[go: up one dir, main page]

WO2004055058A1 - Process for producing resin particle and process for producing anisotropically conductive adhesive - Google Patents

Process for producing resin particle and process for producing anisotropically conductive adhesive Download PDF

Info

Publication number
WO2004055058A1
WO2004055058A1 PCT/JP2003/016161 JP0316161W WO2004055058A1 WO 2004055058 A1 WO2004055058 A1 WO 2004055058A1 JP 0316161 W JP0316161 W JP 0316161W WO 2004055058 A1 WO2004055058 A1 WO 2004055058A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
raw material
material liquid
temperature
polymerization initiator
Prior art date
Application number
PCT/JP2003/016161
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Hayashi
Ryoji Kojima
Original Assignee
Sony Chemicals Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002364923A external-priority patent/JP3954485B2/en
Priority claimed from JP2002364922A external-priority patent/JP2004196889A/en
Application filed by Sony Chemicals Corp. filed Critical Sony Chemicals Corp.
Publication of WO2004055058A1 publication Critical patent/WO2004055058A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0221Insulating particles having an electrically conductive coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0233Deformable particles

Definitions

  • the present invention relates to a technique for producing resin particles, and more particularly, to a technique for producing resin particles used for conductive particles of an anisotropic conductive adhesive.
  • metal-coated particles obtained by coating resin particles with metal may be used as conductive particles of an anisotropic conductive film, and such conductive particles are made of metal particles.
  • conductive particles are sandwiched between connection terminals, they are deformed by pressure and have a large contact area with connection terminals As a result, the conduction resistance value between the connection terminals decreases (for example, Masahiro Tsuchiya, et al., “Evaluation of Electrical Characteristics of Conducting Fine Particles”, Journal of Japan Institute of Circuit Packaging, 1997, Vol. 12) No. 7, p. 507-508.)).
  • An object of the present invention is to produce resin particles having high mechanical strength. Disclosure of the invention
  • the present inventors have studied the conditions for curing the raw material liquid of the resin particles. As a result, it has been found that if the heating temperature for curing the raw material liquid is high, the strength of the resin particles is reduced.
  • the heating temperature is too low, the polymerization reaction does not occur, or even if the polymerization reaction occurs, the heating time becomes extremely long, and the production efficiency deteriorates.
  • the temperature was lower than the one-hour half-life temperature of the polymerization initiator added to the raw material liquid, more preferably, 10 hours. It was found that if the raw material liquid was heated at a temperature lower than the half-life temperature, resin particles with high mechanical strength could be obtained.
  • the present invention has been made based on the above findings, and comprises a cured product of the raw material liquid obtained by heating a raw material liquid having a polymerization initiator and a radical polymerizable substance, and polymerizing the radical polymerizable substance.
  • a method for producing resin particles for forming resin particles wherein, when the polymerization initiator is heated for 1 hour, a temperature at which the polymerization initiator is decomposed to half and 1 is a one-hour half-life temperature,
  • the heat treatment is a method for producing resin particles in which the temperature of the raw material liquid is reduced to the above-mentioned one-hour half-life temperature or lower.
  • the present invention is the method for producing resin particles, wherein the heat treatment is performed such that a temperature rising rate of the raw material liquid is 1 minute or more.
  • the present invention is a method for producing resin particles, wherein the radically polymerizable substance comprises (meth) acrylate.
  • the radical polymerizable substance has a urethane bond
  • the present invention is a method for producing resin particles, wherein the raw material liquid contains two or more types of radically polymerizable substances.
  • the present invention relates to a first radically polymerizable substance comprising urethane (meth) acrylate in the raw material liquid, and a (meth) acrylate having no urethane bond in a chemical structure.
  • This is a method for producing resin particles containing both a second radically polymerizable substance made of a rate.
  • the present invention provides a method for heating a raw material liquid having a polymerization initiator and a radical polymerizable substance, and producing resin particles that form resin particles made of a cured product of the raw material liquid by polymerizing the radical polymerizable substance,
  • the heat treatment is an anisotropic conductive adhesive that reduces the temperature of the raw material liquid to the half-hour temperature or lower. Is a manufacturing method.
  • the present invention provides a method for producing resin particles, comprising heating a raw material liquid containing a polymerization initiator and a radical polymerizable substance, and polymerizing the radical polymerizable substance to form resin particles composed of a cured product of the raw material liquid.
  • the polymerization initiator is heated for 10 hours and the temperature at which the polymerization initiator is decomposed by half is set to be a 10-hour halving temperature, the heat treatment is performed by heating the raw material liquid.
  • This is a method for producing resin particles in which the temperature is reduced to the above-mentioned 10 hour half-life temperature or lower.
  • the present invention is the method for producing resin particles, wherein the heat treatment is performed so that a temperature rising rate of the raw material liquid is 1 ° C.Z or more.
  • the radical polymerizable substance may be a (meth) acrylate This is a method for producing resin particles.
  • the present invention is a method for producing resin particles, wherein the radically polymerizable substance comprises a (meth) acrylate having a urethane bond.
  • the present invention is a method for producing resin particles, wherein the raw material liquid contains two or more types of radically polymerizable substances.
  • the present invention relates to a first radical polymerizable substance comprising urethane (meth) acrylate in the raw material liquid, and a (meth) acrylate having no urethane bond in a chemical structure. This is a method for producing resin particles containing both of the second radical polymerizable substance.
  • the present invention provides a method for heating a raw material liquid having a polymerization initiator and a radical polymerizable substance, and producing resin particles that form resin particles made of a cured product of the raw material liquid by polymerizing the radical polymerizable substance,
  • the heat treatment is an anisotropically conductive method that reduces the temperature of the raw material liquid to the half-hour temperature or lower. This is a method for producing a conductive adhesive.
  • (meth) acrylate refers to both an acrylate and a metaacrylate.
  • the present invention is configured as described above, and in the present invention, the strength of the obtained resin particles is increased by performing the heat treatment at a temperature lower than the one-hour half-life temperature of the polymerization initiator.
  • the 10-hour half-life temperature is lower than the 1-hour half-life temperature, and if the raw material liquid is heated at a temperature lower than the 10-hour half-life temperature of the polymerization initiator, the strength of the resin particles is further increased. The lower the heating temperature The time required for curing the liquid material increases.
  • the temperature of the raw material liquid should be set to be not less than the 10 hour half-life temperature of the polymerization initiator and not more than 1 hour half-life temperature.
  • a conductive layer is formed on the surface of the resin particles to form conductive particles, and the conductive particles obtained by dispersing the conductive particles in an adhesive material are sandwiched between connection terminals of a wiring board or a liquid crystal panel. The conductive particles are sandwiched between the connection terminals.
  • the resin particles manufactured according to the present invention have high strength, even if a load is applied so that the conductive particles sandwiched between the connection terminals are greatly deformed, the resin particles are not broken. . Therefore, if the conductive particles produced according to the present invention are used, the contact area between the connection terminal and the conductive particles can be extremely increased, and the conductivity between the connection terminals can be increased. can do.
  • FIG. 1a and FIG. 1b are cross-sectional views illustrating steps for producing resin particles according to the present invention.
  • FIG. 2 is a view for explaining the conductive particles produced according to the present invention.
  • FIG. 3 is a diagram illustrating an example of an anisotropic conductive adhesive using the conductive particles of the present invention.
  • FIG. 4a, FIG. 4b and FIG. 4c are diagrams illustrating a process of connecting wiring boards using an anisotropic conductive adhesive.
  • FIG. 5 is a diagram showing an example of a resin particle production apparatus used in the present invention.
  • FIG. 6 is a cross-sectional view showing the emulsification tank in a state where the raw material liquid has been injected into the medium liquid.
  • Fig. 7 is a graph showing the relationship between the displacement of the particle size measured by the breaking compression test and the load.
  • reference numeral 30 denotes resin particles
  • reference numeral 32 denotes a raw material liquid
  • reference numeral 33 denotes a droplet of the raw material liquid
  • reference numeral 35 denotes an emulsion
  • reference numeral 36 denotes a conductive layer
  • Reference numeral 37 denotes a conductive particle.
  • a raw material liquid is prepared by adding a predetermined amount of a polymerization initiator to a first (meth) acrylate (a first radical polymerization agent) which is a radical polymerizable substance and has a urethane bond.
  • a medium liquid containing a solvent having a low affinity for the raw material liquid as a main component and, if necessary, additives such as a surfactant and a polymer stabilizer was prepared. Dispersed in the medium liquid to form droplets of the raw material liquid.
  • Reference numeral 35 in FIG. 1a indicates a suspension in which a droplet 3′3 of a raw material liquid is dispersed in a medium liquid 31.
  • the temperature below 1 hour half-life temperature of the polymerization initiator added to the raw material liquid or below 10 hours half-life temperature of the polymerization initiator as the set temperature, and suspend the suspension 35 over 1 ° C / min.
  • the first (meth) acrylate undergoes radical polymerization, and the droplets 33 are hardened, and the Thus, resin particles made of a metal resin are formed.
  • the first (meth) acrylate In addition to the above, when the second (meth) acrylate having no urethane bond is contained as the second radical polymerizable substance, the first and second (meth) acrylates are included. The acrylate is copolymerized by heating, and the droplet 33 is hardened.
  • Reference numeral 30 in FIG. 1b indicates resin particles obtained by curing the droplet 33.
  • the resin particles 30 are separated from the medium liquid 31 by filtration, the resin particles 30 are washed with water, and the medium liquid is washed away to obtain clean resin particles 30.
  • a conductive layer is formed on the surface of the resin particles 30.
  • a nickel film is formed on the surface of the resin particles 30 by an electroless plating method or the like, gold plating is further performed on the surface of the nickel film to form a conductive layer made of nickel and gold.
  • Reference numeral 37 in FIG. 2 indicates conductive particles in a state where the conductive layer 36 is formed.
  • an adhesive resin such as an epoxy resin which is a thermosetting resin, a curing agent for curing the epoxy resin, and an organic solvent for adjusting the viscosity are mixed to produce a paste-like adhesive material. I do.
  • the anisotropic conductive adhesive is formed into a film.
  • Reference numeral 39 in FIG. 3 indicates an adhesive film made of a film-shaped anisotropic conductive adhesive, in which conductive particles 37 are dispersed in an adhesive material 38.
  • the adhesive film 39 described above is disposed between the two wiring boards 41 and 45.
  • Metal wiring is arranged on the surface of each of the wiring boards 41 and 45, and connection terminals 43 and 47 are respectively formed by a part of the metal wiring.
  • the adhesive film 39 is sandwiched between the surfaces of the wiring boards 41 and 45 where the connection terminals 43 and 47 are arranged.
  • the adhesive material 38 of the adhesive film 39 is softened by the heating, and the adhesive material 38 whose connection terminals 43 and 47 are softened by the pressing is heated. Then, the conductive particles 37 dispersed in the adhesive material 38 are sandwiched between the connection terminals 43 and 47.
  • the conductive particles 37 are compressed and deformed as shown in FIG. 4b.
  • the strength of the resin particles 30 of the conductive particles 37 obtained according to the present invention is high, and the conductive particles 37 are so selected that the compression deformation rate of the resin particles 30 is 50% to 60% or more. Even if it is pressed, the resin particles 30 are not destroyed, and the contact area between the connection terminals 43 and 47 and the conductive layer 36 becomes very large.
  • thermosetting resin is polymerized and the adhesive material 38 is cured while the conductive particles 37 are sandwiched between the connection terminals 43 and 47, and the wiring boards 41, 45 Is fixed.
  • Reference numeral 40 in FIG. 4c indicates an electric device in which two wiring boards 41 and 45 are connected by a cured adhesive material 48.
  • the wiring boards 41 and 45 are not only mechanically connected by the cured adhesive material 48 but also electrically connected via the conductive particles 37.
  • the contact area between the conductive particles 37 and the connection terminals 43 and 47 is very large, the conduction reliability of the electric device 40 is high.
  • Urethane acrylate (trade name “AH600” manufactured by Kyoeisha Chemical Co., Ltd.) as the first (meth) acrylate is 25 parts by weight, and 1,6-hexadiol diacrylate (75 parts by weight) is mixed as a methacrylate to form a resin material, and the resin material 10
  • the azonitrile compound was used as a polymerization initiator in the following table based on 0 parts by weight.
  • a raw material liquid was prepared by adding the compounding amounts shown in FIG. Table 1 below shows the amount of the polymerization initiator and the one-hour half-life temperature. The 10-hour half-life temperature of the polymerization initiator is also shown for reference.
  • the polymerization initiator used in Examples A1 to A3A5A7 in Table 1 was 2,2'-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd.) Is a trade name of “V-65”) manufactured by the company Co., Ltd., and the polymerization initiator used in Example A4 is 2,2′-azobis (4-methoxy24-dimethylvaleronitrile). ) (Trade name “V-70” manufactured by Wako Pure Chemical Industries, Ltd.). These initiate radical polymerization Agent.
  • Distilled water is used as a solvent having low affinity for the raw material liquid, and distilled water, sodium dodecylbenzenesulfonate, a surfactant, and polyvinyl alcohol, a polymer dispersion stabilizer, are used. , 1500: 1: 1: 10 in a weight ratio to prepare a medium liquid.
  • the raw material liquid described above was added to this medium liquid, and the raw material liquid was dispersed in the medium liquid by mechanically stirring with a homogenizer.
  • the stirring conditions were as follows: the homogenizer rotation speed was 100,000 rpm, and the stirring time was 1 minute.
  • the heat treatment process was performed under the temperature conditions described in Table 1, ⁇ Polymerization temperature '' and ⁇ Temperature rising rate ''. .
  • the suspension was placed in a tank and heated, and the temperature of the suspension was measured at approximately the midpoint between the bottom of the tank and the surface of the suspension.
  • the sign in FIG. 7 is a graph showing the relationship between the load measured in the compression rupture test and the change in particle size.From this graph, the rupture displacement when the resin particles 30 break and the rupture load are determined. Was.
  • Example A6 and A7 have a breaking compression ratio of 6%. While it was less than 0%, Example A2 had a breaking compression rate of more than 60%, and Example A2 also had high values of breaking load and strength. Accordingly, the amount of the polymerization initiator to be added is less than 1 part by weight based on 100 parts by weight of the resin material, and in particular, the amount of the polymerization initiator is not more than 0.5 part by weight based on 100 parts by weight of the resin material. In this case, it can be seen that the strength is high and the compressive deformation rate is high.
  • Example A5 in which the heating rate was 1 ⁇ min or more showed that the heating rate was 1 ° C.
  • the strength was much higher than that of Example A1 which was less than / min, and the compression ratio at break of Example A5 was more than 80%. From this, it can be seen that if the heating rate is set to 1 ° Cz or more, resin particles having higher strength can be obtained.
  • a conductive layer 36 is formed on the surface of the resin particles 30 as in Examples A1 to A7 to form conductive particles 37, and the conductive particles 37 are dispersed in an adhesive material. An anisotropic conductive adhesive is obtained.
  • the present inventors focused on the 10-hour half-life temperature of the polymerization initiator and conducted an experiment.
  • urethane acrylate (trade name “AH600” manufactured by Kyoeisha Chemical Co., Ltd.): 25 parts by weight
  • a second (meth) acrylate 75 parts by weight of 1,6-hexadiol diacrylate is mixed to form a resin material, and 100 parts by weight of the resin material is mixed.
  • An azonitrile compound was added as a polymerization initiator in an amount shown in Table 1 below to prepare a raw material liquid.
  • the blending amount of the polymerization initiator and the 10-hour half-life temperature are shown in Table 2 below. For reference, the 1 hour half-life temperature of the polymerization initiator is also shown.
  • the polymerization initiators used in Examples Bl and B3 in Table 2 above and Comparative Examples Bl and B2 described later were 2,2'-azobis (2,4-dimethylzoleronitrile) ( The product name is “V-65” manufactured by Wako Pure Chemical Industries, Ltd.), and the polymerization initiator used in Example B2 is 2,2′-azobis (4-methoxy-1,2,4—). Dimethylvaleronitrile) (trade name “V-70” manufactured by Wako Pure Chemical Industries, Ltd.). These are radical polymerization initiators.
  • Distilled water is used as a solvent having low affinity for the raw material solution.
  • Distilled water, sodium dodecylbenzenesulfonate as a surfactant, and polyvinyl alcohol as a polymer dispersion stabilizer are used. Were mixed at a weight ratio of 1500: 1: 1: 10 to prepare a medium liquid.
  • the above-mentioned raw material liquid is added to this medium liquid, and the mixture is homogenized by a homogenizer.
  • the raw material liquid was dispersed in the medium liquid by mechanical stirring.
  • the heat treatment step was performed under the conditions of ⁇ polymerization temperature '' and ⁇ heating rate '' in Table 1 above, with the homogenizer rotating at 100 rpm and the stirring time at 1 minute.
  • the suspension was heated in a tank, and the temperature of the suspension was measured at the bottom of the tank and almost in the middle of the suspension surface.
  • the resin particles 30 produced by the production method of Examples B1 to B3 above were applied to a resin using a micro compression tester (trade name “MCTM—200” manufactured by Shimadzu Corporation). A compression rupture test of 30 particles was performed.
  • the sign in FIG. 7 is a graph showing the relationship between the load measured in the compression rupture test and the change in particle size. The graph shows the breaking displacement and the breaking load when the resin particles 30 break. I asked.
  • a resin particle was prepared under the same conditions as in Example B1 except that the polymerization temperature was changed, and this was used as Comparative Example B1 under the same conditions as Comparative Example B1 except that the amount of the polymerization initiator was changed.
  • Comparative Example B2 was prepared by using the resin particles prepared in the above, and the breaking load, breaking compressibility, and strength were determined under the same conditions as in Examples 1 to 3 above. The results are shown in Table 2 above.
  • Example B3 in which the heating rate was 3.0 ° C / min, had higher strength, breaking load, and breaking compressibility than Examples Bl and B2, and the heating rate was 1 ° C. By doing so, it was found that resin particles having a larger deformation amount and high breaking strength can be obtained.
  • Table 3 Types of polymerization initiator, 1 hour half-life, 10 hour half-life,
  • Reference numeral 10 in FIG. 5 indicates an example of a resin particle manufacturing apparatus used in the present invention.
  • the resin particle manufacturing apparatus 10 has an emulsification tank 20, a medium liquid tank 11, and a raw material liquid tank 12.
  • the emulsification tank 20 has an outer cylinder 21 and an inner cylinder 22 inserted into the outer cylinder 21 with a gap therebetween. Both ends of the outer cylinder 21 and the inner cylinder 22 are covered by lids 27. , 28 closed liquid-tight.
  • a raw material liquid is disposed in the raw liquid tank 12, and a medium liquid having low affinity with the raw material liquid is disposed in the medium liquid tank 11.
  • a circulation pump is connected to the medium liquid tank 11. When the circulation pump is activated, the medium liquid in the medium liquid tank 11 is sent to the internal space 26 of the inner cylinder 22.
  • a nitrogen gas cylinder is connected to the raw material liquid tank 1 2.
  • the raw material liquid tank 1 is turned on by the pressure of the nitrogen gas. It is pushed out of 2 and sent to the space 25 between the outer cylinder 21 and the inner cylinder 22.
  • the same raw material liquid as that used in the above-described embodiment is used.
  • the first (meth) acrylate having a urethane bond has a higher viscosity than other (meth) acrylates having no urethane bond.
  • the porous membrane constituting the inner cylinder 22 may be clogged, but the second (meth) acrylate having no urethane bond in the raw material liquid may be used.
  • T) Acrylate added As a result, since the viscosity of the raw material liquid is reduced, the pressure of the raw material liquid sent to the space 25 between the outer cylinder 21 and the inner cylinder 22 increases the pressure of the medium liquid flowing to the inner space 26. When the pressure becomes higher than the pressure, the raw material liquid is injected into the medium liquid through the pores of the porous membrane constituting the inner cylinder 22 and dispersed in the medium liquid as droplets (film emulsification method). ).
  • FIG. 6 shows a cross-sectional view of the emulsification tank 20 in this state
  • reference numeral 35 in the figure denotes a suspension in which droplets 33 of the raw material liquid 32 are dispersed in the medium liquid 31.
  • the circulation pump is operated while the raw material liquid is injected into the medium liquid, so that the medium liquid 31 that has passed through the internal space 26 is returned to the medium liquid tank 11 and the returned medium liquid 31 is returned to the internal space.
  • the medium liquid 31 circulates while increasing the number of droplets 33, so that the density of the droplets 33 increases.
  • the density of the droplet 33 reaches a predetermined density, the circulation of the medium liquid 31 and the injection of the raw material liquid 32 are stopped, and the suspension liquid 35 is removed from the emulsification tank 20 and heated. Move to link.
  • the suspension 35 is heated at a temperature equal to or lower than the one-hour half-life temperature of the polymerization initiator, or at a temperature equal to or lower than the ten-hour half-life temperature of the polymerization initiator, the first and second liquids in the droplet 33 are heated.
  • the (meth) acrylate is polymerized and the droplet 33 is hardened to form resin particles 30 as shown in FIG. 1b.
  • the diameter of the droplets 33 becomes a size corresponding to the pore diameter of the porous membrane, so that the porous membrane is a SPG (Shirasu Porous G 1 ass) membrane. If a film having a very narrow pore size distribution is used, the particle size distribution of the droplets 33 becomes narrow, and as a result, resin particles 30 having a uniform particle size can be obtained.
  • the conductive particles 37 are bonded to an adhesive material.
  • an anisotropic conductive adhesive By dispersing in an anisotropic conductive adhesive, an anisotropic conductive adhesive can be obtained.
  • Examples of the polymerization initiator to be added to the raw material liquid include 2,2,2-azobis (2,4-dimethylvaleronitrile) and 2,2′-azobis (4-methoxy 2,4 — Azonitrile compounds other than dimethylnorrelonitrile can be used.
  • 2,2, -azobis (2-methylpropionitol) 2,2, -azobis (2-methylbutyronitrile), 1,1,1-azobis (cyclohexane-one-pot liponitrile) ), 1-[(1-1-1-1-methylethyl) azo] formamide can also be used.
  • the 10-hour half-life temperature of 2,2'-azobis (2-methylpropionitrile is 65 ° C
  • the 10-hour half-life temperature of 2,2'-azobis (2-methylbutyronitrile is 10 hours.
  • the organic peroxides used in the polymerization initiator include isopyryl peroxide (at 49.7), a'bis (neodecanyloxy) diisopropyl benzene (54.1 ° C). ), Cumylperoxy neodecanoate (55.0 ° C), di-n-propylperoxydione-force (57.7 ° C), diisopropyrpoperoxy-dione-one (56.2 ° C) X:), di-sec.—Putylperoxy sizzi-carpet (57.4 X:), 1, 1, 3, 3—Tetramethi Butyl peroxy neodecanoate (57.5 ° C), bis (41 t-butylcyclohexyl) peroxydiene potion (575 ° C), 1.-cyclohexyl 1-Methylethyl peroxyneodecanoate (58.6 ° C), di-2-ethoxy-ethyl peroxy
  • the 10-hour half-life temperature of isobutyl riloperoxide is 32.7 ° C
  • the 10-hour half-life temperature of ⁇ , a'bis (neodecanylperoxy) diisopropylbenzene is 35.9.
  • ° C and the 10-hour half-life of cumil peroxy neodecanoate is 36.5 ° C
  • the 10-hour half-life of di-n-propylperoxydiene is 10 hours.
  • the temperature was 40.3, and the 10-hour half-life temperature of diisopropylpyrroperoxydicarbonate was 40.5 ° C.
  • the 10-hour half-life temperature is 40.5, and the 1,1-, 3-, 3-tetramethylbutylperoxynedecanoate has a 10-hour half-life temperature of 40.7 ° C.
  • the bis (4-t-butylcyclohexyl) peroxydicarbonate has a 10-hour half-life temperature of 40.8 ° C.
  • the 10-hour half-life temperature of 1-cyclohexyl 1-methylthiolperoxy neodecanoate was 41.4, indicating that The 10-hour half-life temperature of epoxy carbonate is 43.1, and the 10-hour half-life temperature of di (2-ethoxyhexylperoxy) dicarbonate is 43.6 ° C.
  • tHexyl peroxy neodecanoate has a 10-hour half-life of 44.5 ° C, and 10-hour half-life of dimethoxybutyl benzyloxydicarbonate is 45.8.
  • the 10-hour half-life temperature of t-butylperoxy neodecanoate is 46.4 ° C, and the 10-hour half-life temperature of t-hexylperoxyvivarate is 53.
  • the 10-hour half-life temperature of t-butylperoxypinolate is 54.6 ° C, and 3, 5, 5 — To methyl
  • the 10-hour half-life temperature of xanoylperoxide is 59.4 ° C
  • the 10-hour half-life temperature of octanol-peroxide is 61.5 ° C
  • 10-hour temperature of lauroyl beloxide is 61.6 ° C
  • the 10-hour half-life of stealoy ruberoxide is 62.4 ° C, and 1,1,3,3-tetramethylbutylperoxy.
  • the 10-hour half-life temperature of 1-2-ethylhexanoate is 65.3 ° C
  • the 10-hour half-life temperature of succinic peroxide is 65.9 ° C
  • 2,5-dimethyl The 1,2-hour half-life of 1,2,5-di (2-ethylhexanoylperoxy) hexane is 66.2 ° C
  • t-hexylperoxy1-2-ethylethylhexanoate is 1
  • the 0 hour half-life temperature is 69.9 ° C
  • the 10-hour half-life temperature of 4-methylbenzoylperoxide is 7 0.6 ° C
  • the 10-hour half-life of t-butylperoxy-2-ethylethylanoate was 72.1 ° C
  • that of benzoylperoxide was 10 hours.
  • the half-life is 736 ° C
  • the 10-hour half-life of t-butylperoxyisobutyrate is 77.3 ° C
  • 1,1-bis (t-butylperoxy) 2 The 10-hour half-life temperature of methylcyclohexane is 83.2 ° C, and the 1,1-bis (t-hexylperoxy) -13,3,5-trimethylcyclohexane is 10 hours.
  • the half-life temperature is 86.7 ° C
  • the 10-hour half-life temperature of 1,1-bis (t-hexylperoxy) cyclohexane is 87.1 ° C
  • 1,1-bis The (10-hour half-life temperature of 1,3,3,5-trimethylcyclohexane) is 90.0 ° C.
  • the type of the radical polymerizable substance used in the raw material liquid is not particularly limited, and a monomer having an acryloyl group, a methyl acryloyl group, a vinyl group, or an aryl group and / or Use oligo sesame These may be used alone or as a mixture of two or more.
  • radical polymerizable substance used in the raw material liquid examples include vinyl compounds such as styrene and divinylbenzene, 1,4-butanediol diacrylate, and 1,6-hexanediol diacrylate.
  • the type of the first (meth) acrylate is not particularly limited, and the number of functional groups (acryloyl groups) and the number of urethane bonds in the structure are not particularly limited.
  • the second (meth) acrylate added to the raw material liquid is not particularly limited, either.
  • 1 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, 1,10-decanediol diacrylate Neopentyl sorbate, hydroxypentinophosphate cholesterol, polyethylene glycol, polytetramethylene dali Acrylates, such as coal diglycolate, tripropylene glycol, trimethylolpropane triglyceride, etc.
  • the case where the second (meth) acrylate having no urethane bond is added to the first (meth) acrylate having a urethane bond has been described above.
  • the present invention is not limited thereto, and a radical polymerizable substance other than the (meth) acrylate such as the vinyl compound and the polymerizable oligomer described above may be added to the first (meth) acrylate.
  • a radical polymerizable substance other than the (meth) acrylate such as the vinyl compound and the polymerizable oligomer described above may be added to the first (meth) acrylate.
  • two or more first (meth) acrylates having urethane bonds can be contained in the same raw material liquid.
  • water is used as the main component of the medium liquid
  • the present invention is not limited to this, and various solvents having a low affinity for the raw material liquid may be used. Can be used.
  • the polymer dispersion stabilizer to be added to the medium liquid is not limited to polyvinyl alcohol.
  • various materials such as polyvinyl pyrrolidone, polyvinyl acetate amide, and polyvinyl alkyl ether may be used.
  • the amount of the polymer dispersion stabilizer to be added is not particularly limited, but is preferably from 0.3 to 1.0 part by weight based on 100 parts by weight of the medium liquid.
  • the conductive material forming the conductive layer 36 is not particularly limited, and various metal materials such as gold and copper other than nickel and conductive materials other than metals such as carbon can be used. Also, the method of forming the conductive layer 36 is not limited to the electroless plating method, but may be a dipping plating method or the like. Various methods can be used. Industrial applicability
  • resin particles having high strength and large deformation can be obtained.
  • a conductive layer is formed on the surface of such a resin particle to form a conductive particle, and the connection terminal is connected using an anisotropic conductive adhesive in which the conductive particle is dispersed in an adhesive material, the connection terminal is connected to the connection terminal. Even if the sandwiched conductive particles are deformed to such an extent that the compression deformation rate of the resin particles exceeds 60%, the resin particles are not broken, so the contact area between the connection terminal and the conductive particles is increased. can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

A process for producing resin particles, comprising providing a raw material solution containing a polymerization initiator and a substance of radical polymerization and heating the raw material solution at a temperature not higher than the 1 hr half-life temperature of the polymerization initiator so as to harden the raw material solution. The thus produced resin particles (30) exhibit high compressibility at break, so that even when subjected to extensive compression deformation, they would not be ruptured. Accordingly, when connection terminals (43, 47) are interconnected by means of anisotropically conductive adhesive film (39) comprising adhesive material (38) and, dispersed therein, conductive particles (37) composed of the above resin particles (30) having their surfaces provided with conductive layer (36), the conductive particles (37) interposed between the connection terminals (43, 47) are so largely deformed that the contact area of connection terminals (43, 47) with conductive particles (37) can be large to thereby attain lowering of conduction resistance.

Description

明細書  Specification
樹脂粒子の製造方法及ぴ異方導電性接着剤の製造方法 技術分野 Manufacturing method of resin particles and manufacturing method of anisotropic conductive adhesive
本発明は樹脂粒子を製造する技術に関し、 特に、 異方導電性接 着剤の導電性粒子に用い られる樹脂粒子を製造する技術に関す る。 背景技術  The present invention relates to a technique for producing resin particles, and more particularly, to a technique for producing resin particles used for conductive particles of an anisotropic conductive adhesive. Background art
従来の樹脂粒子の製造方法には、 ジビニルベンゼン等のモノ マ 一を有する油相成分を水性成分に分散させ、 分散されたモノマ一 滴を硬化させる方法がある (例えば、 特開 2 0 0 0 - 5 3 7 1 0 を参照) 。  As a conventional method for producing resin particles, there is a method in which an oil phase component having a monomer such as divinylbenzene is dispersed in an aqueous component, and one droplet of the dispersed monomer is cured. -5 3 7 10).
また、 樹脂粒子を金属コ一ティ ングした金属コーティ ング粒子 を異方導電性フィ ルムの導電性粒子と して用いる こ とがあ り 、 そ のよ う な導電性粒子は金属粒子か らなる導電性粒子に比べて粒 径精度が高い上、 低荷重で弾性体に近い挙動を示すため、 接続端 子間に導電性粒子を挟むと押圧によって変形し、 接続端子との接 触面積が大き く なる こ とで接続端子間の導通抵抗値が低く なる (例えば、 土谷雅弘、 他 2 名 「導電微粒子の電気特性評価」 、 回 路実装学会誌、 1 9 9 7 年、 V o l . 1 2 N o . 7 、 p 5 0 7 一 5 0 8 を参照。 ) 。  In addition, metal-coated particles obtained by coating resin particles with metal may be used as conductive particles of an anisotropic conductive film, and such conductive particles are made of metal particles. In addition to having higher particle size accuracy than conductive particles and exhibiting behavior similar to an elastic body under low load, when conductive particles are sandwiched between connection terminals, they are deformed by pressure and have a large contact area with connection terminals As a result, the conduction resistance value between the connection terminals decreases (for example, Masahiro Tsuchiya, et al., “Evaluation of Electrical Characteristics of Conducting Fine Particles”, Journal of Japan Institute of Circuit Packaging, 1997, Vol. 12) No. 7, p. 507-508.)).
しかし、 従来の製造方法で製造された樹脂粒子は圧縮変形率が 5 0 %〜 6 0 %以上になるよう に押圧される と、 樹脂粒子が破壊 される こ とがあ り 、 また、 従来の製造方法で製造された樹脂粒子 は強度が 1 2 0 0 P a を超えるよ う なものがなかった。 本発明は、 機械的強度が高い樹脂粒子を製造する こ とを 目的と する。 発明の開示 However, when the resin particles manufactured by the conventional manufacturing method are pressed so that the compressive deformation ratio becomes 50% to 60% or more, the resin particles may be broken, and None of the resin particles produced by the production method had a strength exceeding 1200 Pa. An object of the present invention is to produce resin particles having high mechanical strength. Disclosure of the invention
本発明者等は樹脂粒子の原料液を硬化させる条件について検 討を行った結果、 原料液を硬化させる ときの加熱温度が高いと、 樹脂粒子の強度が低下する こ とがわかった。  The present inventors have studied the conditions for curing the raw material liquid of the resin particles. As a result, it has been found that if the heating temperature for curing the raw material liquid is high, the strength of the resin particles is reduced.
加熱温度が低すぎる と重合反応が起こ らず、 または重合反応が 起こったと しても加熱時間が極端に長く な り 、 生産効率が悪く な る。 本発明者等が加熱温度の最適範囲について更に検討を行った 結果、 原料液に添加する重合開始剤の 1 時間半減温度よ り も低い 温度、 よ り好ま し く は重合開始剤の 1 0 時間半減温度よ り も低い 温度で原料液を加熱すれば、 機械的強度の高い樹脂粒子が得られ る こ とがわかっ た。  If the heating temperature is too low, the polymerization reaction does not occur, or even if the polymerization reaction occurs, the heating time becomes extremely long, and the production efficiency deteriorates. As a result of further studies by the present inventors on the optimum range of the heating temperature, it was found that the temperature was lower than the one-hour half-life temperature of the polymerization initiator added to the raw material liquid, more preferably, 10 hours. It was found that if the raw material liquid was heated at a temperature lower than the half-life temperature, resin particles with high mechanical strength could be obtained.
上記知見にも とづいてなされた本発明は、 重合開始剤と ラジカ ル重合性物質とを有する原料液を加熱処理し、 前記ラジカル重合 性物質を重合させて前記原料液の硬化物か ら なる樹脂粒子を形 成する樹脂粒子の製造方法であって、 前記重合開始剤を 1 時間加 熱したときに、 前記重合開始剤が半分まで分解され 1る温度を 1 時間半減温度とする と、 前記加熱処理は、 前記原料液の温度を前 記 1 時間半減温度以下にする樹脂粒子の製造方法である。  The present invention has been made based on the above findings, and comprises a cured product of the raw material liquid obtained by heating a raw material liquid having a polymerization initiator and a radical polymerizable substance, and polymerizing the radical polymerizable substance. A method for producing resin particles for forming resin particles, wherein, when the polymerization initiator is heated for 1 hour, a temperature at which the polymerization initiator is decomposed to half and 1 is a one-hour half-life temperature, The heat treatment is a method for producing resin particles in which the temperature of the raw material liquid is reduced to the above-mentioned one-hour half-life temperature or lower.
本発明は、 前記加熱処理は、 前記原料液の昇温速度を 1 で 分 以上にする樹脂粒子の製造方法である。  The present invention is the method for producing resin particles, wherein the heat treatment is performed such that a temperature rising rate of the raw material liquid is 1 minute or more.
本発明は、 前記ラジカル重合性物質は、 (メタ) ァク リ レー ト か らなる樹脂粒子の製造方法である。  The present invention is a method for producing resin particles, wherein the radically polymerizable substance comprises (meth) acrylate.
本発明は、 前記ラジカル重合性物質は、 ウ レタ ン結合を有する (メタ) ァク リ レー トか らなる樹脂粒子の製造方法である。 In the present invention, the radical polymerizable substance has a urethane bond This is a method for producing resin particles composed of (meth) acrylate.
本発明は、 前記原料液に 2種類以上のラジカル重合性物質を含 有させる樹脂粒子の製造方法である。  The present invention is a method for producing resin particles, wherein the raw material liquid contains two or more types of radically polymerizable substances.
本発明は、 前記原料液にウ レタ ン (メ タ) ァク リ レー ト,からな る第一のラジカル重合性物質と、 化学構造中にウ レタ ン結合を有 しない (メタ) ァク リ レー トか らなる第二のラジカル重合性物質 の両方を含有させる樹脂粒子の製造方法である。  The present invention relates to a first radically polymerizable substance comprising urethane (meth) acrylate in the raw material liquid, and a (meth) acrylate having no urethane bond in a chemical structure. This is a method for producing resin particles containing both a second radically polymerizable substance made of a rate.
本発明は、 重合開始剤とラジカル重合性物質とを有する原料液 を加熱処理し、 前記ラジカル重合性物質を重合させて前記原料液 の硬化物からなる樹脂粒子を形成する樹脂粒子を製造し、 前記樹 脂粒子の表面に導電層を形成して導電性粒子を製造し、 前記導電 性粒子を接着材料に分散させる異方導電性接着剤の製造方法で あって、 前記重合開始剤を 1 時間加熱したときに、 前記重合開始 剤が半分まで分解される温度を 1 時間半減温度とする と、 前記加 熱処理は、 前記原料液の温度を前記 1 時間半減温度以下にする異 方導電性接着剤の製造方法である。  The present invention provides a method for heating a raw material liquid having a polymerization initiator and a radical polymerizable substance, and producing resin particles that form resin particles made of a cured product of the raw material liquid by polymerizing the radical polymerizable substance, A method for producing an anisotropically conductive adhesive in which a conductive layer is formed by forming a conductive layer on the surface of the resin particles, and the conductive particles are dispersed in an adhesive material. Assuming that the temperature at which the polymerization initiator is decomposed to half when heated is a half-hour reduction temperature, the heat treatment is an anisotropic conductive adhesive that reduces the temperature of the raw material liquid to the half-hour temperature or lower. Is a manufacturing method.
本発明は、 重合開始剤とラジカル重合性物質とを含有する原料 液を加熱処理し、 前記ラジカル重合性物質を重合させて前記原料 液の硬化物か らなる樹脂粒子を形成する樹脂粒子の製造方法で あって、 前記重合開始剤を 1 0 時間加熱したときに、 前記重合開 始剤が半分まで分解される温度を 1 0 時間半減温度とする と、 前 記加熱処理は、 前記原料液の温度を前記 1 0 時間半減温度以下に する樹脂粒子の製造方法である。  The present invention provides a method for producing resin particles, comprising heating a raw material liquid containing a polymerization initiator and a radical polymerizable substance, and polymerizing the radical polymerizable substance to form resin particles composed of a cured product of the raw material liquid. When the polymerization initiator is heated for 10 hours and the temperature at which the polymerization initiator is decomposed by half is set to be a 10-hour halving temperature, the heat treatment is performed by heating the raw material liquid. This is a method for producing resin particles in which the temperature is reduced to the above-mentioned 10 hour half-life temperature or lower.
本発明は、 前記加熱処理は、 前記原料液の昇温速度を 1 °C Z分 以上にする樹脂粒子の製造方法である。  The present invention is the method for producing resin particles, wherein the heat treatment is performed so that a temperature rising rate of the raw material liquid is 1 ° C.Z or more.
本発明は、 前記ラジカル重合性物質は、 (メタ) ァク リ レー ト か らなる樹脂粒子の製造方法である。 In the present invention, the radical polymerizable substance may be a (meth) acrylate This is a method for producing resin particles.
本発明は、 前記ラジカル重合性物質は、 ウ レタ ン結合を有する (メタ) ァク リ レー トか らなる樹脂粒子の製造方法である。  The present invention is a method for producing resin particles, wherein the radically polymerizable substance comprises a (meth) acrylate having a urethane bond.
本発明は、 前記原料液に 2 種類以上のラジカル重合性物質を含 有させる樹脂粒子の製造方法である。  The present invention is a method for producing resin particles, wherein the raw material liquid contains two or more types of radically polymerizable substances.
本発明は、 前記原料液にウレタ ン (メタ) ァク リ レー トか らな る第一のラジカル重合性物質と、 化学構造中にウ レタ ン結合を有 しない (メタ) ァク リ レー トか らなる第二のラジカル重合性物質 の両方を含有させる樹脂粒子の製造方法である。  The present invention relates to a first radical polymerizable substance comprising urethane (meth) acrylate in the raw material liquid, and a (meth) acrylate having no urethane bond in a chemical structure. This is a method for producing resin particles containing both of the second radical polymerizable substance.
本発明は、 重合開始剤とラジカル重合性物質とを有する原料液 を加熱処理し、 前記ラジカル重合性物質を重合させて前記原料液 の硬化物からなる樹脂粒子を形成する樹脂粒子を製造し、 前記樹 脂粒子の表面に導電層を形成して導電性粒子を製造し、 前記導電 性粒子を接着材料に分散させる異方導電性接着剤の製造方法で あって、 前記重合開始剤を 1 時間加熱したときに、 前記重合開始 剤が半分まで分解される温度を 1 0 時間半減温度とする と、 前記 加熱処理は、 前記原料液の温度を前記 1 0 時間半減温度以下にす る異方導電性接着剤の製造方法である。  The present invention provides a method for heating a raw material liquid having a polymerization initiator and a radical polymerizable substance, and producing resin particles that form resin particles made of a cured product of the raw material liquid by polymerizing the radical polymerizable substance, A method for producing an anisotropically conductive adhesive in which a conductive layer is formed by forming a conductive layer on the surface of the resin particles, and the conductive particles are dispersed in an adhesive material. Assuming that the temperature at which the polymerization initiator is decomposed to half when heated is a half-hour reduction temperature, the heat treatment is an anisotropically conductive method that reduces the temperature of the raw material liquid to the half-hour temperature or lower. This is a method for producing a conductive adhesive.
尚、 本発明で (メタ) ァク リ レー ト とは、 ァク リ レー ト とメタ ク リ レー トの両方を示す。  In the present invention, the term “(meth) acrylate” refers to both an acrylate and a metaacrylate.
本発明は上記のよう に構成されてお り 、 本発明では、 重合開始 剤の 1 時間半減温度よ り も低い温度で加熱処理を行う こ とで、 得 られる樹脂粒子の強度が大き く なる。  The present invention is configured as described above, and in the present invention, the strength of the obtained resin particles is increased by performing the heat treatment at a temperature lower than the one-hour half-life temperature of the polymerization initiator.
1 0 時間半減温度は 1 時間半減温度よ り も低温であ り 、 原料液 を重合開始剤の 1 0 時間半減温度よ り も低い温度で加熱すれば、 樹脂粒子の強度が更に大き く なるが、 加熱温度が低く なるほど原 料液の硬化に要する時間が長く なる。 The 10-hour half-life temperature is lower than the 1-hour half-life temperature, and if the raw material liquid is heated at a temperature lower than the 10-hour half-life temperature of the polymerization initiator, the strength of the resin particles is further increased. The lower the heating temperature The time required for curing the liquid material increases.
従って、 実用上十分な強度を有する樹脂粒子を効率よ く 生産す るためには、 原料液の温度を重合開始剤の 1 0 時間半減温度以上 1 時間半減温度以下にすればよい。  Therefore, in order to efficiently produce resin particles having sufficient strength for practical use, the temperature of the raw material liquid should be set to be not less than the 10 hour half-life temperature of the polymerization initiator and not more than 1 hour half-life temperature.
樹脂粒子の表面に導電層を形成して導電性粒子を作製し、 該導 電性粒子を接着材料に分散させた導電性粒子を、 配線板や液晶パ ネルの接続端子間で挟みこむと、 接続端子間に導電性粒子が挟ま れる。  A conductive layer is formed on the surface of the resin particles to form conductive particles, and the conductive particles obtained by dispersing the conductive particles in an adhesive material are sandwiched between connection terminals of a wiring board or a liquid crystal panel. The conductive particles are sandwiched between the connection terminals.
上述したよう に、 本発明によ り製造された樹脂粒子は強度が高 いので、 接続端子間に挟まれた導電性粒子が大きく 変形するよう に荷重を加えたとしても、 樹脂粒子が破壊されない。 従って、 本 発明によ り作製された導電性粒子を用いれば、 接続端子と導電性 粒子との接触面積を非常に大き くする こ とが可能であ り 、 接続端 子間の導通性を高く する こ とができる。 図面の簡単な説明  As described above, since the resin particles manufactured according to the present invention have high strength, even if a load is applied so that the conductive particles sandwiched between the connection terminals are greatly deformed, the resin particles are not broken. . Therefore, if the conductive particles produced according to the present invention are used, the contact area between the connection terminal and the conductive particles can be extremely increased, and the conductivity between the connection terminals can be increased. can do. BRIEF DESCRIPTION OF THE FIGURES
第 l a 図、 第 l b 図は、 本発明によ り樹脂粒子を製造する工程 を説明する断面図である。  FIG. 1a and FIG. 1b are cross-sectional views illustrating steps for producing resin particles according to the present invention.
第 2 図は本発明によ り 製造された導電性粒子を説明する図で ある。  FIG. 2 is a view for explaining the conductive particles produced according to the present invention.
第 3 図は本発明の導電性粒子を用 いた異方導電性接着剤の一 例を説明する図である  FIG. 3 is a diagram illustrating an example of an anisotropic conductive adhesive using the conductive particles of the present invention.
第 4 a 図、 第 4 b 図及び第 4 c 図は異方導電性接着剤を用いて 配線板を接続する工程を説明する図である。  FIG. 4a, FIG. 4b and FIG. 4c are diagrams illustrating a process of connecting wiring boards using an anisotropic conductive adhesive.
第 5 図は本発明に用 いる樹脂粒子製造装置の一例を示す図で ある。 第 6 図は原料液が媒体液に注入された状態の乳化槽を示す断 面図である。 FIG. 5 is a diagram showing an example of a resin particle production apparatus used in the present invention. FIG. 6 is a cross-sectional view showing the emulsification tank in a state where the raw material liquid has been injected into the medium liquid.
第 7 図は破断圧縮試験によ り 測定さ れた粒径の変位と荷重と の関係を示すグラフである。  Fig. 7 is a graph showing the relationship between the displacement of the particle size measured by the breaking compression test and the load.
各図中、 符号 3 0 は樹脂粒子を示し、 符号 3 2 は原料液を示し 符号 3 3 は原料液の液滴を示し、 符号 3 5 は乳濁液を示し、 符号 3 6 は導電層を示し、 符号 3 7 は導電性粒子を示す。 発明を実施するための最良の形態  In each figure, reference numeral 30 denotes resin particles, reference numeral 32 denotes a raw material liquid, reference numeral 33 denotes a droplet of the raw material liquid, reference numeral 35 denotes an emulsion, and reference numeral 36 denotes a conductive layer. Reference numeral 37 denotes a conductive particle. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の異方導電性接着剤の製造方法の一例について 詳細に説明する。  Hereinafter, an example of the method for producing the anisotropic conductive adhesive of the present invention will be described in detail.
ラジカル重合性物質であ り 、 ウ レタ ン結合を有する第一の (メ タ) ァク リ レー ト (第一のラジカル重合剤) に重合開始剤を所定 重量添加して原料液を作製する。  A raw material liquid is prepared by adding a predetermined amount of a polymerization initiator to a first (meth) acrylate (a first radical polymerization agent) which is a radical polymerizable substance and has a urethane bond.
原料液に対して親和性の低い溶媒を主成分と し、 必要に応じて 界面活性剤 と高分子安定剤等の添加剤が添加された媒体液を作 製.し、 上述した原料液を この媒体液中に分散させ、 原料液の液滴 を形成する。  A medium liquid containing a solvent having a low affinity for the raw material liquid as a main component and, if necessary, additives such as a surfactant and a polymer stabilizer was prepared. Dispersed in the medium liquid to form droplets of the raw material liquid.
図 1 a の符号 3 5 は媒体液 3 1 中に原料液の液滴 3 '3 が分散 された縣濁液を示している。  Reference numeral 35 in FIG. 1a indicates a suspension in which a droplet 3′3 of a raw material liquid is dispersed in a medium liquid 31.
原料液に添加した重合開始剤の 1 時間半減温度以下の温度、 又 は該重合開始剤の 1 0 時間半減温度以下の温度を設定温度と し、 縣濁液 3 5 を 1 °C /分以上の昇温速度で加熱し、 設定温度まで昇 温させた後、 その温度を維持する と、 第一の (メタ) ァク リ レー 卜がラジカル重合し、 液滴 3 3 が硬化し、 アク リ ル樹脂か らなる 樹脂粒子が形成される。 尚、 原料液に第一の (メタ) ァク リ レー ト に加えて、 第二のラジカル重合性物質と してウ レタ ン結合を有 しない第二の (メタ) ァク リ レー トが含有された場合は、 第一、 第二の (メタ) ァク リ レー トが加熱によって共重合して液滴 3 3 が硬化する。 Set the temperature below 1 hour half-life temperature of the polymerization initiator added to the raw material liquid or below 10 hours half-life temperature of the polymerization initiator as the set temperature, and suspend the suspension 35 over 1 ° C / min. When the temperature is maintained after heating to the set temperature, the first (meth) acrylate undergoes radical polymerization, and the droplets 33 are hardened, and the Thus, resin particles made of a metal resin are formed. In addition, the first (meth) acrylate In addition to the above, when the second (meth) acrylate having no urethane bond is contained as the second radical polymerizable substance, the first and second (meth) acrylates are included. The acrylate is copolymerized by heating, and the droplet 33 is hardened.
図 1 b の符号 3 0 は液滴 3 3 が硬化 して得 られた樹脂粒子を 示している。  Reference numeral 30 in FIG. 1b indicates resin particles obtained by curing the droplet 33.
こ の樹脂粒子 3 0 を媒体液 3 1 か ら ろ別し、 樹脂粒子 3 0 を水 洗して媒体液を洗い流すと清浄な樹脂粒子 3 0 が得られる。  The resin particles 30 are separated from the medium liquid 31 by filtration, the resin particles 30 are washed with water, and the medium liquid is washed away to obtain clean resin particles 30.
次に、 樹脂粒子 3 0 の表面に導電層を形成する。 例えば無電解 めっ き法等によ り 樹脂粒子 3 0 の表面にニッ ケル被膜を形成し た後、 更にそのニッケル被膜の表面に金めつ きを施し、 ニッケル 及び金か らなる導電層を形成する。 図 2 の符号 3 7 は導電層 3 6 が形成された状態の導電性粒子を示している。  Next, a conductive layer is formed on the surface of the resin particles 30. For example, after a nickel film is formed on the surface of the resin particles 30 by an electroless plating method or the like, gold plating is further performed on the surface of the nickel film to form a conductive layer made of nickel and gold. Form. Reference numeral 37 in FIG. 2 indicates conductive particles in a state where the conductive layer 36 is formed.
次に、 熱硬化性樹脂であるエポキシ樹脂のよう な接着性樹脂と 該エポキシ樹脂を硬化させる硬化剤と、 粘度を調整するための有 機溶剤とを混合し、 ペース 卜状の接着材料を作製する。  Next, an adhesive resin such as an epoxy resin which is a thermosetting resin, a curing agent for curing the epoxy resin, and an organic solvent for adjusting the viscosity are mixed to produce a paste-like adhesive material. I do.
この接着材料に、 上述した導電性粒子 3 7 を分散させてペース ト状の異方導電性接着剤を製造した後、 該異方導電性接着剤をフ イ ルム状に成形する。 図 3 の符号 3 9 はフィ ルム状に成形された 異方導電性接着剤か らなる接着フィ ルムを示してお り 、 接着材料 3 8 中に導電性粒子 3 7 が分散されている。  After the above-mentioned conductive particles 37 are dispersed in this adhesive material to produce a paste-like anisotropic conductive adhesive, the anisotropic conductive adhesive is formed into a film. Reference numeral 39 in FIG. 3 indicates an adhesive film made of a film-shaped anisotropic conductive adhesive, in which conductive particles 37 are dispersed in an adhesive material 38.
次に、 本発明の製造方法によ り作製された接着フィ ルム 3 9 を 用いて電気装置を製造する工程について説明する。 図 4 a に示す よ う に、 2 枚の配線板 4 1 、 4 5 の間に上述した接着フィ ルム 3 9 を配置する。 各配線板 4 1 、 4 5 の表面には金属配線が配置さ れ、 その金属配線の一部で接続端子 4 3 、 4 7 がそれぞれ構成さ れてお り 、 配線板 4 1 、 4 5 の接続端子 4 3 、 4 7 が配置された 面で接着フィ ルム 3 9 を挟み込む。 Next, a process of manufacturing an electric device using the adhesive film 39 manufactured by the manufacturing method of the present invention will be described. As shown in FIG. 4A, the adhesive film 39 described above is disposed between the two wiring boards 41 and 45. Metal wiring is arranged on the surface of each of the wiring boards 41 and 45, and connection terminals 43 and 47 are respectively formed by a part of the metal wiring. The adhesive film 39 is sandwiched between the surfaces of the wiring boards 41 and 45 where the connection terminals 43 and 47 are arranged.
その状態で配線板 4 1 、 4 5 を加熱押圧する と、 加熱によって 接着フィ ルム 3 9 の接着材料 3 8 が軟化し、 押圧によって接続端 子 4 3 、 4 7 が軟化した接着材料 3 8 を押し退け、 接着材料 3 8 に分散された導電性粒子 3 7 が接続端子 4 3 、 4 7 に挟み込まれ る。  When the wiring boards 41 and 45 are heated and pressed in this state, the adhesive material 38 of the adhesive film 39 is softened by the heating, and the adhesive material 38 whose connection terminals 43 and 47 are softened by the pressing is heated. Then, the conductive particles 37 dispersed in the adhesive material 38 are sandwiched between the connection terminals 43 and 47.
その状態で更に押圧を続ける と、 図 4 b に示すよう に導電性粒 子 3 7 が圧縮変形する。 本発明によ り得られた導電性粒子 3 7 の 樹脂粒子 3 0 の強度は高く 、 樹脂粒子 3 0 の圧縮変形率が 5 0 % 〜 6 0 %以上になるよ う に導電性粒子 3 7 を押圧したと しても、 樹脂粒子 3 0 が破壊されず、 接続端子 4 3 、 4 7 と導電層 3 6 と の接触面積が非常に大き く なる。  When the pressing is further continued in this state, the conductive particles 37 are compressed and deformed as shown in FIG. 4b. The strength of the resin particles 30 of the conductive particles 37 obtained according to the present invention is high, and the conductive particles 37 are so selected that the compression deformation rate of the resin particles 30 is 50% to 60% or more. Even if it is pressed, the resin particles 30 are not destroyed, and the contact area between the connection terminals 43 and 47 and the conductive layer 36 becomes very large.
更に、 加熱を続ける と、 導電性粒子 3 7 が接続端子 4 3 、 4 7 に挟み込まれた状態で、 熱硬化性樹脂が重合して接着材料 3 8 が 硬化し、 配線板 4 1 、 4 5 が固定される。  Further, when the heating is continued, the thermosetting resin is polymerized and the adhesive material 38 is cured while the conductive particles 37 are sandwiched between the connection terminals 43 and 47, and the wiring boards 41, 45 Is fixed.
図 4 c の符号 4 0 は硬化した接着材料 4 8 によ って 2 枚の配 線板 4 1 、 4 5 が接続された電気装置を示している。 この電気装 置 4 0 では硬化した接着材料 4 8 によって配線板 4 1 、 4 5 が機 械的に接続されただけではなく 、 導電性粒子 3 7 を介して電気的 にも接続されている。 上述したよう に、 導電性粒子 3 7 と接続端 子 4 3 、 4 7 との接触面積は非常に大きいので、 電気装置 4 0 の 導通信頼性は高い。  Reference numeral 40 in FIG. 4c indicates an electric device in which two wiring boards 41 and 45 are connected by a cured adhesive material 48. In the electric device 40, the wiring boards 41 and 45 are not only mechanically connected by the cured adhesive material 48 but also electrically connected via the conductive particles 37. As described above, since the contact area between the conductive particles 37 and the connection terminals 43 and 47 is very large, the conduction reliability of the electric device 40 is high.
【実施例】  【Example】
以下に本発明の樹脂粒子の製造方法についてよ り 詳細に説明 する。 先ず、 本発明者等は重合開始剤の 1 時間半減温度に着目 し、 実 験を行った。 Hereinafter, the method for producing the resin particles of the present invention will be described in more detail. First, the present inventors focused on the one-hour half-life temperature of the polymerization initiator and conducted experiments.
<実施例 A 1 A 7 >  <Example A 1 A 7>
第一の (メタ) ァク リ レー ト と してウ レタ ンァク リ レー ト (共 栄社化学 (株) 社製の商品名 「A H 6 0 0」 ) 2 5重量部と、 第 二の (メタ) ァク リ レー ト と して 1 , 6 —へキサジオールジァク リ レ一 ト 7 5重量部と を混合して樹脂材料と し、 該樹脂材料 1 0 Urethane acrylate (trade name “AH600” manufactured by Kyoeisha Chemical Co., Ltd.) as the first (meth) acrylate is 25 parts by weight, and 1,6-hexadiol diacrylate (75 parts by weight) is mixed as a methacrylate to form a resin material, and the resin material 10
0重量部に対し、 重合開始剤と してァゾニ ト リル化合物を下記表The azonitrile compound was used as a polymerization initiator in the following table based on 0 parts by weight.
1 に示す配合量添加して原料液を作製した。 重合開始剤の配合量 と、 1 時間半減温度と を下記表 1 に記載する。 尚、 参考と して重 合開始剤の 1 0 時間半減温度を併記する。 A raw material liquid was prepared by adding the compounding amounts shown in FIG. Table 1 below shows the amount of the polymerization initiator and the one-hour half-life temperature. The 10-hour half-life temperature of the polymerization initiator is also shown for reference.
表 1:樹脂粒子の製造条件と、試験結果  Table 1: Manufacturing conditions of resin particles and test results
Figure imgf000010_0001
Figure imgf000010_0001
尚、 上記表 1 中の実施例 A 1 ~ A 3 A 5 A 7 に用いた重合 開始剤は、 2 , 2 ' —ァゾビス ( 2 , 4 —ジメチルバレロニ ト リ ル) (和光純薬工業 (株) 社製の商品名 「 V— 6 5 」 ) であ り 、 実施例 A 4 に用いた重合開始剤は、 2 , 2 ' ーァゾビス ( 4 ーメ 卜キシー 2 4 —ジメチルバレロニ ト リ ル) (和光純薬工業 (株) 社製の商品名 「 V— 7 0」 ) である。 これらはラジカル重合開始 剤である。 The polymerization initiator used in Examples A1 to A3A5A7 in Table 1 was 2,2'-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, Ltd.) Is a trade name of “V-65”) manufactured by the company Co., Ltd., and the polymerization initiator used in Example A4 is 2,2′-azobis (4-methoxy24-dimethylvaleronitrile). ) (Trade name “V-70” manufactured by Wako Pure Chemical Industries, Ltd.). These initiate radical polymerization Agent.
原料液と親和性が低い溶媒と して蒸留水を用い、 蒸留水と、 界 面活性剤である ドデシルベンゼンスルホン酸ナ ト リ ゥムと、 高分 子分散安定剤であるポリ ビニルアルコールとを、 1 5 0 0 : 1 : 1 0 の重量比率で混合して媒体液を作製した。  Distilled water is used as a solvent having low affinity for the raw material liquid, and distilled water, sodium dodecylbenzenesulfonate, a surfactant, and polyvinyl alcohol, a polymer dispersion stabilizer, are used. , 1500: 1: 1: 10 in a weight ratio to prepare a medium liquid.
この媒体液に上述した原料液を添加し、 ホモジナイザーによ り 機械的に攪拌して原料液を媒体液に分散した。 攪拌条件は、 ホモ ジナイザーの回転数を 1 0 0 0 0 r p m、 攪拌時間を 1 分と した 熱処理工程は、 上記表 1 の 「重合温度」 と 「昇温速度」 に記載 した温度条件で行っ た。 こ こでは、 縣濁液をタ ンク に入れて加熱 処理を行い、 縣濁液の温度はタ ンクの底面と縣濁液の液面のほぼ 中間位置で測定した。  The raw material liquid described above was added to this medium liquid, and the raw material liquid was dispersed in the medium liquid by mechanically stirring with a homogenizer. The stirring conditions were as follows: the homogenizer rotation speed was 100,000 rpm, and the stirring time was 1 minute.The heat treatment process was performed under the temperature conditions described in Table 1, `` Polymerization temperature '' and `` Temperature rising rate ''. . Here, the suspension was placed in a tank and heated, and the temperature of the suspension was measured at approximately the midpoint between the bottom of the tank and the surface of the suspension.
〔圧縮破断試験〕  (Compression rupture test)
上記実施例 A 1 〜 A 7 の製造方法で作製された樹脂粒子 3 0 について、 微小圧縮試験機 ( (株) 島津製作所社製の商品名 「M C T M— 2 0 0 」 ) を用いて、 樹脂粒子 3 0 の圧縮破断試験を行 つた。  For the resin particles 30 produced by the production methods of Examples A1 to A7 above, using a micro compression tester (trade name “MCTM-200” manufactured by Shimadzu Corporation) A 30 compression rupture test was performed.
図 7 の符号は圧縮破断試験で測定される荷重と粒径の変位と の関係を示すグラフであ り 、 このグラフか ら樹脂粒子 3 0 が破断 する ときの破断変位と、 破断荷重とを求めた。  The sign in FIG. 7 is a graph showing the relationship between the load measured in the compression rupture test and the change in particle size.From this graph, the rupture displacement when the resin particles 30 break and the rupture load are determined. Was.
樹脂粒子 3 0 の圧縮破断試験前の粒径を d 、 破断荷重を P、 破 断変位を r と し、 下記式 ( 1 ) か ら強度 S を求め、 下記式 ( 2 ) か ら破断圧縮率 C を求めた。  Assuming that the particle size of the resin particles 30 before the compression rupture test is d, the rupture load is P, and the rupture displacement is r, the strength S is obtained from the following equation (1), and the rupture compression rate is obtained from the following equation (2). Asked for C.
式 ( 1 ) …… S = 2 . 8 X P Z ( π d 2 ) Equation (1) …… S = 2.8 XPZ (π d 2 )
式 ( 2 ) C = r d X 1 0 0  Equation (2) C = r d X 1 0 0
破断荷重と、 強度と、 破断圧縮率とを上記表 1 に記載した。 上記表 1 か ら明 らかなよう に、 実施例 A 1 〜 A 7 の製造方法に よ り作製された樹脂粒子は、 破断圧縮率が 5 0 % を超えてお り 、 強度や破断荷重が十分に高かった。, The breaking load, strength, and breaking compression ratio are shown in Table 1 above. As is clear from Table 1 above, the resin particles produced by the production methods of Examples A1 to A7 had a breaking compression ratio of more than 50% and had sufficient strength and breaking load. Was expensive. ,
これらのう ち、 重合開始剤の配合量以外の条件が同じである実 施例 A 2 と実施例 A 6 、 A 7 とを比較する と、 実施例 A 6 、 A 7 は破断圧縮率が 6 0 %未満であつたのに対し、 実施例 A 2 は破断 圧縮率が 6 0 %を超えてお り 、 また実施例 A 2 は破断荷重と強度 の値も高かった。 この こ とか ら、 樹脂材料 1 0 0 重量部に対する 重合開始剤の配合量が 1 重量部未満、 特に、 樹脂材料 1 0 0重量 部に対する重合開始剤の配合量が 0 . 5 重量部以下である場合に は、 強度が高く 、 圧縮変形率が高く なる こ とがわかる。  Of these, when comparing Example A2 with Examples A6 and A7 under the same conditions except for the amount of the polymerization initiator, Examples A6 and A7 have a breaking compression ratio of 6%. While it was less than 0%, Example A2 had a breaking compression rate of more than 60%, and Example A2 also had high values of breaking load and strength. Accordingly, the amount of the polymerization initiator to be added is less than 1 part by weight based on 100 parts by weight of the resin material, and in particular, the amount of the polymerization initiator is not more than 0.5 part by weight based on 100 parts by weight of the resin material. In this case, it can be seen that the strength is high and the compressive deformation rate is high.
また、 昇温速度以外の条件が同じである実施例 A l 、 A 5 を比 較する と、 昇温速度が 1 ^ノ分以上であった実施例 A 5 は、 昇温 速度が 1 °C /分未満であっ た実施例 A 1 に比べて強度が非常に 大き く 、 また、 実施例 A 5 は破断圧縮率も 8 0 % を超えていた。 この こ とか ら、 昇温速度を 1 °C z分以上にすれば、 よ り強度が高 い樹脂粒子が得られる こ とがわかる。  In addition, comparing Examples A1 and A5 in which the conditions other than the heating rate were the same, Example A5 in which the heating rate was 1 ^ min or more showed that the heating rate was 1 ° C. The strength was much higher than that of Example A1 which was less than / min, and the compression ratio at break of Example A5 was more than 80%. From this, it can be seen that if the heating rate is set to 1 ° Cz or more, resin particles having higher strength can be obtained.
上記実施例 A 1 〜 A 7 のよ う な樹脂粒子 3 0 の表面に導電層 3 6 を形成し導電性粒子 3 7 を作製し、 該導電性粒子 3 7 を接着 材料中に分散させれば、 異方導電性接着剤が得られる。  A conductive layer 36 is formed on the surface of the resin particles 30 as in Examples A1 to A7 to form conductive particles 37, and the conductive particles 37 are dispersed in an adhesive material. An anisotropic conductive adhesive is obtained.
【実施例】  【Example】
次に、 本発明者等は重合開始剤の 1 0 時間半減温度に着目 し、 実験を行った。  Next, the present inventors focused on the 10-hour half-life temperature of the polymerization initiator and conducted an experiment.
<実施例 B 1 〜 B 3 > <Examples B1 to B3>
第一の (メタ) ァク リ レー ト と してウ レタ ンァク リ レー 卜 (共 栄社化学 (株) 社製の商品名 「 A H 6 0 0 」 ) 2 5 重量部と、 第 二の (メタ) ァク リ レー ト と して 1 , 6 —へキサジオールジァク リ レー ト 7 5 重量部とを混合して樹脂材料と し、 該樹脂材料 1 0 0 重量部に対し、 重合開始剤と してァゾニ ト リ ル化合物を下記表 1 に示す配合量添加して原料液を作製した。 重合開始剤の配合量 と、 1 0 時間半減温度とを下記表 2 に記載する。 尚、 参考のため に重合開始剤の 1 時間半減温度を併記する。 As the first (meth) acrylate, urethane acrylate (trade name “AH600” manufactured by Kyoeisha Chemical Co., Ltd.): 25 parts by weight, As a second (meth) acrylate, 75 parts by weight of 1,6-hexadiol diacrylate is mixed to form a resin material, and 100 parts by weight of the resin material is mixed. An azonitrile compound was added as a polymerization initiator in an amount shown in Table 1 below to prepare a raw material liquid. The blending amount of the polymerization initiator and the 10-hour half-life temperature are shown in Table 2 below. For reference, the 1 hour half-life temperature of the polymerization initiator is also shown.
表 2:樹脂粒子の製造条件と、試験結果 Table 2: Manufacturing conditions of resin particles and test results
Figure imgf000013_0001
Figure imgf000013_0001
上記表 2 中の実施例 B l 、 B 3 と、 後述する比較例 B l 、 B 2 に用いた重合開始剤は、 2 , 2 ' —ァゾビス ( 2 , 4 —ジメチル ゾ レロニ ト リ ル) (和光純薬工業 (株) 社製の商品名 「 V— 6 5 」 ) であ り 、 実施例 B 2 に用いた重合開始剤は、 2 , 2 ' ーァゾビス ( 4 —メ トキシ一 2 , 4 —ジメチルバレロニ ト リ ル) (和光純薬 工業 (株) 社製の商品名 「 V— 7 0 」 ) である。 これらはラジカ ル重合開始剤である。  The polymerization initiators used in Examples Bl and B3 in Table 2 above and Comparative Examples Bl and B2 described later were 2,2'-azobis (2,4-dimethylzoleronitrile) ( The product name is “V-65” manufactured by Wako Pure Chemical Industries, Ltd.), and the polymerization initiator used in Example B2 is 2,2′-azobis (4-methoxy-1,2,4—). Dimethylvaleronitrile) (trade name “V-70” manufactured by Wako Pure Chemical Industries, Ltd.). These are radical polymerization initiators.
原料液と親和性が低い溶媒と して蒸留水を用い、 蒸留水と、 界 面活性剤である ドデシルベンゼンスルホン酸ナ ト リ ゥムと、 高分 子分散安定剤であるポ リ ビニルアルコールとを、 1 5 0 0 : 1 : 1 0 の重量比率で混合して媒体液を作製した。  Distilled water is used as a solvent having low affinity for the raw material solution. Distilled water, sodium dodecylbenzenesulfonate as a surfactant, and polyvinyl alcohol as a polymer dispersion stabilizer are used. Were mixed at a weight ratio of 1500: 1: 1: 10 to prepare a medium liquid.
この媒体液に上述した原料液を添加し、 ホモジナイザーによ り 機械的に攪拌して原料液を媒体液に分散した。 攪拌条件は、 ホモ ジナイザーの回転数を 1 0 0 0 0 r p m、 攪拌時間を 1 分と した 熱処理工程は、 上記表 1 の 「重合温度」 と 「昇温速度」 に記載し た温度条件で行った。 こ こでは、 縣濁液をタ ンク に入れて加熱処 理を行い、 縣濁液の温度はタ ンクの底面と縣濁液の液面のほぼ中 間位置で測定した。 The above-mentioned raw material liquid is added to this medium liquid, and the mixture is homogenized by a homogenizer. The raw material liquid was dispersed in the medium liquid by mechanical stirring. The heat treatment step was performed under the conditions of `` polymerization temperature '' and `` heating rate '' in Table 1 above, with the homogenizer rotating at 100 rpm and the stirring time at 1 minute. Was. Here, the suspension was heated in a tank, and the temperature of the suspension was measured at the bottom of the tank and almost in the middle of the suspension surface.
上記実施例 B 1 〜; B 3 の製造方法で作製された樹脂粒子 3 0 について、 微小圧縮試験機 ( (株) 島津製作所社製の商品名 「M C T M— 2 0 0 」 ) を用いて、 樹脂粒子 3 0 の圧縮破断試験を行 つた。  The resin particles 30 produced by the production method of Examples B1 to B3 above were applied to a resin using a micro compression tester (trade name “MCTM—200” manufactured by Shimadzu Corporation). A compression rupture test of 30 particles was performed.
図 7 の符号は圧縮破断試験で測定される荷重と粒径の変位と の関係を示すグラ フであ り 、 このグラ フから樹脂粒子 3 0 が破断 する ときの破断変位と、 破断荷重とを求めた。  The sign in FIG. 7 is a graph showing the relationship between the load measured in the compression rupture test and the change in particle size.The graph shows the breaking displacement and the breaking load when the resin particles 30 break. I asked.
樹脂粒子 3 0 の圧縮破断試験前の粒径を d、 破断荷重を P、 破 断変位を r と し、 下記式 ( 1 ) か ら強度 S を求め、 下記式 ( 2 ) から破断圧縮率 C を求めた。  Assuming that the particle size of the resin particles 30 before the compression rupture test is d, the rupture load is P, and the rupture displacement is r, the strength S is obtained from the following equation (1), and the breaking compression ratio C is obtained from the following equation (2). I asked.
式 ( 1 ) …… S = 2 . 8 X P / ( t d 2 ) Equation (1) …… S = 2.8 XP / (td 2 )
式 ( 2 ) C = r / d X 1 0 0  Equation (2) C = r / d X 1 0 0
破断荷重と、 強度と、 破断圧縮率とを上記表 2 に記載した。 <比較例 B 1 、 B 2 >  The breaking load, strength, and breaking compression ratio are shown in Table 2 above. <Comparative Examples B 1 and B 2>
尚、 重合温度を変えた以外は、 実施例 B 1 と同じ条件で樹脂粒 子を作製したものを比較例 B 1 とし、 重合開始剤の配合量を変え た以外は比較例 B 1 と同じ条件で樹脂粒子を作製 した もの を比 較例 B 2 と し、 上記実施例 1 〜 3 と同じ条件で破断荷重と、 破断 圧縮率と、 強度を求め、 それら の結果を上記表 2 に記載した。  A resin particle was prepared under the same conditions as in Example B1 except that the polymerization temperature was changed, and this was used as Comparative Example B1 under the same conditions as Comparative Example B1 except that the amount of the polymerization initiator was changed. Comparative Example B2 was prepared by using the resin particles prepared in the above, and the breaking load, breaking compressibility, and strength were determined under the same conditions as in Examples 1 to 3 above. The results are shown in Table 2 above.
上記表 2 か ら明 らかなよ う に、 実施例 B 1 〜; B 3 の製造方法に よ り作製された樹脂粒子 3 0 は破断荷重が高く 、 強度が 1 2 0 0 P a を超え、 更に破断圧縮率も 6 0 % を超えたこ とから、 本発明 の製造方法によ り作製された樹脂粒子 3 0 は、 押圧の際の変形量 が大きく 、 かつ押圧によって破壊され難いこ とが確認された。 特に、 昇温速度が 3 . 0 °C /分であった実施例 B 3 は、 実施例 B l 、 B 2 に比べて強度、 破断荷重、 破断圧縮率がそれぞれ高く 昇温速度を 1 °C以上にする こ とで変形量がよ り大き く 、 かつ破壊 強度が高い樹脂粒子が得られる こ とがわかった。 As is clear from Table 2 above, the production methods of Examples B1 to B3 The resin particles 30 produced by the above method had a high breaking load, a strength exceeding 1200 Pa, and a breaking compression ratio also exceeded 60%, and thus were produced by the production method of the present invention. It was confirmed that the resin particles 30 that had undergone a large amount of deformation upon pressing and were not easily broken by the pressing. In particular, Example B3, in which the heating rate was 3.0 ° C / min, had higher strength, breaking load, and breaking compressibility than Examples Bl and B2, and the heating rate was 1 ° C. By doing so, it was found that resin particles having a larger deformation amount and high breaking strength can be obtained.
他方、 1 0 時間半減温度よ り も高い温度で加熱処理を行った比 較例 B 1 、 B 2 は、 それぞれ破断圧縮率が 6 0 %未満と低いだけ ではなく 、 強度がそれぞれ 1 2 0 0 P a未満であ り 、 また破断荷 重も実施例 B 1 〜 B 3 に比べて低かっ た。  On the other hand, in Comparative Examples B1 and B2 in which the heat treatment was performed at a temperature higher than the 10-hour half-life temperature, not only the breaking compressibility was low at less than 60%, but also the strength was 120 000, respectively. It was less than Pa, and the breaking load was lower than those of Examples B1 to B3.
これらの こ とか ら、 重合開始剤の 1 0 時間半減温度よ り も、 加 熱処理の温度を低く すれば、 強度が非常に高く 、 かつ、 変形率の 大きな樹脂粒子が得られる こ とが確認された。 このような樹脂粒 子 3 0 の表面に導電層 3 6 を形成し導電性粒子 3 7 を作製し、 該 導電性粒子 3 7 を接着材料中に分散させれば、 異方導電性接着剤 が得られる。  From these results, it was confirmed that if the heat treatment temperature was lower than the 10-hour half-life temperature of the polymerization initiator, resin particles with extremely high strength and a large deformation rate could be obtained. Was. By forming a conductive layer 36 on the surface of such resin particles 30 to form conductive particles 37 and dispersing the conductive particles 37 in an adhesive material, an anisotropic conductive adhesive can be obtained. can get.
尚、 参考のために、 上述した各実施例に用いた重合開始剤の種 類と、 1 時間半減温度と、 1 0 時間半減温度と、 使用 した実施例 及び比較例を下記表 3 に記載する。 表 3 :重合開始剤の種類、 1時間半減温度、 10時間半減温度、  For reference, the types of the polymerization initiator used in each of the above-described examples, the 1-hour half-life temperature, the 10-hour half-life temperature, and the examples and comparative examples used are described in Table 3 below. . Table 3: Types of polymerization initiator, 1 hour half-life, 10 hour half-life,
使用した実施例及び使用した比較例  Examples used and comparative examples used
1時間 10時間  1 hour 10 hours
重合開始剤 丰減〉皿 丰減/皿/ス 使用した実施例 使用した比較例  Polymerization initiator (reduced) Dish (reduced / dish / s) Example used Comparative example used
の種類  Type of
(°c) CC)  (° c) CC)
V65 67 51 A1-A3, A5-A7, B1, B3 B1, B2  V65 67 51 A1-A3, A5-A7, B1, B3 B1, B2
V70 47 30 A4, B2 【実施例】 V70 47 30 A4, B2 【Example】
以上は、 機械的攪拌によ り原料液を媒体液に分散させる場合に ついて説明したが、 本発明はこれに限定される ものではない。 以下に、 本発明の他の例の異方導電性接着剤の製造方法につい て説明する。  The case where the raw material liquid is dispersed in the medium liquid by mechanical stirring has been described above, but the present invention is not limited to this. Hereinafter, a method for producing an anisotropic conductive adhesive according to another example of the present invention will be described.
図 5 の符号 1 0 は本発明に用いる樹脂粒子製造装置の一例を 示している。 樹脂粒子製造装置 1 0 は乳化槽 2 0 と、 媒体液タ ン ク 1 1 と、 原料液タンク 1 2 とを有している。 乳化槽 2 0 は外筒 2 1 と、 外筒 2 1 に隙間を持って挿入された内筒 2 2 とを有して お り 、 外筒 2 1 と内筒 2 2 の両端は蓋 2 7 、 2 8 によって液密に 塞がれている。  Reference numeral 10 in FIG. 5 indicates an example of a resin particle manufacturing apparatus used in the present invention. The resin particle manufacturing apparatus 10 has an emulsification tank 20, a medium liquid tank 11, and a raw material liquid tank 12. The emulsification tank 20 has an outer cylinder 21 and an inner cylinder 22 inserted into the outer cylinder 21 with a gap therebetween. Both ends of the outer cylinder 21 and the inner cylinder 22 are covered by lids 27. , 28 closed liquid-tight.
原料液タ ンク 1 2 には原料液を配置し、 媒体液タンク 1 1 には 原料液との親和性が低い媒体液を配置する。 媒体液タ ンク 1 1 に は循環ポンプが接続されてお り 、 循環ポンプを起動する と、 媒体 液タ ンク 1 1 の媒体液が、 内筒 2 2 の内部空間 2 6 に送られる。  A raw material liquid is disposed in the raw liquid tank 12, and a medium liquid having low affinity with the raw material liquid is disposed in the medium liquid tank 11. A circulation pump is connected to the medium liquid tank 11. When the circulation pump is activated, the medium liquid in the medium liquid tank 11 is sent to the internal space 26 of the inner cylinder 22.
他方、 原料液タ ンク 1 2 には窒素ガスボンベが接続されてお り 窒素ガスボンベか ら原料液タ ンク 1 2 に窒素ガスを送る と、 窒素 ガスの圧力によ り原料液が原料液タ ンク 1 2 か ら押し出され、 外 筒 2 1 と内筒 2 2 の間の空間 2 5 に送られる。  On the other hand, a nitrogen gas cylinder is connected to the raw material liquid tank 1 2. When nitrogen gas is sent from the nitrogen gas cylinder to the raw material liquid tank 12, the raw material liquid tank 1 is turned on by the pressure of the nitrogen gas. It is pushed out of 2 and sent to the space 25 between the outer cylinder 21 and the inner cylinder 22.
原料液と しては、 上述した実施例に用いたものと同じ原料液を 用いている。  As the raw material liquid, the same raw material liquid as that used in the above-described embodiment is used.
ウ レタ ン結合を有する第一の (メタ) ァク リ レ一 トは、 ウ レタ ン結合を有しない他の (メタ) ァク リ レー ト に比べて粘度が高い ものが多いので、 第一の (メタ) ァク リ レー トだけを単独で用い る と、 内筒 2 2 を構成する多孔質膜が詰まる こ とがあるが、 原料 液にウ レタ ン結合を有しない第二の (メ タ) ァク リ レー トが添加 される こ とで、 原料液の粘度が低く されているので、 外筒 2 1 と 内筒 2 2 の間の空間 2 5 に送られた原料液の圧力が、 内部空間 2 6 に流れる媒体液の圧力よ り も高く なる と、 原料液が内筒 2 2 を 構成する多孔質膜の細孔を通って媒体液に注入され、 液滴となつ て媒体液中に分散される (膜乳化法) 。 The first (meth) acrylate having a urethane bond has a higher viscosity than other (meth) acrylates having no urethane bond. When only the (meth) acrylate is used alone, the porous membrane constituting the inner cylinder 22 may be clogged, but the second (meth) acrylate having no urethane bond in the raw material liquid may be used. T) Acrylate added As a result, since the viscosity of the raw material liquid is reduced, the pressure of the raw material liquid sent to the space 25 between the outer cylinder 21 and the inner cylinder 22 increases the pressure of the medium liquid flowing to the inner space 26. When the pressure becomes higher than the pressure, the raw material liquid is injected into the medium liquid through the pores of the porous membrane constituting the inner cylinder 22 and dispersed in the medium liquid as droplets (film emulsification method). ).
図 6 はその状態の乳化槽 2 0 の断面図を示してお り 、 同図の符 号 3 5 は媒体液 3 1 に原料液 3 2 の液滴 3 3 が分散された状態 の縣濁液を示している。 原料液を媒体液に注入しながら、 循環ポ ンプを動作させ、 内部空間 2 6 内を通過した媒体液 3 1 を媒体液 タ ンク 1 1 に戻すと共に、 戻った媒体液 3 1 を再び内部空間 2 6 を通過させる と、 媒体液 3 1 は液滴 3 3 が増えながら循環するの で、 液滴 3 3 の密度が高く なる。  FIG. 6 shows a cross-sectional view of the emulsification tank 20 in this state, and reference numeral 35 in the figure denotes a suspension in which droplets 33 of the raw material liquid 32 are dispersed in the medium liquid 31. Is shown. The circulation pump is operated while the raw material liquid is injected into the medium liquid, so that the medium liquid 31 that has passed through the internal space 26 is returned to the medium liquid tank 11 and the returned medium liquid 31 is returned to the internal space. When passing through 26, the medium liquid 31 circulates while increasing the number of droplets 33, so that the density of the droplets 33 increases.
その液滴 3 3 密度が所定密度に達したと ころで、 媒体液 3 1 の 循環と原料液 3 2 の注入を止め、 縣濁液 3 5 を乳化槽 2 0 か ら取 り 出し、 加熱タ ンク に移す。 その縣濁液 3 5 を重合開始剤の 1 時 間半減温度以下の温度、 又は重合開始剤の 1 0 時間半減温度以下 の温度で加熱する と、 液滴 3 3 中の第一、 第二の (メタ) ァク リ レー トが重合して液滴 3 3 が硬化し、 図 1 b に示すよう な樹脂粒 子 3 0 が形成される。  When the density of the droplet 33 reaches a predetermined density, the circulation of the medium liquid 31 and the injection of the raw material liquid 32 are stopped, and the suspension liquid 35 is removed from the emulsification tank 20 and heated. Move to link. When the suspension 35 is heated at a temperature equal to or lower than the one-hour half-life temperature of the polymerization initiator, or at a temperature equal to or lower than the ten-hour half-life temperature of the polymerization initiator, the first and second liquids in the droplet 33 are heated. The (meth) acrylate is polymerized and the droplet 33 is hardened to form resin particles 30 as shown in FIG. 1b.
上述した膜乳化法では、 液滴 3 3 の径は多孔質膜の細孔径に応 じた大きさになるので、 多孔質膜と して S P G ( S h i r a s u P o r o u s G 1 a s s ) 膜のよ う に細孔径分布が極めて狭 い膜を用いれば、 液滴 3 3 の粒径分布が狭く な り 、 結果と して粒 径が均一な樹脂粒子 3 0 が得られる。  In the above-described membrane emulsification method, the diameter of the droplets 33 becomes a size corresponding to the pore diameter of the porous membrane, so that the porous membrane is a SPG (Shirasu Porous G 1 ass) membrane. If a film having a very narrow pore size distribution is used, the particle size distribution of the droplets 33 becomes narrow, and as a result, resin particles 30 having a uniform particle size can be obtained.
その樹脂粒子 3 0 の表面に導電層 3 6 を形成し、 図 2 に示すよ う な導電性粒子 3 7 を形成した後、 該導電性粒子 3 7 を接着材料 に分散させれば、 異方導電性接着剤が得られる。 After forming a conductive layer 36 on the surface of the resin particles 30 and forming conductive particles 37 as shown in FIG. 2, the conductive particles 37 are bonded to an adhesive material. By dispersing in an anisotropic conductive adhesive, an anisotropic conductive adhesive can be obtained.
【実施例】  【Example】
<その他の実施例 > <Other examples>
原料液に添加する重合開始剤と しては、 上述した実施例の 2 , 2 , ーァゾビス ( 2 , 4 ージメチルバレロニ 卜 リ ル) 、 2 , 2 ' —ァゾビス ( 4 ー メ トキシー 2 , 4 — ジメチルノ レロニ 卜 リ ル) 以外のァゾニ ト リ ル化合物を用いる こ とができる。  Examples of the polymerization initiator to be added to the raw material liquid include 2,2,2-azobis (2,4-dimethylvaleronitrile) and 2,2′-azobis (4-methoxy 2,4 — Azonitrile compounds other than dimethylnorrelonitrile can be used.
例えば、 2 , 2 , —ァゾビス ( 2 —メチルプロ ピオ二 ト リ ル) 2, 2 , ーァゾビス ( 2 —メチルブチロニ ト リル) 、 1 , 1 , 一 ァゾビス (シク ロへキサン一 1 一力ルポ二 ト リル) 、 1 — 〔 ( 1 一 シァノ 一 1 —メチルェチル) ァゾ〕 ホルムアミ ド も用いる こ と ができる。 尚、 2 , 2 ' —ァゾビス ( 2 —メチルプロ ピオニ 卜 リ ルの 1 0 時間半減温度は 6 5 °Cであ り 、 2, 2 ' —ァゾビス ( 2 一メチルプチロニ ト リ ルの 1 0 時間半減温度は 6 7 °Cであ り、 1 1 ' ーァゾビス (シク ロへキサン一 1 —力ルポ二 ト リ ルの 1 0 時 間半減温度は 8 8 °Cであ り 、 1 '一 〔 ( 1 ーシァノ ー 1 ーメチルェ チル) ァゾ〕 ホルムアミ ドの 1 0 時間半減温度は 1 0 4 °Cである また、 重合開始剤と しては、 ァゾニ ト リ ル化合物以外にも有機 過酸化物等種々のものを用いる こ とができる。  For example, 2,2, -azobis (2-methylpropionitol) 2,2, -azobis (2-methylbutyronitrile), 1,1,1-azobis (cyclohexane-one-pot liponitrile) ), 1-[(1-1-1-1-methylethyl) azo] formamide can also be used. The 10-hour half-life temperature of 2,2'-azobis (2-methylpropionitrile is 65 ° C, and the 10-hour half-life temperature of 2,2'-azobis (2-methylbutyronitrile is 10 hours. Is 67 ° C and the 11'-azobis (cyclohexane 1-potassium nitrate has a 10-hour half-life temperature of 88 ° C and 1 '- -1-methylethyl) azo] Formamide has a 10-hour half-life of 104 ° C. In addition to azonitrile compounds, various polymerization initiators such as organic peroxides can be used. Can be used.
重合開始剤に用い られる有機過酸化物と しては、 イ ソプチリ ル ペルォキシ ド ( 4 9 . 7で) 、 , a ' ビス (ネオデカ ノ ィルぺ ルォキシ) ジイ ソプロ ピルベンゼン ( 5 4 . 1 °C ) 、 ク ミルペル ォキシネオデカ ノ エー ト ( 5 5 . 0 °C ) 、 ジ— n —プロ ピルペル ォキシジ力一ポネー ト ( 5 7 . 7 °C ) 、 ジイ ソプロ ピルペルォキ シジ力一ポネー 卜 ( 5 6 . 2 X: ) 、 ジ一 s e c. —プチルペルォキ シジカーポネ一 卜 ( 5 7 . 4 X: ) 、 1 , 1 , 3, 3 —テ ト ラメチ ルブチルペルォキシネオデカ ノ エー ト ( 5 7 . 5 °C ) 、 ビス ( 4 一 t —ブチルシク ロへキシル) ペルォキシジ力一ポネー ト ( 5 7 5 °C ) 、 1.ー シク ロへキシルー 1 一メチルェチルペルォキシネオ デカ ノ エ一 ト ( 5 8 . 6 °C ) 、 ジ一 2 —エ トキシェチルペルォキ シジカーボネー ト ( 5 9 . 1 °C ) 、 ジ ( 2 —エ トキシへキシルぺ ルォキシ) ジカーボネー ト ( 5 9 . 1 V ) 、 t —へキシルペルォ キシネオデカ ノ エ一 ト ( 6 2 . 8 °C ) 、 ジメ トキシブチルペルォ キシジカーボネー 卜 ( 6 3 . 9 °C ) 、 t 一ブチルペルォキシネオ デカ ノエ一 ト ( 6 4 . 8 ) 、 t —へキシルペルォキシピバレ一 ト ( 7 1 . 3 °C ) 、 t 一プチルベルォキシビバレー ト ( 7 2 . 7 °C ) 3 , 5 , 5 — ト リ メチルへキサノ ィルペルォキシ ド ( 7 6 . 8 °C ) ォク夕 ノ ィルペルォキシ ド ( 7 9 . 7 °C ) 、 ラウロイルベルォキ シ ド ( 7 9 . 5 °C ) 、 ステアロイルベルォキシ ド ( 8 0 . 3 °C ) 1 , 1 , 3 , 3 ーテ ト ラメチルブチルペルォキシ— 2 —ェチルへ キサノ エ一 ト ( 8 4 . 4 °C ) 、 スシニッ クペルォキシ ド ( 8 7 . 0 °C ) 、 2 , 5 —ジメチルー 2 , 5 —ジ ( 2 —ェチルへキサノ ィ ルベルォキシ) へキサン ( 8 3 · 4 °C ) 、 t 一へキシルペルォキ シー 2 _ェチルへキサノエ一 ト ( 9 0 . 1 °C ) 、 4 一メチルベン ゾィルペルォキシ ド ( 8 9 . 3 °C ) 、 t —ブチルペルォキシ— 2 一ェチルへキサノ エー ト ( 9 2 . 1 ) 、 ベンゾィルペルォキシ ド ( 9 2 . 0 °C ) 、 t _ブチルペルォキシイ ソプチレー ト ( 9 6 4 °C ) 、 1 , 1 一 ビス ( t 一ブチルペルォキシ) 2 ーメチルシク 口へキサン ( 1 0 2 . 4。C ) 、 1 , 1 一 ビス ( t 一へキシルペル ォキシ) 一 3 , 3 , 5 — ト リ メチルシク ロへキサン ( 1 0 5 . 4 °C ) 1 , 1 — ビス ( t —へキシルペルォキシ) シク ロへキサン ( 1 0 7 . 3 °C ) 、 1 , 1 一 ビス ( t 一ブチルペルォキシ) — 3 , 3 , 5 — ト リ メチルシク ロへキサン ( 1 0 9 . 2 °C ) 等を用いる こ と ができる。 尚、 カ ツコ内の温度は各重合開始剤の 1 時間半減温度 を示している。 The organic peroxides used in the polymerization initiator include isopyryl peroxide (at 49.7), a'bis (neodecanyloxy) diisopropyl benzene (54.1 ° C). ), Cumylperoxy neodecanoate (55.0 ° C), di-n-propylperoxydione-force (57.7 ° C), diisopropyrpoperoxy-dione-one (56.2 ° C) X:), di-sec.—Putylperoxy sizzi-carpet (57.4 X:), 1, 1, 3, 3—Tetramethi Butyl peroxy neodecanoate (57.5 ° C), bis (41 t-butylcyclohexyl) peroxydiene potion (575 ° C), 1.-cyclohexyl 1-Methylethyl peroxyneodecanoate (58.6 ° C), di-2-ethoxy-ethyl peroxysidicarbonate (59.1 ° C), di- (2- Toxylhexyl peroxy) dicarbonate (59.1 V), t-hexyl peroxy xineodecanoate (62.8 ° C), dimethoxybutyl peroxy dicarbonate (63.9 ° C), t-butylperoxyneodecanoate (64.8), t-hexylperoxypivalate (71.3 ° C), t-butyl peroxypivalate (72) 7 ° C) 3,5,5 — Trimethylhexanoylperoxide (76.8 ° C) Oxide (79.7 ° C), lauroyl beloxide (79.5 ° C), stearoyl beloxide (80.3 ° C) 1,1,3,3-tetra Methylbutylperoxy-2-ethylhexanoate (84.4 ° C), succinic peroxide (87.0 ° C), 2,5-dimethyl-2-, 5-di (2-ethyl) Hexane (833.4 ° C), t-hexylperoxy 2-ethylhexanoate (90.1 ° C), 4-methylbenzoylperoxide (89.3 ° C), t-butylperoxy-2-ethylhexanoate (92.1), benzoylperoxide (92.0 ° C), t_butylperoxyisoplatinate (964 ° C), 1,1-bis (t-butylperoxy) 2-methylcyclohexane (102.4.C), 1,1-bis (t-hexylpe) 1,3,5,5-Trimethylcyclohexane (105.4 ° C) 1,1 —Bis (t-hexylperoxy) cyclohexane (107.3 ° C), 1 , 1 bis (t-butyl peroxy) — 3, 3, 5 — Trimethylcyclohexane (109.2 ° C) or the like can be used. In addition, the temperature in the kakko indicates the one-hour half-life temperature of each polymerization initiator.
尚、 イ ソ プチ リ ルペルォキシ ド の 1 0 時間半減温度は 3 2 . 7 °Cであ り 、 α , a ' ビス (ネオデカ ノ ィルペルォキシ) ジイ ソ プロ ピルベンゼンの 1 0 時間半減温度は 3 5 . 9 °Cであ り、 ク ミ ルペルォキシネオデカ ノエー トの 1 0 時間半減温度は 3 6 . 5 °C であ り 、 ジ— n —プロ ピルペルォキシジ力一ポネー トの 1 0 時間 半減温度は 4 0 . 3でであ り 、 ジイ ソプロ ピルペルォキシジカー ポネー ト の 1 0 時間半減温度は 4 0 . 5 °Cであ り 、 ジ一 s e c — ブチルペルォキシジ力一ポネー ト の 1 0 時間半減温度は 4 0 . 5でであ り 、 1 , 1 , 3 , 3 ーテ 卜 ラメチルブチルペルォキシネ ォデカ ノ エ一 卜の 1 0 時間半減温度は 4 0 . 7 °Cであ り、 ビス ( 4 一 t ーブチルシク ロへキシル) ペルォキシジカーボネー トの 1 0 時間半減温度は 4 0 . 8 °Cであ り 、 1 ー シク ロへキシルー 1 ーメ チルェチルペルォキシネオデカ ノ エ一 卜 の 1 0 時間半減温度は 4 1 . 4でであ り 、 ジー 2 ーェ 卜キシェチルペルォキシジカーボ ネー ト の 1 0 時間半減温度は 4 3 . 1 であ り、 ジ ( 2 —ェ トキ シへキシルペルォキシ) ジカーボネー 卜の 1 0 時間半減温度は 4 3 . 6 °Cであ り 、 t 一へキシルペルォキシネオデカ ノ エー 卜の 1 0 時間半減温度は 4 4 . 5 °Cであ り 、 ジメ トキシプチルベルォキ シジカーポネ一 トの 1 0 時間半減温度は 4 5 . 8でであ り 、 t — ブチルペルォキシネオデカ ノエー 卜の 1 0 時間半減温度は 4 6 . 4 °Cであ り 、 t —へキシルペルォキシビバレー トの 1 0 時間半減 温度は 5 3 . 2 ^であ り、 t —ブチルペルォキシピノ レー トの 1 0 時間半減温度は 5 4 . 6 °Cであ り 、 3 , 5 , 5 — ト リ メチルへ キサノ ィルペルォキシ ドの 1 0 時間半減温度は 5 9 . 4 °Cであ り ォク タ ノィルペルォキシ ドの 1 0 時間半減温度は 6 1 . 5 °Cであ り 、 ラウロイルベルォキシ ドの 1 0 時間半減温度は 6 1 . 6 °Cで あ り 、 ステア ロイ ルベルォキシ ド の 1 0 時間半減温度は 6 2 . 4 °Cであ り 、 1 , 1 , 3 , 3 —テ ト ラメチルブチルペルォキシ一 2 —ェチルへキサノエ一 卜の 1 0 時間半減温度は 6 5 . 3 °Cであ り 、 スシニッ クペルォキシ ドの 1 0 時間半減温度は 6 5 . 9 °Cで あ り 、 2 , 5 —ジメチル一 2, 5 —ジ ( 2 —ェチルへキサノ ィル ペルォキシ) へキサンの 1 0 時間半減温度は 6 6 . 2 °Cであ り 、 t —へキシルペルォキシ一 2 —ェチルへキサノ エ一 ト の 1 0 時 間半減温度は 6 9 . 9 °Cであ り 、 4 一 メチルベンゾィ ルペルォキ シ ドの 1 0 時間半減温度は 7 0 . 6 °Cであ り 、 t 一ブチルペルォ キシ— 2 —ェチルへキサノ エ一 ト の 1 0 時間半減温度は 7 2 . 1 °Cであ り、 ベンゾィルペルォキシ ドの 1 0 時間半減温度は 7 3 6 °Cであ り 、 t 一ブチルペルォキシイ ソブチレー トの 1 0 時間半 減温度は 7 7 . 3 °Cであ り 、 1 , 1 一 ビス ( t 一ブチルペルォキ シ) 2 —メチルシク ロへキサンの 1 0 時間半減温度は 8 3 . 2 °C であ り 、 1 , 1 一 ビス ( t —へキシルペルォキシ) 一 3 , 3 , 5 ー ト リ メチルシク ロへキサンの 1 0 時間半減温度は 8 6 . 7 °Cで あ り 、 1 , 1 一 ビス ( t 一へキシルペルォキシ) シク ロへキサン の 1 0 時間半減温度は 8 7 . 1 °Cであ り 、 1 , 1 — ビス ( t ーブ チルペルォキシ) 一 3 , 3 , 5 — ト リ メチルシク ロへキサンの 1 0 時間半減温度は 9 0 . 0 °Cである。 The 10-hour half-life temperature of isobutyl riloperoxide is 32.7 ° C, and the 10-hour half-life temperature of α, a'bis (neodecanylperoxy) diisopropylbenzene is 35.9. ° C and the 10-hour half-life of cumil peroxy neodecanoate is 36.5 ° C, and the 10-hour half-life of di-n-propylperoxydiene is 10 hours. The temperature was 40.3, and the 10-hour half-life temperature of diisopropylpyrroperoxydicarbonate was 40.5 ° C. The 10-hour half-life temperature is 40.5, and the 1,1-, 3-, 3-tetramethylbutylperoxynedecanoate has a 10-hour half-life temperature of 40.7 ° C. The bis (4-t-butylcyclohexyl) peroxydicarbonate has a 10-hour half-life temperature of 40.8 ° C. The 10-hour half-life temperature of 1-cyclohexyl 1-methylthiolperoxy neodecanoate was 41.4, indicating that The 10-hour half-life temperature of epoxy carbonate is 43.1, and the 10-hour half-life temperature of di (2-ethoxyhexylperoxy) dicarbonate is 43.6 ° C. tHexyl peroxy neodecanoate has a 10-hour half-life of 44.5 ° C, and 10-hour half-life of dimethoxybutyl benzyloxydicarbonate is 45.8. The 10-hour half-life temperature of t-butylperoxy neodecanoate is 46.4 ° C, and the 10-hour half-life temperature of t-hexylperoxyvivarate is 53. 2 ^, and the 10-hour half-life temperature of t-butylperoxypinolate is 54.6 ° C, and 3, 5, 5 — To methyl The 10-hour half-life temperature of xanoylperoxide is 59.4 ° C, the 10-hour half-life temperature of octanol-peroxide is 61.5 ° C, and 10-hour temperature of lauroyl beloxide. The half-life is 61.6 ° C, and the 10-hour half-life of stealoy ruberoxide is 62.4 ° C, and 1,1,3,3-tetramethylbutylperoxy. The 10-hour half-life temperature of 1-2-ethylhexanoate is 65.3 ° C, the 10-hour half-life temperature of succinic peroxide is 65.9 ° C, and 2,5-dimethyl The 1,2-hour half-life of 1,2,5-di (2-ethylhexanoylperoxy) hexane is 66.2 ° C, and t-hexylperoxy1-2-ethylethylhexanoate is 1 The 0 hour half-life temperature is 69.9 ° C, and the 10-hour half-life temperature of 4-methylbenzoylperoxide is 7 0.6 ° C, and the 10-hour half-life of t-butylperoxy-2-ethylethylanoate was 72.1 ° C, and that of benzoylperoxide was 10 hours. The half-life is 736 ° C, and the 10-hour half-life of t-butylperoxyisobutyrate is 77.3 ° C, and 1,1-bis (t-butylperoxy) 2 —The 10-hour half-life temperature of methylcyclohexane is 83.2 ° C, and the 1,1-bis (t-hexylperoxy) -13,3,5-trimethylcyclohexane is 10 hours. The half-life temperature is 86.7 ° C, and the 10-hour half-life temperature of 1,1-bis (t-hexylperoxy) cyclohexane is 87.1 ° C, and 1,1-bis The (10-hour half-life temperature of 1,3,3,5-trimethylcyclohexane) is 90.0 ° C.
原料液に用 いる ラ ジカル重合性物質の種類は特に限定される ものではなく 、 ァク リ ロイル基、 メ 夕 ク リ ロイル基、 ビニル基、 ァ リ ル基を有するモ ノ マ一及び/又はオ リ ゴマ一等を用 いる こ とができ、 これらは単独で用いても 2種類以上を混合して用いて も良い。 The type of the radical polymerizable substance used in the raw material liquid is not particularly limited, and a monomer having an acryloyl group, a methyl acryloyl group, a vinyl group, or an aryl group and / or Use oligo sesame These may be used alone or as a mixture of two or more.
原料液に用いる ラジカル重合性物質の具体例と しては、 スチレ ン、 ジビニルベンゼン等の ビニル化合物、 1 , 4 一ブタ ンジォ一 ルジァク リ レ一 ト、 1 , 6 一へキサンジオールジァク リ レー ト、 1 , 9 ー ノ ナンジオールジァク リ レー ト、 1 , 1 0 —デカ ンジォ ールジァク リ レー ト、 ネオペンチルグリ コールジァク リ レー ト、 ヒ ド ロキシビバリ ン酸ネオペンチルダリ コールジァク リ レー ト、 ポリ テ ト ラメチレングリ コールジァク リ レー ト、 ト リ プロ ピレン グリ コ一ルジァク リ レー ト、 ト リ メチロールプロパン ト リ ァク リ レー ト等のァク リ レー ト、 1 , 4 ブタ ンジォ一ルジメタク リ レー ト、 1 , 6 —へキサンジオールジメタク リ レー ト、 1 , 9 ー ノ ナ ンジォ一ルジメタク リ レー ト、 ネオペンチルダリ コールジメタク リ レー ト等のメタク リ レー ト、 エポキシァク リ レー ト、 ウ レタ ン ァク リ レー ト、 ポリ エステルァク リ レー ト、 ポリ エーテルアタ リ レー ト等の重合性オリ ゴマーが挙げられる。  Specific examples of the radical polymerizable substance used in the raw material liquid include vinyl compounds such as styrene and divinylbenzene, 1,4-butanediol diacrylate, and 1,6-hexanediol diacrylate. Rate, 1,9-nonanediol diacrylate, 1,10—decanediol diacrylate, neopentyl glycol diacrylate, neopentyl dali hydroxy dihydroxylate, Acrylates such as polytetramethylene glycol diacrylate, tripropylene glycol glycolate, trimethylolpropane triacrylate, and 1,4-butanediol dimethacrylate , 1, 6-Hexanediol dimethacrylate, 1,9-nonandiol dimethacrylate, neopentyl Li Korujimetaku Li rate such Metaku Li rate of Epokishiaku Li rate, U Letter down § click Li rate, poly Esuteruaku Li rate, polymerizable cage Goma and poly Eteruata Li rate and the like.
第一の (メタ) ァク リ レー 卜の種類は特に限定される ものでは なく 、 その構造中の官能基 (ァク リ ロイル基) の数や、 ウ レタ ン 結合の数は特に限定されない。  The type of the first (meth) acrylate is not particularly limited, and the number of functional groups (acryloyl groups) and the number of urethane bonds in the structure are not particularly limited.
原料液に添加する第二の (メタ) ァク リ レー ト も特に限定され るものではないが、 第一の (メタ) ァク リ レー ト との重合性の高 さ を考慮する と、 1 , 4 一ブタ ンジオールジァク リ レ一 ト、 1 , 6 一へキサンジオールジァク リ レ一 卜、 1 , 9 ー ノ ナンジォ一ル ジァク リ レー ト、 1 , 1 0 —デカ ンジォ一ルジァク リ レー ト、 ネ ォペンチルダリ コ一ルジァク リ レー ト、 ヒ ド ロキシピノ リ ン酸ネ ォペンチルダリ コールジァク リ レー ト、 ポリ テ ト ラメチレンダリ コールジァク リ レー 卜、 ト リ プロ ピレングリ コールジァク リ レー ト、 ト リ メチロールプロパン ト リ ァク リ レー ト等のァク リ レー トThe second (meth) acrylate added to the raw material liquid is not particularly limited, either. However, considering the high polymerizability with the first (meth) acrylate, 1 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, 1,10-decanediol diacrylate , Neopentyl sorbate, hydroxypentinophosphate cholesterol, polyethylene glycol, polytetramethylene dali Acrylates, such as coal diglycolate, tripropylene glycol, trimethylolpropane triglyceride, etc.
1 , 4 ブタンジオールジメ タク リ レ一 ト、 1 , 6—へキサンジォ 一ルジメタク リ レー 卜、 1 , 9 ー ノ ナンジオールジメ タク リ レー ト、 ネオペンチルダリ コールジメタク リ レー ト等、 官能基を 2 つ 以上有する多官能ァク リ レー 卜 を用いる こ とが好ま しい。 1,2-butanediol dimethacrylate, 1,6-hexanedioldimethacrylate, 1,9-nonanediol dimethacrylate, neopentyldiol dimethacrylate, etc. It is preferable to use a polyfunctional acrylate having at least two.
以上はウ レタ ン結合を有する第一の (メタ) ァク リ レー ト に、 ウ レタ ン結合を有しない第二の (メタ) ァク リ レー ト を添加する 場合について説明したが本発明はこれに限定されず、 第一の (メ タ) ァク リ レー トに、 上述したビニル化合物や重合性オリ ゴマー 等の (メタ) ァク リ レー 卜以外のラジカル重合性物質を添加する こ とができる。 また、 ウ レタ ン結合を有する第一の (メタ) ァク リ レー ト を 2種類以上同じ原料液に含有させる こ と もできる。 以上は媒体液の主成分と して水を用 いる場合について説明し たが、 本発明はこれに限定される ものではなく 、 原料液に対して 親和性の低い溶媒であれば種々 のものを用いる こ とができる。  The case where the second (meth) acrylate having no urethane bond is added to the first (meth) acrylate having a urethane bond has been described above. The present invention is not limited thereto, and a radical polymerizable substance other than the (meth) acrylate such as the vinyl compound and the polymerizable oligomer described above may be added to the first (meth) acrylate. Can be. Also, two or more first (meth) acrylates having urethane bonds can be contained in the same raw material liquid. Although the case where water is used as the main component of the medium liquid has been described above, the present invention is not limited to this, and various solvents having a low affinity for the raw material liquid may be used. Can be used.
媒体液に添加する高分子分散安定剤もポ リ ビニルアルコ ール に限定される ものではなく 、 例えば、 ポリ ビニルピロ リ ド ン、 ポ リ ビニルァセ トアミ ド、 ポ リ ビニルアルキルエーテルなど種々の ものを用いる こ とができる。 高分子分散安定剤の添加量は特に限 定される ものではないが、 媒体液 1 0 0 重量部に対し、 0 . 3 重 量部以上 1 . 0 重量部以下が好ま しい。  The polymer dispersion stabilizer to be added to the medium liquid is not limited to polyvinyl alcohol. For example, various materials such as polyvinyl pyrrolidone, polyvinyl acetate amide, and polyvinyl alkyl ether may be used. Can be. The amount of the polymer dispersion stabilizer to be added is not particularly limited, but is preferably from 0.3 to 1.0 part by weight based on 100 parts by weight of the medium liquid.
導電層 3 6 を構成する導電材料は特に限定されず、 ニッケル以 外にも金や銅のような種々 の金属材料や、 カーボン等の金属以外 の導電材料も用いる こ とができる。 また、 導電層 3 6 の形成方法 も無電解めつ き法に限定される ものではな く 、 浸漬めっ き法等 種々 の方法を用いる こ とができる。 産業上の利用可能性 The conductive material forming the conductive layer 36 is not particularly limited, and various metal materials such as gold and copper other than nickel and conductive materials other than metals such as carbon can be used. Also, the method of forming the conductive layer 36 is not limited to the electroless plating method, but may be a dipping plating method or the like. Various methods can be used. Industrial applicability
本発明によれば、 強度が高く 、 変形量が大きい樹脂粒子を得ら れる。 このような樹脂粒子の表面に導電層を形成して導電性粒子 と し、 該導電性粒子を接着材料に分散させた異方導電性接着剤を 用いて接続端子を接続する場合、 接続端子に挟まれた導電性粒子 が、 樹脂粒子の圧縮変形率が 6 0 %を越える程度に大きく 変形さ せたとしても、 樹脂粒子が破壊されないので、 接続端子と導電性 粒子との接触面積を大き く する こ とができる。  According to the present invention, resin particles having high strength and large deformation can be obtained. When a conductive layer is formed on the surface of such a resin particle to form a conductive particle, and the connection terminal is connected using an anisotropic conductive adhesive in which the conductive particle is dispersed in an adhesive material, the connection terminal is connected to the connection terminal. Even if the sandwiched conductive particles are deformed to such an extent that the compression deformation rate of the resin particles exceeds 60%, the resin particles are not broken, so the contact area between the connection terminal and the conductive particles is increased. can do.

Claims

請求の範囲 The scope of the claims
1 . 重合開始剤と ラジカル重合性物質とを有する原料液を加熱処 理し、 前記ラジカル重合性物質を重合させて前記原料液の硬化物 か らなる樹脂粒子を形成する樹脂粒子の製造方法であって、  1. A method for producing resin particles in which a raw material liquid having a polymerization initiator and a radical polymerizable substance is subjected to heat treatment, and the radical polymerizable substance is polymerized to form resin particles composed of a cured product of the raw material liquid. So,
前記重合開始剤を 1 時間加熱したときに、 前記重合開始剤が半 分まで分解され 1る温度を 1 時間半減温度とする と、  When the polymerization initiator is heated for one hour, the temperature at which the polymerization initiator is decomposed to half is defined as the one-hour half-life temperature.
前記加熱処理は、 前記原料液の温度を前記 1 時間半減温度以下 にする樹脂粒子の製造方法。  The heat treatment is a method for producing resin particles in which the temperature of the raw material liquid is reduced to the half hour temperature or lower.
2 · 前記加熱処理は、 前記原料液の昇温速度を 1 °C 分以上にす る請求の範囲第 1 項記載の樹脂粒子の製造方法。  2. The method for producing resin particles according to claim 1, wherein in the heat treatment, the rate of temperature rise of the raw material liquid is 1 ° C or more.
3 . 前記ラジカル重合性物質は、 (メタ) ァク リ レー 卜か らなる 請求の範囲第 1 項記載の樹脂粒子の製造方法。  3. The method for producing resin particles according to claim 1, wherein the radically polymerizable substance comprises (meth) acrylate.
4 . 前記ラジカル重合性物質は、 ウ レタ ン結合を有する (メタ) ァク リ レー トか らなる請求の範囲第 1 項記載の樹脂粒子の製造 方法。  4. The method for producing resin particles according to claim 1, wherein the radical polymerizable substance comprises a (meth) acrylate having a urethane bond.
5 . 前記原料液に 2 種類以上のラジカル重合性物質を含有させる 請求の範囲第 1 項記載の樹脂粒子の製造方法。  5. The method for producing resin particles according to claim 1, wherein the raw material liquid contains two or more types of radically polymerizable substances.
6 . 前記原料液にウ レタ ン (メタ) ァク リ レー トか らなる第一の ラジカル重合性物質 と、 化学構造中にウ レタ ン結合を有しない (メタ) ァク リ レー トか らなる第二のラジカル重合性物質の両方 を含有させる請求の範囲第 1 項記載の樹脂粒子の製造方法。  6. From the first radical polymerizable substance composed of urethane (meth) acrylate in the raw material liquid and the (meth) acrylate having no urethane bond in the chemical structure. The method for producing resin particles according to claim 1, wherein both of the second radical polymerizable substance are contained.
7 . 重合開始剤とラジカル重合性物質とを有する原料液を加熱処 理し、 前記ラジカル重合性物質を重合させて前記原料液の硬化物 からなる樹脂粒子を形成する樹脂粒子を製造し、  7. A raw material liquid having a polymerization initiator and a radical polymerizable substance is subjected to heat treatment, and the radical polymerizable substance is polymerized to produce resin particles forming resin particles composed of a cured product of the raw material liquid,
前記樹脂粒子の表面に導電層を形成して導電性粒子を製造し、 前記導電性粒子を接着材料に分散させる異方導電性接着剤の製 造方法であって、 Forming a conductive layer on the surface of the resin particles to produce conductive particles, producing an anisotropic conductive adhesive for dispersing the conductive particles in an adhesive material Manufacturing method,
前記重合開始剤を 1 時間加熱したときに、 前記重合開始剤が半 分まで分解される温度を 1 時間半減温度とする と、  When the polymerization initiator is heated for one hour and the temperature at which the polymerization initiator is decomposed to half is defined as a one-hour half-life temperature,
前記加熱処理は、 前記原料液の温度を前記 1 時間半減温度以下 にする異方導電性接着剤の製造方法。  The heat treatment is a method for producing an anisotropic conductive adhesive in which the temperature of the raw material liquid is set to be equal to or lower than the one-hour half-life temperature.
8 . 重合開始剤と ラジカル重合性物質とを含有する原料液を加熱 処理し、 前記ラジカル重合性物質を重合させて前記原料液の硬化 物か らなる樹脂粒子を形成する樹脂粒子の製造方法であって、 前記重合開始剤を 1 0 時間加熱したときに、 前記重合開始剤が 半分まで分解される温度を 1 0 時間半減温度とする と、  8. A method for producing resin particles in which a raw material liquid containing a polymerization initiator and a radical polymerizable substance is subjected to heat treatment, and the radical polymerizable substance is polymerized to form resin particles composed of a cured product of the raw material liquid. When the polymerization initiator is heated for 10 hours, the temperature at which the polymerization initiator is decomposed to half is defined as a 10-hour half-life temperature,
前記加熱処理は、 前記原料液の温度を前記 1 0 時間半減温度以 下にする樹脂粒子の製造方法。  The heat treatment is a method for producing resin particles, in which the temperature of the raw material liquid is set to be equal to or lower than the 10-hour half-life temperature.
9 . 前記加熱処理は、 前記原料液の昇温速度を 1 °Cノ分以上にす る請求の範囲第 8 項記載の樹脂粒子の製造方法。  9. The method for producing resin particles according to claim 8, wherein in the heat treatment, the rate of temperature rise of the raw material liquid is 1 ° C or more.
1 0 . 前記ラジカル重合性物質は、 (メタ) ァク リ レー トか らな る請求の範囲第 8 項記載の樹脂粒子の製造方法。  10. The method for producing resin particles according to claim 8, wherein the radically polymerizable substance comprises (meth) acrylate.
1 1 . 前記ラジカル重合性物質は、 ウ レタ ン結合を有する (メ タ) ァク リ レー トか らなる請求の範囲第 8 項記載の樹脂粒子の製造 方法。  11. The method for producing resin particles according to claim 8, wherein the radically polymerizable substance comprises a (meth) acrylate having a urethane bond.
1 2 . 前記原料液に 2 種類以上のラジカル重合性物質を含有させ る請求の範囲第 8 項記載の樹脂粒子の製造方法。  12. The method for producing resin particles according to claim 8, wherein the raw material liquid contains two or more types of radically polymerizable substances.
1 3 . 前記原料液にウ レタ ン (メタ) ァク リ レー トか らなる第一 のラジカル重合性物質と、 化学構造中にウ レタ ン結合を有しない (メタ) ァク リ レ一 卜からなる第二のラジカル重合性物質の両方 を含有させる請求の範囲第 8項記載の樹脂粒子の製造方法。  1 3. A first radically polymerizable substance comprising urethane (meth) acrylate in the raw material solution and a (meth) acrylate having no urethane bond in the chemical structure. 9. The method for producing resin particles according to claim 8, wherein both of the second radically polymerizable substance comprising:
1 4 . 重合開始剤と ラジカル重合性物質とを有する原料液を加熱 処理し、 前記ラジカル重合性物質を重合させて前記原料液の硬化 物か らなる樹脂粒子を形成する樹脂粒子を製造し、 1 4. Heat the raw material liquid containing the polymerization initiator and the radical polymerizable substance Treating the radical polymerizable substance to produce resin particles that form resin particles composed of a cured product of the raw material liquid,
前記樹脂粒子の表面に導電層を形成して導電性粒子を製造し、 前記導電性粒子を接着材料に分散させる異方導電性接着剤の製 造方法であっ て、  A method for producing an anisotropic conductive adhesive in which a conductive layer is formed on the surface of the resin particles to produce conductive particles, and the conductive particles are dispersed in an adhesive material,
前記重合開始剤を 1 時間加熱したときに、 前記重合開始剤が半 分まで分解される温度を 1 0 時間半減温度とする と、  When the polymerization initiator is heated for 1 hour, the temperature at which the polymerization initiator is decomposed to half is defined as a 10-hour half-life temperature.
前記加熱処理は、 前記原料液の温度を前記 1 0 時間半減温度以 下にする異方導電性接着剤の製造方法。  The heat treatment is a method for producing an anisotropic conductive adhesive in which the temperature of the raw material liquid is set to be equal to or lower than the 10-hour half-life temperature.
PCT/JP2003/016161 2002-12-17 2003-12-17 Process for producing resin particle and process for producing anisotropically conductive adhesive WO2004055058A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-364922 2002-12-17
JP2002364923A JP3954485B2 (en) 2002-12-17 2002-12-17 Method for producing anisotropic conductive adhesive
JP2002364922A JP2004196889A (en) 2002-12-17 2002-12-17 Process for producing resin particle and process for producing anisotropic conductive adhesive
JP2002-364923 2002-12-17

Publications (1)

Publication Number Publication Date
WO2004055058A1 true WO2004055058A1 (en) 2004-07-01

Family

ID=32599270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016161 WO2004055058A1 (en) 2002-12-17 2003-12-17 Process for producing resin particle and process for producing anisotropically conductive adhesive

Country Status (2)

Country Link
TW (1) TWI327151B (en)
WO (1) WO2004055058A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018123A1 (en) * 2010-08-06 2012-02-09 旭化成イーマテリアルズ株式会社 Anisotropic conductive adhesive film and curing agent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337202A (en) * 1989-07-04 1991-02-18 Sekisui Plastics Co Ltd Production of elastic urethane/acrylic particle
JPH059220A (en) * 1991-06-28 1993-01-19 Nippon Oil & Fats Co Ltd Polymerization of glycidyl (meth)acrylate
JPH05239153A (en) * 1992-02-26 1993-09-17 Denki Kagaku Kogyo Kk Production of copolymer
JPH07228610A (en) * 1994-02-16 1995-08-29 Sekisui Plastics Co Ltd Method for producing high molecular weight styrenic polymer particles
JPH08225625A (en) * 1994-10-28 1996-09-03 Sekisui Finechem Co Ltd Elastic microparticle, its production, and elastic conductive microparticle
JP2002033022A (en) * 2000-07-13 2002-01-31 Mitsui Takeda Chemicals Inc Conductive multilayer structure resin particles and anisotropic conductive adhesive using the same
JP2002163930A (en) * 2000-11-27 2002-06-07 Natoko Kk Conductive particle, conductive adhesion paste, and anisotropic conductivity adhesion film
JP2003045230A (en) * 2001-08-01 2003-02-14 Hayakawa Rubber Co Ltd Synthetic resin particulate, conductive particulate and anisotropy conductive material composite

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337202A (en) * 1989-07-04 1991-02-18 Sekisui Plastics Co Ltd Production of elastic urethane/acrylic particle
JPH059220A (en) * 1991-06-28 1993-01-19 Nippon Oil & Fats Co Ltd Polymerization of glycidyl (meth)acrylate
JPH05239153A (en) * 1992-02-26 1993-09-17 Denki Kagaku Kogyo Kk Production of copolymer
JPH07228610A (en) * 1994-02-16 1995-08-29 Sekisui Plastics Co Ltd Method for producing high molecular weight styrenic polymer particles
JPH08225625A (en) * 1994-10-28 1996-09-03 Sekisui Finechem Co Ltd Elastic microparticle, its production, and elastic conductive microparticle
JP2002033022A (en) * 2000-07-13 2002-01-31 Mitsui Takeda Chemicals Inc Conductive multilayer structure resin particles and anisotropic conductive adhesive using the same
JP2002163930A (en) * 2000-11-27 2002-06-07 Natoko Kk Conductive particle, conductive adhesion paste, and anisotropic conductivity adhesion film
JP2003045230A (en) * 2001-08-01 2003-02-14 Hayakawa Rubber Co Ltd Synthetic resin particulate, conductive particulate and anisotropy conductive material composite

Also Published As

Publication number Publication date
TWI327151B (en) 2010-07-11
TW200418884A (en) 2004-10-01

Similar Documents

Publication Publication Date Title
JP5360798B2 (en) Resin particles, conductive particles, and anisotropic conductive adhesive using the same
KR100667374B1 (en) Polymer resin fine particles and conductive fine particles for anisotropically conductive connection members and anisotropic conductive connection materials including the same
HK1202132A1 (en) Anisotropic electroconductive adhesive and method for manufacturing connected structure using the anisotropic electroconductive adhesive
CN109609073A (en) Adhesive compositions and connectors
KR20110095127A (en) Anisotropic conductive film
JP4902853B2 (en) Resin fine particles and conductive fine particles
KR101687441B1 (en) Composition of acrylic graft copolymer and epoxy resin composition comprising thereof
TW201425521A (en) Anisotropic conductive film, composition for the anisotropic conductive film, and semiconductor element
WO2004055058A1 (en) Process for producing resin particle and process for producing anisotropically conductive adhesive
CN109564240A (en) Breakover detecting device component and breakover detecting device
CN107118706A (en) Anisotropic conductive film and the display device by its connection
CN105070351A (en) Flexible conductive microballoon and applications thereof
JP2016041803A (en) Base particle, conductive particle, conductive material, and connection structure
KR100637763B1 (en) Insulated conductive particles for anisotropic conductive connection, manufacturing method thereof and anisotropic conductive connection material using same
JP3954485B2 (en) Method for producing anisotropic conductive adhesive
JP2001156430A (en) Method of manufacturing circuit board and circuit connection material
JP2004196889A (en) Process for producing resin particle and process for producing anisotropic conductive adhesive
JP2005327509A (en) Conductive fine particle and anisotropic conductive material
JP4325379B2 (en) Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
KR101534841B1 (en) Bump-type conductive microspheres and an anisotropic conductive film comprising the same
JP2017145382A (en) Conductive adhesive and method for producing the same, cured product and electronic component
CN107615466B (en) Method for producing connection structure, conductive particle, conductive film, and connection structure
JP2000034306A (en) Production of fine particle, fine particle, spacer for liquid crystal display element, liquid crystal display element, electrically conductive fine particle and conductive connection structure
JP2006107881A (en) Conductive fine particle and anisotropic conductive material
JPH11279512A (en) Circuit connection material, connected structure of circuit terminal, and method for connecting circuit terminal

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)