[go: up one dir, main page]

WO2004024844A1 - Phosphazene composition - Google Patents

Phosphazene composition Download PDF

Info

Publication number
WO2004024844A1
WO2004024844A1 PCT/JP2003/010773 JP0310773W WO2004024844A1 WO 2004024844 A1 WO2004024844 A1 WO 2004024844A1 JP 0310773 W JP0310773 W JP 0310773W WO 2004024844 A1 WO2004024844 A1 WO 2004024844A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphazene
resin
composition
weight
less
Prior art date
Application number
PCT/JP2003/010773
Other languages
French (fr)
Japanese (ja)
Inventor
Fumiki Murakami
Jun-Ichi Nakahashi
Atsushi Nanasawa
Tomoyuki Fujita
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to DE10393198T priority Critical patent/DE10393198B4/en
Priority to JP2004535877A priority patent/JP3923497B2/en
Priority to AU2003261725A priority patent/AU2003261725A1/en
Publication of WO2004024844A1 publication Critical patent/WO2004024844A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/02Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the present invention relates to a phosphazene composition having excellent hydrolysis resistance, and a flame retardant and a flame retardant resin composition containing the phosphazene composition as an effective component.
  • phosphazene compositions have excellent properties, they have been studied in various fields and are widely and suitably used. Examples include flame retardants for polymer materials, rubber, lubricants, lithium ion batteries, solar cells, fuel cells, non-combustible electrolytes, battery cases, release agents, release films, roughened surface forming materials, water repellent It has been proposed for a variety of uses, including pharmaceuticals such as fertilizers, anticancer agents, AIDS inhibitors, and dental materials.
  • flame retardants the method of adding flame retardants to flame-retardant resins by adding chlorine compounds, bromine compounds, antimony trioxide, etc. to the resins has been used.
  • these are said to be unfavorable from the viewpoint of environmental protection, toxicity, and the like, and there has been a demand for an improvement in flame-retardant methods. Therefore, the use of phosphorus-based flame retardants as alternative flame retardants that do not contain chlorine, bromine or metal oxides is being studied for flame retardancy.
  • red phosphorus, phosphate esters, condensed phosphate esters, and the like have been used as phosphorus-based flame retardants.
  • red phosphorus has problems such as hydrolysis and mold corrosion due to generation of corrosive phosphoric acid.
  • Phosphate esters and condensed phosphate esters need to be added in large amounts due to their relatively low phosphorus concentration, which deteriorates their mechanical and thermal properties, and increases the cost due to the increase in the amount added.
  • the glass transition temperature was greatly reduced and the heat resistance was poor.
  • the hydrolysis resistance was poor.
  • Japanese Patent Application Laid-Open No. 08-302124 discloses a flame-retardant resin composition comprising a thermoplastic resin composition containing a styrene resin, a phosphazene compound and a polyphenol compound.
  • Japanese Unexamined Patent Publication No. Hei 10-2599292 discloses a flame-retardant epoxy composition in which phenoxyphosphazene is added to an epoxy resin.
  • the present invention provides a phosphazene composition which does not contain chlorine and bromine compounds, and is excellent in moisture resistance, flame retardancy, and electrical property stability in a high frequency region of 1 gigahertz (GHz) or higher.
  • GHz gigahertz
  • the present inventors have intensively studied a technique for achieving the above object, and as a result, it has been found that a phosphazene composition having a volatile content at a high temperature of 200 ° C. within a specific range is, surprisingly, resistant to moisture absorption. It has been found that when added to a resin composition, a resin composition excellent in stability of electrical properties and flame retardancy is provided.
  • the volatilization from the phosphazene composition is carried out from the reaction solvent, the raw material, and the by-product generated from the reaction solvent and / or the raw material in the synthesis of the phosphazene compound remaining in the phosphazene composition.
  • the phosphazene composition according to the above (1) containing at least one selected from the group consisting of:
  • the content of one or more metal elements based on the total weight of the phosphazene composition is 20 ppm or less, respectively, and the content of the compound having a P—OH bond is 1% by weight.
  • the content of one or more kinds of metal elements based on the total weight of the phosphazene composition is 50 ppm or less, respectively, and the content of the compound having a P-OH bond is 1% by weight or less.
  • a flame-retardant resin composition comprising a resin and the phosphazene composition according to any one of the above (1) to (11).
  • the resin is an unsaturated polyester resin, vinyl ester resin, diaryl phthalate resin, epoxy resin, cyanate resin, xylene resin, triazine resin, phenol resin, urea resin, melamine resin, benzoguanamine resin, urethane resin, ketone resin
  • the flame-retardant resin composition according to the above (12), comprising at least one curable resin selected from the group consisting of alkyd resin, furan resin, styrylpyridine resin, silicone resin and synthetic rubber.
  • the resin is selected from the group consisting of polycarbonate, poly (phenylene ether), poly (phenylene sanololefide), polypropylene, polyethylene, polystyrene, ABS resin, polyalkylene terephthalate, polyamide, thermotropic liquid crystal, and polystyrene containing elastomer.
  • flame retardants such as phosphazene compositions are protected from the outside air to some extent, for example, paper bags with polyethylene inner bags, paper bags with aluminum inner bags, polyethylene inner bags, etc. are packaged in drums or flexible containers. Transported and stored at However, depending on the conditions of transportation and storage, it is often handled in an environment that can be hot and humid.
  • the Zen composition has a problem that it absorbs moisture and causes quality deterioration. In other words, storage stability is poor.
  • a resin composition using the absorbed phosphazene composition as a raw material is inferior in hydrolysis resistance and electrical property stability.
  • flame retardants are not limited to phosphazene compounds and preferably do not contain volatile components.
  • the volatile component specified in the present application is an essential component for stabilizing the quality, and the weight change rate when heated at 200 ° C. for 2 hours (to the content of the volatile component). 0.02% by weight or more and 1.0% by weight or less, preferably 0.02% by weight or more, 0.8% by weight or less, and more preferably 0.04% by weight or more. It has been found that the phosphazene composition having a content of 0.8% by weight or less has excellent moisture absorption resistance even under high temperature and high humidity conditions, and accordingly, has excellent electrical property stability, that is, excellent storage stability.
  • the phosphazene composition of the present invention does not absorb moisture even when stored for a long time under high temperature and high humidity, and is stable in quality.
  • the amount of volatile components is less than 0.02% by weight, the water absorption at the time of moisture absorption becomes high, and the stability of electric characteristics is poor.
  • the content exceeds 1.0% by weight, the stability of the electrical properties and the flame retardancy are inferior, which is not preferable. There is a tendency.
  • a phosphazene compound is obtained by reacting a phosphorus halide with ammonium chloride in an organic solvent to obtain a halogenated phosphazene oligomer, and further reacting the alkali metal salt of the hydroxy conjugate in an organic solvent.
  • the organic solvent suitably used for the synthesis reaction of the phosphazene compound is not particularly limited, but examples thereof include ether solvents such as tetrahydrofuran and dioxane, and aromatic solvents such as tolylene, xylene, trimethinolebenzene, ethynolebenzene, and propynolebenzene.
  • Examples include aromatic hydrocarbon solvents, halogenated aromatic hydrocarbon solvents such as monochlorobenzene and dichlorobenzene, and amide solvents such as dimethylformamide and getylformamide.
  • aromatic hydrocarbon solvents such as monochlorobenzene and dichlorobenzene
  • amide solvents such as dimethylformamide and getylformamide.
  • the volatile matter from the phosphazene composition in the present invention includes a reaction solvent in the synthesis of the phosphazene compound remaining in the composition, phenols, alcohols, and the like.
  • Low boiling point residual raw materials The type of solvent remaining naturally depends on the reaction solvent used.
  • examples of volatile components include low-boiling-point impurities with an unknown structure, which are by-produced from the substance used or the solvent used, or produced by the reaction between the solvent used and the raw material used.
  • by-products from the raw materials used include phosphoric acid-based compounds generated from phosphorus halides, and multimeric compounds such as raw phenols and dimeric compounds produced as by-products from alcohols.
  • a by-product derived from the solvent used a compound obtained by a ring-opening reaction when an ether-based solvent is used, and the like can be mentioned.
  • by-products of the reaction between the solvent used and the raw materials used include raw phenols, ethers obtained by reacting alcohols with the solvent, and the like.
  • the amount of water contained in the phosphazene composition of the present invention is 1000 ppm or less, preferably 800 ppm or less, more preferably 650 ppm or less, further 500 ppm or less, more preferably 30 ppm or less. Is desirable. If it exceeds 1000 ppm, the stability of the electrical properties and the hydrolysis resistance are poor, which is not preferable.
  • the phosphazene compound used in the present invention is described in, for example, "Inorganic Polymers” Pretice-Hall by James E. Mark, Harry R. Allcock, Robert West.
  • n in the formula is an integer of 3 to 25
  • m is an integer of 3 to 10000
  • the substituents X 1 and X 2 are each independently an alkyl group having 1 to 6 carbon atoms, and To 1 1 aryl group, fluorine atom, or the following general formula (3)
  • Aryloxy group having a substituent represented by (wherein R A , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, a fluorine atom, an alkyl group or an alkoxy group having 1 to 5 carbon atoms) , Or at least one substituent selected from the group consisting of phenyl), or a naphthyloxy group, or a substituent represented by an alkoxy group having 1 to 6 carbon atoms or an alkoxy-substituted alkoxy group And at least one type of substituent, and hydrogen on the substituent may be partially or entirely substituted with fluorine.
  • Z represents - ⁇ ( ⁇ ) 4 or - ⁇ (0) ( ⁇ 2 ) 2 Represents
  • substituents X 1 and X 2 a methyl group, Echiru group, .eta. propyl group, an isopropyl group, eta _ butyl, s- butyl group, tert- heptyl group, n- Amiru group, such as isoamyl group Alkyl group, phenyl group, 2-methylphenyl group, 3-methynolephenyl group, 4-methynolephenyl group, 2,6-dimethinolephenyl group, 3,5-dimethylphenyl group, 2,5-dimethylphenyl group, Aryl groups such as 2,4-dimethinolephenyl group, 3,4-dimethylphenyl group, 4-tert-butyltinphenyl group, 2-methyl-4-tert-butylphenyl group, methoxy group, ethoxy group, n-propyloxy group , Isopropyloxy,
  • the phosphazene compound may be used singly or as a mixture of two or more types.
  • the phosphazene compound may be used as a general formula (1) based on the total weight of the phosphazene composition. It is preferable to contain 95% by weight or more having the structure of (2).
  • the concentration of phosphorus atoms contained in the molecule of the phosphazene compound is the concentration of phosphorus atoms contained in the molecule of the phosphazene compound.
  • the chain phosphazene compound having a chain structure has a substituent at the molecular terminal, and therefore has a lower phosphorus content than the cyclic phosphazene compound. Therefore, when the same amount is added, the cyclic phosphazene compound is more effective in imparting flame retardancy than the chain phosphazene compound. Therefore, in the present invention, a compound containing 95% by weight or more of the cyclic phosphazene compound based on the total weight of the phosphazene composition is preferable.
  • phosphazene compounds In consideration of the balance between heat resistance and flame retardancy, it is preferred that 90% or more of all the substituents in the phosphazene compound are phenoxy groups. Furthermore, these phosphazene compounds can be prepared by the technique disclosed in International Publication No. 00/09518 pamphlet by using a phenylene group, a biphenylene group, and a group shown below (4)
  • R ° is one C (CH 3) 2 one, -S0 2 _, _S-, or a O-, and 1 represents 0 or 1) it is cross-linked by a cross-linking group selected from the group consisting of May be.
  • phosphazene compounds having a crosslinked structure are specifically produced by reacting a dichlorophosphazene oligomer with an alkali metal salt of phenol and an alkali metal salt of an aromatic dihydroxy compound. These metal salts are added to the dichlorophosphazene oligomer in a slightly excessive amount over the stoichiometric amount.
  • the phosphazene compound is a mixture of compounds having different structures such as a cyclic body such as a cyclic trimer and a cyclic tetramer and a chain phosphazene compound, but the processability of the flame-retardant resin composition is a cyclic trimer.
  • a phosphazene compound containing at least 80% by weight of a cyclic trimer and / or a cyclic tetramer compound is preferred. More preferably, it contains at least 7% by weight of the cyclic trimer, and more preferably at least 80% by weight of the cyclic trimer.
  • the phosphazene compound can take various forms such as liquid, waxy, and solid depending on the type and structure of the substituent, but any form may be used as long as the effect of the present invention is not impaired. But it doesn't matter.
  • the bulk density is preferably 0.45 g / cm 3 or more and 0.75 gZ cm 3 or less. If the bulk density is less than 0.45 g / cmu, include many particles with small particle size Therefore, it is not preferable because the possibility of dust explosion also appears.
  • Alkali metal components such as sodium and potassium contained in the phosphazene compound are each 200 ppm or less, more preferably 50 ppm or less, and more preferably 50 ppm or less, based on the total weight of the phosphazene composition.
  • the metallic component is less than 5 Oppm. Also, based on the total weight of the phosphazene composition, the general formula
  • the content of the phosphazene compound in which at least one of the substituents X 1 is a hydroxyl group is preferably less than 1% by weight, and chlorine It is desirable that the content be 1000 ppm or less, preferably 500 ppm or less, and more preferably 300 ppm or less.
  • the alkali metal component exceeds 200 ppm
  • the hydroxyl-containing phosphazene compound is 1% by weight or more
  • the chlorine content exceeds 100 Oppm
  • the resin composition containing the phosphazene composition has problems such as inferior flame retardancy and hydrolysis resistance, and deteriorates electrical characteristics. Further, when such a phosphazene composition is added to a resin which is easily decomposed by an acid, the resin itself may be decomposed by phosphoric acid traces derived from P-OH, and the mechanical properties of the resin composition may be deteriorated. .
  • such an oxo compound has a oxo structure, but it is desirable that such an oxo compound be less than 1% by weight based on the total weight of the phosphazene composition, as in the case of the hydroxyl group-containing phosphazene compound.
  • the volatile matter content of the present invention when heated at 200 ° C for 2 hours is 0.02% by weight or more
  • the method for producing the phosphazene composition of not more than% by weight is not particularly limited as long as a phosphazene composition satisfying such requirements can be obtained.
  • the phosphazene yarn composition of the present invention can be suitably obtained, for example, by the following method.
  • phosphazene composition containing an appropriate amount of by-product can be obtained by appropriately controlling the water concentration in the reaction system, the purity of the raw materials, the reaction temperature, the reaction time, and the like.
  • the purification step it is necessary to appropriately control the solvent used for the purification, the temperature, the time, and in the drying step, the type of the drying apparatus, the drying temperature, the time, the degree of vacuum, the surface area of the phosphazene compound, and the like.
  • the phosphazene composition of the present invention can be obtained only by controlling the conditions of all these steps.
  • the phosphazene composition of the present invention can be suitably used in a wide range, and the method of use and the field of use are not particularly limited.
  • suitable use include flame retardants, rubbers, lubricants, lithium ion batteries, solar cells, fuel cells, non-combustible electrolytes, battery cases, release agents, release films, and roughened surfaces.
  • Materials, water repellents, and other uses such as fertilizers, anti-cancer agents, AIDS inhibitors, and dental materials, etc., have been proposed, all of which are suitably used.
  • phosphazene composition of the present invention a conventionally known non-halogen or non-antimony flame retardant can be used in addition to the phosphazene compound of the present invention as long as the effects of the present invention can be achieved.
  • Illustrative examples include triphenyl phosphate, tricresyl phosphate, trixyleninophosphate, cresinoresifinolephosphophosphate, xyleninolefinophosphate, dixyleninolephenophosphate, and resinoresinoinophosphate bisphosphate.
  • Phosphoric acid esters such as bisphenol A bisphosphate, metal hydroxides such as magnesium hydroxide, aluminum hydroxide and calcium aluminate, nitrogen compounds such as triazine compounds, melamine, melamine cyanurate, melamine resins, guanidine compounds, etc.
  • phosphazene composition of the present invention When using the phosphazene composition of the present invention, other additives such as a plasticizer, an antioxidant, and the like are added as long as the effects of the present invention are not impaired in order to impart other characteristics such as rigidity and dimensional stability.
  • stabilizers such as ultraviolet absorbers, curing agents, curing accelerators, antistatic agents, stress relaxation agents, release agents, flow regulators, dyes, sensitizers, coloring pigments, rubber polymers, and high conductivity. Molecules and the like can be added in advance.
  • the phosphazene composition of the present invention can be used in combination with a conventionally known resin.
  • the resin that can be used is not limited at all, and known curable resins and plastic resins are preferably used.
  • the plastic resins include polycarbonate, polyphenylene ether, polyphenylene phenol, polypropylene, polyethylene, polystyrene, high-impact polystyrene, elastomer-containing polystyrene, syndiotactic polystyrene, ABS resin, and polycarbonate.
  • Examples include alloys of ABS resin, polyalkylene terephthalate such as polyethylene terephthalate, polyethylene terephthalate, and polypropylene terephthalate, polyamides, thermopick liquid crystals, and the like. Alloys with polyphenylene ether and polyamide, alloys with polyphenylene ether and liquid crystal with thermopic opening Porifue two ether and Borifue two Rensarufuai de and Aroi of is preferably used.
  • Curable resins include unsaturated polyester resins, vinyl ester resins, diaryl phthalate resins, epoxy resins, cyanate resins, xylene resins, triazine resins, phenolic resins, urea resins, melamine resins, benzoguanamine resins, urethane resins, There are ketone resins, alkyd resins, furan resins, styrylpyridin resins, silicone resins, and synthetic rubbers, and they are particularly suitable for epoxy resins.
  • plastic resins and curable resins may be used alone or in a polymer alloy containing two or more kinds, or a polymer alloy of these resins and a rubber-like polymer. You may use as.
  • the epoxy resin suitably used in the present invention may be a compound having at least two epoxy groups in a molecule, and is not particularly limited. Examples include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, resorcinol epoxy resin, novolak epoxy resin, biphenyl epoxy resin, and multifunctional epoxy resin. These epoxy resins can be used alone or in combination of two or more.
  • the polyphenylene ether resin suitably used, a homopolymer or a copolymer having a repeating unit represented by the general formula (6) and / or (7) is used (where, R 7, R 8, R 9 , R 1 0, R ⁇ 1, R 1 2 is independently an alkyl group having a carbon 1 to 4, Ariru group, a halogen, a hydrogen. However, R 1 1 R 1 2 is Not hydrogen at the same time).
  • polyphenylene ether resins include poly (6-dimethyl-1,4-phenylene) ether and poly (2-methylenol 6) Cyl-1,4-phenylene ether, poly (2,6-tetraquinone 1,4-phenylene) ether, poly (2-ethynole 6-n-propyl-1,4-phenylene) Athenole, poly ( 2,6-di-n-propynolee 1,4-phenylene ether, poly (2-methyl-1-6-n-butynolee 1,4-phenylene) ether, poly (2-ethyl-6-isopropynolee 1,4) And homopolymers such as poly (2-methyl-6-hydroxy-6-hydroxy-1,4-phenylene) ether.
  • poly (2,6-dimethyl-1,4-phenylene) ether is preferable, and 2- (di-dimethyl) ether described in JP-A-63-301222 is preferred.
  • Alkylaminomethinole)-6-methinolephenylene ether unit 2-(N-alkynole N-phenylaminomethinole)-Polyphenylene ether containing, as a partial structure, 6-methinolephenylene etherene unit Is particularly preferred.
  • the polyphenylene ether copolymer is a copolymer having a phenylene ether structure as a main unit unit.
  • examples include copolymers of 2,6-dimethylphenol and 2,3,6-trimethylphenol, copolymers of 2,6-dimethylphenol and o-cresolone, or copolymers of 2,6-dimethylphenol and 2,6-dimethylphenol. , 3, 6-trimethylphenol and copolymers with o-cresol.
  • a modified polyphenylene ether resin obtained by modifying a part or all of the polyphenylene ether resin with a group containing a carboxy group, an epoxy group, an amino group, a hydroxyl group, a mercapto group, or a silyl group is used. These may be used alone or in combination of two or more.
  • the method for producing the functionalized modified polyphenylene ether resin is described in, for example, Japanese Patent Publication No. Sho 63-503332, Japanese Patent Publication No. 7-51818, and Japanese Patent Publication No. 3-61885.
  • triphenyl phosphate for example, triphenyl phosphate, tricresinole phosphate, trixyleninole phosphate, cresyl diphenyl phosphate, xylen diphenyl phosphate, dixylinolefeninophosphate, bisphenolinorebisphosphate, bisphenoleno A Phosphate esters such as phosphates, metal hydroxides such as magnesium hydroxide, aluminum hydroxide and calcium aluminate, triazine compounds, nitrogen-containing compounds such as melamine, melamine cyanurate, melamine resin, guanidine compounds, etc. And silicon compounds.
  • an inorganic filler can be added.
  • the filler type can be selected arbitrarily according to the purpose, but glass fiber, potassium titanate fiber, glass cloth, glass flake, carbon fiber, myriki, talc, silica, zircon, alumina, quartz, magnetite, graphite, and graphite Laren, gypsum, kaolin, silicon carbide, calcium carbonate, iron powder, copper powder and the like are generally used.
  • the resin composition using the phosphazene composition of the present invention other properties such as dimensional stability are further imparted, and other additives such as a plasticizer and an antioxidant are provided as long as the effects of the present invention are not impaired.
  • stabilizers such as UV absorbers, curing agents, curing accelerators, antistatic agents, stress relief agents, release agents, flow regulators, dyes, sensitizers, coloring pigments, rubber polymers, etc. Can be added.
  • alkali metal hydroxides or alkaline earth metal hydroxides such as magnesium hydroxide and aluminum hydroxide containing water of crystallization
  • zinc borate compounds It is also possible to further improve the flame retardancy by adding an inorganic silicon compound such as silica, kaolin clay, and talc, and a zinc stannate compound.
  • the method of mixing the phosphazene composition and the resin in the present invention is not particularly limited as long as the effects of the present invention can be achieved.
  • the phosphazene composition and the resin, and the additives to be added as necessary may be mixed at the same time, or the phosphazene composition and the additives may be mixed in advance into the resin after being previously mixed. Also, each The components can be blended sequentially.
  • the method of blending the phosphazene composition and the thermoplastic resin in the present invention is not particularly limited as long as the effects of the present invention can be achieved.
  • kneading and manufacturing can be performed using a kneading machine such as an extruder, a heating roll, a kneader, and a bumper mixer.
  • kneading with an extruder is preferable in terms of productivity.
  • the kneading temperature may be in accordance with the preferred processing temperature of the base resin, and is in the range of 200 to 360 ° C, preferably in the range of 240 to 320 ° C.
  • the components for producing the resin composition are mixed without solvent or, if necessary, using a solvent that can be mixed uniformly, and then the solvent is removed.
  • the solvent for dissolving each component is not particularly limited as long as it can uniformly mix various materials and does not impair the effects of the present invention when used.
  • Examples include toluene, xylene, acetone, methylethylketone, getinoleketone, cyclopentanone, cyclohexanone, dimethinoleformamide, methinoreserosonolev, methanole, ethanolanole, n-prononoone, iso.
  • Examples thereof include nonole, n-butanol, n-pentanole, n-hexanol, cyclohexanol, n-hexane, and n-pentane.
  • a method of kneading and manufacturing using a kneading machine such as a heating roll, an eder, a bread palli mixer, an extruder, and the like, cooling, pulverizing, and further performing molding by transfer molding, injection molding, compression molding, or the like.
  • the curing method varies depending on the curing agent used, but is not particularly limited. Examples include thermal curing, light curing, curing by pressure, curing by moisture, and the like, but are not limited as long as the curing method can achieve the effects of the present invention. The order of mixing the components is not particularly limited as long as the effects of the present invention can be achieved.
  • a preferred method of producing the resin composition can be used depending on the suitability of each resin.
  • the resin composition using the phosphazene composition of the present invention comprises: a coil bobbin; Electrical components such as power transformers, connectors, polarizing yokes, printed wiring boards, printed circuit boards, encapsulants, electrical insulating materials, electrical coatings, laminates, high-speed arithmetic varnishes, advanced composite materials, electric wires, Applications for electrical and electronic materials such as antenna agents, cables, high-performance molding materials, paints, adhesives, coating materials, tableware, buttons, textiles, paper treatment agents, decorative boards, UV curable inks, sealants, synthetic leather, Insulation buffering materials, waterproof coatings, anticorrosive linings, binders for molds, lacquers, paints, ink modifiers, resin modifiers, aircraft interior agents, composite materials matrix, household goods, OA equipment, AV equipment It is optimally used for battery cases, lighting equipment, automotive parts applications, housing applications, ETC, ITC, mobile phones, etc.
  • the measurement was carried out at a set temperature of 150 ° C. by the force fisher method.
  • the phosphazene composition is sifted through a sieve having an opening of 7 10 ⁇ , and 10 g of the sifted phosphazene composition is taken in a petri dish, and the temperature and the relative humidity are 95 ° C and 95 ° C, respectively, in a thermo-hygrostat.
  • Humidification was carried out for 6 hours under the condition of% Rh, and the water content before and after the humidification was measured by the Karl Fisher method at a set temperature of 150 ° C.
  • Loose apparent specific gravity (Aerated Bulk Density) was measured using a powder tester manufactured by Hosokawa Micron Corp. to determine the bulk density.
  • the relative dielectric constant and the relative dielectric loss tangent were measured at a frequency of 4 GHz by a cylindrical cavity resonator method using a molded piece of about 120 mm in thickness and about 2 mm in thickness.
  • thermo-hygrostat set at 90 ° C and a relative humidity of 95% Rh. After that, the relative permittivity and relative tangent of the molded piece were measured at a frequency of 4 GHz using a cylindrical cavity resonator.
  • Concentrated sulfuric acid was added to the sample for incineration, and after dissolution in diluted nitric acid, quantitative analysis of lithium and sodium was performed using an atomic absorption spectrometer.
  • the measurement was performed by one method of ion chromatography.
  • a molded piece with a thickness of about 2 mm and 50 x 5 Omm is humidified in a constant temperature and humidity chamber at a set temperature of 85 ° C and a relative humidity of 95% Rh for 56 hours, and the difference in weight before and after humidification is measured. By doing so, the water absorption rate was obtained. In addition, the color change of the test piece was visually observed.A color change was hardly observed before and after moisture absorption, and a color change was confirmed as X. confirmed.
  • PPE Polyphenylene ether
  • C matrix polystyrene measured in toluene solution? Rubber reinforced polystyrene with a sp / c of 0.74 and a volume average rubber particle diameter of 1.5 // m.
  • AER 250 (manufactured by Asahi Kasei Epoxy Co.); epoxy equivalent: 184-186.
  • the phosphazene compositions were synthesized by the methods of Examples 1 to 6 and Comparative Examples 1 to 3.
  • FR 1 In a 2 L four-necked flask equipped with a Dean-Stark tube equipped with a Dimroth type cooling tube, a dropping funnel, a thermometer and a stirrer, 160.2 g of phenol, solid potassium hydroxide 1 1 2 .2 g and 500 ml of xylene were charged, and heated to reflux at an oil bath temperature of 145 ° C. under a nitrogen stream. The generated water was taken out of the system by azeotropy with xylene, and only xylene was returned to the system. The mixture was heated and refluxed until distillation of the generated water was completed, and it took four hours to complete the reaction.
  • reaction vessel Place the reaction vessel in an ice bath, cool the reaction solution to 10 ° C or less, and keep the reaction solution at 10 ° C or less, and add 72.1 g of chlorophosphazene oligomer (95% trimer, tetramer).
  • a mixed solution of 4%, 1% of other components) and 250 ml of xylene was added dropwise using a dropping funnel over 30 minutes. After the dropwise addition, the reaction solution was heated again, and heated and refluxed at an oil bath temperature of 145 ° C for 7 hours. The end point of the reaction was followed by 31 PN MR, and the reaction was performed until no signal derived from the halogen-substituted phosphazene compound was observed.
  • reaction solution After completion of the reaction, cool the reaction solution to 80 ° C, maintain the temperature at 0 to 85 ° C, wash twice with 10% aqueous sodium hydroxide solution, and then wash with dilute hydrochloric acid once and water four times. went.
  • the reaction solution was dried over anhydrous magnesium sulfate, magnesium sulfate was filtered off, and the solvent was distilled off at 80 ° C and 1 OmmHg or less.
  • the product was dried under reduced pressure at 1 mmHg or less for 5 hours in an open at a set temperature of 105 ° C. to obtain 132.5 g of a phenoxyphosphazene mixture.
  • the obtained massive phosphazene composition was ground using a Henschel mixer.
  • composition of the obtained phosphazene was determined by " ⁇ PNMR. Trimer: 96%, tetramer 3%, other phosphazene compounds: 1%.
  • FR 2 In a 2 L four-necked flask equipped with a Dean-Stark tube equipped with a Dimroth-type cooling tube, a dropping funnel, a thermometer and a stirrer, phenol 1.55.1 g, solid potassium hydroxide 1 33.6 g and 500 ml of xylene were charged and heated to reflux at an oil bath temperature of 145 ° C. under a nitrogen stream. The generated water was taken out of the system by azeotropy with xylene, and only xylene was returned to the system. The mixture was heated and refluxed until distillation of the generated water was completed, and it took four hours to complete the reaction.
  • reaction vessel Place the reaction vessel in an ice bath, cool the reaction solution to 10 ° C or less, and keep the reaction solution at 10 ° C or less, and add a mixed solution of 70.Og of chlorophosphazene oligomer and 25 Om1 of xylene. The solution was dropped using a dropping funnel over 30 minutes. After the dropwise addition, the reaction solution was heated again, and heated under reflux at an oil bath temperature of 145 ° C for 7 hours. The end point of the reaction was followed by 1 PNMR, and the reaction was continued until no signal derived from the halogen-substituted phosphazene compound was observed.
  • the reaction solution was cooled to 80 ° C., washed twice with a 10% aqueous sodium hydroxide solution while maintaining the temperature at 70 to 85 ° C., and further washed once with dilute hydrochloric acid and four times with water.
  • the reaction solution is dried with anhydrous magnesium sulfate, and the magnesium sulfate is separated by filtration.
  • the solvent is distilled off at 80 ° C and below 10 mmHg, and then dried in an oven at a set temperature of 105 ° C and below ImmHg for 5 hours under reduced pressure. As a result, 126.3 g of a phosphazene composition containing a mixture of phenoxyphosphazene compounds was obtained.
  • the obtained massive phosphazene composition was pulverized using a Henschel mixer.
  • the composition of the resulting phosphazene was more determined in 3 1 PNMR. Trimer: 88%, tetramer 8%, other phosphazene compounds 4%.
  • the bulk density was 0.47 g / cm 3 .
  • FR3 In a 2 L four-necked flask equipped with a Dean-Stark tube equipped with a Dimroth-type cooling tube, a dropping funnel, a thermometer and a stirrer, 158.0 g of phenol, solid lithium hydroxide 11 1 0.0 g of benzene and 500 ml of benzene were charged and heated to reflux at an oil bath temperature of 145 ° C. under a nitrogen stream. The generated water was taken out of the system by azeotropic distillation with benzene, and only benzene was returned to the system. Heating and refluxing until the distillation of the generated water was completed, took 6 hours to complete the reaction.
  • reaction vessel Place the reaction vessel in an ice bath, cool the reaction solution to 1o ° C or less, and keep the reaction solution at 10 ° C or less, and add a mixed solution of 72.1 g of chlorophosphazene oligomer and 250 ml of chlorobenzene. The solution was dropped over 30 minutes using a dropping funnel. After the dropwise addition, the reaction solution was heated again, and heated to reflux at an oil bath temperature of 145 ° C for 7 hours. The end point of the reaction was followed by 3 1 PNMR, the reaction was carried out until a signal from the halogen-substituted Hosufaze emission compound is not observed.
  • reaction solution was cooled to 80 ° C., washed twice with a 10% aqueous sodium hydroxide solution while maintaining the temperature at 70 to 85 ° C., and further washed once with dilute hydrochloric acid and four times with water.
  • the reaction solution is dried over anhydrous magnesium sulfate, magnesium sulfate is filtered off, the solvent is distilled off at 80 ° C and 1 OmmHg or less, and then dried under reduced pressure at 1 mmHg or less in an oven at a set temperature of 105 ° C for 5 hours.
  • 211.8 g of a phosphazene composition containing a mixture of phenoxyphosphazene compounds was obtained.
  • the obtained massive phosphazene composition was pulverized using a Henschel mixer.
  • the composition of the obtained phosphazene was determined by P-band R. Trimer: 84%, tetramer 14%, other phosphazene compounds: 2%.
  • the amount of volatiles was 0.586% by weight.
  • the bulk density was 0.55 g / cm 3 .
  • FR5 A 2 L four-necked flask equipped with a Dean-Stark tube equipped with a Dimroth-type cooling tube, a dropping funnel, a thermometer and a stirrer was charged with 500.0 g of phenol and 1000.1 solid potassium hydroxide. g and xylene 50 Om 1 were charged, and heated to reflux at an oil bath temperature of 145 ° C under a nitrogen stream. The generated water was taken out of the system by azeotropy with xylene, and only xylene was returned to the system. The mixture was heated and refluxed until distillation of the generated water was completed, and it took four hours to complete the reaction.
  • reaction solution Place the reaction vessel in an ice bath, cool the reaction solution to 10 ° C or less, and keep the reaction solution at 10 ° C or less, and mix a solution of 70.3 g of chlorophosphazene oligomer and 25 Om1 of xylene.
  • the reaction solution was heated again, and refluxed with heating at an oil bath temperature of 145 ° C for 6 hours.
  • the end point of the reaction was followed by 31 PNMR, and the reaction was carried out until no signal derived from the halogen-substituted phosphazene compound was observed.
  • the reaction solution was cooled to 80 ° C and maintained at a temperature of 70 to 85 ° C.
  • the mixture was washed twice with an aqueous sodium hydroxide solution, and once with dilute hydrochloric acid and four times with water.
  • the reaction solution was dried with anhydrous magnesium sulfate, magnesium sulfate was separated by filtration, and the solvent was distilled off at 80 ° C and below 10 mmHg.
  • the obtained crude crystals are washed with methanol (10 Om1), and then dried in an oven at a set temperature of 105 ° C under reduced pressure of not more than ImmHg for 5 hours to obtain a mixture of the phenoxyphosphazene compound.
  • the obtained phosphazene composition 1 18.1 g was obtained.
  • the obtained massive phosphazene composition was pulverized using a Henschel mixer.
  • the composition of the obtained phosphazene is: 93.6% trimer, 4.0% tetramer, 2.4% other phosphazene compounds.
  • the volatile content is 0.088% by weight and the bulk density is 0.49 g / cm. Met.
  • FR6 In a 2 L four-necked flask equipped with a Dean-Stark tube equipped with a Dimroth-type cooling tube, a dropping funnel, a thermometer and a stirrer, 555.1 g of phenol and 100.0 g of solid potassium hydroxide And xylene 50 Om1 were charged and heated to reflux at an oil bath temperature of 145 ° C. The generated water was taken out of the system by azeotropy with xylene, and only xylene was returned to the system. The reaction was completed by heating and refluxing until the distilling of the generated water was completed. It took four hours.
  • reaction vessel Place the reaction vessel in an ice bath, cool the reaction solution to 1 ° C or less, and keep the reaction solution at 10 ° C or less, and add a mixed solution of 72.2 g of chlorophosphazene oligomer and 25 Oml of xylene. The solution was dropped using a dropping funnel over 30 minutes. After the dropwise addition, the reaction solution was heated again, and refluxed with heating at an oil bath temperature of 145 ° C for 6 hours. The end point of the reaction was followed by 31 PNMR.
  • reaction solution was cooled to 80 ° C, washed twice with a 10% aqueous sodium hydroxide solution at a temperature of 70 to 85 ° C, and further washed once with dilute hydrochloric acid and four times with water.
  • the reaction solution was dried over anhydrous magnesium sulfate, and the magnesium sulfate was filtered off.
  • the solvent was distilled off at 80 ° C and below 10 mmHg. Drying yielded 24.1 g of a phosphazene composition containing a mixture of phenoxyphosphazene compounds.
  • the obtained massive phosphazene composition was pulverized using a Hensil mixer.
  • the composition of the obtained phosphazene is as follows: trimer: 90.3%, tetramer: 4.3%, phosphazene trimer compound having one hydroxyl group in the molecule: 0.1%, monochrome pentaphenoki Cyphosphazene trimer: 0.4%, other phosphazene compounds 4.9%.
  • the volatile content was 0.451% by weight and the bulk density was 0.57 g / cm.
  • FR 7 A 2 L four-necked flask equipped with a Dean-Stark tube equipped with a Dimroth-type cooling tube, a dropping funnel, a thermometer and a stirrer was charged with 177.0 g of phenol and 75 OmL of xylene. Below, the oil bath temperature was set to 145 ° C. A solution prepared by dissolving 120.2 g of potassium hydroxide in purified water to form a 40% aqueous solution was added dropwise over 4 hours using a dropping funnel, and the water in the system was azeotropically mixed with xylene. It was sequentially removed from the system. After the dropwise addition of the aqueous potassium hydroxide solution, the mixture was heated under reflux until the distilling of the generated water was completed, and it took 90 minutes to complete the reaction.
  • reaction vessel Place the reaction vessel in an ice bath, cool the reaction solution to 10 ° C or less, and while maintaining the reaction solution at 10 ° C or less, mix a mixed solution of 85.lg of chlorophosphazene oligomer and 25 Om1 of xylene with The solution was dropped using a dropping funnel over 30 minutes. After the dropwise addition, the reaction solution was heated again, and heated under reflux at an oil bath temperature of 145 ° C for 7 hours. The end point of the reaction was followed by 31 PNMR.
  • the reaction solution was dried over anhydrous magnesium sulfate, magnesium sulfate was separated by filtration, and the solvent was distilled off at 80 ° C and 1 OmmHg or less. It was dried under reduced pressure to obtain 154 g of a phosphazene composition containing a mixture of phenoxyphosphazene compounds.
  • the composition of the obtained phosphazene was determined by PNMR above.
  • Trimer 87%, tetramer: 10%, other phosphazene compounds: 3%.
  • the volatile content was 0.017% by weight.
  • the bulk density was 0. 42 g / cm 3.
  • FR8 Purification of 167.0 g of phenol and 100.lg of potassium hydroxide in a 2 L four-necked flask equipped with a Dean-Stark tube equipped with a Dimroth condenser, a dropping funnel, a thermometer and a stirrer.
  • a 40% aqueous solution of oxidizing water dissolved in water and 500 ml of xylene were charged, and heated and refluxed at an oil bath temperature of 145 ° C under a nitrogen stream.
  • the water in the system and the water formed are azeotropic with xylene It was taken out of the system, and only xylene was returned to the system.
  • the mixture was heated and refluxed until the distillation of the generated water was completed, and it took 8 hours to complete the reaction.
  • reaction vessel Place the reaction vessel in an ice bath, cool the reaction solution to 10 ° C or less, and drop a mixed solution of 80.lg of chlorophosphazene oligomer and 250 ml of xylene while keeping the reaction solution at 10 ° C or less.
  • the solution was added dropwise using a funnel over 30 minutes. After the dropwise addition, the reaction solution was heated again, and refluxed with heating at an oil bath temperature of 145 ° C for 6 hours. The end point of the reaction was followed by 3 1 PNMR. After the completion of the reaction, the reaction solution was cooled to 40 ° C. or lower, neutralized with dilute hydrochloric acid, and washed three times with water.
  • the reaction solution is dried over anhydrous magnesium sulfate, magnesium sulfate is filtered off, the solvent is distilled off at 80 ° C and less than 10 mmHg, and then dried under reduced pressure at 1 mmHg or less in an oven at a set temperature of 80 ° C for 3 hours.
  • 151 g of a phosphazene composition containing a mixture of phenoxyphosphazene compounds was obtained.
  • the composition of the resulting phosphazene was obtained by 3 1 PNMR.
  • Trimer 81%, tetramer: 12%, phosphazene compound having one hydroxyl group in the molecule: 1%, monochrome-opening pentaphenoxyphosphazene trimer: 2%, other phosphazene compounds 4% .
  • the volatile content was 5.12% by weight. 0
  • the bulk density was 0. 76 g / cm
  • FR 9 In a 2 L four-necked flask equipped with a Dean-Stark tube equipped with a Dimroth condenser, a dropping funnel, a thermometer and a stirrer, 555.1 g of phenol, 100.1 g of potassium hydroxide, purification 25 ml of water and 500 ml of benzene with a monochrome mouth were charged, and heated and refluxed at an oil bath temperature of 145 ° C. The generated water was taken out of the system by azeotropy with monochlorobenzene, and only the benzene with monochrome mouth was returned to the system. The mixture was heated and refluxed until the distillation of the generated water was completed, and it took 7 hours to complete the reaction.
  • reaction vessel Place the reaction vessel in an ice bath, cool the reaction solution to 10 ° C or lower, and keep the reaction solution at 10 ° C or lower, and mix a 72.2 g chlorophosphazene oligomer and 250 ml monochlorobenzene. Over 30 minutes using a dropping funnel It was dropped. After the dropwise addition, the reaction solution was heated again, and heated and refluxed at an oil bath temperature of 145 ° C for 6 hours. The end point of the reaction was followed by 31 PNMR. After the completion of the reaction, the reaction solution was cooled to 50 ° C. or lower, washed twice with a 10% aqueous sodium hydroxide solution, and further washed once with dilute hydrochloric acid and three times with water.
  • reaction solution was dried over anhydrous magnesium sulfate, magnesium sulfate was filtered off, the solvent was distilled off at 80 ° C and 1 OmmHg or less, and then dried under reduced pressure at 95 ° C and 1 mmHg or less for 5 hours to obtain phenoxyphosphazene.
  • a phosphazene composition containing a mixture of compounds was obtained in a yield of 121. 1 g.
  • the composition of the obtained phosphazene is as follows: trimer: 62.1%, tetramer: 26.4%, phosphazene trimer compound having one hydroxyl group in the molecule: 0.8%, monochrome-opened pentaphenoxyphosphazene Trimer: 1.2%, other phosphazene compounds 9.5%.
  • the volatile content was 1.24% by weight, and the bulk density was 0.62 g / cm "" 1 .
  • the phosphazene composition (FR2) obtained in Example 2 was pulverized using a Henschel mixer, and the pulverization time was changed to obtain phosphazene yarns having different bulk densities.
  • the obtained phosphazene composition was absorbed for 6 hours in the same manner as in Examples 7 to 10, and the water content before and after the absorption was measured.
  • the phosphazene compositions obtained in Examples 1, 2, 5, and 6 and Comparative Examples 2 and 3 were each measured for water content and weight retention before and after moisture absorption, and the results in Tables 3 and 4 were obtained. . Tables 3 and 4 also show the volatile content and bulk density of these phosphazene compositions.
  • each component was mixed in the ratio shown below, and fed to a twin screw extruder with a screw diameter of 25 mm with the maximum temperature of the heating cylinder set at 300 ° C, and melt-mixed at a screw rotation speed of 300 rpm. Then, the strand was cooled and cut to obtain a resin composition pellet. Next, physical properties test pieces were molded from the obtained resin composition pellets at a cylinder setting temperature of 240 to 290 ° C by injection molding, and physical properties tests were performed by the above-described test methods, and the results in Tables 3 and 4 were obtained. Got.
  • AE R250 84.5% by weight was kept at 110 ° C, 15.5% by weight of a curing agent was added thereto, heated with stirring for 90 seconds, and then poured into a mold. Then 100 at 100 ° C / 0 kgf / cm 2 for 2 minutes. CZl 0 kgf / cm 2 for 2 minutes, 1 00 ° CZ40 kgf / cm 2 in 30 minutes and cured in a hot press to obtain a molding piece for moisture measurements. Table 6 shows the results of the moisture resistance measurement.
  • the phosphazene composition having a volatile content of 0.02% by weight or more and 1.0% by weight or less when heated at 200 ° C for 2 hours contains no chlorine-based compound or bromine-based compound, and is added to the resin. hydrolysis resistance when it is possible to provide a resin composition which can be highly hold the balance of electrical properties stability in flame retardancy and 1 GH Z or more high-frequency region.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

A phosphazene composition whose volatile matter content at heating at 200ºC for 2 hr is in the range of 0.02 to 1.0 wt.%. This phosphazene composition is excellent in hydrolysis resistance and when added to a resin, can provide a resin composition that retains highly desirable balance among hydrolysis resistance, flame retardancy and electrical characteristic stability at high-frequency region of 1 GHz or over.

Description

明 細 書 ホスファゼン組成物 技術分野  Description Phosphazene composition Technical field
本発明は、 耐加水分解性に優れたホスファゼン組成物、 及びそれを有効成 分とする難燃剤及び難燃性樹脂組成物に関する。  The present invention relates to a phosphazene composition having excellent hydrolysis resistance, and a flame retardant and a flame retardant resin composition containing the phosphazene composition as an effective component.
背景技術 Background art
ホスファゼン組成物は優れた特性を有することから、 様々な分野で研究がなさ れており、 広範囲で好適に使用されている。 一例として、 高分子材料に対する難 燃剤、 ゴム、 潤滑剤、 リチウムイオン電池、 太陽電池、 燃料電池、 不燃性電解液、 電池電槽、 離形剤、 離形膜、 粗化面形成材、 撥水剤、 その他には肥料や、 制癌剤、 エイズ抑制剤、 歯科用材料等の医薬用途等、 様々な用途に提案されている。  Since phosphazene compositions have excellent properties, they have been studied in various fields and are widely and suitably used. Examples include flame retardants for polymer materials, rubber, lubricants, lithium ion batteries, solar cells, fuel cells, non-combustible electrolytes, battery cases, release agents, release films, roughened surface forming materials, water repellent It has been proposed for a variety of uses, including pharmaceuticals such as fertilizers, anticancer agents, AIDS inhibitors, and dental materials.
その中で難燃剤について述べれば、 従来から易燃性樹脂の難燃化の手法とし て、 樹脂中に塩素系化合物、 臭素系化合物、 三酸化アンチモンなどを添加す る方法が用いられてきた。 し力 し、 これらは環境保護の観点、 毒性の面等か らも好ましくないと言われており、 難燃化手法の改善が求められていた。 そ こで、 塩素、 臭素や金属酸化物を含有しない代替の難燃剤としてリン系難燃 剤を用いた難燃化が検討されている。 リン系難燃剤として、 従来、 赤燐、 リン 酸エステル、 縮合リン酸エステル等が使用されている。 しかし、 赤燐は加水分 解性の問題や、 腐食性のリン酸が発生することによる金型腐食等の問題がある。 リン酸エステルや縮合リン酸エステルは比較的低いリン濃度の為に多量添加が 必要であり、 その機械的物性、 熱的物性等が悪化する上、 添加量が増大するこ とによるコストの増大等の問題があった。 また、 樹脂中に添加した場合、 ガラ ス転移温度の低下が大きく、 耐熱性も劣っていた。 さらには、 電気 ·電子機器 用途での使用を考えた場合、 耐加水分解性にも劣っていた。  Regarding flame retardants, the method of adding flame retardants to flame-retardant resins by adding chlorine compounds, bromine compounds, antimony trioxide, etc. to the resins has been used. However, these are said to be unfavorable from the viewpoint of environmental protection, toxicity, and the like, and there has been a demand for an improvement in flame-retardant methods. Therefore, the use of phosphorus-based flame retardants as alternative flame retardants that do not contain chlorine, bromine or metal oxides is being studied for flame retardancy. Conventionally, red phosphorus, phosphate esters, condensed phosphate esters, and the like have been used as phosphorus-based flame retardants. However, red phosphorus has problems such as hydrolysis and mold corrosion due to generation of corrosive phosphoric acid. Phosphate esters and condensed phosphate esters need to be added in large amounts due to their relatively low phosphorus concentration, which deteriorates their mechanical and thermal properties, and increases the cost due to the increase in the amount added. There was a problem. Also, when added to the resin, the glass transition temperature was greatly reduced and the heat resistance was poor. Furthermore, when used for electrical and electronic equipment, the hydrolysis resistance was poor.
その一方で、 ホスファゼン系化合物は、 燐含有率が高い上に、 耐熱性、 耐加水 分解性が比較的良好であること、 また、 優れた難燃性を持つことから注目されて いる。 近年、 ホスファゼン系化合物を用いた樹脂組成物の難燃化手法が既に幾 つか提案されている。 一例を挙げると、 特開平 0 8— 3 0 2 1 2 4号公報には、 スチレン系樹脂を含有する熱可塑性樹脂組成物とホスファゼン化合物とポリフエ ノール化合物からなる難燃性樹脂組成物が、 特開平 1 0— 2 5 9 2 9 2号公報に は、 フエノキシホスファゼンをエポキシ樹脂に添加した難燃性エポキシ組成物が 記載されている。 これらの提案は難燃性付与という観点からは有効である。 但し、 これらの提案は、 耐加水分解性や優れた電気特性安定性等の特性も必要とされる 分野での使用を考えた場合、 十分とは言いがたいものであった。 また、 日本国特 許第 3 0 5 3 6 1 7号には、 J I S— K 2 2 4 6規格即ち、 沸騰水浴上で 2時間 加熱後の揮発分の少ないホスファゼン組成物に関しての記載がある。 しかしなが ら、 揮発性成分の含有量が難燃性、 耐加水分解性、 電気特性安定性に与える効果 については何等触れておらず、 該方法で得られたホスファゼン組成物を用レヽた場 合も耐加水分解性や電気特性安定性の点で十分とは言レ、難!/、ものであった。 On the other hand, phosphazene compounds are attracting attention because of their high phosphorus content, relatively good heat resistance and hydrolysis resistance, and excellent flame retardancy. In recent years, there have been several techniques for flame retarding resin compositions using phosphazene compounds. Some suggestions have been made. As an example, Japanese Patent Application Laid-Open No. 08-302124 discloses a flame-retardant resin composition comprising a thermoplastic resin composition containing a styrene resin, a phosphazene compound and a polyphenol compound. Japanese Unexamined Patent Publication No. Hei 10-2599292 discloses a flame-retardant epoxy composition in which phenoxyphosphazene is added to an epoxy resin. These proposals are effective from the viewpoint of imparting flame retardancy. However, these proposals could not be said to be sufficient when used in fields where properties such as hydrolysis resistance and excellent stability of electrical properties are also required. Further, Japanese Patent No. 3,053,617 describes the JIS-K2246 standard, that is, a phosphazene composition having a low volatile content after heating in a boiling water bath for 2 hours. However, there is no mention of the effect of the content of volatile components on flame retardancy, hydrolysis resistance, and stability of electrical properties, and the phosphazene composition obtained by the method is not used. In any case, it is difficult to say that it is sufficient in terms of hydrolysis resistance and electrical characteristics stability! / Was the thing.
これらの従来技術からは、 以下に開示するように本発明者らが見出したホスフ ァゼン組成物中に含有される揮発性成分の効果について一切読み取れない。 即ち、 ホスファゼン組成物中に含有される揮発性成分が該組成物の難燃性、 耐加水分解 性、 電気特性安定性に与える驚くべき効果については従来技術からは窺い知るこ とは出来ず、 本発明により初めて明らかにされたものである。  From these prior arts, there is no reading about the effect of the volatile components contained in the phosphazene composition found by the present inventors as disclosed below. That is, the surprising effect of the volatile component contained in the phosphazene composition on the flame retardancy, hydrolysis resistance, and electrical property stability of the composition cannot be inferred from the prior art. This has been clarified for the first time by the present invention.
発明の開示 Disclosure of the invention
本発明は、 塩素、 臭素化合物を含まず、 耐湿性、 難燃性、 及び 1ギガへルツ (GH z ) 以上の高周波領域における電気特性安定性に優れたホスファゼン組成物 を提供するものである。  The present invention provides a phosphazene composition which does not contain chlorine and bromine compounds, and is excellent in moisture resistance, flame retardancy, and electrical property stability in a high frequency region of 1 gigahertz (GHz) or higher.
本発明者らは、 上記課題を達成する技術を鋭意検討した結果、 2 0 0 °Cの高温 加熱時の揮発分量が特定の範囲内であるホスファゼン組成物が、 驚くべきことに、 耐吸湿性に優れ、 又、 樹脂組成物中に添加した場合、 電気特性の安定性及び難燃 性に優れた樹脂組成物を与えることを見出した。  The present inventors have intensively studied a technique for achieving the above object, and as a result, it has been found that a phosphazene composition having a volatile content at a high temperature of 200 ° C. within a specific range is, surprisingly, resistant to moisture absorption. It has been found that when added to a resin composition, a resin composition excellent in stability of electrical properties and flame retardancy is provided.
すなわち、 本発明は、  That is, the present invention
( 1 ) 少なくとも一種のホスファゼン化合物を含有するホスファゼン組成物 であって、 該ホスファゼン組成物からの揮発分が、 2 0 0 で 2時間加熱した時 に該ホスファゼン組成物の全重量に対して 0 . 0 2重量0 /0以上、 1 . 0重量0 /0以 下である、 上記ホスファゼン糸且成物。 (1) A phosphazene composition containing at least one phosphazene compound, wherein a volatile content from the phosphazene composition is 0 .0% based on the total weight of the phosphazene composition when heated at 200 for 2 hours. 0 2 wt 0/0 or more, 1.0 wt 0/0 or more The phosphazene yarn composition below.
(2) ホスファゼン組成物からの揮努分が、 該ホスファゼン組成物中に残存す るホスファゼン化合物合成における反応溶媒、 原料、 及び該反応溶媒及び/また は該原料から生成する副生成物の中から選ばれる少なくとも一つを含有する、 上 記 (1) 項に記載のホスファゼン組成物。  (2) The volatilization from the phosphazene composition is carried out from the reaction solvent, the raw material, and the by-product generated from the reaction solvent and / or the raw material in the synthesis of the phosphazene compound remaining in the phosphazene composition. The phosphazene composition according to the above (1), containing at least one selected from the group consisting of:
(3) 1 50°Cでカールフィッシヤー法により測定した含有水分量が、 1 00 O p pm以下である、 上記 (1) 又は (2) 項に記載のホスファゼン組成物。 (3) The phosphazene composition according to the above (1) or (2), wherein the water content measured by the Karl Fisher method at 150 ° C. is 100 Oppm or less.
(4) 1 50°Cでカールフィッシヤー法により測定した含有水分量が、 6 50 p pm以下である、 上記 (1) 又は (2) 項に記載のホスファゼン組成物。 (5) ホスファゼン組成物の総重量に基づいて、 環状ホスファゼン化合物 を 9 5重量%以上含有する、 上記 (1) 〜 (4) 項のいずれか 1項に記載のホ スファゼン組成物。 (4) The phosphazene composition according to the above (1) or (2), wherein the water content measured by the Karl Fischer method at 150 ° C. is 650 ppm or less. (5) The phosphazene composition according to any one of the above (1) to (4), which contains 95% by weight or more of the cyclic phosphazene compound based on the total weight of the phosphazene composition.
(6) ホスファゼン組成物の総重量に基づいた一種または複数種のアル力リ 金属元素含有量がそれぞれ 2 0 Oppm以下であり、 且つ、 P— OH結合を有す る化合物含有量が 1重量%以下であり、 且つ、 塩素含有量が 1 000 p p m以 下である、 上記 (1) 〜 (5) 項のいずれか 1項に記載のホスファゼン組成物。  (6) The content of one or more metal elements based on the total weight of the phosphazene composition is 20 ppm or less, respectively, and the content of the compound having a P—OH bond is 1% by weight. The phosphazene composition according to any one of (1) to (5) above, wherein the phosphazene composition has a chlorine content of 1,000 ppm or less.
(7) ホスファゼン組成物の総重量に基づいた一種または複数種のアル力リ 金属元素含有量がそれぞれ 5 0 ppm以下であり、 且つ、 P— OH結合を有する 化合物含有量が 1重量%以下であり、 且つ、 塩素含有量が 5 0 0 p p m以下で ある、 上記 (1) 〜 (5) 項のいずれか 1項に記載のホスファゼン組成物。 (7) When the content of one or more kinds of metal elements based on the total weight of the phosphazene composition is 50 ppm or less, respectively, and the content of the compound having a P-OH bond is 1% by weight or less. The phosphazene composition according to any one of (1) to (5) above, wherein the phosphazene composition has a chlorine content of 500 ppm or less.
(8) 前記ホスファゼン化合物中の全置換基のうち 9 0%以上の置換基が フエノキシ基であり、 且つ、 リン含有量がホスファゼン組成物の総重量に基づ いて 1 3. 0〜1 4. 5重量0 /0である、 上記 (1) 〜 (7) 項のいずれか 1項 に記載のホスファゼン組成物。 (8) Out of all the substituents in the phosphazene compound, 90% or more of the substituents are phenoxy groups, and the phosphorus content is 13.0 to 14.4 based on the total weight of the phosphazene composition. 5 by weight 0/0, (1) to (7) phosphazene composition according to any one of clauses.
(9) TG Aによって不活性ガス雰囲気下、 昇温速度 1 0°C/分で常温から 6 00°Cまで加熱した時の 5 00°Cにおける重量保持率が 1 5重量%以下であ る、 上記 (1) 〜 (8) 項のいずれか 1項に記載のホスファゼン組成物。  (9) When heated from room temperature to 600 ° C at a heating rate of 10 ° C / min under an inert gas atmosphere by TGA, the weight retention at 500 ° C is 15% by weight or less. The phosphazene composition according to any one of the above (1) to (8).
( 1 0) TG Aによって不活性ガス雰囲気下、 昇温速度 1 0°C/分で常温か ら 600°Cまで加熱した時の 500°Cにおける重量保持率が 1 0重量%以下であ る、 上記 (1) 〜 (8) 項のいずれか 1項に記載のホスファゼン組成物。 (10) When heated from normal temperature to 600 ° C at a heating rate of 10 ° C / min under an inert gas atmosphere with TGA, the weight retention at 500 ° C is 10% by weight or less. The phosphazene composition according to any one of the above (1) to (8).
(1 1) 嵩密度が 0. 45 gZ cm3以上である、 上記 (1) 〜 (1 0) 項の レ、ずれか 1項に記載のホスファゼン組成物。 (11) The phosphazene composition according to any one of (1) to (10) above, wherein the phosphazene composition has a bulk density of 0.45 gZ cm 3 or more.
(1 2) 樹脂及び上記 (1) 〜 (1 1) 項のいずれか 1項に記載のホスファ ゼン組成物を含む、 難燃性樹脂組成物。  (12) A flame-retardant resin composition comprising a resin and the phosphazene composition according to any one of the above (1) to (11).
(1 3) 樹脂が、 不飽和ポリエステル樹脂、 ビニルエステル樹脂、 ジァリル フタレート樹脂、 エポキシ樹脂、 シァネート樹脂、 キシレン樹脂、 トリアジン 樹脂、 フ ノール樹脂、 ユリア樹脂、 メラミン樹脂、 ベンゾグアナミン樹脂、 ウレタン樹脂、 ケトン樹脂、 アルキド榭脂、 フラン樹脂、 スチリルピリジン樹 脂、 シリコン樹脂及ぴ合成ゴムからなる群から選ばれた少なくとも一種の硬化 性樹脂を含む、 上記 (12) 項に記載の難燃性樹脂組成物。  (13) The resin is an unsaturated polyester resin, vinyl ester resin, diaryl phthalate resin, epoxy resin, cyanate resin, xylene resin, triazine resin, phenol resin, urea resin, melamine resin, benzoguanamine resin, urethane resin, ketone resin The flame-retardant resin composition according to the above (12), comprising at least one curable resin selected from the group consisting of alkyd resin, furan resin, styrylpyridine resin, silicone resin and synthetic rubber.
(14) 樹脂が、 ポリカーボネート、 ポリフエ二レンエーテル、 ポリフエ 二レンサノレフアイ ド、 ポリプロピレン、 ポリエチレン、 ポリスチレン、 A B S樹脂、 ポリアルキレンテレフタレート、 ポリアミ ド、 サーモトロピック液 晶及びエラストマ一含有ポリスチレンからなる群から選ばれた少なくとも一種 の熱可塑性樹脂を含む、 上記 (12) 項に記載の難燃性樹脂組成物。  (14) The resin is selected from the group consisting of polycarbonate, poly (phenylene ether), poly (phenylene sanololefide), polypropylene, polyethylene, polystyrene, ABS resin, polyalkylene terephthalate, polyamide, thermotropic liquid crystal, and polystyrene containing elastomer. The flame-retardant resin composition according to the above (12), comprising at least one thermoplastic resin.
(1 5) リン原子濃度が難燃性樹脂組成物の総重量に基づいて 0. 5重量% 〜8. 0重量%である、 上記 (12) 〜 (14) 項のいずれか 1項に記載の難燃 性樹脂組成物。  (15) Any one of the above items (12) to (14), wherein the phosphorus atom concentration is from 0.5% by weight to 8.0% by weight based on the total weight of the flame-retardant resin composition. Flame-retardant resin composition.
(1 6) 1ギガへルツ以上の高周波領域で使用される電気電子機器部品又は筐 体に用いられる、 上記 (1 2) 〜 (15) 項のいずれか 1項に記載の難燃樹脂組 成物。  (16) The flame-retardant resin composition according to any one of the above (12) to (15), which is used for electrical or electronic equipment parts or housings used in a high frequency range of 1 gigahertz or more. object.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
一般に、 ホスファゼン組成物のような難燃剤はポリエチレン内袋付紙袋、 アルミ内袋付紙袋、 ポリエチレン内袋等に入れたものをドラム缶やフレコン 等で包装されるなど、 ある程度外気と遮断された環境下で運搬、 保管される。 しかし、 運搬、 保管条件によっては高温多湿条件となり うる環境下で扱われ ることもよくあることであり、 こういった条件下に置かれた場合、 ホスファ ゼン組成物は吸湿し、 品質劣化を起こすという問題を有する。 即ち、 貯蔵安 定性に劣る。 吸湿したホスファゼン組成物を原料として用いた樹脂組成物は、 耐加水分解性、 電気特性安定性に劣ることになる。 In general, flame retardants such as phosphazene compositions are protected from the outside air to some extent, for example, paper bags with polyethylene inner bags, paper bags with aluminum inner bags, polyethylene inner bags, etc. are packaged in drums or flexible containers. Transported and stored at However, depending on the conditions of transportation and storage, it is often handled in an environment that can be hot and humid. The Zen composition has a problem that it absorbs moisture and causes quality deterioration. In other words, storage stability is poor. A resin composition using the absorbed phosphazene composition as a raw material is inferior in hydrolysis resistance and electrical property stability.
一般的にホスファゼン化合物に限らず、 難燃剤は揮発分を含有しないことが好 ましいとされる。 それに対し、 本発明においては、 本願で規定する揮発分はむし ろ、 品質安定の為の必須成分であり、 2 0 0 °Cで二時間加熱した時の重量変化 率 (揮発性成分含有量に相当すると考えてよい) が 0 . 0 2重量%以上、 1 . 0重量%以下、 好ましくは 0 . 0 2重量%以上、 0 . 8重量%以下、 さらに好ま しくは 0 . 0 4重量%以上、 0 . 8重量%以下であるホスファゼン組成物が、 高 温多湿条件下においても耐吸湿性に優れ、 それに伴って、 電気特性安定性に優れ る、 即ち貯蔵安定性に優れることを見出した。 本発明のホスファゼン組成物は高 温高湿下、 長期間貯蔵しても吸湿せず、 品質が安定している。 揮発分量が 0 . 0 2重量%未満である場合は吸湿時の吸水率が高くなる上、 電気特性安定性に劣る。 一方 1 . 0重量%を超える場合は、 電気特性安定性及び難燃性が劣り、 好ましく なく、 また、 樹脂組成物とした場合に、 成型片に膨れが生じたりするなど、 表面 外観が悪化する傾向にある。  In general, flame retardants are not limited to phosphazene compounds and preferably do not contain volatile components. On the other hand, in the present invention, the volatile component specified in the present application is an essential component for stabilizing the quality, and the weight change rate when heated at 200 ° C. for 2 hours (to the content of the volatile component). 0.02% by weight or more and 1.0% by weight or less, preferably 0.02% by weight or more, 0.8% by weight or less, and more preferably 0.04% by weight or more. It has been found that the phosphazene composition having a content of 0.8% by weight or less has excellent moisture absorption resistance even under high temperature and high humidity conditions, and accordingly, has excellent electrical property stability, that is, excellent storage stability. The phosphazene composition of the present invention does not absorb moisture even when stored for a long time under high temperature and high humidity, and is stable in quality. When the amount of volatile components is less than 0.02% by weight, the water absorption at the time of moisture absorption becomes high, and the stability of electric characteristics is poor. On the other hand, when the content exceeds 1.0% by weight, the stability of the electrical properties and the flame retardancy are inferior, which is not preferable. There is a tendency.
一般にホスファゼン化合物は、 ハロゲン化リンと塩化アンモニゥムとを有機溶 媒中で反応させてハロゲン化ホスファゼンオリゴマーを得、 さらに有機溶媒中で ヒドロキシィ匕合物のアルカリ金属塩を作用させることにより、 得ることができる。 ホスファゼン化合物の合成反応に好適に使用される有機溶媒としては、 特に規定 はされないが、 例えばテトラヒドロフラン、 ジォキサン等のエーテル系溶媒、 ト ノレェン、 キシレン、 トリメチノレベンゼン、 ェチノレベンゼン、 プロピノレベンゼン等 の芳香族炭化水素系溶媒、 モノクロ口ベンゼン、 ジクロロベンゼン等のハロゲン 化芳香族炭化水素系溶媒、 ジメチルホルムアミ ド、 ジェチルホルムアミド等のァ ミド系溶媒等が挙げられる。 この合成反応において、 使用する反応溶媒、 反応条 件により、 様々な低沸点の副生成物が生成することもあり、 これらが最終生成物 中に揮発性成分として残存することがある。  Generally, a phosphazene compound is obtained by reacting a phosphorus halide with ammonium chloride in an organic solvent to obtain a halogenated phosphazene oligomer, and further reacting the alkali metal salt of the hydroxy conjugate in an organic solvent. Can be. The organic solvent suitably used for the synthesis reaction of the phosphazene compound is not particularly limited, but examples thereof include ether solvents such as tetrahydrofuran and dioxane, and aromatic solvents such as tolylene, xylene, trimethinolebenzene, ethynolebenzene, and propynolebenzene. Examples include aromatic hydrocarbon solvents, halogenated aromatic hydrocarbon solvents such as monochlorobenzene and dichlorobenzene, and amide solvents such as dimethylformamide and getylformamide. In this synthesis reaction, various low-boiling by-products may be produced depending on the reaction solvent and reaction conditions used, and these may remain as volatile components in the final product.
本発明におけるホスファゼン組成物からの揮発分には、 その組成物中に残存す るホスファゼン化合物合成における反応溶媒や、 フエノール類、 アルコール類等 の低沸点の残存原料が含まれる。 残存する溶媒種は、 当然使用する反応溶媒によ つて異なる。 また、 揮発分としては、 使用原科又は使用溶媒から副生した、 ある いは使用溶媒と使用原料との反応により副生した構造不明の低沸点不純物等も挙 げられる。 使用原料からの副生成物の一例として、 ハロゲン化リンから生成した リン酸系化合物や、 原料フ ノール類、 アルコール類から副生する二量ィヒ化合物 等の多量化化合物等が挙げられる。 また、 使用溶媒由来の副生成物の一例として、 エーテル系溶媒を使用した場合に開環反応により得られる化合物等が挙げられる。 使用溶媒と使用原料との反応による副生成物の一例として、 原料フエノール類、 アルコール類と溶媒との反応により得られるエーテル類等が挙げられる。 The volatile matter from the phosphazene composition in the present invention includes a reaction solvent in the synthesis of the phosphazene compound remaining in the composition, phenols, alcohols, and the like. Low boiling point residual raw materials. The type of solvent remaining naturally depends on the reaction solvent used. In addition, examples of volatile components include low-boiling-point impurities with an unknown structure, which are by-produced from the substance used or the solvent used, or produced by the reaction between the solvent used and the raw material used. Examples of by-products from the raw materials used include phosphoric acid-based compounds generated from phosphorus halides, and multimeric compounds such as raw phenols and dimeric compounds produced as by-products from alcohols. Further, as an example of a by-product derived from the solvent used, a compound obtained by a ring-opening reaction when an ether-based solvent is used, and the like can be mentioned. Examples of by-products of the reaction between the solvent used and the raw materials used include raw phenols, ethers obtained by reacting alcohols with the solvent, and the like.
本発明のホスファゼン組成物に含有される水分量は 1000 p pm以下、 好ま しくは 800 p p m以下、 さらに好ましくは 650 p p m以下、 さらには 500 p pm以下、 より好ましくは 30 O p pm以下であることが望ましい。 1000 p pmを超える場合は、 電気特性安定性、 耐加水分解性に劣ることになり好まし くない。  The amount of water contained in the phosphazene composition of the present invention is 1000 ppm or less, preferably 800 ppm or less, more preferably 650 ppm or less, further 500 ppm or less, more preferably 30 ppm or less. Is desirable. If it exceeds 1000 ppm, the stability of the electrical properties and the hydrolysis resistance are poor, which is not preferable.
本発明で用いられるホスファゼン化合物は、 例えば James E. Mark, Harry R. Allcock, Robert West 著、 "Inorganic Polymers" Pre t ice-Hall  The phosphazene compound used in the present invention is described in, for example, "Inorganic Polymers" Pretice-Hall by James E. Mark, Harry R. Allcock, Robert West.
International, Inc., 1992, p61- pl40に記載されている。 例えば、 一般式 (1) International, Inc., 1992, p61-pl40. For example, general formula (1)
Figure imgf000007_0001
Figure imgf000007_0001
(1) (1)
で示される環状ホスファゼン化合物及び Z又は、 一般式 (2)
Figure imgf000008_0001
A cyclic phosphazene compound represented by the formula and Z or a general formula (2)
Figure imgf000008_0001
で示される鎖状ホスファゼン化合物が挙げられる。 And a chain phosphazene compound represented by the formula:
ここで、 式中の nは 3〜25の整数、 mは 3〜 1 0000の整数であり、 置換基 X 1及び X 2は各々独立に炭素数が 1〜 6のアルキル基、 炭素数が 6へ 1 1のァリール基、 フッ素原子、 又は下記一般式 (3) Here, n in the formula is an integer of 3 to 25, m is an integer of 3 to 10000, and the substituents X 1 and X 2 are each independently an alkyl group having 1 to 6 carbon atoms, and To 1 1 aryl group, fluorine atom, or the following general formula (3)
Figure imgf000008_0002
で示される置換基を有するァリールォキシ基 (式中の RA、 R2、 R3、 R4及 ぴ R 5は各々独立に水素原子、 フッ素原子、 炭素数が 1〜 5のアルキル基または アルコキシ基、 又はフエニル基の中からなる群より選ればれた少なくとも一種の 置換基を表す) 、 又はナフチルォキシ基、 又は炭素数が 1〜6のアルコキシ基や アルコキシ置換アルコキシ基で表される置換基のうち、 少なくとも一種の置換基 であり、 置換基上の水素は一部又は全部がフッ素に置換されていても構わない。 また、 式中の Yは - N=P(0) (X2)又は- N=P(X2) 3を表し、 Zは - Ρ(Χ ) 4又は - Ρ(0) (Χ2) 2を表す。
Figure imgf000008_0002
Aryloxy group having a substituent represented by (wherein R A , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, a fluorine atom, an alkyl group or an alkoxy group having 1 to 5 carbon atoms) , Or at least one substituent selected from the group consisting of phenyl), or a naphthyloxy group, or a substituent represented by an alkoxy group having 1 to 6 carbon atoms or an alkoxy-substituted alkoxy group And at least one type of substituent, and hydrogen on the substituent may be partially or entirely substituted with fluorine. In the formula, Y represents -N = P (0) (X 2 ) or -N = P (X 2 ) 3 , and Z represents -Ρ (Ρ) 4 or -Ρ (0) (Χ 2 ) 2 Represents
上記置換基 X 1及び X 2の一例として、 メチル基、 ェチル基、 η—プロピル 基、 イソプロピル基、 η_ブチル基、 s—ブチル基、 t e r t—プチル基、 n—ァミル基、 イソアミル基等のアルキル基、 フエ二ル基、 2—メチルフエ ニル基、 3—メチノレフェニル基、 4—メチノレフェニル基、 2, 6—ジメチノレ フエニル基、 3, 5—ジメチルフエニル基、 2, 5—ジメチルフエニル基、 2, 4—ジメチノレフェニル基、 3, 4ージメチルフエ二ノレ基、 4— t e r t ーブチノレフエ二ノレ基、 2ーメチルー 4一 t e r t一ブチルフエニル基等のァ リール基、 メ トキシ基、 エトキシ基、 n—プロピルォキシ基、 イソプロピル ォキシ基、 n—ブチルォキシ基、 t e r t一プチルォキシ基、 s一プチノレ才 キシ基、 n—ァミルォキシ基、 イソアミルォキシ基、 t e r t—アミルォキ シ基、 n—へキシルォキシ基等のアルコキシ基、 メ トキシメ トキシ基、 メ ト キシエトキシ基、 メ トキシエトキシメ トキシ基、 メ トキシエトキシエトキシ 基、 メ トキシプロピルォキシ基等のアルコキシ置換アルコキシ基、 フエノキ シ基、 2—メチルフエノキシ基、 3—メチルフエノキシ基、 4 _メチルフエ ノキシ基、 2, 6—ジメチルフエノキシ基、 2 , 5—ジメチルフエノキシ基、 2 , 4—ジメチルフエノキシ基、 3, 5—ジメチルフエノキシ基、 3, 4一 ジメチルフヱノキシ基、 2, 3, 4一トリメチルフエノキシ基、 2, 3 , 5 ートリメチルフエノキシ基、 2, 3, 6—トリメチルフエノキシ基、 2 , 4, 6—トリメチルフエノキシ基、 2, 4, 5—トリメチルフエノキシ基、 3, 4 , 5—トリメチルフエノキシ基、 2—ェチルフエノキシ基、 3—ェチルフ エノキシ基、 4—ェチルフエノキシ基、 2, 6—ジェチルフエノキシ基、 2, 5—ジェチルフエノキシ基、 2 , 4—ジェチルフエノキシ基、 3, 5—ジェ チルフエノキシ基、 3 , 4—ジェチノレフエノキシ基、 4一 n—プロピノレフェ ノキシ基、 4—ィソプロピルフエノキシ基、 4— t e r t—ブチノレフエノキ シ基、 2—メチノレー 4— t e r t—ブチノレフエノキシ基、 2 _フエ二ノレフエ ノキシ基、 3—フエニルフエノキシ基、 4—フエユルフェノキシ基等のアル キル置換フエノキシ基、 ァリール置換フエノキシ基、 ナフチル基、 ナフチル ォキシ基等が挙げられ、 これらの基の一部又は全部の水素がフッ素に置き換 わっていても構わない。 As an example of the substituents X 1 and X 2, a methyl group, Echiru group, .eta. propyl group, an isopropyl group, eta _ butyl, s- butyl group, tert- heptyl group, n- Amiru group, such as isoamyl group Alkyl group, phenyl group, 2-methylphenyl group, 3-methynolephenyl group, 4-methynolephenyl group, 2,6-dimethinolephenyl group, 3,5-dimethylphenyl group, 2,5-dimethylphenyl group, Aryl groups such as 2,4-dimethinolephenyl group, 3,4-dimethylphenyl group, 4-tert-butyltinphenyl group, 2-methyl-4-tert-butylphenyl group, methoxy group, ethoxy group, n-propyloxy group , Isopropyloxy, n-butyloxy, tert-butyloxy, s-butyl Alkoxy group, n-amyloxy group, isoamyloxy group, tert-amyloxy group, n-hexyloxy group, etc., alkoxy group, methoxy methoxy group, methoxy ethoxy group, methoxy ethoxy methoxy group, methoxy ethoxy ethoxy group Group, alkoxy-substituted alkoxy group such as methoxypropyloxy group, phenoxy group, 2-methylphenoxy group, 3-methylphenoxy group, 4-methylphenoxy group, 2,6-dimethylphenoxy group, 2,5-dimethyl Phenoxy, 2,4-dimethylphenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 2,3,4-trimethylphenoxy, 2,4-dimethylphenoxy 3,5-trimethylphenoxy group, 2,3,6-trimethylphenoxy group, 2,4,6-trimethylphenoxy group, 2,4,5-trimethylphenoxy group, 3,4,5-trimethylphenoxy, 2-ethylphenoxy, 3-ethylphenoxy, 4-ethylphenoxy, 2,6-getylphenoxy, 2,5-getylphenoxy, 2,4-Getyl phenoxy group, 3,5-Getyl phenoxy group, 3,4-Jetinolephenoxy group, 41-n-Propinolephenoxy group, 4-Isopropylphenoxy group, 4- Alkyl-substituted phenoxy groups such as tert-butynolephenoxy group, 2-methynoleic 4-tert-butynolephenoxy group, 2-phenyl-2-enophenoxy group, 3-phenylphenoxy group, and 4-phenylphenoxy group And aryl-substituted phenoxy, naphthyl, and naphthyloxy groups. Some or all of the hydrogens in these groups may be replaced by fluorine.
本発明のホスファゼン組成物において、 ホスファゼン化合物は、 一種単独 で用いても、 二種以上の混合物として用いても良いが、 ホスファゼン組成物 の総重量に基づいて、 上で例示した一般式 (1 ) 及ぴ (2 ) の構造を有する ものを 9 5重量%以上含有することが好ましい。  In the phosphazene composition of the present invention, the phosphazene compound may be used singly or as a mixture of two or more types. However, the phosphazene compound may be used as a general formula (1) based on the total weight of the phosphazene composition. It is preferable to contain 95% by weight or more having the structure of (2).
難燃性を決める因子の一つとして、 ホスファゼン化合物の分子中に含有する リン原子の濃度が挙げられる。 ホスファゼン化合物において、 鎖状構造を有する 鎖状ホスファゼン化合物は分子末端に置換基を有することから、 環状ホスファゼ ン化合物よりもリン含有率が低くなる。 従って、 同量を添加する場合、 鎖状ホス ファゼン化合物よりも環状ホスファゼン化合物の方がより難燃性付与効果が高い と考えられることから、 本発明においては、 ホスファゼン組成物の総重量に基 づいて、 環状ホスファゼン化合物を 95重量%以上含有するものが好ましい。 また、 耐熱性 ·難燃性のバランスを考慮すると、 ホスファゼン化合物中の 全置換基のうち 90%以上の置換基がフエノキシ基であることが好ましい。 さらに、 これらのホスファゼン化合物は国際公開番号 00/0 9 5 1 8号 パンフレッ トに開示されている技術により、 フエ二レン基、 ビフエ二レン基 および下記に示す基 (4)
Figure imgf000010_0001
One of the factors that determine flame retardancy is the concentration of phosphorus atoms contained in the molecule of the phosphazene compound. Among the phosphazene compounds, the chain phosphazene compound having a chain structure has a substituent at the molecular terminal, and therefore has a lower phosphorus content than the cyclic phosphazene compound. Therefore, when the same amount is added, the cyclic phosphazene compound is more effective in imparting flame retardancy than the chain phosphazene compound. Therefore, in the present invention, a compound containing 95% by weight or more of the cyclic phosphazene compound based on the total weight of the phosphazene composition is preferable. In consideration of the balance between heat resistance and flame retardancy, it is preferred that 90% or more of all the substituents in the phosphazene compound are phenoxy groups. Furthermore, these phosphazene compounds can be prepared by the technique disclosed in International Publication No. 00/09518 pamphlet by using a phenylene group, a biphenylene group, and a group shown below (4)
Figure imgf000010_0001
(4)  (Four)
(式中 R°は、 一 C (CH3) 2一、 —S02_、 _S―、 または一 O—を、 1は 0又は 1を表す) からなる群より選ばれた架橋基によって架橋されていても 良い。 これらの架橋構造を有するホスファゼン化合物は、 具体的にはジクロロホ スファゼンオリゴマーにフエノールのアルカリ金属塩おょぴ芳香族ジヒドロキシ 化合物のアルカリ金属塩を反応させることにより製造される。 これらのアル力リ 金属塩は、 ジクロロホスファゼンオリゴマーに対して理論量よりもやや過剰に添 加される。 (Wherein R ° is one C (CH 3) 2 one, -S0 2 _, _S-, or a O-, and 1 represents 0 or 1) it is cross-linked by a cross-linking group selected from the group consisting of May be. These phosphazene compounds having a crosslinked structure are specifically produced by reacting a dichlorophosphazene oligomer with an alkali metal salt of phenol and an alkali metal salt of an aromatic dihydroxy compound. These metal salts are added to the dichlorophosphazene oligomer in a slightly excessive amount over the stoichiometric amount.
また、 ホスファゼン化合物は環状三量体、 環状四量体等の環状体や鎖状ホ スファゼン化合物といった構造の異なる化合物の混合物であるが、 難燃性樹 脂組成物の加工性は環状三量体、 環状四量体含有率が高いほど好ましい傾向 にあり、 具体的には環状三量体及び/又は環状四量体化合物を 80重量%以 上含むホスファゼン化合物が好ましい。 さらに好ましくは、 環状三量体を 7 ◦重量%以上、 より好ましくは環状三量体を 80重量%以上含有することが 好ましい。  Further, the phosphazene compound is a mixture of compounds having different structures such as a cyclic body such as a cyclic trimer and a cyclic tetramer and a chain phosphazene compound, but the processability of the flame-retardant resin composition is a cyclic trimer. The higher the content of the cyclic tetramer, the more preferable it is. Specifically, a phosphazene compound containing at least 80% by weight of a cyclic trimer and / or a cyclic tetramer compound is preferred. More preferably, it contains at least 7% by weight of the cyclic trimer, and more preferably at least 80% by weight of the cyclic trimer.
また、 ホスファゼン化合物は、 置換基の種類や構造の違いによって液状、 ワックス状、 固体状等、 さまざまな形態を取り得るが、 本発明の効果を損な わないものであれば、 どのような形態でも構わない。 固体状態の場合、 嵩密 度が 0. 45 g/ cm3以上、 0. 75 gZ cm3以下であることが好ましい。 嵩密度が 0. 45 g/cmu未満の場合、 粒子径の小さいものを多く含むこと になることから、 粉塵爆発の可能性も出てくる為好ましくない。 The phosphazene compound can take various forms such as liquid, waxy, and solid depending on the type and structure of the substituent, but any form may be used as long as the effect of the present invention is not impaired. But it doesn't matter. In the case of a solid state, the bulk density is preferably 0.45 g / cm 3 or more and 0.75 gZ cm 3 or less. If the bulk density is less than 0.45 g / cmu, include many particles with small particle size Therefore, it is not preferable because the possibility of dust explosion also appears.
ホスファゼン化合物中に含有されるナトリゥム、 カリウム等のアルカリ金属成 分は、 ホスファゼン組成物の総重量に基づいて、 それぞれ 200 p pm以下、 さ らに好ましくは 50 p p m以下であり、 より好ましくは、 全アル力リ金属成分が 5 O p pm以下である。 また、 ホスファゼン組成物の総重量に基づいて、 一般式 Alkali metal components such as sodium and potassium contained in the phosphazene compound are each 200 ppm or less, more preferably 50 ppm or less, and more preferably 50 ppm or less, based on the total weight of the phosphazene composition. The metallic component is less than 5 Oppm. Also, based on the total weight of the phosphazene composition, the general formula
(1) において置換基 X1のうち少なくとも一つが水酸基であるホスファゼン化 合物、 即ち P— OH結合を含有するホスファゼン化合物の含有量が、 1重量%未 満であることが望ましく、 且つ、 塩素含有量が 1000 p p m以下、 好ましくは 500 p pm以下、 さらに好ましくは 300 p p m以下であることが望ましい。 ホスファゼン組成物の総重量に基づいて、 アル力リ金属成分が 200 p pmを超 え、 且つ、 水酸基含有ホスファゼン化合物が 1重量%以上、 塩素含有量が 100 O p pmを超える場合、 そのようなホスファゼン組成物を含有する樹脂組成物は、 難燃性、 耐加水分解性に劣る上、 電気特性を悪化させる等の問題がある。 また、 そのようなホスファゼン組成物を酸により分解しやすい樹脂に添加しようとした 場合、 P— OHに由来するリン酸痕によって樹脂そのものが分解し、 樹脂組成物 の機械特性を低下させることもある。 In (1), the content of the phosphazene compound in which at least one of the substituents X 1 is a hydroxyl group, that is, the content of the phosphazene compound containing a P—OH bond is preferably less than 1% by weight, and chlorine It is desirable that the content be 1000 ppm or less, preferably 500 ppm or less, and more preferably 300 ppm or less. Based on the total weight of the phosphazene composition, if the alkali metal component exceeds 200 ppm, the hydroxyl-containing phosphazene compound is 1% by weight or more, and the chlorine content exceeds 100 Oppm, The resin composition containing the phosphazene composition has problems such as inferior flame retardancy and hydrolysis resistance, and deteriorates electrical characteristics. Further, when such a phosphazene composition is added to a resin which is easily decomposed by an acid, the resin itself may be decomposed by phosphoric acid traces derived from P-OH, and the mechanical properties of the resin composition may be deteriorated. .
一般式 (1) で表される環状構造を有し、 かつ置換基 X1の少なくとも一つが 水酸基であるホスファゼン化合物は、 一般式 (5) (式中、 a + b = nである) で表されるォキソ体構造をとることもあるが、 このようなォキソ体化合物も水酸 基含有ホスファゼン化合物の場合と同様にホスファゼン組成物の全重量に基づい て 1重量%未満であることが望ましい。 一般式 (2) で表される鎖状構造を有す るホスファゼン化合物でも同様である。 Table have a cyclic structure represented by the general formula (1), and phosphazene compound in which at least one of the substituents X 1 is a hydroxyl group, the general formula (5) (wherein, a a + b = n) In some cases, such an oxo compound has a oxo structure, but it is desirable that such an oxo compound be less than 1% by weight based on the total weight of the phosphazene composition, as in the case of the hydroxyl group-containing phosphazene compound. The same applies to the phosphazene compound having a chain structure represented by the general formula (2).
Figure imgf000011_0001
Figure imgf000011_0001
(5)  (Five)
本発明の 200 °Cで 2時間加熱した時の揮発分が 0. 02重量%以上、 重量%以下であるホスファゼン組成物の製造方法は、 そのような要求を満足する ホスファゼン組成物を得ることができる方法であれば特に限定されるものではな い。 本発明のホスファゼン糸且成物は、 例えば下記の方法により好適に得ることが できる。 The volatile matter content of the present invention when heated at 200 ° C for 2 hours is 0.02% by weight or more, The method for producing the phosphazene composition of not more than% by weight is not particularly limited as long as a phosphazene composition satisfying such requirements can be obtained. The phosphazene yarn composition of the present invention can be suitably obtained, for example, by the following method.
ホスファゼン化合物の合成工程においては、 副生成物の抑制は高度に行う必要 はなく、 寧ろある程度の副生成物は本発明のホスファゼン組成物においては好適 である。 例えば、 反応系中の水分濃度、 原料の純度、 反応温度、 反応時間等を適 切に制御することにより、 適度な量の副生成物を含有するホスファゼン組成物が 得られる。 ·  In the process of synthesizing the phosphazene compound, it is not necessary to control by-products to a high degree, and rather, some by-products are suitable in the phosphazene composition of the present invention. For example, a phosphazene composition containing an appropriate amount of by-product can be obtained by appropriately controlling the water concentration in the reaction system, the purity of the raw materials, the reaction temperature, the reaction time, and the like. ·
精製工程においては、 精製に使用する溶媒、 温度、 時間、 乾燥工程においては、 乾燥装置の種類、 乾燥温度、 時間、 減圧度、 ホスファゼン化合物の表面積等を適 切に制御する必要がある。 本発明のホスファゼン組成物は、 これら全ての工程の 条件を制御して初めて得られるものである。  In the purification step, it is necessary to appropriately control the solvent used for the purification, the temperature, the time, and in the drying step, the type of the drying apparatus, the drying temperature, the time, the degree of vacuum, the surface area of the phosphazene compound, and the like. The phosphazene composition of the present invention can be obtained only by controlling the conditions of all these steps.
本発明のホスファゼン組成物は、 広範囲で好適に使用することができ、 使用方 法、 使用分野は特に規定されない。 好適な使用方法として、 一例として挙げると、 難燃剤、 ゴム、 潤滑剤、 リチウムイオン電池、 太陽電池、 燃料電池、 不燃性電解 液、 電池電槽、 離形剤、 離形膜、 粗化面形成材、 撥水剤、 その他には肥料や、 制 癌剤、 エイズ抑制剤、 歯科用材料等の医薬用途等にも提案されており、 いずれも 好適に使用されるが、 特に高分子材料の難燃剤、 潤滑剤、 リチウムイオン電池、 燃料電池、 太陽電池、 不燃性電解液、 電池電槽、 離形膜として好適に使用される。 本発明のホスファゼン組成物を使用する場合、 本発明の効果が達成できる範 囲で、 本発明のホスファゼン化合物以外に、 従来公知のノンハロゲン、 ノンアン チモンの難燃剤を併用することができる。 例示すると、 トリフエニルホスフエ一 ト、 トリクレジルホスフエート、 トリキシレニノレホスフェート、 クレジノレジフエ 二ノレホスフエ一ト、 キシレニノレジフエ二ノレホスフエ一ト、 ジキシレニノレフエ二ノレ ホスフェート、 レゾノレシノ一ノレビスホスフェート、 ビスフエノーノレ Aビスホスフ エート等の燐酸エステル類、 水酸化マグネシウム、 水酸ィ匕アルミニウム、 アルミ ン酸カルシウム等の金属水酸化物、 トリァジン化合物、 メラミン、 メラミンシァ ヌレート、 メラミン樹脂、 グァニジン化合物等の含窒素化合物、 ホウ酸亜鉛化 合物、 スズ酸亜鉛化合物、 さらにはシリカ、 カオリンクレー、 タルクなどの無 機ケィ素化合物、 含珪素有機化合物等が挙げられる。 The phosphazene composition of the present invention can be suitably used in a wide range, and the method of use and the field of use are not particularly limited. Examples of suitable use include flame retardants, rubbers, lubricants, lithium ion batteries, solar cells, fuel cells, non-combustible electrolytes, battery cases, release agents, release films, and roughened surfaces. Materials, water repellents, and other uses such as fertilizers, anti-cancer agents, AIDS inhibitors, and dental materials, etc., have been proposed, all of which are suitably used. It is suitably used as a fuel, a lubricant, a lithium ion battery, a fuel cell, a solar cell, a non-combustible electrolyte, a battery case, and a release film. When the phosphazene composition of the present invention is used, a conventionally known non-halogen or non-antimony flame retardant can be used in addition to the phosphazene compound of the present invention as long as the effects of the present invention can be achieved. Illustrative examples include triphenyl phosphate, tricresyl phosphate, trixyleninophosphate, cresinoresifinolephosphophosphate, xyleninolefinophosphate, dixyleninolephenophosphate, and resinoresinoinophosphate bisphosphate. Phosphoric acid esters such as bisphenol A bisphosphate, metal hydroxides such as magnesium hydroxide, aluminum hydroxide and calcium aluminate, nitrogen compounds such as triazine compounds, melamine, melamine cyanurate, melamine resins, guanidine compounds, etc. Zinc borate Compounds, zinc stannate compounds, inorganic silicon compounds such as silica, kaolin clay and talc, and silicon-containing organic compounds.
本発明のホスファゼン組成物を使用する場合、 剛性や寸法安定性等の他の特 性を付与するため'、 本発明の効果を損なわない範囲で他の添加剤、 例えば可塑 剤、 酸化防止剤、 及び紫外線吸収剤などの安定剤、 硬化剤、 硬化促進剤、 帯電 防止剤、 応力緩和剤、 離型剤、 流動調整剤、 染料、 増感材、 着色用顔料、 ゴム 質重合体、 導電性高分子等を予め添加することができる。  When using the phosphazene composition of the present invention, other additives such as a plasticizer, an antioxidant, and the like are added as long as the effects of the present invention are not impaired in order to impart other characteristics such as rigidity and dimensional stability. And stabilizers such as ultraviolet absorbers, curing agents, curing accelerators, antistatic agents, stress relaxation agents, release agents, flow regulators, dyes, sensitizers, coloring pigments, rubber polymers, and high conductivity. Molecules and the like can be added in advance.
本発明のホスファゼン組成物は、 従来公知の樹脂と組み合わせて使用する ことができる。 使用することができる樹脂は何等限定されるものではなく、 公知の硬化性樹脂、 可塑性樹脂が好適に使用される。 一例を挙げると、 可塑 性樹脂としては、 ポリカーボネート、 ポリフエ二レンエーテル、 ポリフヱニ レンサノレフアイ ド、 ポリプロピレン、 ポリエチレン、 ポリスチレン、 ハイイ ンパク トポリスチレン、 エラス トマ一含有ポリスチレン、 シンジオタクチッ クポリスチレン、 A B S樹脂、 ポリカーボネートと A B S榭脂のァロイ、 ポ リプチレンテレフタレート、 ポリエチレンテレフタレート、 ポリプロピレン テレフタレート等のポリアルキレンテレフタレート、 ポリアミ ド、 サーモト 口ピック液晶等が挙げられ、 特にポリフエ二レンエーテル、 ポリスチレン、 ポ リフエ二レンエーテノレとポリスチレンのァロイ、 ポリフエ二レンエーテノレとポ リアミ ドのァロイ、 ポリフヱニレンエーテルとサーモト口ピック液晶とのァロ ィ、 ポリフエ二レンエーテルとボリフエ二レンサルフアイ ドとのァロイが好適 に使用される。  The phosphazene composition of the present invention can be used in combination with a conventionally known resin. The resin that can be used is not limited at all, and known curable resins and plastic resins are preferably used. As an example, the plastic resins include polycarbonate, polyphenylene ether, polyphenylene phenol, polypropylene, polyethylene, polystyrene, high-impact polystyrene, elastomer-containing polystyrene, syndiotactic polystyrene, ABS resin, and polycarbonate. Examples include alloys of ABS resin, polyalkylene terephthalate such as polyethylene terephthalate, polyethylene terephthalate, and polypropylene terephthalate, polyamides, thermopick liquid crystals, and the like. Alloys with polyphenylene ether and polyamide, alloys with polyphenylene ether and liquid crystal with thermopic opening Porifue two ether and Borifue two Rensarufuai de and Aroi of is preferably used.
硬化性樹脂としては、 不飽和ポリエステル樹脂、 ビニルエステル樹脂、 ジァ リルフタレート樹脂、 エポキシ樹脂、 シァネート樹脂、 キシレン樹脂、 トリア ジン樹脂、 フエノール樹脂、 ユリア樹脂、 メラミン樹脂、 ベンゾグアナミン樹 脂、 ウレタン樹脂、 ケトン樹脂、 アルキド樹脂、 フラン樹脂、 スチリルピリジ ン樹脂、 シリコン樹脂、 合成ゴムがあり、 特にェポキシ樹脂で好適に使用され る。  Curable resins include unsaturated polyester resins, vinyl ester resins, diaryl phthalate resins, epoxy resins, cyanate resins, xylene resins, triazine resins, phenolic resins, urea resins, melamine resins, benzoguanamine resins, urethane resins, There are ketone resins, alkyd resins, furan resins, styrylpyridin resins, silicone resins, and synthetic rubbers, and they are particularly suitable for epoxy resins.
これらの可塑性樹脂及び硬化性樹脂は一種単独で用いても、 二種以上含有す るポリマーァロイ、 或いはこれらの樹脂とゴム状重合体とのポリマーァロイ等 として用いても良い。 These plastic resins and curable resins may be used alone or in a polymer alloy containing two or more kinds, or a polymer alloy of these resins and a rubber-like polymer. You may use as.
本発明において好適に用いられるエポキシ樹脂は、 分子中に少なくとも 2個の エポキシ基を有する化合物であればよく、 特に制限されるものではない。 一例と して、 ビスフエノール A型エポキシ樹脂、 ビスフエノール F型エポキシ樹脂、 ビ スフエノール S型エポキシ樹脂、 レゾルシノール型エポキシ樹脂、 ノボラック型 エポキシ樹脂、 ビフヱニル型エポキシ樹脂、 多官能型エポキシ樹脂等が挙げるこ とができ、 これらのェポキシ樹脂は単独又は二種以上を混合して用いることがで さる。  The epoxy resin suitably used in the present invention may be a compound having at least two epoxy groups in a molecule, and is not particularly limited. Examples include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, resorcinol epoxy resin, novolak epoxy resin, biphenyl epoxy resin, and multifunctional epoxy resin. These epoxy resins can be used alone or in combination of two or more.
本発明において、 好適に使用されるポリフエ二レンエーテル樹脂としては、 一般式 (6) 及び または (7) で表される繰り返し単位を有する単独重合 体、 あるいは共重合体が用いられる (ここで、 R7、 R8、 R9、 R1 0、 R丄 1、 R1 2は独立に炭素 1〜4のアルキル基、 ァリール基、 ハロゲン、 水 素を表す。 但し、 R1 1 R1 2は同時に水素ではない) 。 In the present invention, as the polyphenylene ether resin suitably used, a homopolymer or a copolymer having a repeating unit represented by the general formula (6) and / or (7) is used (where, R 7, R 8, R 9 , R 1 0, R丄1, R 1 2 is independently an alkyl group having a carbon 1 to 4, Ariru group, a halogen, a hydrogen. However, R 1 1 R 1 2 is Not hydrogen at the same time).
Figure imgf000014_0001
Figure imgf000014_0001
(7) ポリフエ二レンエーテル樹脂の単独重合体の代表例としては、 ポリ ( 6—ジメチルー 1, 4一フエ二レン) エーテノレ、 ポリ (2—メチノレー 6 チル一 1, 4一フエ二レン) エーテル、 ポリ (2, 6—ジェチノレー 1, 4一 フエ二レン) エーテル、 ポリ ( 2ーェチノレー 6一 n—プロピル一 1 , 4—フ ェニレン) エーテノレ、 ポリ (2, 6—ジー n—プロピノレー 1, 4一フエニレ ン) エーテル、 ポリ ( 2—メチル一 6— n—ブチノレー 1, 4一フエ二レン) エーテル、 ポリ ( 2—ェチルー 6—イソプロピノレー 1, 4一フエ二レン) ェ 一テル、 ポリ ( 2—メチルー 6—ヒ ドロキシェチノレ _ 1 , 4一フエ二レン) エーテル等のホモポリマーが挙げられる。 (7) Representative examples of homopolymers of polyphenylene ether resins include poly (6-dimethyl-1,4-phenylene) ether and poly (2-methylenol 6) Cyl-1,4-phenylene ether, poly (2,6-tetraquinone 1,4-phenylene) ether, poly (2-ethynole 6-n-propyl-1,4-phenylene) Athenole, poly ( 2,6-di-n-propynolee 1,4-phenylene ether, poly (2-methyl-1-6-n-butynolee 1,4-phenylene) ether, poly (2-ethyl-6-isopropynolee 1,4) And homopolymers such as poly (2-methyl-6-hydroxy-6-hydroxy-1,4-phenylene) ether.
この中で、 ポリ (2, 6—ジメチルー 1, 4一フエ二レン) エーテルが好 ましく、 特開昭 6 3— 3 0 1 2 2 2号公報等に記載されている、 2— (ジァ ルキルァミノメチノレ) - 6—メチノレフエ二レンエーテルュニッ トゃ 2— ( N 一アルキノレー N—フエニルアミノメチノレ) - 6ーメチノレフエ二レンエーテノレ ュニット等を部分構造として含んでいるポリフエ二レンエーテルは特に好ま しい。  Among them, poly (2,6-dimethyl-1,4-phenylene) ether is preferable, and 2- (di-dimethyl) ether described in JP-A-63-301222 is preferred. Alkylaminomethinole)-6-methinolephenylene ether unit 2-(N-alkynole N-phenylaminomethinole)-Polyphenylene ether containing, as a partial structure, 6-methinolephenylene etherene unit Is particularly preferred.
ここでポリフエ二レンエーテル共重合体とは、 フエ二レンエーテル構造を 主単量単位とする共重合体である。 その例としては、 2, 6—ジメチルフエ ノールと 2 , 3, 6— トリメチルフエノールとの共重合体、 2, 6—ジメチ ノレフエノーノレと o—クレゾーノレとの共重合体あるいは 2, 6—ジメチルフエ ノールと 2, 3, 6— トリメチルフエノール及ぴ o—クレゾールとの共重合 体等がある。  Here, the polyphenylene ether copolymer is a copolymer having a phenylene ether structure as a main unit unit. Examples include copolymers of 2,6-dimethylphenol and 2,3,6-trimethylphenol, copolymers of 2,6-dimethylphenol and o-cresolone, or copolymers of 2,6-dimethylphenol and 2,6-dimethylphenol. , 3, 6-trimethylphenol and copolymers with o-cresol.
本発明においてはポリフエ二レンエーテル樹脂の一部又は全部を、 カルボキシ ル基、 エポキシ基、 アミノ基、 水酸基、 メルカプト基、 シリル基を含有する基に より変性された変性ポリフエニレンエーテル樹脂を用レ、ることができ、 これらは 1種又は 2種以上を組み合わせて用いても良い。 官能化された変性ポリフエ二 レンエーテル樹脂の製造方法は、 例えば特表昭 6 3 - 5 0 3 3 9 2号公報、 特公平 7— 5 8 1 8号公報、 特公平 3— 6 1 8 5号公報、 特開 2 0 0 1 _ 3 0 2 7 3 8号公報、 特開 2 0 0 1— 3 0 2 7 8 9号公報、 日本国特許 3 2 8 9 7 1 5号、 日本国特許 3 1 0 9 7 3 5号、 日本国特許 3 4 0 3 1 7 9号、 日本国特許 3 4 0 9 0 3 5号等に記載の方法で製造される。  In the present invention, a modified polyphenylene ether resin obtained by modifying a part or all of the polyphenylene ether resin with a group containing a carboxy group, an epoxy group, an amino group, a hydroxyl group, a mercapto group, or a silyl group is used. These may be used alone or in combination of two or more. The method for producing the functionalized modified polyphenylene ether resin is described in, for example, Japanese Patent Publication No. Sho 63-503332, Japanese Patent Publication No. 7-51818, and Japanese Patent Publication No. 3-61885. Japanese Patent Publication No. JP-A-2001-302738, Japanese Patent Publication No. 2000-309270, Japanese Patent No. 328997, Japanese Patent It is produced by the method described in Japanese Patent No. 3109735, Japanese Patent No. 3401179, Japanese Patent No. 3490935 and the like.
本発明のホスファゼン組成物を用いた樹脂組成物においては、 本発明の効果が 達成できる範囲で、 本発明のホスファゼン化合物以外に、 従来公知のノンハロゲ ン、 ノンアンチモンの難燃剤を併用することができる。 例示すると、 トリフエ二 ノレホスフェート、 トリクレジノレホスフェート、 トリキシレニノレホスフェート、 ク レジルジフエニルホスフェート、 キシレニルジフエニルホスフェート、 ジキシレ 二ノレフエ二ノレホスフエ一ト、 レゾノレシノーノレビスホスフェート、 ビスフエノーノレ Aビスホスフェート等の燐酸エステル類、 水酸化マグネシウム、 水酸化アルミ二 ゥム、 アルミン酸カルシウム等の金属水酸化物、 トリアジン化合物、 メラミン、 メラミンシァヌレート、 メラミン榭脂、 グァニジン化合物等の含窒素化合物、 含 珪素化合物等が挙げられる。 In the resin composition using the phosphazene composition of the present invention, the effect of the present invention is To the extent achievable, conventionally known non-halogen and non-antimony flame retardants can be used in addition to the phosphazene compound of the present invention. For example, triphenyl phosphate, tricresinole phosphate, trixyleninole phosphate, cresyl diphenyl phosphate, xylen diphenyl phosphate, dixylinolefeninophosphate, bisphenolinorebisphosphate, bisphenoleno A Phosphate esters such as phosphates, metal hydroxides such as magnesium hydroxide, aluminum hydroxide and calcium aluminate, triazine compounds, nitrogen-containing compounds such as melamine, melamine cyanurate, melamine resin, guanidine compounds, etc. And silicon compounds.
本発明のホスファゼン組成物を用いた樹脂組成物においては、 さらに樹脂組成 物の剛性や寸法安定性を向上させる必要のあるときには、 無機充填材を添加する ことができる。 充填材種は目的によって任意に選べるが、 ガラス繊維、 チタン 酸カリウム繊維、 ガラスクロス、 ガラスフレーク、 カーボン繊維、 マイ力、 タ ルク、 シリカ、 ジルコン、 アルミナ、 石英、 マグネサイ ト、 グラフアイ ト、 フ ラーレン、 石膏、 カオリン、 炭化珪素、 炭酸カルシウム、 鉄粉、 銅粉等が一般 的に用いられる。  In the resin composition using the phosphazene composition of the present invention, when it is necessary to further improve the rigidity and dimensional stability of the resin composition, an inorganic filler can be added. The filler type can be selected arbitrarily according to the purpose, but glass fiber, potassium titanate fiber, glass cloth, glass flake, carbon fiber, myriki, talc, silica, zircon, alumina, quartz, magnetite, graphite, and graphite Laren, gypsum, kaolin, silicon carbide, calcium carbonate, iron powder, copper powder and the like are generally used.
本発明のホスファゼン組成物を用いた樹脂組成物においては、 更に寸法安定 性等の他の特性を付与するため、 本発明の効果を損なわない範囲で他の添加剤、 例えば可塑剤、 酸化防止剤、 及び紫外線吸収剤などの安定剤、 硬化剤、 硬化促 進剤、 帯電防止剤、 応力緩和剤、 離型剤、 流動調整剤、 染料、 増感材、 着色用 顔料、 ゴム質重合体等を添加することができる。 また、 従来から知られた各種 難燃剤および難燃助剤、 例えば結晶水を含有する水酸化マグネシゥムゃ水酸化 アルミニウム等のアルカリ金属水酸化物またはアルカリ土類金属水酸化物、 ホ ゥ酸亜鉛化合物、 スズ酸亜鉛化合物、 さらにはシリカ、 カオリンクレー、 タル クなどの無機ケィ素化合物を添加して更なる難燃性の向上も可能である。  In the resin composition using the phosphazene composition of the present invention, other properties such as dimensional stability are further imparted, and other additives such as a plasticizer and an antioxidant are provided as long as the effects of the present invention are not impaired. And stabilizers such as UV absorbers, curing agents, curing accelerators, antistatic agents, stress relief agents, release agents, flow regulators, dyes, sensitizers, coloring pigments, rubber polymers, etc. Can be added. In addition, various known flame retardants and flame retardant auxiliaries, for example, alkali metal hydroxides or alkaline earth metal hydroxides such as magnesium hydroxide and aluminum hydroxide containing water of crystallization, and zinc borate compounds It is also possible to further improve the flame retardancy by adding an inorganic silicon compound such as silica, kaolin clay, and talc, and a zinc stannate compound.
本発明におけるホスファゼン組成物と樹脂との配合方法は、 本発明の効果が 達成できる方法であれば特に限定されるものではない。 ホスファゼン組成物と 樹脂、 必要に応じて添加する添加物は、 すべて同時に配合しても良いし、 ホス ファゼン組成物と添加物を予め配合した後に樹脂に配合しても良い。 また、 各 成分は順次配合されても良レ、。 The method of mixing the phosphazene composition and the resin in the present invention is not particularly limited as long as the effects of the present invention can be achieved. The phosphazene composition and the resin, and the additives to be added as necessary, may be mixed at the same time, or the phosphazene composition and the additives may be mixed in advance into the resin after being previously mixed. Also, each The components can be blended sequentially.
本発明におけるホスファゼン組成物と熱可塑性樹脂との配合方法は、 本発明 の効果が達成できる方法であれば特に限定されるものではない。 例えば、 押 出機、 加熱ロール、 ニーダー、 バンパリ一ミキサー等の混練機を用いて混練製 造することができる。 その中でも押出機による混練が、 生産性の面で好ましい。 混練温度は、 ベース樹脂の好ましい加工温度に従えばよく、 目安としては 2 0 0〜3 6 0 °Cの範囲、 好ましくは 2 4 0〜3 2 0 °Cの範囲である。  The method of blending the phosphazene composition and the thermoplastic resin in the present invention is not particularly limited as long as the effects of the present invention can be achieved. For example, kneading and manufacturing can be performed using a kneading machine such as an extruder, a heating roll, a kneader, and a bumper mixer. Among them, kneading with an extruder is preferable in terms of productivity. The kneading temperature may be in accordance with the preferred processing temperature of the base resin, and is in the range of 200 to 360 ° C, preferably in the range of 240 to 320 ° C.
また、 硬化性樹脂に配合する場合には、 樹脂組成物を製造するための成分を、 無溶媒で、 若しくは、 必要に応じて均一に混合できる溶媒を用いて混合した 後、 溶媒を除去して樹脂混合物を得て、 これを金型内へ注形し硬化させた後 冷却し、 型から取り出すことにより成型品を得る方法でも良い。 また、 型に 注型し、 熱プレスにより硬化させることもできる。 各成分を溶解させる為の 溶媒は各種材料を均一に混合することができ、 且つ、 使用することによって 本発明の効果を損なわないものであれば特に限定されるものではない。 一例 としてはトルエン、 キシレン、 アセトン、 メチルェチルケトン、 ジェチノレケ トン、 シクロペンタノン、 シク口へキサノン、 ジメチノレホルムァミ ド、 メチ ノレセロソノレブ、 メタノ一ノレ、 エタノーノレ、 n—プロノ ノ一ノレ、 i s o—プロ ノヽ。ノーノレ、 nーブタノ一ノレ、 n一ペンタノ一ノレ、 n一へキサノーノレ、 シクロ へキサノール、 n一へキサン、 n—ペンタン等が挙げられる。  In addition, when compounding with a curable resin, the components for producing the resin composition are mixed without solvent or, if necessary, using a solvent that can be mixed uniformly, and then the solvent is removed. A method in which a resin mixture is obtained, cast into a mold, cured, cooled, and removed from the mold to obtain a molded product. It can also be cast in a mold and cured by hot pressing. The solvent for dissolving each component is not particularly limited as long as it can uniformly mix various materials and does not impair the effects of the present invention when used. Examples include toluene, xylene, acetone, methylethylketone, getinoleketone, cyclopentanone, cyclohexanone, dimethinoleformamide, methinoreserosonolev, methanole, ethanolanole, n-prononoone, iso. —Professional. Examples thereof include nonole, n-butanol, n-pentanole, n-hexanol, cyclohexanol, n-hexane, and n-pentane.
また、 加熱ロール、 エーダー、 パンパリーミキサー、 押出機等の混練機を 用いて混練製造した後、 冷却、 粉砕し、 さらにトランスファー成形、 射出成 形、 圧縮成形等により成形を行う方法も一例として挙げることができる。 ま た、 硬化方法は使用する硬化剤により異なるが、 特に限定はされない。 例と しては、 熱硬化、 光硬化、 圧力による硬化、 湿気による硬化等が挙げられる が、 本発明の効果が達成できる硬化方法であれば規定されるものではない。 各成分を混合させる順序は、 本発明の効果が達成できる方法であれば特に限 定されるものではない。 樹脂組成物の製造方法は、 それぞれの樹脂の適性に 応じて、 好ましい方法を用いることができる。  Also, as an example, a method of kneading and manufacturing using a kneading machine such as a heating roll, an eder, a bread palli mixer, an extruder, and the like, cooling, pulverizing, and further performing molding by transfer molding, injection molding, compression molding, or the like. be able to. The curing method varies depending on the curing agent used, but is not particularly limited. Examples include thermal curing, light curing, curing by pressure, curing by moisture, and the like, but are not limited as long as the curing method can achieve the effects of the present invention. The order of mixing the components is not particularly limited as long as the effects of the present invention can be achieved. A preferred method of producing the resin composition can be used depending on the suitability of each resin.
本発明のホスファゼン組成物を用いた樹脂組成物は、 コイルボビン、 フラ ィバックトランス、 コネクター、 偏光ヨーク等の電気 '電子機器部品、 プリ ント配線板、 プリント基板、 封止剤、 電気絶縁材料、 電気被覆剤、 積層板、 高速演算用ワニス、 先端複合材料、 電線、 アンテナ剤、 ケーブル、 高性能成 型材料等の電気 ·電子材料用途、 塗料、 接着剤、 コーティング材、 食器、 ポ タン、 繊維 ·紙処理剤、 化粧板、 U V硬化型インキ、 シーラント、 合成皮革、 断熱緩衝材料、 塗膜防水材、 防食ライニング、 鎵型用バインダー、 ラッカー、 ペイント、 インキの改質材、 樹脂変性材、 航空機内装剤、 複合材料用マトリ ックス、 '家庭用品、 O A機器、 A V機器、 電池電槽、 照明機器、 自動車部品 用途、 ハウジング用途、 E T C、 I T C、 携帯電話等に最適に使用される。 実施例 The resin composition using the phosphazene composition of the present invention comprises: a coil bobbin; Electrical components such as power transformers, connectors, polarizing yokes, printed wiring boards, printed circuit boards, encapsulants, electrical insulating materials, electrical coatings, laminates, high-speed arithmetic varnishes, advanced composite materials, electric wires, Applications for electrical and electronic materials such as antenna agents, cables, high-performance molding materials, paints, adhesives, coating materials, tableware, buttons, textiles, paper treatment agents, decorative boards, UV curable inks, sealants, synthetic leather, Insulation buffering materials, waterproof coatings, anticorrosive linings, binders for molds, lacquers, paints, ink modifiers, resin modifiers, aircraft interior agents, composite materials matrix, household goods, OA equipment, AV equipment It is optimally used for battery cases, lighting equipment, automotive parts applications, housing applications, ETC, ITC, mobile phones, etc. Example
以下、 実施例によって本発明を具体的に説明するが、 本発明は以下の例に 限定されるものではない。  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to the following Examples.
1 ) 揮発分の測定  1) Volatile content measurement
ホスファゼン組成物をガラス瓶に 5 g量り取り、 設定温度 2 0 0 °Cのォー プンで 2時間加熱し、 加熱前後での重量変化分を測定し、 揮発分量とした。 5 g of the phosphazene composition was weighed into a glass bottle, heated at 200 ° C. for 2 hours, and the change in weight before and after heating was measured to determine the amount of volatile matter.
2 ) ホスファゼン組成物の水分量測定 2) Water content measurement of phosphazene composition
設定温度 1 5 0 °Cで、 力ールフィッシャ一法により測定した。  The measurement was carried out at a set temperature of 150 ° C. by the force fisher method.
3 ) ホスファゼン組成物の吸湿後の水分量測定  3) Measurement of water content after absorption of phosphazene composition
予め、 ホスファゼン組成物を目開き 7 1 0 μ πιの篩いに掛け、 篩いだされた ホスファゼン組成物 1 0 gをシャーレに取り、 恒温恒湿槽にて、 温度 8 5 °C、 相対湿度 9 5 %Rhの条件下で 6時間加湿し、 加湿前後の含有水分量を設定温 度 1 5 0 °Cで、 カールフィッシヤー法により測定した。  In advance, the phosphazene composition is sifted through a sieve having an opening of 7 10 μππι, and 10 g of the sifted phosphazene composition is taken in a petri dish, and the temperature and the relative humidity are 95 ° C and 95 ° C, respectively, in a thermo-hygrostat. Humidification was carried out for 6 hours under the condition of% Rh, and the water content before and after the humidification was measured by the Karl Fisher method at a set temperature of 150 ° C.
4 ) ホスファゼン組成物の嵩密度  4) Bulk density of phosphazene composition
ホソカワミクロン (株) 社製、 パウダテスタを用いてゆるみ見掛比重 (Aerated Bulk Density) を測定し、 嵩密度とした。  Loose apparent specific gravity (Aerated Bulk Density) was measured using a powder tester manufactured by Hosokawa Micron Corp. to determine the bulk density.
5 ) 電気特性 (電気特性安定性)  5) Electrical characteristics (electrical stability)
厚さ約 2 mmの 1 2 0 X 1 2 0 mmの成型片を用いて、 比誘電率及び比誘電 正接を円筒空洞共振器法により周波数 4 G H zにて測定した。  The relative dielectric constant and the relative dielectric loss tangent were measured at a frequency of 4 GHz by a cylindrical cavity resonator method using a molded piece of about 120 mm in thickness and about 2 mm in thickness.
さらに、 9 0 °C、 相対湿度 9 5 %Rhに設定された恒温恒湿槽で 4 8時間吸湿 させた後、 成型片の比誘電率及び比誘電正接を円筒空洞共振器により周波数 4 GHzにて測定した。 In addition, it absorbs moisture for 48 hours in a thermo-hygrostat set at 90 ° C and a relative humidity of 95% Rh. After that, the relative permittivity and relative tangent of the molded piece were measured at a frequency of 4 GHz using a cylindrical cavity resonator.
6リ T¾JA (Thermogravime ric Analysis;熱 ft量分析)  6 Li T¾JA (Thermogravime ric Analysis)
ホスファゼン糸且成物 1 Omgを、 パーキンエノレマ一社製 Thermal Analysis System 7 Seriesを用いて、 窒素気流 3 Om 1 Zm i n中、 1 0°CZm i nの速 度で 600°Cまで昇温したとき、 500°Cにおける重量を 100°Cにおける重量 で除して 100を乗じた値を、 500°Cにおける重量保持率とした。  When 1 Omg of the phosphazene yarn and the product was heated to 600 ° C at a rate of 10 ° CZmin in a nitrogen flow of 3 Om1Zmin using a Thermal Analysis System 7 Series manufactured by Perkin Enorema Co., Ltd., 500 The value obtained by dividing the weight at 100 ° C by the weight at 100 ° C and multiplying by 100 was defined as the weight retention at 500 ° C.
7) 難燃性  7) Flame retardant
UL-94 垂直燃焼試験に基づき、 1 Z 16ィンチ厚みの射出成形試験片を 用いて測定し、 10回接炎時の平均燃焼時間と燃焼時の滴下物による脱脂綿着火 の有無を評価した。  Based on the UL-94 vertical combustion test, measurements were made using an injection-molded test specimen having a thickness of 1Z16 inch, and the average burning time after 10 times of flame contact and the presence or absence of absorbent cotton ignition by dripping during burning were evaluated.
8) MFR (Melt Flow Rate;メルトフローレート)  8) MFR (Melt Flow Rate)
J I S K 7210に基づき、 250°C、 10 k g荷重にて測定した。  It was measured at 250 ° C. under a load of 10 kg based on JISK 7210.
9) 金属含有量測定  9) Metal content measurement
試料に濃硫酸を加え灰化し、 希硝酸に溶解後、 原子吸光分析装置により力リウ ム、 ナトリゥムの定量分析を行った。  Concentrated sulfuric acid was added to the sample for incineration, and after dissolution in diluted nitric acid, quantitative analysis of lithium and sodium was performed using an atomic absorption spectrometer.
10) リン含有量測定  10) Phosphorus content measurement
試料約 l O Omgを量り取り、 濃硫酸を加え灰化し、 希硝酸に溶解後、 I C P — AE S法によりリンの定量分析を行った。  Approximately lO Omg of the sample was weighed, concentrated sulfuric acid was added for incineration, and dissolved in dilute nitric acid. Then, quantitative analysis of phosphorus was performed by the ICP-AES method.
1 1) 塩素含有量測定  1 1) Chlorine content measurement
イオンクロマトグラフィ一法により測定を行った。  The measurement was performed by one method of ion chromatography.
1 2) 耐湿性  1 2) Moisture resistance
厚さ約 2mm、 50 X 5 Ommの成型片を、 恒温恒湿槽にて設定温度 85°C、 相対湿度 95 % R hの条件下で 5 6時間加湿し、 加湿前後の重量の差を測定 することにより、 吸水率とした。 また、 試験片の色の変化を目視により確認 し、 吸湿前後で色の変化がほとんど見られなかったものを〇、 色の変化が確 認できたものを Xとして、 吸湿時の色調安定性を確認した。  A molded piece with a thickness of about 2 mm and 50 x 5 Omm is humidified in a constant temperature and humidity chamber at a set temperature of 85 ° C and a relative humidity of 95% Rh for 56 hours, and the difference in weight before and after humidification is measured. By doing so, the water absorption rate was obtained. In addition, the color change of the test piece was visually observed.A color change was hardly observed before and after moisture absorption, and a color change was confirmed as X. confirmed.
実施例及び比較例で用いた各成分は以下のものである。  The components used in the examples and comparative examples are as follows.
(1) ポリフエ二レンエーテノレ (PPE) 30°Cのクロ口ホルム溶液で測定した 77 s p/cが 0. 54のポリ一 2, 6 - ジメチノレー 1, 4一フエ二レンェ一テノレ。 (1) Polyphenylene ether (PPE) Poly 1,2,6-dimethinole 1,4-phenylene 1,0 with a spr / c of 0.54 measured in a 30 ° C black-mouthed form solution.
(2) ゴム補強ポリスチレン (H I PS)  (2) Rubber reinforced polystyrene (HIPS)
ゴム含量 9重量%、 30。C、 トルェン溶液で測定したマトリックスポリスチレ ンの?7 s p/cが 0. 64、 体積平均ゴム粒子径が 1. 5 //mのゴム補強ポリス チレン。  Rubber content 9% by weight, 30. C, matrix polystyrene measured in toluene solution? Rubber reinforced polystyrene with a sp / c of 0.74 and a volume average rubber particle diameter of 1.5 // m.
(3) エポキシ樹脂: '  (3) Epoxy resin: ''
AER 250 (旭化成エポキシ (株) 社製) ;エポキシ当量 1 84〜1 86。  AER 250 (manufactured by Asahi Kasei Epoxy Co.); epoxy equivalent: 184-186.
(4) 硬化剤  (4) Curing agent
m—キシレン一 α,ひ'ージァミン (和光純薬工業 (株) 社製) 。 m-xylene-α α, Jiamine (manufactured by Wako Pure Chemical Industries, Ltd.).
ホスファゼン組成物は実施例 1〜 6及び比較例 1〜 3の方法により合成し た。  The phosphazene compositions were synthesized by the methods of Examples 1 to 6 and Comparative Examples 1 to 3.
【実施例 1】  [Example 1]
FR 1 : ジムロート型冷却管を備えたディーンスターク管、 滴下ロート、 温 度計及ぴ攪拌装置を備え付けた 2 Lの四口フラスコに、 フエノール 160. 2 g、 固体状の水酸化カリウム 1 1 2. 2 g及ぴキシレン 500m 1を仕込み、 窒素気流下、 油浴温度 145°Cで加熱還流を行った。 生成する水はキシレンと の共沸により系外へと取り出し、 キシレンのみ系中に戻した。 生成してくる水 の溜出が終了するまで加熱還流を行ったところ、 反応完結まで 4時間を要した。 反応容器を氷浴につけ、 反応溶液が 1 0°C以下になるまで冷却し、 反応溶液 を 10°C以下に保ったままで、 クロロホスファゼンオリゴマー 72. 1 g (三 量体 95 %、 四量体 4 %、 その他の成分 1 %) とキシレン 250m lの混合溶 液を、 滴下ロートを用いて 30分かけて滴下した。 滴下後、 反応溶液を再度加 熱し、 油浴温度 145 °Cで 7時間加熱還流を行った。 反応の終点は、 3 1 P N MRにより追跡し、 ハロゲン置換ホスファゼン化合物由来のシグナルが観測さ れなくなるまで反応を行った。 反応終了後、 反応溶液を 80°Cまで冷却し、 Ί 0〜 85 °Cの温度を保って、 1 0 %水酸化ナトリゥム水溶液で二度洗浄し、 さ らに希塩酸で一度、 水洗を四度行った。 無水硫酸マグネシウムで反応溶液を乾 燥し、 硫酸マグネシウムを濾別、 80°C、 1 OmmHg以下で溶媒を溜去した後、 設定温度 1 05°Cのオープン中で、 1 mmHg以下で 5時間減圧乾燥させて、 フ エノキシホスファゼン混合物 1 32. 5 g得た。 得られた塊状のホスファゼン 組成物は、 ヘンシェルミキサーを用いて粉砕した。 得られたホスファゼンの組 成は"丄 PNMRにより求めた。 三量体: 96%、 四量体 3%、 その他のホスファ ゼン化合物: 1 %。 K含有量; 23 p p m、 N a含有量; 1 2 p p m。 リン含 有量; 1 3. 4 %。 塩素含有量: 30 p pm。 500 °C残渣: 2. 2重量%。 揮発分量は 0. 1 74重量%であった。 嵩密度は 0. 46 gZ cm3であった。 【実施例 2】 FR 1: In a 2 L four-necked flask equipped with a Dean-Stark tube equipped with a Dimroth type cooling tube, a dropping funnel, a thermometer and a stirrer, 160.2 g of phenol, solid potassium hydroxide 1 1 2 .2 g and 500 ml of xylene were charged, and heated to reflux at an oil bath temperature of 145 ° C. under a nitrogen stream. The generated water was taken out of the system by azeotropy with xylene, and only xylene was returned to the system. The mixture was heated and refluxed until distillation of the generated water was completed, and it took four hours to complete the reaction. Place the reaction vessel in an ice bath, cool the reaction solution to 10 ° C or less, and keep the reaction solution at 10 ° C or less, and add 72.1 g of chlorophosphazene oligomer (95% trimer, tetramer). A mixed solution of 4%, 1% of other components) and 250 ml of xylene was added dropwise using a dropping funnel over 30 minutes. After the dropwise addition, the reaction solution was heated again, and heated and refluxed at an oil bath temperature of 145 ° C for 7 hours. The end point of the reaction was followed by 31 PN MR, and the reaction was performed until no signal derived from the halogen-substituted phosphazene compound was observed. After completion of the reaction, cool the reaction solution to 80 ° C, maintain the temperature at 0 to 85 ° C, wash twice with 10% aqueous sodium hydroxide solution, and then wash with dilute hydrochloric acid once and water four times. went. The reaction solution was dried over anhydrous magnesium sulfate, magnesium sulfate was filtered off, and the solvent was distilled off at 80 ° C and 1 OmmHg or less. The product was dried under reduced pressure at 1 mmHg or less for 5 hours in an open at a set temperature of 105 ° C. to obtain 132.5 g of a phenoxyphosphazene mixture. The obtained massive phosphazene composition was ground using a Henschel mixer. The composition of the obtained phosphazene was determined by "丄 PNMR. Trimer: 96%, tetramer 3%, other phosphazene compounds: 1%. K content: 23 ppm, Na content; 1 13.4% Phosphorus content: 13.4% Chlorine content: 30ppm 500 ° C residue: 2.2% by weight Volatile content: 0.174% by weight Bulk density: 0 46 gZ cm 3. [Example 2]
FR 2 :ジムロート型冷却管を備えたディーンスターク管、 滴下ロート、 温 度計及ぴ攪拌装置を備え付けた 2 Lの四口フラスコに、 フエノール 1 5 1. 5 g、 固体状の水酸化カリウム 1 03. 6 g及びキシレン 500m 1を仕込み、 窒素気流下、 油浴温度 145°Cで加熱還流を行った。 生成する水はキシレンと の共沸により系外へと取り出し、 キシレンのみ系中に戻した。 生成してくる水 の溜出が終了するまで加熱還流を行ったところ、 反応完結まで 4時間を要した。 反応容器を氷浴につけ、 反応溶液が 1 0°C以下になるまで冷却し、 反応溶液 を 10°C以下に保ったままで、 クロロホスファゼンオリゴマー 70. O gとキ シレン 25 Om 1の混合溶液を、 滴下ロートを用いて 30分かけて滴下した。 滴下後、 反応溶液を再度加熱し、.油浴温度 145 °Cで 7時間加熱還流を行つた。 反応の終点は、 1 PNMRにより追跡し、 ハロゲン置換ホスファゼン化合物 由来のシグナルが観測されなくなるまで反応を行った。 反応終了後、 反応溶液 を 80°Cまで冷却し、 70〜85°Cの温度を保って、 1 0%水酸化ナトリウム 水溶液で二度洗浄し、 さらに希塩酸で一度、 水洗を四度行った。 無水硫酸マグ ネシゥムで反応溶液を乾燥し、 硫酸マグネシウムを濾別、 80°C、 l OmmHg 以下で溶媒を溜去した後、 設定温度 1 05°Cのオーブン中で、 ImmHg以下で 5時間減圧乾燥させて、 フエノキシホスファゼン化合物の混合物を含むホスフ ァゼン組成物 1 26. 3 g得た。 得られた塊状のホスファゼン組成物は、 ヘン シェルミキサーを用いて粉砕した。 得られたホスファゼンの組成は3 1PNMRに より求めた。 三量体: 88%、 四量体 8%、 その他のホスファゼン化合物 4%。 FR 2: In a 2 L four-necked flask equipped with a Dean-Stark tube equipped with a Dimroth-type cooling tube, a dropping funnel, a thermometer and a stirrer, phenol 1.55.1 g, solid potassium hydroxide 1 33.6 g and 500 ml of xylene were charged and heated to reflux at an oil bath temperature of 145 ° C. under a nitrogen stream. The generated water was taken out of the system by azeotropy with xylene, and only xylene was returned to the system. The mixture was heated and refluxed until distillation of the generated water was completed, and it took four hours to complete the reaction. Place the reaction vessel in an ice bath, cool the reaction solution to 10 ° C or less, and keep the reaction solution at 10 ° C or less, and add a mixed solution of 70.Og of chlorophosphazene oligomer and 25 Om1 of xylene. The solution was dropped using a dropping funnel over 30 minutes. After the dropwise addition, the reaction solution was heated again, and heated under reflux at an oil bath temperature of 145 ° C for 7 hours. The end point of the reaction was followed by 1 PNMR, and the reaction was continued until no signal derived from the halogen-substituted phosphazene compound was observed. After completion of the reaction, the reaction solution was cooled to 80 ° C., washed twice with a 10% aqueous sodium hydroxide solution while maintaining the temperature at 70 to 85 ° C., and further washed once with dilute hydrochloric acid and four times with water. The reaction solution is dried with anhydrous magnesium sulfate, and the magnesium sulfate is separated by filtration.The solvent is distilled off at 80 ° C and below 10 mmHg, and then dried in an oven at a set temperature of 105 ° C and below ImmHg for 5 hours under reduced pressure. As a result, 126.3 g of a phosphazene composition containing a mixture of phenoxyphosphazene compounds was obtained. The obtained massive phosphazene composition was pulverized using a Henschel mixer. The composition of the resulting phosphazene was more determined in 3 1 PNMR. Trimer: 88%, tetramer 8%, other phosphazene compounds 4%.
K含有量; 20 p p m、 N a含有量; 1 1 p p m。 リン含有量: 1 3. 7重量 %、 塩素含有量: 82 p pm。 500°C残渣: 6. 3重量1 ½。 揮発分量は 0.K content; 20 ppm; Na content; 11 ppm. Phosphorus content: 13.7 weight %, Chlorine content: 82 ppm. 500 ° C residue: 6.3 weight 1 ½. Volatile content is 0.
225重量%であった。 嵩密度は 0. 47 g/cm3であった。 It was 225% by weight. The bulk density was 0.47 g / cm 3 .
【実施例 3】  [Embodiment 3]
FR3 :ジムロート型冷却管を備えたディーンスターク管、 滴下ロート、 温 度計及ぴ攪拌装置を備え付けた 2 Lの四口フラスコに、 フエノール 1 58. 0 g、 固体状の水酸化力リウム 1 1 0. 0 g及ぴク口口ベンゼン 500m lを仕 込み、 窒素気流下、 油浴温度 145°Cで加熱還流を行った。 生成する水はクロ 口ベンゼンとの共沸により系外へと取り出し、 クロ口ベンゼンのみ系中に戻し た。 生成してくる水の溜出が終了するまで加熱還流を行ったところ、 反応完結 まで 6時間を要した。  FR3: In a 2 L four-necked flask equipped with a Dean-Stark tube equipped with a Dimroth-type cooling tube, a dropping funnel, a thermometer and a stirrer, 158.0 g of phenol, solid lithium hydroxide 11 1 0.0 g of benzene and 500 ml of benzene were charged and heated to reflux at an oil bath temperature of 145 ° C. under a nitrogen stream. The generated water was taken out of the system by azeotropic distillation with benzene, and only benzene was returned to the system. Heating and refluxing until the distillation of the generated water was completed, took 6 hours to complete the reaction.
反応容器を氷浴につけ、 反応溶液が 1 o°c以下になるまで冷却し、 反応溶液 を 1 0 °C以下に保つたままで、 クロロホスファゼンオリゴマー 72. 1 gとク ロロベンゼン 250m lの混合溶液を、 滴下ロートを用いて 30分かけて滴下 した。 滴下後、 反応溶液を再度加熱し、 油浴温度 145°Cで 7時間加熱還流を 行った。 反応の終点は、 3 1 PNMRにより追跡し、 ハロゲン置換ホスファゼ ン化合物由来のシグナルが観測されなくなるまで反応を行った。 反応終了後、 反応溶液を 80 °Cまで冷却し、 70〜 85 °Cの温度を保つて、 10 %水酸化ナ トリウム水溶液で二度洗浄し、 さらに希塩酸で一度、 水洗を四度行った。 無水 硫酸マグネシゥムで反応溶液を乾燥し、 硫酸マグネシウムを濾別、 80 °C、 1 OmmHg以下で溶媒を溜去した後、 設定温度 105°Cのオーブン中で、 1 mm Hg以下で 5時間減圧乾燥させて、 フエノキシホスファゼン化合物の混合物を含 むホスファゼン組成物 1 21. 8 g得た。 得られた塊状のホスファゼン組成物 は、 ヘンシェルミキサーを用いて粉砕した。 得られたホスファゼンの組成は P匪 Rにより求めた。 三量体: 84%、 四量体 14%、 その他のホスファゼ ン化合物: 2 %。 K含有量; 30 p p m、 N a含有量; 1 5 p p m。 リン含有 量; 1 3. 5 %。 塩素含有量: 65 p pm。 500 °C残渣: 7. 1重量%。 揮 発分量は 0. 586重量%であった。 嵩密度は 0. 55 g/c m3であった。 【実施例 4】 Place the reaction vessel in an ice bath, cool the reaction solution to 1o ° C or less, and keep the reaction solution at 10 ° C or less, and add a mixed solution of 72.1 g of chlorophosphazene oligomer and 250 ml of chlorobenzene. The solution was dropped over 30 minutes using a dropping funnel. After the dropwise addition, the reaction solution was heated again, and heated to reflux at an oil bath temperature of 145 ° C for 7 hours. The end point of the reaction was followed by 3 1 PNMR, the reaction was carried out until a signal from the halogen-substituted Hosufaze emission compound is not observed. After completion of the reaction, the reaction solution was cooled to 80 ° C., washed twice with a 10% aqueous sodium hydroxide solution while maintaining the temperature at 70 to 85 ° C., and further washed once with dilute hydrochloric acid and four times with water. The reaction solution is dried over anhydrous magnesium sulfate, magnesium sulfate is filtered off, the solvent is distilled off at 80 ° C and 1 OmmHg or less, and then dried under reduced pressure at 1 mmHg or less in an oven at a set temperature of 105 ° C for 5 hours. As a result, 211.8 g of a phosphazene composition containing a mixture of phenoxyphosphazene compounds was obtained. The obtained massive phosphazene composition was pulverized using a Henschel mixer. The composition of the obtained phosphazene was determined by P-band R. Trimer: 84%, tetramer 14%, other phosphazene compounds: 2%. K content; 30 ppm; Na content; 15 ppm. Phosphorus content; 13.5%. Chlorine content: 65 ppm. 500 ° C residue: 7.1% by weight. The amount of volatiles was 0.586% by weight. The bulk density was 0.55 g / cm 3 . [Example 4]
FR4 : FR 1をトルェン/メタノ一ル= 1 0/90の混合溶媒に溶解し た後、 再結晶し、 得られた結晶を設定温度 105°Cのオープン中で、 ImmHg 以下で 4時間減圧乾燥させた後、 得られた塊状のホスファゼン組成物は、 ヘン シェルミキサーを用いて粉砕した。 三量体: 97%、 四量体: 2%、 その他の ホスファゼン化合物: 1 o/0。 K含有量; 8 p pm、 N a含有量; 10 p p m。 リン含有量; 1 3. 4重量%、 塩素含有量: 1 0 p p m以下、 500°C残渣: 2. 1重量%。 揮発分量は0. 1 25重量%であった。 嵩密度は 0. 57 g/ cm でめった。 FR4: Dissolve FR 1 in toluene / methanol = 10/90 mixed solvent After recrystallization, the obtained crystal was dried under reduced pressure of ImmHg or less for 4 hours in an open at a set temperature of 105 ° C, and the obtained massive phosphazene composition was ground using a Henschel mixer. did. Trimer: 97%, tetramer: 2%, other phosphazene compounds: 1 o / 0 . K content; 8 ppm, Na content; 10 ppm. Phosphorus content; 13.4% by weight; Chlorine content: 10 ppm or less; Residue at 500 ° C: 2.1% by weight. The volatile content was 0.125% by weight. The bulk density was 0.57 g / cm.
【実施例 5】  [Example 5]
FR5 :ジムロート型冷却管を備えたディーンスターク管、 滴下ロート、 温 度計及び攪拌装置を備え付けた 2 Lの四口フラスコに、 フエノール 1 50. 0 g、 固体状の水酸化カリウム 1 00. 1 g及ぴキシレン 50 Om 1を仕込み、 窒素気流下、 油浴温度 145°Cで加熱還流を行った。 生成する水はキシレンと の共沸により系外へと取り出し、 キシレンのみ系中に戻した。 生成してくる水 の溜出が終了するまで加熱還流を行ったところ、 反応完結まで 4時間を要した。 反応容器を氷浴につけ、 反応溶液が 1 0°C以下になるまで冷却し、 反応溶液 を 1 0°C以下に保ったままで、 クロロホスファゼンオリゴマー 70. 3 gとキ シレン 25 Om 1の混合溶液を、 滴下ロートを用いて 30分かけて滴下した。 滴下後、 反応溶液を再度加熱し、 油浴温度 145°Cで 6時間加熱還流を行った。 反応の終点は、 31 PNMRにより追跡し、 ハロゲン置換ホスファゼン化合物 由来のシグナルが観測されなくなるまで反応を行った。 反応終了後、 反応溶液 を 80°Cまで冷却し、 70〜 85°Cの温度を保って、 1 0。/。水酸化ナトリウム 水溶液で二度洗浄し、 さらに希塩酸で一度、 水洗を四度行った。 無水硫酸マグ ネシゥムで反応溶液を乾燥し、 硫酸マグネシウムを濾別、 80°C、 l OmmHg 以下で溶媒を溜去した。 得られた粗結晶を、 メタノール 1 0 Om 1を用いて洗 浄した後、 設定温度 1 05°Cのオーブン中で、 ImmHg以下で 5時間減圧乾燥 させて、 フヱノキシホスファゼン化合物の混合物を含むホスファゼン組成物 1 1 8. 1 g得た。 得られた塊状のホスファゼン組成物は、 ヘンシェルミキサー を用いて粉砕した。 得られたホスファゼンの組成は、 三量体: 93. 6%、 四 量体 4. 0%、 その他のホスファゼン化合物 2. 4%。 K含有量; 28 p pm、 N a含有量; 10 p p m。 リン含有量: 1 3. 5重量%、 塩素含有量: 1 02 p p m。 500 °C残渣: 4. 3重量%。 揮発分量は 0. 088重量%で、 嵩密 度は 0. 49 g/ cm。であった。 FR5: A 2 L four-necked flask equipped with a Dean-Stark tube equipped with a Dimroth-type cooling tube, a dropping funnel, a thermometer and a stirrer was charged with 500.0 g of phenol and 1000.1 solid potassium hydroxide. g and xylene 50 Om 1 were charged, and heated to reflux at an oil bath temperature of 145 ° C under a nitrogen stream. The generated water was taken out of the system by azeotropy with xylene, and only xylene was returned to the system. The mixture was heated and refluxed until distillation of the generated water was completed, and it took four hours to complete the reaction. Place the reaction vessel in an ice bath, cool the reaction solution to 10 ° C or less, and keep the reaction solution at 10 ° C or less, and mix a solution of 70.3 g of chlorophosphazene oligomer and 25 Om1 of xylene. Was added dropwise using a dropping funnel over 30 minutes. After the dropwise addition, the reaction solution was heated again, and refluxed with heating at an oil bath temperature of 145 ° C for 6 hours. The end point of the reaction was followed by 31 PNMR, and the reaction was carried out until no signal derived from the halogen-substituted phosphazene compound was observed. After the completion of the reaction, the reaction solution was cooled to 80 ° C and maintained at a temperature of 70 to 85 ° C. /. The mixture was washed twice with an aqueous sodium hydroxide solution, and once with dilute hydrochloric acid and four times with water. The reaction solution was dried with anhydrous magnesium sulfate, magnesium sulfate was separated by filtration, and the solvent was distilled off at 80 ° C and below 10 mmHg. The obtained crude crystals are washed with methanol (10 Om1), and then dried in an oven at a set temperature of 105 ° C under reduced pressure of not more than ImmHg for 5 hours to obtain a mixture of the phenoxyphosphazene compound. The obtained phosphazene composition 1 18.1 g was obtained. The obtained massive phosphazene composition was pulverized using a Henschel mixer. The composition of the obtained phosphazene is: 93.6% trimer, 4.0% tetramer, 2.4% other phosphazene compounds. K content; 28 ppm, Na content; 10 ppm. Phosphorus content: 13.5% by weight, chlorine content: 102 ppm. 500 ° C residue: 4.3% by weight. The volatile content is 0.088% by weight and the bulk density is 0.49 g / cm. Met.
【実施例 6】  [Example 6]
FR6 : ジムロート型冷却管を備えたディーンスターク管、 滴下ロート、 温 度計及び攪拌装置を備え付けた 2 Lの四口フラスコに、 フエノール 1 55. 1 g、 固体状の水酸化カリウム 100. 0 g及びキシレン 50 Om 1を仕込み、 油浴温度 145°Cで加熱還流を行った。 生成する水はキシレンとの共沸により 系外へと取り出し、 キシレンのみ系中に戻した。 生成してくる水の溜出が終了 するまで加熱還流を行ったところ、 反応完結ま。で 4時間を要した。  FR6: In a 2 L four-necked flask equipped with a Dean-Stark tube equipped with a Dimroth-type cooling tube, a dropping funnel, a thermometer and a stirrer, 555.1 g of phenol and 100.0 g of solid potassium hydroxide And xylene 50 Om1 were charged and heated to reflux at an oil bath temperature of 145 ° C. The generated water was taken out of the system by azeotropy with xylene, and only xylene was returned to the system. The reaction was completed by heating and refluxing until the distilling of the generated water was completed. It took four hours.
反応容器を氷浴につけ、 反応溶液が 1 o°c以下になるまで冷却し、 反応溶液 を 10°C以下に保ったままで、 クロロホスファゼンオリゴマー 72. 2 gとキ シレン 25 Omlの混合溶液を、 滴下ロートを用いて 30分かけて滴下した。 滴下後、 反応溶液を再度加熱し、 油浴温度 145°Cで 6時間加熱還流を行った。 反応の終点は、 31 PNMRにより追跡した。 反応終了後、 反応溶液を 80°C まで冷却し、 70〜 85 °Cの温度を保って、 10 %水酸化ナトリウム水溶液で 二度洗浄し、 さらに希塩酸で一度、 水洗を四度行った。 無水硫酸マグネシウム で反応溶液を乾燥し、 硫酸マグネシウムを濾別、 80°C、 l OmmHg以下で溶 媒を溜去した後、 設定温度 1 05°Cのオープン中で、 ImmHg以下で 5時間減 圧乾燥させて、 フエノキシホスファゼン化合物の混合物を含むホスファゼン組 成物 1 24. 1 g得た。 得られた塊状のホスファゼン組成物は、 ヘンシヱルミ キサーを用いて粉碎した。 得られたホスファゼンの組成は、 三量体: 90. 3 %、 四量体 4. 3%、 分子内に水酸基を一つ有するホスファゼン三量体化合 物: 0. 1 %、 モノクロ口ペンタフエノキシホスファゼン三量体: 0. 4%、 その他のホスファゼン化合物 4. 9%。 K含有量; 35 p pm、 N a含有量; 1 3 p p m。 リン含有量: 14. 1 %、 塩素含有量: 290 p pm。 500 °C 残渣: 8. 6重量%。 揮発分量は 0. 451重量%で、 嵩密度は 0. 57 g/ cm であった。 Place the reaction vessel in an ice bath, cool the reaction solution to 1 ° C or less, and keep the reaction solution at 10 ° C or less, and add a mixed solution of 72.2 g of chlorophosphazene oligomer and 25 Oml of xylene. The solution was dropped using a dropping funnel over 30 minutes. After the dropwise addition, the reaction solution was heated again, and refluxed with heating at an oil bath temperature of 145 ° C for 6 hours. The end point of the reaction was followed by 31 PNMR. After completion of the reaction, the reaction solution was cooled to 80 ° C, washed twice with a 10% aqueous sodium hydroxide solution at a temperature of 70 to 85 ° C, and further washed once with dilute hydrochloric acid and four times with water. The reaction solution was dried over anhydrous magnesium sulfate, and the magnesium sulfate was filtered off.The solvent was distilled off at 80 ° C and below 10 mmHg. Drying yielded 24.1 g of a phosphazene composition containing a mixture of phenoxyphosphazene compounds. The obtained massive phosphazene composition was pulverized using a Hensil mixer. The composition of the obtained phosphazene is as follows: trimer: 90.3%, tetramer: 4.3%, phosphazene trimer compound having one hydroxyl group in the molecule: 0.1%, monochrome pentaphenoki Cyphosphazene trimer: 0.4%, other phosphazene compounds 4.9%. K content; 35 ppm; Na content; 13 ppm. Phosphorus content: 14.1%, chlorine content: 290 ppm. 500 ° C residue: 8.6% by weight. The volatile content was 0.451% by weight and the bulk density was 0.57 g / cm.
【比較例 1】 FR 7 :ジムロート型冷却管を備えたディーンスターク管、 滴下ロート、 温 度計及び攪拌装置を備え付けた 2 Lの四口フラスコに、 フエノール 1 77. 0 g及ぴキシレン 75 OmLを仕込み、 窒素気流下、 油浴温度を 145°Cとした。 そこへ、 水酸化力リウム 1 20. 2 gを精製水に溶解させて 40 %水溶液とし た溶液を、 滴下ロートを用いて 4時間かけて滴下し、 系中の水分はキシレンと の共沸により逐次系外に除去した。 水酸化カリウム水溶液滴下終了後、 生成し てくる水の溜出が終了するまで加熱還流を行ったところ、 反応完結まで 90分 を要した。 [Comparative Example 1] FR 7: A 2 L four-necked flask equipped with a Dean-Stark tube equipped with a Dimroth-type cooling tube, a dropping funnel, a thermometer and a stirrer was charged with 177.0 g of phenol and 75 OmL of xylene. Below, the oil bath temperature was set to 145 ° C. A solution prepared by dissolving 120.2 g of potassium hydroxide in purified water to form a 40% aqueous solution was added dropwise over 4 hours using a dropping funnel, and the water in the system was azeotropically mixed with xylene. It was sequentially removed from the system. After the dropwise addition of the aqueous potassium hydroxide solution, the mixture was heated under reflux until the distilling of the generated water was completed, and it took 90 minutes to complete the reaction.
反応容器を氷浴につけ、 反応溶液が 1 0°C以下になるまで冷却し、 反応溶液 を 10°C以下に保ったままで、 クロロホスファゼンオリゴマー 85. l gとキ シレン 25 Om 1の混合溶液を、 滴下ロートを用いて 30分かけて滴下した。 滴下後、 反応溶液を再度加熱し、 油浴温度 145°Cで 7時間加熱還流を行った。 反応の終点は、 31 PNMRにより追跡した。 反応終了後、 反応溶液を 40°C 以下まで冷却した後、 1 0 %水酸化ナトリウム水溶液/メタノール = 7 : 3の 溶液で二度洗浄し、 さらに希塩酸で一度、 水 Zメタノール =7 : 3溶液での洗 浄を三度行った。 無水硫酸マグネシウムで反応溶液を乾燥し、 硫酸マグネシゥ ムを濾別、 80°C、 1 OmmHg以下で溶媒を溜去した後、 設定温度 80°Cのォ ープン中で、 1 mmHg以下で 1 3時間減圧乾燥させて、 フエノキシホスファゼ' ン化合物の混合物を含むホスファゼン組成物 1 54 gを得た。 得られたホスフ ァゼンの組成は 上 PNMRにより求めた。 三量体: 8 7%、 四量体: 1 0%、 そ の他のホスファゼン化合物: 3%。 K含有量; 10 p pm、 Na含有量; 1 0 p pm。 500°C残渣: 7. 8重量%。 揮発分量は 0. 01 7重量%であった。 嵩密度は 0. 42 g/ cm3であった。 Place the reaction vessel in an ice bath, cool the reaction solution to 10 ° C or less, and while maintaining the reaction solution at 10 ° C or less, mix a mixed solution of 85.lg of chlorophosphazene oligomer and 25 Om1 of xylene with The solution was dropped using a dropping funnel over 30 minutes. After the dropwise addition, the reaction solution was heated again, and heated under reflux at an oil bath temperature of 145 ° C for 7 hours. The end point of the reaction was followed by 31 PNMR. After completion of the reaction, the reaction solution is cooled to 40 ° C or lower, washed twice with a 10% aqueous solution of sodium hydroxide / methanol = 7: 3, and further diluted with hydrochloric acid once, and a solution of water / methanol = 7: 3. Cleaning was performed three times. The reaction solution was dried over anhydrous magnesium sulfate, magnesium sulfate was separated by filtration, and the solvent was distilled off at 80 ° C and 1 OmmHg or less. It was dried under reduced pressure to obtain 154 g of a phosphazene composition containing a mixture of phenoxyphosphazene compounds. The composition of the obtained phosphazene was determined by PNMR above. Trimer: 87%, tetramer: 10%, other phosphazene compounds: 3%. K content; 10 ppm, Na content; 10 ppm. 500 ° C residue: 7.8% by weight. The volatile content was 0.017% by weight. The bulk density was 0. 42 g / cm 3.
【比較例 2】  [Comparative Example 2]
FR8 :ジムロート型冷却管を備えたディーンスターク管、 滴下ロート、 温 度計及び攪拌装置を備え付けた 2 Lの四口フラスコに、 フエノール 1 67. 0 g、 水酸化力リウム 1 00. l gを精製水に溶解させて 40 %溶液とした水酸 化力リゥム水溶液及ぴキシレン 500m lを仕込み、 窒素気流下、 油浴温度 1 45°Cで加熱還流を行った。 系中の水と生成する水はキシレンとの共沸により 系外へと取り出し、 キシレンのみ系中に戻した。 生成してくる水の溜出が終了 するまで加熱還流を行ったところ、 反応完結まで 8時間を要した。 FR8: Purification of 167.0 g of phenol and 100.lg of potassium hydroxide in a 2 L four-necked flask equipped with a Dean-Stark tube equipped with a Dimroth condenser, a dropping funnel, a thermometer and a stirrer. A 40% aqueous solution of oxidizing water dissolved in water and 500 ml of xylene were charged, and heated and refluxed at an oil bath temperature of 145 ° C under a nitrogen stream. The water in the system and the water formed are azeotropic with xylene It was taken out of the system, and only xylene was returned to the system. The mixture was heated and refluxed until the distillation of the generated water was completed, and it took 8 hours to complete the reaction.
反応容器を氷浴につけ、 反応溶液が 1 0°C以下になるまで冷却し、 反応溶液 を 10°C以下に保ったままで、 クロロホスファゼンオリゴマー 80. l gとキ シレン 250m 1の混合溶液を、 滴下ロートを用いて 30分かけて滴下した。 滴下後、 反応溶液を再度加熱し、 油浴温度 145°Cで 6時間加熱還流を行った。 反応の終点は、 3 1 PNMRにより追跡した。 反応終了後、 反応溶液を 40°C 以下まで冷却し、 希塩酸で中和し、 水洗を三度行った。 無水硫酸マグネシウム で反応溶液を乾燥し、 硫酸マグネシウムを濾別、 80°C、 l OmmHg以下で溶 媒を溜去した後、 設定温度 80°Cのオーブン中で、 1 mmHg以下で 3時間減圧 乾燥させて、 フエノキシホスファゼン化合物の混合物を含むホスファゼン組成 物 1 5 1 g得た。 得られたホスファゼンの組成は3 1 PNMRにより求めた。 三量 体: 8 1 %、 四量体 1 2%、 分子内に水酸基を一つ有するホスファゼン化合 物 : 1 %、 モノクロ口ペンタフエノキシホスファゼン三量体: 2%、 その他の ホスファゼン化合物 4%。 K含有量; 21 2 p pm、 N a含有量; 38 p p m。 リン含有量; 14. 6重量%、 塩素含有量; 2200 p pm。 500°C残渣: 1 5. 1重量%。 揮発分量は 5. 12重量%であった。 嵩密度は 0. 76 g/ cm であった 0 Place the reaction vessel in an ice bath, cool the reaction solution to 10 ° C or less, and drop a mixed solution of 80.lg of chlorophosphazene oligomer and 250 ml of xylene while keeping the reaction solution at 10 ° C or less. The solution was added dropwise using a funnel over 30 minutes. After the dropwise addition, the reaction solution was heated again, and refluxed with heating at an oil bath temperature of 145 ° C for 6 hours. The end point of the reaction was followed by 3 1 PNMR. After the completion of the reaction, the reaction solution was cooled to 40 ° C. or lower, neutralized with dilute hydrochloric acid, and washed three times with water. The reaction solution is dried over anhydrous magnesium sulfate, magnesium sulfate is filtered off, the solvent is distilled off at 80 ° C and less than 10 mmHg, and then dried under reduced pressure at 1 mmHg or less in an oven at a set temperature of 80 ° C for 3 hours. As a result, 151 g of a phosphazene composition containing a mixture of phenoxyphosphazene compounds was obtained. The composition of the resulting phosphazene was obtained by 3 1 PNMR. Trimer: 81%, tetramer: 12%, phosphazene compound having one hydroxyl group in the molecule: 1%, monochrome-opening pentaphenoxyphosphazene trimer: 2%, other phosphazene compounds 4% . K content; 212 ppm, Na content: 38 ppm. Phosphorus content; 14.6% by weight; chlorine content; 2200 ppm. 500 ° C residue: 15.1% by weight. The volatile content was 5.12% by weight. 0 The bulk density was 0. 76 g / cm
【比較例 3】  [Comparative Example 3]
FR 9 :ジムロート型冷却管を備えたディーンスターク管、 滴下ロート、 温 度計及び攪拌装置を備え付けた 2 Lの四口フラスコに、 フエノール 1 55. 1 g、 水酸化カリゥム 100. 1 g、 精製水 25m 1及びモノクロ口ベンゼン 5 00m lを仕込み、 油浴温度 145 °Cで加熱還流を行った。 生成する水はモノ クロロベンゼンとの共沸により系外へと取り出し、 モノクロ口ベンゼンのみ系 中に戻した。 生成してくる水の溜出が終了するまで加熱還流を行ったところ、 反応完結まで 7時間を要した。  FR 9: In a 2 L four-necked flask equipped with a Dean-Stark tube equipped with a Dimroth condenser, a dropping funnel, a thermometer and a stirrer, 555.1 g of phenol, 100.1 g of potassium hydroxide, purification 25 ml of water and 500 ml of benzene with a monochrome mouth were charged, and heated and refluxed at an oil bath temperature of 145 ° C. The generated water was taken out of the system by azeotropy with monochlorobenzene, and only the benzene with monochrome mouth was returned to the system. The mixture was heated and refluxed until the distillation of the generated water was completed, and it took 7 hours to complete the reaction.
反応容器を氷浴につけ、 反応溶液が 1 0°C以下になるまで冷却し、 反応溶液 を 1 0°C以下に保ったままで、 クロロホスファゼンオリゴマー 72. 2 gとモ ノクロロベンゼン 250m lの混合溶液を、 滴下ロートを用いて 30分かけて 滴下した。 滴下後、 反応溶液を再度加熱し、 油浴温度 145°Cで 6時間加熱還 流を行った。 反応の終点は、 31 PNMRにより追跡した。 反応終了後、 反応 溶液を 50 °C以下まで冷却し、 1 0 %水酸化ナトリゥム水溶液で二度洗浄し、 さらに希塩酸で一度、 水洗を三度行った。 無水硫酸マグネシウムで反応溶液を 乾燥し、 硫酸マグネシウムを濾別、 80°C、 1 OmmHg以下で溶媒を溜去した 後、 95°C、 1 mmHg以下で 5時間減圧乾燥させて、 フエノキシホスファゼン 化合物の混合物を含むホスファゼン組成物 1 21. 1 g得た。 得られたホスフ ァゼンの組成は、 三量体: 62. 1 %、 四量体 26. 4%、 分子内に水酸基を 一つ有するホスファゼン三量体化合物: 0. 8%、 モノクロ口ペンタフエノキ シホスファゼン三量体: 1. 2%、 その他のホスファゼン化合物 9. 5%。 K 含有量; 1 26 p pm、 N a含有量; 3 1 p p m。 リン含有量: 14. 3 %、 塩素含有量: 1 270 p pm。 500°C残渣: 1 8. 2重量%。 揮発分量は 1. 24重量%で、 嵩密度は 0. 62 g/cm""1であった。 Place the reaction vessel in an ice bath, cool the reaction solution to 10 ° C or lower, and keep the reaction solution at 10 ° C or lower, and mix a 72.2 g chlorophosphazene oligomer and 250 ml monochlorobenzene. Over 30 minutes using a dropping funnel It was dropped. After the dropwise addition, the reaction solution was heated again, and heated and refluxed at an oil bath temperature of 145 ° C for 6 hours. The end point of the reaction was followed by 31 PNMR. After the completion of the reaction, the reaction solution was cooled to 50 ° C. or lower, washed twice with a 10% aqueous sodium hydroxide solution, and further washed once with dilute hydrochloric acid and three times with water. The reaction solution was dried over anhydrous magnesium sulfate, magnesium sulfate was filtered off, the solvent was distilled off at 80 ° C and 1 OmmHg or less, and then dried under reduced pressure at 95 ° C and 1 mmHg or less for 5 hours to obtain phenoxyphosphazene. A phosphazene composition containing a mixture of compounds was obtained in a yield of 121. 1 g. The composition of the obtained phosphazene is as follows: trimer: 62.1%, tetramer: 26.4%, phosphazene trimer compound having one hydroxyl group in the molecule: 0.8%, monochrome-opened pentaphenoxyphosphazene Trimer: 1.2%, other phosphazene compounds 9.5%. K content; 126 ppm; Na content; 31 ppm. Phosphorus content: 14.3%, chlorine content: 1 270 ppm. 500 ° C residue: 18.2% by weight. The volatile content was 1.24% by weight, and the bulk density was 0.62 g / cm "" 1 .
【応用例】  [Application example]
【実施例 7〜 10、 比較例 4、 5】  [Examples 7 to 10, Comparative Examples 4 and 5]
実施例 1〜 4及ぴ比較例 1、 2で得られたホスファゼン組成物の吸湿前後 でのそれぞれの水分含有量の測定を行い、 表 1の結果を得た。 表 1にはこれ らのホスファゼン組成物の揮発分量も併記した。  The water content of each of the phosphazene compositions obtained in Examples 1 to 4 and Comparative Examples 1 and 2 was measured before and after moisture absorption, and the results shown in Table 1 were obtained. Table 1 also shows the volatile content of these phosphazene compositions.
また、 実施例 1〜 4及ぴ比較例 1、 2で得たホスファゼン組成物 1 1重量 %、 H I P Sを 39重量0/。、 P P Eを 50重量%の割合で混合し、 加熱シリン ダ一の最高温度を 300°Cに設定したスクリユー直径 25 mmの二軸押出機に供 給して、 スクリユー回転数 300 r pmで溶融混合し、 ストランドを冷却裁断し て樹脂組成物ペレットを得た。 次に、 得られた樹脂組成物ペレットを、 射出成形 によりシリンダー設定温度 280 °C、 金型温度 80°Cにて UL— 94試験用試験 片及び、 電気特性測定用試験片を成形し、 上記試験法により物性試験を行い、 表 1の結果を得た。 【表 1】 In addition, 11% by weight of the phosphazene composition obtained in Examples 1 to 4 and Comparative Examples 1 and 2, and 39% by weight of HIPS / 0 . , PPE mixed at a ratio of 50% by weight, and supplied to a twin screw extruder with a screw diameter of 25 mm where the maximum temperature of the heated cylinder was set to 300 ° C, and melted and mixed at a screw rotation speed of 300 rpm. Then, the strand was cooled and cut to obtain a resin composition pellet. Next, the obtained resin composition pellets were molded into a UL-94 test specimen and an electrical property measurement specimen at a cylinder set temperature of 280 ° C and a mold temperature of 80 ° C by injection molding. A physical property test was performed by the test method, and the results in Table 1 were obtained. 【table 1】
実施例 実施例 実施例 実施例 比較例比較例  Example Example Example Example Example Comparative example Comparative example
7 8 9 1 0 4 5  7 8 9 1 0 4 5
[ホスファゼン組成物] FR 1 FR2 FR 3 FR4 FR7 F R 8 揮発分量/ ^/o 0.174 0.225 0.586 0.125 0.017 5.12 吸湿前 (A) /ppm 101 180 155 75 37 326  [Phosphazene composition] FR 1 FR2 FR 3 FR4 FR7 F R 8 Volatile content / ^ / o 0.174 0.225 0.586 0.125 0.017 5.12 Before moisture absorption (A) / ppm 101 180 155 75 37 326
吸湿後 (B) /ppm 499 452 612 540 1498 862  After moisture absorption (B) / ppm 499 452 612 540 1498 862
変化量 (B - A) 398 272 457 465 1461 536  Change (B-A) 398 272 457 465 1461 536
[樹脂組成物]  [Resin composition]
吸湿前 2.64 2.64 2.65 2.64 2.63 2.67 誘電率 吸湿後 2.66 2.66 2.67 2.66 2.69 2.69  Before moisture absorption 2.64 2.64 2.65 2.64 2.63 2.67 Dielectric constant After moisture absorption 2.66 2.66 2.67 2.66 2.69 2.69
A 0.02 0.02 0.02 0.02 0.06 0.02 吸湿前 0.0027 0.0028 0.0029 0.0027 0.0027 0.003 誘電正接 吸湿後 0.0037 0.0036 0.0038 0.0035 0.00340.0064  A 0.02 0.02 0.02 0.02 0.06 0.02 Before moisture absorption 0.0027 0.0028 0.0029 0.0027 0.0027 0.003 Dielectric loss tangent After moisture absorption 0.0037 0.0036 0.0038 0.0035 0.00340.0064
A 0.001 0.0008 0.0009 0.0008 0.00070.0034 難燃性 【UL 94】 V- 0 V- 0 V- 0 V- 0 V- 0 V— 1 表 1の結果から、 揮発分量が本願に示す範囲のものは吸湿前後での電気特性の 変化が小さく、 また良好な難燃性を示すことがわかる。  A 0.001 0.0008 0.0009 0.0008 0.00070.0034 Flame retardant [UL 94] V- 0 V- 0 V- 0 V- 0 V- 0 V— 1 From the results in Table 1, those with a volatile content within the range indicated in this application are moisture-absorbing. It can be seen that the change in electrical characteristics before and after is small, and that good flame retardancy is exhibited.
【実施例 1 1〜 1 5】  [Examples 11 to 15]
実施例 2で得たホスファゼン組成物 (FR2) を、 ヘンシェルミキサーを用い ' て粉碎し、 粉碎時間を変えることにより、 嵩密度の異なるホスファゼン糸且成物を 得た。 得られたホスファゼン組成物を実施例 7〜1 0と同様に六時間吸湿し、 そ の前後での含有水分量を測定した。  The phosphazene composition (FR2) obtained in Example 2 was pulverized using a Henschel mixer, and the pulverization time was changed to obtain phosphazene yarns having different bulk densities. The obtained phosphazene composition was absorbed for 6 hours in the same manner as in Examples 7 to 10, and the water content before and after the absorption was measured.
【表 2】  [Table 2]
実施例実施例実施例実施例実  Example embodiment Example embodiment Example
1 1 1 2 1 3 1 4 1 5  1 1 1 2 1 3 1 4 1 5
¾密度 g / c m 0.47 0.53 0.45 0.61 0.33  ¾ Density g / cm 0.47 0.53 0.45 0.61 0.33
吸湿前 (A) /ppm 180 176 188 170 163  Before moisture absorption (A) / ppm 180 176 188 170 163
吸湿後 (B) /ppm 452 488 486 522 769  After moisture absorption (B) / ppm 452 488 486 522 769
変化量 (B-A) 272 312 298 352 606 表 2の結果から、 嵩密度が 0. 45 g Z c m 3以上のものは、 耐吸湿性が特に 高いことがわかる。 From the change amount (BA) 272 312 298 352 606 Table 2 results, the bulk density is 0. 45 g Z cm 3 or more ones, moisture absorption resistance is particularly It turns out that it is high.
【実施例 1 6— 22、 比較例 6〜 8】  [Example 16-22, Comparative Examples 6-8]
実施例 1、 2、 5、 6及び比較例 2、 3で得られたホスファゼン組成物の 吸湿前後でのそれぞれの水分含有量、 重量保持率の測定を行い、 表 3、 4の 結果を得た。 表 3、 4にはこれらのホスファゼン組成物の揮発分量、 嵩密度 も併記した。  The phosphazene compositions obtained in Examples 1, 2, 5, and 6 and Comparative Examples 2 and 3 were each measured for water content and weight retention before and after moisture absorption, and the results in Tables 3 and 4 were obtained. . Tables 3 and 4 also show the volatile content and bulk density of these phosphazene compositions.
さらに、 各成分を下記に示す割合で混合し、 加熱シリンダーの最高温度を 3 00°Cに設定したスクリユー直径 25 mmの二軸押出機に供給して、 スクリュー 回転数 300 r pmで溶融混合し、 ストランドを冷却裁断して樹脂組成物ペレツ トを得た。 次に、 得られた樹脂組成物ペレットを、 射出成形によりシリンダー設 定温度 240-290°Cにて物性試験片を成形し、 上記試験法により物性試験を 行い、 表 3及ぴ表 4の結果を得た。  Furthermore, each component was mixed in the ratio shown below, and fed to a twin screw extruder with a screw diameter of 25 mm with the maximum temperature of the heating cylinder set at 300 ° C, and melt-mixed at a screw rotation speed of 300 rpm. Then, the strand was cooled and cut to obtain a resin composition pellet. Next, physical properties test pieces were molded from the obtained resin composition pellets at a cylinder setting temperature of 240 to 290 ° C by injection molding, and physical properties tests were performed by the above-described test methods, and the results in Tables 3 and 4 were obtained. Got.
【表 3】  [Table 3]
実施例 実施例 実施例 実施例 比較例  Example Example Example Example Comparative example
16 1 7 18 19 6  16 1 7 18 19 6
[ホスファゼン組成物] FR 1 F R 2 FR 5 FR6 FR8 揮発分量 w t % 0.174 0.225 0.088 0.451 5.12 吸湿前 (A) p p m 101 180 127 178 326 吸湿後 (B) P m 499 452 433 584 862 変化量 (B - A) p p m 398 272 306 406 536  [Phosphazene composition] FR 1 FR 2 FR 5 FR6 FR8 Volatile content wt% 0.174 0.225 0.088 0.451 5.12 Before moisture absorption (A) ppm 101 180 127 178 326 After moisture absorption (B) P m 499 452 433 584 586 862 Change (B- A) ppm 398 272 306 406 536
嵩密度 g / c m 0.47 0.53 0.49 0.57 0.76 重量保持率 w t % 2.2 6.3 4.3 8.6 15.1  Bulk density g / cm 0.47 0.53 0.49 0.57 0.76 Weight retention w t% 2.2 6.3 4.3 8.6 15.1
[樹脂組成物]  [Resin composition]
難燃性 【UL— 94】 V- 0 V- 0 V- 0 V- 0 V- 1  Flame retardant [UL-94] V- 0 V- 0 V- 0 V- 0 V- 1
MF R g Z lOmin 8.8 8.1 8.2 7.9 6.2 樹脂組成物: P P E/H I P SZホスファゼン組成物 = 55/33/12 (重量 %) 表 4】 MF R g Z lOmin 8.8 8.1 8.2 7.9 6.2 Resin composition: PPE / HIP SZ phosphazene composition = 55/33/12 (% by weight) Table 4]
実施例 実施例 実施例 比較例 比較例  Example Example Example Comparative example Comparative example
20 21 22 7 8  20 21 22 7 8
[ホスファゼン組成物] FR 1 FR 2 FR 5 FR 9 FR 8 揮発分量 t % 0.174 0.225 0.088 1.24 5.12 吸湿前 (A) p p m 101 180 127 289 326 吸湿後 (B) p p m 499 452 433 769 862 変化量 (B - A) p p m 398 272 306 480 . 536  [Phosphazene composition] FR 1 FR 2 FR 5 FR 9 FR 8 Volatile content t% 0.174 0.225 0.088 1.24 5.12 Before moisture absorption (A) ppm 101 180 127 289 326 After moisture absorption (B) ppm 499 452 433 769 862 Change (B -A) ppm 398 272 306 480.536
g/ / c m 3 0.47 0.53 0.49 0.62 0.76 重量保持率 t % 2.2 6.3 4.3 18.2 15.1  g / / cm 3 0.47 0.53 0.49 0.62 0.76 Weight retention t% 2.2 6.3 4.3 18.2 15.1
[樹脂組成物]  [Resin composition]
難燃性 【UL- - 94】 V- 0 V- 0 V- 0 V- 1 V- 2  Flame retardant [UL--94] V- 0 V- 0 V- 0 V- 1 V- 2
MFR . 30.2 29 28.9 23.4 20.6 樹脂組成物: P PE/H I P S /ホスフ 'ァゼン糸」诚物 = 40/45/15 MFR .30.2 29 28.9 23.4 20.6 Resin composition: PPE / HIPS / phosphine-fazene yarn = 40/45/15
%) %)
表 3及ぴ 4の結果から、 TG Aの 500°C残渣量が低いものは特に良好な加 ェ流動性、 難燃性を示すことがわかる。  From the results shown in Tables 3 and 4, it can be seen that TGA having a low residue at 500 ° C exhibits particularly good heat flowability and flame retardancy.
【実施例 23〜 26、 比較例 9〜: I 2】  [Examples 23 to 26, Comparative examples 9 to: I 2]
実施例 1、 2、 4、 5及び比較例 1〜 3で得られたホスファゼン組成物の 吸湿前後でのそれぞれの水分含有量の測定を行い、 表 5、 6の結果を得た。 表 5、 6にはこれらのホスファゼン組成物の揮発分量も併記した。  The water content of each of the phosphazene compositions obtained in Examples 1, 2, 4, 5 and Comparative Examples 1 to 3 was measured before and after moisture absorption, and the results in Tables 5 and 6 were obtained. Tables 5 and 6 also show the volatile content of these phosphazene compositions.
さらに、 AER 250 71. ◦重量0 /0及ぴホスファゼン組成物 1 6. 0 重量。/。を 1 10°Cで溶解させた後、 1 10°Cで硬化剤 13. 0重量%を添加、 90秒攪拌しながら加熱した後、 型に流し入れた。 Furthermore, AER 250 71. ◦ weight 0/0 及Pi phosphazene composition 1 6.0 wt. /. Was melted at 110 ° C., a curing agent (13.0% by weight) was added at 110 ° C., the mixture was heated with stirring for 90 seconds, and then poured into a mold.
次いで、 100°C/0 k g f /cm で 2分間、 100°CZ 10 k g f ん で 2分間、 100°CZ40 k g f ん m2で 30分、 熱プレス機で硬化させて耐湿 性測定用の成型片を得た。 耐湿性測定結果は表 5及び表 6に示す。 Then, 2 minutes at 100 ° C / 0 kgf / cm , 100 ° CZ 10 kgf do in 2 minutes, 30 minutes m 2 N 100 ° CZ40 kgf, and cured in a hot press molding piece for moisture measurements Obtained. Tables 5 and 6 show the measurement results of the moisture resistance.
【比較例 12】  [Comparative Example 12]
AE R 250 84. 5重量%を 1 1 0 °Cに保ち、 そこへ硬化剤 1 5. 5 重量%を添加、 90秒攪拌しながら加熱した後、 型に流し入れた。 次いで、 1 00°C/0 k g f /cm2で 2分間、 100。CZl 0 k g f /cm2で 2分間、 1 00°CZ40 k g f /cm2で 30分、 熱プレス機で硬化させて耐湿 性測定用の成型片を得た。 耐湿性測定結果は表 6に示す。 AE R250 84.5% by weight was kept at 110 ° C, 15.5% by weight of a curing agent was added thereto, heated with stirring for 90 seconds, and then poured into a mold. Then 100 at 100 ° C / 0 kgf / cm 2 for 2 minutes. CZl 0 kgf / cm 2 for 2 minutes, 1 00 ° CZ40 kgf / cm 2 in 30 minutes and cured in a hot press to obtain a molding piece for moisture measurements. Table 6 shows the results of the moisture resistance measurement.
【表 5】  [Table 5]
実施例 実施例 実施例 実施例比較例  Example Example Example Comparative example
23 24 25 26 9  23 24 25 26 9
[ホスファゼン組成物] FR 1 FR 2 FR4 FR 5 FR 9  [Phosphazene composition] FR 1 FR 2 FR4 FR 5 FR 9
揮発分量 /% 0.174 0.225 0.125 0.088 1.24  Volatile content /% 0.174 0.225 0.125 0.088 1.24
吸湿前 (A) /ppm 101 180 75 127 289  Before moisture absorption (A) / ppm 101 180 75 127 289
吸湿後 (B) /ppm 499 452 540 433 769  After moisture absorption (B) / ppm 499 452 540 433 769
変化量 (B-A) 398 272 465 306 480  Change (B-A) 398 272 465 306 480
[樹脂組成物]  [Resin composition]
吸水率 ^/o 1.69 1.65 1.71 1.66 1.72  Water absorption ^ / o 1.69 1.65 1.71 1.66 1.72
色調安定性 〇 〇 〇 〇 X  Color stability 〇 〇 〇 〇 X
【表 6】 [Table 6]
比較例 比較例 比較例  Comparative example Comparative example Comparative example
10 1 1 1 2  10 1 1 1 2
[ホスファゼン組成物] FR 7 FR8 - 揮発分量 /% 0.017 5.12 - 吸湿前 (A) /ppm 37 326 一  [Phosphazene composition] FR 7 FR8-Volatile content /% 0.017 5.12-Before moisture absorption (A) / ppm 37 326
吸湿後 (B) /ppm 1498 862 - 変化量 (B-A) 1461 536 - After moisture absorption (B) / ppm 1498 862-Change (B-A) 1461 536-
[樹脂組成物] [Resin composition]
吸水率 /% 1.92 1.81 2.06  Water absorption /% 1.92 1.81 2.06
色調安定性 〇 ■' X 〇 産業上の利用可能性  Color stability 〇 ■ 'X 産業 Industrial applicability
200°Cで二時間加熱した時の揮発分が 0. 02重量%以上、 1. 0重量%以 下であるホスファゼン組成物は、 塩素系化合物、 臭素系化合物を含まず、 樹脂に 添カ卩した場合に耐加水分解性、 難燃性及び 1 GH Z以上の高周波領域における電気 特性安定性のバランスを高度に保持することのできる樹脂組成物を提供すること ができる。 The phosphazene composition having a volatile content of 0.02% by weight or more and 1.0% by weight or less when heated at 200 ° C for 2 hours contains no chlorine-based compound or bromine-based compound, and is added to the resin. hydrolysis resistance when it is possible to provide a resin composition which can be highly hold the balance of electrical properties stability in flame retardancy and 1 GH Z or more high-frequency region.

Claims

請 求 の 範 囲 The scope of the claims
1. 少なくとも一種のホスファゼン化合物を含有するホスファゼン組成物 であって、 該ホスファゼン組成物からの揮発分が、 200 °Cで 2時間加熱した時 に該ホスファゼン組成物の全重量に対して 0. 02重量%以上、 1. 0重量%以 下である、 上記ホスファゼン,組成物。 1. A phosphazene composition containing at least one phosphazene compound, wherein volatile matter from the phosphazene composition is 0.02 with respect to the total weight of the phosphazene composition when heated at 200 ° C. for 2 hours. The phosphazene or composition as described above, which is not less than 1.0% by weight and not more than 1.0% by weight.
2. ホスファゼン組成物からの揮発分が、 該ホスファゼン組成物中に残存す るホスファゼン化合物合成における反応溶媒、 原料、 及び該反応溶媒及び zまた は該原料から生成する副生成物の中から選ばれる少なくとも一つを含有する、 請 求項 1に記載のホスファゼン,袓成物。  2. The volatile matter from the phosphazene composition is selected from the reaction solvent, raw material, and the reaction solvent and z or by-products generated from the raw material in the synthesis of the phosphazene compound remaining in the phosphazene composition. The phosphazene or composition according to claim 1, comprising at least one.
3. 150 °Cでカールフィッシャ一法により測定した含有水分量が、 100 0 p pm以下である、 請求項 1又は 2に記載のホスファゼン組成物。  3. The phosphazene composition according to claim 1, wherein the water content measured by the Karl Fischer method at 150 ° C. is 1000 ppm or less.
4. 150 °Cでカールフィッシャ一法により測定した含有水分量が、 650 p pm以下である、 請求項 1又は 2に記載のホスファゼン組成物。  4. The phosphazene composition according to claim 1, wherein the water content measured by the Karl Fischer method at 150 ° C. is 650 ppm or less.
5. ホスファゼン組成物の総重量に基づいて、 環状ホスファゼン化合物 を 95重量%以上含有する、 請求項 1〜4のいずれか 1項に記載のホスファ ゼン組成物。  5. The phosphazene composition according to any one of claims 1 to 4, comprising at least 95% by weight of the cyclic phosphazene compound based on the total weight of the phosphazene composition.
6. ホスファゼン組成物の総重量に基づいた一種または複数種のアル力リ 金属元素含有量がそれぞれ 20 Oppm以下であり、 且つ、 P— OH結合を有す る化合物含有量が 1重量%以下であり、 且つ、 塩素含有量が 1 000 p p m以 下である、 請求項 1〜5のいずれか 1項に記載のホスファゼン組成物。  6. The content of one or more metal elements based on the total weight of the phosphazene composition is 20 Oppm or less, respectively, and the content of the compound having a P-OH bond is 1% by weight or less. The phosphazene composition according to any one of claims 1 to 5, wherein the phosphazene composition has a chlorine content of 1,000 ppm or less.
7. ホスファゼン組成物の総重量に基づいた一種または複数種のアル力リ 金属元素含有量がそれぞれ 5 Oppm以下であり、 且つ、 P— OH結合を有する 化合物含有量が 1重量%以下であり、 且つ、 塩素含有量が 500 p p m以下で ある、 請求項 1〜 5のいずれか 1項に記載のホスファゼン組成物。  7. The content of one or more kinds of metal elements based on the total weight of the phosphazene composition is 5 Oppm or less, respectively, and the content of the compound having a P-OH bond is 1% by weight or less, The phosphazene composition according to any one of claims 1 to 5, wherein the chlorine content is 500 ppm or less.
8. 前記ホスファゼン化合物中の全置換基のうち 90%以上の置換基が フエノキシ基であり、 且つ、 リン含有量がホスファゼン組成物の総重量に基づ いて 1 3. 0〜14. 5重量%である、 請求項 1〜7のいずれか 1項に記載 のホスファゼン組成物。 8. 90% or more of all the substituents in the phosphazene compound are phenoxy groups, and the phosphorus content is 13.0 to 14.5% by weight based on the total weight of the phosphazene composition. The phosphazene composition according to any one of claims 1 to 7, wherein
9. TGAによって不活性ガス雰囲気下、 昇温速度 1 0°Cノ分で常温から 600°Cまで加熱した時の 500°Cにおける重量保持率が 1 5重量%以下であ る、 請求項 1〜 8のいずれか 1項に記載のホスファゼン組成物。 9. The weight retention rate at 500 ° C when heated from room temperature to 600 ° C at a temperature rising rate of 10 ° C under an inert gas atmosphere by TGA is 15% by weight or less. 9. The phosphazene composition according to any one of items 1 to 8.
1 0. TGAによって不活性ガス雰囲気下、 昇温速度 1 0°CZ分で常温か ら 600 °Cまで加熱した時の 500 °Cにおける重量保持率が 10重量%以下であ る、 請求項 1〜 8のいずれか 1項に記載のホスファゼン組成物。  10. The weight retention rate at 500 ° C when heated from room temperature to 600 ° C in a temperature rising rate of 10 ° CZ under an inert gas atmosphere by TGA under an inert gas atmosphere is 10% by weight or less. 9. The phosphazene composition according to any one of items 1 to 8.
1 1. 嵩密度が 0. 45 gZcm3以上である、 請求項:!〜 10のいずれか 1項に記載のホスファゼン組成物。 1 1. The bulk density is 0.45 gZcm 3 or more. 11. The phosphazene composition according to any one of items 10 to 10.
1 2. 樹脂及び請求項 1〜1 1のいずれか 1項に記載のホスファゼン組 成物を含む、 難燃性樹脂組成物。  1 2. A flame-retardant resin composition comprising a resin and the phosphazene composition according to any one of claims 1 to 11.
1 3. 樹脂が、 不飽和ポリエステル樹脂、 ビュルエステル樹脂、 ジァリル フタレート樹脂、 エポキシ樹脂、 シァネート樹脂、 キシレン樹脂、 トリアジン 樹脂、 フエノール樹脂、 ユリア樹脂、 メラミン樹脂、 ベンゾグアナミン樹脂、 ウレタン樹脂、 ケトン樹脂、 アルキド樹脂、 フラン樹脂、 スチリルピリジン樹 脂、 シリコン樹脂及び合成ゴムからなる群から選ばれた少なくとも一種の硬化 性樹脂を含む、 請求項 1 2に記載の難燃性樹脂組成物。  1 3. Resins are unsaturated polyester resin, butyl ester resin, diaryl phthalate resin, epoxy resin, cyanate resin, xylene resin, triazine resin, phenol resin, urea resin, melamine resin, benzoguanamine resin, urethane resin, ketone resin, alkyd 13. The flame-retardant resin composition according to claim 12, comprising at least one curable resin selected from the group consisting of a resin, a furan resin, a styrylpyridine resin, a silicone resin, and a synthetic rubber.
14. 樹脂が、 ポリカーボネート、 ポリフエ二レンエーテル、 ポリフエ 二レンサノレファイ ド、 ボリプロピレン、 ポリエチレン、 ポリスチレン、 A B S樹脂、 ポリアルキレンテレフタレート、 ポリアミ ド、 サーモト口ピック液 晶及ぴエラストマ一含有ポリスチレンからなる群から選ばれた少なくとも一種 の熱可塑性樹脂を含む、 請求項 1 2に記載の難燃性樹脂組成物。  14. The resin is a group consisting of polycarbonate, polyphenylene ether, polypropylene phenol, polyethylene, polyethylene, polystyrene, ABS resin, polyalkylene terephthalate, polyamide, thermopic liquid crystal and elastomer-containing polystyrene. 13. The flame-retardant resin composition according to claim 12, comprising at least one thermoplastic resin selected from the group consisting of:
1 5. リン原子濃度が難燃性樹脂組成物の総重量に基づいて 0. 5重量% 〜 8. 0重量%である、 請求項 1 2〜 14のいずれか 1項に記載の難燃性樹脂組 成物。  15. The flame retardancy according to any one of claims 12 to 14, wherein the phosphorus atom concentration is 0.5% to 8.0% by weight based on the total weight of the flame retardant resin composition. Resin composition.
1 6. 1ギガへルツ以上の高周波領域で使用される電気電子機器部品又は筐 体に用いられる、 請求項 1 2〜1 5のいずれか 1項に記載の難燃樹月旨組成物。  16. The flame-retardant lumber composition according to any one of claims 12 to 15, which is used for an electric or electronic device part or a casing used in a high-frequency region of 1 gigahertz or more.
PCT/JP2003/010773 2002-09-13 2003-08-26 Phosphazene composition WO2004024844A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE10393198T DE10393198B4 (en) 2002-09-13 2003-08-26 Phosphazene composition, resin composition containing them and their use
JP2004535877A JP3923497B2 (en) 2002-09-13 2003-08-26 Phosphazene composition
AU2003261725A AU2003261725A1 (en) 2002-09-13 2003-08-26 Phosphazene composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002268112 2002-09-13
JP2002-268112 2002-09-13

Publications (1)

Publication Number Publication Date
WO2004024844A1 true WO2004024844A1 (en) 2004-03-25

Family

ID=31986744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010773 WO2004024844A1 (en) 2002-09-13 2003-08-26 Phosphazene composition

Country Status (6)

Country Link
JP (1) JP3923497B2 (en)
KR (1) KR100634927B1 (en)
CN (1) CN1308418C (en)
AU (1) AU2003261725A1 (en)
DE (1) DE10393198B4 (en)
WO (1) WO2004024844A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106148A (en) * 2008-10-30 2010-05-13 Fushimi Pharm Co Ltd Flame retardant resin composition
US7759418B2 (en) 2004-10-18 2010-07-20 Asahi Kasei Chemicals Corporation Flame retardant resin composition
US9206313B2 (en) 2012-01-31 2015-12-08 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition
JP2017095667A (en) * 2015-11-27 2017-06-01 株式会社リコー Resin composition, molded body, electronic component, electronic apparatus, and electronic office appliance
JP2019163404A (en) * 2018-03-20 2019-09-26 株式会社伏見製薬所 Flame-retardant resin composition

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100933617B1 (en) * 2008-02-13 2009-12-23 서울대학교산학협력단 Curable cyclic phosphazene compound and preparation method thereof
WO2010004799A1 (en) * 2008-07-10 2010-01-14 日本電気株式会社 Polylactic acid resin composition and polylactic acid resin molded body
US8431656B2 (en) 2009-07-29 2013-04-30 Samsung Electro-Mechanics Co. Ltd. Curable cyclic phosphazene compound and method of preparing the same
US9761741B2 (en) * 2010-12-02 2017-09-12 Nissan Chemical Industries, Ltd. Film-forming material
KR20180125033A (en) * 2011-05-10 2018-11-21 바스프 에스이 Flame-retardant thermoplastic molding composition
JP5879170B2 (en) * 2012-03-26 2016-03-08 積水化学工業株式会社 Thermosetting furan resin composition and furan resin laminate using the same
US9023922B2 (en) 2012-05-24 2015-05-05 Sabic Global Technologies B.V. Flame retardant compositions, articles comprising the same and methods of manufacture thereof
US9018286B2 (en) 2012-05-24 2015-04-28 Sabic Global Technologies B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
KR20150093747A (en) * 2012-12-07 2015-08-18 바이엘 머티리얼사이언스 아게 Flame-retardant polycarbonate molding materials ii
CA2893886A1 (en) * 2012-12-07 2014-06-12 Bayer Materialscience Ag Flame-retardant polycarbonate molding materials i
BR112015012709A2 (en) * 2012-12-07 2017-07-11 Bayer Materialscience Ag fireproof polycarbonate molding ii
EP2928955B1 (en) * 2012-12-07 2018-05-30 Covestro Deutschland AG Flame-protected polycarbonate moulded substances v
KR102136909B1 (en) * 2012-12-07 2020-07-22 코베스트로 도이칠란드 아게 Flame-retardant polycarbonate molding materials vi
JP6345686B2 (en) * 2012-12-07 2018-06-20 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Flame Retardant Polycarbonate Molding Composition IV
CN103762384B (en) * 2014-01-24 2016-05-04 福建创鑫科技开发有限公司 A kind of battery safety-type nonaqueous electrolytic solution
WO2016145661A1 (en) * 2015-03-19 2016-09-22 Ablestik (Shanghai) Ltd. Epoxy molding compound, its manufacturing process and use, and transistor outline package product containing molded product thereof
CN104974350B (en) * 2015-06-24 2017-09-22 四川大学 Nitro polyphenylene oxide phosphonitrile and preparation method thereof
CN107573582A (en) * 2016-07-05 2018-01-12 广东广山新材料股份有限公司 A kind of CABLE MATERIALS of anti-flammability and preparation method thereof
CN107057172B (en) * 2017-01-13 2020-07-31 东北林业大学 Modified magnesium-aluminum hydrotalcite/ammonium polyphosphate/carbon forming foaming agent/phosphazene compound flame retardant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198189A (en) * 1990-11-29 1992-07-17 Bridgestone Corp Flame retardant oil
EP0945478A1 (en) * 1997-10-15 1999-09-29 Otsuka Chemical Company, Limited Crosslinked phenoxyphosphazene compounds, flame retardant, flame-retardant resin compositions, and moldings of flame-retardant resins
JP2000198793A (en) * 1999-01-05 2000-07-18 Otsuka Chem Co Ltd Production of phosphonitric acid ester
JP2001098144A (en) * 1999-09-29 2001-04-10 Toshiba Corp Epoxy resin composition and resin-sealed type semiconductor device
JP2002146146A (en) * 2000-11-07 2002-05-22 Techno Polymer Co Ltd Flame-retardant thermoplastic resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198189A (en) * 1990-11-29 1992-07-17 Bridgestone Corp Flame retardant oil
EP0945478A1 (en) * 1997-10-15 1999-09-29 Otsuka Chemical Company, Limited Crosslinked phenoxyphosphazene compounds, flame retardant, flame-retardant resin compositions, and moldings of flame-retardant resins
JP2000198793A (en) * 1999-01-05 2000-07-18 Otsuka Chem Co Ltd Production of phosphonitric acid ester
JP2001098144A (en) * 1999-09-29 2001-04-10 Toshiba Corp Epoxy resin composition and resin-sealed type semiconductor device
JP2002146146A (en) * 2000-11-07 2002-05-22 Techno Polymer Co Ltd Flame-retardant thermoplastic resin composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759418B2 (en) 2004-10-18 2010-07-20 Asahi Kasei Chemicals Corporation Flame retardant resin composition
JP2010106148A (en) * 2008-10-30 2010-05-13 Fushimi Pharm Co Ltd Flame retardant resin composition
US9206313B2 (en) 2012-01-31 2015-12-08 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition
JP2017095667A (en) * 2015-11-27 2017-06-01 株式会社リコー Resin composition, molded body, electronic component, electronic apparatus, and electronic office appliance
JP7182348B2 (en) 2015-11-27 2022-12-02 株式会社リコー Resin compositions, moldings, electronic parts, electronic equipment, and electronic office equipment
JP2019163404A (en) * 2018-03-20 2019-09-26 株式会社伏見製薬所 Flame-retardant resin composition

Also Published As

Publication number Publication date
CN1681906A (en) 2005-10-12
JPWO2004024844A1 (en) 2006-01-05
KR100634927B1 (en) 2006-10-18
DE10393198T5 (en) 2005-08-18
JP3923497B2 (en) 2007-05-30
DE10393198B4 (en) 2010-06-02
CN1308418C (en) 2007-04-04
KR20050042810A (en) 2005-05-10
AU2003261725A1 (en) 2004-04-30

Similar Documents

Publication Publication Date Title
WO2004024844A1 (en) Phosphazene composition
US7091266B2 (en) Flame retardant composition
US8562873B2 (en) Flame retarder composition
US7060744B2 (en) Phosphazene composition
JP5916160B2 (en) Method for producing epoxy compound composition
WO2000012603A1 (en) Powdery flame retardant
JP5190910B2 (en) Cyanato group-containing cyclic phosphinate compound and method for producing the same
JP5578495B2 (en) Flame retardant resin composition
JP5240758B2 (en) Flame retardant resin composition
JP3973105B2 (en) Flame retardant thermoplastic resin composition
JP3932199B2 (en) Flame retardant composition
JP3973107B2 (en) Flame retardant curable resin composition
JP2006117545A (en) Phosphazene compounds
JP2006016588A5 (en)
JP3973106B2 (en) Flame retardant thermoplastic resin composition
JP2004107374A (en) Flame retardant resin composition
JP2006016589A5 (en)
JP3932198B2 (en) Flame retardant composition
JP2006117546A (en) Mixture of phosphazene and resin composition thereof
JP5656142B2 (en) Dihydrobenzoxazineoxy group-containing cyclic phosphazene compound and process for producing the same
JP2005154763A (en) Flame retardant curable resin composition
JP2006117723A (en) Phosphazene mixture and resin composition thereof
JP2014058691A (en) Flame retardant resin composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004535877

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057004208

Country of ref document: KR

Ref document number: 20038215810

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057004208

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 10393198

Country of ref document: DE

Date of ref document: 20050818

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10393198

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607