical class 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 229960005486 vaccine Drugs 0.000 description 5
- 241000253350 Capillaria Species 0.000 description 4
- 108091033380 Coding strand Proteins 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 4
- 241000498255 Enterobius vermicularis Species 0.000 description 4
- 101710204837 Envelope small membrane protein Proteins 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 206010061217 Infestation Diseases 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- 101710145006 Lysis protein Proteins 0.000 description 4
- 235000004443 Ricinus communis Nutrition 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 240000003768 Solanum lycopersicum Species 0.000 description 4
- 239000000921 anthelmintic agent Substances 0.000 description 4
- 229940124339 anthelmintic agent Drugs 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 150000002333 glycines Chemical class 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000002438 mitochondrial effect Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000001850 reproductive effect Effects 0.000 description 4
- 238000007423 screening assay Methods 0.000 description 4
- -1 thiphenes Chemical class 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- 239000003053 toxin Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 239000005660 Abamectin Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 3
- 241001465677 Ancylostomatoidea Species 0.000 description 3
- 241000244186 Ascaris Species 0.000 description 3
- 241000208838 Asteraceae Species 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 241000243770 Bursaphelenchus Species 0.000 description 3
- 235000002566 Capsicum Nutrition 0.000 description 3
- 241000932610 Dolichodorus Species 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 240000009088 Fragaria x ananassa Species 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- 241001442498 Globodera Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000243976 Haemonchus Species 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 241001540513 Hoplolaimus Species 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 102100034343 Integrase Human genes 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- 241001220360 Longidorus Species 0.000 description 3
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- 239000006002 Pepper Substances 0.000 description 3
- 235000016761 Piper aduncum Nutrition 0.000 description 3
- 240000003889 Piper guineense Species 0.000 description 3
- 235000017804 Piper guineense Nutrition 0.000 description 3
- 235000008184 Piper nigrum Nutrition 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 241000201377 Radopholus Species 0.000 description 3
- 108700008625 Reporter Genes Proteins 0.000 description 3
- 240000000528 Ricinus communis Species 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 241000244031 Toxocara Species 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 210000004102 animal cell Anatomy 0.000 description 3
- 239000004359 castor oil Substances 0.000 description 3
- 235000019438 castor oil Nutrition 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 244000079386 endoparasite Species 0.000 description 3
- 206010014881 enterobiasis Diseases 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 230000032050 esterification Effects 0.000 description 3
- 238000005886 esterification reaction Methods 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 239000000575 pesticide Substances 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 230000003362 replicative effect Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 3
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 3
- 229960003656 ricinoleic acid Drugs 0.000 description 3
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 231100000765 toxin Toxicity 0.000 description 3
- 108700012359 toxins Proteins 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- UOORRWUZONOOLO-OWOJBTEDSA-N (E)-1,3-dichloropropene Chemical compound ClC\C=C\Cl UOORRWUZONOOLO-OWOJBTEDSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 241001147657 Ancylostoma Species 0.000 description 2
- 241001147672 Ancylostoma caninum Species 0.000 description 2
- 241000380490 Anguina Species 0.000 description 2
- 241000294569 Aphelenchoides Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000580217 Belonolaimus Species 0.000 description 2
- 241000244036 Brugia Species 0.000 description 2
- 241000244038 Brugia malayi Species 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 235000007516 Chrysanthemum Nutrition 0.000 description 2
- 240000005250 Chrysanthemum indicum Species 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 108091035707 Consensus sequence Proteins 0.000 description 2
- 241001126268 Cooperia Species 0.000 description 2
- 108010008286 DNA nucleotidylexotransferase Proteins 0.000 description 2
- 102100033215 DNA nucleotidylexotransferase Human genes 0.000 description 2
- 241001147667 Dictyocaulus Species 0.000 description 2
- 241000399934 Ditylenchus Species 0.000 description 2
- 235000003550 Dracunculus Nutrition 0.000 description 2
- 241000316827 Dracunculus <angiosperm> Species 0.000 description 2
- 101150013191 E gene Proteins 0.000 description 2
- 244000148064 Enicostema verticillatum Species 0.000 description 2
- 241000498256 Enterobius Species 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 102000005720 Glutathione transferase Human genes 0.000 description 2
- 108010070675 Glutathione transferase Proteins 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 241000219146 Gossypium Species 0.000 description 2
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 2
- 241001481225 Heterodera avenae Species 0.000 description 2
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- 206010027626 Milia Diseases 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 241000201433 Nacobbus Species 0.000 description 2
- 241000498271 Necator Species 0.000 description 2
- 241001137882 Nematodirus Species 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- 241000510960 Oesophagostomum Species 0.000 description 2
- 241000243981 Onchocerca Species 0.000 description 2
- 241000243985 Onchocerca volvulus Species 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 241000243795 Ostertagia Species 0.000 description 2
- 241001391196 Oxyspirura Species 0.000 description 2
- 241000904715 Oxyuris Species 0.000 description 2
- 241000244187 Parascaris Species 0.000 description 2
- 208000030852 Parasitic disease Diseases 0.000 description 2
- 241000425347 Phyla <beetle> Species 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 241000193943 Pratylenchus Species 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 241000244200 Rhabditida Species 0.000 description 2
- 241000855013 Rotylenchus Species 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 241000922629 Spirocerca Species 0.000 description 2
- 241000244174 Strongyloides Species 0.000 description 2
- 241000244177 Strongyloides stercoralis Species 0.000 description 2
- 241000122932 Strongylus Species 0.000 description 2
- 241000196660 Subanguina Species 0.000 description 2
- 241001220316 Syngamus Species 0.000 description 2
- 235000012308 Tagetes Nutrition 0.000 description 2
- 241000736851 Tagetes Species 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- 241000347415 Teladorsagia Species 0.000 description 2
- 241000191771 Teladorsagia circumcincta Species 0.000 description 2
- 241001477954 Thelazia Species 0.000 description 2
- 108091036066 Three prime untranslated region Proteins 0.000 description 2
- 241000243774 Trichinella Species 0.000 description 2
- 241000243797 Trichostrongylus Species 0.000 description 2
- 241001489151 Trichuris Species 0.000 description 2
- 241001267618 Tylenchulus Species 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 241000244002 Wuchereria Species 0.000 description 2
- 241000244005 Wuchereria bancrofti Species 0.000 description 2
- 241000201423 Xiphinema Species 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 230000009435 amidation Effects 0.000 description 2
- 238000007112 amidation reaction Methods 0.000 description 2
- 208000007502 anemia Diseases 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000002141 anti-parasite Effects 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 239000003096 antiparasitic agent Substances 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 210000002149 gonad Anatomy 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 208000000509 infertility Diseases 0.000 description 2
- 230000036512 infertility Effects 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 230000000366 juvenile effect Effects 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 230000002475 laxative effect Effects 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229940102396 methyl bromide Drugs 0.000 description 2
- IJXHLVMUNBOGRR-UHFFFAOYSA-N methyl nonanoate Chemical compound CCCCCCCCC(=O)OC IJXHLVMUNBOGRR-UHFFFAOYSA-N 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 230000001617 migratory effect Effects 0.000 description 2
- FXWHFKOXMBTCMP-WMEDONTMSA-N milbemycin Natural products COC1C2OCC3=C/C=C/C(C)CC(=CCC4CC(CC5(O4)OC(C)C(C)C(OC(=O)C(C)CC(C)C)C5O)OC(=O)C(C=C1C)C23O)C FXWHFKOXMBTCMP-WMEDONTMSA-N 0.000 description 2
- ZLBGSRMUSVULIE-GSMJGMFJSA-N milbemycin A3 Chemical class O1[C@H](C)[C@@H](C)CC[C@@]11O[C@H](C\C=C(C)\C[C@@H](C)\C=C\C=C/2[C@]3([C@H](C(=O)O4)C=C(C)[C@@H](O)[C@H]3OC\2)O)C[C@H]4C1 ZLBGSRMUSVULIE-GSMJGMFJSA-N 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 239000005645 nematicide Substances 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 230000035479 physiological effects, processes and functions Effects 0.000 description 2
- 102000054765 polymorphisms of proteins Human genes 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000276 sedentary effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 235000021012 strawberries Nutrition 0.000 description 2
- 238000005556 structure-activity relationship Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- 150000000183 1,3-benzoxazoles Chemical class 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- VGONTNSXDCQUGY-RRKCRQDMSA-N 2'-deoxyinosine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC2=O)=C2N=C1 VGONTNSXDCQUGY-RRKCRQDMSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- 101150096316 5 gene Proteins 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 241000244044 Acanthocheilonema Species 0.000 description 1
- 241000238876 Acari Species 0.000 description 1
- 241001617415 Aelurostrongylus Species 0.000 description 1
- 241000125941 Afrina Species 0.000 description 1
- CXISPYVYMQWFLE-VKHMYHEASA-N Ala-Gly Chemical compound C[C@H]([NH3+])C(=O)NCC([O-])=O CXISPYVYMQWFLE-VKHMYHEASA-N 0.000 description 1
- 244000291564 Allium cepa Species 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 241001511271 Ancylostoma braziliense Species 0.000 description 1
- 241000520197 Ancylostoma ceylanicum Species 0.000 description 1
- 241000498253 Ancylostoma duodenale Species 0.000 description 1
- 241000520202 Ancylostoma tubaeforme Species 0.000 description 1
- 241000243791 Angiostrongylus Species 0.000 description 1
- 241000399940 Anguina tritici Species 0.000 description 1
- 241000244023 Anisakis Species 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 241000294568 Aphelenchoides fragariae Species 0.000 description 1
- 241000196805 Araeolaimida Species 0.000 description 1
- JQFZHHSQMKZLRU-IUCAKERBSA-N Arg-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CCCN=C(N)N JQFZHHSQMKZLRU-IUCAKERBSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000238421 Arthropoda Species 0.000 description 1
- 241000244176 Ascaridida Species 0.000 description 1
- 241000244185 Ascaris lumbricoides Species 0.000 description 1
- 241000244188 Ascaris suum Species 0.000 description 1
- HZYFHQOWCFUSOV-IMJSIDKUSA-N Asn-Asp Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(O)=O HZYFHQOWCFUSOV-IMJSIDKUSA-N 0.000 description 1
- VGRHZPNRCLAHQA-IMJSIDKUSA-N Asp-Asn Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CC(N)=O)C(O)=O VGRHZPNRCLAHQA-IMJSIDKUSA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241001444930 Atalodera Species 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 240000005343 Azadirachta indica Species 0.000 description 1
- 241000193388 Bacillus thuringiensis Species 0.000 description 1
- 241000580218 Belonolaimus longicaudatus Species 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000931178 Bunostomum Species 0.000 description 1
- 241000243771 Bursaphelenchus xylophilus Species 0.000 description 1
- 241001460030 Cactodera Species 0.000 description 1
- 241000244203 Caenorhabditis elegans Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000893172 Chabertia Species 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 1
- 108010062745 Chloride Channels Proteins 0.000 description 1
- 102000011045 Chloride Channels Human genes 0.000 description 1
- 241001220310 Chromadorida Species 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 240000007154 Coffea arabica Species 0.000 description 1
- 208000003322 Coinfection Diseases 0.000 description 1
- 102000010970 Connexin Human genes 0.000 description 1
- 108050001175 Connexin Proteins 0.000 description 1
- 241001126267 Cooperia oncophora Species 0.000 description 1
- 241000383197 Cooperia punctata Species 0.000 description 1
- 241000986238 Crenosoma Species 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241001255091 Criconema Species 0.000 description 1
- 241001267662 Criconemoides Species 0.000 description 1
- 241000220457 Crotalaria Species 0.000 description 1
- 241000729892 Crotalaria spectabilis Species 0.000 description 1
- 235000005830 Crotalaria vitellina Nutrition 0.000 description 1
- 241000040539 Cryphodera Species 0.000 description 1
- OOULJWDSSVOMHX-WDSKDSINSA-N Cys-Met Chemical compound CSCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CS OOULJWDSSVOMHX-WDSKDSINSA-N 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- 241001265489 Desmodorida Species 0.000 description 1
- 241000887156 Desmoscolecidae Species 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 241001625055 Dictyocaulus arnfieldi Species 0.000 description 1
- 241000180412 Dictyocaulus filaria Species 0.000 description 1
- 241001147669 Dictyocaulus viviparus Species 0.000 description 1
- 241000189163 Dipetalonema Species 0.000 description 1
- 241000502061 Diplogasterida Species 0.000 description 1
- 241000399948 Ditylenchus destructor Species 0.000 description 1
- 241000399949 Ditylenchus dipsaci Species 0.000 description 1
- 241000855180 Dorylaimus Species 0.000 description 1
- 241000312564 Dracunculus insignis Species 0.000 description 1
- 241001319090 Dracunculus medinensis Species 0.000 description 1
- 108091065810 E family Proteins 0.000 description 1
- 241001465750 Enoplia Species 0.000 description 1
- 241000702224 Enterobacteria phage M13 Species 0.000 description 1
- 241001167795 Escherichia coli OP50 Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 201000006353 Filariasis Diseases 0.000 description 1
- 241000986243 Filaroides Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 235000016623 Fragaria vesca Nutrition 0.000 description 1
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 1
- 101150066002 GFP gene Proteins 0.000 description 1
- 102000000802 Galectin 3 Human genes 0.000 description 1
- 108010001517 Galectin 3 Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 241000482313 Globodera ellingtonae Species 0.000 description 1
- 241001489135 Globodera pallida Species 0.000 description 1
- 241001442497 Globodera rostochiensis Species 0.000 description 1
- 241000923667 Globodera tabacum Species 0.000 description 1
- FYYSIASRLDJUNP-WHFBIAKZSA-N Glu-Asp Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(O)=O FYYSIASRLDJUNP-WHFBIAKZSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 108050006905 Glutamate-Gated Chloride Channel Proteins 0.000 description 1
- 102100036442 Glutathione reductase, mitochondrial Human genes 0.000 description 1
- VPZXBVLAVMBEQI-VKHMYHEASA-N Glycyl-alanine Chemical compound OC(=O)[C@H](C)NC(=O)CN VPZXBVLAVMBEQI-VKHMYHEASA-N 0.000 description 1
- 241000880292 Gnathostoma Species 0.000 description 1
- 206010053759 Growth retardation Diseases 0.000 description 1
- 241000315566 Habronema Species 0.000 description 1
- 241000243974 Haemonchus contortus Species 0.000 description 1
- 241001148481 Helicotylenchus Species 0.000 description 1
- 241001148478 Hemicriconemoides Species 0.000 description 1
- 241001267658 Hemicycliophora Species 0.000 description 1
- 241000057394 Heterodera cardiolata Species 0.000 description 1
- 241000040388 Heterodera carotae Species 0.000 description 1
- 241000040390 Heterodera cruciferae Species 0.000 description 1
- 241000379510 Heterodera schachtii Species 0.000 description 1
- 241000580313 Heterodera zeae Species 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 241000201431 Hirschmanniella Species 0.000 description 1
- CZVQSYNVUHAILZ-UWVGGRQHSA-N His-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CN=CN1 CZVQSYNVUHAILZ-UWVGGRQHSA-N 0.000 description 1
- 101000936958 Homo sapiens ATP synthase subunit e, mitochondrial Proteins 0.000 description 1
- 101001071608 Homo sapiens Glutathione reductase, mitochondrial Proteins 0.000 description 1
- 241001547406 Hyostrongylus Species 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000014416 Innexin Human genes 0.000 description 1
- 108050003470 Innexin Proteins 0.000 description 1
- 101710203526 Integrase Proteins 0.000 description 1
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- 125000000393 L-methionino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])C([H])([H])C(SC([H])([H])[H])([H])[H] 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 241000776461 Lagochilascaris Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 241000244011 Litomosoides Species 0.000 description 1
- 241000143317 Litomosoides sigmodontis Species 0.000 description 1
- NPBGTPKLVJEOBE-IUCAKERBSA-N Lys-Arg Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(O)=O)CCCNC(N)=N NPBGTPKLVJEOBE-IUCAKERBSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 208000002720 Malnutrition Diseases 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 1
- 241001139582 Mammomonogamus Species 0.000 description 1
- 241000142892 Mansonella Species 0.000 description 1
- 241000243784 Meloidogyne arenaria Species 0.000 description 1
- 241000611260 Meloidogyne chitwoodi Species 0.000 description 1
- 241001113272 Meloidogyne exigua Species 0.000 description 1
- 241001143337 Meloidogyne graminicola Species 0.000 description 1
- 241000243787 Meloidogyne hapla Species 0.000 description 1
- 241000243786 Meloidogyne incognita Species 0.000 description 1
- 241000002163 Mesapamea fractilinea Species 0.000 description 1
- 102000013379 Mitochondrial Proton-Translocating ATPases Human genes 0.000 description 1
- 108010026155 Mitochondrial Proton-Translocating ATPases Proteins 0.000 description 1
- 241001220460 Monhysterida Species 0.000 description 1
- 241001220354 Mononchida Species 0.000 description 1
- 241000986227 Muellerius Species 0.000 description 1
- 241000714177 Murine leukemia virus Species 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 230000006181 N-acylation Effects 0.000 description 1
- 108010079364 N-glycylalanine Proteins 0.000 description 1
- 241000583618 Nacobbus bolivianus Species 0.000 description 1
- 241000498270 Necator americanus Species 0.000 description 1
- 208000000291 Nematode infections Diseases 0.000 description 1
- 241000882879 Nematodirus helvetianus Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241001126260 Nippostrongylus Species 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241000510958 Oesophagostomum radiatum Species 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 241000863910 Ollulanus Species 0.000 description 1
- 241001494265 Onchocerca cervicalis Species 0.000 description 1
- 241000243794 Ostertagia ostertagi Species 0.000 description 1
- 241001221709 Oxyurida Species 0.000 description 1
- 241000904718 Oxyuris equi Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000244205 Panagrellus Species 0.000 description 1
- 241000244179 Parascaris equorum Species 0.000 description 1
- 241000899422 Parastrongyloides Species 0.000 description 1
- 241001220391 Paratrichodorus Species 0.000 description 1
- 241001148650 Paratylenchus Species 0.000 description 1
- 241001344126 Parelaphostrongylus Species 0.000 description 1
- 241001604339 Pearsonema plica Species 0.000 description 1
- 239000005643 Pelargonic acid Substances 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108010043958 Peptoids Proteins 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- FSXRLASFHBWESK-HOTGVXAUSA-N Phe-Tyr Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)C1=CC=CC=C1 FSXRLASFHBWESK-HOTGVXAUSA-N 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 241001277123 Physaloptera Species 0.000 description 1
- 241001677825 Physocephalus Species 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 241000193978 Pratylenchus brachyurus Species 0.000 description 1
- 241000193977 Pratylenchus musicola Species 0.000 description 1
- 241000193940 Pratylenchus penetrans Species 0.000 description 1
- 241000193953 Pratylenchus scribneri Species 0.000 description 1
- 241000978522 Pratylenchus zeae Species 0.000 description 1
- 241000530496 Pristionchus pacificus Species 0.000 description 1
- 101710093543 Probable non-specific lipid-transfer protein Proteins 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 241001617421 Protostrongylus Species 0.000 description 1
- 241000244039 Pseudoterranova Species 0.000 description 1
- 241000040495 Punctodera Species 0.000 description 1
- 108010009460 RNA Polymerase II Proteins 0.000 description 1
- 102000009572 RNA Polymerase II Human genes 0.000 description 1
- 108010078067 RNA Polymerase III Proteins 0.000 description 1
- 102000014450 RNA Polymerase III Human genes 0.000 description 1
- 108010065868 RNA polymerase SP6 Proteins 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 208000035415 Reinfection Diseases 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 241001220426 Rhigonematida Species 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 241001540480 Rotylenchulus Species 0.000 description 1
- 241000702971 Rotylenchulus reniformis Species 0.000 description 1
- 238000003111 SAR by NMR Methods 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 241000332476 Scutellonema Species 0.000 description 1
- 241000242583 Scyphozoa Species 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- LDEBVRIURYMKQS-WISUUJSJSA-N Ser-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@@H](N)CO LDEBVRIURYMKQS-WISUUJSJSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 235000005775 Setaria Nutrition 0.000 description 1
- 241000232088 Setaria <nematode> Species 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 241000244042 Spirurida Species 0.000 description 1
- 241001617580 Stephanurus Species 0.000 description 1
- 241000122934 Strongylus edentatus Species 0.000 description 1
- 241000122938 Strongylus vulgaris Species 0.000 description 1
- 241001220313 Syngamus trachea Species 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- 241000223892 Tetrahymena Species 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- GXDLGHLJTHMDII-WISUUJSJSA-N Thr-Ser Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](CO)C(O)=O GXDLGHLJTHMDII-WISUUJSJSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 241000607216 Toxascaris Species 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 241000243777 Trichinella spiralis Species 0.000 description 1
- 241000486415 Trichiura Species 0.000 description 1
- 241001220308 Trichodorus Species 0.000 description 1
- 241000122945 Trichostrongylus axei Species 0.000 description 1
- 241000243796 Trichostrongylus colubriformis Species 0.000 description 1
- 241000960389 Trichuris suis Species 0.000 description 1
- 241001638368 Trichuris vulpis Species 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 241000196508 Turbatrix Species 0.000 description 1
- 241000243782 Tylenchida Species 0.000 description 1
- 241000855019 Tylenchorhynchus Species 0.000 description 1
- 241001267621 Tylenchulus semipenetrans Species 0.000 description 1
- CGWAPUBOXJWXMS-HOTGVXAUSA-N Tyr-Phe Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=C(O)C=C1 CGWAPUBOXJWXMS-HOTGVXAUSA-N 0.000 description 1
- 241000571986 Uncinaria Species 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 241001242944 Xiphinema americanum Species 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 108010047495 alanylglycine Proteins 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 230000002009 allergenic effect Effects 0.000 description 1
- 230000003281 allosteric effect Effects 0.000 description 1
- 230000008850 allosteric inhibition Effects 0.000 description 1
- 229940125528 allosteric inhibitor Drugs 0.000 description 1
- 230000008841 allosteric interaction Effects 0.000 description 1
- KXSFECAJUBPPFE-UHFFFAOYSA-N alpha-Terthienyl Natural products C1=CSC(C=2SC(=CC=2)C=2SC=CC=2)=C1 KXSFECAJUBPPFE-UHFFFAOYSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000001679 anti-nematodal effect Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229940111121 antirheumatic drug quinolines Drugs 0.000 description 1
- 230000004596 appetite loss Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 108010062796 arginyllysine Proteins 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- RRZXIRBKKLTSOM-XPNPUAGNSA-N avermectin B1a Chemical class C1=C[C@H](C)[C@@H]([C@@H](C)CC)O[C@]11O[C@H](C\C=C(C)\[C@@H](O[C@@H]2O[C@@H](C)[C@H](O[C@@H]3O[C@@H](C)[C@H](O)[C@@H](OC)C3)[C@@H](OC)C2)[C@@H](C)\C=C\C=C/2[C@]3([C@H](C(=O)O4)C=C(C)[C@@H](O)[C@H]3OC\2)O)C[C@H]4C1 RRZXIRBKKLTSOM-XPNPUAGNSA-N 0.000 description 1
- 229940097012 bacillus thuringiensis Drugs 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 235000021015 bananas Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Chemical group C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical class C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 238000003766 bioinformatics method Methods 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 102000021178 chitin binding proteins Human genes 0.000 description 1
- 108091011157 chitin binding proteins Proteins 0.000 description 1
- LFHISGNCFUNFFM-UHFFFAOYSA-N chloropicrin Chemical compound [O-][N+](=O)C(Cl)(Cl)Cl LFHISGNCFUNFFM-UHFFFAOYSA-N 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 235000016213 coffee Nutrition 0.000 description 1
- 235000013353 coffee beverage Nutrition 0.000 description 1
- 230000008133 cognitive development Effects 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 238000003169 complementation method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical class O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- VGONTNSXDCQUGY-UHFFFAOYSA-N desoxyinosine Natural products C1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 VGONTNSXDCQUGY-UHFFFAOYSA-N 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 108020001096 dihydrofolate reductase Proteins 0.000 description 1
- FSXRLASFHBWESK-UHFFFAOYSA-N dipeptide phenylalanyl-tyrosine Natural products C=1C=C(O)C=CC=1CC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FSXRLASFHBWESK-UHFFFAOYSA-N 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 244000078703 ectoparasite Species 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 208000006036 elephantiasis Diseases 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 239000002316 fumigant Substances 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- 108010063718 gamma-glutamylaspartic acid Proteins 0.000 description 1
- 210000003976 gap junction Anatomy 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 208000037824 growth disorder Diseases 0.000 description 1
- 231100000001 growth retardation Toxicity 0.000 description 1
- 238000011553 hamster model Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 244000144980 herd Species 0.000 description 1
- 230000010196 hermaphroditism Effects 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 235000009200 high fat diet Nutrition 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 238000003898 horticulture Methods 0.000 description 1
- 102000044646 human ATP5ME Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 150000002475 indoles Chemical class 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 231100000535 infertility Toxicity 0.000 description 1
- 208000021267 infertility disease Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 230000000749 insecticidal effect Effects 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000002490 intestinal epithelial cell Anatomy 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000008141 laxative Substances 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 235000021266 loss of appetite Nutrition 0.000 description 1
- 208000019017 loss of appetite Diseases 0.000 description 1
- 235000015263 low fat diet Nutrition 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 230000001071 malnutrition Effects 0.000 description 1
- 235000000824 malnutrition Nutrition 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 210000000110 microvilli Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 208000024191 minimally invasive lung adenocarcinoma Diseases 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000025608 mitochondrion localization Effects 0.000 description 1
- 238000012900 molecular simulation Methods 0.000 description 1
- 150000002780 morpholines Chemical class 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 238000011392 neighbor-joining method Methods 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 235000018343 nutrient deficiency Nutrition 0.000 description 1
- 208000015380 nutritional deficiency disease Diseases 0.000 description 1
- 244000000042 obligate parasite Species 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- 208000003177 ocular onchocerciasis Diseases 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000026792 palmitoylation Effects 0.000 description 1
- 208000014837 parasitic helminthiasis infectious disease Diseases 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 150000003053 piperidines Chemical class 0.000 description 1
- 239000005648 plant growth regulator Substances 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000013823 prenylation Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 230000026447 protein localization Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000001543 purgative effect Effects 0.000 description 1
- 150000003217 pyrazoles Chemical class 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- 150000003235 pyrrolidines Chemical class 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 108010054624 red fluorescent protein Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 108091069025 single-strand RNA Proteins 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000006283 soil fumigant Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 230000036435 stunted growth Effects 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- UOORRWUZONOOLO-UHFFFAOYSA-N telone II Natural products ClCC=CCl UOORRWUZONOOLO-UHFFFAOYSA-N 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 150000003557 thiazoles Chemical class 0.000 description 1
- 230000036964 tight binding Effects 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000012250 transgenic expression Methods 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 229940096911 trichinella spiralis Drugs 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- DTOSIQBPPRVQHS-UHFFFAOYSA-N α-Linolenic acid Chemical compound CCC=CCC=CCC=CCCCCCCCC(O)=O DTOSIQBPPRVQHS-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/43504—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
- C07K14/43536—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from worms
- C07K14/4354—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from worms from nematodes
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/50—Isolated enzymes; Isolated proteins
Definitions
- Nematodes (derived from the Greek word for thread) are active, flexible, elongate, organisms that live on moist surfaces or in liquid environments, including films of water within soil and moist tissues within other organisms. While only 20,000 species of nematode have been identified, it is estimated that 40,000 to 10 million actually exist. Some species of nematodes have evolved to be very successful parasites of both plants and animals and are responsible for significant economic losses in agriculture and livestock and for morbidity and mortality in humans (Whitehead (1998) Plant Nematode Control. CAB International, New York).
- Nematode parasites of plants can inhabit all parts of plants, including roots, developing flower buds, leaves, and stems. Plant parasites are classified on the basis of their feeding habits into the broad categories: migratory ectoparasites, migratory endoparasites, and sedentary endoparasites. Sedentary endoparasites, which include the root knot nematodes (Meloidogyne) and cyst nematodes (Globodera and Heterodera) induce feeding sites and establish long-term infections within roots that are often very damaging to crops (Whitehead, supra).
- Sedentary endoparasites which include the root knot nematodes (Meloidogyne) and cyst nematodes (Globodera and Heterodera) induce feeding sites and establish long-term infections within roots that are often very damaging to crops (Whitehead, supra).
- Fatty acids are a class of natural compounds that have been investigated as alternatives to the toxic, non-specific organophosphate, carbamate and fumigant pesticides (Stadler et al. (1994) Planta Medica 60(2): 128-132; US Pat. Nos. 5,192,546; 5,346,698; 5,674,897; 5,698,592; 6,124,359). It has been suggested that fatty acids derive their pesticidal effects by adversely interfering with the nematode cuticle or hypodermis via a detergent (solubilization) effect, or through direct interaction of the fatty acids and the lipophilic regions of target plasma membranes (Davis et al.
- fatty acids are used in a variety of pesticidal applications including as herbicides (e.g., SCYTHE by Dow Agrosciences is the C9 saturated fatty acid pelargonic acid), as bactericides and fungicides (US Pat. Nos. 4,771,571; 5,246,716) and as insecticides (e.g., SAFER INSECTICIDAL SOAP by Safer, Inc.).
- herbicides e.g., SCYTHE by Dow Agrosciences is the C9 saturated fatty acid pelargonic acid
- bactericides and fungicides US Pat. Nos. 4,771,571; 5,246,716
- insecticides e.g., SAFER INSECTICIDAL SOAP by Safer, Inc.
- the phytotoxicity of fatty acids has been a major constraint on their general use in agricultural applications (US Pat. No. 5,093,124) and the mitigation of these undesirable effects while preserving pesticidal activity is a major area of research.
- Ricinoleic acid the major component of castor oil, provides another example of the unexpected effects esterification can have on fatty acid activity.
- Ricinoleic acid has been shown to have an inhibitory effect on water and electrolyte absorption using everted hamster jejunal and ileal segments (Gaginella et al. (1975) J Pharmacol Exp Ther 195(2):355-61) and to be cytotoxic to isolated intestinal epithelial cells (Gaginella et al. (1977) J Pharmacol Exp Ther 201(l):259-66).
- These features are likely the source of the laxative properties of castor oil which is given as a purgative in humans and livestock. Indeed castor oil included in some de-worming protocols because of its laxative properties.
- the methyl ester of ricinoleic acid is ineffective at suppressing water absorption in the hamster model (Gaginella et al. (1975) / Pharmacol Exp Ther 195(2):355-61).
- the macrocyclic lactones e.g., avermectins and milbemycins
- delta-toxins from Bacillus thuringiensis Bf
- Bf Bacillus thuringiensis
- macrocyclic lactones e.g., avermectins and milbemycins
- Bt delta toxins must be ingested to affect their target organ, the brush border of midgut epithelial cells (Marroquin et al. (2000) Genetics. 155(4): 1693-1699). 5 Consequently they are not anticipated to be effective against the dispersal, non-feeding, juvenile stages of plant parasitic nematodes in the field. Because juvenile stages only commence feeding when a susceptible host has been infected, nematicides may need to penetrate the plant cuticle to be effective.
- the seed contains toxic compounds (such as ricin) that can kill humans, pets, and livestock and is also highly allergenic.
- toxic compounds such as ricin
- the active 5 principle(s) for plant nematicidal activity has not been discovered and it remains difficult to derive commercially successful nematicidal products from these resistant plants or to transfer the resistance to agronomically important crops such as soybeans and cotton.
- Nematode parasites of vertebrates include gut roundworms, hookworms, pinworms, whipworms, and filarial worms. They can be transmitted in a variety of ways, including by water contamination, skin penetration, biting insects, or by ingestion of contaminated food.
- nematode control or "de-worming" is essential to the economic viability of livestock producers and is a necessary part of veterinary care of companion animals.
- Parasitic nematodes cause mortality in animals (e.g., heartworm in dogs and cats) and morbidity as a result of the parasites' inhibiting the ability of the infected animal to absorb nutrients.
- Parasite-induced nutrient deficiency results in diseased livestock and companion animals (i.e., pets), as well as in stunted growth. For instance, in cattle and dairy herds, a single untreated infection with the brown stomach worm can permanently stunt an animal's ability to effectively convert feed into muscle mass or milk.
- nematodes Human infections by nematodes result in significant mortality and morbidity, especially in tropical regions of Africa, Asia, and the Americas. The World Health Organization estimates 2.9 billion people are infected with parasitic nematodes. While mortality is rare in proportion to total infections (180,000 deaths annually), morbidity is tremendous and rivals tuberculosis and malaria in disability adjusted life year measurements.
- human parasitic nematodes include hookworm, filarial worms, and pinworms. Hookworm is the major cause of anemia in millions of children, resulting in growth retardation and impaired cognitive development. Filarial worm species invade the lymphatics, resulting in permanently swollen and deformed limbs (elephantiasis) and invade the eyes causing African Riverblindness. Ascaris lumbricoides, the large gut roundworm infects more than one billion people worldwide and causes malnutrition and obstructive bowl disease. In developed countries, pinworms are common and often transmitted through children in daycare.
- nematodes can still deprive the host of valuable nutrients and increase the ability of other organisms to establish secondary infections. In some cases, infections can cause debilitating illnesses and can result in anemia, diarrhea, dehydration, loss of appetite, or death.
- anthelmintic drugs will continue to be used to control and treat nematode parasitic infections in both humans and domestic animals. Finding effective compounds against parasitic nematodes has been complicated by the fact that the parasites have not been amenable to culturing in the laboratory. Parasitic nematodes are often obligate parasites (i.e., they can only survive in their respective hosts, such as in plants, animals, and/or humans) with slow generation times. Thus, they are difficult to grow under artificial conditions, making genetic and molecular experimentation difficult or impossible.
- C. elegans is a small free-living bacteriovorous nematode that for many years has served as an important model system for multicellular animals (Burglin (1998) Int. J. Parasitol., 28(3): 395-411).
- the genome of C. elegans has been completely sequenced and the nematode shares many general developmental and basic cellular processes with vertebrates (Ruvkin et al. (1998) Science 282: 2033-41). This, together with its short generation time and ease of culturing, has made it a model system of choice for higher eukaryotes (Aboobaker et al. (2000) Ann. Med. 32: 23-30).
- C. elegans serves as a good model system for vertebrates, it is an even better model for study of parasitic nematodes, as C. elegans and other nematodes share unique biological processes not found in vertebrates.
- nematodes produce and use chitin, have gap junctions comprised of innexin rather than connexin and contain glutamate-gated chloride channels rather than glycine-gated chloride channels (Bargmann (1998) Science 282: 2028-33).
- the latter property is of particular relevance given that the avermectin class of drugs is thought to act at glutamate-gated chloride receptors and is highly selective for invertebrates (Martin (1997) Vet. J. 154:11-34).
- a subset of the genes involved in nematode specific processes will be conserved in nematodes and absent or significantly diverged from homologues in other phyla. In other words, it is expected that at least some of the genes associated with functions unique to nematodes will have restricted phylogenetic distributions.
- the completion of the C. elegans genome project and the growing database of expressed sequence tags (ESTs) from numerous nematodes facilitate identification of these "nematode specific" genes.
- conserved genes involved in nematode-specific processes are expected to retain the same or very similar functions in different nematodes. This functional equivalence has been demonstrated in some cases by transforming C.
- RNA interference a technique that provides a powerful experimental tool for the study of gene function in nematodes (Fire et al. (1998) Nature 391(6669):806-811; Montgomery et al. (1998) Proc. Natl. Acad Sci USA 95(26): 15502-15507).
- Treatment of a nematode with double-stranded RNA of a selected gene can destroy expressed sequences corresponding to the selected gene thus reducing expression of the corresponding protein.
- By preventing the translation of specific proteins their functional significance and essentiality to the nematode can be assessed. Determination of essential genes and their corresponding proteins using C. elegans as a model system will assist in the rational design of anti-parasitic nematode control products.
- the invention features nucleic acid molecules encoding Meloidogyne javanica, Heterodera glycines, and Zeldia punctata ATP synthase subunit E and other nematode ATP synthase subunit E-like proteins.
- M. javanica is a Root Knot Nematode that causes substantial damage to several crops, including cotton, tobacco, pepper, and tomato.
- H. glycines, referred to as Soybean Cyst Nematode is a major pest of soybean.
- Z. punctata is free-living nematode that serves as a model for parasitic nematodes.
- the ATP synthase subunit E-like nucleic acids and polypeptides of the invention allow for the identification of a nematode species, and for the identification of compounds that bind to or alter the activity of ATP synthase subunit E-like polypeptides.
- Such compounds may provide a means for combating diseases and infestations caused by nematodes, particularly those caused by M. javanica (e.g., in tobacco, cotton, pepper, or tomato plants) and by H. glycines, (e.g., in soybean).
- the invention is based, in part, on the identification of a cDNA encoding M. javanica ATP synthase subunit E (SEQ ID NO: 1).
- This 466 nucleotide cDNA has a 312 nucleotide open reading frame (SEQ LD NO: 7) encoding a 104 amino acid polypeptide (SEQ ID NO: 4).
- the invention is also based, in part, on the identification of a cDNA encoding H. glycines ATP synthase subunit E (SEQ ID NO: 2).
- This 516 nucleotide cDNA has a 339 nucleotide open reading frame (SEQ ID NO: 8) encoding a 113 amino acid polypeptide (SEQ ID NO: 5).
- the invention is also based, in part, on the identification of a cDNA encoding Z. punctata ATP synthase subunit E (SEQ ID NO: 3).
- This 489 nucleotide cDNA has a 318 nucleotide open reading frame (SEQ LD NO: 9) encoding a 106 amino acid polypeptide (SEQ LD NO: 6).
- the invention features novel nematode ATP synthase subunit
- polypeptides include purified polypeptides having the amino acid sequences set forth in SEQ ID NO: 4, 5, and/or 6. Also included are polypeptides having an amino acid sequence that is at least about 60%, 70%, 75%, 80%, 85%, 90%, 95%, or 98% identical to SEQ ID NO: 4, 5, and/or 6.
- the invention includes polypeptides comprising, consisting of, or consisting essentially of such polypeptides.
- the invention also features such polypeptides linked, e.g., by a peptide bond to at least one heterologous polypeptide to form a fusion protein.
- the ATP synthase subunit E- like polypeptide can be flanked by heterologous polypeptides or by one or more heterologous amino acids.
- the purified polypeptides can be encoded by a nematode gene, e.g., a nematode gene other than C. elegans.
- the purified polypeptide has a sequence other than SEQ ID NO: 10 (C. elegans ATP synthase subunit E).
- the purified polypeptides can further include a heterologous amino acid sequence, e.g., an amino-terminal or carboxy-terminal amino acids (or both) that are not part of the naturally occurring sequence.
- polypeptide fragments of the aforementioned ATP synthase subunit E-like polypeptides e.g., a fragment of at least about 20, 30, 40, 50, 75, 85, 104, 106, 113 amino acids.
- Non- limiting examples of such fragments include: fragments from about amino acid 1 to 50, 1 to 75, 1 to 89, 1 to 91, 1 to 99, 1 to 100, 1 to 125, 51 to 113, 93 to 104, 99 to 113, and 93 to 106 of SEQ ID NO: 4, 5, and/or 6.
- the polypeptide or fragment thereof can be modified, e.g., processed, truncated, modified (e.g. by glycosylation, phosphorylation, acetylation, myristylation, prenylation, palmitoylation, amidation, addition of glycerophosphatidyl inositol), or any combination of the above.
- Certain ATP synthase subunit E-like polypeptides comprise a sequence of 104, 106, 113, 125, 150 amino acids or fewer.
- the invention features novel isolated nucleic acid molecules encoding nematode ATP synthase subunit E-like polypeptides.
- isolated nucleic acid molecules include nucleic acids having the nucleotide sequence set forth in SEQ ID NO: 1, 2, and/or 3 or SEQ ID NO: 7, 8, and/or 9. Also included are isolated nucleic acid molecules having the same sequence as or encoding the same polypeptide as a nematode ATP synthase subunit E-like gene (other than C. elegans ATP synthase subunit E-like genes).
- isolated nucleic acid molecules e.g., nucleic acid probes
- isolated nucleic acid molecules having a strand that hybridizes under low stringency conditions to a single stranded probe of the sequences of SEQ ID NO: 1, 2, and/or 3 or their complements and, optionally, encodes polypeptides of between 104 and 106 or 113 amino acids
- isolated nucleic acid molecules having a strand that hybridizes under high stringency conditions to a single stranded probe of the sequence of SEQ ID NO: 1, 2, and/or 3 or their complements and, optionally, encodes polypeptides of between 104 and 106 or 113 amino acids
- isolated nucleic acid fragments of an ATP synthase subunit E-like nucleic acid molecule e.g., a fragment of SEQ ID NO:l, 2, and/or 3 that is about 280, 415, 420, 440, and 500 or more nucleotides in length or ranges between such lengths
- oligon
- Exemplary oligonucleotides are oligonucleotides which anneal to a site located between nucleotides about 1 to 24, 1 to 48, 1 to 60, 1 to 120, 24 to 48, 24 to 60, 49 to 60, 61 to 180, 381 to 420, 421 to 480, 451 to 466, 451 to 489, and 451 to 516 of SEQ ID NO: 1, 2, and/or 3.
- Nucleic acid fragments include the following non-limiting examples: nucleotides about 1 to 200, 100 to 300, 200 to 400, 300 to 500, 300 to 466, 300 to 516, and 300 to 489 of SEQ ID NO: 1, 2, and/or 3.
- nucleic acid molecules that hybridize under stringent conditions to nucleic acid molecule comprising SEQ ID NO: 1, 2 or 3 and comprise 3,000, 2,000, 1,000 or fewer nucleotides.
- the isolated nucleic acid can further include a heterologous promoter operably linked to the ATP synthase subunit E-like nucleic acid molecule.
- a molecule featured herein can be from a nematode of the class Araeolaimida, Ascaridida, Chromadorida, Desmodorida, Diplogasterida, Monhysterida, Mononchida, Oxyurida, Rhigonematida, Spirurida, Enoplia, Desmoscolecidae, Rhabditida, or Tylenchida.
- the molecule can be from a species of the class Rhabditida, particularly a species other than C. elegans.
- the invention features a vector, e.g., a vector containing an aforementioned nucleic acid.
- the vector can further include one or more regulatory elements, e.g., a heterologous promoter.
- the regulatory elements can be operably linked to the ATP synthase subunit E-like nucleic acid molecules in order to express an ATP synthase subunit E-like nucleic acid molecule.
- the invention features a transgenic cell or transgenic organism having in its genome a transgene containing an aforementioned ATP synthase subunit E-like nucleic acid molecule and a heterologous nucleic acid, e.g., a heterologous promoter.
- the invention features an antibody, e.g., an antibody, antibody fragment, or derivative thereof that binds specifically to an aforementioned polypeptide.
- Such antibodies can be polyclonal or monoclonal antibodies.
- the antibodies can be modified, e.g., humanized, rearranged as a single-chain, or CDR- grafted.
- the antibodies may be directed against a fragment, a peptide, or a discontinuous epitope from an ATP synthase subunit E-like polypeptide.
- the invention features a method of screening for a compound that binds to a nematode ATP synthase subunit E-like polypeptide, e.g., an aforementioned polypeptide.
- the method includes providing the nematode polypeptide; contacting a test compound to the polypeptide; and detecting binding of the test compound to the nematode polypeptide.
- the method further includes contacting the test compound to a mammalian ATP synthase subunit E- like polypeptide; and detecting binding of the test compound to the mammalian ATP synthase subunit E-like polypeptide.
- a test compound that binds the nematode ATP synthase subunit E-like polypeptide with at least 2-fold, 5-fold, 10-fold, 20-fold, 50- fold, or 100-fold affinity greater relative to its affinity for the mammalian (e.g., a human) ATP synthase subunit E-like polypeptide can be identified.
- the invention also features methods for identifying compounds that alter the activity of a nematode ATP synthase subunit E-like polypeptide.
- the method includes contacting the test compound to the nematode ATP synthase subunit E-like polypeptide; and detecting an ATP synthase subunit E-like activity.
- a decrease in the level of ATP synthase subunit E-like activity of the polypeptide relative to the level of ATP synthase subunit E-like activity of the polypeptide in the absence of the test compound is an indication that the test compound is an inhibitor of the ATP synthase subunit E-like activity.
- the method further includes contacting a test compound such as an allosteric inhibitor or other types of inhibitors that prevent binding of the ATP synthase subunit E-like polypeptide to other molecules or proteins.
- a test compound such as an allosteric inhibitor or other types of inhibitors that prevent binding of the ATP synthase subunit E-like polypeptide to other molecules or proteins.
- a change in activity of proteins normally bound by the subunit E is an indication that the test compound is an inhibitor of the ATP synthase subunit E-like activity.
- Such inhibitory compounds are potential selective agents for reducing the viability of a nematode expressing an ATP synthase subunit E-like polypeptide, e.g., the viability of M. javanica, H. glycines, and/or Z. punctata.
- These methods can also include contacting the compound with a mammalian (e.g., a human) ATP synthase subunit E-like polypeptide; and detecting an ATP synthase subunit E-like activity.
- a mammalian (e.g., a human) ATP synthase subunit E-like polypeptide e.g., a human ATP synthase subunit E-like polypeptide
- a compound that decreases nematode ATP synthase subunit E activity to a greater extent than it decreases mammalian ATP synthase subunit E-like polypeptide activity could be useful as a selective inhibitor of the nematode polypeptide.
- a desirable compound can exhibit 2-fold, 5-fold, 10-fold, 20-fold, 50-fold, 100-fold or greater selective activity against the nematode polypeptide.
- Another featured method is a method of screening for a compound that alters an activity of an ATP synthase subunit E-like polypeptide or alters binding or regulation of other polypeptides by ATP synthase subunit E.
- the method includes providing the polypeptide; contacting a test compound to the polypeptide; and detecting an ATP synthase subunit E-like activity or the activity of polypeptides bound or regulated by the subunit E (e.g., ATP synthase complex), wherein a change in activity of ATP synthase subunit E-like polypeptides or other downstream polypeptides relative to the ATP synthase subunit E-like activity of the polypeptide or downstream polypeptides (e.g., ATP synthase complex) in the absence of the test compound is an indication that the test compound alters the activity of the polypeptide(s).
- the method can further include contacting the test compound to a mammalian (e.g., a human) ATP synthase subunit E-like polypeptide and measuring the ATP synthase subunit E-like activity of the mammalian ATP synthase subunit E-like polypeptide or other polypeptides affected or regulated by the subunit E.
- a test compound that alters the activity of the nematode ATP synthase subunit E-like polypeptide at a given concentration and that does not substantially alter the activity of the mammalian ATP synthase subunit E-like polypeptide or downstream polypeptides at the given concentration can be identified.
- An additional method includes screening for both binding to an ATP synthase subunit E-like polypeptide and for an alteration in the activity of an ATP synthase subunit E- like polypeptide.
- Yet another featured method is a method of screening for a compound that alters the viability or fitness of a transgenic cell or organism or nematode.
- the transgenic cell or organism has a transgene that expresses an ATP synthase subunit E- like polypeptide.
- the method includes contacting a test compound (e.g., an unscreened compound or one known to decrease ATP synthase subunit E activity in vitro) to the transgenic cell or organism and detecting changes in the viability or fitness of the transgenic cell or organism. This alteration in viability or fitness can be measured relative to an otherwise identical cell or organism that does not harbor the transgene.
- Also featured is a method of screening for a compound that alters the expression of a nematode nucleic acid encoding an ATP synthase subunit E-like polypeptide e.g., a nucleic acid encoding a M. javanica, H. glycines, and/or Z. punctata ATP synthase subunit E-like polypeptide.
- the method includes contacting a cell, e.g., a nematode cell, with a test compound and detecting expression of a nematode nucleic acid encoding an ATP synthase subunit E-like polypeptide, e.g., by hybridization to a probe complementary to the nematode nucleic acid encoding an ATP synthase subunit E-like polypeptide or by contacting polypeptides isolated from the cell with a compound, e.g., antibody that binds an ATP synthase subunit E-like polypeptide.
- a compound e.g., antibody that binds an ATP synthase subunit E-like polypeptide.
- Compounds identified by the method are also within the scope of the invention.
- the screening methods described herein can further include exposing a nematode to the compound and assessing the effect of the compound on the viability or reproductive ability of the nematode.
- Such methods can entail exposing nematodes to those compounds which bind to, inhibit, reduce the expression of or otherwise interfere with ATP synthase subunit E-like activity.
- Compounds which reduce nematode viability or reproductive ability in such assays are candidate pesticides.
- the invention features a method of treating a disorder (e.g., an infection) caused by a nematode, e.g., M. javanica or H. glycines, in a subject, e.g., a host plant or host animal.
- the method includes administering to the subject an effective amount of an inhibitor of an ATP synthase subunit E-like polypeptide activity or an inhibitor of expression of an ATP synthase subunit E-like polypeptide.
- Non- limiting examples of such inhibitors include: an antisense nucleic acid (or PNA) to an ATP synthase subunit E-like nucleic acid, an antibody to an ATP synthase subunit E- like polypeptide, or a small molecule identified as an ATP synthase subunit E-like polypeptide inhibitor by a method described herein.
- an antisense nucleic acid or PNA
- PNA antisense nucleic acid
- a “purified polypeptide”, as used herein, refers to a polypeptide that has been separated from other proteins, lipids, and nucleic acids with which it is naturally associated.
- the polypeptide can constitute at least 10, 20, 50 70, 80 or 95% by dry weight of the purified preparation.
- isolated nucleic acid is a nucleic acid, the structure of which is not identical to that of any naturally occurring nucleic acid, or to that of any fragment of a naturally occurring genomic nucleic acid spanning more than three, preferably one, separate genes.
- the term therefore covers, for example: (a) a DNA which is part of a naturally occurring genomic DNA molecule but is not flanked by both of the nucleic acid sequences that flank that part of the molecule in the genome of the organism in which it naturally occurs; (b) a nucleic acid incorporated into a vector or into the genomic DNA of a prokaryote or eukaryote in a manner such that the resulting molecule is not identical to any naturally occurring vector or genomic DNA; (c) a separate molecule such as a cDNA, a genomic fragment, a fragment produced by polymerase chain reaction (PCR), or a restriction fragment; and (d) a recombinant nucleotide sequence that is part of a hybrid gene, i.e., a gene encoding a fusion protein.
- PCR polymerase chain reaction
- nucleic acids present in mixtures of different (i) DNA molecules, (ii) transfected cells, or (iii) cell clones in a DNA library such as a cDNA or genomic DNA library.
- Isolated nucleic acid molecules according to the present invention further include molecules produced synthetically, as well as any nucleic acids that have been altered chemically and/or that have modified backbones.
- nucleic acid molecule primarily refers to the physical nucleic acid molecule and the phrase “nucleic acid sequence” refers to the sequence of the nucleotides in the nucleic acid molecule, the two phrases can be used interchangeably.
- substantially pure polypeptide as used herein in reference to a given polypeptide means that the polypeptide is substantially free from other biological macromolecules.
- the substantially pure polypeptide is at least 75% (e.g., at least 80, 85, 95, or 99%) pure by dry weight. Purity can be measured by any appropriate standard method, for example, by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.
- B12seq performs a comparison between the subject sequence and a target sequence using either the BLASTN (used to compare nucleic acid sequences) or BLASTP (used to compare amino acid sequences) algorithm.
- BLASTN used to compare nucleic acid sequences
- BLASTP used to compare amino acid sequences
- the default parameters of a BLOSUM62 scoring matrix, gap existence cost of 11 and extension cost of 1, a word size of 3, an expect value of 10, a per residue cost of 1 and a lambda ratio of 0.85 are used when performing amino acid sequence alignments.
- the output file contains aligned regions of homology between the target sequence and the subject sequence.
- a length is determined by counting the number of consecutive nucleotides or amino acid residues (i.e., excluding gaps) from the target sequence that align with sequence from the subject sequence starting with any matched position and ending with any other matched position.
- a matched position is any position where an identical nucleotide or amino acid residue is present in both the target and subject sequence. Gaps of one or more residues can be inserted into a target or subject sequence to maximize sequence alignments between structurally conserved domains (e.g., ⁇ -helices, ⁇ -sheets, and loops).
- nucleic acid or amino acid target sequence that aligns with a subject sequence can result in many different lengths with each length having its own percent identity.
- percent identity value can be rounded to the nearest tenth. For example, 78.11, 78.12, 78.13, and 78.14 is rounded down to 78.1, while 78.15, 78.16, 78.17, 78.18, and 78.19 is rounded up to 78.2.
- length value will always be an integer.
- conserved regions in a template, or subject, polypeptide can facilitate homologous polypeptide sequence analysis.
- conserved regions can be identified by locating a region within the primary amino acid sequence of a template polypeptide that is a repeated sequence, forms some secondary structure (e.g., helices and beta sheets), establishes positively or negatively charged domains, or represents a protein motif or domain. See, e.g., the Pfam web site describing consensus sequences for a variety of protein motifs and domains at http.7/www.sanger.ac.uk/Pfam/ and http://genome.wustl.edu/Pfam/. A description of the information included at the Pfam database is described in Sonnhammer et al.
- transgene means a nucleic acid sequence (encoding, e.g., one or more subject polypeptides), which is partly or entirely heterologous, i.e., foreign, to the transgenic plant, animal, or cell into which it is introduced, or, is homologous to an endogenous gene of the transgenic plant, animal, or cell into which it is introduced, but which is designed to be inserted, or is inserted, into the plant's genome in such a way as to alter the genome of the cell into which it is inserted (e.g., it is inserted at a location which differs from that of the natural gene or its insertion results in a knockout).
- a transgene can include one or more transcriptional regulatory sequences and other nucleic acid sequences, such as introns, that may be necessary for optimal expression of the selected nucleic acid, all operably linked to the selected nucleic acid, and may include an enhancer sequence.
- transgenic cell refers to a cell containing a transgene.
- a transgenic plant is any plant in which one or more, or all, of the cells of the plant includes a transgene.
- the transgene can be introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by T-DNA mediated transfer, electroporation, or protoplast transformation.
- the transgene may be integrated within a chromosome, or it may be extrachromosomally replicating DNA.
- tissue-specific promoter means a DNA sequence that serves as a promoter, i.e., regulates expression of a selected DNA sequence operably linked to the promoter, and which affects expression of the selected DNA sequence in specific cells of a tissue, such as a leaf, root, or stem.
- tissue-specific promoter means a DNA sequence that serves as a promoter, i.e., regulates expression of a selected DNA sequence operably linked to the promoter, and which affects expression of the selected DNA sequence in specific cells of a tissue, such as a leaf, root, or stem.
- hybridizes under high stringency conditions refer to conditions for hybridization in 6X sodium chloride/sodium citrate (SSC) buffer at about 45° C, followed by two washes in 0.2 X SSC buffer, 0.1% SDS at 60°C or 65°C.
- hybridizes under low stringency conditions refers to conditions for hybridization in 6X SSC buffer at about 45°C, followed by two washes in 6X SSC buffer, 0.1% (w/v) SDS at 50°C.
- an agent with “anthelmintic, anthelminthic or antihelminthic activity” is an agent, which when tested, has measurable nematode-killing activity or results in infertility or sterility in the nematodes such that unviable or no offspring result.
- the agent is combined with nematodes, e.g., in a well of microtiter dish having agar media or in the soil containing the agent. Staged adult nematodes are placed on the media.
- An agent with "anthelmintic, anthelminthic or antihelminthic activity" reduces the survival time of adult nematodes relative to unexposed similarly staged adults, e.g., by about 20%, 40%, 60%, 80%, or more.
- an agent with "anthelmintic, anthelminthic or antihelminthic activity” may also cause the nematodes to cease replicating, regenerating, and/or producing viable progeny, e.g., by about 20%, 40%, 60%, 80%, or more.
- binding refers to the ability of a first compound and a second compound that are not covalently linked to physically interact.
- the apparent dissociation constant for a binding event can be 1 mM or less, for example, 10 nM, 1 nM, 0.1 nM or less.
- the term "binds specifically” refers to the ability of an antibody to discriminate between a target ligand and a non-target ligand such that the antibody binds to the target ligand and not to the non-target ligand when simultaneously exposed to both the given ligand and non-target ligand, and when the target ligand and the non- target ligand are both present in molar excess over the antibody.
- altering an activity refers to a change in level, either an increase or a decrease in the activity, (e.g., an increase or decrease in the ability of the polypeptide to bind or regulate other polypeptides or molecules) particularly an ATP synthase subunit E-like or ATP synthase subunit E activity.
- the change can be detected in a qualitative or quantitative observation. If a quantitative observation is made, and if a comprehensive analysis is performed over a plurality of observations, one skilled in the art can apply routine statistical analysis to identify modulations where a level is changed and where the statistical parameter, the/? value, is less than 0.05.
- nematode ATP synthase subunit E proteins and nucleic acids described herein are novel targets for anti-nematode vaccines, pesticides, and drugs. Inhibition of these molecules can provide means of inhibiting nematode metabolism and/or the nematode life-cycle.
- FIG. 1 depicts the cDNA sequence of M. javanica ATP synthase subunit E (SEQ ID NO: 1), its corresponding encoded amino acid sequence (SEQ ID NO: 4), and its open reading frame (SEQ LD NO: 7).
- FIG. 2 depicts the cDNA sequence of H. glycines ATP synthase subunit E (SEQ ID NO: 1)
- SEQ ID NO: 2 its corresponding encoded amino acid sequence (SEQ ID NO: 5), and its open reading frame (SEQ LD NO: 8).
- FIG. 3 depicts the cDNA sequence of Z. punctata ATP synthase subunit E (SEQ LD NO: 3), its corresponding encoded amino acid sequence (SEQ ID NO: 6), and its open reading frame (SEQ LD NO: 9).
- FIG. 4 is an alignment of the sequences of M. javanica, H. glycines, and Z. punctata ATP synthase subunit E-like polypeptides (SEQ ID NO: 4, 5, and 6) and C. elegans ATP synthase subunit E-like polypeptide (SEQ ID NO: 10).
- bacterial enzymes and in reconstituted mitochondrial enzymes the process is reversible and the enzymes can also hydrolyze ATP and use the energy released in the process to pump protons.
- the enzymes from various sources differ in complexity of their subunits. To date, the simplest ATP synthase to be described (F ⁇ F synthase) is from E. coli. The F ⁇ F synthase has eight different subunits.
- a globular catalytic subcomplex Five of the subunits form a globular catalytic subcomplex (Fi), and three others comprise the membrane bound domain of the enzyme (F 0 ) to which the catalytic Fi subcomplex is bound. Proton flux through the F 0 subcomplex has been postulated to cause conformational changes, which may pass to the catalytic F] subcomplex through the stalk of the F 0 complex. While the overall architecture of the ATP synthases in higher invertebrates and vertebrates appears to be similar to that of bacterial ATP synthases, they are generally more complex and have a number of additional subunits. Mammalian mitochondrial ATP synthases, for example, include between 12 and 18 protein components (Walter et al.
- subunit E One subunit suspected of having a regulatory role in a mammalian ATP synthases, perhaps in response to Ca 2+ , is subunit E.
- Subunit E is a highly charged, basic protein that has been shown to be peripherally associated with the F 0 subcomplex of the mammalian F1F 0 - ATP synthase.
- Subunit E is thought to bind to the F 0 subcomplex and transmit conformational changes to the Fj catalytic subcomplex.
- the regulatory role of subunit E is predicted based upon its differential regulation at the transcriptional level in response to such diverse conditions as hypoxia, UN irradiation, and high/low fat diets.
- This invention describes a novel class of nematode genes related to C. elegans protein T23910 (GenBank® Accession No: 7506279).
- the nematode genes can be shown by a PSI-BLAST bioinformatics analysis to be highly divergent members of the ATP synthase subunit E gene family. This divergent gene family appears to be restricted to higher metazoans (e.g., nematodes, arthropods, vertebrates) and is not detected in available sequences of fungi, bacteria or plants.
- metazoans e.g., nematodes, arthropods, vertebrates
- these proteins are essential for the viability of C. elegans using RNAi interference, suggesting that these proteins are promising targets for anti-parasitic compounds.
- the nematode homologs are small, hydrophilic proteins. Despite the low pairwise sequence identity over the entire length of molecule (below 30%) for several nematode- vertebrate comparisons, a multiple alignment of all ATP synthase subunit E-like proteins shows regions of similarity, as well as absolute conservation in some regions (particularly in the amino terminus). Another quality shared among the members of this family is the lack of a mitochondrial pro-sequence.
- the proteins are all predicted to contain putative transmembrane regions in their N-terminal regions (by TMHMM, available on the Internet at cbs.dtu.dk/services/TMHMM/), which can be recognized as a weak preference for mitochondrial localization in some cases (by Target P, available on the Internet at cbs . dtu . dk/services/TargetP/) .
- the present invention provides nucleic acids from nematodes encoding ATP synthase subunit E-like polypeptides.
- the M. javanica nucleic acid molecule (SEQ ID NO: 1) and the encoded ATP synthase subunit E-like polypeptide (SEQ LD NO: 4) are depicted in FIG. 1.
- the H. glycines nucleic acid molecule (SEQ LD NO: 2) and the ATP synthase subunit E-like polypeptide (SEQ ID NO: 5) are depicted in FIG. 2.
- the invention is based, in part, on the discovery of ATP synthase subunit E-like sequences from M. javanica, H. glycines, and Z. punctata .
- the following examples are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. All of the publications cited herein are hereby incorporated by reference in their entirety.
- a TBLASTN query with the C. elegans gene T23910 identified multiple expressed sequence tags (ESTs are short nucleic acid fragment sequences from single sequencing reads) in dbest that are predicted to encode a portion of ATP synthase subunit E-like enzymes in at least three nematode species: M. javanica (GenBank® GL9829776) similar to C. elegans codons 12-104; H. glycines (GenBank® GI: 10713753) similar to C. elegans codons 6-104; and Z. punctata (GenBank® G 7710479) similar to C.
- elegans codons 15-107 all from McCarter, et al. (1999) Washington University Nematode EST Project.
- Examples of EST sequences identified from other nematode species were Pristionchus pacificus (GenBank® Identification No:5914683) similar to C. elegans codons 6-107; Strongyloides stercoralis (GenBank® GL10715244) similar to C. elegans codons 1-107; Ancylostoma caninum (GenBank® GI: 11180617) similar to C. elegans codons 49-107 (all from McCarter et al.
- Plasmid clone Div348, corresponding to the M. javanica EST sequence (GI: 9829776) was obtained from the Genome Sequencing Center (St. Louis, MO).
- plasmid clone Div222, corresponding to the Z. punctata EST sequence were also obtained from the Genome Sequencing Center (St. Louis, MO).
- the cDNA inserts in the plasmids were sequenced in their entirety to obtain full- length sequences for ATP synthase subunit E-like genes from M.
- SEQ ID NO: 7 contains an open reading frame encoding a 104 amino acid polypeptide
- SEQ ID NO: 8 contains open reading frame encoding a 113 amino acid polypeptide
- SEQ ID NO: 9 contains an open reading frame encoding a 106 amino acid polypeptide.
- FIG. 1 This nucleotide sequence also contains an open reading frame (SEQ ID NO:7) encoding a 104 amino acid polypeptide (SEQ ID NO:4).
- SEQ ID NO:4 The M. javanica ATP synthase subunit E -like protein sequence (SEQ ID NO: 4) is also approximately 38% identical to the C. elegans ATP synthase subunit E-like gene (SEQ LD NO: 10).
- the sequence of the H. glycines ATP synthase subunit E-like cDNA (SEQ ID NO:2) is depicted in FIG. 2.
- This nucleotide sequence contains an open reading frame (SEQ ID NO: 8) encoding a 113 amino acid polypeptide (SEQ ID NO:5).
- the H. glycines ATP synthase subunit E-like protein sequence (SEQ LD NO: 5) is approximately 41% identical to the C. elegans ATP synthase subunit E-like gene (SEQ ID NO: 10).
- the sequence of the Z. punctata ATP synthase subunit E-like cDNA (SEQ ID NO:3) is depicted in FIG. 3.
- This nucleotide sequence contains an open reading frame (SEQ LD NO:9) encoding a 106 amino acid polypeptide (SEQ ID NO:6).
- the Z. punctata ATP synthase subunit E-like protein sequence (SEQ ID NO: 6) is approximately 36% identical to the C. elegans ATP synthase subunit E-like gene (SEQ ID NO: 10).
- elegans polypeptides is presented as a multiple alignment generated by Clustal X multiple alignment program as described below (FIG. 4). Multiple alignments such as that shown in FIG 4 can be used to identify conserved and variable positions in the amino acid sequences of ATPE-like proteins such as SEQ ID NO: 4, 5 and 6 and the types of amino acids found in these positions. This information can be used to design novel functional ATPE-like proteins.
- M. javanica SEQ LD NO: 1
- H. glycines SEQ ID NO: 2
- Z. punctata SEQ ID NO: 3
- C. elegans SEQ ID NO: 10
- ATP synthase subunit E-like sequences had no vertebrate and or plant hits in nr or dbest having sufficient sequence similarity to meet the threshold E value of le-4 (this E value approximately corresponds to a threshold for removing sequences having a sequence identity of less than about 25% over approximately 100 amino acids). Accordingly, the M. javanica, H.
- glycines, and/or Z. punctata ATP synthase subunit E- like enzymes of this invention do not appear to share significant sequence similarity with the more common vertebrate forms of the enzyme such as the Homo sapiens (GenBank® GI:6005717;GenBank® Accession No: NP_009031.1) or the Rattus norvegicus (GenBank® Accession No: P29419) ATP synthase subunit E.
- the M. javanica, H. glycines, and/or Z. punctata ATP synthase subunit E-like enzymes are useful targets of inhibitory compounds selective for some nematodes over their hosts (e.g., humans, animals, and plants).
- PSI-BLAST Functional predictions were made using four iterations of PSI-BLAST with the default parameters on the nr database.
- PSI-BLAST searches and multiple alignment construction with CLUSTALX demonstrated that the C elegans gene (GenBank® Accession No: T23910) was a member of the ATP synthase subunit E family.
- Reciprocal blast searches and phylogenetic trees confirm that the nucleotide sequences in M. javanica, H. glycines, and/or Z. punctata do encode orthologs of the C. elegans 5 gene and therefore also likely ATP synthase subunit E proteins. Protein localizations were predicted using the TargetP server available on the Internet at cbs.dtu.dk/services/TargetP/).
- the M. javanica, H. glycines, and/or Z. punctata ATP synthase subunit E (SEQ ID NO: 4, 5, and 6, respectively) polypeptides are potentially mitochondrial based on the presence of putative transmembrane domain in the amino- o terminus and the fact that all other proteins in the family have weak mitochondrial signals and putative transmembrane domains in the N-terminus.
- RNA Mediated Interference A double stranded RNA (dsRNA) molecule can be used to inactivate a subunit E-like gene in a cell by a process known as RNA mediated-interference (Fire et al. (1998) Nature 391:806-811, and G ⁇ nczy et al. 5 (2000) Nature 408:331-336).
- the dsRNA molecule can have the nucleotide sequence of a subunit E-like nucleic acid described herein or a fragment thereof.
- the molecule can comprise at least 50, at least 100, at least 200, at least 300, or at least 500 or more contiguous nucleotides of a subunit E-like gene.
- the dsRNA molecule can be delivered to nematodes via direct injection, by soaking nematodes in aqueous 0 solution containing concentrated dsRNA, or by raising bacteriovorous nematodes on E. coli genetically engineered to produce the dsRNA molecule (Kamath et al. (2000) Genome Biol. 2; Tabara et al. (1998) Science 282:430-431).
- C. elegans were grown on lawns of E. coli genetically engineered to produce double stranded RNA designed to inhibit ATP synthase subunit expression.
- E. coli 5 were transformed with a 437 nucleotide genomic fragment of the subunit E-like gene.
- the genomic fragment included 255 nucleotides of exon sequence and 182 nucleotides of intron sequence (58% exon overall).
- the exonic sequences correspond to the first 115 nucleotides of SEQ LD NO:4, followed by 182 nucleotides of intronic sequence (interrupting the glycine codon at position 39) and then by 140 nucleotides of 0 additional exonic sequence (ending at the glutamine codon at position 85).
- the 437 nucleotide genomic fragment was cloned into an E. coli expression vector between opposing T7 polymerase promoters, and the vector was transformed into a strain of E. coli that carries an IPTG-inducible T7 polymerase.
- E. coli was transformed with a gene encoding the Green Fluorescent Protein (GFP).
- GFP Green Fluorescent Protein
- GFP is a commonly used reporter gene originally isolated from jellyfish and is widely used in both prokaryotic and eukaryotic systems. The GFP gene is not present in the wild-type C. elegans genome and thus it does not trigger an RNAi phenotype when ingested by 5 C. elegans. In both samples, C.
- elegans was grown at 15 °C on NGM plates containing IPTG and E. coli expressing the subunit ⁇ -like specific dsRNA or GFP. Total eggs layed and hatch-rates of FI and F2 individuals were followed over the course of 7-10 days (as shown below) and compared to nematode cultures grown on non-toxic dsRNAs. o
- dsRNA was injected into the nematode, basically as described in Mello et al. (1991) EMBO J. 10:3959-3970. In short, a plasmid was constructed that contains a portion of the C.
- elegans gene sequence specifically a fragment 437 nucleotides long, containing 115 nucleotides of the first exon followed by the first intron of 182 nucleotides and 140 nucleotides of the second exon (58% exon 5 sequence) corresponding to amino acid positions 1-85.
- the TOPO vector and PCR primers corresponding to the T7 and SP6 regions were to specifically amplify this sequence as a linear dsDNA.
- Single-strand RNAs can be transcribed from this fragment using either T7 RNA polymerase or SP6 RNA polymerase (the RNAs correspond to the sense and antisense RNA strands). RNA so produced was 0 precipitated and resuspended in RNAse free water. SsRNAs were combined, heated to 95° C for two minutes then allowed to cool from 70° C to room temperature over 1.5- 2.5 hours.
- DsRNA was injected into the body cavity of 15- 20 young adult C. elegans hermaphrodites. Worms were typically immobilized on an agarose pad and injected 5 with 2-5 nanoliters of dsRNA at a concentration of 1 mg/ml. Injections were performed with visual observation using a Zeiss Axiovert compound microscope equipped with 10X and 40X DIC objectives. Needles for microinjection were prepared using a Narishige needle puller, stage micromanipulator (Leitz) and an N2- powered injector (Narishige) set at 10-20 p.s.i.
- nematode ATP synthase subunit E-like sequences can be identified by a variety of methods including computer-based database 5 searches, hybridization-based methods, and functional complementation.
- a nematode ATP synthase subunit E-like sequence can be identified from a sequence database, e.g., a protein or nucleic acid database using a sequence disclosed herein as a query. Sequence comparison programs can be used to compare and analyze the nucleotide or amino acid sequences.
- sequence database e.g., a protein or nucleic acid database using a sequence disclosed herein as a query. Sequence comparison programs can be used to compare and analyze the nucleotide or amino acid sequences.
- One such 0 software package is the BLAST suite of programs from the National Center for
- An ATP synthase subunit E-like sequence of the invention can be used to query a sequence database, such as nr, dbest (expressed sequence tag (EST) sequences), and htgs (high-throughput genome sequences), using a computer-based search, e.g., 5 FASTA, BLAST, or PSI-BLAST search.
- a sequence database such as nr, dbest (expressed sequence tag (EST) sequences), and htgs (high-throughput genome sequences
- a computer-based search e.g., 5 FASTA, BLAST, or PSI-BLAST search.
- the aforementioned search strategy can be used to identify ATP synthase subunit E-like sequences in nematodes of the following non-limiting, exemplary genera: Plant nematode genera: Afrina, Anguina, Aphelenchoides, Belonolaimus, Bursaphelenchus, Cacopaurus, Cactodera, Criconema, Criconemoides, Cryphodera, Ditylenchus, Dolichodorus, Dorylaimus, Globodera, Helicotylenchus, Hemicriconemoides, Hemicycliophora, Heterodera, Hirschmanniella, Hoplolaimus, Hypsoperine, Longidorus, Meloidogyne, Mesoanguina, Nacobbus, Nacobbodera, Panagrellus, Paratrichodorus, Paratylenchus, Pratylenchus, Pterotylenchus, Punctodera, Radopholus, Rh
- Ancylostoma Angiostrongylus, Anisakis, Ascaris, Ascarops, Bunostomum, Brugia, Capillaria, Chabertia, Cooperia, Crenosoma, Cyathostonie species (Small Strongyles), Dictyocaulus, Dioctophyma, Dipetalonema, Dirofiliaria, Dracunculus, Draschia, Elaneophora, Enterobius, Filaroides, Gnathostoma, Gonylonema, Habronema, Haemonchus, Hyostrongylus, Lagochilascaris, Litomosoides, Loa,
- Mammomonogamus Mansonella, Muellerius, Metastrongylid, Necator, Nematodirus, Nippostrongylus, Oesophagostomum, Ollulanus, Onchocerca, Ostertagia, Oxyspirura, Oxyuris, Parafilaria, Parascaris, Parastrongyloides, Parelaphostrongylus, Physaloptera, Physocephalus, Protostrongylus, Pseudoterranova, Setaria, Spirocerca, Stephanurus, Stephanofilaria, Strongyloides, Strongylus, Spirocerca, Syngamus, Teladorsagia, Thelazia, Toxascaris, Toxocara, Trichinella, Trichostrongylus, Trichuris, Uncinaria, and Wuchereria.
- nematode genera include: Plant: Anguina, Aphelenchoides, Belonolaimus, Bursaphelenchus, Ditylenchus, Dolichodorus, Globodera, Heterodera, Hoplolaimus, Longidorus, Meloidogyne, Nacobbus, Pratylenchus, Radopholus, Rotylenchus, Tylenchulus, Xiphinema.
- Animal and human Ancylostoma, Ascaris, Brugia, Capillaria, Cooperia, Cyathostonie species, Dictyocaulus, Dirofiliaria, Dracunculus, Enterobius, Haemonchus, Necator, Nematodirus, Oesophagostomum, Onchocerca, Ostertagia, Oxyspirura, Oxyuris, Parascaris, Strongyloides, Strongylus, Syngamus, Teladorsagia, Thelazia, Toxocara, Trichinella, Trichostrongylus, Trichuris, and Wuchereria.
- nematode species include: Plant: Anguina tritici, Aphelenchoides fragariae, Belonolaimus longicaudatus, Bursaphelenchus xylophilus, Ditylenchus destructor, Ditylenchus dipsaci Dolichodorus heterocephalous, Globodera pallida, Globodera rostochiensis, Globodera tabacum, Heterodera avenae, Heterodera cardiolata, Heterodera carotae, Heterodera cruciferae, Heterodera glycines, Heterodera major, Heterodera schachtii, Heterodera zeae, Hoplolaimus tylenchiformis, Longidorus sylphus, Meloidogyne acronea, Meloidogyne arenaria, Meloidogyne chitwoodi, Meloidogyne exig
- an ATP synthase subunit E-like sequence can be used to identify additional ATP synthase subunit E-like sequence homologs within a genome. Multiple homologous copies of an ATP synthase subunit E-like sequence can be present.
- a nematode ATP synthase subunit E-like sequence can be present in a genome along with 1, 2, 3, 4, 5, 6, 8, 10, or more homologs.
- a nematode ATP synthase subunit E-like sequence can be identified by a hybridization-based method using a sequence provided herein as a probe. For example, a library of nematode genomic or cDNA clones can be hybridized under low stringency conditions with the probe nucleic acid. Stringency conditions can be modulated to reduce background signal and increase signal from potential positives. Clones so identified can be sequenced to verify that they encode ATP synthase subunit E-like sequences.
- Another hybridization-based method utilizes an amplification reaction (e.g., the polymerase chain reaction (PCR)).
- Oligonucleotides e.g., degenerate oligonucleotides, are designed to hybridize to a conserved region of an ATP synthase subunit E-like sequence (e.g., a region conserved in the three nematode sequences depicted in FIG. 4).
- the oligonucleotides are used as primers to amplify an ATP synthase subunit E-like sequence from template nucleic acid from a nematode, e.g., a nematode other than M. javanica, H. glycines, Z. punctata, and/or C. elegans.
- the amplified fragment can be cloned and/or sequenced.
- a nematode ATP synthase subunit E-like sequence can be identified from a complementation screen for a nucleic acid molecule that restores ATP synthase subunit E-like activity to a cell lacking an ATP synthase subunit E-like activity. Routine methods can be used to construct strains (i.e., nematode strains) that lack specific enzymatic activities, e.g., ATP synthase subunit E activity.
- a nematode strain mutated at the ATP synthase subunit E gene locus can be identified by selecting for resistance to inhibitory compounds and/or compounds that prevent the subunit E from binding to and thus, regulating, activity of an ATP synthase.
- Such a strain can be transformed with a plasmid library expressing nematode cDNAs. Strains can be identified in which ATP synthase subunit E activity is restored.
- the ATP synthase subunit E mutant strains transformed with the plasmid library can be exposed to allosteric inhibitors or other inhibitory compounds to select for strains that have acquired sensitivity to the inhibitors and are expressing a nematode ATP synthase subunit E-like gene.
- the plasmid harbored by the strain can be recovered to identify and/or characterize the inserted nematode cDNA that provides ATP synthase subunit E-like activity when expressed.
- Full-length cDNA and Sequencing Methods The following methods can be used, e.g., alone or in combination with another method described herein, to obtain full- length nematode ATP synthase subunit E-like genes and determine their sequences.
- Plant parasitic nematodes are maintained on greenhouse pot cultures depending on nematode preference. Root Knot Nematodes (Meloidogyne sp) are propagated on Rutgers tomato (Burpee), while Soybean Cyst Nematodes (Heterodera sp) are propagated on soybean.
- Total nematode RNA is isolated using the TRIZOL reagent (Gibco BRL). Briefly, 2 ml of packed worms are combined with 8 ml TRIZOL reagent and solubilized by vortexing. Following 5 minutes of incubation at room temperature, the samples are divided into smaller volumes and spun at 14,000 x g for 10 minutes at 4 °C to remove insoluble material.
- the liquid phase is extracted with 200 ⁇ l of chloroform, and the upper aqueous phase is removed to a fresh tube.
- the RNA is precipitated by the addition of 500 ⁇ l of isopropanol and centrifuged to pellet. The aqueous phase is carefully removed, and the pellet is washed in 75% ethanol and spun to re-collect the RNA pellet. The supernatant is carefully removed, and the pellet is air dried for 10 minutes.
- the RNA pellet is resuspended in 50 ⁇ l of DEPC-H2O and analyzed by spectrophotometry at ⁇ 260 and 280 nm to determine yield and purity. Yields can be 1-4 mg of total RNA from 2 ml of packed worms.
- Full-length cDNAs can be generated using 5' and 3' RACE techniques in combination with EST sequence information.
- the molecular technique 5' RACE (Life Technologies, Inc., Rockville, MD) can be employed to obtain complete or near- complete 5' ends of cDNA sequences for nematode ATP synthase subunit E-like cDNA sequences. Briefly, following the instructions provided by Life Technologies, first strand cDNA is synthesized from total nematode RNA using Murine Leukemia Virus Reverse Transcriptase (M-MLN RT) and a gene specific "antisense" primer, e.g., designed from available EST sequence. R ⁇ ase H is used to degrade the original mR ⁇ A template.
- M-MLN RT Murine Leukemia Virus Reverse Transcriptase
- R ⁇ ase H is used to degrade the original mR ⁇ A template.
- the first strand cD ⁇ A is separated from unincorporated d ⁇ TPs, primers, and proteins using a GlassMAX Spin Cartridge.
- Terminal deoxynucleotidyl transferase TdT is used to generate a homopolymeric dC tailed extension by the sequential addition of dCTP nucleotides to the 3' end of the first strand cDNA.
- the first strand cDNA is directly amplified without further purification using Taq DNA polymerase, a gene specific "antisense" primer designed from available EST sequences to anneal to a site located within the first strand cDNA molecule, and a deoxyinosine-containing primer that anneals to the homopolymeric dC tailed region of the cDNA in a polymerase chain reaction (PCR).
- PCR polymerase chain reaction
- 3' RACE The molecular technique, 3' RACE (Life Technologies, Inc., Rockville, MD), can be employed to obtain complete or near-complete 3' ends of cDNA sequences for nematode ATP synthase subunit E-like cDNA sequences. Briefly, following the instructions provided by Life Technologies (Rockville, MD), first strand cDNA synthesis is performed on total nematode RNA using SuperscriptTM Reverse Transcriptase and an oligo-dT primer that anneals to the polyA tail.
- the first strand cDNA is directly PCR amplified without further purification using Taq DNA polymerase, a gene specific primer designed from available EST sequences to anneal to a site located within the first strand cDNA molecule, and a "universal" primer which contains sequence identity to 5' end of the oligo-dT primer.
- 3' RACE PCR amplification products are cloned into a suitable vector for further analysis and sequencing.
- Isolated nucleic acid molecules of the present invention include nucleic acid molecules that have an open reading frame encoding an ATP synthase subunit E-like polypeptide.
- Such nucleic acid molecules include molecules having: the sequences recited in SEQ ID NO: 1, 2, and/or 3; and sequences coding for the ATP synthase subunit E-like proteins recited in SEQ LD NO: 4, 5, and/or 6.
- These nucleic acid molecules can be used, for example, in a hybridization assay to detect the presence of a M. javanica, H. glycines, and/or Z. punctata nucleic acid in a sample.
- the present invention includes nucleic acid molecules such as those shown in SEQ ID NO: 1, 2, and/or 3 that may be subjected to mutagenesis to produce single or multiple nucleotide substitutions, deletions, or insertions.
- Nucleotide insertional derivatives of the nematode gene of the present invention include 5' and 3' terminal fusions as well as intra-sequence insertions of single or multiple nucleotides.
- Insertional nucleotide sequence variants are those in which one or more nucleotides are introduced into a predetermined site in the nucleotide sequence, although random insertion is also possible with suitable screening of the resulting product.
- Deletion 5 variants are characterized by the removal of one or more nucleotides from the sequence.
- Nucleotide substitution variants are those in which at least one nucleotide in the sequence has been removed and a different nucleotide inserted in its place. Such a substitution may be silent (e.g., synonymous), meaning that the substitution does not alter the amino acid defined by the codon. Alternatively, substitutions are designed to o alter one amino acid for another amino acid (e.g., non-synonymous). A non- synonymous substitution can be conservative or non-conservative. A substitution can be such that activity, e.g., a ATP synthase subunit E-like activity, is not impaired.
- a conservative amino acid substitution results in the alteration of an amino acid for a similar acting amino acid, or amino acid of like charge, polarity, or hydrophobicity, 5 e.g., an amino acid substitution listed in Table 3 below. At some positions, even conservative amino acid substitutions can disrupt the activity of the polypeptide. Table 3: Conservative Amino Acid Replacements
- Methionine Met lie, Leu, Val
- the current invention also embodies splice variants of nematode ATP synthase subunit E-like sequences.
- Another aspect of the present invention embodies a polypeptide-encoding nucleic acid molecule that is capable of hybridizing under conditions of low stringency 5 (or high stringency) to the nucleic acid molecule put forth in SEQ ID NO: 1, 2, and/or 3, or their complements.
- nucleic acid molecules that encode for ATP synthase subunit E-like polypeptides may correspond to the naturally occurring nucleic acid molecules or may differ by one or more nucleotide substitutions, deletions, and/or additions.
- the o present invention extends to genes and any functional mutants, derivatives, parts, fragments, naturally occurring polymorphisms, homologs or analogs thereof or nonfunctional molecules.
- Such nucleic acid molecules can be used to detect polymorphisms of ATP synthase subunit E genes or ATP synthase subunit E-like genes, e.g., in other nematodes.
- nucleic acid molecule encoding an ATP synthase subunit E-like molecule may be obtained using standard cloning and a screening techniques, such as a method described 0 herein.
- Nucleic acid molecules of the present invention can be in the form of RNA, such as mRNA, or in the form of DNA, including, for example, cDNA and genomic DNA obtained by cloning or produced synthetically.
- the DNA may be double- stranded or single-stranded.
- the nucleic acids may be in the form of RNA DNA 5 hybrids.
- Single-stranded DNA or RNA can be the coding strand, also referred to as the sense strand, or the non-coding strand, also known as the anti-sense strand.
- One embodiment of the present invention includes a recombinant nucleic acid molecule, which includes at least one isolated nucleic acid molecule depicted in SEQ ID NO: 1, 2, and/or 3, inserted in a vector capable of delivering and maintaining the 0 nucleic acid molecule into a cell.
- the DNA molecule may be inserted into an autonomously replicating vector (suitable vectors include, for example, pGEM3Z and pcDNA3, and derivatives thereof).
- the vector nucleic acid may be a bacteriophage DNA such as bacteriophage lambda or M13 and derivatives thereof.
- the vector may be either RNA or DNA, single- or double-stranded, prokaryotic, eukaryotic, or viral.
- Vectors can include transposons, viral vectors, episomes, (e.g., plasmids), chromosomes inserts, and artificial chromosomes (e.g. BACs or YACs). Construction of a vector containing a nucleic acid described herein can be followed by transformation of a host cell such as a bacterium. Suitable bacterial hosts include, but are not limited to, E. coli. Suitable eukaryotic hosts include yeast such as S. cerevisiae, other fungi, vertebrate cells, invertebrate cells (e.g., insect cells), plant cells, human cells, human tissue cells, and whole eukaryotic organisms, (e.g., a transgenic plant or a transgenic animal). Further, the vector nucleic acid can be used to generate a virus such as vaccinia or baculovirus.
- a virus such as vaccinia or baculovirus.
- the present invention also extends to genetic constructs designed for polypeptide expression.
- the genetic construct also includes, in addition to the encoding nucleic acid molecule, elements that allow expression, such as a promoter and regulatory sequences.
- the expression vectors may contain transcriptional control sequences that control transcriptional initiation, such as promoter, enhancer, operator, and repressor sequences.
- a variety of transcriptional control sequences are well known to those in the art and may be functional in, but are not limited to, a bacterium, yeast, plant, or animal cell.
- the expression vector can also include a translation regulatory sequence (e.g., an untranslated 5' sequence, an untranslated 3' sequence, a poly A addition site, or an internal ribosome entry site), a splicing sequence or splicing regulatory sequence, and a transcription termination sequence.
- a translation regulatory sequence e.g., an untranslated 5' sequence, an untranslated 3' sequence, a poly A addition site, or an internal ribosome entry site
- the vector can be capable of autonomous replication or it can integrate into host DNA.
- the DNA molecule is fused to a reporter gene such as ⁇ -glucuronidase gene, ⁇ -galactosidase (lacZ), chloramphenicol- acetyltransferase gene, a gene encoding green fluorescent protein (and variants thereof), or red fluorescent protein firefly lucif erase gene, among others.
- the DNA molecule can also be fused to a nucleic acid encoding a polypeptide affinity tag, e.g. glutathione S-transferase (GST), maltose ⁇ binding protein, protein A, FLAG tag, hexa-histidine, or the influenza HA tag.
- GST glutathione S-transferase
- the affinity tag or reporter fusion joins the reading frames of S ⁇ Q ID NO: 1, 2, and/or 3 to the reading frame of the reporter gene encoding the affinity tag such that a translational fusion is generated.
- Expression of the fusion gene results in translation of a single polypeptide that includes both a nematode ATP synthase subunit E-like region and reporter protein or affinity tag.
- the fusion can also join a fragment of the reading frame of SEQ ID NO: 1, 2, and/or 3.
- the fragment can encode a functional region of the ATP synthase subunit E-like polypeptides, a structurally intact domain, or an epitope (e.g., a peptide of about 8, 10, 20, or 30 or more amino acids).
- a nematode ATP synthase subunit E-like nucleic acid that includes at least one of a regulatory region can also be fused to a heterologous nucleic acid.
- a regulatory region e.g., a 5' regulatory region, a promoter, an enhancer, a 5' untranslated region, a translational start site, a 3' untranslated region, a polyadenylation site, or a 3' regulatory region
- the promoter of an ATP synthase subunit E-like nucleic acid can be fused to a heterologous nucleic acid, e.g., a nucleic acid encoding a reporter protein.
- Suitable cells to transform include any cell that can be transformed with a nucleic acid molecule of the present invention.
- a transformed cell of the present invention is also herein referred to as a recombinant or transgenic cell.
- Suitable cells can either be untransformed cells or cells that have already been transformed with at least one nucleic acid molecule.
- Suitable cells for transformation according to the present invention can either be: (i) endogenously capable of expressing the ATP synthase subunit E-like protein or; (ii) capable of producing such protein after transformation with at least one nucleic acid molecule of the present invention.
- a nucleic acid of the invention is used to generate a transgenic nematode strain, e.g., a transgenic C. elegans strain.
- a transgenic nematode strain e.g., a transgenic C. elegans strain.
- nucleic acid is injected into the gonad of a nematode, thus generating a heritable extrachromosomal array containing the nucleic acid (see, e.g., Mello et al. (1991) ⁇ EMBO J. 10:3959-3970).
- the transgenic nematode can be propagated to generate a strain harboring the transgene.
- Nematodes of the strain can be used in screens to identify inhibitors specific for a M. javanica, H glycines, and/or Z. punctata ATP synthase subunit E-like gene.
- oligonucleotides that can form stable hybrids with a nucleic acid molecule of the present invention.
- the oligonucleotides can be about 10 to 200 nucleotides, about 15 to 120 nucleotides, or about 17 to 80 nucleotides in length, e.g., about 10, 20, 30, 40, 50, 60, 80, 100, 120 nucleotides in length.
- the oligonucleotides can be used as probes to identify nucleic acid molecules, primers to produce nucleic acid molecules, or therapeutic reagents to inhibit nematode ATP synthase subunit E- like protein activity or production (e.g., antisense, triplex formation, ribozyme, and/or RNA drug-based reagents).
- the present invention includes oligonucleotides of RNA (ssRNA and dsRNA), DNA, or derivatives of either.
- the invention extends to the use of such oligonucleotides to protect non-nematode organisms (for example e.g., plants and animals) from disease by reading the viability of infecting namatodes, e.g., using a technology described herein.
- Appropriate oligonucleotide-containing therapeutic compositions can be administered to a non-nematode organism using techniques known to those skilled in the art, including, but not limited to, transgenic expression in plants or animals.
- Primer sequences can be used to amplify an ATP synthase subunit E-like nucleic acid or fragment thereof. For example, at least 10 cycles of PCR amplification can be used to obtain such an amplified nucleic acid.
- Primers can be at least about 8- 40, 10-30 or 14-25 nucleotides in length, and can anneal to a nucleic acid "template molecule", e.g., a template molecule encoding an ATP synthase subunit E-like genetic sequence, or a functional part thereof, or its complementary sequence.
- the nucleic acid primer molecule can be any nucleotide sequence of at least 10 nucleotides in length derived from, or contained within sequences depicted in SEQ TD NO: 1, 2, and/or 3 and their complements.
- the nucleic acid template molecule may be in a recombinant form, in a virus particle, bacteriophage particle, yeast cell, animal cell, plant cell, fungal cell, or bacterial cell.
- a primer can be chemically synthesized by routine methods.
- This invention embodies any ATP synthase subunit E-like sequences that are used to identify and isolate similar genes from other organisms, including nematodes, prokaryotic organisms, and other eukaryotic organisms, such as other animals and/or plants.
- the invention provides oligonucleotides that are specific for a M. javanica, H. glycines, and/or Z. punctata ATP synthase subunit E-like nucleic acid molecule.
- Such oligonucleotides can be used in a PCR test to determine if a M. javanica, H glycines, and or Z. punctata nucleic acid is present in a sample, e.g., to monitor a disease caused M. javanica and/or H. glycines. Protein Production
- Isolated ATP synthase subunit E-like proteins from nematodes can be produced in a number of ways, including production and recovery of the recombinant proteins and/or chemical synthesis of the protein.
- an isolated nematode ATP synthase subunit E-like protein is produced by culturing a cell, e.g., a bacterial, fungal, plant, or animal cell, capable of expressing the protein, under conditions for effective production and recovery of the protein.
- the nucleic acid can be operably linked to a heterologous promoter, e.g., an inducible promoter or a constitutive promoter.
- Effective growth conditions are typically, but not necessarily, in liquid media comprising salts, water, carbon, nitrogen, phosphate sources, minerals, and other nutrients, but may be any solution in which ATP synthase subunit E-like proteins may be produced.
- recovery of the protein may refer to collecting the growth solution and need not involve additional steps of purification.
- Proteins of the present invention can be purified using standard purification techniques, such as, but not limited to, affinity chromatography, thermaprecipitation, immunoaffinity chromatography, ammonium sulfate precipitation, ion exchange chromatography, filtration, electrophoresis, hydrophobic interaction chromatography, and others.
- the ATP synthase subunit E-like polypeptide can be fused to an affinity tag, e.g., a purification handle (e.g., glutathione-S-reductase, hexa-histidine, maltose binding protein, dihydrofolate reductases, or chitin binding protein) or an epitope tag (e.g., c-myc epitope tag, FLAGTM tag, or influenza HA tag).
- affinity tag e.g., a purification handle (e.g., glutathione-S-reductase, hexa-histidine, maltose binding protein, dihydrofolate reductases, or chitin binding protein) or an epitope tag (e.g., c-myc epitope tag, FLAGTM tag, or influenza HA tag).
- Affinity tagged and epitope tagged proteins can be purified using routine art-known methods.
- Recombinant ATP synthase subunit E-like gene products or derivatives thereof can be used to produce immunologically interactive molecules, such as antibodies, or functional derivatives thereof.
- Useful antibodies include those that bind to a polypeptide that has substantially the same sequence as the amino acid sequences recited in SEQ LD NO: 4, 5, and/or 6, or that has at least 60% similarity over 50 or more amino acids to these sequences.
- the antibody specifically binds to a polypeptide having the amino acid sequence recited in SEQ ID NO: 4, 5, and/or 6.
- the antibodies can be antibody fragments and genetically engineered antibodies, including single chain antibodies or chimeric antibodies that can bind to more than one epitope. Such antibodies may be polyclonal or monoclonal and may be selected from naturally occurring antibodies or may be specifically raised to a recombinant ATP synthase subunit E-like protein. Antibodies can be derived by immunization with a recombinant or purified ATP synthase subunit E-like gene or gene product. As used herein, the term "antibody” refers to an immunoglobulin, or fragment thereof. Examples of antibody fragments include F(ab) and F(ab') 2 fragments, particularly functional ones able to bind epitopes.
- Such fragments can be generated by proteolytic cleavage, e.g., with pepsin, or by genetic engineering.
- Antibodies can be polyclonal, monoclonal, or recombinant.
- antibodies can be modified to be chimeric, or humanized.
- an antibody can be coupled to a label or a toxin.
- Antibodies can be generated against a full-length ATP synthase subunit E-like protein, or a fragment thereof, e.g., an antigenic peptide. Such polypeptides can be coupled to an adjuvant to improve immunogenicity.
- Polyclonal serum is produced by injection of the antigen into a laboratory animal such as a rabbit and subsequent collection of sera. Alternatively, the antigen is used to immunize mice. Lymphocytic cells are obtained from the mice and fused with myelomas to form hybridomas producing antibodies.
- Peptides for generating ATP synthase subunit E-like antibodies can be about 8,
- amino acid residues in length e.g., a peptide of such length obtained from SEQ ID NO: 4, 5, and/or 6.
- Peptides or epitopes can also be selected from regions exposed on the surface of the protein, e.g., hydrophilic or amphipathic regions. An epitope in the vicinity of the active or binding site can be selected such that an antibody binding such an epitope would block access to the active site or prevent binding. Antibodies reactive with, or specific for, any of these regions, or other regions or domains described herein are provided. An antibody to an ATP synthase subunit E- like protein can modulate an ATP synthase subunit E-like activity.
- Monoclonal antibodies which can be produced by routine methods, are obtained in abundance and in homogenous form from hybridomas formed from the fusion of immortal cell lines (e.g., myelomas) with lymphocytes immunized with ATP synthase subunit E-like polypeptides such as those set forth in SEQ LD NO: 4, 5, and/or 6.
- antibodies can be engineered, e.g., to produce a single chain antibody (see, for example, Colcher et al. (1999) Ann N Y Acad Sci 880: 263-280; and Reiter (1996) Clin Cancer Res 2: 245-252).
- antibodies are selected or modified based on screening procedures, e.g., by screening antibodies or fragments thereof from a phage display library.
- Antibodies of the present invention have a variety of important uses within the scope of this invention.
- such antibodies can be used: (i) as therapeutic compounds to passively immunize an animal in order to protect the animal from nematodes susceptible to antibody treatment; (ii) as reagents in experimental assays to detect presence of nematodes; (iii) as tools to screen for expression of the gene product in nematodes, animals, fungi, bacteria, and plants; and/or (iv) as a purification tool of ATP synthase subunit E-like protein; (v) as ATP synthase subunit E inhibitors/activators that can be expressed or introduced into plants or animals for therapeutic purposes.
- An antibody against an ATP synthase subunit E-like protein can be produced in a plant cell, e.g., in a transgenic plant or in culture (see, e.g., U.S. Patent No. 6,080,560).
- Antibodies that specifically recognize a M. javanica, H. glycines, and/or Z. punctata ATP synthase subunit E-like proteins can be used to identify M. javanica, H glycines, and/or Z. punctata nematodes, and, thus, can be used to monitor a disease caused by M. javanica and/or H. glycines.
- nucleic acids that are antisense to nucleic acids encoding nematode ATP synthase subunit E-like proteins.
- An "antisense" nucleic acid includes a sequence that is complementary to the coding strand of a nucleic acid encoding an ATP synthase subunit E-like protein. The complementarity can be in a coding region of the coding strand or in a noncoding region, e.g., a 5' or 3' untranslated region, e.g., the translation start site.
- the antisense nucleic acid can be produced from a cellular promoter (e.g., a RNA polymerase II or III promoter), or can be introduced into a cell, e.g., using a liposome.
- the antisense nucleic acid can be a synthetic oligonucleotide having a length of about 10, 15, 20, 30, 40, 50, 75, 90, 120 or more nucleotides in length.
- An antisense nucleic acid can be synthesized chemically or produced using enzymatic reagents, e.g., a ligase.
- An antisense nucleic acid can also incorporate modified nucleotides, and artificial backbone structures, e.g., phosphorothioate derivative, and acridine substituted nucleotides.
- Ribozymes The antisense nucleic acid can be a ribozyme.
- the ribozyme can be designed to specifically cleave RNA, e.g., an ATP synthase subunit E-like mRNA. Methods for designing such ribozymes are described in U.S. Pat. No. 5,093,246 or Haselhoff and Gerlach (1988) Nature 334:585-591.
- the ribozyme can be a derivative of Tetrahymena L-19 INS R ⁇ Ain which the nucleotide sequence of the active site is modified to be complementary to an ATP synthase subunit E-like nucleic acid (see, e.g., Cech et al. U.S. Patent No. 4,987,071; and Cech et al. U.S. Patent No. 5,116,742).
- PNA Peptide Nucleic acid
- An antisense agent directed against an ATP synthase subunit E-like nucleic acid can be a peptide nucleic acid (PNA). See Hyrup et al. (1996) Bioorganic & Medicinal Chemistry 4: 5-23) for methods and a description of the replacement of the deoxyribose phosphate backbone for a pseudopeptide backbone.
- a PNA can specifically hybridize to DNA and RNA under conditions of low ionic strength as a result of its electrostatic properties. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996) supra and Perry-O'Keefe et al. Proc. Natl. Acad. Sci. 93: 14670- 14675.
- RNA Mediated Interference A double stranded RNA (dsRNA) molecule can be used to inactivate an ATP synthase subunit E-like gene in a cell by a process known as RNA mediated-interference (RNAi; e.g., Fire et al. (1998) Nature 391:806-811, and G ⁇ nczy et al. (2000) Nature 408:331-336).
- RNAi RNA mediated-interference
- the dsRNA molecule can have the nucleotide sequence of an ATP synthase subunit E-like nucleic acid described herein or a fragment thereof.
- the molecule can be injected into a cell, or a syncytium, e.g., a nematode gonad as described in Fire et al., supra.
- Screening Assays Another embodiment of the present invention is a method of identifying a compound capable of altering (e.g., inhibiting or enhancing) the activity of ATP synthase subunit E-like molecules.
- This method also referred to as a "screening assay,” herein, includes, but is not limited to, the following procedure: (i) contacting an isolated ATP synthase subunit E-like protein with a test inhibitory compound under conditions in which, in the absence of the test compound, the protein has ATP synthase subunit E-like activity; and (ii) determining if the test compound alters the ATP synthase subunit E-like activity or alters the ability of the subunit E to regulate other polypeptides or molecules e.g., the catalytic subcomplex of ATP synthase or a portion (subunit) thereof.
- Suitable inhibitors or activators that alter a nematode ATP synthase subunit E-like activity include compounds that interact directly with a nematode ATP synthase subunit E-like protein, perhaps but not necessarily, in the active or binding site. They can also interact with other regions of the nematode ATP synthase subunit E protein by binding to regions outside of the active site or site responsible for regulation, for example, by allosteric interaction. They can also bind to the complex normally bound by the subunit E, interfering with binding to and regulation by the subunit E.
- a test compound can be a large or small molecule, for example, an organic compound with a molecular weight of about 100 to 10,000; 200 to 5,000; 200 to 2000; or 200 to 1,000 daltons.
- a test compound can be any chemical compound, for example, a small organic molecule, a carbohydrate, a lipid, an amino acid, a polypeptide, a nucleoside, a nucleic acid, or a peptide nucleic acid.
- Small molecules include, but are not limited to, metabolites, metabolic analogues, peptides, peptidomimetics (e.g., peptoids), amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heteroorganic and organometallic compounds).
- Compounds and components for synthesis of compounds can be obtained from a commercial chemical supplier, e.g., Sigma-Aldrich Corp. (St. Louis, MO).
- the test compound or compounds can be naturally occurring, synthetic, or both.
- a test compound can be the only substance assayed by the method described herein. Alternatively, a collection of test compounds can be assayed either consecutively or concurrently by the methods described herein.
- Compounds can also act by allosteric inhibition or by preventing the subunit E from binding to, and thus, regulating its target, i.e., an ATP synthase.
- a high-throughput method can be used to screen large libraries of chemicals.
- libraries of candidate compounds can be generated or purchased, e.g., from Chembridge Corp. (San Diego, CA).
- Libraries can be designed to cover a diverse range of compounds. For example, a library can include 10,000, 50,000, or 100,000 or more unique compounds.
- a library can be constructed from heterocycles including pyridines, indoles, quinolines, furans, pyrimidines, triazines, pyrroles, imidazoles, naphthalenes, benzimidazoles, piperidines, pyrazoles, benzoxazoles, pyrrolidines, thiphenes, thiazoles, benzothiazoles, and morpholines.
- a library can be designed and synthesized to cover such classes of chemicals, e.g., as described in DeWitt et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90:6909-6913; Erb et al. (1994) Proc.
- Organism-based Assays Organisms can be grown in microtiter plates, e.g., 6- well, 32-well, 64-well, 96-well, 384-well plates.
- the organism is a nematode.
- the nematodes can be genetically modified.
- Non-limiting examples of such modified nematodes include: 1) nematodes or nematode cells (M. javanica, H. glycines, Z. punctata, and/or C.
- elegans having one or more ATP synthase subunit E-like genes inactivated (e.g., using RNA mediated interference); 2) nematodes or nematode cells expressing a heterologous ATP synthase subunit E-like gene, e.g., an ATP synthase subunit E-like gene from another species; and 3) nematodes or nematode cells having one or more endogenous ATP synthase subunit E-like genes inactivated and expressing a heterologous ATP synthase subunit E-like gene, e.g., a M. javanica, H glycines, and/or Z. punctata ATP synthase subunit E-like gene as described herein.
- a plurality of candidate compounds can be screened.
- the library can be provided in a format that is amenable for robotic manipulation, e.g., in microtitre plates.
- Compounds can be added to the wells of the microtiter plates. Following compound addition and incubation, viability and/or reproductive properties of the nematodes or nematode cells are monitored.
- the compounds can also be pooled, and the pools tested. Positive pools are split for subsequent analysis. Regardless of the method, compounds that decrease the viability or reproductive ability of nematodes, nematode cells, or progeny of the nematodes are considered lead compounds.
- the compounds can be tested on a microorganism or a eukaryotic or mammalian cell line, e.g., rabbit skin cells, Chinese hamster ovary cells (CHO), and/or Hela cells.
- CHO cells absent for ATP synthase subunit E- like genes, but expressing a nematode ATP synthase subunit E-like gene can be used. The generation of such strains is routine in the art.
- the cell lines can be grown in microtitre plates, each well having a different candidate compound or pool of candidate compounds. Growth is monitored during or after the assay to determine if the compound or pool of compounds is a modulator of a nematode ATP synthase subunit E-like polypeptide.
- the screening assay can be an in vitro activity assay.
- a nematode ATP synthase subunit E-like polypeptide can be purified as described above.
- the polypeptide can be disposed in an assay container, e.g., a well of a microtitre plate.
- a candidate compound can be added to the assay container, and the ATP synthase subunit E-like activity is measured.
- the activity is compared to the activity measured in a control container in which no candidate compound is disposed or in which an inert or non-functional compound is disposed
- the screening assay can also be a cell-free binding assay, e.g., an assay to identify compounds that bind a nematode ATP synthase subunit E-like polypeptide.
- a nematode ATP synthase subunit E-like polypeptide can be purified and labeled.
- the labeled polypeptide is contacted to beads; each bead has a tag detectable by mass spectroscopy, and test compound, e.g., a compound synthesized by combinatorial chemical methods. Beads to which the labeled polypeptide is bound are identified and analyzed by mass spectroscopy.
- the beads can be generated using "split-and-pool" synthesis.
- the method can further include a second assay to determine if the compound alters the activity of the ATP synthase subunit E- like polypeptide.
- a modification can include N-acylation, animation, amidation, oxidation, reduction, alkylation, esterification, and hydroxylation.
- biochemical target of the lead compound is known or determined, the structure of the target and the lead compound can inform the design and optimization of derivatives.
- Molecular modeling software to do this is commercially available (e.g., Molecular Simulations, Inc.). "SAR by NMR,” as described in Shuker et al. (1996) Science 274:1531-1534, can be used to design ligands with increased affinity, by joining lower- affinity ligands.
- a preferred compound is one that interferes with the function of an ATP synthase subunit E-like polypeptide and that is not substantially toxic to plants, animals, or humans.
- not substantially toxic it is meant that the compound does not substantially affect the respective animal, or human ATP synthase subunit E proteins or ATP synthase activity.
- particularly desirable inhibitors of M. javanica, H. glycines, and/or Z. punctata ATP synthase subunit E do not substantially inhibit ATP synthase subunit E-like polypeptides or ATP synthase activity of vertebrates, e.g., humans for example.
- Other desirable compounds do not substantially inhibit to ATP synthase activity of plants.
- Standard pharmaceutical procedures can be used to assess the toxicity and therapeutic efficacy of a modulator of an ATP synthase subunit E-like activity.
- the LD50 the dose lethal to 50% of the population
- the ED50 the dose therapeutically effective in 50% of the population can be measured in cell cultures, experimental plants (e.g., in laboratory or field studies), or experimental animals.
- a therapeutic index can be determined which is expressed as the ratio: LD50 ED50.
- High therapeutic indices are indicative of a compound being an effective ATP synthase subunit E-like inhibitor, while not causing undue toxicity or side effects to a subject (e.g., a host plant or host animal).
- the ability of a candidate compound to modulate a non-nematode ATP synthase subunit E-like polypeptide is assayed, e.g., by a method described herein.
- the inhibition constant of a candidate compound for a mammalian ATP synthase subunit E-like polypeptide can be measured and compared to the inhibition constant for a nematode ATP synthase subunit E-like polypeptide.
- Suitable nematodes to target are any nematodes with the ATP synthase subunit E-like proteins or 5 proteins that can be targeted by a compound that otherwise inhibits, reduces, activates, or generally effects the activity of nematode ATP synthase subunit E proteins.
- Inhibitors of nematode ATP synthase subunit E-like proteins can also be used to identify ATP synthase subunit E-like proteins in the nematode or other organisms using procedures known in the art, such as affinity chromatography.
- a specific o antibody may be linked to a resin and a nematode extract passed over the resin, allowing any ATP synthase subunit E-like proteins that bind the antibody to bind the resin.
- Subsequent biochemical techniques familiar to those skilled in the art can be performed to purify and identify bound ATP synthase subunit E-like proteins.
- a compound that is identified as an ATP synthase subunit E-like polypeptide inhibitor can be formulated as a composition that is applied to plants, soil, or seeds in order to confer nematode resistance.
- the composition can be prepared in a solution, e.g., an aqueous solution, at a concentration from about 0.005% to 10%, or about 0.01% to 1%, or about 0.1% to 0.5% by weight.
- the solution can include an organic 0 solvent, e.g., glycerol or ethanol.
- the composition can be formulated with one or more agriculturally acceptable carriers.
- Agricultural carriers can include: clay, talc, bentonite, diatomaceous earth, kaolin, silica, benzene, xylene, toluene, kerosene, N- methylpyrrolidone, alcohols (methanol, ethanol, isopropanol, n-butanol, ethylene glycol, propylene glycol, and the like), and ketones (acetone, methylethyl ketone, 5 cyclohexanone, and the like).
- the formulation can optionally further include stabilizers, spreading agents, wetting extenders, dispersing agents, sticking agents, disintegrators, and other additives, and can be prepared as a liquid, a water-soluble solid (e.g., tablet, powder or granule), or a paste.
- the solution can be combined with another desired 0 composition such as another anthelmintic agent, germicide, fertilizer, plant growth regulator and the like.
- the solution may be applied to the plant tissue, for example, by spraying, e.g., with an atomizer, by drenching, by pasting, or by manual application, e.g., with a sponge.
- the solution can also be distributed from an airborne source, e.g., an aircraft or other aerial object, e.g., a fixture mounted with an apparatus for spraying the solution, the fixture being of sufficient height to distribute the solution to the desired plant tissues.
- the composition can be applied to plant tissue from a volatile or airborne source. The source is placed in the vicinity of the plant tissue and the composition is dispersed by diffusion through the atmosphere.
- the source and the plant tissue to be contacted can be enclosed in an incubator, growth chamber, or greenhouse, or can be in sufficient proximity that they can be outdoors.
- the composition can be applied to tissues other than the leaves, e.g., to the stems or roots.
- the composition can be distributed by irrigation.
- the composition can also be injected directly into roots or stems.
- the ED50 can be determined as described above from experimental data.
- the data can be obtained by experimentally varying the dose of the active ingredient to identify a dosage effective for killing a nematode, while not causing toxicity in the host plant or host animal (i.e. non-nematode animal).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Chemical & Material Sciences (AREA)
- Tropical Medicine & Parasitology (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Agronomy & Crop Science (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Virology (AREA)
- Dentistry (AREA)
- Wood Science & Technology (AREA)
- Environmental Sciences (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003221957A AU2003221957A1 (en) | 2003-04-15 | 2003-04-15 | Nematode atp synthase subunit e-like sequences |
PCT/US2003/011717 WO2004098282A2 (fr) | 2003-04-15 | 2003-04-15 | Sequences de type e de sous-unites de l'atp-synthase de nematodes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2003/011717 WO2004098282A2 (fr) | 2003-04-15 | 2003-04-15 | Sequences de type e de sous-unites de l'atp-synthase de nematodes |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2004098282A2 true WO2004098282A2 (fr) | 2004-11-18 |
WO2004098282A3 WO2004098282A3 (fr) | 2005-09-01 |
Family
ID=33434323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/011717 WO2004098282A2 (fr) | 2003-04-15 | 2003-04-15 | Sequences de type e de sous-unites de l'atp-synthase de nematodes |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2003221957A1 (fr) |
WO (1) | WO2004098282A2 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8067671B2 (en) | 2005-02-24 | 2011-11-29 | Monsanto Technology Llc | Methods for genetic control of plant pest infestation and compositions thereof |
CN106591336A (zh) * | 2016-12-21 | 2017-04-26 | 东北林业大学 | 用于防治水稻干尖线虫的atp合成酶基因及引物和应用 |
US10829781B2 (en) | 2005-02-24 | 2020-11-10 | Monsanto Technology Llc | Identification and use of target genes for control of plant parasitic nematodes |
-
2003
- 2003-04-15 WO PCT/US2003/011717 patent/WO2004098282A2/fr not_active Application Discontinuation
- 2003-04-15 AU AU2003221957A patent/AU2003221957A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
DATABASE GENBANK [Online] 04 May 2001 MCCARTER J. ET AL: 'The Washington University Nematode EST Project 1999', XP002988945 Database accession no. (BE578834) * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8067671B2 (en) | 2005-02-24 | 2011-11-29 | Monsanto Technology Llc | Methods for genetic control of plant pest infestation and compositions thereof |
US8088976B2 (en) * | 2005-02-24 | 2012-01-03 | Monsanto Technology Llc | Methods for genetic control of plant pest infestation and compositions thereof |
US10829781B2 (en) | 2005-02-24 | 2020-11-10 | Monsanto Technology Llc | Identification and use of target genes for control of plant parasitic nematodes |
CN106591336A (zh) * | 2016-12-21 | 2017-04-26 | 东北林业大学 | 用于防治水稻干尖线虫的atp合成酶基因及引物和应用 |
CN106591336B (zh) * | 2016-12-21 | 2019-06-11 | 东北林业大学 | 用于防治水稻干尖线虫的atp合成酶基因及引物和应用 |
Also Published As
Publication number | Publication date |
---|---|
WO2004098282A3 (fr) | 2005-09-01 |
AU2003221957A1 (en) | 2004-11-26 |
AU2003221957A8 (en) | 2004-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7666642B2 (en) | Nematode fatty acid desaturase-like sequences | |
US7803603B2 (en) | Nematode ATP synthase subunit E polypeptide | |
US20080227955A1 (en) | Nematode PAN and ZP Receptor-Like Sequences | |
US8198060B2 (en) | Nematode phosphoethanolamine N-methyltransferase-like sequences | |
WO2004098282A2 (fr) | Sequences de type e de sous-unites de l'atp-synthase de nematodes | |
US20030235898A1 (en) | Nematode GS-like sequences | |
US7867749B2 (en) | Nematode phosphoethanolamine N-methyltransferase-like sequences | |
US7479384B2 (en) | Nematode MDH-like sequences | |
US6818433B1 (en) | Nematode PGM-like sequences | |
US20050172350A1 (en) | Nematode PPPT-like sequences | |
US20050191697A1 (en) | Nematode GS-like sequences | |
WO2004106489A2 (fr) | Sequences de nematodes du type gs | |
WO2004096835A1 (fr) | Sequences de type pppt de nematodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |