WO2004054523A1 - Composition cosmetique de soin et/ou de maquillage structuree au moyen de polymeres de silicone - Google Patents
Composition cosmetique de soin et/ou de maquillage structuree au moyen de polymeres de silicone Download PDFInfo
- Publication number
- WO2004054523A1 WO2004054523A1 PCT/EP2003/015006 EP0315006W WO2004054523A1 WO 2004054523 A1 WO2004054523 A1 WO 2004054523A1 EP 0315006 W EP0315006 W EP 0315006W WO 2004054523 A1 WO2004054523 A1 WO 2004054523A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- groups
- group
- composition according
- polymer
- chosen
- Prior art date
Links
- 0 C*(*)ON(*)* Chemical compound C*(*)ON(*)* 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/89—Polysiloxanes
- A61K8/896—Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate
- A61K8/898—Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate containing nitrogen, e.g. amodimethicone, trimethyl silyl amodimethicone or dimethicone propyl PG-betaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/34—Alcohols
- A61K8/342—Alcohols having more than seven atoms in an unbroken chain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/89—Polysiloxanes
- A61K8/891—Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q1/00—Make-up preparations; Body powders; Preparations for removing make-up
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q1/00—Make-up preparations; Body powders; Preparations for removing make-up
- A61Q1/02—Preparations containing skin colorants, e.g. pigments
- A61Q1/04—Preparations containing skin colorants, e.g. pigments for lips
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q1/00—Make-up preparations; Body powders; Preparations for removing make-up
- A61Q1/02—Preparations containing skin colorants, e.g. pigments
- A61Q1/04—Preparations containing skin colorants, e.g. pigments for lips
- A61Q1/06—Lipsticks
Definitions
- the present invention relates to a care and/or make-up cosmetic composition for the skin, including the hair, and/or the lips of human beings, containing a liquid fatty phase comprising at least one oil, structured with a particular polymer, provided in particular in the form of a cast make-up product, in particular as a make-up stick or dome such as lipsticks, whose application is easy and leads to a substantial, especially coloured, glossy and non-migrating deposit .
- a care cosmetic composition is a composition which comprises at least one active compound for, for example, treating wrinkles, for moisturizing the skin and the lips, for protecting the skin, the lips and superficial body growths from ultraviolet rays, for treating acne and/or for acting as self-tanning agent.
- the invention relates more particularly to cosmetic and dermatological compositions such as makeup products for easy application and leading to a large deposit and exhibiting properties of staying power, but also of non-transfer and stability.
- a composition is rigidified in particular in the case of solid compositions such as balms and lipsticks, eyeshadows, concealer products and foundations which have been cast. This structuring is obtained with the aid of waxes or fillers . Unfortunately, these waxes and fillers tend to mattify the composition, which is not always desirable in particular for a lipstick or an eyeshadow.
- liquid fatty phase is understood to mean, for the purposes of the application, a fatty phase which is liquid at room temperature (25°C) and atmospheric pressure (760 mmHg) , which is composed of one or more fatty substances which are liquid at room temperature, which are also called oils, which are compatible with each other.
- the expression structured liquid phase is understood to mean a rigidified or gelled liquid fatty phase.
- rigified liquid fatty phase is understood to mean, for the purposes of the application, that this rigified phase does not run under its own weight when a silicone polyamide is added thereto.
- gelled liquid phase for the purposes of the application is understood to, mean that the viscosity of this phase is increased because of the addition of a silicone polyamide to this fatty phase.
- the structuring of the liquid fatty phase makes it possible in particular to limit its exudation from solid compositions and, furthermore, to limit, after deposition on the skin or the lips, the migration of this phase into wrinkles and fine lines, which is particularly sought for a lipstick or an eyeshadow.
- the expression migration is understood to mean an overflowing of the composition deposited on the skin or the lips, outside its initial outline.
- the gloss is mainly linked to the nature of the liquid fatty phase.
- the amounts of waxes and fillers necessary for producing a stick of suitable hardness are a barrier to the gloss of the deposit.
- EP-A-1 068 856 [1] describes solid cosmetic compositions, with no wax, containing a liquid fatty phase structured with a polymer, in .which the fatty phase is mainly a non-silicone oil.
- compositions based on polyamide resins comprising a structuring agent chosen from esters and amides of N-acylamino acids and mixtures thereof.
- the composition also comprises a solvent for the polyamide resin which may be chosen from unsaturated and saturated fatty alcohols, fatty and/or aromatic carboxylic acid esters, ethoxylated and/or propoxylated alcohols and acids, silicones, mineral oils and branched-chain hydrocarbons; preferably, fatty acid esters, fatty alcohols, mineral oils, branched hydrocarbons and mixtures thereof.
- fatty phases based on silicone oils makes it possible currently to obtain cosmetic compositions having a long staying power when the oils are only slightly volatile or are non-volatile, namely a good staying power in particular of the colour over time (unchanging, unfading) , and transfer-free compositions when the silicone oils are volatile, not forming a deposit on a support such as a glass, a cup, a fabric or a cigarette, placed in contact with the film of make-up.
- cosmetic compositions such as deodorant sticks or gels, comprising a silicone oily phase gelled with a poi-ysiloxane- and polyamide-based wax, or with a polymer containing siloxane groups and groups capable of hydrogen interactions, have been prepared.
- WO-A-02/17870 it is envisaged to add to the composition another structuring agent, but the quantities added should be low, for example less than 0.5% in the case of hydroxystearic acid, in order to preserve the clarity of the product.
- WO-A-02/17871 [7] it is also envisaged to use a second structuring agent with the silicone polymer in a quantity representing 0.5 to 2% by weight of the composition, and a solvent system comprising a non-silicone organic compound, a volatile silicone and optionally another silicone.
- EP-A-1 177 784 [8] illustrates a deodorant composition
- a deodorant composition comprising a liquid phase containing, for example, a volatile silicone and optionally a non-volatile silicone and/or a non- silicone hydrophobic organic liquid, structured with an organic compound with amido groups, with optionally one or more polymeric or non-polymeric secondary structuring agents in small proportions.
- secondary structuring agents this document mentions polymers having siloxane groups and groups exhibiting hydrogen interactions without giving examples or results on a composition using these polymers.
- the sticks obtained by structuring the liquid fatty phase with solely one or more gelling silicone polymers do not exhibit sufficient mechanical resistance to shearing, in. particular during the application of the stick to the lips and/or the skin, leading to breaking of the stick.
- the aim of the invention is precisely to provide a care or make-up composition for the skin and/or the lips, which makes it possible to overcome the disadvantages and to solve the problems mentioned above,.
- the aim of the invention is to provide a composition whose application is easy and leads to a large deposit, that is to say a large mass, in any case larger than with prior art compositions.
- the larger deposit of material gives more "make-up effect", and in particular in the case of pigmented, coloured compositions, the deposit having a more intense colour allows the making up, for example, of the lips.
- the applicant has found that the use of particular polymers combined with one or " more compositions capable of reducing the enthalpy of fusion and possibly the melting temperature of these polymers made it possible to structure, in the absence or in the presence of small quantities of wax, the liquid fatty phases, based on silicone oil for example, in the form of a make-up or care product whose application was easy, with in particular excellent slipperiness during application and that this use led to a large deposit, that is to say a large mass, in any case larger than with prior art compositions.
- the larger deposit of composition gives more "make-up effect", and in particular in the case of pigmented, coloured compositions, the deposit having a more intense colour allows the making up, for example, of the lips, a making up which was not satisfactorily possible or even not at all possible with the prior art compositions .
- compositions of the invention including the combinations cited above, exhibited improved gloss both as regards the product before application and the deposit, if this property is desired. Furthermore, the compositions according to the invention, including the combinations cited above, give a non-migrating film or deposit, which has enhanced properties of staying power, and possibly of non- transfer and which is not sticky to the touch.
- Make-up or care cosmetic compositions comprising the combination of a particular polymer according to the invention and a specific compound which is a compound capable of lowering, reducing the enthalpy ⁇ H and optionally the melting temperature m.p. of the polymer are not described in the prior art.
- the invention not only applies to make-up products for the lips such as lipsticks, lip pencils and lip glosses, but also to care products for the skin, including the scalp, and the lips, such as sun protection products in stick form for the skin, the face or the lips, or lip balms, to make-up products for the skin, both of the face and of the human body, such as foundations cast as a stick or in a dish, concealer products and temporary tattoo products, to cleansing products, in particular in stick form, and to make-up products for the eyes such as eyeliners, in particular in pencil form, and mascaras, in particular cakes for keratinous fibres (eyelashes, eyebrows, hair) .
- the subject of the invention is a make-up cosmetic composition
- a liquid continuous fatty phase structured with at least one structuring polymer (homopolymer or copolymer) having a weight-average molecular mass ranging from 500 to 500 000, containing at least one moiety comprising:
- polyorganosiloxane group consisting of 1 to 1 000 organosiloxane units in the chain of the moiety or in the form of a graft
- groups capable of establishing hydrogen interactions chosen from ester, amide, sulphonamide, carbamate, thiocarbamate, urea, urethane, thiourea, ' oxamido, guanidino and biguanidino groups, and combinations thereof
- the polymer being solid at room temperature and soluble in the liquid fatty phase -at a temperature of 25 to 250°C, the said liquid fatty phase comprising a.t least one compound capable of reducing the enthalpy of fusion of the structuring polymer, the said composition containing at least one pigment, and the liquid, fatty phase, the structuring polymer and the compound capable of reducing the enthalpy of fusion of the structuring polymer forming a physiologically acceptable medium.
- the expression "structuring polymer” is generally understood to mean a polymer which makes it possible to rigidify or to gel the composition by forming hydrogen bonds.
- the composition of the invention may be provided in the form of a paste, a solid or a more or less viscous cream. It may be a simple or multiple, in particular an oil-in-water or water-in-oil, water-in- oil-in-water or oil-in-water-in-oil emulsion, or a rigid or soft gel having an oily continuous phase.
- the simple or multiple emulsion may comprise an aqueous or oily continuous phase optionally containing dispersed lipid vesicles.
- anhydrous composition will comprise less than 10% by weight of water, for example less than 5% by weight, preferably less than 2% by weight of water.
- the structuring of the liquid fatty phase can be modulated according to the nature of the structuring polymer and of the compound capable of reducing the enthalpy and possibly the melting temperature used, and may be such that a rigid structure is obtained in the form of a baton, a stick or a dome, having good mechanical strength and already having a glossy appearance. Especially when they are coloured, these batons make it possible, after easy application, to obtain a glossy deposit, which is in particular coloured, with a large mass, which does not migrate and which has good staying power, in particular of the colour over time.
- the composition may comprise one or more structuring polymers and one or more compounds which reduce the enthalpy of fusion and optionally the melting temperature of these polymers.
- composition of the invention is a composition for the lips and even better a lipstick composition in particular in stick form.
- Liquid fatty phase comprises at least one oil generally chosen from hydrocarbon, silicone and fluorinated oils.
- An oil is a non-aqueous compound which is immiscible with water.
- the liquid fatty phase may comprise at least one volatile oil.
- a volatile oil advantageously has a flash point preferably of 35 to 135 °C (measured according to the method) or no flash point.
- the flash point is the temperature at which the vapours emitted by a fuel ignite upon contact with a flame, a spark or a heat source.
- Volatile oils advantageously have at room temperature (25°C) and atmospheric pressure (760 mmHg) a vapour pressure ranging from 0.01 mm to 300 mmHg (1.33 Pa to 40 000 Pa) and even better ranging from 0.05 to 190 mmHg (6.65 Pa to 25 330 Pa).
- the volatile oil may be chosen from linear, branched or cyclic silicone oils having a flash point equal to or greater than 40 °C and advantageously greater than the softening point of the gelling system and/or a viscosity of less than 8 cSt, such as linear, branched or cyclic polydimethylsiloxanes (PDMS) having from 3 to 7 silicon atoms .
- PDMS polydimethylsiloxanes
- the composition may contain a non-volatile silicone oil.
- the silicone oils of the invention have a viscosity which is advantageously chosen from the range going from 5 to 800 000 cSt at 25 °C, preferably from 10 to 500 000 cSt, and even better from 10 to 5 000 cSt.
- the non-volatile silicone oils may be polydimethylsiloxanes, polyalkylmethylsiloxanes, dimethicone copolyols, alkylmethicone copolyols, cetyldimethicone, silicones with alkylglyceryl ether groups, silicones with side amine groups and dilauroyltrimethylol propane siloxysilicate.
- the alkyl groups of these oils have in particular from 2 to 24 carbon atoms.
- the non-volatile silicone oils which can be used in the invention may be in particular linear, nonvolatile polydimethylsiloxanes (PDMS) which are liquid at room temperature;' polydimethylsiloxanes containing alkyl, alkoxy or phenyl groups, which are pendent and/or at the silicone chain end, groups each having from 2 to 24 carbon atoms; phenylated silicones such as phenyltrimethicones, phenyldimethicones, phenyltrimethylsiloxy diphenylsiloxanes, diphenyl- dimethicones, diphenylmethyldiphenyltrisiloxanes, 2-phenylethyl trimethylsiloxysilicates, fluorinated silicones with one or more group (s) that is (are) pendent or at the chain end having from 1 to 12 carbon atoms of which all or some of the hydrogen atoms are substituted with fluorine atoms, dimethiconols
- the volatile silicone oil(s) may be chosen for example from the group consisting of the compounds of Table 1, heptamethyloctyltrisiloxane, dodecamethylpentasiloxane and mixtures thereof.
- the volatile silicone oil may also be chosen from the group comprising fluorinated silicone oils such as silicones with alkyl and perfluoroalkyl groups, silicones with ox.yethylenated/oxypropylenated (EO/PP) side groups and with perfluorinated groups, silicones with perfluorinated side groups and with glycerolated side groups, perfluoroalkylmethylphenyl- siloxanes, these oils having a vapour pressure greater than or equal to 0.02 mmHg.
- fluorinated silicone oils such as silicones with alkyl and perfluoroalkyl groups, silicones with ox.yethylenated/oxypropylenated (EO/PP) side groups and with perfluorinated groups, silicones with perfluorinated side groups and with glycerolated side groups, perfluoroalkylmethylphenyl- siloxanes, these oils having a vapour pressure greater than or equal to 0.02 mmHg.
- the volatile non-silicone oils may be chosen from the group comprising hydrocarbon oils and volatile esters and ethers such as volatile hydrocarbons such as isododecane and isohexadecane, C 8 -Ci 6 isoparaffins, isohexyl or isodecyl neopentanoates .
- the volatile oil may also be chosen from fluorinated oils such as perfluoropolyethers, perfluoroalkanes such as perfluorodecalin, perfluorodamantanes, esters (monoesters, diesters and triesters) of perfluoroalkyl phosphates and fluorinated ester oils.
- fluorinated oils such as perfluoropolyethers, perfluoroalkanes such as perfluorodecalin, perfluorodamantanes, esters (monoesters, diesters and triesters) of perfluoroalkyl phosphates and fluorinated ester oils.
- the liquid fatty phase advantageously contains at least 30%, and even better at least 40% by weight of silicone oil(s) advantageously having a viscosity of less than 1 000 cSt and even better of less than 100 cSt because the silicone polymers used in the invention are more soluble in silicone oils of low viscosity. It may also contain other non-silicone oils or a mixture of non-silicone oils.
- the fatty phase comprises a volatile oil
- it advantageously represents from 3 to 89.4%, and even better from 5 to 60%, for example from 5 to 10% of ,the total weight of the composition.
- the liquid fatty phase may also contain other non-silicone oils, for example polar oils such as :
- oils with a high content of triglycerides consisting of esters of fatty acids and of glycerol in which the fatty acids may have varied chain lengths, it being possible for the latter to be linear or branched, saturated or unsaturated; these oils are in particular wheat germ, maize, sunflower, karite, castor, sweet almond, macadamia, apricot, soybean, rapeseed, cottonseed, lucerne, poppy seed, pumpkin seed, sesame, gourd, avocado, hazelnut, grapeseed or blackcurrant seed, evening primrose, millet, barley, quinoa, olive, rye, safflower, candlenut, passion flower and rose musk oils; or triglycerides of caprylic/capric acids such as those sold by the company Stearines Dubois or those sold under the names Miglyol 810, 812 and 818 by the company Dynamit Nobel;
- R a COOR b in which R a represents the residue of a linear or branched higher fatty acid containing from 1 to 40 and even better from 7 to 19 carbon atoms and R represents a branched hydrocarbon chain containing from 1 to 40 and even better from 3 to 20 carbon atoms, with R a + R b > 10 such as, for example, Purcellin oil (ketostearyl octanoate) , isononyl isononanoate, C 12 to C 15 alcohol benzoate, isopropyl myristate, 2-ethylhexyl palmitate, octanoates, decanoates or ricinoleates of alcohols or of polyalcohols; hydroxylated esters such as isostearyl lactate, diisostearyl malate; and esters of pentaerythritol;
- - synthetic ethers having from 10 to 40 carbon atoms; - fatty acids such as oleic, linoleic or linolenic acid; and - mixtures thereof.
- the liquid fatty phase may also contain apolar oils such as linear or branched hydrocarbons or fluorocarbons of synthetic or mineral origin, which are volatile or not, such as volatile oils of paraffin (such as isoparaffins, isododecane) or non-volatile oils of paraffin and its derivatives, petroleum jelly, polydecenes, hydrogenated polyisobutene such as sesam, squalane, and mixtures thereof.
- apolar oils such as linear or branched hydrocarbons or fluorocarbons of synthetic or mineral origin, which are volatile or not, such as volatile oils of paraffin (such as isoparaffins, isododecane) or non-volatile oils of paraffin and its derivatives, petroleum jelly, polydecenes, hydrogenated polyisobutene such as sesam, squalane, and mixtures thereof.
- a fatty phase consisting of a mixture of oils comprising at least one nonvolatile silicone oil and at least one volatile silicone oil;
- a fatty phase consisting of a mixture of oils comprising at least one nonvolatile silicone oil and at least one nonsilicone volatile oil
- a fatty phase consisting of a mixture of oils comprising at least one nonvolatile silicone oil, at least one volatile silicone oil and at least one volatile nonsilicone oil;
- a fatty phase consisting of a mixture of oils comprising at least one volatile silicone oil, one nonvolatile nonsilicone oil and optionally at least one volatile nonsilicone oil;
- the mixture may also comprise a nonvolatile nonsilicone oil.
- the fatty phase comprises a compound capable of reducing the temperature and the enthalpy of fusion of the structuring polymer.
- liquid fatty phase represents from 5 to 99% of the total weight of the composition and even better from 20 to 75%.
- the structuring polymer (s) of the composition are solid at room temperature (25°C) and atmospheric pressure (760 mmHg) and are soluble in the liquid fatty phase at a temperature of 25 to 250 °C.
- the expression polymer is understood to mean, for the purpose of the invention, a compound having at least 2 repeating moieties, preferably at least 3 repeating moieties and even better 10 repeating moieties .
- the structuring silicone polymer generally represents from 0.5 to 80%, preferably from 2 to 60% and even better from 5 to 40% of the total weight of the composition.
- the polymer of the structuring .polymer/oil (s) for example silicone oils and other oils, mass ratio is preferably from 0.1 to 50%.
- the polymers used as structuring agents in the composition of the invention are polymers of the polyorganosiloxane type such as those described in the documents US-A-5 874 069 [3], US-A-5, 919, 441 [4], US-A-6, 051, 216 [5] and US-A-5, 981, 680 [11].
- the polymers used as structuring agent may belong to the following two families:
- polyorganosiloxanes comprising at least two groups capable of establishing hydrogen interactions, these two groups being situated in the polymer chain;
- polyorganosiloxanes comprising at least two groups capable of establishing hydrogen interactions, these two groups being situated on the grafts or branches .
- the polymers comprising two groups capable of establishing hydrogen interactions in the polymer chain may be polymers comprising at least one moiety corresponding to the formula:
- R 1 , R 2 , R 3 and R 4 which may be identical or different, represent a group chosen from: - linear, branched or cyclic, saturated or unsaturated, Ci to C 40 hydrocarbon-based groups, possibly containing in their chain one or more oxygen, sulphur and/or nitrogen atoms, and possibly being partially or totally substituted with fluorine atoms, - C 6 to Cio aryl groups, optionally substituted with one or more Ci to C 4 alkyl groups,
- the groups X which may be identical or different, represent a linear or branched Ci to C 30 alkylenediyl group, possibly containing in its chain one or more oxygen and/or nitrogen atoms;
- Y is a saturated or unsaturated, Ci to C 50 linear or branched. divalent alkylene, arylene, cycloalkylene, alkylarylene or arylalkylene group, possibly comprising one or more oxygen, sulphur and/or nitrogen atoms, and/or bearing as substituent one of the following atoms or groups of atoms: fluorine, hydroxyl, C 3 to C 8 cycloalkyl, Ci to C 40 alkyl, C 5 to C ⁇ 0 aryl, phenyl optionally substituted with 1 to 3 Ci to C 3 alkyl groups, Ci to C 3 hydroxyalkyl and Ci to C 6 aminoalkyl, or
- Y represents a group corresponding to • the formula :
- - T represents a linear or branched, saturated or unsaturated, C 3 to C 24 trivalent or tetravalent hydrocarbon-based group optionally substituted with, a polyorganosiloxane chain, and possibly containing one or more atoms chosen from 0, N and S, or T represents a trivalent atom chosen from N, P and Al
- - R 5 represents a linear or branched Ci to C 50 alkyl group or a polyorganosiloxane chain, possibly comprising one or more ester, amide, urethane, thiocarbamate, urea, thiourea and/or sulphonamide groups, which may possibly be linked to another chain of the polymer;
- the groups G which may be identical or different, represent divalent groups chosen from:
- R 6 represents a hydrogen atom or a linear or branched Ci to C 2 o alkyl group, on condition that at least 50% of the groups R 6 of the polymer represent a hydrogen atom and that at least two of the groups G of the polymer are a group other than:
- n is an integer ranging from 2 to 500 and preferably from 2 to 200
- m is an integer ranging from 1 to 1 000, preferably from 1 to 700 and better still from 6 to 200.
- 80% of the groups R 1 , R 2 , R 3 and R 4 of the polymer are preferably chosen from methyl, ethyl, phenyl and 3, 3, 3-trifluoropropyl groups .
- Y can represent various divalent groups, furthermore optionally comprising one or two free valencies to establish bonds with other moieties of the polymer or copolymer.
- Y represents a group chosen from: a) linear Ci to C 2 o and preferably Ci to C ⁇ 0 alkylene groups, b) C 3 o to C 56 branched alkylene groups possibly comprising rings and unconjugated unsaturations, c) C 5 -C 6 cycloalkylene groups, d) phenylene groups optionally substituted with one or more Ci to C 40 alkyl groups, e) Ci to C 2 o alkylene groups comprising from 1 to 5 amide groups, f) Ci to C 20 alkylene groups comprising one or more substituents chosen from hydroxyl, C 3 to Cs cyclo- alkane, Ci to C 3 hydroxyalkyl and Ci to C ⁇ alkylamine groups, g) polyorganosiloxane chains of formula:
- the polyorganosiloxanes of the second family may be polymers comprising at least one moiety corresponding to formula (II) :
- R 1 and R 3 which may be identical or different, are as defined above for formula (I) ,
- R 7 represents a group as defined above for R 1 and R 3 , or represents the group of formula -X-G-R 9 in which X and G are as defined above for formula (I) and R 9 represents a hydrogen atom or a linear, branched or cyclic, saturated or unsaturated, Ci to C 50 hydrocarbon- based group optionally comprising in its chain one or more atoms chosen from 0, S and N, optionally substituted with one or more fluorine atoms and/or one or more hydroxyl groups, or a phenyl group optionally substituted with one or more Ci to C 4 alkyl groups,
- - R 8 represents the group of formula -X-G-R 9 in which X, G and R 9 are as defined above,
- - mi is an integer ranging from 1 to 998
- the polymer used as gelling agent may be a homopolymer, that is to say a polymer comprising several identical moieties, in particular moieties of formula (I) or of formula (II) .
- a polymer consisting of a copolymer comprising several different moieties of formula (I) that is to say a polymer in which at least one of the groups R 1 , R 2 , R 3 , R 4 , X, G, Y, m and n is different in one of the moieties.
- the copolymer may also be formed from several moieties of formula (II) , in which at least one of the groups R 1 , R 3 , R 7 , R 8 , mi and m 2 is different in at least one of the moieties.
- a copolymer furthermore comprising at least one hydrocarbon-based moiety comprising two groups capable of establishing hydrogen interactions, chosen from ester, amide, ⁇ sulphonamide, carbamate, thiocarbamate, urea, urethane, thiourea, oxamido, guanidino and biguanidino groups, and combinations thereof.
- copolymers may be block copolymers or graft copolymers.
- the groups capable of establishing hydrogen interactions are amide groups of formulae -C(0)NH- and -HN-C(O)-.
- the gelling agent may be a polymer comprising at least one moiety of formula (III) or (IV) :
- Such a moiety may be obtained: - either by a condensation reaction between a silicone containing ⁇ , ⁇ -carboxylic acid ends and one or more diamines, according to the following reaction scheme:
- X 1 -(CH 2 ) 2 - corresponds to X defined above and Y, R 1 , R 2 , R 3 , R 4 and m are as defined above;
- m is preferably in the range from 1 to 700, more preferably from 15 to 500 and better still from 10 to 100, and n is in particular in the range from 1 to 500, preferably from 1 to 100 and better still from 4 to 25,
- X is preferably a linear or branched alkylene chain containing from 1 to 30 carbon atoms and in particular 1 to 20 carbon atoms, and
- - Y is preferably an alkylene chain that is linear or branched or that possibly comprises rings and/or unsaturations, containing from 1 to 40 carbon atoms, in particular from 1 to 20 carbon atoms and better still from 2 to 6 " carbon atoms, in particular 6 carbon atoms.
- the alkylene group representing X or Y can optionally contain in its alkylene portion at least one of the following elements : 1) 1 to 5 amide, urea, urethane or carbamate groups,
- alkylene groups may also be substituted with at least one element chosen from the group consisting of:
- Y may also represent:
- R 5 represents a polyorganosiloxane chain and T represents a group of formula:
- a, b and c are, independently, integers ranging from 1 to 10
- R 10 is a hydrogen atom or a group such as those defined for R 1 , R 2 , R 3 and R 4 .
- R 1 , R 2 , R 3 and R ⁇ preferably represent, independently, a linear or branched Ci to C 4 o alkyl group, preferably a CH 3 , CH 5 , n-C 3 H 7 or isopropyl group, a polyorganosiloxane chain or a phenyl group optionally substituted with one to three methyl or ethyl groups.
- the polymer may comprise identical or different moieties of formula (III) or (IV) .
- the polymer may be a polyamide containing several moieties of formula (III) or (IV) of different lengths, i.e. a polyamide corresponding to the formula:
- X, Y, n and R 1 to R 4 have the meanings given above
- m x and m 2 which are different, are chosen in the range from 1 to 1 000
- p is an integer ranging from 2 to 300.
- the moieties may be structured to form either a block copolymer, or a random copolymer or an alternating copolymer.
- the moieties may be not only of different lengths, but also of different chemical structures, for example containing different groups Y.
- the copolymer may correspond to the formula:
- R 1 to R 4 , X, Y, mi, m 2 , n and p have the meanings given above and Y 1 is different from Y but chosen from the groups defined for Y.
- the various moieties may be structured to form either a block copolymer, or a random copolymer or an alternating copolymer.
- the structuring agent may also consist of a graft copolymer.
- the polyamide containing silicone units may be grafted and optionally crosslinked with silicone chains containing amide groups.
- Such polymers may be synthesized with trifunctional amines.
- the copolymer may comprise at least one moiety of formula:
- - p is in the range from 1 to 25 and better still from 1 to 7,
- R 11 to R 18 are methyl groups
- R 19 is a hydrogen atom or a group chosen from the groups defined for R 1 to R 4
- R 20 , R 21 and R 22 are, independently, linear or branched alkylene groups, and more preferably corresponds to the formula:
- R 20 , R 21 and R 22 representing -CH2-CH2-
- - mi and m 2 are in the range from 15 to 500 and better still from 15 to 45,
- - X 1 and X 2 represent -(CH )io _ , and
- polyamides containing a grafted silicone moiety of formula (VII) may be copolymerized with polyamide-silicones of formula (II) to form block copolymers, alternating copolymers or random copolymers.
- the weight percentage of grafted silicone moieties (VII) in the copolymer may range from 0.5% to 30% by weight.
- the siloxane units may be in the main chain or backbone of the polymer, but they may also be present in grafted or pendent chains.
- the siloxane units may be in the form of segments as described above.
- the siloxane units may appear individually or in segments.
- the preferred siloxane-based polyamides are:
- n is in the range from 30 to 500 and in particular from 30 to 100;
- n is in the range from 30 to 500, in particular from 30 to 100;
- polyamides of formula (III) in which the polyamides end with a monofunctional chain chosen from the group consisting of monofunctional amines, monofunctional acids, monofunctional alcohols, including fatty acids, fatty alcohols and fatty amines, such as, for example, octylamine, octanol, stearic acid and stearyl alcohol.
- the ends of the polymer chains may end with: - a Ci to C 50 alkyl ester group by introducing a Ci to C 50 monoalcohol during the synthesis,
- Ci to C5 0 alkylamide group by taking as stopping group a monoacid if the silicone is ⁇ , ⁇ - diaminated, or a monoamine if the silicone is an ⁇ , ⁇ - dicarboxylic acid.
- a copolymer of silicone polyamide and of hydrocarbon-based polyamide i.e. a copolymer comprising moieties of formula (III) or (IV) and hydrocarbon-based polyamide moieties.
- the polya ide-silicone moieties may be arranged at the ends of the hydrocarbon-based polyamide.
- Polyamide-based structuring agents containing silicones may be produced by silylic amidation of polyamides based on fatty acid dimer. This approach involves the reaction of free acid sites existing on a polyamide as end sites, with oligosiloxane-monoamines and/or oligosiloxane-diamines (amidation reaction) , or alternatively with oligosiloxane alcohols or oligosiloxane diols (esterification reaction) . The esterification reaction requires the presence of acid catalysts, as is known in the art.
- the polyamide containing free acid sites, used for the amidation or esterification reaction it is desirable for the polyamide containing free acid sites, used for the amidation or esterification reaction, to have a relatively high number of acid end groups (for example polyamides with high acid numbers, for example from 15 to 20) .
- acid end groups for example polyamides with high acid numbers, for example from 15 to 20
- siloxane diamines with 1 to 300, more particularly 2 to 50 and better still 2, 6, 9.5, 12, 13.5, 23 or 31 siloxane groups, may be used for the reaction with hydrocarbon-based polyamides based on fatty acid dimers .
- Siloxane diamines containing 13.5 siloxane groups are preferred, and the best results are obtained with the siloxane diamine containing 13.5 siloxane groups and polyamides containing high numbers of carboxylic acid end groups.
- the reactions may be carried out in xylene to extract the water produced from the solution by azeotropic distillation, or at higher temperatures (about 180 to 200°C) without solvent.
- the efficacy of the amidation and the reaction rates decrease when the siloxane diamine is longer, that is to say when the number of siloxane groups is higher.
- Free amine sites may be blocked after the initial amidation reaction of the diaminosiloxanes by reacting them either with a siloxane acid, or with an organic acid such as benzoic acid. For the esterification of the free acid sites on' the polyamides, this may be performed in boiling xylene with about 1% by weight, relative to the total ' weight of the reagents, of para-toluenesulphonic
- a structuring agent based on a copolymer between a hydrocarbon-based polyamide and a silicone polyamide by transamidation of a polyamide having, for example, an ethylenediamine constituent, with an oligosiloxane- ⁇ , ⁇ -diamine, at high temperature (for example 200 to 300°C) , to carry out a transamidation such that the ethylenediamine component of the original polyamide is replaced with the oligosiloxane diamine.
- the copolymer of hydrocarbon-based polyamide and of polyamide-silicone may also be a graft copolymer comprising a hydrocarbon-based polyamide backbone with pendent oligosiloxane groups.
- silylation of unsaturated polyamides by means of an oxidation, that is to say by oxidizing the unsaturated groups into alcohols or diols, to form hydroxyl groups that are reacted with siloxane carboxylic acids or siloxane alcohols.
- the olefinic sites of the unsaturated polyamides may also be epoxidized and the epoxy groups may then be reacted with siloxane amines or siloxane alcohols.
- the structuring agent consists of a homopolymer or a copolymer comprising urethane or urea groups .
- the polymer may comprise polyorganosiloxane moieties containing two or more urethane and/or urea groups, either in the backbone of the polymer or on side chains or as pendent groups.
- the polymers comprising at least two urethane and/or urea groups in the backbone may be polymers comprising at least one moiety corresponding to the following formula:
- ' corresponds to a urethane or urea group.
- Y may be a linear or branched Ci to Co alkylene group, optionally substituted with a C L to C ⁇ 5 alkyl group or a C5 to C ⁇ 0 aryl group.
- a -(CH 2 ) 6 - group is used.
- Y may also represent a C 5 to C 12 cycloaliphatic or aromatic group that may be substituted with a Ci to C15 alkyl group or a C5 to C 10 aryl group, for example a radical chosen from the ,methylene-4, 4-biscyclohexyl radical, the radical derived from isophorone diisocyanate, 2,4- and 2, 6-tolylenes, 1, 5-naphthylene, p-phenylene and 4, 4' -biphenylenemethane.
- Y'to represent a linear or branched Ci to C 40 alkylene radical or a C to C ⁇ 2 cycloalkylene radical.
- Y may also represent a polyurethane or polyurea block corresponding to the condensation of several diisocyanate molecules with one or more molecules of coupling agents of the diol or diamine type.
- Y comprises several urethane or urea groups in the alkylene chain.
- B 1 is a group chosen from the groups given above for Y, U is -0- or -NH- and B 2 is chosen from:
- T is a hydrocarbon-based trivalent radical possibly containing one or more heteroatoms such as oxygen, sulphur and nitrogen and R 5 is a polyorganosiloxane chain or a linear or branched C to C 5 o alkyl chain.
- T can represent, for example:
- w being an integer ranging from 1 to 10 and R 5 being a polyorganosiloxane chain.
- Y is a linear or branched Ci to C 40 alkylene group
- the -(CH 2 ) 2 - and -(CH 2 )6 _ groups are preferred.
- d may be an integer ranging from 0 to 5, preferably from 0 to 3 and more preferably equal to 1 or 2.
- B 2 is a linear or branched Ci to C 40 alkylene group, in particular -(CH 2 ) 2 - or -(CH 2 )6 _ or the group:
- R 5 being a polyorganosiloxane chain.
- the polymer constituting the structuring agent may be formed from silicone urethane and/or- silicone urea moieties of different length and/or constitution, and may be in the form of block or random copolymers .
- the silicone may also comprise urethane and/or urea groups no longer in the backbone but as side branches.
- the polymer may comprise at least one moiety of formula:
- - U represents 0 or NH
- R 23 represents a Ci to C 4 o alkylene group, optionally comprising one or more heteroatoms chosen from 0 and N, or a phenylene group, and
- R 24 is chosen from linear, branched or cyclic, saturated or unsaturated Ci to C 50 alkyl groups, and phenyl groups optionally substituted with one to three Ci to C 3 alkyl groups.
- the polymers comprising at least one moiety of formula (X) contain siloxane units and urea or urethane groups, and they may be used as structuring agents in the compositions of the invention.
- the siloxane polymers may have a single urea or urethane group per branch or may have branches containing two urea or urethane groups, or alternatively they may contain a mixture of branches containing one urea or urethane group and branches containing two urea or urethane groups.
- They may be obtained from branched polysiloxanes, comprising one or two amino groups per branch, by reacting these polysiloxanes with monoisocyanates .
- R represents a linear aliphatic group preferably containing 1 to 6 carbon atoms and better still 1 to 3 carbon atoms.
- Such polymers containing branching may be formed by reacting a siloxane polymer, containing at least three amino groups per polymer molecule, with a compound containing only one monofunctional group (for example an acid, an isocyanate or an isothiocyanate) to react this monofunctional group with one of the amino groups and to form the groups capable of establishing hydrogen interactions.
- the amino groups may be on side chains extending from the main chain of the siloxane polymer, such that the groups capable of establishing hydrogen interactions are formed on these side chains, or alternatively the amino groups may be at the ends of the main chain, such that the groups capable of hydrogen interaction will be end groups of the polymer.
- a procedure for forming a polymer containing siloxane moieties and groups capable of establishing hydrogen interactions mention may be made of the reaction of a siloxane diamine and of a diisocyanate in a silicone solvent so as to provide a gel directly.
- the reaction may be performed in a silicone fluid, the resulting product being dissolved in the silicone fluid, at high temperature, the temperature of the system then being reduced to form the_ gel.
- the polymers that are preferred for incorporation into the compositions according to the present invention are siloxane-urea copolymers that are linear and that contain urea groups as groups capable of establishing hydrogen interactions in the backbone of the polymer.
- Ph is a phenyl group and n is a number from 0 to 300, in particular from 0 to 100, for example 50.
- This polymer is obtained by reacting the following polysiloxane containing amino groups:
- the polymers of formula (VIII) comprising urea or urethane groups in the chain of the silicone polymer may be obtained by reaction between a silicone containing ⁇ , ⁇ -NH 2 or -OH end groups, of formula:
- Y may have the formula (IX) with d equal to 0 or d equal to 1 to 5.
- the copolymer may correspond, for example, to the formula:
- Branched polyurethane or polyurea silicones may also be obtained using, instead of the diisocyanate OCN-Y-NCO, a triisocyanate of formula:
- a polyurethane or polyurea silicone containing branches comprising an organosiloxane chain with groups capable of establishing hydrogen interactions is thus obtained.
- Such a polymer comprises, for example, a moiety corresponding to the formula :
- X 1 and X 2 which are identical or different, have the meaning given for X in formula (I)
- n is as defined in formula (I)
- Y and T are as defined in formula (I)
- R 11 to R 18 are groups chosen from the same group as R 1 to R 4
- m x and m 2 are numbers in the range from 1 to 1 000
- p is an integer ranging from 2 to 500.
- this copolymer can also comprise polyurethane silicone moieties without branching.
- siloxane-based polyureas and polyurethanes that are preferred are:
- copolymers of polyurethane or polyurea silicone and of hydrocarbon-based polyurethane or polyurea may be used in the invention by performing the reaction for synthesizing the polymer in the presence of an ⁇ , ⁇ - difunctional block of non-silicone nature, for example a polyester, a polyether or a polyolefin.
- gelling agents consisting of homopolymers or copolymers of the invention may contain siloxane moieties in the main chain of the polymer and groups capable of establishing hydrogen interactions, either in the main chain of the polymer or at the ends thereof, or on side chains or branches of the main chain. This may correspond to the following five arrangements:
- the continuous line is the main chain of the siloxane polymer and the squares represent the groups capable of establishing hydrogen interactions.
- the groups capable of establishing hydrogen interactions are arranged at the ends of the main chain.
- two groups capable of establishing hydrogen interactions are arranged at each of the ends of the main chain.
- the groups capable of establishing hydrogen interactions are arranged within the main chain in repeating moieties.
- these are copolymers in which the groups capable of establishing hydrogen interactions are arranged on branches of the main chain of a first series of moieties that are copolymerized with moieties not comprising groups capable of establishing hydrogen interactions.
- the values n, x and y are such that the polymer has the desired properties in terms of an agent for gelling fatty phases based on silicone oil.
- the structuring of the liquid fatty phase containing at least one silicone oil is obtained with the aid of one or more of the polymers mentioned above, in combination with one or more compounds capable of reducing the melting temperature and the enthalpy of fusion of this or these polymers .
- polymers that may be used, mention may be made of the silicone polyamides obtained in accordance with Examples 1 to 3 of document US-A-5 981 680. .
- the polymers and copolymers used in the composition of the invention advantageously have a softening point from 65°C to 190°C. Preferably, they have a softening point ranging from 70 to 130 °C and better still from 80°C to 105°C. This softening point is lower than that of the known structuring polymers, which facilitates the use of the polymers, allows the use of volatile oils and limits the deteriorations of the liquid fatty phase.
- They have good solubility in silicone oils and produce macroscopically homogeneous compositions. Preferably, they have an average molecular mass from 500 to 200 000, for example from 1 000 to 100 000, preferably from 2 000 to 200 000.
- the compound according to the invention contains one or more compounds capable of lowering, reducing or decreasing the enthalpy of fusion ( ⁇ H) and possibly the melting temperature (m.p.) of the structuring polymer; preferably capable of lowering the enthalpy of fusion ( ⁇ H) and the melting temperature (m.p.).
- This or these compounds make it possible to facilitate the application of the compositions and to improve the deposit obtained with these compositions, that is to say that this deposit is a larger mass than that obtained under the same conditions with compositions not containing these compounds.
- the said, compound (s) are capable of lowering, decreasing or reducing the enthalpy of fusion and possibly the melting temperature of the structuring polymer (s) of ⁇ the fatty phase.
- the expression lowering of the enthalpy of fusion is understood to mean that the polymer, once it has been brought into contact with this or these compounds, has an enthalpy, expressed relative to the mass of the polymer present, less than that which it exhibits in the pure state.
- the enthalpy of fusion is measured using differential scanning calorimetry, for example the calorimeter sold under the name MDSC 2920 by the company TA Inst., by the so-called power compensating calorimetric analysis technique (Differential Scanning Calorimetry) , in which a temperature rise of 2°C per minute is applied.
- the enthalpy of fusion corresponds to the surface under the curve of the thermogram obtained.
- thermogram is the power compensating differential calorimetric enthalpy curve: this curve represents the quantity of heat provided by a unit of time plotted on the y-axis, as a function of the temperature on the x-axis.
- the lowering of the enthalpy of fusion ⁇ H depends on the quantity of compound (s) above, in the composition. This quantity is such that it is sufficient to cause a decrease in the enthalpy of fusion ⁇ H, this decrease is generally at least 3 J/g of pure polymer, preferably at least 4 J/g of pure polymer, preferably still 5 to 10 J/g.
- the compound (s) When the compound (s) are included in such quantities, all the effects described above are observed. In other words, the incorporation of these compounds, which are potentially capable of causing a decrease in the enthalpy of fusion, in a sufficient quantity, effectively allows them to exert this initially only potential effect.
- the said compound (s) are generally also capable of lowering the melting temperature (m.p.) of the structuring polymer.
- the expression lowering of the melting temperature, of the melting point is understood to mean that the polymer, once it has been brought into contact with this or these compounds, has a melting temperature less than that which it exhibits in the pure state.
- the melting temperature, the melting point correspond, according to the invention, to the melting point which is measured using differential scanning calorimetry, for example the calorimeter sold under the name MDSC 2920 by the company TA Inst., by the so- called power compensating calorimetric analysis technique (Differential Scanning Calorimetry) , in which a temperature rise of 2°C per minute is applied.
- the melting point considered is the point corresponding to the temperature of the most endothermic peak of the thermogram obtained. The thermogram was defined above.
- the melting temperature of the pure polymer is first measured by the above method, and then the polymer is solubilized beyond its m.p. previously determined, with one or more compounds capable of lowering or decreasing the melting temperature and the melting point is measured by the same method, under the same conditions, on the mixture of the polymer and of the compound (s ) .
- the lowering of the melting temperature depends on the quantity of compound (s) above in the composition. This quantity should be such that it is sufficient to cause a real decrease in, or lowering of the melting temperature of the polymer (s). This decrease or this lowering is generally at least 3°C, preferably at least 4°C, preferably still from 5 to 20°C.
- the compound (s) capable of lowering the melting temperature and the enthalpy of fusion are advantageously compounds which lead to compositions which are macroscopically homogeneous and/or which are soluble or dispersible in the fatty phase of the composition.
- a macroscopically homogeneous composition is a composition for which a single phase is observed with the naked eye, at room temperature (between 20 and 25°C) .
- the compound capable of lowering the enthalpy of fusion of the structuring polymer is preferably soluble in the fatty phase of the composition, that is to say that the compound is in the form of individualized molecules distributed in the fatty phase.
- the compound capable of lowering the enthalpy of fusion of the structuring polymer is advantageously dispersible in the fatty phase of the composition, that is to say that the compound is in the form of lumps of molecules, having a size which is not detectable with the naked eye, homogeneously distributed in the fatty phase.
- These properties may be described by the fact that these compounds are ⁇ compatible" with the structuring polymer and optionally with the other components of the composition.
- the compounds capable of lowering the enthalpy of fusion of the polymer also lower the melting temperature.
- these compounds lower the melting temperature and lead to macroscopically homogeneous compositions.
- the particular compounds used in the composition of the invention should simultaneously satisfy the three conditions listed above and relating to the lowering of the melting temperature, to the lowering of the enthalpy of fusion and to the formation of macroscopically homogeneous compositions.
- the compounds capable of causing a reduction in the enthalpy of fusion and optionally in the melting temperature of the structuring polymer is
- hydrocarbon and/or silicone compounds comprising at least one functional group comprising a free electron doublet capable of interacting with the hydrogen bonds of the polymer.
- This functional group is chosen, for example, from hydroxyl (alcohol) , carboxyl, amino, primary, secondary and tertiary amines, urea and urethane, ether and ester.
- the preferred functional group is the alcohol functional group and as a result, the compounds capable of causing a decrease in the enthalpy of fusion and optionally in the melting temperature of the structuring polymer are preferably chosen from monoalcohols, polyols such as diols and triols and the like, and polyol ethers.
- the compound (s) capable of causing a decrease in the enthalpy of fusion and optionally in the melting temperature may be .chosen from silicone diols.
- Suitable silicone diols are described in particular in the document US-A-5 969 172, to the description of which reference may be made, and are marketed by the company GENERAL ELECTRIC.
- M' has the formula: where each R 11 is independently a monodivalent hydrocarbon radical having from 1 to 40 carbon atoms , R 111 is a monovalent hydrocarbon radical chosen from the group consisting of H 2 (OH) CCH (OH) CH 2 OCH 2 CH 2 CH 2 - and (HOCH 2 ) 2 C (CH 2 CH 3 ) CH 2 ⁇ CH 2 CH 2 CH 2 - the subscript h is 1 , 2 or 3 ; D has the formula:
- each R IV is independently a monovalent hydrocarbon radical having from 1 to 40 carbon atoms
- D' has the formula: where each R IV is independently a monovalent hydrocarbon radical having from 1 to 40 carbon atoms, R v is a monovalent hydrocarbon radical chosen from the group consisting of H 2 (OH) CCH (OH) CH 2 OCH 2 CH 2 CH 2 - and
- T has the formula:
- each R VI1 is independently a monovalent hydrocarbon radical having from 1 to 40 carbon atoms
- T' has the formula:
- R VI11 is a monovalent hydrocarbon radical chosen from the group consisting of H 2 (0H)CCH(0H-)CH 2 0CH 2 CH 2 CH 2 - and
- 1,3-DIOL means that the functional group, that is to say R 111 , R v or R VI11 is a group (HOCH 2 ) 2 C(CH 2 CH 3 )CH 2 OCH 2 CH 2 CH 2 - namely a group derived from the monoallyl ether of trimethylolpropane (TMPMAE), and 1,2-DIOL means that the functional group is a group H 2 (OH) CCH (OH) CH 2 OCH 2 CH 2 CH2-, namely a group derived from monoallylglycerine.
- TMPMAE trimethylolpropane
- the compounds further preferred .. are M' D 3 M' , M'D 7 , 5 M', M' D ⁇ 0 M' and M' D 25 M' .
- the compounds capable of causing a decrease in the enthalpy of fusion and optionally in the melting temperature may also be chosen from compounds of the oxyalkylenated polydi (alkyl) siloxane type, in which the alkyl groups of the siloxane have from 1 to 4 carbon atoms and the alkylene group has from 1 to 4 carbon atoms, preferably the alkyl groups of polydi (alkyl) siloxane are methyl groups and the oxyalkylene groups are oxypropylene and/or oxyethylene groups and the compounds are PDMS oxypropylene and/or oxyethylene.
- dimethicone polyol or copolyol among which there may be mentioned polydimethylsiloxane oxyethylene (7/9 EO) oxypropylene (10/14 PO) from DEGUSSA, marketed under the reference ABIL B 8873, or polydimethylsiloxane oxyethylene (200 E) oxypropylene (200 P) known under the INCI name PEG/PPG-17/18 dimethicone and marketed by DOW CORNING under the name "Q2-5220 RESIN modifier".
- monoalkyl ethers of polyalkylene (1-4 carbon atoms) glycols for example monoalkyl ethers of polypropylene glycol or of polyalkylene glycol, such as the monomyristyl ether of polypropylene glycol of formula:
- Another family of compounds capable of causing a decrease in the enthalpy of fusion and possibly the melting temperature of the structuring polymer are the linear or branched aliphatic monoalcohols having more than 8 carbon atoms, for example from 12 to 26 carbon atoms such as 2-butyloctanol, 2-hexyldecanol, 2-undecyldecanol, 2-undecylpentadecanol, oleyl alcohol, a preferred alcohol being octyldodecanol.
- the content of compound or of compound (s) capable of lowering the enthalpy of fusion and possibly the melting temperature of the polymer (s) is generally from 5 to 25% by weight, preferably from 10 to 20% by weight.
- This quantity is the sufficient quantity defined above and which makes it possible to obtain a decrease in the enthalpy of fusion of the polymer and possibly in the melting temperature of the polymer generally of at least 3 J/g and of at least 3°C respectively.
- the quantities of the compound (s) lowering the enthalpy of fusion and possibly- the melting temperature of the polymer (s), and the structuring polymer (s) may be chosen according to the desired hardness and the desired stability of the compositions and according to the specific application envisaged.
- the respective quantities of the (at least one) structuring polymer and of the compound(s) lowering the enthalpy of fusion and possibly the melting point may be such that a disintegratable solid which does not run under the effect of its own weight is obtained.
- the composition preferably has a hardness ranging from 20 to 2 000 gf and better still from 20 to 900 gf, particularly from 20 to 600 gf, and for example from 150 to 450 gf .
- This hardness may be measured according to a method of penetration of a probe into the said composition and in particular with the aid of a texture analyser (for example TA-TXT2i from Rheo) equipped with an ebonite cylinder 25 mm in height and 8 mm in diameter.
- the hardness measurement is carried out at 20°C at the centre of five samples of the said composition.
- the cylinder is introduced into each sample of composition at a pre-speed of 2 mm/s, then at a speed of 0.5 mm/s and finally at a post-speed of 2 mm/s, the total displacement being 1 mm.
- the recorded hardness value is that of the maximum peak.
- the measurement error is ⁇ 50 gf.
- the hardness may also be measured by the "cheese wire” method, which consists in cutting a tube of lipstick 12.7 mm in diameter and in measuring the hardness at 20 °C, using a DFGHS 2 tensile testing machine from the company Indelco-Chatillon, travelling at a speed of 100 mm/minute. It is expressed as the shear force (expressed in gram-force) required to cut a stick under these conditions.
- the hardness of a composition in stick form according to the invention ranges from 30 to 300 gf, preferably from 30 to 250 gf and for example from 30 to 200 gf, even better from 30 to 120 gf, when the diameter of the stick is equal to 12.7 mm.
- the hardness of the composition may moreover be lower as long as the composition is self- supporting and can disintegrate easily to form a satisfactory deposit on the skin and the lips.
- a compound capable of lowering the enthalpy of fusion and possibly the temperature of the • polymer By virtue of the presence in the -composition of the invention of a compound capable of lowering the enthalpy of fusion and possibly the temperature of the • polymer, an easy application and a satisfactory deposit in sufficient quantities are obtained in all cases.
- the composition of the invention shows good impact strength.
- the silicone polymer/compound capable of lowering the enthalpy of fusion and possibly the melting temperature of the polymer mass ratio is generally in the range from 0.1 to 50, preferably from 0.5 to 25 and even better from 1 to 15.
- the structuring silicone polymer preferably represents 5 to 30% by weight of the composition.
- composition of the invention may also comprise any ingredient usually used in the field under consideration, and especially those chosen from fillers, dyes that are soluble in polyols or in the fatty phase, antioxidants, essential oils, preserving agents, perfumes, liposoluble polymers, especially hydrocarbon-based liposoluble polymers such as polyalkylenes or polyvinyl laurate, liquid-fatty-phase structuring agents, waxes, gums, resins, surfactants, for instance trioleyl phosphate, additional cosmetic or dermatological active agents such as, for example, water, emollients, moisturizers, vitamins, liquid lanolin, essential fatty acids, lipophilic sunscreens or sunscreens that are soluble in polyols, and mixtures thereof.
- fillers dyes that are soluble in polyols or in the fatty phase
- antioxidants essential oils
- preserving agents perfumes
- perfumes liposoluble polymers
- hydrocarbon-based liposoluble polymers such as polyalkylenes or polyvinyl laurate
- composition according to the invention may also contain lipid vesicles of ionic and/or non-ionic type. These ingredients, besides the water, may be present in the composition in the usual manner in a proportion of from 0% to 20%, preferably from 0.01% to 20%, of the total weight of the composition and better still from 0.1% to 10%.
- this aqueous phase can represent 0.1% to 70% of the total weight of the composition, especially from 0.5% to 40% and better still from 1% to 20%.
- This aqueous phase can contain any water-miscible compound such as polyols and may be optionally gelled with a suitable gelling agent.
- compositions of the invention may in particular contain one or more waxes, for example polyethylene wax, but the use of wax is avoided if it is desired to obtain glossy, or even transparent products.
- the amount of wax does not exceed 20% and preferably 10%; it represents, for example, from 3% to 5% of the total weight of the composition. Even in the absence of waxes or in the presence of a small quantity of waxes, the compositions according to the invention all exhibit the advantageous properties listed above.
- the composition according to the invention may be in the form of an optionally tinted care composition for keratinous materials such as the skin, the lips and/or the superficial body growths, in the form of a sun protection or care composition, especially in the form of a make-up-removing product, in the form of a stick or a dome, or in cast form. It can especially be used as a care base for the skin, the superficial body growths or the lips (lip balms, for protecting the lips against the cold and/or sunlight and/or the wind, or a care cream for the skin, the nails or the hair) .
- composition of the invention may be provided in particular in the form of a soft, transparent gel, or of a transparent stick.
- composition of the invention may also be in the form of a foundation, optionally having care or treatment properties, a blusher, a face powder, an eyeshadow, a concealer product, an eyeliner or a makeup product for the body; a lip make-up, for instance a lipstick, a lip gloss or a pencil, optionally having care or treatment properties; a make-up for the superficial body growths, for instance the nails or the eyelashes, in particular in the form of a mascara cake, or for the eyebrows and the hair, especially in the form of a pencil.
- composition of the invention may be a cosmetic product containing cosmetic active agents, for instance essential oils, vitamins, moisturizers, sunscreens and ceramides.
- cosmetic active agents for instance essential oils, vitamins, moisturizers, sunscreens and ceramides.
- hydrophobic or hydrophilic solid particles may constitute the pigment (s) for making up the skin, the lips and/or the superficial body growths.
- composition of the invention must be cosmetically or dermatologically acceptable, that is to say that it must contain a non- toxic physiologically acceptable medium that can be applied to the skin, the superficial body growths or the lips of human beings.
- cosmetically acceptable means a composition of pleasant appearance, odour and feel.
- the make-up or care compositions in accordance with the invention must comprise at least 10% by mass of a non-volatile oil (silicone oil or nonsilicone oil) and/or of a pasty or viscous product in order to obtain a product which is comfortable and which does not cause tightness.
- a non-volatile oil silicone oil or nonsilicone oil
- a pasty or viscous product is understood to mean a viscous fatty substance containing a liquid fraction and a solid fraction.
- the expression "pasty fatty substances” means fatty substances with a melting point ranging from 20 to 55°C and preferably 25 to 45°C, and/or a viscosity at 40°C ranging from 0.1 to 40 Pa.s (1 to 400 poises) and preferably 0.5 to 25 Pa.s measured using a Contraves TV or Rheomat 180 viscometer, equipped with a spindle rotating at 240 min -1 for a power supply at 60 Hz or at 200 min -1 for a power supply at 50 Hz or alternatively measured in the newtonian domain of a flow observed on a Haake Rs75 rheometer in a flat cone spindle at 40 °C.
- a person skilled in the art can select the spindle for measuring the viscosity, on the basis of his general knowledge, so as to be able to measure the viscosity of the tested pasty compound.
- the melting point values correspond, according to the invention and as already indicated above, to the most endothermic melting peak measured by the "Differential Scanning Calorimetry" method with a temperature rise of 20°C/min.
- lanolins and lanolin derivatives for instance acetylated lanolins or oxypropylenated lanolins or isopropyl lanolate, with a viscosity of 18 to 21 Pa.s and preferably 19 to 20.5 Pa.s, and/ ⁇ r a melting point of 30 to 55°C, preferably 30 to 40°C, and mixtures thereof.
- Esters of fatty acids or of fatty alcohols may also be used, especially those containing 20 to 65 carbon atoms (melting point of about 20 to 35°C and/or viscosity at 40°C ranging from 0.1 to 40 Pa.s), for instance triisostearyl citrate or cetyl citrate; arachidyl propionate; polyvinyl laurate; cholesterol . esters, for instance triglycerides of plant origin such as hydrogenated plant oils, viscous polyesters, for instance poly (12-hydroxystearic acid) and mixtures thereof. Triglycerides of plant origin that may be used include hydrogenated castor oil derivatives, such as "THIXINR" from Rheox.
- silico ⁇ e-based pasty fatty substances such as polydimethylsiloxanes (PDMSs) containing pendent chains of the alkyl or alkoxy type containing from 8 to 24 carbon atoms, and having a melting point of 20-55 °C, for example 20 to 40°C, for instance stearyl dimethicones, especially those sold by the company Dow Corning under the trade names DC2503 and DC25514, and mixtures thereof.
- the pasty fatty substance (s) may be present in a proportion of from 0 to 60% by weight relative to the total weight of the composition, preferably in a proportion of 0.1-45% by weight and even more preferably in a proportion of 2-30% by weight.
- the composition generally comprises, in addition, solid particles chosen from fillers and pigments (including pearlescent pigments) and mixtures thereof.
- the expression pigments is understood to mean any solid particle insoluble in the composition which serves to give and/or modify a colour and/or an iridescent appearance.
- the pigments may be white or coloured, inorganic and/or organic, coated or not.
- the inorganic pigments may be chosen for example from zinc oxides, iron oxides, titanium oxides and mixtures thereof. There may thus be mentioned, among the inorganic pigments, titanium or zinc dioxide, optionally surface- treated, zirconium or cerium oxides, and iron or chromium oxides, manganese violet, ultramarine blue, chromium hydrate and ferric blue.
- the organic pigments there may be mentioned carbon black, pigments of the D & C type, and lacquers based on carmine, barium, strontium, calcium or aluminium.
- the pigments may represent from 0.1 to 50%, preferably from 0.5 to 40%, and even better from 2 to 30% of the total weight of the composition.
- the composition may furthermore contain colouring matter which may be chosen from lipophilic dyes, hydrophilic dyes, and mixtures thereof.
- colouring matter is generally present in an amount of 0.01 to 50% of the total weight of the composition; preferably 5 to 30%, if it is present. It should be noted that a colouring effect may also be provided by the pigments (and pearlescent pigments) already described above in the context of solid particles .
- the liposoluble dyes are, for example, Sudan red, DC Red 17, DC Green 6, ⁇ -carotene, soybean oil, Sudan brown, DC Yellow 11, DC Violet 2, DC Orange 5, quinoline yellow and annatto.
- hydrophilic dyes are in particular beet juice and methylene blue. Soluble dyes can represent from 0% to 20% of the weight of the composition and better still from 0.1% to 6% (if present).
- the composition according to the invention may be manufactured by known methods, generally used in the cosmetic or dermatological field. It may be manufactured by the method which consists in heating the polymer at least to its softening point, adding thereto the optional waxes and/or pasty compounds, the oil(s), the compound (s) lower the enthalpy of fusion and possibly the melting temperature of the polymer, and then in mixing the whole until a clear solution is obtained. The colouring matter and/or the solid particles and the additives are then added, with stirring. The homogeneous mixture obtained can then be cast in a suitable mould such as a lipstick mould, or directly into the packaging articles, especially a case or dish.
- the subject of the invention is also a make-up structured solid composition for the skin, the lips and/or the superficial body growths, containing at least one pigment in a sufficient quantity for applying make-up to the skin, the .lips and/or the superficial body growths and a liquid continuous fatty phase structured with at least one polymer (homopolymer or copolymer) having a weight-average molecular mass ranging from 500 to 500 000, containing at least one moiety comprising:
- liquid fatty phase comprising at least one compound capable of lowering the enthalpy of fusion and possibly the melting temperature of the structuring polymer, the said composition being optionally provided in the form of a solid, and the pigment, the liquid fatty phase, the compound capable of lowering the enthalpy of fusion and possibly the melting temperature of the structuring polymer and the structuring polymer forming a physiologically acceptable medium.
- This make-up composition is preferably self-supporting .
- the subject of the invention is also a lipstick structured composition, containing at least one pigment in a sufficient quantity for applying makeup to the lips and a liquid continuous fatty phase structured with at least one polymer (homopolymer or copolymer) having a weight-average molecular mass ranging from 500 to 500 000, containing at least one moiety comprising:
- the polymer being solid at room temperature and soluble in the liquid fatty phase at a temperature of 25 to 250°C, the liquid fatty phase comprising at least one compound capable of lowering the enthalpy of fusion and possibly the melting temperature of the structuring •polymer, and the pigment, the fatty phase, the polymer, and t e compound capable of lowering the enthalpy of fusion and possibly the melting temperature of the structuring polymer forming a physiologically acceptable medium.
- the invention relates to a cosmetic care, make-up or treatment method ' for the keratinous materials of human beings, comprising the application to the keratinous materials of a cosmetic composition in accordance with the invention.
- the subject of the invention is also the use, in a cosmetic composition or for the manufacture of a physiologically acceptable composition, containing a continuous liquid fatty phase, of a sufficient quantity of at least one polymer (homopolymer or copolymer) having a weight-average molecular mass ranging from 500 to 500 000, containing at least one moiety comprising:
- the polymer being solid at room temperature and soluble in the liquid fatty phase at a temperature of 25 to 250°C, the liquid fatty phase optionally consisting partially or totally of silicone oil(s) having a flash point equal to or greater than 40 °C and comprising one compound at least capable of lowering the enthalpy of fusion and possibly the melting temperature of the structuring polymer, the said composition being provided in the form of a self-supporting solid with a hardness ranging from 20 to 2 000 gf and preferably from 20 to
- the subject of invention is also the use of a continuous liquid fatty phase essentially structured with a sufficient quantity of at least one polymer (homopolymer or copolymer) having a weight-average molecular mass ranging from 500 to 500 000, containing at least one moiety comprising:
- the polymer being solid at room temperature and soluble in the liquid fatty phase at a temperature of 25 to 250°C, the liquid fatty phase optionally consisting partially or totally of volatile oil(s) having a flash point equal to or greater than 40 °C and comprising at least one compound capable of lowering the enthalpy of fusion and possibly the melting temperature of the polymer, in a cosmetic composition or for the manufacture of a physiologically acceptable composition which is easy to apply and/or gives a deposit with a large mass.
- the subject of the invention is also, the use of a sufficient quantity of at least one polymer (homopolymer or copolymer) having a weight-average molecular mass ranging from 500 to 500 000, containing at least one moiety comprising:
- polyorganosiloxane group, consisting of 1 to 1 000 organosiloxane units in the chain of the moiety or in the form of a graft, and
- the polymer being solid at room temperature and soluble in the liquid fatty phase at a temperature of 25 to 250°C, in a cosmetic composition or for the ' manufacture of a physiologically acceptable ! composition, containing a liquid continuous fatty phase and at least one compound capable of lowering the enthalpy of fusion and possibly the melting temperature of the polymer, to structure the said composition in the form of a self-supporting solid.
- the subject of the invention is also the use of the combination of a continuous liquid fatty phase essentially structured with a sufficient quantity of at least one polymer (homopolymer or copolymer) having a weight-average molecular mass ranging from 500 to 500 000, containing at least one moiety comprising:
- At least one polyorganosiloxane group consisting of 1 to 1 000 organosiloxane units in a chain of the moiety or in the form of a graft, and
- the polymer being solid at room temperature and soluble in the liquid fatty phase at a temperature of 25 to 250°C, the liquid fatty phase optionally consisting partially or totally of volatile oil(s) having a flash point equal to or greater than 40 °C and comprising at least one compound capable of lowering the enthalpy of fusion and possibly the melting temperature of the polymer, in a cosmetic composition or for the manufacture of a physiologically acceptable composition, as agent for facilitating the application of the said composition, and/or optionally increasing its gloss and the gloss of a deposit of the said composition.
- the invention additionally relates to the use of a continuous liquid fatty phase, optionally structured with a sufficient quantity of at least one structuring polymer (homopolymer or copolymer) having a weight-average molecular mass ranging from 500 to 500 000, containing at least one moiety comprising: - at least one polyorganosiloxane group consisting of 1 to 1000 organosiloxane units in a chain of the moiety or in the form of a graft, and
- the polymer being solid at room temperature and soluble in the liquid fatty phase at a temperature of 25 to 250°C, the liquid fatty phase optionally partially or totally consisting of volatile oil(s) and comprising at least 'one compound capable of lowering the enthalpy of fusion and possibly the melting temperature of the polymer, in a cosmetic composition or for the manufacture of a physiologically acceptable composition as an agent for increasing the mass of a deposit of the said composition.
- the composition has a hardeness of 20 to 2 000 gf, preferably of 20 to 900 gf and even better of 20 to 600 gf.
- the invention also relates to a cosmetic method for facilitating the application of a cosmetic composition containing a liquid fatty phase, consisting in structuring the said fatty phase with a sufficient quantity of at least one polymer (homopolymer or copolymer) having a weight-average molecular mass ranging from 500 to 500 000, containing at least one moiety comprising:
- the polymer being solid at room temperature and soluble in the liquid fatty phase at a temperature of 25 to 250°C, and in adding at least one compound capable of lowering the enthalpy of fusion and possibly the melting temperature of the polymer to the composition.
- the invention also relates to a cosmetic method for increasing the mass of a deposit of a cosmetic composition containing a liquid fatty phase, consisting in structuring the said fatty phase with a sufficient quantity of at least one polymer (homopolymer or copolymer) having a weight-average molecular mass ranging from 500 to 500 000, containing at least one moiety comprising:
- polyorganosiloxane group consisting of 1 to 1000 organosiloxane units in the chain of the moiety or in the form of a graft
- groups capable of establishing hydrogen interactions chosen from ester, amide, sulphonamide, carbamate, thiocarbamate, urea, urethane, thiourea, oxamido, guanidino and bioguanidino groups, and combinations thereof, the polymer being solid at room temperature and soluble in the liquid fatty phase at a temperature of 25 to 250°C, and in adding at least one compound capable of decreasing the enthalpy of fusion and possibly the melting temperature of the polymer to the composition.
- the invention finally relates to the use, in a cosmetic composition or a physiologically acceptable composition
- a cosmetic composition or a physiologically acceptable composition comprising a continuous liquid fatty phase structured with at least one polymer (homopolymer or copolymer) having a weight-average molecular mass ranging -from 500 to 500 000, containing at least one moiety comprising:
- the polymer being solid at room temperature and soluble in the liquid fatty phase at a temperature of 25 to 250°C, of a sufficient quantity of a compound capable of lowering the enthalpy of fusion and possibly the melting temperature of the polymer so as to facilitate the application of the said composition and increase the mass of a deposit of the said composition.
- a makeup formula for the lips and the face was prepared exclusively from silicones with, as structuring agent, silicone polyamide and, as oil, a phenylated silicone.
- composition of the formula prepared is given below:
- the silicone polymer is melted at 110 °C and mixed with a portion of the oil in order to obtain a liquid mixture.
- the pigments are ground in parallel in the remainder of the oil.
- the pigmented ground product is mixed with the oil plus gelling agent mixture at 110°C.
- a makeup formula is prepared whose composition is similar to that of Claim 1, except that 20% by mass of a compound according to the invention which lowers the melting temperature of the polymer, namely octadodecanol, is added to the formula.
- composition of the formula prepared is given below:
- the silicone_ polymer is melted at 110°C and mixed with part of the silicone oil and with the octadodecanol in order to obtain a liquid mixture.
- the pigments are ground in parallel in the remainder of the oil. Finally, the pigmented ground product is mixed with the oil plus gelling agent mixture at 110°C.
- the appearance at room temperature of the 12.7 mm stick obtained after unmoulding is smooth, homogeneous and glossy.
- the deposit is glossy.
- the formula according to the invention is easier to apply and the deposit has a more intense colour, which allows the making up of the lips, for example. Moreover, an improvement is noted in the gloss of the product and of the deposit.
- EP-A-1 068 856 [2] WO-A-01/97758 [3] US-A-5 874 069 [4] US-A-5 919 441 [5] US-A-6 051 216 [6] WO-A-02 /17870 [7] WO-A-02/17871 [8] EP-A-1 177 784 [9] US-A-5 412 004
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Emergency Medicine (AREA)
- Cosmetics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/538,924 US7887786B2 (en) | 2002-12-17 | 2003-12-08 | Care and/or make-up cosmetic composition structured with silicone polymers |
EP03782490A EP1575535B1 (fr) | 2002-12-17 | 2003-12-08 | Composition cosmetique de soin et/ou de maquillage structuree au moyen de polymeres de silicone |
DE60325417T DE60325417D1 (de) | 2002-12-17 | 2003-12-08 | Zusammensetzung für kosmetik oder zum schminken strukturiert mit silikonpolymeren |
JP2005502445A JP4907989B2 (ja) | 2002-12-17 | 2003-12-08 | シリコーンポリマーで構造化されたケアおよび/またはメーキャップ用化粧品組成物 |
AU2003290128A AU2003290128A1 (en) | 2002-12-17 | 2003-12-08 | Care and/or make-up cosmetic composition structured with silicone polymers |
US12/949,976 US8728500B2 (en) | 2002-12-17 | 2010-11-19 | Composition containing a polyorganosiloxane polymer, a thickening agent and at least one volatile alcohol |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0216040A FR2848449B1 (fr) | 2002-12-17 | 2002-12-17 | Composition cosmetique de soin et/ou de maquillage, structuree par des polymeres silicones |
FR02/16040 | 2002-12-17 | ||
US43878203P | 2003-01-09 | 2003-01-09 | |
US60/438,782 | 2003-01-09 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10538924 A-371-Of-International | 2003-12-08 | ||
US11/967,414 Continuation-In-Part US20080166309A1 (en) | 2002-12-17 | 2007-12-31 | Composition containing a polyorganosiloxane polymer, a thickening agent and at least one volatile alcohol |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004054523A1 true WO2004054523A1 (fr) | 2004-07-01 |
Family
ID=32598902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2003/015006 WO2004054523A1 (fr) | 2002-12-17 | 2003-12-08 | Composition cosmetique de soin et/ou de maquillage structuree au moyen de polymeres de silicone |
Country Status (7)
Country | Link |
---|---|
US (1) | US7887786B2 (fr) |
EP (1) | EP1575535B1 (fr) |
AT (1) | ATE417598T1 (fr) |
AU (1) | AU2003290128A1 (fr) |
DE (1) | DE60325417D1 (fr) |
ES (1) | ES2319762T3 (fr) |
WO (1) | WO2004054523A1 (fr) |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7321011B2 (en) | 2002-06-12 | 2008-01-22 | L'oreal | Self-emulsifying copolymer |
US7329699B2 (en) | 2003-07-11 | 2008-02-12 | L'oreal | Composition containing oil, structuring polymer, and coated silicone elastomer, and methods of making and using the same |
US7371464B2 (en) | 2005-12-23 | 2008-05-13 | 3M Innovative Properties Company | Adhesive compositions |
DE102007038453A1 (de) * | 2007-08-14 | 2009-02-19 | Henkel Ag & Co. Kgaa | Fixierung von Duftstoffen aus Wasch- und Reinigungsmitteln an harten und weichen Oberflächen |
DE102007038450A1 (de) * | 2007-08-14 | 2009-02-19 | Henkel Ag & Co. Kgaa | Farbschützendes Wasch- oder Reinigungsmittel |
DE102007038452A1 (de) * | 2007-08-14 | 2009-02-19 | Henkel Ag & Co. Kgaa | Mittel zur Behandlung harter Oberflächen |
US7501184B2 (en) | 2005-12-23 | 2009-03-10 | 3M Innovative Properties Company | Polydiorganosiloxane polyoxamide copolymers |
US7507849B2 (en) | 2007-06-22 | 2009-03-24 | 3M Innovative Properties Company | Cyclic silazanes containing an oxamido ester group and methods of making these compounds |
US7705103B2 (en) | 2007-06-22 | 2010-04-27 | 3M Innovative Properties Company | Polydiorganosiloxane polyoxamide copolymers |
US7705101B2 (en) | 2007-06-22 | 2010-04-27 | 3M Innovative Properties Company | Branched polydiorganosiloxane polyamide copolymers |
US7790148B2 (en) | 2005-09-02 | 2010-09-07 | L'oreal | Compositions containing silicone polymer, wax and volatile solvent |
US7790827B2 (en) | 2004-12-01 | 2010-09-07 | Dow Corning Corporation | Silicone polyether-amide block copolymers |
US7820297B2 (en) | 2005-12-23 | 2010-10-26 | 3M Innovative Properties Company | Multilayer films including thermoplastic silicone block copolymers |
WO2011028770A1 (fr) | 2009-09-03 | 2011-03-10 | Dow Corning Corporation | Fluides silicone pituiteux |
WO2011028765A1 (fr) | 2009-09-03 | 2011-03-10 | Dow Corning Corporation | Compositions pour soins personnels contenant des fluides silicone pituiteux |
WO2011049919A1 (fr) | 2009-10-23 | 2011-04-28 | Dow Corning Corporation | Compositions de silicone à modification hydrophile |
WO2011049896A2 (fr) | 2009-10-23 | 2011-04-28 | Dow Corning Corporation | Compositions à base de silicone comprenant un gel de silicone expansé |
WO2011066359A1 (fr) | 2009-11-25 | 2011-06-03 | Dow Corning Corporation | Compositions de soins personnels contenant certains siloxanes cycliques |
US8063166B2 (en) | 2007-06-22 | 2011-11-22 | 3M Innovative Properties Company | Polydiorganosiloxane polyamide copolymers having organic soft segments |
US8067094B2 (en) | 2005-12-23 | 2011-11-29 | 3M Innovative Properties Company | Films including thermoplastic silicone block copolymers |
US8222363B2 (en) | 2007-09-26 | 2012-07-17 | Dow Corning Corporation | Silicone organic elastomer gels from organopolysiloxane resins |
US8241617B2 (en) | 2005-08-01 | 2012-08-14 | L'oréal | Methods for removing make-up compositions from keratin materials |
US8273840B2 (en) | 2006-03-21 | 2012-09-25 | Dow Corning Corporation | Silicone polyether elastomer gels |
US8431671B2 (en) | 2008-03-26 | 2013-04-30 | 3M Innovative Properties Company | Structured polydiorganosiloxane polyamide containing devices and methods |
WO2013082096A1 (fr) | 2011-11-29 | 2013-06-06 | Dow Corning Corporation | Émulsions de silicone aminofonctionnelle pour des traitements de fibre |
US8658141B2 (en) | 2007-01-12 | 2014-02-25 | L'oreal | Cosmetic composition containing a block copolymer, a tackifier, a silsesquioxane wax and/or resin |
US8664328B2 (en) | 2008-04-14 | 2014-03-04 | Dow Corning Corporation | Emulsions of boron crosslinked organopolysiloxanes |
WO2014058887A1 (fr) | 2012-10-11 | 2014-04-17 | Dow Corning Corporation | Microémulsions aqueuses de silicone-polyéther |
US8734767B2 (en) | 2008-10-22 | 2014-05-27 | Dow Corning Corporation | Aminofunctional endblocked silicone polyether copolymers in personal care compositions |
US8758739B2 (en) | 2006-05-03 | 2014-06-24 | L'oreal | Cosmetic compositions containing block copolymers, tackifiers and gelling agents |
US8778323B2 (en) | 2006-05-03 | 2014-07-15 | L'oréal | Cosmetic compositions containing block copolymers, tackifiers and modified silicones |
US8920783B2 (en) | 2006-03-21 | 2014-12-30 | Dow Corning Corporation | Silicone-organic elastomer gels |
WO2015167963A1 (fr) | 2014-04-28 | 2015-11-05 | Dow Corning Corporation | Composition réticulée et composition cosmétique la comprenant |
WO2015179513A1 (fr) | 2014-05-21 | 2015-11-26 | Dow Corning Corporation | Polymère d'aminosiloxane réticulé et son procédé de formation |
WO2016014127A1 (fr) | 2014-07-23 | 2016-01-28 | Dow Corning Corporation | Fluide pituiteux à base de silicone |
US9265713B2 (en) | 2011-02-25 | 2016-02-23 | L'oreal S.A. | Cosmetic compositions having long lasting shine |
US9303157B2 (en) | 2007-06-22 | 2016-04-05 | 3M Innovative Properties Company | Mixtures of polydiorganosiloxane polyamide-containing components and organic polymers |
WO2016164289A1 (fr) | 2015-04-08 | 2016-10-13 | Dow Corning Corporation | Composition pituiteuse de fluide à base de silicone |
WO2017189077A1 (fr) | 2016-04-27 | 2017-11-02 | Dow Corning Corporation | Silanes hydrophiles |
WO2017196524A1 (fr) | 2016-05-10 | 2017-11-16 | Dow Corning Corporation | Copolymère séquencé de silicone ayant un groupe de blocage d'extrémité aminofonctionnel et son procédé de préparation et d'utilisation |
US9872828B2 (en) | 2014-05-21 | 2018-01-23 | Dow Corning Corporation | Emulsion of cross-linked aminosiloxane polymer |
WO2018052647A1 (fr) | 2016-09-19 | 2018-03-22 | Dow Corning Corporation | Compositions de soins personnels comprenant un copolymère polyuréthane-polyorganosiloxane |
WO2018052648A1 (fr) | 2016-09-19 | 2018-03-22 | Dow Corning Corporation | Composition de copolymère pour soins personnels |
WO2019099180A1 (fr) | 2017-11-20 | 2019-05-23 | Dow Silicones Corporation | Polymère d'aminosilicone réticulé et ses procédés de préparation et d'utilisation |
US10358529B2 (en) | 2014-12-19 | 2019-07-23 | Dow Silicones Corporation | Method of preparing functionalized particles |
US10441527B2 (en) | 2015-04-08 | 2019-10-15 | Dow Silicones Corporation | Fluid compositions and personal care |
WO2021101679A1 (fr) | 2019-11-19 | 2021-05-27 | Dow Silicones Corporation | Procédé de préparation d'un glycane de silicium |
WO2021101677A1 (fr) | 2019-11-19 | 2021-05-27 | Dow Silicones Corportion | Glycane de silicium et son procédé de préparation |
WO2021108068A1 (fr) | 2019-11-26 | 2021-06-03 | Dow Silicones Corporation | Procédés de fabrication de polysiloxazanes et leur utilisation pour la production de polyorganosiloxanes à fonction amino |
US11142639B2 (en) | 2016-09-19 | 2021-10-12 | Dow Silicones Corporation | Polyurethane-polyorganosiloxane copolymer and method for its preparation |
WO2022246363A1 (fr) | 2021-05-18 | 2022-11-24 | Dow Silicones Corporation | Procédés de fabrication de polysiloxazanes et leur utilisation pour la production de polyorganosiloxanes à fonction amino |
US11672768B2 (en) | 2016-09-19 | 2023-06-13 | Dow Silicones Corporation | Skin contact adhesive and methods for its preparation and use |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8673282B2 (en) | 2006-05-03 | 2014-03-18 | L'oreal | Cosmetic compositions containing block copolymers, tackifiers and a selective solvent for soft blocks |
US8673283B2 (en) | 2006-05-03 | 2014-03-18 | L'oreal | Cosmetic compositions containing block copolymers, tackifiers and a solvent mixture |
US8673284B2 (en) | 2006-05-03 | 2014-03-18 | L'oreal | Cosmetic compositions containing block copolymers, tackifiers and a selective solvent for hard blocks |
US8557230B2 (en) | 2006-05-03 | 2013-10-15 | L'oreal | Cosmetic compositions containing block copolymers, tackifiers and shine enhancing agents |
US8603444B2 (en) | 2007-01-12 | 2013-12-10 | L'oréal | Cosmetic compositions containing a block copolymer, a tackifier and a high viscosity ester |
US20080171008A1 (en) * | 2007-01-17 | 2008-07-17 | L'oreal S.A. | Composition containing a polyorganosiloxane polymer, a tackifier, a wax and a block copolymer |
EP3280771A1 (fr) | 2015-04-08 | 2018-02-14 | Dow Corning Corporation | Émulsions pituiteuses de silicone |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0594285A2 (fr) * | 1992-08-21 | 1994-04-27 | General Electric Company | Siloxanes ayants des groupes fonctionnalisés d'amino acides |
US5874069A (en) * | 1997-01-24 | 1999-02-23 | Colgate-Palmolive Company | Cosmetic composition containing silicon-modified amides as thickening agents and method of forming same |
US5969172A (en) * | 1998-06-12 | 1999-10-19 | General Electric Company | Silicone solvents for antiperspirant salts |
US6051216A (en) * | 1997-08-01 | 2000-04-18 | Colgate-Palmolive Company | Cosmetic composition containing siloxane based polyamides as thickening agents |
US20020048557A1 (en) * | 2000-08-31 | 2002-04-25 | Heng Cai | Antiperspirants and deodorants with low white residue on skin and fabric |
US20020051758A1 (en) * | 2000-08-31 | 2002-05-02 | Heng Cai | Clear antiperspirants and deodorants made with siloxane-based polyamides |
Family Cites Families (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2823195A (en) | 1955-02-21 | 1958-02-11 | Dow Corning | Organosilicon polyamide compositions and method of making same |
BE553159A (fr) | 1955-12-05 | |||
US3723566A (en) | 1970-05-04 | 1973-03-27 | Midland Silicones Ltd | Organosiloxane polyamide block copolymers |
CA937698A (en) | 1970-05-04 | 1973-11-27 | Dow Corning Limited | Organosiloxane polyamide block copolymers |
US4322400A (en) | 1978-12-19 | 1982-03-30 | Dragoco Inc. | Cosmetic stick composition |
US4226889A (en) | 1978-12-19 | 1980-10-07 | Dragoco, Inc. | Cosmetic stick composition |
DE3637677A1 (de) | 1986-11-05 | 1988-05-19 | Bayer Ag | Schlagzaehe, dimensionsstabile polyamid-formmassen |
JP2704730B2 (ja) | 1988-07-12 | 1998-01-26 | 株式会社コーセー | 化粧料 |
CA2005161A1 (fr) | 1989-01-03 | 1990-07-03 | Gary T. Decker | Copolymeres sequences a base de polysiloxane et de polyamide |
JP2660884B2 (ja) | 1991-07-30 | 1997-10-08 | 東レ・ダウコーニング・シリコーン株式会社 | シリコーン変性ポリイミド樹脂およびその製造方法 |
EP0545002A1 (fr) | 1991-11-21 | 1993-06-09 | Kose Corporation | Polymère de silicone, composition pâteuse et composition cosmétique du type eau-dans-l'huile le contenant |
US5468477A (en) | 1992-05-12 | 1995-11-21 | Minnesota Mining And Manufacturing Company | Vinyl-silicone polymers in cosmetics and personal care products |
JP3302729B2 (ja) | 1992-07-30 | 2002-07-15 | 東レ・ダウコーニング・シリコーン株式会社 | ポリアミド樹脂組成物 |
US5399342A (en) | 1993-02-03 | 1995-03-21 | Dow Corning Corporation | Cosmetics with enhanced durability |
US5473041A (en) | 1993-05-25 | 1995-12-05 | Dow Corning Corporation | Polyimide having organopolysiloxane side chain |
WO1995005800A2 (fr) | 1993-08-27 | 1995-03-02 | The Procter & Gamble Company | Composition topique de soins personnels contenant un polymere adhesif greffe sur un polysiloxane ainsi qu'un adjuvant dessiccateur |
JPH0834852A (ja) | 1994-07-21 | 1996-02-06 | Toray Dow Corning Silicone Co Ltd | シリコーン変性ポリアミド溶液組成物 |
FR2725129B1 (fr) | 1994-09-30 | 1997-06-13 | Oreal | Composition cosmetique anhydre resistante a l'eau |
IL115693A (en) | 1994-10-25 | 2000-08-13 | Revlon Consumer Prod Corp | Cosmetic compositions with improved transfer resistance |
FR2735689B1 (fr) * | 1995-06-21 | 1997-08-01 | Oreal | Composition comprenant une dispersion de particules de polymeres dans un milieu non aqueux |
WO1997000662A1 (fr) * | 1995-06-21 | 1997-01-09 | L'oreal | Composition cosmetique comprenant une dispersion de particules de polymere |
EP0835091A4 (fr) * | 1995-06-26 | 1999-08-04 | Revlon Consumer Prod Corp | Composition cosmetique brillante presentant une resistance amelioree au transfert |
JPH0971505A (ja) | 1995-06-27 | 1997-03-18 | Pola Chem Ind Inc | 架橋型シリコーン含有化粧料 |
US5725845A (en) | 1995-11-03 | 1998-03-10 | Revlon Consumer Products Corporation | Transfer resistant cosmetic stick compositions with semi-matte finish |
US5919441A (en) | 1996-04-01 | 1999-07-06 | Colgate-Palmolive Company | Cosmetic composition containing thickening agent of siloxane polymer with hydrogen-bonding groups |
US5837223A (en) | 1996-08-12 | 1998-11-17 | Revlon Consumer Products Corporation | Transfer resistant high lustre cosmetic stick compositions |
FR2757381B1 (fr) | 1996-12-24 | 1999-01-15 | Oreal | Composition de maquillage ou de soin ne migrant pas, contenant un organopolysiloxane et une phase grasse |
FR2765800B1 (fr) | 1997-07-11 | 2003-04-25 | Oreal | Produit cosmetique coule comprenant des huiles volatiles hydrocarbonees |
DE69829172D1 (de) | 1997-10-31 | 2005-04-07 | Color Access Inc | Farbübertragungsbeständige kosmetische zusammensetzung |
US5959009A (en) | 1997-10-31 | 1999-09-28 | E-L Management Corp | Mascara waterproofing composition |
FR2772602B1 (fr) | 1997-12-22 | 2000-01-28 | Oreal | Composition cosmetique sans transfert comprenant une dispersion de particules de polymere dans une phase grasse liquide et un polymere liposoluble |
FR2780282B1 (fr) | 1998-06-25 | 2001-04-13 | Oreal | Composition anhydre, utilisation en cosmetique, pharmacie ou hygiene |
US5981680A (en) | 1998-07-13 | 1999-11-09 | Dow Corning Corporation | Method of making siloxane-based polyamides |
JP4547806B2 (ja) | 1998-08-14 | 2010-09-22 | 日油株式会社 | ポリシロキサン−ポリアミド共重合体、その製造方法及び各種材料 |
US6200581B1 (en) | 1999-04-28 | 2001-03-13 | Dow Corning Corporation | Elastomeric silicone terpolymer |
JP3932155B2 (ja) | 1999-06-03 | 2007-06-20 | 信越化学工業株式会社 | 球状シリコーン樹脂微粒子 |
US6103250A (en) | 1999-07-06 | 2000-08-15 | Revlon Consumer Products Corporation | Anhydrous cosmetic compositions containing emulsifying siloxane elastomer |
FR2796272B1 (fr) | 1999-07-15 | 2003-09-19 | Oreal | Composition sans cire structuree sous forme rigide par un polymere |
MY133783A (en) | 1999-07-28 | 2007-11-30 | Dow Global Technologies Inc | Hydrogenated block polymers having elasticity and articles made therefrom |
JP2001081009A (ja) | 1999-09-10 | 2001-03-27 | Nof Corp | シリコーン共重合体を含有してなる化粧料 |
ES2243219T3 (es) | 1999-12-28 | 2005-12-01 | L'oreal | Composicion de largo mantenimiento estructurada por un polimero y un cuerpo graso pastoso. |
US6362287B1 (en) | 2000-03-27 | 2002-03-26 | Dow Corning Corportion | Thermoplastic silicone elastomers formed from nylon resins |
FR2808679B1 (fr) | 2000-05-09 | 2006-09-22 | Oreal | Procede pour accroitre la persistance d'au moins un effet cosmetique et/ou de soin d'une composition cosmetique, composition cosmetique et son utilisation |
FR2808678B1 (fr) | 2000-05-09 | 2003-06-20 | Oreal | Utilisation en cosmetique d'au moins un organopolysiloxane en tant que gelifiant et composition cosmetique le contenant |
US6423324B1 (en) | 2000-06-20 | 2002-07-23 | Cosmolab, Inc. | Temperature-stable polyamide resin-based composition, and products |
US6524598B2 (en) | 2000-07-10 | 2003-02-25 | The Procter & Gamble Company | Cosmetic compositions |
US6475500B2 (en) | 2000-07-10 | 2002-11-05 | The Procter & Gamble Company | Anhydrous cosmetic compositions |
US6362288B1 (en) | 2000-07-26 | 2002-03-26 | Dow Corning Corporation | Thermoplastic silicone elastomers from compatibilized polyamide resins |
JP2002173459A (ja) | 2000-09-28 | 2002-06-21 | Nippon Shokubai Co Ltd | 2,4,5−トリアルキルベンズアルデヒドの製造方法 |
JP2002173464A (ja) | 2000-12-05 | 2002-06-21 | Nippon Shokubai Co Ltd | メタクリル酸の製造方法 |
JP4447152B2 (ja) | 2000-12-07 | 2010-04-07 | 協和発酵ケミカル株式会社 | ケトン類の製造法 |
US20030039620A1 (en) | 2001-05-04 | 2003-02-27 | Rodriguez Victor Ruben | Transfer resistant, non-tacky, liquid cosmetic compositions for covering skin discolorations and imperfections |
FR2825914B1 (fr) | 2001-06-14 | 2003-09-19 | Oreal | Composition a base d'huile siliconee structuree sous forme rigide, notamment pour une utilisation cosmetique |
FR2825916B1 (fr) | 2001-06-14 | 2004-07-23 | Oreal | Composition a base d'huile siliconee structuree sous forme rigide, notamment pour une utilisation cosmetique |
FR2825915B1 (fr) | 2001-06-14 | 2006-02-03 | Oreal | Composition a base d'huile siliconee structuree sous forme rigide, notamment pour une utilisation cosmetique |
WO2003013447A2 (fr) | 2001-08-07 | 2003-02-20 | Dow Corning Corporation | Compositions pour les soins des cheveux et de la peau contenant des copolymeres de polyamide a base de siloxane |
US6426062B1 (en) | 2001-10-05 | 2002-07-30 | Colgate-Palmolive Company | Underarm gel products with water lock component |
US6569955B1 (en) | 2001-10-19 | 2003-05-27 | Dow Corning Corporation | Thermoplastic silicone elastomers from compatibilized polyamide resins |
US20030228333A1 (en) | 2002-05-28 | 2003-12-11 | Fecht Cassandre Michelle | Substituted hydrocarbyl functional siloxanes for household, health, and personal care applications |
US20030235552A1 (en) | 2002-06-12 | 2003-12-25 | L'oreal | Cosmetic composition for care and/or makeup, structured with silicone polymers and film-forming silicone resins |
US20030235553A1 (en) | 2002-06-12 | 2003-12-25 | L'oreal | Cosmetic compositions containing at least one silicone-polyamide polymer, at least one oil and at least one film-forming agent and methods of using the same |
US7329699B2 (en) | 2003-07-11 | 2008-02-12 | L'oreal | Composition containing oil, structuring polymer, and coated silicone elastomer, and methods of making and using the same |
US20040120912A1 (en) | 2002-12-17 | 2004-06-24 | L'oreal | Compositions containing at least one oil structured with at least one silicone-polyamide polymer, and at least one crystalline silicone compound and methods of using the same |
US6916464B2 (en) | 2002-12-20 | 2005-07-12 | L'oreal | Sunscreen compositions |
US20040115153A1 (en) | 2002-12-17 | 2004-06-17 | L'oreal | Compositions containing at least one oil structured with at least one silicone-polyamide polymer, and at least one silicone gum and methods of using the same |
US20030235548A1 (en) | 2002-06-12 | 2003-12-25 | L'oreal | Cosmetic composition for care and/or treatment and/or makeup of the emulsion type structured with silicone polymers |
FR2840807B1 (fr) | 2002-06-12 | 2005-03-11 | Composition cosmetique de soin et/ou de maquillage, structuree par des polymeres silicones et des organogelateurs, sous forme rigide | |
US20030232030A1 (en) | 2002-06-12 | 2003-12-18 | L'oreal | Compositions containing at least one oil structured with at least one silicone-polyamide polymer, and at least one gelling agent and methods of using the same |
US7879316B2 (en) | 2002-06-12 | 2011-02-01 | L'oreal | Cosmetic composition containing a polyorganosiloxane polymer |
US6958155B2 (en) | 2002-06-12 | 2005-10-25 | L'oreal | Cosmetic compositions comprising at least one polysiloxane based polyamide |
US20040115154A1 (en) | 2002-12-17 | 2004-06-17 | L'oreal | Compositions containing at least one oil structured with at least one silicone-polyamide polymer, and at least one short chain ester and methods of using the same |
US20040180032A1 (en) | 2003-03-15 | 2004-09-16 | Manelski Jean Marie | Long wearing cosmetic composition |
US20050158260A1 (en) | 2003-12-12 | 2005-07-21 | L'oreal | Cosmetic composition containing a polyorganosiloxane polymer |
US20080171008A1 (en) | 2007-01-17 | 2008-07-17 | L'oreal S.A. | Composition containing a polyorganosiloxane polymer, a tackifier, a wax and a block copolymer |
-
2003
- 2003-12-08 WO PCT/EP2003/015006 patent/WO2004054523A1/fr active Application Filing
- 2003-12-08 DE DE60325417T patent/DE60325417D1/de not_active Expired - Lifetime
- 2003-12-08 AU AU2003290128A patent/AU2003290128A1/en not_active Abandoned
- 2003-12-08 ES ES03782490T patent/ES2319762T3/es not_active Expired - Lifetime
- 2003-12-08 EP EP03782490A patent/EP1575535B1/fr not_active Expired - Lifetime
- 2003-12-08 US US10/538,924 patent/US7887786B2/en active Active
- 2003-12-08 AT AT03782490T patent/ATE417598T1/de not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0594285A2 (fr) * | 1992-08-21 | 1994-04-27 | General Electric Company | Siloxanes ayants des groupes fonctionnalisés d'amino acides |
US5874069A (en) * | 1997-01-24 | 1999-02-23 | Colgate-Palmolive Company | Cosmetic composition containing silicon-modified amides as thickening agents and method of forming same |
US6051216A (en) * | 1997-08-01 | 2000-04-18 | Colgate-Palmolive Company | Cosmetic composition containing siloxane based polyamides as thickening agents |
US5969172A (en) * | 1998-06-12 | 1999-10-19 | General Electric Company | Silicone solvents for antiperspirant salts |
US5969172C1 (en) * | 1998-06-12 | 2002-06-18 | Gen Electric | Silicone solvents for antiperspirant salts |
US20020048557A1 (en) * | 2000-08-31 | 2002-04-25 | Heng Cai | Antiperspirants and deodorants with low white residue on skin and fabric |
US20020051758A1 (en) * | 2000-08-31 | 2002-05-02 | Heng Cai | Clear antiperspirants and deodorants made with siloxane-based polyamides |
Cited By (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7321011B2 (en) | 2002-06-12 | 2008-01-22 | L'oreal | Self-emulsifying copolymer |
US7329699B2 (en) | 2003-07-11 | 2008-02-12 | L'oreal | Composition containing oil, structuring polymer, and coated silicone elastomer, and methods of making and using the same |
US7790827B2 (en) | 2004-12-01 | 2010-09-07 | Dow Corning Corporation | Silicone polyether-amide block copolymers |
US8241617B2 (en) | 2005-08-01 | 2012-08-14 | L'oréal | Methods for removing make-up compositions from keratin materials |
US7790148B2 (en) | 2005-09-02 | 2010-09-07 | L'oreal | Compositions containing silicone polymer, wax and volatile solvent |
US8067094B2 (en) | 2005-12-23 | 2011-11-29 | 3M Innovative Properties Company | Films including thermoplastic silicone block copolymers |
US7883652B2 (en) | 2005-12-23 | 2011-02-08 | 3M Innovative Properties Company | Polydiorganosiloxane polyoxamide copolymers |
US8853323B2 (en) | 2005-12-23 | 2014-10-07 | 3M Innovative Properties Company | Polydiorganosiloxane polyoxamide copolymers |
US7501184B2 (en) | 2005-12-23 | 2009-03-10 | 3M Innovative Properties Company | Polydiorganosiloxane polyoxamide copolymers |
US8236429B2 (en) | 2005-12-23 | 2012-08-07 | 3M Innovative Properties Company | Adhesive compositions |
US7371464B2 (en) | 2005-12-23 | 2008-05-13 | 3M Innovative Properties Company | Adhesive compositions |
US8691391B2 (en) | 2005-12-23 | 2014-04-08 | 3M Innovative Properties Company | Adhesive compositions |
US7947376B2 (en) | 2005-12-23 | 2011-05-24 | 3M Innovative Properties Company | Adhesive compositions |
US7820297B2 (en) | 2005-12-23 | 2010-10-26 | 3M Innovative Properties Company | Multilayer films including thermoplastic silicone block copolymers |
US9206290B2 (en) | 2005-12-23 | 2015-12-08 | 3M Innovative Properties Company | Polydiorganosiloxane polyoxamide copolymers |
US8586668B2 (en) | 2005-12-23 | 2013-11-19 | 3M Innovative Properties Company | Polydiorganosiloxane polyoxamide copolymers |
US8524370B2 (en) | 2005-12-23 | 2013-09-03 | 3M Innovative Properties Company | Multilayer films including thermoplastic silicone block copolymers |
US8492486B2 (en) | 2005-12-23 | 2013-07-23 | 3M Innovative Properties Company | Adhesive compositions |
US9434821B2 (en) | 2005-12-23 | 2016-09-06 | 3M Innovative Properties Company | Polydiorganosiloxane polyoxamide copolymers |
US8920783B2 (en) | 2006-03-21 | 2014-12-30 | Dow Corning Corporation | Silicone-organic elastomer gels |
US8273840B2 (en) | 2006-03-21 | 2012-09-25 | Dow Corning Corporation | Silicone polyether elastomer gels |
US8758739B2 (en) | 2006-05-03 | 2014-06-24 | L'oreal | Cosmetic compositions containing block copolymers, tackifiers and gelling agents |
US8778323B2 (en) | 2006-05-03 | 2014-07-15 | L'oréal | Cosmetic compositions containing block copolymers, tackifiers and modified silicones |
US8658141B2 (en) | 2007-01-12 | 2014-02-25 | L'oreal | Cosmetic composition containing a block copolymer, a tackifier, a silsesquioxane wax and/or resin |
US9527965B2 (en) | 2007-06-22 | 2016-12-27 | 3M Innovative Properties Company | Polydiorganosiloxane polymide copolymers having organic soft segments |
US8158739B2 (en) | 2007-06-22 | 2012-04-17 | 3M Innovative Properties Company | Branched polydiorganosiloxane polyamide copolymers |
US7507849B2 (en) | 2007-06-22 | 2009-03-24 | 3M Innovative Properties Company | Cyclic silazanes containing an oxamido ester group and methods of making these compounds |
US8013098B2 (en) | 2007-06-22 | 2011-09-06 | 3M Innovative Properties Company | Branched polydiorganosiloxane polyamide copolymers |
US7652163B2 (en) | 2007-06-22 | 2010-01-26 | 3M Innovative Properties Company | Cyclic silazanes containing an oxamido ester group and methods |
US9290684B2 (en) | 2007-06-22 | 2016-03-22 | 3M Innovative Properties Company | Polydiorganosiloxane polymide copolymers having organic soft segments |
US8361626B2 (en) | 2007-06-22 | 2013-01-29 | 3M Innovative Properties Company | Polydiorganosiloxane polyamide copolymers having organic soft segments |
US7705103B2 (en) | 2007-06-22 | 2010-04-27 | 3M Innovative Properties Company | Polydiorganosiloxane polyoxamide copolymers |
US8431668B2 (en) | 2007-06-22 | 2013-04-30 | 3M Innovative Properties Company | Branched polydiorganosiloxane polyamide copolymers |
US9303157B2 (en) | 2007-06-22 | 2016-04-05 | 3M Innovative Properties Company | Mixtures of polydiorganosiloxane polyamide-containing components and organic polymers |
US7915370B2 (en) | 2007-06-22 | 2011-03-29 | 3M Innovative Properties Company | Branched polydiorganosiloxane polyamide copolymers |
US8063166B2 (en) | 2007-06-22 | 2011-11-22 | 3M Innovative Properties Company | Polydiorganosiloxane polyamide copolymers having organic soft segments |
US7705101B2 (en) | 2007-06-22 | 2010-04-27 | 3M Innovative Properties Company | Branched polydiorganosiloxane polyamide copolymers |
US9018331B2 (en) | 2007-06-22 | 2015-04-28 | 3M Innovative Properties Company | Polydiorganosiloxane polyamide copolymers having organic soft segments |
US8623988B2 (en) | 2007-06-22 | 2014-01-07 | 3M Innovative Properties Company | Polydiorganosiloxane polyamide copolymers having organic soft segments |
US8653216B2 (en) | 2007-06-22 | 2014-02-18 | 3M Innovative Properties Company | Branched polydiorganosiloxane polyamide copolymers |
DE102007038450A1 (de) * | 2007-08-14 | 2009-02-19 | Henkel Ag & Co. Kgaa | Farbschützendes Wasch- oder Reinigungsmittel |
DE102007038452A1 (de) * | 2007-08-14 | 2009-02-19 | Henkel Ag & Co. Kgaa | Mittel zur Behandlung harter Oberflächen |
DE102007038453A1 (de) * | 2007-08-14 | 2009-02-19 | Henkel Ag & Co. Kgaa | Fixierung von Duftstoffen aus Wasch- und Reinigungsmitteln an harten und weichen Oberflächen |
US8541011B2 (en) | 2007-09-26 | 2013-09-24 | Dow Corning Corporation | Silicone organic elastomer gels from organopolysiloxane resins |
US8222363B2 (en) | 2007-09-26 | 2012-07-17 | Dow Corning Corporation | Silicone organic elastomer gels from organopolysiloxane resins |
US9714442B2 (en) | 2008-03-26 | 2017-07-25 | 3M Innovative Properties Company | Structured polydiorganosiloxane polyamide containing devices and methods |
US8431671B2 (en) | 2008-03-26 | 2013-04-30 | 3M Innovative Properties Company | Structured polydiorganosiloxane polyamide containing devices and methods |
US8664328B2 (en) | 2008-04-14 | 2014-03-04 | Dow Corning Corporation | Emulsions of boron crosslinked organopolysiloxanes |
US8734767B2 (en) | 2008-10-22 | 2014-05-27 | Dow Corning Corporation | Aminofunctional endblocked silicone polyether copolymers in personal care compositions |
WO2011028770A1 (fr) | 2009-09-03 | 2011-03-10 | Dow Corning Corporation | Fluides silicone pituiteux |
WO2011028765A1 (fr) | 2009-09-03 | 2011-03-10 | Dow Corning Corporation | Compositions pour soins personnels contenant des fluides silicone pituiteux |
WO2011049896A2 (fr) | 2009-10-23 | 2011-04-28 | Dow Corning Corporation | Compositions à base de silicone comprenant un gel de silicone expansé |
US9624334B2 (en) | 2009-10-23 | 2017-04-18 | Dow Corning Corporation | Hydrophilically-modified silicone compositions |
US9243113B2 (en) | 2009-10-23 | 2016-01-26 | Dow Corning Corporation | Silicone compositions comprising a swollen silicone gel |
WO2011049919A1 (fr) | 2009-10-23 | 2011-04-28 | Dow Corning Corporation | Compositions de silicone à modification hydrophile |
WO2011066359A1 (fr) | 2009-11-25 | 2011-06-03 | Dow Corning Corporation | Compositions de soins personnels contenant certains siloxanes cycliques |
US9265713B2 (en) | 2011-02-25 | 2016-02-23 | L'oreal S.A. | Cosmetic compositions having long lasting shine |
WO2013082096A1 (fr) | 2011-11-29 | 2013-06-06 | Dow Corning Corporation | Émulsions de silicone aminofonctionnelle pour des traitements de fibre |
WO2014058887A1 (fr) | 2012-10-11 | 2014-04-17 | Dow Corning Corporation | Microémulsions aqueuses de silicone-polyéther |
US10357445B2 (en) | 2014-04-28 | 2019-07-23 | Dow Silicones Corporation | Cross-linked composition and cosmetic composition comprising the same |
WO2015167963A1 (fr) | 2014-04-28 | 2015-11-05 | Dow Corning Corporation | Composition réticulée et composition cosmétique la comprenant |
WO2015179512A1 (fr) | 2014-05-21 | 2015-11-26 | Dow Corning Corporation | Polymère d'aminosiloxane et procédé de formation |
WO2015179513A1 (fr) | 2014-05-21 | 2015-11-26 | Dow Corning Corporation | Polymère d'aminosiloxane réticulé et son procédé de formation |
US9872828B2 (en) | 2014-05-21 | 2018-01-23 | Dow Corning Corporation | Emulsion of cross-linked aminosiloxane polymer |
US9890253B2 (en) | 2014-05-21 | 2018-02-13 | Dow Corning Corporation | Cross-linked aminosiloxane polymer and method of forming |
US10059806B2 (en) | 2014-05-21 | 2018-08-28 | Dow Silicones Corporation | Aminosiloxane polymer and method of forming |
WO2016014127A1 (fr) | 2014-07-23 | 2016-01-28 | Dow Corning Corporation | Fluide pituiteux à base de silicone |
US10172781B2 (en) | 2014-07-23 | 2019-01-08 | Dow Silicones Corporation | Pituitous silicone fluid |
US10500151B2 (en) | 2014-07-23 | 2019-12-10 | Dow Silicones Corporation | Silicone elastomer composition |
WO2016014128A1 (fr) | 2014-07-23 | 2016-01-28 | Dow Corning Corporation | Composition d'élastomère de silicone |
US10358529B2 (en) | 2014-12-19 | 2019-07-23 | Dow Silicones Corporation | Method of preparing functionalized particles |
US10441527B2 (en) | 2015-04-08 | 2019-10-15 | Dow Silicones Corporation | Fluid compositions and personal care |
WO2016164289A1 (fr) | 2015-04-08 | 2016-10-13 | Dow Corning Corporation | Composition pituiteuse de fluide à base de silicone |
WO2017189077A1 (fr) | 2016-04-27 | 2017-11-02 | Dow Corning Corporation | Silanes hydrophiles |
WO2017196524A1 (fr) | 2016-05-10 | 2017-11-16 | Dow Corning Corporation | Copolymère séquencé de silicone ayant un groupe de blocage d'extrémité aminofonctionnel et son procédé de préparation et d'utilisation |
WO2018052648A1 (fr) | 2016-09-19 | 2018-03-22 | Dow Corning Corporation | Composition de copolymère pour soins personnels |
WO2018052647A1 (fr) | 2016-09-19 | 2018-03-22 | Dow Corning Corporation | Compositions de soins personnels comprenant un copolymère polyuréthane-polyorganosiloxane |
US11672768B2 (en) | 2016-09-19 | 2023-06-13 | Dow Silicones Corporation | Skin contact adhesive and methods for its preparation and use |
US11142639B2 (en) | 2016-09-19 | 2021-10-12 | Dow Silicones Corporation | Polyurethane-polyorganosiloxane copolymer and method for its preparation |
WO2018151780A1 (fr) | 2017-02-15 | 2018-08-23 | Dow Silicones Corporation | Copolymère de silicone-uréthane-urée, sa préparation et son utilisation |
US11041042B2 (en) | 2017-02-15 | 2021-06-22 | Dow Silicones Corporation | Silicone urethane urea copolymer and preparation and use thereof |
WO2019099180A1 (fr) | 2017-11-20 | 2019-05-23 | Dow Silicones Corporation | Polymère d'aminosilicone réticulé et ses procédés de préparation et d'utilisation |
US10961352B2 (en) | 2017-11-20 | 2021-03-30 | Dow Silicones Corporation | Crosslinked aminosilicone polymer and methods for its preparation and use |
WO2021101677A1 (fr) | 2019-11-19 | 2021-05-27 | Dow Silicones Corportion | Glycane de silicium et son procédé de préparation |
WO2021101679A1 (fr) | 2019-11-19 | 2021-05-27 | Dow Silicones Corporation | Procédé de préparation d'un glycane de silicium |
WO2021108068A1 (fr) | 2019-11-26 | 2021-06-03 | Dow Silicones Corporation | Procédés de fabrication de polysiloxazanes et leur utilisation pour la production de polyorganosiloxanes à fonction amino |
US11760839B2 (en) | 2019-11-26 | 2023-09-19 | Dow Silicones Corporation | Processes for making polysiloxazanes and using same for producing amino-functional polyorganosiloxanes |
WO2022246363A1 (fr) | 2021-05-18 | 2022-11-24 | Dow Silicones Corporation | Procédés de fabrication de polysiloxazanes et leur utilisation pour la production de polyorganosiloxanes à fonction amino |
Also Published As
Publication number | Publication date |
---|---|
ATE417598T1 (de) | 2009-01-15 |
US7887786B2 (en) | 2011-02-15 |
DE60325417D1 (de) | 2009-01-29 |
ES2319762T3 (es) | 2009-05-12 |
AU2003290128A1 (en) | 2004-07-09 |
US20060204470A1 (en) | 2006-09-14 |
EP1575535A1 (fr) | 2005-09-21 |
EP1575535B1 (fr) | 2008-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7887786B2 (en) | Care and/or make-up cosmetic composition structured with silicone polymers | |
EP1578387B1 (fr) | Composition cosmetique de maquillage et/ou de soins, transparente ou translucide, a base de polymeres de silicone | |
EP1524961B1 (fr) | Composition cosmetique de soin et/ou de traitement et/ou de maquillage de type emulsion structuree a l'aide de polymeres de silicone | |
US7078026B2 (en) | Structured composition based on silicone oil, especially for cosmetic use | |
EP1515684B1 (fr) | Composition cosmetique de soin et/ou de maquillage sous forme rigide, structuree par des polymeres de silicone et des agents organogelifiants | |
EP1531790B1 (fr) | Composition cosmetique structuree avec des polymeres de silicone et des resines filmogenes | |
US20030072730A1 (en) | Composition based on silicone oil structured in rigid form, especially for cosmetic use | |
US7820146B2 (en) | Care and/or make-up cosmetic composition structured with silicone polymers and organogelling agents, in rigid form | |
US20030170188A1 (en) | Composition based on silicone oil structured in rigid form, especially for cosmetic use | |
US20040120912A1 (en) | Compositions containing at least one oil structured with at least one silicone-polyamide polymer, and at least one crystalline silicone compound and methods of using the same | |
US20040115154A1 (en) | Compositions containing at least one oil structured with at least one silicone-polyamide polymer, and at least one short chain ester and methods of using the same | |
US20040115153A1 (en) | Compositions containing at least one oil structured with at least one silicone-polyamide polymer, and at least one silicone gum and methods of using the same | |
JP4907989B2 (ja) | シリコーンポリマーで構造化されたケアおよび/またはメーキャップ用化粧品組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003782490 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10538924 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005502445 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038A97979 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2003782490 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10538924 Country of ref document: US |