WO2004027941A1 - Fibre optique a variation du profil d'indice de refraction selon la longueur pour reduction de la diffusion de brillouin - Google Patents
Fibre optique a variation du profil d'indice de refraction selon la longueur pour reduction de la diffusion de brillouin Download PDFInfo
- Publication number
- WO2004027941A1 WO2004027941A1 PCT/GB2003/004028 GB0304028W WO2004027941A1 WO 2004027941 A1 WO2004027941 A1 WO 2004027941A1 GB 0304028 W GB0304028 W GB 0304028W WO 2004027941 A1 WO2004027941 A1 WO 2004027941A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fibre
- refractive index
- index distribution
- length
- variation
- Prior art date
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 55
- 230000009467 reduction Effects 0.000 title description 3
- 238000009826 distribution Methods 0.000 claims abstract description 46
- 230000005855 radiation Effects 0.000 claims abstract description 21
- 238000010438 heat treatment Methods 0.000 claims abstract description 9
- 239000000835 fiber Substances 0.000 claims description 32
- 230000003287 optical effect Effects 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 15
- 239000002019 doping agent Substances 0.000 claims description 6
- 230000001965 increasing effect Effects 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- 150000002910 rare earth metals Chemical class 0.000 claims description 6
- 230000000737 periodic effect Effects 0.000 claims description 5
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 3
- 229910052691 Erbium Inorganic materials 0.000 claims description 3
- 229910052693 Europium Inorganic materials 0.000 claims description 3
- 229910052689 Holmium Inorganic materials 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 3
- 229910052772 Samarium Inorganic materials 0.000 claims description 3
- 229910052771 Terbium Inorganic materials 0.000 claims description 3
- 229910052775 Thulium Inorganic materials 0.000 claims description 3
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 3
- 238000005452 bending Methods 0.000 claims description 3
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 claims description 3
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims description 3
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 3
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 claims description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 3
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 3
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims description 3
- 230000002269 spontaneous effect Effects 0.000 claims description 3
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 claims description 3
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims description 3
- 238000005253 cladding Methods 0.000 abstract description 11
- 230000035882 stress Effects 0.000 description 18
- 238000000137 annealing Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- UPMXNNIRAGDFEH-UHFFFAOYSA-N 3,5-dibromo-4-hydroxybenzonitrile Chemical compound OC1=C(Br)C=C(C#N)C=C1Br UPMXNNIRAGDFEH-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2537—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to scattering processes, e.g. Raman or Brillouin scattering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/0675—Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/30—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
- H01S3/302—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
Definitions
- This invention relates to an optical fibre for high-power lasers and amplifiers.
- Stimulated Brillouin scattering provides a limitation for high-power fibre lasers and optical amplifiers.
- Light travelling down the fibre excites an acoustic wave which reflects the light, the reflected light being shifted in wavelength by the Brillouin wavelength shift.
- Different glass materials have different Brillouin wavelength shifts and Brillouin bandwidths.
- the stimulated Brillouin scattering threshold can be increased by varying the materials along an optical fibre, by inducing a temperature gradient along a fibre, by introducing tapers within the fibre, and by utilizing glasses having different Brillouin shifts across the cross section of a fibre.
- an optical fibre comprising a waveguide defined by a length and a refractive index distribution, which refractive index distribution has a variation along its length such that in use stimulated Brillouin scattering is reduced.
- the refractive index can be varied temporarily, there are significant practical advantages of providing an optical fibre that has a permanent variation in the refractive index distribution along its length.
- the variation in refractive index distribution may be caused to vary by application of ultraviolet radiation.
- the variation in refractive index distribution may be caused to vary by application of heat.
- the variation in the refractive index distribution may be induced by stress.
- the stress may be caused to vary by application of ultraviolet radiation.
- the stress may be caused to vary by heat treatment.
- the stress may be caused to vary by bending the fibre.
- the variation in the refractive index distribution may be periodic.
- the variation in the refractive index distribution may be aperiodic.
- the variation in the refractive index distribution may be monotonic.
- the optical fibre may be twisted along its length.
- the twist rate may be varied along the length.
- the optical fibre may be tapered along the length.
- the waveguide may be tapered along the length.
- the waveguide may comprise one or more rare earth dopants.
- the rare earth dopant may comprise one or more Ytterbium, Erbium, Neodymium, Praseodymium, Thulium, Samarium, Holmium, Europium, Terbium, and Dysprosium.
- the waveguide may be a so-called large mode area waveguide.
- the invention also provides an optical amplifying device comprising the optical fibre.
- the optical amplifying device may be an optical amplifier, a laser, a master oscillator power amplifier, or a source of amplified spontaneous emission.
- the optical amplifying device may emit optical radiation.
- the optical radiation may be pulsed, modulated or continuous wave.
- the invention also provides a method for increasing the stimulated Brillouin scattering threshold of an optical fibre, which method comprises: (i) providing a waveguide of a defined length, (ii) selecting a method for varying the refractive index distribution along the length, and (iii) varying the refractive index distribution along the length such that in use stimulated Brillouin scattering is reduced.
- the refractive index distribution may be varied by applying a variation of heat along its length.
- the refractive index distribution may be varied by applying a variation of ultraviolet light along its length.
- Figure 1 shows an optical fibre according to the present invention
- Figure 2 shows an optical fibre comprising stress applying regions
- Figure 3 shows an optical fibre comprising a photosensitive waveguide
- Figure 4 shows an optical fibre comprising two inner claddings
- Figure 5 shows an optical fibre configured as an amplifying optical device.
- an optical fibre 1 comprising a waveguide 2 defined by a length 3 and a refractive index distribution 4, which refractive index distribution 4 has a variation 5 along its length 3 such that in use stimulated Brillouin scattering is reduced.
- the waveguide 2 can comprise a core 6 and a cladding 7.
- the variation 5 is a permanent variation in the refractive index distribution 4.
- permanent it is meant lasting at least for hours if not years after the variation 5 has been induced.
- Figure 2 shows an optical fibre 20 containing stress applying regions 21 which induce stress across the waveguide 2.
- a fibre is commonly known as a polarisation maintaining fibre.
- the stress induces a corresponding change in the refractive index distribution 4 of the optical fibre 20 via the photo-elastic effect.
- the stress distribution of the fibre 20 can be modified by exposure to ultraviolet radiation.
- the source of ultraviolet radiation is preferably one that is used in the manufacture of fibre optic Bragg gratings, for example a frequency doubled argon-ion laser or an excimer laser. Suitable lasers include the FreD and Sabre FreD lasers supplied by Coherent, Inc., and the Ll-FBG excimer laser manufactured by Lambda Physik.
- the ultraviolet radiation can be applied after the fibre 20 is drawn. Alternatively, the ultraviolet radiation can be applied during the drawing process as further described in United States Patent US5400422 which is hereby incorporated herein by reference.
- the latter patent refers to the manufacture of fibre Bragg gratings in which a fibre is exposed to ultraviolet radiation from a pair of interfering light beams.
- the ultra violet radiation can be applied directly to the fibre 20.
- the stress distribution of the fibre 20 can also be modified by applying heat treatment.
- the stress distribution arises because of thermal stress, and in particular because the expansion coefficient of the stress applying regions 21 is higher than the expansion coefficient of the cladding 7. If the stress applying regions 21 are made from a borosilicate glass and the cladding 7 is silica, then the thermal stress distribution within the fibre 20 can be modified by applying heat treatment to the fibre 20, for example annealing the fibre 20 at a temperature in the range 300C to 500 C. Experimental results showing an increase in the stress birefringence of a polarisation maintaining fibre can be found in A.
- the heat treatment can be applied periodically or aperiodically along the length 3, or such that the temperature varies monotonically along the fibre 20.
- the heat can be applied by a thermal chamber, or a laser such as a C02 laser.
- the heat treatment can also be applied as part of the fibre drawing process, annealing the fibre 20 in a thermal chamber located below the main furnace.
- the amount of thermal annealing can be varied by varying the temperature of the furnace, or by varying the speed at which the fibre 20 is drawn.
- the variations in stress and hence refractive index caused by such thermal treatments are essentially permanent, that is, that is provided the fibre 20 is not heated up to similar temperatures again.
- Figure 3 shows an optical fibre 30 comprising a photosensitive waveguide 31 having a refractive index 4.
- the refractive index 4 may have been caused to vary by application of ultraviolet radiation such as used in the manufacture of long-period optical fibre gratings.
- the ultraviolet radiation may also cause the internal stress distribution to vary which induces a change in the refractive index distribution via the photo-elastic effect.
- the refractive index 4 may be caused to vary by application of heat.
- the variation 5 in the refractive index 4 can therefore be achieved by varying the strength of the ultraviolet radiation applied to the fibre 30 along its length 3.
- Figure 4 shows an optical fibre 40 comprising a core 41, two inner claddings 42, 43 and an outer cladding 44. At least one of the core 41, two inner claddings 42, 43 and outer cladding 44 can be photosensitive.
- At least one of the core 41 and the two inner claddings 42, 43 can have a different thermal expansion coefficient than the outer cladding 44.
- Application of ultraviolet light and / or heat treatment can be used to cause variation in stress along the length of the optical fibre 40 in a similar manner to that described with reference to Figure 2, this variation in stress causing a corresponding variation in the refractive index distribution along the fibre via the photo-elastic effect.
- the variation 5 in the refractive index distribution 4 may be periodic.
- the periodicity of the variation 5 may be in the range 1mm to 10m, but is preferably in the range 1mm to 100mm.
- the variation 5 can be aperiodic.
- the variation 5 can also be monotonic, that is increasing or decreasing along the length 3.
- a periodic variation of the refractive index distribution 4 along the length 3 reduces stimulated Brillouin scattering because it dephases the acoustic photons with respect to light propagating along the fibre 1.
- Stimulated Brillouin scattering is often likened to a grating travelling along the fibre 1 which reflects light with an associated Doppler shift.
- the twist rate may be varied along the length 3.
- the optical fibre 1 may be tapered along the length 3.
- the waveguide 2 may be tapered along the length 3.
- the waveguide 2 may comprise one or more rare earth dopants.
- the rare earth dopant may comprise one or more Ytterbium, Erbium, Neodymium, Praseodymium, Thulium, Samarium, Holmium, Europium, Terbium, and Dysprosium.
- the waveguide 2 may be a so-called large mode area waveguide such as described in WO 00/02290.
- large mode area it is meant that the waveguide 2 can have a relatively low numerical aperture such that the mode field diameter of the
- the waveguide 2 can be operated
- the bend radius would vary with length 3.
- the waveguide 2 can be a microstructured fibre containing longitudinally extending holes along its length.
- Figure 5 shows an optical amplifying device 50 comprising the optical fibre 1 and a pump source 51 providing pump radiation 52.
- the optical amplifying device 50 may be an optical amplifier, a laser, a master oscillator power amplifier, or a source of amplified spontaneous emission. In use, the optical amplifying device 50 may emit optical radiation.
- the optical radiation may be pulsed, modulated or continuous wave.
- the optical radiation may be single frequency, multiple frequency or broadband radiation.
- the invention also provides a method for increasing the stimulated Brillouin scattering threshold of an optical fibre 1, which method comprises: (i) providing a waveguide 2 of a defined length 3, (ii) selecting a method for varying the refractive index distribution 4 along the length, and (iii) varying the refractive index distribution 4 along the length 3 such that in use stimulated Brillouin scattering is reduced.
- the refractive index distribution 4 may be varied by applying a variation of heat along its length 3. Alternatively or in addition, the refractive index distribution 4 may be varied by applying a variation of ultraviolet light along its length 3. The variation may be periodic, aperiodic, or monotonic.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003267578A AU2003267578A1 (en) | 2002-09-20 | 2003-09-19 | Optical fibre with lenghtwise refractive index profile variation for brillouin scattering reduction |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0221858.4 | 2002-09-20 | ||
GB0221858A GB0221858D0 (en) | 2002-09-20 | 2002-09-20 | An optical fibre for high power lasers and amplifiers |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004027941A1 true WO2004027941A1 (fr) | 2004-04-01 |
Family
ID=9944451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2003/004028 WO2004027941A1 (fr) | 2002-09-20 | 2003-09-19 | Fibre optique a variation du profil d'indice de refraction selon la longueur pour reduction de la diffusion de brillouin |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2003267578A1 (fr) |
GB (1) | GB0221858D0 (fr) |
WO (1) | WO2004027941A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1762867A1 (fr) | 2005-09-09 | 2007-03-14 | Draka Comteq B.V. | Fibre optique ayant une diffusion de Brillouin stimulée et réduite |
US7555186B2 (en) | 2006-12-04 | 2009-06-30 | Draka Comteq B.V. | Optical fiber |
US7623747B2 (en) | 2005-11-10 | 2009-11-24 | Draka Comteq B.V. | Single mode optical fiber |
US7889960B2 (en) | 2008-05-06 | 2011-02-15 | Draka Comteq B.V. | Bend-insensitive single-mode optical fiber |
US7899293B2 (en) | 2006-04-10 | 2011-03-01 | Draka Comteq, B.V. | Single-mode optical fiber |
US8145027B2 (en) | 2007-11-09 | 2012-03-27 | Draka Comteq, B.V. | Microbend-resistant optical fiber |
EP1891471A4 (fr) * | 2005-06-15 | 2017-11-22 | Corning Incorporated | Fibre optique a seuil sbs eleve |
US10294146B2 (en) | 2016-08-31 | 2019-05-21 | Corning Incorporated | Single mode optical fibers with Brillouin frequency-shift management |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0459415A2 (fr) * | 1990-05-28 | 1991-12-04 | Nippon Telegraph And Telephone Corporation | Câble optique et méthode de sa fabrication |
EP0518749A2 (fr) * | 1991-06-11 | 1992-12-16 | Fujikura Ltd. | Fibre optique |
US5400422A (en) * | 1993-01-21 | 1995-03-21 | The United States Of America As Represented By The Secretary Of The Navy | Technique to prepare high-reflectance optical fiber bragg gratings with single exposure in-line or fiber draw tower |
US5408562A (en) * | 1993-01-27 | 1995-04-18 | Nippon Telegraph And Telephone Corporation | Submarine, optical-fiber cable with optical fibers having tensile strain |
US5848215A (en) * | 1996-08-01 | 1998-12-08 | Furukawa Electric Co Ltd | Stimulated brillouin scattering suppressed optical fiber |
JP2001042141A (ja) * | 1999-08-04 | 2001-02-16 | Mitsubishi Cable Ind Ltd | ファイバグレーティングの作製方法 |
US20010019642A1 (en) * | 1999-12-20 | 2001-09-06 | Peter Krummrich | Arrangement for reducing the stimulated brillouin scattering in an optical waveguide fiber |
WO2002014920A1 (fr) * | 2000-08-14 | 2002-02-21 | The Board Of Trustees Of The University Of Illinois | Procede de reduction d'une diffusion brillouin stimulee dans des systemes et dispositifs de guide d'ondes |
US20020118935A1 (en) * | 2001-02-28 | 2002-08-29 | Balestra Chester Lee | Optical fiber having an elevated threshold for stimulated brillouin scattering |
US6542683B1 (en) * | 1997-07-15 | 2003-04-01 | Corning Incorporated | Suppression of stimulated Brillouin scattering in optical fiber |
-
2002
- 2002-09-20 GB GB0221858A patent/GB0221858D0/en not_active Ceased
-
2003
- 2003-09-19 WO PCT/GB2003/004028 patent/WO2004027941A1/fr not_active Application Discontinuation
- 2003-09-19 AU AU2003267578A patent/AU2003267578A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0459415A2 (fr) * | 1990-05-28 | 1991-12-04 | Nippon Telegraph And Telephone Corporation | Câble optique et méthode de sa fabrication |
EP0518749A2 (fr) * | 1991-06-11 | 1992-12-16 | Fujikura Ltd. | Fibre optique |
US5400422A (en) * | 1993-01-21 | 1995-03-21 | The United States Of America As Represented By The Secretary Of The Navy | Technique to prepare high-reflectance optical fiber bragg gratings with single exposure in-line or fiber draw tower |
US5408562A (en) * | 1993-01-27 | 1995-04-18 | Nippon Telegraph And Telephone Corporation | Submarine, optical-fiber cable with optical fibers having tensile strain |
US5848215A (en) * | 1996-08-01 | 1998-12-08 | Furukawa Electric Co Ltd | Stimulated brillouin scattering suppressed optical fiber |
US6542683B1 (en) * | 1997-07-15 | 2003-04-01 | Corning Incorporated | Suppression of stimulated Brillouin scattering in optical fiber |
JP2001042141A (ja) * | 1999-08-04 | 2001-02-16 | Mitsubishi Cable Ind Ltd | ファイバグレーティングの作製方法 |
US20010019642A1 (en) * | 1999-12-20 | 2001-09-06 | Peter Krummrich | Arrangement for reducing the stimulated brillouin scattering in an optical waveguide fiber |
WO2002014920A1 (fr) * | 2000-08-14 | 2002-02-21 | The Board Of Trustees Of The University Of Illinois | Procede de reduction d'une diffusion brillouin stimulee dans des systemes et dispositifs de guide d'ondes |
US20020118935A1 (en) * | 2001-02-28 | 2002-08-29 | Balestra Chester Lee | Optical fiber having an elevated threshold for stimulated brillouin scattering |
Non-Patent Citations (2)
Title |
---|
OURMAZD A ET AL: "Thermal properties of highly birefringent optical fibers and preforms", APPLIED OPTICS, 1 AUG. 1983, USA, vol. 22, no. 15, pages 2374 - 2379, XP002263276, ISSN: 0003-6935 * |
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 19 5 June 2001 (2001-06-05) * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1891471A4 (fr) * | 2005-06-15 | 2017-11-22 | Corning Incorporated | Fibre optique a seuil sbs eleve |
EP1762867A1 (fr) | 2005-09-09 | 2007-03-14 | Draka Comteq B.V. | Fibre optique ayant une diffusion de Brillouin stimulée et réduite |
EP1764633A1 (fr) | 2005-09-09 | 2007-03-21 | Draka Comteq B.V. | Fibre optique ayant une diffusion de Brillouin stimulée réduite |
US7437040B2 (en) | 2005-09-09 | 2008-10-14 | Draka Comteq B.V. | Optical fiber with reduced stimulation Brillouin scattering |
US7995889B2 (en) | 2005-11-10 | 2011-08-09 | Draka Comteq, B.V. | Single mode optical fiber |
US7623747B2 (en) | 2005-11-10 | 2009-11-24 | Draka Comteq B.V. | Single mode optical fiber |
US8837889B2 (en) | 2005-11-10 | 2014-09-16 | Draka Comteq, B.V. | Single mode optical fiber |
US7899293B2 (en) | 2006-04-10 | 2011-03-01 | Draka Comteq, B.V. | Single-mode optical fiber |
US8103143B2 (en) | 2006-04-10 | 2012-01-24 | Draka Comteq, B.V. | Single-mode optical fiber |
US7894698B2 (en) | 2006-12-04 | 2011-02-22 | Draka Comteq B.V. | Optical fiber |
US7555186B2 (en) | 2006-12-04 | 2009-06-30 | Draka Comteq B.V. | Optical fiber |
US8385705B2 (en) | 2007-11-09 | 2013-02-26 | Draka Comteq, B.V. | Microbend-resistant optical fiber |
US8145027B2 (en) | 2007-11-09 | 2012-03-27 | Draka Comteq, B.V. | Microbend-resistant optical fiber |
US8145025B2 (en) | 2008-05-06 | 2012-03-27 | Draka Comteq, B.V. | Single-mode optical fiber having reduced bending losses |
US8428414B2 (en) | 2008-05-06 | 2013-04-23 | Draka Comteq, B.V. | Single-mode optical fiber having reduced bending losses |
US7889960B2 (en) | 2008-05-06 | 2011-02-15 | Draka Comteq B.V. | Bend-insensitive single-mode optical fiber |
US8131125B2 (en) | 2008-05-06 | 2012-03-06 | Draka Comteq, B.V. | Bend-insensitive single-mode optical fiber |
US10294146B2 (en) | 2016-08-31 | 2019-05-21 | Corning Incorporated | Single mode optical fibers with Brillouin frequency-shift management |
Also Published As
Publication number | Publication date |
---|---|
GB0221858D0 (en) | 2002-10-30 |
AU2003267578A1 (en) | 2004-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3386381B2 (ja) | シリカベースの光ファイバを有する物品 | |
US8660396B2 (en) | Multi-cladding optical fiber, optical fiber module, fiber laser, and fiber amplifier | |
EP0767391A2 (fr) | Dispositifs réseaux de fibre à longue période insensibles à la température | |
US6240224B1 (en) | Coated optical fiber | |
CN102804006A (zh) | 光纤型光学元件、激光二极管模块及光纤激光器 | |
JPH10274718A (ja) | 追加ドープされた無熱性化光導波装置 | |
US20210367391A1 (en) | Pump reflectors for cladding-pumped optical fiber systems | |
Antipov et al. | Influence of a backward reflection on low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers | |
CA2499089C (fr) | Amplificateur a fibre optique dependant de la polarisation | |
WO2004027941A1 (fr) | Fibre optique a variation du profil d'indice de refraction selon la longueur pour reduction de la diffusion de brillouin | |
Talbot et al. | Inner-cladding pump reflector based on chirped volume Bragg gratings | |
WO2011160234A2 (fr) | Composant de dispositif optique actif à réseau de bragg d'aire importante | |
WO2004027476A1 (fr) | Fibre optique | |
US7024092B2 (en) | Rare-earth-doped waveguide | |
US20090208877A1 (en) | Methods of making optical fiber gratings | |
Jeong et al. | Continuous wave single transverse mode laser oscillation in a Nd-doped large core double clad fiber cavity with concatenated adiabatic tapers | |
RU2627018C1 (ru) | Радиационно-стойкий одномодовый световод с большим линейным двулучепреломлением для волоконно-оптического гироскопа | |
Dong et al. | Long period gratings formed in depressed cladding fibres | |
RU2229770C2 (ru) | Устройство для защиты волоконных линий от разрушения под действием лазерного излучения | |
JP2022139361A (ja) | モード同期レーザ | |
Likhachev et al. | Optical losses in single-mode and multimode fibres heavily doped with GeO2 and P2O5 | |
Vasil'ev et al. | Properties of the cladding modes of an optical fibre excited by refractive-index gratings | |
Han, Won-Taek Han, Byeong Ha Lee, Un-Chul Paek, Youngjoo Chung, Chang-Seok Kim | Temperature sensitivity control and mechanical stress effect of boron-doped long-period fiber gratings | |
Dianov et al. | Continuous-wave highly efficient phosphosilicate fibre-based Raman laser (λ= 1.24 μm) | |
Chen et al. | Photosensitivity and application with 157-nm F2 laser radiation in planar lightwave circuits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |