WO2004092587A1 - Enclosed compressor - Google Patents
Enclosed compressor Download PDFInfo
- Publication number
- WO2004092587A1 WO2004092587A1 PCT/JP2004/005286 JP2004005286W WO2004092587A1 WO 2004092587 A1 WO2004092587 A1 WO 2004092587A1 JP 2004005286 W JP2004005286 W JP 2004005286W WO 2004092587 A1 WO2004092587 A1 WO 2004092587A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compression mechanism
- discharge chamber
- oil
- passage
- container
- Prior art date
Links
- 230000006835 compression Effects 0.000 claims abstract description 135
- 238000007906 compression Methods 0.000 claims abstract description 135
- 230000001174 ascending effect Effects 0.000 claims description 41
- 238000004891 communication Methods 0.000 claims description 29
- 239000003507 refrigerant Substances 0.000 abstract description 53
- 238000000926 separation method Methods 0.000 abstract description 28
- 230000000694 effects Effects 0.000 abstract description 27
- 239000007788 liquid Substances 0.000 abstract description 24
- 238000005057 refrigeration Methods 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/28—Safety arrangements; Monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/06—Silencing
- F04C29/065—Noise dampening volumes, e.g. muffler chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/06—Silencing
- F04C29/068—Silencing the silencing means being arranged inside the pump housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
- F04C29/023—Lubricant distribution through a hollow driving shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
- F04C29/028—Means for improving or restricting lubricant flow
Definitions
- the present invention relates to a hermetic compressor used for refrigeration and air conditioning for business use, home use, or vehicles, or a refrigerator.
- FIG. 1 showing a hermetic scroll compressor according to the present embodiment.
- the hermetic scroll compressor includes a compression mechanism 2, a motor 3 for driving a compression mechanism 2 provided below the compression mechanism 2, and a rotation mechanism of the And a crankshaft 4 for transmission to the engine. Furthermore, oil 6 for holding oil 6 held in an oil reservoir 20 provided at a lower portion in the closed container 1 is supplied to a bearing 66 of the crankshaft 4 and a sliding portion of the compression mechanism 2 through the crankshaft 4. It has mechanism 7.
- the oil 6 is forcibly supplied to the bearing portion 66 and the sliding portion of the compression mechanism 2 against the gravity by the oil supply mechanism 7, so that a smooth operation can be ensured.
- the refrigerant gas 27 compressed by the compression mechanism 2 cools the electric motor 3 through a portion of the electric motor 3 in the closed container 1, and is then discharged out of the closed container 1.
- the oil supplied to the bearing part 66 and the sliding part of the compression mechanism 2 moves downward by the supply pressure and gravity and is naturally collected in the oil reservoir 20.
- the refrigerant gas 27 since the refrigerant gas 27 always contacts the oil 6, the refrigerant gas 27 accompanies the oil 6 and brings in the oil when the refrigerant gas is supplied from the closed container to the refrigeration cycle.
- 2000-280252 discloses the following invention with respect to the passage of the gas discharged from the compression mechanism 2. That is, the gas discharged from the compression mechanism 2 flows from the discharge chamber 31 in the container above the compression mechanism to the compression mechanism communication path 32, the communication path 34, the rotor path 36, the rotor lower chamber 35, the electric motor.
- a gas passage in the container is provided so that the gas passes through the lower part of 3, the stator passage 37, the stator upper chamber 38, and the external discharge port 39 in order, and is discharged out of the sealed container 1.
- the compression mechanism communication passage 32 communicates from the discharge chamber 31 in the container to the lower part of the compression mechanism 2; the communication passage 34 extends from the compression mechanism communication passage 32 to the rotor upper chamber 33.
- the rotor passage 36 is provided in the rotor 3b so as to communicate the rotor upper chamber 33 and the rotor lower chamber 35; the stator passage 37 is a stator.
- 3a is provided between stator 3a or stator 3a and hermetically closed container 1 so that the lower and upper portions of 3a communicate with each other; stator upper chamber 38 corresponds to the outer peripheral area of communication path 34.
- the external discharge port 39 is provided at a height higher than the height of the stator upper chamber 38 in the closed container 1.
- a hermetic compressor of the present invention includes a hermetic container, a compression mechanism housed in the hermetic container, a motor disposed below the compression mechanism, having a rotor and a stator, and an electric motor.
- a crankshaft that transmits the rotational force of the oil to the compression mechanism, an oil reservoir that is provided in the lower part of the sealed container and accumulates oil, and an oil supply mechanism that supplies oil through the crankshaft to bearings, compression mechanism slides, and moving parts
- a hermetic compressor wherein gas discharged from the compressor mechanism reaches a lower portion of the electric motor from a first discharge chamber formed by a muffler provided to cover an upper discharge port of the compression mechanism, Further rises, reaches the second discharge chamber formed by the closed container, the closed container upper lid, and the compression mechanism through the compression mechanism ascending passage, and then closes through the external discharge port provided above the compression mechanism.
- the hermetic compressor of the present invention has a configuration in which the gas discharged from the compression mechanism reaches the lower part of the electric motor and the oil contained in the gas is separated in the gas passage in the container. Furthermore, the gas passage in the container was surrounded by a first discharge chamber, a compression mechanism communication path connecting the first discharge chamber to the lower part of the compression mechanism, and a passage force bar extending from the compression mechanism communication path to the upper part of the electric motor.
- FIG. 1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1 of the present invention.
- FIG. 2 is a diagram showing the oil discharge amount of the hermetic compressor.
- FIG. 3 is a cross-sectional view of a hermetic compressor according to Embodiment 2 of the present invention.
- FIG. 4 is a cross-sectional view of the hermetic compressor according to Embodiment 3 of the present invention.
- FIG. 5 is a diagram showing an oil discharge amount in another configuration of the hermetic compressor.
- FIG. 6 is a cross-sectional view of a hermetic compressor according to Embodiment 4 of the present invention.
- FIG. 7 is a vertical sectional view of a main part of a hermetic compressor according to Embodiment 5 of the present invention.
- FIG. 1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1 of the present invention.
- a hermetic compressor for a refrigeration cycle incorporating a vertical scroll type compression mechanism will be described.
- the hermetic compressor according to the first embodiment of the present invention includes: a main bearing member 11 of a crankshaft 4 fixed in a hermetically sealed container 1 by welding or shrink fit by heat; It has a scroll-type compression mechanism 2 constituted by sandwiching a revolving scroll 13 that meshes with the fixed scroll 12 between the fixed scroll 12 and the fixed scroll 12 that is stopped above. Between the orbiting scroll 13 and the main bearing member 11, a rotation restricting mechanism 14 for preventing the orbiting scroll # 3 from rotating and guiding the orbiting scroll 3 to move in a circular orbit is provided, such as an Oldham ring. When the orbiting scroll 13 is eccentrically driven by the main shaft portion 4a at the upper end of the crankshaft 4, the orbiting scroll 13 orbits.
- the suction pipe 1 that communicates with the outside of the closed vessel 1
- the refrigerant gas sucked from 6 through the inlet 17 on the outer periphery of the fixed scroll 12 is compressed.
- Refrigerant gas that has exceeded the specified pressure is pushed into the closed container 1 by pushing and opening the reed valve 19 from the discharge port 18 at the center of the fixed scroll 12. Is discharged.
- the hermetic compressor according to Embodiment 1 of the present invention repeats a series of the above processes.
- the lower end of the crankshaft 4 reaches the oil reservoir 20 at the lower end of the closed container 1, and is supported by the sub-bearing member 21 fixed in the closed container 1 by welding or shrink fitting, so that it can rotate stably.
- An electric motor 3 composed of a stator 3 a fixed to the closed casing 1 by welding or shrink fitting, and a rotor 3 b integrally connected around the middle of the crankshaft 4 includes a main bearing member 1 1 And the auxiliary bearing member 21.
- balance weights 23, 24 fixed by pins 22 are provided on the outer peripheral portions of the upper and lower end surfaces of the rotor 3b, whereby the rotor 3b and the crankshaft 4 rotate stably, The orbiting scroll 13 can be stably moved in a circular orbit.
- the crankshaft 4 has an oil supply hole 26 formed in the axial direction.
- the oil supply mechanism 7 supplies the oil 6 in the oil reservoir 20 to the compression mechanism 2 through the oil supply hole 26 by a pump 25 driven by the lower end of the crankshaft 4, and a bearing part included in the compression mechanism 2. Oil 6 is supplied to 6 and each sliding part.
- the oil 6 supplied in this way flows out under the main bearing member 11 through the bearing portion 66 to drop into the oil reservoir 20 so as to obtain an escape space by the supply pressure or gravity, and finally the oil reservoir 20 Will be collected.
- the refrigerant gas 27 indicated by the broken arrow discharged from the compression mechanism 2 accompanies the oil 6 contacted in the compression mechanism 2 or the supplied oil 6 dripping under the main bearing member 11. And tends to accompany.
- this hermetic compressor has a gas passage A in the container to prevent the problem.
- the in-vessel gas passage A is a passage for the refrigerant gas 27 discharged from the compression mechanism 2, from the in-vessel discharge chamber 31 above the compression mechanism 2 to the compression mechanism communication path 32, the communication path 34, Under the motor 3 through the rotor passage 36, the stator communication passage ⁇ 2, and the rotor lower chamber 35 sequentially. And a passage configured to be discharged to the outside of the sealed container 1 via the stator passage 37, the stator upper chamber 38, the compression mechanism ascending passage 43, and the external discharge port 39 in this order.
- the communication path 34 is surrounded by a path cover 51 so as to extend from the compression mechanism communication path 32 to the rotor upper chamber 33.
- the compression mechanism communication passage 32 is a passage that communicates between the discharge chamber 31 in the container and the lower part of the compression mechanism 2;
- the communication passage 34 is a passage from the compressor structure communication passage 32 to the rotor upper chamber.
- the rotor passage 36 is a passage provided in the rotor 3b so that the upper rotor chamber 33 and the lower rotor chamber 35 communicate with each other;
- the stator communication path 7 Reference numeral 2 denotes a passage provided in the stator 3a so that the lower motor 3 including the upper stator chamber 38 and the lower rotor chamber 35 communicate with each other;
- the stator passage 37 is a passage of the stator 3a.
- the in-vessel discharge chamber 31 of the in-vessel gas passage A and the compression mechanism communication path 32 are arranged on the outer peripheral side of the compression mechanism 2 and the bearing 66 thereof, and the refrigerant discharged from the compression mechanism 2
- the gas 27 is collectively discharged into the communication path 34 below the compression mechanism 2.
- the communication path 34 guides the discharged refrigerant gas 27 to the rotor upper chamber 33.
- a part of the refrigerant gas 27 enters the rotor passage 36 in a state where it is gently swirled under the influence of the rotation of the rotor 3 b and the balance weight 23, passes through the rotor passage 36 downward, and separates the oil 6. Strongly collides with the separator. Due to the collision, the entrained oil 6 is effectively separated and the mist of the oil 6 drops and grows.
- centrifugal separation acts on the oil that has become droplets, and the oil 6 The separation effect is enhanced.
- the remaining refrigerant gas 27 passing through the above-described descending passage is guided to the stator communication passage 72, where the oil 6 is formed into droplets and grown, thereby effectively performing gas-liquid separation. I have.
- the refrigerant gas 27 from which the oil 6 has been separated as described above passes through the stator passage 37 as a rising passage, and the stator upper chamber 3 8 further around the communication passage 34 around the bearing 66. Then, the air reaches the compression mechanism upper chamber 42 via the compression mechanism ascending passage 43 provided in the compression mechanism 2 and is discharged from the external discharge port 39 to the outside of the closed container 1.
- the refrigerant gas 27 from which the oil 6 has been separated does not come into contact with the refrigerant gas 27 accompanying the oil 6, the oil is discharged to the outside of the closed vessel 1 with the oil sufficiently separated. It can be supplied to a refrigeration cycle.
- the compression mechanism ascending passage 4.3 is provided in the compression mechanism 2 or between the compression mechanism 2 and the sealed container 1, it is difficult to make the passage area large. It is not easy to reduce the flow velocity of the refrigerant gas 27 ejected to the upper chamber 42. For this reason, when the hermetic compressor is operated at high speed and the circulation amount of the refrigerant gas 27 is increased, the flow velocity may reach several meters per second or more. The refrigerant gas 27 ejected from the compression mechanism ascending passage 43 collides with the closed container upper lid 76 at a considerable flow velocity, and its direction is forcibly changed.
- the in-vessel discharge chamber 31 will be described as a first discharge chamber 31 and the compression mechanism upper chamber 42 will be described as a second discharge chamber 42.
- the second discharge chamber 42 is complicated.
- the refrigerant gas 27 colliding with the top lid 76 of the closed vessel at a considerable flow velocity repeated revolving and rotating motions in the second discharge chamber 42 with a complicated shape.
- the liquid is discharged out of the closed container 1 through the external discharge port 39.
- Fig. 2 is a diagram showing the relationship between the volume ratio of the discharge chamber of the hermetic compressor and the gas-liquid separation effect, where the ratio of the volume of the first discharge chamber 31 to the volume of the second discharge chamber 42 is closed. It shows the oil discharge amount (wt%), which is the gas-liquid separation effect of the compressor 6 in the compressor.
- the volume ratio VR is the volume VI occupied by the space of the first discharge chamber 31 formed by the compression mechanism upper surface and the muffler 77
- V 2 is the volume of the closed container lid 7 in the closed container 1.
- Curves 1 and 2 in FIG. 2 show the results obtained by changing the arrangement of the first discharge chamber 31.
- the volume ratio VR has a great influence on the gas-liquid separation effect of the oil 6. Therefore, when the first discharge chamber 31 is formed in the second discharge chamber 42 above the compression mechanism 2, it is preferable to set the volume ratio VR to 0.35 or less. More preferably, it is set to 3 or less.
- the hermetic compressor according to the first embodiment of the present invention has a configuration in which the first discharge chamber 31 is disposed in the second discharge chamber 42 above the compression mechanism 2,
- the hermetic-type compressor according to the first embodiment of the present invention has a configuration in which the volume ratio VR is set to be equal to or less than 0.35.
- Oil 6 in refrigerant gas 2 7 discharged outside should be minimized
- the oil 6 can be discharged to the outside of the closed vessel 1 and supplied to the refrigeration cycle in a state of being sufficiently separated. That is, even when a small hermetic compressor is operated at high speed, the gas-liquid separation effect of oil and refrigerant gas can be enhanced, and the amount of oil discharged from the hermetic compressor can be significantly reduced. it can.
- FIG. 3 is a cross-sectional view showing a main part of the hermetic compressor according to Embodiment 2 of the present invention, and is a BB cross-sectional view of the hermetic compressor shown in FIG.
- the hermetic compressor according to the second embodiment of the present invention is characterized in that the first discharge chamber 31 is arranged eccentrically from the center of the compression mechanism 2, as shown in FIG. .
- the hermetic compressor according to the second embodiment will be described with reference to FIG. 2 and FIG.
- the curves 1 and 2 in FIG. 2 show the results of measuring the oil discharge amount with the arrangement of the first discharge chamber 31 changed. That is, the curve 1 indicates a change in the oil discharge amount when the first discharge chamber 31 is arranged at the approximate center of the compression mechanism 2 in the radial direction of the sealed container 1. Curve 2 indicates a change in the oil discharge amount when the first discharge chamber 31 is arranged eccentrically from the compression mechanism 2 in the radial direction of the sealed container 1.
- the curve ⁇ shows the change in the volume ratio VR with respect to the VR measured by measuring the oil discharge amount as a configuration in which the first discharge chamber 31 as shown in FIG. 3 is arranged eccentrically from the center of the compression mechanism 2. Things.
- the external discharge port 39 is arranged at the approximate center of the compression mechanism 2.
- the oil discharge amount is smaller when the first discharge chamber 31 is arranged eccentrically from the compression mechanism 2.
- the refrigerant gas 27 ejected from the compression mechanism ascending passage 43 collides with the upper lid 76 of the closed vessel at a considerable flow velocity, and the oil 6 in the refrigerant gas 27 is subdivided and atomized, and the second discharge chamber 4 It is considered that there is convection in the refrigerant gas 2, and the change in the convection of the refrigerant gas 27 changes depending on the arrangement of the first discharge chamber 31.
- the refrigerant gas 27 is finally discharged from the external discharge port 39 to the outside of the closed container 1, when the first discharge chamber 31 is arranged approximately at the center of the compression mechanism 2, the refrigerant gas 27 The convection time in the second discharge chamber 42 is reduced, and the liquid is discharged from the external discharge port 39 so as to be guided to the muffler 77 forming the first discharge chamber 31. As a result, the gas-liquid separation effect of the subdivided and atomized oil 6 is reduced, and the oil discharge amount is increased.
- the convection time in the second discharge chamber 42 becomes longer due to less induction by the muffler 77, and the oil The gas-liquid separation effect of 6 is increasing.
- the first discharge chamber 31 be eccentrically arranged from the compression mechanism 2. is there.
- the first discharge chamber 31 is connected to the compression mechanism 2. It is arranged at a position eccentric from the center, and as a result, a sealed type that optimally sets the volume ratio VR of the volume VI of the first discharge chamber 31 to the volume V2 of the second discharge chamber 42 Also in the compressor, it is possible to further enhance the gas-liquid separation effect of the oil 6.
- FIG. 4 is a cross-sectional view showing a main part of the hermetic-type compressor according to Embodiment 3 of the present invention, and is a BB cross-sectional view of the hermetic-type compressor shown in FIG.
- the hermetic compressor according to the third embodiment of the present invention is characterized in that, as shown in FIG. 4, the first discharge chamber 31 is arranged at a position substantially opposed to the compression mechanism ascending passage 43. And
- FIG. 5 is a diagram showing the relationship between the volume ratio of the discharge chamber and the gas-liquid separation effect, similarly to FIG. 2, and shows the ratio of the volume of the first discharge chamber 31 to the volume of the second discharge chamber 42.
- the oil discharge (wt%) which is the gas-liquid separation effect of oil 6 of the hermetic compressor.
- FIG. 5 unlike the case of FIG. 2, the result of measuring the oil discharge amount by changing the positional relationship of the first discharge chamber 31 with respect to the compressor structure ascending passage 43 for the arrangement of the first discharge chamber 31 is shown. .
- the hermetic compressor according to the third embodiment will be described with reference to FIG. 4 and FIG.
- the compression mechanism ascending passage 43 is usually formed on the outer peripheral portion of the compression mechanism 2, and the compression mechanism communication passage 32, the suction pipe 16, etc. It is difficult to configure the two equally. For this reason, as shown in the drawing, the compression mechanism ascending passage 43 is often arranged so as to be deviated in a certain direction in the radial direction of the closed casing 1.
- FIG. 5 the result of measuring the oil discharge amount by changing the arrangement of the first discharge chamber 31 with the configuration of the compression mechanism ascending passage 43 as shown in FIG. 4 is shown.
- Curves 3 and 4 in Fig. 5 show the results of measuring the oil discharge amount with the arrangement of the first discharge chamber 31 changed.
- Curve 3 indicates a change in the oil discharge amount when the first discharge chamber 31 is arranged at a position close to the compression mechanism ascending passage 43 in the radial direction of the closed casing 1.
- An example of the arrangement of the curve 3 is the configuration of the first discharge chamber 31 shown in FIG. 3 described above.
- the first discharge chamber 31 is separated from the compression mechanism ascending passage 43 as much as possible as shown in FIG.
- the figure shows a change in the oil discharge amount in the case of the configuration arranged at the position. That is, as shown in FIG. 4, the first discharge chamber 31 is moved from the compression mechanism ascending passage 43 to the radial direction of the compression mechanism 2 with respect to the compression mechanism ascending passage 43 biased in a certain direction of the compression mechanism 2. It is configured so as to be separated from each other and to be located substantially opposite to each other.
- the oil discharge amount is smaller when the first discharge chamber 31 is arranged as far as possible from the compression mechanism ascending passage 43.
- the refrigerant gas 27 ejected from the compression mechanism ascending passage 43 collides with the upper lid 76 of the closed vessel at a considerable flow velocity, and the oil 6 in the refrigerant gas 27 is subdivided and atomized. It is considered that convection occurs in the second discharge chamber 42.
- This refrigerant gas 27 The amount of the coolant gas 27 discharged from the external discharge port 39 directly to the outside of the closed container 1 without convection or the convection flow of 7 is determined by the arrangement of the first discharge chamber 31 and the compression mechanism ascending passage 43. This is the result of changing the relationship.
- the refrigerant gas 27 is finally discharged from the external discharge port 39 to the outside of the closed container 1, if the first discharge chamber 31 is configured at a position relatively close to the compression mechanism ascending passage 43, (2) The amount of the refrigerant gas (27) discharged from the external discharge port (39) directly to the outside of the closed container (1) without convection in the discharge chamber (42) is increasing. This is because the muffler 77 constituting the first discharge chamber 31 has an effect of directly guiding the refrigerant gas 27 ejected from the compression mechanism ascending passage 43 to the external discharge port 39. Conversely, if the first discharge chamber 31 is moved away from the compression mechanism ascending passage 43, this effect is reduced.
- the muffler 77 is arranged as far as possible from the compressor structure ascending passage 43, in other words, at a position approximately opposite to the compression mechanism ascending passage 43. It is preferable to arrange them.
- the first discharge chamber 31 is located as far as possible from the compression mechanism ascending passage 43, and is disposed at a position substantially opposite to the compression mechanism ascending passage 43. Accordingly, even in a hermetic-type compressor in which the ratio VR of the volume V1 of the first discharge chamber 31 to the volume V2 of the second discharge chamber 43 is optimally set, It is possible to suppress the refrigerant gas 27 ejected from the compression mechanism ascending passage 43 from being directly discharged from the external discharge port 39, and to further enhance the gas-liquid separation effect of the oil.
- FIG. 6 is a top view of the hermetic compressor according to Embodiment 4 of the present invention, and corresponds to the top view of the hermetic compressor shown in FIG.
- the dashed lines indicate the compression mechanism 2, the compression mechanism ascending passage 43, the muffler 77, the first discharge chamber 31, the compression mechanism communication passage 32, and the like.
- the hermetic compressor according to the fourth embodiment of the present invention is characterized in that, as shown in FIG. 6, the external discharge port 39 is arranged at a position substantially opposite to the compression mechanism ascending passage 43. And As shown in FIG.
- the compressor structure ascending passage 43 is configured to be deviated in a certain direction with respect to the radial direction of the compression mechanism 2, and
- the discharge port 39 is arranged at a position as far as possible from the compression mechanism ascending passage 43, that is, at a position substantially opposite to the compression mechanism ascending passage 43.
- the hermetic-type compressor according to the fourth embodiment of the present invention has a configuration in which the external discharge port 39 is disposed at a position substantially opposite to the compression mechanism ascending passage 43, whereby the first discharge chamber 3 Even if the degree of freedom of the arrangement of 1 is low, the first discharge chamber is used to suppress the refrigerant gas 27 ejected from the compression mechanism ascending passage 43 from being directly discharged from the external discharge port 39.
- the ratio of the volume of the volume VI of 1 to the volume V2 of the second discharge chamber 42 can be improved even in the hermetic compressor with the optimum VR set for the volume 6 of the oil 6. Become.
- FIG. 7 is an enlarged longitudinal sectional view of a main part of a hermetic compressor according to Embodiment 5 of the present invention.
- the hermetic compressor according to Embodiment 5 of the present invention is characterized in that, as shown in FIG. 7, the first discharge chamber 31 is arranged at a position except immediately below the external discharge port 39. And
- the hermetic compressor according to the fifth embodiment will be described with reference to FIG.
- the first discharge chamber 31 is not disposed immediately below the external discharge port 39 arranged on the closed container upper lid 76, that is, the external discharge port 39
- the configuration is such that the first discharge chamber 31 is arranged at a position except immediately below.
- the spatial distance between a part of the muffler 77 forming the first discharge chamber 31 and the external discharge port 39 can be set to the maximum.
- the upper lid 7 of the closed container must be used. 6 has to be separated from the first discharge chamber 31 and there is a disadvantage that the overall height of the sealed container 1 becomes large.
- the problem is small.
- the hermetic-type compressor according to the fifth embodiment of the present invention has a configuration in which the first discharge chamber 31 is disposed at a position other than immediately below the external discharge port 39. Even when the design margin around the periphery is low, the same effect as when the volume ratio VR is set small can be obtained, and a hermetic compressor with improved oil-gas separation effect can be provided.
- the present invention makes it possible for a hermetic compressor to discharge a refrigerant gas from which oil has been sufficiently separated out of a hermetic container even during high-speed operation, for business or home use, or for vehicles. It can be used as a hermetic compressor with an improved oil separation effect used in refrigeration, air conditioning, and refrigerators.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Compressor (AREA)
Abstract
An enclosed compressor has a first discharge chamber (31) and a second discharge chamber (42). The first discharge chamber (31) is formed above a compression mechanism (2) by a muffler (77). The second discharge chamber (42) is formed by a compression mechanism portion including an enclosed container upper lid (76) inside an enclosed container (1) and the muffler (77). A volumetric ratio VR, a ratio of a volume V1 of the first discharge chamber (31) and a volume V2 of the second discharge chamber, is set to about 0.35 or less. Even when an enclosed compressor is downsized and its operating speed is increased, the structure above can enhance gas-liquid separation effect of oil and refrigerant gas.
Description
明細書 Specification
密閉型圧縮機 技術分野 Hermetic compressor technical field
本発明は、 業務用または家庭用、 あるいは乗り物用の冷凍空調、 あるいは冷蔵 庫などに用いられる密閉型圧縮機に関する。 背景技術 The present invention relates to a hermetic compressor used for refrigeration and air conditioning for business use, home use, or vehicles, or a refrigerator. Background art
従来の密閉型圧縮機について特開 2 0 0 1 - 2 8 0 2 5 2号公報を例として説 明する。 従来例を説明するために、 本実施の形態に係る密閉型のスクロール圧縮 機を示す図 1を参照する。 A conventional hermetic compressor will be described with reference to Japanese Patent Application Laid-Open No. 2000-280252. To explain a conventional example, reference is made to FIG. 1 showing a hermetic scroll compressor according to the present embodiment.
密閉型のスクロール圧縮機は、 密閉容舉 1内に、 圧縮機構 2、 この圧縮機構 2 の下方に設けた圧縮機構 2を駆動するための電動機 3と、 この電動機 3の回転力 を圧縮機構 2に伝達するためのクランク軸 4を備える。 さらに、 密閉容器 1内の 下部に設けたオイル溜め 2 0に保持されるオイル 6を、 クランク軸 4を通じてク ランク軸 4の軸受部 6 6や圧縮機構 2の摺動部に供給するための給油機構 7を備 えている。 The hermetic scroll compressor includes a compression mechanism 2, a motor 3 for driving a compression mechanism 2 provided below the compression mechanism 2, and a rotation mechanism of the And a crankshaft 4 for transmission to the engine. Furthermore, oil 6 for holding oil 6 held in an oil reservoir 20 provided at a lower portion in the closed container 1 is supplied to a bearing 66 of the crankshaft 4 and a sliding portion of the compression mechanism 2 through the crankshaft 4. It has mechanism 7.
上記の構造のスクロール圧縮機において、 オイル 6が給油機構 7によって重力 に逆らって軸受部 6 6や圧縮機構 2の摺動部に強制給油されることにより、 円滑 な動作を確保することができる。 圧縮機構 2で圧縮した冷媒ガス 2 7は密閉容器 1内の電動機 3の部分を通して電動機 3を冷却した後、 密閉容器 1外に吐出され る。 軸受部 6 6や圧縮機構 2の摺動部に供給されたオイルは、 供給圧や重力によ つて下方に移動しオイル溜め 2 0に自然回収される。 その際、 冷媒ガス 2 7が常 時オイル 6と接触するため、 冷媒ガス 2 7がオイル 6を随伴し、 密閉容器から冷 凍サイクルに供給される際にオイルを持ち込んでしまうことにより、 冷凍サイク ル中での配管圧力損失や凝縮器や蒸発器などの熱交換器での熱交換効率の低下を もたらす問題がある。
上記の問題を解消するための従来の対策例を以下に説明する。 一つは、 圧縮機 構から密閉容器内に吐出した冷媒ガスが電動機を通ってそれを冷却しながら密閉 容器外に吐出されるまでの冷媒ガスの通路を、 オイルの衝突分離や遠心分離が繰 り返し生じるように設計する方法で、 これにより密閉容器外に吐出される冷媒ガ スにオイルが随伴しないように工夫するものである。 また、 特開 2 0 0 1— 2 8 0 2 5 2号公報は、 圧縮機構 2から吐出されるガスの通路に関して以下の発明を 開示する。 すなわち、 圧縮機構 2から吐出されるガスが、 圧縮機構上部の容器内 吐出室 3 1から、 圧縮機構連通路 3 2、 連絡路 3 4、 回転子通路 3 6、 回転子下 部室 3 5、 電動機 3の下部、 固定子通路 3 7、 固定子上部室 3 8および外部吐出 口 3 9を順次通過して密閉容器 1外に排出されるように容器内ガス通路を設けた りしている。 ここで、 圧縮機構連通路 3 2は容器内吐出室 3 1から圧縮機構 2の 下部に連通され;連絡路 3 4は圧縮機構連通路 3 2から回転子上部室 3 3まで続 くように通路カバ一 5 1で囲われており ;回転子通路 3 6は回転子上部室 3 3と 回転子下部室 3 5を連通させるように回転子 3 bに設けられ;固定子通路 3 7は 固定子 3 aの下部と上部とを連通させるように固定子 3 aまたは固定子 3 aと密 閉容器 1との間に設けられ;固定子上部室 3 8は連絡路 3 4の外周領域に相当 し;外部吐出口 3 9は、 密閉容器 1で固定子上部室 3 8の高さ位置以上の高さに 設けられている。 In the scroll compressor having the above-described structure, the oil 6 is forcibly supplied to the bearing portion 66 and the sliding portion of the compression mechanism 2 against the gravity by the oil supply mechanism 7, so that a smooth operation can be ensured. The refrigerant gas 27 compressed by the compression mechanism 2 cools the electric motor 3 through a portion of the electric motor 3 in the closed container 1, and is then discharged out of the closed container 1. The oil supplied to the bearing part 66 and the sliding part of the compression mechanism 2 moves downward by the supply pressure and gravity and is naturally collected in the oil reservoir 20. At this time, since the refrigerant gas 27 always contacts the oil 6, the refrigerant gas 27 accompanies the oil 6 and brings in the oil when the refrigerant gas is supplied from the closed container to the refrigeration cycle. However, there is a problem that the pressure loss in the piping in the pipe and the heat exchange efficiency in the heat exchanger such as the condenser and the evaporator are reduced. An example of a conventional measure for solving the above problem will be described below. The first is that the collision of oil and the centrifugal separation of the refrigerant gas take place in the passage of the refrigerant gas from the compressor mechanism to the refrigerant gas discharged from the compressor to the outside of the closed container while cooling it through the motor. This is a method of designing so that the oil will not be accompanied by the refrigerant gas discharged to the outside of the closed container. Further, Japanese Patent Application Laid-Open No. 2000-280252 discloses the following invention with respect to the passage of the gas discharged from the compression mechanism 2. That is, the gas discharged from the compression mechanism 2 flows from the discharge chamber 31 in the container above the compression mechanism to the compression mechanism communication path 32, the communication path 34, the rotor path 36, the rotor lower chamber 35, the electric motor. A gas passage in the container is provided so that the gas passes through the lower part of 3, the stator passage 37, the stator upper chamber 38, and the external discharge port 39 in order, and is discharged out of the sealed container 1. Here, the compression mechanism communication passage 32 communicates from the discharge chamber 31 in the container to the lower part of the compression mechanism 2; the communication passage 34 extends from the compression mechanism communication passage 32 to the rotor upper chamber 33. The rotor passage 36 is provided in the rotor 3b so as to communicate the rotor upper chamber 33 and the rotor lower chamber 35; the stator passage 37 is a stator. 3a is provided between stator 3a or stator 3a and hermetically closed container 1 so that the lower and upper portions of 3a communicate with each other; stator upper chamber 38 corresponds to the outer peripheral area of communication path 34. The external discharge port 39 is provided at a height higher than the height of the stator upper chamber 38 in the closed container 1.
しかしながら、 上記従来の技術においてはオイルと冷媒ガスの気液分離効果は 改善されるものの、 小型の密閉型圧縮機での高速運転化が進むにつれて、 気液分 離効果が十分に行なえきれず、 圧縮機の機外にオイルが吐出され、 冷凍サイクル での効率低下を招いている。 さらに、 上記従来の技術のように、 密閉容器内の圧 縮機構より下方に配置されている電動機周りや圧縮機構周りの冷媒ガス通路等の 配置だけでは、 小型高速化が進む密閉型圧縮機でのオイルと冷媒ガスの気液分離 効果は限界に達しているという課題があつた。
発明の開示 However, in the above conventional technology, although the gas-liquid separation effect of oil and refrigerant gas is improved, as the high-speed operation of a small hermetic compressor advances, the gas-liquid separation effect cannot be sufficiently achieved. Oil is discharged outside the compressor, causing a decrease in efficiency in the refrigeration cycle. Furthermore, as in the above-described conventional technology, only the arrangement around the electric motor and the refrigerant gas passage around the compression mechanism disposed below the compression mechanism in the closed vessel can reduce the size and speed of the hermetic compressor. There is a problem that the gas-liquid separation effect of oil and refrigerant gas has reached its limit. Disclosure of the invention
本発明の密閉型圧縮機は、 上記課題を解決するため、 密閉容器と、 密閉容器に 収容される圧縮機構と、 圧縮機構の下方に配置され、 回転子と固定子を有する電 動機と、 電動機の回転力を圧縮機構に伝達するクランク軸と、 密閉容器内の下部 に設けられ、 オイルをためるオイル溜めと、 オイルをクランク軸を通じて軸受部 や圧縮機構摺,動部に供給する給油機構とを備える密閉型圧縮機であつて、 圧縮機 構から吐出されるガスが、 圧縮機構の上部吐出口を覆うように設けられたマフラ —により形成された第 1吐出室から、 電動機の下部に至り、 さらに上昇し、 圧縮 機構上昇通路を経て、 密閉容器と密閉容器上蓋と圧縮機構とで形成される第 2吐 出室に至り、 さらに、 圧縮機構の上方に設けられた外部吐出口を通って密閉容器 外に吐出される容器内ガス通路を有し、 第 1吐出室の容積 V Iと第 2吐出室の容 積 V 2の比率 V Rすなわち V 1を V 2で除した値を 0 . 3 5以下 (更に好ましく は 0 . 3以下) に設定した構成である。 また、 本発明の密閉型圧縮機は、 上記容 器内ガス通路において、 圧縮機構から吐出されるガスが、 電動機の下部に至ると ともに、 ガスに含まれるオイルが分離される構成である。 さらに、 容器内ガス通 路は、 第 1吐出室と、 第 1吐出室と圧縮機構の下部を連通させる圧縮機構連通路 と、 圧縮機構連通路から電動機の上部まで続く通路力バーで囲われた連絡路と、 電動機下に至るように電動機に設けられた下降通路と、 電動機上に至るように電 動機に設けられた上昇通路と、 圧縮機構または圧縮機構と密閉容器との間に設け られた圧縮機構上昇通路と、 密閉容器と密閉容器上蓋と圧縮機構とで形成される 第 2吐出室と、 圧縮機構の位置以上の部分に設けられた外部吐出口とからなるガ ス通路とした構成である。 このような構成により、 小型の密閉型圧縮機が高速運 転された場合においても、 オイルと冷媒ガスの気液分離効果を高めることができ、 圧縮機からのオイル吐出量を大幅に低減できる密閉型圧縮機を提供することがで さる。 図面の簡単な説明
図 1は、 本発明の実施の形態 1における密閉型圧縮機の縦断面図である。 In order to solve the above-mentioned problems, a hermetic compressor of the present invention includes a hermetic container, a compression mechanism housed in the hermetic container, a motor disposed below the compression mechanism, having a rotor and a stator, and an electric motor. A crankshaft that transmits the rotational force of the oil to the compression mechanism, an oil reservoir that is provided in the lower part of the sealed container and accumulates oil, and an oil supply mechanism that supplies oil through the crankshaft to bearings, compression mechanism slides, and moving parts A hermetic compressor, wherein gas discharged from the compressor mechanism reaches a lower portion of the electric motor from a first discharge chamber formed by a muffler provided to cover an upper discharge port of the compression mechanism, Further rises, reaches the second discharge chamber formed by the closed container, the closed container upper lid, and the compression mechanism through the compression mechanism ascending passage, and then closes through the external discharge port provided above the compression mechanism. Outside the container It has a gas passage in the container to be discharged, and the ratio VR of the volume VI of the first discharge chamber VI to the volume V2 of the second discharge chamber VR, that is, the value obtained by dividing V1 by V2 is 0.35 or less (more preferably Is 0.3 or less). Further, the hermetic compressor of the present invention has a configuration in which the gas discharged from the compression mechanism reaches the lower part of the electric motor and the oil contained in the gas is separated in the gas passage in the container. Furthermore, the gas passage in the container was surrounded by a first discharge chamber, a compression mechanism communication path connecting the first discharge chamber to the lower part of the compression mechanism, and a passage force bar extending from the compression mechanism communication path to the upper part of the electric motor. A communication path, a descending passage provided in the motor so as to extend below the motor, an ascending passage provided in the electric motor so as to extend above the electric motor, and a compression mechanism or provided between the compression mechanism and the closed container. A gas passage comprising a compression mechanism ascending passage, a second discharge chamber formed of a sealed container, a closed container upper lid, and a compression mechanism, and an external discharge port provided at a position higher than the position of the compression mechanism. is there. With this configuration, even when a small hermetic compressor is operated at high speed, the gas-liquid separation effect between oil and refrigerant gas can be enhanced, and the hermetic seal can greatly reduce the amount of oil discharged from the compressor. A compact compressor can be provided. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1 of the present invention.
図 2は、 密閉型圧縮機のオイル吐出量を示した図である。 FIG. 2 is a diagram showing the oil discharge amount of the hermetic compressor.
図 3は、 本発明の実施の形態 2における密閉型圧縮機の横断面図である。 FIG. 3 is a cross-sectional view of a hermetic compressor according to Embodiment 2 of the present invention.
図 4は、 本発明の実施の形態 3における密閉型圧縮機の横断面図である。 FIG. 4 is a cross-sectional view of the hermetic compressor according to Embodiment 3 of the present invention.
図 5は、 密閉型圧縮機の他の構成におけるオイル吐出量を示した図である。 FIG. 5 is a diagram showing an oil discharge amount in another configuration of the hermetic compressor.
図 6は、 本発明の実施の形態 4における密閉型圧縮機の横断面図である。 FIG. 6 is a cross-sectional view of a hermetic compressor according to Embodiment 4 of the present invention.
図 7は、 本発明の実施の形態 5における密閉型圧縮機の要部縦断面図である。 発明を実施するための最良の形態 FIG. 7 is a vertical sectional view of a main part of a hermetic compressor according to Embodiment 5 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施の形態 1 ) (Embodiment 1)
図 1は、 本発明の実施の形態 1における密閉型圧縮機の縦断面図である。 以下、 縦型でスクロール式の圧縮機構を内蔵した冷凍サイクル用の密閉型圧縮機の場合 の一例を挙げて説明する。 FIG. 1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1 of the present invention. Hereinafter, an example of a hermetic compressor for a refrigeration cycle incorporating a vertical scroll type compression mechanism will be described.
本発明の実施の形態 1に係わる密閉型圧縮機は、 密閉容器 1内に、 溶接や焼き 嵌め Shrink f i t by heat などにより固定したクランク軸 4の主軸受部材 1 1と、 この主軸受部材 1 1上にポルト止めした固定スクロール 1 2との間に、 固定スク ロール 1 2と嚙み合う旋回スクロール 1 3を挟み込んで構成されるスクロール式 の圧縮機構 2を有する。 旋回スクロール 1 3と主軸受部材 1 1との間には、 旋回 スクロール ί 3の自転を防止して円軌道運動するように案内する自転規制機構 1 4、 例えばオルダムリングなど、 を設ける。 クランク軸 4の上端にある主軸部 4 aにて旋回スクロール 1 3を偏心駆動すると、 旋回スクロール 1 3が円軌道運動 する。 これにより固定スクロール 1 2と旋回スグロール 1 3との間に形成してい る圧縮室 1 5が外周側から中央部に移動しながら小さくなることを利用し、 密閉 容器 1外に通じた吸入パイプ 1 6から固定スクロール 1 2の外周部の吸入口 1 7 を経由して吸入した冷媒ガスを圧縮する。 所定圧以上になった冷媒ガスは固定ス クロ一ル 1 2の中央部の吐出口 1 8カ らリード弁 1 9を押し開いて密閉容器 1内
に吐出される。 本発明の実施の形態 1に係わる密閉型圧縮機は、 上記の一連の過 程を繰り返す。 The hermetic compressor according to the first embodiment of the present invention includes: a main bearing member 11 of a crankshaft 4 fixed in a hermetically sealed container 1 by welding or shrink fit by heat; It has a scroll-type compression mechanism 2 constituted by sandwiching a revolving scroll 13 that meshes with the fixed scroll 12 between the fixed scroll 12 and the fixed scroll 12 that is stopped above. Between the orbiting scroll 13 and the main bearing member 11, a rotation restricting mechanism 14 for preventing the orbiting scroll # 3 from rotating and guiding the orbiting scroll 3 to move in a circular orbit is provided, such as an Oldham ring. When the orbiting scroll 13 is eccentrically driven by the main shaft portion 4a at the upper end of the crankshaft 4, the orbiting scroll 13 orbits. By taking advantage of the fact that the compression chamber 15 formed between the fixed scroll 12 and the orbiting roll 13 becomes smaller while moving from the outer peripheral side to the central part, the suction pipe 1 that communicates with the outside of the closed vessel 1 The refrigerant gas sucked from 6 through the inlet 17 on the outer periphery of the fixed scroll 12 is compressed. Refrigerant gas that has exceeded the specified pressure is pushed into the closed container 1 by pushing and opening the reed valve 19 from the discharge port 18 at the center of the fixed scroll 12. Is discharged. The hermetic compressor according to Embodiment 1 of the present invention repeats a series of the above processes.
クランク軸 4の下端は密閉容器 1の下端部のオイル溜め 2 0に達しており、 密 閉容器 1内に溶接や焼き嵌めにより固定された副軸受部材 2 1により軸受され、 安定に回転することができる。 密閉容器 1に溶接や焼き嵌めなどにより固定され た固定子 3 aと、 クランク軸 4の途中の外まわりに一体に結合された回転子 3 b とで構成される電動機 3は、 主軸受部材 1 1と副軸受部材 2 1との間に配置され る。 また、 回転子 3 bの上下端面の外周部分にはピン 2 2により止め付けられた パランスウェイト 2 3、 2 4が設けられ、 これにより回転子 3 bおよびクランク 軸 4が安定して回転し、 旋回スクロール 1 3を安定して円軌道運動させることが できる。 The lower end of the crankshaft 4 reaches the oil reservoir 20 at the lower end of the closed container 1, and is supported by the sub-bearing member 21 fixed in the closed container 1 by welding or shrink fitting, so that it can rotate stably. Can be. An electric motor 3 composed of a stator 3 a fixed to the closed casing 1 by welding or shrink fitting, and a rotor 3 b integrally connected around the middle of the crankshaft 4 includes a main bearing member 1 1 And the auxiliary bearing member 21. In addition, balance weights 23, 24 fixed by pins 22 are provided on the outer peripheral portions of the upper and lower end surfaces of the rotor 3b, whereby the rotor 3b and the crankshaft 4 rotate stably, The orbiting scroll 13 can be stably moved in a circular orbit.
クランク軸 4は、 軸方向に形成されたオイル供給穴 2 6を有する。 給油機構 7 は、 クランク軸 4の下端で駆動されるポンプ 2 5によってオイル溜め 2 0内のォ ィル 6をオイル供給穴 2 6を通じて圧縮機構 2に供給し、 圧縮機構 2に含まれる 軸受部 6 6や各摺動部にオイル 6が供給される。 このようにして供給されたオイ ル 6は、 供給圧や重力によって逃げ場を求めるようにして軸受部 6 6を通じ主軸 受部材 1 1の下に流出して滴下し、 最終的にはオイル溜め 2 0に回収される。 一般に、 圧縮機構 2から吐出される破線矢印で示す冷媒ガス 2 7は、 圧縮機構 2内で接触したオイル 6を随伴したり、 主軸受部材 1 1の下に滴下してくる供給 後のオイル 6を飛散させて随伴したりする傾向がある。 従来の圧縮機ではその傾 向を抑制することが困難なため、 冷媒ガス 2 7に随伴するオイル 6を十分に分離 できず、 密閉容器 1外に吐出する冷媒ガスとともにオイルも吐出されてしまう問 題があるが、 本密閉型圧縮機は、 その問題を防止するために容器内ガス通路 Aを 有している。 The crankshaft 4 has an oil supply hole 26 formed in the axial direction. The oil supply mechanism 7 supplies the oil 6 in the oil reservoir 20 to the compression mechanism 2 through the oil supply hole 26 by a pump 25 driven by the lower end of the crankshaft 4, and a bearing part included in the compression mechanism 2. Oil 6 is supplied to 6 and each sliding part. The oil 6 supplied in this way flows out under the main bearing member 11 through the bearing portion 66 to drop into the oil reservoir 20 so as to obtain an escape space by the supply pressure or gravity, and finally the oil reservoir 20 Will be collected. Generally, the refrigerant gas 27 indicated by the broken arrow discharged from the compression mechanism 2 accompanies the oil 6 contacted in the compression mechanism 2 or the supplied oil 6 dripping under the main bearing member 11. And tends to accompany. With the conventional compressor, it is difficult to suppress the inclination, so that the oil 6 accompanying the refrigerant gas 27 cannot be sufficiently separated, and the oil is discharged together with the refrigerant gas discharged outside the closed container 1. Although there is a problem, this hermetic compressor has a gas passage A in the container to prevent the problem.
容器内ガス通路 Aとは、 圧縮機構 2から吐出される冷媒ガス 2 7の通路であつ て、 圧縮機構 2の上部の容器内吐出室 3 1から圧縮機構連通路 3 2、 連絡路 3 4、 回転子通路 3 6、 固定子連通路 Ί 2、 回転子下部室 3 5を順次経て電動機 3の下
に至り、 さらに固定子通路 3 7、 固定子上部室 3 8、 圧縮機構上昇通路 4 3、 外 部吐出口 3 9を順次経由して密閉容器 1外に吐出されるように構成される通路を いう。 また、 連絡路 3 4は圧縮機構連通路 3 2から回転子上部室 3 3まで続くよ うに通路カバー 5 1で囲われている。 ここで、 圧縮機構連通路 3 2とは容器内吐 出室 3 1と圧縮機構 2の下部を連通する通路であり ;連絡路 3 4とはこの圧縮機 構連通路 3 2から回転子上部室 3 3に続く経路であり ;回転子通路 3 6とは回転 子上部室 3 3と回転子下部室 3 5を連通させるように回転子 3 bに設けられる通 路であり ;固定子連通路 7 2とは固定子上部室 3 8と回転子下部室 3 5を含む電 動機 3下部とを連通させるように固定子 3 aに設ける通路であり;固定子通路 3 7とは固定子 3 aの下部と上部とを連通させるように固定子 3 aまたは固定子 3 aと密閉容器 1との間に設けられる通路であり ;固定子上部室 3 8は連絡路 3 4 の外まわりに設けられ;圧縮機構上昇通路 4 3は圧縮機構 2に設けられ;外部吐 出口 3 9は密閉容器 1で固定子上部室 3 8の高さ位置以上の高さに設けられる。 このような容器内ガス通路 Aの容器内吐出室 3 1と、 圧縮機構連通路 3 2とは、 圧縮機構 2およびその軸受部 6 6の外周側に配置され、 圧縮機構 2から吐出され る冷媒ガス 2 7を一括して圧縮機構 2の下部の連絡路 3 4に吐出させる。 続いて 連絡路 3 4は吐出されてきた冷媒ガス 2 7を回転子上部室 3 3に導く。 冷媒ガス 2 7の一部は、 回転子 3 bおよびバランスウェイト 2 3の回転による影響で緩く 旋回する状態で回転子通路 3 6内に進入して下方に通りぬけ、 オイル 6を分離す るための分離板に強く衝突する。 衝突により、 随伴しているオイル 6は効果的に 分離され、 またオイル 6のミストは液滴化しかつ成長する。 また、 分離板と回転 子 3 bの下端との間の空間の円周上の少なくとも一部が側方へ開口していること により、 液滴化したオイルに遠心分離作用が働き、 オイル 6の分離効果が高めら れる。 また、 以上のような下降通路を通った、 残りの冷媒ガス 2 7は、 固定子連 通路 7 2に導かれ、 オイル 6を液滴化しかつ成長させ、 気液分離を効果的に行な つている。
以上のようにしてオイル 6を分離された冷媒ガス 2 7は、 上昇通路として、 固 定子通路 3 7を通って軸受部 6 6まわりにある連絡路 3 4のさらに外まわりの固 定子上部室 3 8に達して、 圧縮機構 2に設けられた圧縮機構上昇通路 4 3を経て、 圧縮機構上部室 4 2に至り、 外部吐出口 3 9から密閉容器 1外に吐出される。 す なわち、 オイル 6を分離された冷媒ガス 2 7がオイル 6を随伴している冷媒ガス 2 7と接触することがないため、 オイルが十分に分離された状態で密閉容器 1外 に吐出され冷凍サイクルに供給することができる。 The in-vessel gas passage A is a passage for the refrigerant gas 27 discharged from the compression mechanism 2, from the in-vessel discharge chamber 31 above the compression mechanism 2 to the compression mechanism communication path 32, the communication path 34, Under the motor 3 through the rotor passage 36, the stator communication passage Ί2, and the rotor lower chamber 35 sequentially. And a passage configured to be discharged to the outside of the sealed container 1 via the stator passage 37, the stator upper chamber 38, the compression mechanism ascending passage 43, and the external discharge port 39 in this order. Say. The communication path 34 is surrounded by a path cover 51 so as to extend from the compression mechanism communication path 32 to the rotor upper chamber 33. Here, the compression mechanism communication passage 32 is a passage that communicates between the discharge chamber 31 in the container and the lower part of the compression mechanism 2; the communication passage 34 is a passage from the compressor structure communication passage 32 to the rotor upper chamber. The rotor passage 36 is a passage provided in the rotor 3b so that the upper rotor chamber 33 and the lower rotor chamber 35 communicate with each other; the stator communication path 7 Reference numeral 2 denotes a passage provided in the stator 3a so that the lower motor 3 including the upper stator chamber 38 and the lower rotor chamber 35 communicate with each other; the stator passage 37 is a passage of the stator 3a. A passage provided between the stator 3a or the stator 3a and the closed vessel 1 so as to communicate the lower part and the upper part; a stator upper chamber 38 is provided around the outside of the communication path 34; The mechanism raising passage 43 is provided in the compression mechanism 2; the external discharge outlet 39 is provided in the closed vessel 1 at a height equal to or higher than the height of the stator upper chamber 38. The in-vessel discharge chamber 31 of the in-vessel gas passage A and the compression mechanism communication path 32 are arranged on the outer peripheral side of the compression mechanism 2 and the bearing 66 thereof, and the refrigerant discharged from the compression mechanism 2 The gas 27 is collectively discharged into the communication path 34 below the compression mechanism 2. Subsequently, the communication path 34 guides the discharged refrigerant gas 27 to the rotor upper chamber 33. A part of the refrigerant gas 27 enters the rotor passage 36 in a state where it is gently swirled under the influence of the rotation of the rotor 3 b and the balance weight 23, passes through the rotor passage 36 downward, and separates the oil 6. Strongly collides with the separator. Due to the collision, the entrained oil 6 is effectively separated and the mist of the oil 6 drops and grows. In addition, since at least a part of the circumference of the space between the separation plate and the lower end of the rotor 3b is open to the side, centrifugal separation acts on the oil that has become droplets, and the oil 6 The separation effect is enhanced. Further, the remaining refrigerant gas 27 passing through the above-described descending passage is guided to the stator communication passage 72, where the oil 6 is formed into droplets and grown, thereby effectively performing gas-liquid separation. I have. The refrigerant gas 27 from which the oil 6 has been separated as described above passes through the stator passage 37 as a rising passage, and the stator upper chamber 3 8 further around the communication passage 34 around the bearing 66. Then, the air reaches the compression mechanism upper chamber 42 via the compression mechanism ascending passage 43 provided in the compression mechanism 2 and is discharged from the external discharge port 39 to the outside of the closed container 1. That is, since the refrigerant gas 27 from which the oil 6 has been separated does not come into contact with the refrigerant gas 27 accompanying the oil 6, the oil is discharged to the outside of the closed vessel 1 with the oil sufficiently separated. It can be supplied to a refrigeration cycle.
ところで、 圧縮機構上昇通路 4.3は圧縮機構 2内あるいは圧縮機構 2と密閉容 器 1との間に設けられているために通路面積としては大きく構成することが難し レ^ このような理由から圧縮機構上部室 4 2に噴出される冷媒ガス 2 7の流速を 低下させることは容易ではない。 このため、 密閉型圧縮機が高速運転され冷媒ガ ス 2 7の循環量が増加した場合には、 流速としては毎秒数メートル以上に達する ことも起こり得る。 圧縮機構上昇通路 4 3から噴出した冷媒ガス 2 7は相当の流 速をもって密閉容器上蓋 7 6に衝突し、 その方向を強制的に変更される。 冷媒ガ ス 2 7の循環量が比較的少ない場合には前述の気液分離機構が有効に作用し、 圧 縮機構上部室 4 2に至る冷媒ガス 2 7中のオイル 6は非常に少なくなつているが、 冷媒ガス 2 7の循環量が増加している場合にはオイル 6の残存率も高くなつてい る。 このような冷媒ガス 2 7が相当の流速をもって密閉容器上蓋 7 6に衝突した 場合、 冷媒ガス 2 7中のオイル 6が容易に細分化、 噴霧化して外部吐出口 3 9か ら密閉容器 1外に吐出されてしまう。 なお、 以下、 容器内吐出室 3 1を第 1吐出 室 3 1、 また圧縮機構上部室 4 2を第 2吐出室 4 2として説明する。 By the way, since the compression mechanism ascending passage 4.3 is provided in the compression mechanism 2 or between the compression mechanism 2 and the sealed container 1, it is difficult to make the passage area large. It is not easy to reduce the flow velocity of the refrigerant gas 27 ejected to the upper chamber 42. For this reason, when the hermetic compressor is operated at high speed and the circulation amount of the refrigerant gas 27 is increased, the flow velocity may reach several meters per second or more. The refrigerant gas 27 ejected from the compression mechanism ascending passage 43 collides with the closed container upper lid 76 at a considerable flow velocity, and its direction is forcibly changed. When the circulation amount of the refrigerant gas 27 is relatively small, the gas-liquid separation mechanism described above works effectively, and the oil 6 in the refrigerant gas 27 reaching the compression mechanism upper chamber 42 becomes very small. However, when the circulation amount of the refrigerant gas 27 increases, the residual ratio of the oil 6 also increases. When the refrigerant gas 27 collides with the upper lid 76 of the closed vessel at a considerable flow rate, the oil 6 in the refrigerant gas 27 is easily fragmented and atomized, and the outside of the closed vessel 1 is discharged from the external discharge port 39. Will be ejected. Hereinafter, the in-vessel discharge chamber 31 will be described as a first discharge chamber 31 and the compression mechanism upper chamber 42 will be described as a second discharge chamber 42.
また、 圧縮機構 2上部の圧縮機構上部室である第 2吐出室 4 2内に、 容器内吐 出室である第 1吐出室 3 1が構成されている場合、 第 2吐出室 4 2は複雑な形状 に構成されている場合が多く、 相当の流速をもって密閉容器上蓋 7 6に衝突した 冷媒ガス 2 7は、 複雑な形状の第 2吐出室 4 2内で旋廻運動や回転運動を繰り返 した後、 外部吐出口 3 9から密閉容器 1外へ吐出されることとなる。
このような場合、 複雑な形状をもつ第 2吐出室 4 2の容積と第 1吐出室 3 1の 容積との間には、 オイル 6の気液分離効果に関係する何らかの相関が存在するこ とが考えられる。 このため、 双方の吐出室の容積比率と気液分離効果との関係を 測定した結果、 両者の相関は複雑なものではなく比較的単純な相関であることが 実験的に明らかになった。 Further, when the first discharge chamber 31 which is a discharge chamber in the container is formed in the second discharge chamber 42 which is the upper chamber of the compression mechanism above the compression mechanism 2, the second discharge chamber 42 is complicated. In many cases, the refrigerant gas 27 colliding with the top lid 76 of the closed vessel at a considerable flow velocity repeated revolving and rotating motions in the second discharge chamber 42 with a complicated shape. Thereafter, the liquid is discharged out of the closed container 1 through the external discharge port 39. In such a case, there is some correlation between the volume of the second discharge chamber 42 having a complicated shape and the volume of the first discharge chamber 31 related to the gas-liquid separation effect of the oil 6. Can be considered. Therefore, as a result of measuring the relationship between the volume ratio of both discharge chambers and the gas-liquid separation effect, it was experimentally revealed that the correlation between the two was not a complicated one but a relatively simple one.
図 2は密閉型圧縮機の吐出室の容積比率と気液分離効果との関係を示す図であ り、 第 1吐出室 3 1と第 2吐出室 4 2との容積の比率に対し、 密閉型圧縮機のォ ィル 6の気液分離効果であるオイル吐出量 (w t %) を表している。 Fig. 2 is a diagram showing the relationship between the volume ratio of the discharge chamber of the hermetic compressor and the gas-liquid separation effect, where the ratio of the volume of the first discharge chamber 31 to the volume of the second discharge chamber 42 is closed. It shows the oil discharge amount (wt%), which is the gas-liquid separation effect of the compressor 6 in the compressor.
図 2において、 容積の比率 V Rは、 V Iを圧縮機構部上面とマフラー 7 7とに より形成される第 1吐出室 3 1の空間が占める容積、 V 2を密閉容器 1内の密閉 容器上蓋 7 6とマフラー 7 7とを含む圧縮機構部で形成される第 2吐出室 4 2の 空間が占める容積としたときに、 ¥ 1を¥ 2で除した値、 すなわち容積の比率 V R = V 1 ZV 2である。 In FIG. 2, the volume ratio VR is the volume VI occupied by the space of the first discharge chamber 31 formed by the compression mechanism upper surface and the muffler 77, and V 2 is the volume of the closed container lid 7 in the closed container 1. When the volume occupied by the space of the second discharge chamber 4 2 formed by the compression mechanism including the muffler 7 and the muffler 7 7, the value obtained by dividing ¥ 1 by ¥ 2, that is, the volume ratio VR = V 1 ZV 2
図 2中の曲線①および曲線②は、 第 1吐出室 3 1の配置を変えて測定した結果 を示したものであるが、 いずれの場合も容積の比率 V Rが 0 . 3 5、 すなわち V R = 0 . 3 5をおおよそ境としてオイル吐出量が急激に増加していることがわか る。 このように、 容積の比率 V Rがオイル 6の気液分離効果に大きな影響を与え ている。 したがって、 圧縮機構 2上部の第 2吐出室 4 2内に第 1吐出室 3 1が構 成されている場合、 容積の比率 VRを 0 . 3 5以下に設定することが好適であり、 0 . 3以下に設定することが更に好ましい。 以上のような測定結果に基づき、 本 発明における実施の形態 1の密閉型圧縮機では、 圧縮機構 2上部の第 2吐出室 4 2内に第 1吐出室 3 1が配置される構成とし、 さらに第 1吐出室 3 1の容積 V I と第 2吐出室 4 2の容積 V 2との比率である容積の比率 V R = V 1 2が 0 . 3 5以下となるように設定した構成としている。 Curves ① and ② in FIG. 2 show the results obtained by changing the arrangement of the first discharge chamber 31.In each case, the volume ratio VR is 0.35, that is, VR = It can be seen that the oil discharge amount is rapidly increasing around 0.35. Thus, the volume ratio VR has a great influence on the gas-liquid separation effect of the oil 6. Therefore, when the first discharge chamber 31 is formed in the second discharge chamber 42 above the compression mechanism 2, it is preferable to set the volume ratio VR to 0.35 or less. More preferably, it is set to 3 or less. Based on the above measurement results, the hermetic compressor according to the first embodiment of the present invention has a configuration in which the first discharge chamber 31 is disposed in the second discharge chamber 42 above the compression mechanism 2, The configuration is such that the volume ratio VR = V12, which is the ratio between the volume VI of the first discharge chamber 31 and the volume V2 of the second discharge chamber 42, is set to 0.35 or less.
以上、 本発明における実施の形態 1の密閉型圧縮機は、 容積の比率 V Rが 0 . 3 5以下となるように設定した構成としており、 これによつて、 外部吐出口 3 9 から密閉容器 1外に吐出される冷媒ガス 2 7中のオイル 6は最小限に抑えること
ができ、 オイル 6が十分に分離された状態で密閉容器 1外に吐出して冷凍サイク ルに供給することができる。 すなわち、 小型の密閉型圧縮機が高速運転された場 合においても、 オイルと冷媒ガスの気液分離効果を高めることができ、 密閉型圧 縮機からのオイル吐出量を大幅に低減することができる。 As described above, the hermetic-type compressor according to the first embodiment of the present invention has a configuration in which the volume ratio VR is set to be equal to or less than 0.35. Oil 6 in refrigerant gas 2 7 discharged outside should be minimized The oil 6 can be discharged to the outside of the closed vessel 1 and supplied to the refrigeration cycle in a state of being sufficiently separated. That is, even when a small hermetic compressor is operated at high speed, the gas-liquid separation effect of oil and refrigerant gas can be enhanced, and the amount of oil discharged from the hermetic compressor can be significantly reduced. it can.
(実施の形態 2 ) (Embodiment 2)
図 3は、 本発明の実施の形態 2における密閉型圧縮機の要部を示す横断面図で あり、 図 1に示す密閉型圧縮機において破線 B— Bで示す B— B断面図である。 本発明の実施の形態 2の密閉型圧縮機においては、 図 3に示すように、 第 1吐 出室 3 1が圧縮機構 2の中心から偏心して配置された構成であることを特徴とす る。 以下、 図 2、 および図 3を参照しながら本実施の形態 2における密閉型圧縮 機について説明する。 FIG. 3 is a cross-sectional view showing a main part of the hermetic compressor according to Embodiment 2 of the present invention, and is a BB cross-sectional view of the hermetic compressor shown in FIG. The hermetic compressor according to the second embodiment of the present invention is characterized in that the first discharge chamber 31 is arranged eccentrically from the center of the compression mechanism 2, as shown in FIG. . Hereinafter, the hermetic compressor according to the second embodiment will be described with reference to FIG. 2 and FIG.
上述したように、 図 2における曲線①および曲線②は、 第 1吐出室 3 1の配置 を変えて、 オイル吐出量を測定した結果を示したものである。 すなわち、 曲線① は、 密閉容器 1の径方向において、 第 1吐出室 3 1が圧縮機構 2のおおよそ中心 に配置された場合のオイル吐出量の変化を示している。 また、 曲線②は、 密閉容 器 1の径方向において、 第 1吐出室 3 1が圧縮機構 2から偏心して配置された場 合のオイル吐出量の変化を示している。 特に、 曲線②は、 図 3に示すような第 1 吐出室 3 1が圧縮機構 2のおおよそ中心から偏心して配置された構成としてオイ ル吐出量を測定し、 容積の比率 V Rに対する変化を示したものである。 なお、 図 3には図示していないが、 外部吐出口 3 9は圧縮機構 2のおおよそ中心に配置さ れている。 As described above, the curves ① and ② in FIG. 2 show the results of measuring the oil discharge amount with the arrangement of the first discharge chamber 31 changed. That is, the curve ① indicates a change in the oil discharge amount when the first discharge chamber 31 is arranged at the approximate center of the compression mechanism 2 in the radial direction of the sealed container 1. Curve ② indicates a change in the oil discharge amount when the first discharge chamber 31 is arranged eccentrically from the compression mechanism 2 in the radial direction of the sealed container 1. In particular, the curve た shows the change in the volume ratio VR with respect to the VR measured by measuring the oil discharge amount as a configuration in which the first discharge chamber 31 as shown in FIG. 3 is arranged eccentrically from the center of the compression mechanism 2. Things. Although not shown in FIG. 3, the external discharge port 39 is arranged at the approximate center of the compression mechanism 2.
図 2から明らかように、 オイル吐出量は第 1吐出室 3 1が圧縮機構 2から偏心 して配置された場合の方が少なく抑えられることがわかる。 圧縮機構上昇通路 4 3から噴出された冷媒ガス 2 7は相当の流速をもって密閉容器上蓋 7 6に衝突し、 冷媒ガス 2 7中のオイル 6が細分化、 噴霧化した状態で第 2吐出室 4 2内で対流 していると考えられ、 この冷媒ガス 2 7の対流の変化が第 1吐出室 3 1の配置に より変化している結果である。
冷媒ガス 2 7は最終的には外部吐出口 3 9から密閉容器 1外へ吐出されるが、 第 1吐出室 3 1が圧縮機構 2のおおよそ中心に配置された場合は、 冷媒ガス 2 7 の第 2吐出室 4 2内での対流時間が少なくなり、 第 1吐出室 3 1を構成するマフ ラ一 7 7に誘導されるように外部吐出口 3 9から吐出される。 その結果、 細分化、 噴霧化したオイル 6の気液分離効果が低下し、 オイル吐出量が増加している。 逆に、 第 1吐出室 3 1が圧縮機構 2から偏心して配置された場合は、 マフラー 7 7に誘導されることも少なくなり、 第 2吐出室 4 2内での対流時間が長くなり、 オイル 6の気液分離効果が高まっている。 このように、 圧縮機構 2上部の第 2吐 出室 4 2内に第 1吐出室 3 1が構成されている場合、 第 1吐出室 3 1は圧縮機構 2から偏心して配置することが好適である。 As is clear from FIG. 2, the oil discharge amount is smaller when the first discharge chamber 31 is arranged eccentrically from the compression mechanism 2. The refrigerant gas 27 ejected from the compression mechanism ascending passage 43 collides with the upper lid 76 of the closed vessel at a considerable flow velocity, and the oil 6 in the refrigerant gas 27 is subdivided and atomized, and the second discharge chamber 4 It is considered that there is convection in the refrigerant gas 2, and the change in the convection of the refrigerant gas 27 changes depending on the arrangement of the first discharge chamber 31. Although the refrigerant gas 27 is finally discharged from the external discharge port 39 to the outside of the closed container 1, when the first discharge chamber 31 is arranged approximately at the center of the compression mechanism 2, the refrigerant gas 27 The convection time in the second discharge chamber 42 is reduced, and the liquid is discharged from the external discharge port 39 so as to be guided to the muffler 77 forming the first discharge chamber 31. As a result, the gas-liquid separation effect of the subdivided and atomized oil 6 is reduced, and the oil discharge amount is increased. Conversely, if the first discharge chamber 31 is disposed eccentrically from the compression mechanism 2, the convection time in the second discharge chamber 42 becomes longer due to less induction by the muffler 77, and the oil The gas-liquid separation effect of 6 is increasing. Thus, when the first discharge chamber 31 is formed in the second discharge chamber 42 above the compression mechanism 2, it is preferable that the first discharge chamber 31 be eccentrically arranged from the compression mechanism 2. is there.
以上、 本発明における実施の形態 2の密閉型圧縮機は、 外部吐出口 3 9が圧縮 機構 2のおおよそ中心に配置された密閉型圧縮機において、 第 1吐出室 3 1を圧 縮機構 2の中心から偏心した位置に配置した構成としており、 これによつて、 第 1吐出室 3 1の容積 V Iと第 2吐出室 4 2の容積 V 2との容積の比率 V Rを最適 に設定した密閉型圧縮機においても、 さらに、 オイル 6の気液分離効果を高める ことが可能となる。 As described above, in the hermetic compressor according to the second embodiment of the present invention, in the hermetic compressor in which the external discharge port 39 is arranged approximately at the center of the compression mechanism 2, the first discharge chamber 31 is connected to the compression mechanism 2. It is arranged at a position eccentric from the center, and as a result, a sealed type that optimally sets the volume ratio VR of the volume VI of the first discharge chamber 31 to the volume V2 of the second discharge chamber 42 Also in the compressor, it is possible to further enhance the gas-liquid separation effect of the oil 6.
(実施の形態 3 ) (Embodiment 3)
図 4は、 本発明の実施の形態 3における密閉型圧縮機の要部を示す横断面図で あり、 図 1に示す密閉型圧縮機において破線 B— Bで示す B— B断面図である。 本発明の実施の形態 3の密閉型圧縮機においては、 図 4に示すように、 第 1吐出 室 3 1が圧縮機構上昇通路 4 3と略対向する位置に配置された構成であることを 特徴とする。 FIG. 4 is a cross-sectional view showing a main part of the hermetic-type compressor according to Embodiment 3 of the present invention, and is a BB cross-sectional view of the hermetic-type compressor shown in FIG. The hermetic compressor according to the third embodiment of the present invention is characterized in that, as shown in FIG. 4, the first discharge chamber 31 is arranged at a position substantially opposed to the compression mechanism ascending passage 43. And
また、 図 5は、 図 2と同様に、 吐出室の容積比率と気液分離効果との関係を示 す図であり、 第 1吐出室 3 1と第 2吐出室 4 2との容積の比率に対し、 密閉型圧 縮機のオイル 6の気液分離効果であるオイル吐出量 (w t %) を表している。 さ らに、 図 5では、 図 2の場合とは異なり、 第 1吐出室 3 1の配置について圧縮機 構上昇通路 4 3との位置関係を変え、 オイル吐出量を測定した結果を示している。
以下、 図 4、 および図 5を参照しながら本実施の形態 3における密閉型圧縮機 について説明する。 FIG. 5 is a diagram showing the relationship between the volume ratio of the discharge chamber and the gas-liquid separation effect, similarly to FIG. 2, and shows the ratio of the volume of the first discharge chamber 31 to the volume of the second discharge chamber 42. On the other hand, it shows the oil discharge (wt%), which is the gas-liquid separation effect of oil 6 of the hermetic compressor. Further, in FIG. 5, unlike the case of FIG. 2, the result of measuring the oil discharge amount by changing the positional relationship of the first discharge chamber 31 with respect to the compressor structure ascending passage 43 for the arrangement of the first discharge chamber 31 is shown. . Hereinafter, the hermetic compressor according to the third embodiment will be described with reference to FIG. 4 and FIG.
図 4に示すように、 圧縮機構上昇通路 4 3は、 通常、 圧縮機構 2の外周部に構 成され、 また、 圧縮機構連通路 3 2、 吸入パイプ 1 6等の配置の関係から圧縮機 構 2に均等に構成することは難しい。 このため、 圧縮機構上昇通路 4 3は、 図示 するように、 密閉容器 1の径方向において、 ある方向に偏って配置される構成と なることが多い。 As shown in FIG. 4, the compression mechanism ascending passage 43 is usually formed on the outer peripheral portion of the compression mechanism 2, and the compression mechanism communication passage 32, the suction pipe 16, etc. It is difficult to configure the two equally. For this reason, as shown in the drawing, the compression mechanism ascending passage 43 is often arranged so as to be deviated in a certain direction in the radial direction of the closed casing 1.
このような圧縮機構上昇通路 4 3の配置を考慮し、 第 1吐出室 3 1との位置関 係を変え、 オイル吐出量を測定した結果を図 5に示す。 Considering the arrangement of the compression mechanism ascending passages 43, the positional relationship with the first discharge chamber 31 was changed, and the result of measuring the oil discharge amount is shown in FIG.
図 5において、 圧縮機構上昇通路 4 3は図 4に示すような構成とし、 第 1吐出 室 3 1の配置を変えてオイル吐出量を測定した結果を示している。 図 5における 曲線③および曲線④は、 第 1吐出室 3 1の配置を変えてオイル吐出量を測定した 結果を示したものである。 曲線③は、 密閉容器 1の径方向において、 第 1吐出室 3 1を圧縮機構上昇通路 4 3に近い位置に配置した構成の場合のオイル吐出量の 変化を示している。 この曲線③の配置の一例としては、 前述の図 3に示す第 1吐 出室 3 1の構成等がある。 また、 曲線④は、 密閉容器 1の径方向において、 図 4 に示すように第 1吐出室 3 1を圧縮機構上昇通路 4 3から出来るだけ距離を離し、 圧縮機構上昇通路 4 3におおよそ対向する位置に配置した構成の場合のオイル吐 出量変化を示している。 すなわち、 図 4に示すように、 圧縮機構 2のある方向に 偏った圧縮機構上昇通路 4 3に対し、 第 1吐出室 3 1を、 この圧縮機構上昇通路 4 3から圧縮機構 2の径方向に距離を離し、 略対向する位置に配置した構成とし ている。 In FIG. 5, the result of measuring the oil discharge amount by changing the arrangement of the first discharge chamber 31 with the configuration of the compression mechanism ascending passage 43 as shown in FIG. 4 is shown. Curves ③ and ④ in Fig. 5 show the results of measuring the oil discharge amount with the arrangement of the first discharge chamber 31 changed. Curve ③ indicates a change in the oil discharge amount when the first discharge chamber 31 is arranged at a position close to the compression mechanism ascending passage 43 in the radial direction of the closed casing 1. An example of the arrangement of the curve ③ is the configuration of the first discharge chamber 31 shown in FIG. 3 described above. In the curve ④, in the radial direction of the closed container 1, the first discharge chamber 31 is separated from the compression mechanism ascending passage 43 as much as possible as shown in FIG. The figure shows a change in the oil discharge amount in the case of the configuration arranged at the position. That is, as shown in FIG. 4, the first discharge chamber 31 is moved from the compression mechanism ascending passage 43 to the radial direction of the compression mechanism 2 with respect to the compression mechanism ascending passage 43 biased in a certain direction of the compression mechanism 2. It is configured so as to be separated from each other and to be located substantially opposite to each other.
図 5から明らかように、 オイル吐出量は第 1吐出室 3 1が圧縮機構上昇通路 4 3から出来るだけ距離を離す構成とした場合の方が少なく抑えられることがわか る。 前述のように、 圧縮機構上昇通路 4 3から噴出された冷媒ガス 2 7は相当の 流速をもって密閉容器上蓋 7 6に衝突し、 冷媒ガス 2 7中のオイル 6が細分化、 噴霧化した状態で第 2吐出室 4 2内で対流していると考えられる。 この冷媒ガス
2 7の対流量や対流せずに直接外部吐出口 3 9から密閉容器 1外へ吐出される冷 媒ガス 2 7の量が、 第 1吐出室 3 1と圧縮機構上昇通路 4 3との配置の関係で変 ィ匕している結果である。 As is clear from FIG. 5, the oil discharge amount is smaller when the first discharge chamber 31 is arranged as far as possible from the compression mechanism ascending passage 43. As described above, the refrigerant gas 27 ejected from the compression mechanism ascending passage 43 collides with the upper lid 76 of the closed vessel at a considerable flow velocity, and the oil 6 in the refrigerant gas 27 is subdivided and atomized. It is considered that convection occurs in the second discharge chamber 42. This refrigerant gas 27 The amount of the coolant gas 27 discharged from the external discharge port 39 directly to the outside of the closed container 1 without convection or the convection flow of 7 is determined by the arrangement of the first discharge chamber 31 and the compression mechanism ascending passage 43. This is the result of changing the relationship.
冷媒ガス 2 7は最終的には外部吐出口 3 9から密閉容器 1外へ吐出されるが、 第 1吐出室 3 1が圧縮機構上昇通路 4 3に比較的近い位置に構成された場合、 第 2吐出室 4 2内で対流せずに直接外部吐出口 3 9から密閉容器 1外へ吐出される 冷媒ガス 2 7の量が増加している。 これは第 1吐出室 3 1を構成するマフラー 7 7が、 圧縮機構上昇通路 4 3から噴出した冷媒ガス 2 7を直接外部吐出口 3 9へ 誘導させる効果をもっているためである。 逆に第 1吐出室 3 1を圧縮機構上昇通 路 4 3から遠ざけると、 この効果が低下する。 Although the refrigerant gas 27 is finally discharged from the external discharge port 39 to the outside of the closed container 1, if the first discharge chamber 31 is configured at a position relatively close to the compression mechanism ascending passage 43, (2) The amount of the refrigerant gas (27) discharged from the external discharge port (39) directly to the outside of the closed container (1) without convection in the discharge chamber (42) is increasing. This is because the muffler 77 constituting the first discharge chamber 31 has an effect of directly guiding the refrigerant gas 27 ejected from the compression mechanism ascending passage 43 to the external discharge port 39. Conversely, if the first discharge chamber 31 is moved away from the compression mechanism ascending passage 43, this effect is reduced.
このようにオイル 6の気液分離効果を高めるためには、 マフラー 7 7を圧縮機 構上昇通路 4 3から出来るだけ距離を離す構成、 言いかえれば圧縮機構上昇通路 4 3におおよそ対向する位置に配置することが好適である。 In order to increase the gas-liquid separation effect of the oil 6, the muffler 77 is arranged as far as possible from the compressor structure ascending passage 43, in other words, at a position approximately opposite to the compression mechanism ascending passage 43. It is preferable to arrange them.
以上、 本発明における実施の形態 3の密閉型圧縮機は、 第 1吐出室 3 1を圧縮 機構上昇通路 4 3からできるだけ距離を離し、 圧縮機構上昇通路 4 3におおよそ 対向する位置に配置するような構成としており、 これによつて、 第 1吐出室 3 1 の容積 V 1と第 2吐出室 4 3の容積 V 2との容積の比率 V Rを最適に設定した密 閉型圧縮機においても、 圧縮機構上昇通路 4 3から噴出した冷媒ガス 2 7が直接 外部吐出口 3 9から吐出されることを抑制し、 さらにオイルの気液分離効果を高 めることが可能となる。 As described above, in the hermetic-type compressor according to the third embodiment of the present invention, the first discharge chamber 31 is located as far as possible from the compression mechanism ascending passage 43, and is disposed at a position substantially opposite to the compression mechanism ascending passage 43. Accordingly, even in a hermetic-type compressor in which the ratio VR of the volume V1 of the first discharge chamber 31 to the volume V2 of the second discharge chamber 43 is optimally set, It is possible to suppress the refrigerant gas 27 ejected from the compression mechanism ascending passage 43 from being directly discharged from the external discharge port 39, and to further enhance the gas-liquid separation effect of the oil.
(実施の形態 4〉 (Embodiment 4)
図 6は、 本発明の実施の形態 4における密閉型圧縮機の上面図であり、 図 1に 示す密閉型圧縮機の上面図に相当する。 図 6において、 圧縮機構 2、 圧縮機構上 昇通路 4 3、 マフラー 7 7、 第 1吐出室 3 1、 圧縮機構連通路 3 2等は破線で示 している。 本発明の実施の形態 4の密閉型圧縮機においては、 図 6に示すように、 外部吐出口 3 9が圧縮機構上昇通路 4 3とおおよそ対向する位置に配置された構 成であることを特徵とする。
図 6に示すように、 本実施の形態 4においても実施の形態 3と同様に、 圧縮機 構上昇通路 4 3は圧縮機構 2の径方向に対してある方向に偏って構成されており、 外部吐出口 3 9は圧縮機構上昇通路 4 3からできるだけ距離をおく位置、 すなわ ち圧縮機構上昇通路 4 3におおよそ対向する位置に配置されている。 この構成は、 圧縮機構上昇通路 4 3から噴出された冷媒ガス 2 7が外部吐出口 3 9へと誘導さ れるのを極力抑制できる構成である。 したがって、 第 1吐出室 3 1の配置構成の 自由度が低い場合であっても、 外部吐出口 3 9の配置を変更することにより、 ォ ィル 6の気液分離効果を最大限に発揮することが可能となる。 FIG. 6 is a top view of the hermetic compressor according to Embodiment 4 of the present invention, and corresponds to the top view of the hermetic compressor shown in FIG. In FIG. 6, the dashed lines indicate the compression mechanism 2, the compression mechanism ascending passage 43, the muffler 77, the first discharge chamber 31, the compression mechanism communication passage 32, and the like. The hermetic compressor according to the fourth embodiment of the present invention is characterized in that, as shown in FIG. 6, the external discharge port 39 is arranged at a position substantially opposite to the compression mechanism ascending passage 43. And As shown in FIG. 6, in the fourth embodiment as well as in the third embodiment, the compressor structure ascending passage 43 is configured to be deviated in a certain direction with respect to the radial direction of the compression mechanism 2, and The discharge port 39 is arranged at a position as far as possible from the compression mechanism ascending passage 43, that is, at a position substantially opposite to the compression mechanism ascending passage 43. This configuration minimizes the refrigerant gas 27 ejected from the compression mechanism ascending passage 43 from being guided to the external discharge port 39. Therefore, even when the degree of freedom of the arrangement of the first discharge chamber 31 is low, the gas-liquid separation effect of the nozzle 6 is maximized by changing the arrangement of the external discharge ports 39. It becomes possible.
以上、 本発明における実施の形態 4の密閉型圧縮機は、 外部吐出口 3 9が圧縮 機構上昇通路 4 3とおおよそ対向する位置に配置された構成としており、 これに よって、 第 1吐出室 3 1の配置構成の自由度が低い場合であっても、 圧縮機構上 昇通路 4 3から噴出した冷媒ガス 2 7が直接外部吐出口 3 9から吐出されること を抑制するため、 第 1吐出室 3 1の容積 V Iと第 2吐出室 4 2の容積 V 2との容 積の比率 V Rを最適に設定した密閉型圧縮機においても、 さらに、 オイル 6の気 液分離効果を高めることが可能となる。 As described above, the hermetic-type compressor according to the fourth embodiment of the present invention has a configuration in which the external discharge port 39 is disposed at a position substantially opposite to the compression mechanism ascending passage 43, whereby the first discharge chamber 3 Even if the degree of freedom of the arrangement of 1 is low, the first discharge chamber is used to suppress the refrigerant gas 27 ejected from the compression mechanism ascending passage 43 from being directly discharged from the external discharge port 39. 3 The ratio of the volume of the volume VI of 1 to the volume V2 of the second discharge chamber 42 can be improved even in the hermetic compressor with the optimum VR set for the volume 6 of the oil 6. Become.
(実施の形態 5 ) (Embodiment 5)
図 7は、 本発明の実施の形態 5における密閉型圧縮機の要部拡大縦断面図であ る。 本発明の実施の形態 5の密閉型圧縮機においては、 図 7に示すように、 第 1 吐出室 3 1が外部吐出口 3 9の直下を除く位置に配置される構成であることを特 徴とする。 以下、 図 7を参照しながら本実施の形態 5における密閉型圧縮機につ いて説明する。 FIG. 7 is an enlarged longitudinal sectional view of a main part of a hermetic compressor according to Embodiment 5 of the present invention. The hermetic compressor according to Embodiment 5 of the present invention is characterized in that, as shown in FIG. 7, the first discharge chamber 31 is arranged at a position except immediately below the external discharge port 39. And Hereinafter, the hermetic compressor according to the fifth embodiment will be described with reference to FIG.
図 7に示すように、 本実施の形態 5では、 密閉容器上蓋 7 6に配置された外部 吐出口 3 9の直下には第 1吐出室 3 1が配置されない、 すなわち、 外部吐出口 3 9の直下を除く位置に第 1吐出室 3 1が配置されるような構成である。 この構成 の場合には、 第 1吐出室 3 1を構成するマフラ一 7 7の一部と外部吐出口 3 9の 空間距離は最大限に設定することが可能となる。 外部吐出口 3 9の直下に第 1吐 出室 3 1が構成された場合で、 この空間距離を大きくするには、 密閉容器上蓋 7
6を第 1吐出室 3 1から離す必要があり密閉容器 1の全高が大きくなる欠点があ るが、 本実施の形態 5によればその問題は少ない。 前述の空間距離が大きくなつ た場合には、 結果的に実施の形態 1での容積の比率 V Rを小さく設定することと 同様の効果が得られ、 圧縮機構 2周辺の設計余裕度が低い場合においても、 比較 的自由度が高い外部吐出口 3 9の配置を考慮することにより、 オイル 6の気液分 離効果を高めることが可能となる。 As shown in FIG. 7, in the fifth embodiment, the first discharge chamber 31 is not disposed immediately below the external discharge port 39 arranged on the closed container upper lid 76, that is, the external discharge port 39 The configuration is such that the first discharge chamber 31 is arranged at a position except immediately below. In the case of this configuration, the spatial distance between a part of the muffler 77 forming the first discharge chamber 31 and the external discharge port 39 can be set to the maximum. In the case where the first discharge chamber 31 is configured immediately below the external discharge port 39, to increase this space distance, the upper lid 7 of the closed container must be used. 6 has to be separated from the first discharge chamber 31 and there is a disadvantage that the overall height of the sealed container 1 becomes large. However, according to the fifth embodiment, the problem is small. When the above-mentioned space distance is increased, the same effect as that of setting the volume ratio VR in the first embodiment to a small value is obtained, and in the case where the design margin around the compression mechanism 2 is low, However, by considering the arrangement of the external discharge ports 39 having relatively high degree of freedom, it is possible to enhance the gas-liquid separation effect of the oil 6.
以上、 本発明における実施の形態 5の密閉型圧縮機は、 第 1吐出室 3 1が外部 吐出口 3 9の直下を除く位置に配置されるような構成としており、 これによつて、 圧縮機構周辺の設計余裕度が低い場合においても、 容積の比率 V Rを小さく設定 したことと同様の効果が得られ、 オイルの気液分離効果を高めた密閉型圧縮機を 提供することができる。 As described above, the hermetic-type compressor according to the fifth embodiment of the present invention has a configuration in which the first discharge chamber 31 is disposed at a position other than immediately below the external discharge port 39. Even when the design margin around the periphery is low, the same effect as when the volume ratio VR is set small can be obtained, and a hermetic compressor with improved oil-gas separation effect can be provided.
産業上の利用可能性 Industrial applicability
本発明は、 密閉型圧縮機において、 高速運転時でも、 オイルを十分に分離した 冷媒ガスを密閉容器外に吐出することを可能としたものであり、 業務用または家 庭用、 あるいは乗り物用の冷凍空調、 あるいは冷蔵庫などに用いられる、 オイル の分離効果を高めた密閉型圧縮機として利用可能である。
The present invention makes it possible for a hermetic compressor to discharge a refrigerant gas from which oil has been sufficiently separated out of a hermetic container even during high-speed operation, for business or home use, or for vehicles. It can be used as a hermetic compressor with an improved oil separation effect used in refrigeration, air conditioning, and refrigerators.
Claims
1 . 密閉容器と、 前記密閉容器に収容される圧縮機構と、 前記圧縮機構の下方に 配置され、 回転子と固定子を有する電動機と、 前記電動機の回転力を前記圧縮機 構に伝達するクランク軸と、 前記密閉容器内の下部に設けられ、 オイルをためる オイル溜めと、 前記オイルを前記クランク軸を通じて軸受部ゃ圧縮機構摺動部に 供給する給油機構とを備える密閉型圧縮機であって、 1. An airtight container, a compression mechanism housed in the airtight container, an electric motor arranged below the compression mechanism, having a rotor and a stator, and a crank for transmitting the rotational force of the electric motor to the compressor structure A hermetic compressor comprising: a shaft; an oil reservoir provided at a lower portion in the hermetic container, for accumulating oil; and an oil supply mechanism for supplying the oil to a bearing portion and a compression mechanism sliding portion through the crankshaft. ,
前記圧縮機構から吐出されるガスが、 前記圧縮機構の上部吐出口を覆うように 設けられたマフラーにより形成された第 1吐出室から、 前記電動機の下部に至り、 さらに上昇し、 圧縮機構上昇通路を経て、 前記密閉容器と密閉容器上蓋と前記圧 縮機構とで形成される第 2吐出室に至り、 さらに、 前記圧縮機構の上方に設けら れた外部吐出口を通って密閉容器外に吐出される容器内ガス通路を有し、 The gas discharged from the compression mechanism reaches a lower part of the electric motor from a first discharge chamber formed by a muffler provided so as to cover an upper discharge port of the compression mechanism, and further rises. Through a second discharge chamber formed by the closed container, the closed container upper lid, and the compression mechanism, and further discharged to the outside of the closed container through an external discharge port provided above the compression mechanism. Having a gas passage in the container,
前記第 1吐出室の容積 V 1と前記第 2吐出室の容積 V 2との容積の比率 V Rを 0 . 3 5以下に設定したことを特徴とする密閉型圧縮機。 A hermetic compressor characterized in that a volume ratio VR of the volume V1 of the first discharge chamber to the volume V2 of the second discharge chamber is set to 0.35 or less.
2 . 前記容器内ガス通路において、 前記圧縮機構から吐出されるガスは、 前記電 動機の下部に至るとともに、 前記ガスに含まれる前記オイルが分離されることを 特徴とする請求項 1記載の密閉型圧縮機。 2. The hermetic seal according to claim 1, wherein the gas discharged from the compression mechanism in the gas passage in the container reaches a lower portion of the electric motor, and the oil contained in the gas is separated. Type compressor.
3 . 前記容器内ガス通路は、 前記第 1吐出室と、 前記第 1吐出室と前記圧縮機構 の下部を連通させる圧縮機構連通路と、 前記圧縮機構連通路から前記電動機の上 部まで続く通路カバーで囲われた連絡路と、 前記電動機下に至るように前記電動 機に設けられた下降通路と、 前記電動機上に至るように前記電動機に設けられた 上昇通路と、 前記圧縮機構または前記圧縮機構と前記密閉容器との間に設けられ た圧縮機構上昇通路と、 前記密閉容器と前記密閉容器上蓋と前記圧縮機構とで形 成される第 2吐出室と、 前記圧縮機構の位置以上の部分に設けられた前記外部吐
出口とからなるガス通路であることを特徴とする請求項 1または請求項 2に記載 の密閉型圧縮機。 3. The gas passage in the container includes: the first discharge chamber; a compression mechanism communication path that communicates the first discharge chamber with a lower part of the compression mechanism; and a path that extends from the compression mechanism communication path to an upper part of the electric motor. A communication path surrounded by a cover; a descending passage provided in the electric motor so as to reach below the electric motor; an ascending passage provided in the electric motor so as to reach above the electric motor; and the compression mechanism or the compression mechanism. A compression mechanism ascending passage provided between a mechanism and the closed container; a second discharge chamber formed by the closed container, the closed container upper lid, and the compression mechanism; The external discharge provided in 3. The hermetic compressor according to claim 1, wherein the hermetic compressor is a gas passage including an outlet.
4. 前記外部吐出口は、 前記密閉容器の径方向において、 前記圧縮機構の略中心 に配置され、 前記第 1吐出室は、 前記圧縮機構の中心から偏心した位置に配置さ れることを特徴とする請求項 3記載の密閉型圧縮機。 4. The external discharge port is disposed substantially at the center of the compression mechanism in the radial direction of the closed container, and the first discharge chamber is disposed at a position eccentric from the center of the compression mechanism. 4. The hermetic compressor according to claim 3, wherein:
5 . 前記第 1吐出室は、 前記密閉容器の径方向において、 前記圧縮機構上昇通路 と略対向する位置に配置されたことを特徴とする請求項 3または請求項 4に記載 の密閉型圧縮機。 5. The hermetic compressor according to claim 3, wherein the first discharge chamber is arranged at a position substantially opposed to the compression mechanism ascending passage in a radial direction of the hermetic container. .
6 . 前記外部吐出口は、 前記密閉容器の径方向において、 前記圧縮機構上昇通路 と略対向する位置に配置されたことを特徴とする請求項 3記載の密閉型圧縮機。 6. The hermetic compressor according to claim 3, wherein the external discharge port is disposed at a position substantially opposed to the compression mechanism ascending passage in a radial direction of the hermetic container.
7 . 前記第 1吐出室は、 前記外部吐出口の直下を除く位置に配置されることを特 徴とする請求項 3記載の密閉型圧縮機。
7. The hermetic compressor according to claim 3, wherein the first discharge chamber is arranged at a position except immediately below the external discharge port.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003113868A JP4127108B2 (en) | 2003-04-18 | 2003-04-18 | Hermetic compressor |
JP2003-113868 | 2003-04-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004092587A1 true WO2004092587A1 (en) | 2004-10-28 |
Family
ID=33296134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/005286 WO2004092587A1 (en) | 2003-04-18 | 2004-04-14 | Enclosed compressor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4127108B2 (en) |
WO (1) | WO2004092587A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE602006012174D1 (en) * | 2006-07-03 | 2010-03-25 | Lg Electronics Inc | Spiral compressor with silencer |
US7527484B2 (en) * | 2006-07-06 | 2009-05-05 | Lg Electronics Inc. | Muffler of scroll compressor |
JP2009047039A (en) * | 2007-08-17 | 2009-03-05 | Mitsubishi Heavy Ind Ltd | Multistage compressor |
JP5112090B2 (en) * | 2008-01-29 | 2013-01-09 | 三菱重工業株式会社 | Scroll compressor |
WO2014067455A1 (en) * | 2012-11-01 | 2014-05-08 | 艾默生环境优化技术(苏州)有限公司 | Compressor |
JP6094236B2 (en) * | 2013-01-30 | 2017-03-15 | 株式会社デンソー | Compressor |
US10634142B2 (en) | 2016-03-21 | 2020-04-28 | Emerson Climate Technologies, Inc. | Compressor oil separation and assembly method |
WO2020166431A1 (en) * | 2019-02-15 | 2020-08-20 | パナソニックIpマネジメント株式会社 | Compressor |
CN110159536B (en) * | 2019-06-10 | 2020-11-24 | 珠海格力节能环保制冷技术研究中心有限公司 | Scroll compressor, air conditioner and vehicle |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6140483A (en) * | 1984-07-31 | 1986-02-26 | Toshiba Corp | Scroll type compressor |
JPH09170581A (en) * | 1995-12-19 | 1997-06-30 | Daikin Ind Ltd | Compressor |
JP2001020865A (en) * | 1999-07-07 | 2001-01-23 | Matsushita Electric Ind Co Ltd | Hermetic vertical compressor and muffler used for this |
JP2001280252A (en) * | 2000-03-31 | 2001-10-10 | Matsushita Electric Ind Co Ltd | Hermetic compressor and gas-liquid separation discharge method |
JP3391072B2 (en) * | 1993-12-28 | 2003-03-31 | 松下電器産業株式会社 | Hermetic scroll compressor |
-
2003
- 2003-04-18 JP JP2003113868A patent/JP4127108B2/en not_active Expired - Fee Related
-
2004
- 2004-04-14 WO PCT/JP2004/005286 patent/WO2004092587A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6140483A (en) * | 1984-07-31 | 1986-02-26 | Toshiba Corp | Scroll type compressor |
JP3391072B2 (en) * | 1993-12-28 | 2003-03-31 | 松下電器産業株式会社 | Hermetic scroll compressor |
JPH09170581A (en) * | 1995-12-19 | 1997-06-30 | Daikin Ind Ltd | Compressor |
JP2001020865A (en) * | 1999-07-07 | 2001-01-23 | Matsushita Electric Ind Co Ltd | Hermetic vertical compressor and muffler used for this |
JP2001280252A (en) * | 2000-03-31 | 2001-10-10 | Matsushita Electric Ind Co Ltd | Hermetic compressor and gas-liquid separation discharge method |
Also Published As
Publication number | Publication date |
---|---|
JP2004316591A (en) | 2004-11-11 |
JP4127108B2 (en) | 2008-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4175148B2 (en) | Hermetic compressor | |
CN101482114B (en) | Airtight electric compressor | |
CN101483367B (en) | compressor motor | |
JP4979503B2 (en) | Scroll compressor | |
WO2004092587A1 (en) | Enclosed compressor | |
JP3961189B2 (en) | Hermetic compressor and gas-liquid separation and discharge method | |
JP2000161268A (en) | Scroll compressor | |
JP2006348928A (en) | Compressor | |
JP2001050162A (en) | Closed type compressor | |
JP2009030464A (en) | Hermetic compressor | |
JP2006336599A (en) | Hermetic compressor | |
JP4241182B2 (en) | Compressor, refrigeration cycle and heat pump water heater | |
JP2004332628A (en) | Hermetic compressor | |
JP2005344537A (en) | Scroll compressor | |
JP2005163637A (en) | Scroll compressor | |
JP2009257272A (en) | Hermetically-sealed compressor | |
JP3616123B2 (en) | Hermetic electric compressor | |
JP2008031880A (en) | Hermetic compressor | |
WO2006129617A1 (en) | Scroll compressor | |
JP2006226207A (en) | Hermetic compressor | |
JP2005299590A (en) | Scroll compressor | |
KR20250091335A (en) | Compressor | |
JP2004316590A (en) | Hermetic compressor | |
JP2005299431A (en) | Hermetic compressor | |
JP2006037798A (en) | Hermetic compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |