WO2004024761A1 - Hasylated polypeptides, especially hasylated erythropoietin - Google Patents
Hasylated polypeptides, especially hasylated erythropoietin Download PDFInfo
- Publication number
- WO2004024761A1 WO2004024761A1 PCT/EP2003/008858 EP0308858W WO2004024761A1 WO 2004024761 A1 WO2004024761 A1 WO 2004024761A1 EP 0308858 W EP0308858 W EP 0308858W WO 2004024761 A1 WO2004024761 A1 WO 2004024761A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epo
- polypeptide
- hes
- conjugated
- cysteine
- Prior art date
Links
- 0 *CCC(CN)O Chemical compound *CCC(CN)O 0.000 description 2
- MIVBJNJMQJFCAT-UHFFFAOYSA-O NC(CC(NN)=O)C[OH2+] Chemical compound NC(CC(NN)=O)C[OH2+] MIVBJNJMQJFCAT-UHFFFAOYSA-O 0.000 description 1
- HXMVNCMPQGPRLN-UHFFFAOYSA-N NCCC(CN)O Chemical compound NCCC(CN)O HXMVNCMPQGPRLN-UHFFFAOYSA-N 0.000 description 1
- DDSHOJSJWVALFB-UHFFFAOYSA-N NNC(Nc(cc1)ccc1NC(NN)=S)=S Chemical compound NNC(Nc(cc1)ccc1NC(NN)=S)=S DDSHOJSJWVALFB-UHFFFAOYSA-N 0.000 description 1
- ZESQVNWRUDEXNZ-UHFFFAOYSA-N NOCCOCCON Chemical compound NOCCOCCON ZESQVNWRUDEXNZ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B31/00—Preparation of derivatives of starch
- C08B31/08—Ethers
- C08B31/10—Alkyl or cycloalkyl ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B31/00—Preparation of derivatives of starch
- C08B31/08—Ethers
- C08B31/12—Ethers having alkyl or cycloalkyl radicals substituted by heteroatoms, e.g. hydroxyalkyl or carboxyalkyl starch
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/61—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0021—Intradermal administration, e.g. through microneedle arrays, needleless injectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/06—Antianaemics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
- C07K14/505—Erythropoietin [EPO]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/53—Colony-stimulating factor [CSF]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
- C07K14/5412—IL-6
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
- C07K14/55—IL-2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/555—Interferons [IFN]
- C07K14/56—IFN-alpha
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/555—Interferons [IFN]
- C07K14/565—IFN-beta
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K17/00—Carrier-bound or immobilised peptides; Preparation thereof
- C07K17/02—Peptides being immobilised on, or in, an organic carrier
- C07K17/10—Peptides being immobilised on, or in, an organic carrier the carrier being a carbohydrate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B31/00—Preparation of derivatives of starch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B31/00—Preparation of derivatives of starch
- C08B31/003—Crosslinking of starch
- C08B31/006—Crosslinking of derivatives of starch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B31/00—Preparation of derivatives of starch
- C08B31/08—Ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B31/00—Preparation of derivatives of starch
- C08B31/18—Oxidised starch
- C08B31/185—Derivatives of oxidised starch, e.g. crosslinked oxidised starch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08H—DERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
- C08H1/00—Macromolecular products derived from proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- HASylated polypeptides especially HASylated erythropoietin
- the present invention relates to polypeptides, especially erythropoietin conjugated to hydroxyalkylstarch (HAS), especially to hydroxyethylstarch.
- HAS hydroxyalkylstarch
- polypeptides especially enzymes or cytokines
- the application of polypeptides, especially enzymes or cytokines, to the circulatory system in order to obtain a particular physiological effect is a well-known tool in modern medicine.
- Erythropoietin is a glycoprotein hormone necessary for the maturation of erythroid progenitor cells into erythrocytes. In human adults, it is produced in the kidney. EPO is essential in regulating the level of red blood cells in the circula- tion. Conditions marked by low levels of tissue oxygen provoke an increased biosynthesis of EPO, which in turn stimulates erythropoiesis. A loss of kidney function as it is seen in chronic renal failure, for example, typically results in decreased biosynthesis of EPO and a concomitant reduction in red blood cells.
- Erythropoietin is an acid glycoprotein hormone of approximately 34,000 Da.
- Human erythropoietin is a 166 amino acid polypeptide that exists naturally as a monomer (Lin et al., 1985, PNAS 82, 7580-7584, EP 148 605 B2, EP 411 678 B2).
- the identification, cloning and expression of genes encoding erythropoietin are described, e.g., in U.S. Patent 4,703,008.
- the purification of recombinant erythropoietin from cell culture medium that supported the growth of mammalian cells containing recombinant erythropoietin plasmids, for example, is described in U.S.
- Patent 4,667,016 It is generally believed in this technical field that the biological activity of EPO in vivo mainly depends on the degree of sialic acids bound to EPO (see e.g. EP 428 267 Bl). Theoretically, 14 molecules of sialic acid can be bound to one molecule EPO at the terminal ends of the carbohydrate side chains linked to N- and O- glycosylation sites. Highly sophisticated purification steps are necessary to obtain highly sialylated EPO preparations.
- erythropoietin has a relatively short plasma half live (Spivak and Hogans, 1989, Blood 73, 90; McMahon et al., 1990, Blood 76, 1718). This means that therapeutic plasma levels are rapidly lost and repeated intravenous administrations must be carried out. Furthermore, in certain circumstances an immune response against the peptides is observed.
- WO 94/28024 discloses that physiologically active polypeptides modified with polyethyleneglycol (PEG) exhibit reduced immu- nogenicity and antigenicity and circulate in the bloodstream considerably longer than unconjugated proteins, i.e. have a longer clearance rate.
- PEG polyethyleneglycol
- PEG-drug conjugates exhibit several disadvantages, e.g. they do not exhibit a natural structure which can be recognized by elements of in vivo degra- dation pathways. Therefore, apart from PEG-conjugates, other conjugates and protein polymerates have been produced.
- a plurality of methods for the cross- linking of different proteins and macromolecules such as polymerase have been described in the literature (see e.g. Wong, Chemistry of protein conjugation and cross-linking, 1993, CRCS, Inc.).
- HES Hydroxyethylstarch
- DE 26 46 854 discloses methods for the conjugation of hemoglobin to HES. In these methods, HES is reacted with sodiumperiodate, which results in the production of dialdehydes which are linked to hemoglobin. In contrast to this, DE 26 16 086 discloses the conjugation of hemoglobin to HES according to a procedure wherein first a cross-linking agent (e.g. bromocyane) is bound to HES and subse- quently hemoglobin is linked to the intermediate product.
- a cross-linking agent e.g. bromocyane
- HES is a substituted derivative of the carbohydrate polymer amylopektine, which is present in corn starch at a concentration of up to 95 % per weight. HES exhibits advantageous biological properties and is used as a blood volume replacement agent and in hemodilution therapy in the clinics (Sommermeyer et al., 1987, Whypharmazie, 8(8), 271-278; and Weidler et al., 1991, Arzneim.- Anlagen/Drug Res., 41, 494-498).
- Amylopektine consists of glucose moieties, wherein in the main chain ⁇ -1,4- glycosidic bonds are present and at the branching sites ⁇ -l,6-glycosidic bonds are found.
- the physical-chemical properties of this molecule are mainly determined by the type of glycosidic bonds. Due to the nicked ⁇ -l,4-glycosidic bond, helical structures with about six glucose-monomers per turn are produced.
- the physical-chemical as well as the biochemical properties of the polymer can be modified via substitution.
- the introduction of a hydroxyethyl group can be achieved via alkaline hydroxyethylation.
- By adapting the reaction conditions it is possible to exploit the different reactivity of the respective hydroxy group in the unsubstituted glucose monomer with respect to a hydroxyethylation. Owing to this fact, the skilled person is able to influence the substitution pattern to a limited extent.
- HES is mainly characterized by the molecular weight distribution and the degree of substitution. There are two possibilities of describing the substitution degree:
- substitution degree can be described relative to the portion of substituted glucose monomers with respect to all glucose moieties (DS).
- substitution degree can be described as the "molar substitution” (MS), wherein the number of hydroxy ethyl groups per glucose moiety are described.
- HES solutions are present as polydisperse compositions, wherein each molecule differs from the other with respect to the polymerisation degree, the number and pattern of branching sites and the substitution pattern. HES is therefore a mixture of compounds with different molecular weight. Consequently, a particular HES solution is determined by average molecular weight with the help of statistical means.
- M Kunststoff is calculated as the arithmetic mean depending on the number of molecules.
- M w the weight mean, represents a unit which depends on the mass of the HES.
- HES-drug conjugates disclosed in the art suffer from the disadvantage that HES is not conjugated site-specifically to the drug. Consequently, the conjugation results in a very heterogenous product having many components that may be inac- tive due to the destruction of the 3 -dimensional structure during the conjugation step.
- polypeptides with improved stability and/or bioactivity. This applies especially to erythropoietin where iso- forms with a high degree of sialic acids and therefore high actvity have to be puri- fied from isoforms with a low degree of sialic acids (see EP 428 267 Bl).
- polypeptide derivatives especially erythropoietin derivatives, having a high biological activity in vivo which can be easily produced and at reduced costs. Furthermore, it is a fur- ther object of the present invention to provide a method for the production of polypeptide derivatives which is easy to perform and yields in products with high biological activity. It is a further object of the invention to provide pharmaceutical compositions comprising polypeptide derivatives with high biological activity.
- HAS hydroxyalkylstarch
- EPO erythropoietin
- HAS-EPO hydroxyalkylstarch
- the HAS-EPO of the invention has the advantage that it exhibits an improved biological stability when compared to the erythropoietin before conjugation. Furthermore, it exhibits a higher biological activity than standard BRP EPO. This is mainly due to the fact that HAS-EPO is less or even not recognized by the removal systems of the liver and kidney and therefore persists in the circulatory system for a longer period of time. Furthermore, since the HAS is attached site- specifically, the risk of destroying the in vivo biological activity of EPO by conjugation of HAS to EPO is minimized.
- the HAS-EPO of the invention has mainly two components, namely the erythropoietin (EPO)-polypeptide and the hydroxyalkylstarch (HAS) linked thereto.
- EPO erythropoietin
- HAS hydroxyalkylstarch
- the EPO can be of any human (see e.g. Inoue, Wada, Takeuchi, 1994, An improved method for the purification of human erythropoietin with high in vivo ac- tivity from the urine of anemic patients, Biol Pharm Bull. 17(2), 180-4; Miyake, Kung, Goldwasser, 1977, Purification of human erythropoietin., J Biol Chem., 252(15), 5558-64) or another mammalian source and can be obtained by purification from naturally occurring sources like human kidney, embryonic human liver or animal, preferably monkey kidney.
- erythropoi- etin or "EPO” encompasses also an EPO variant wherein one or more amino acids (e.g. 1 to 25, preferably 1 to 10, more preferred 1 to 5, most preferred 1 or 2) have been exchanged by another amino acid and which exhibits erythropoietic activity (see e.g. EP 640 619 Bl).
- the measurement of erythropoietic activity is described in the art (for measurement of activity in vitro see e.g. Fibi et al.,1991, Blood, 77, 1203 ff; Kitamura et al, 1989, J. Cell Phys., 140, 323-334; for measurement of EPO activity in vivo see Ph. Eur.
- the EPO is recombinantly produced.
- the EPO may be expressed in transgenic animals (e.g. in body fluids like milk, blood, etc.), in eggs of transgenic birds, especially poultry, preferred chicken, or in transgenic plants.
- the recombinant production of a polypeptide is known in the art. In general, this includes the transfection of host cells with an appropriate expression vector, the cultivation of the host cells under conditions which enable the production of the polypeptide and the purification of the polypeptide from the host cells. For detained information see e.g.
- the EPO has the amino acid sequence of human EPO (see EP 148 605 B2).
- the EPO may comprise one or more carbohydrate side chains (preferably 1-4, preferably 4) attached to the EPO via N- and/ or O-linked glycosylation, i.e. the EPO is glycosylated.
- carbohydrate side chains preferably 1-4, preferably 4
- the polypeptide is posttranslationally glycosylated. Consequently, the carbohydrate side chains may have been attached to the EPO during biosynthesis in mammalian, especially human, insect or yeast cells.
- glycosylated EPO The structure and properties of glycosylated EPO have been extensively studied in the art (see EP 428 267 Bl; EP 640 619 Bl; Rush, Derby, Smith, Merry, Rogers, Rohde, Katta, 1995, Microheteroge- neity of erythropoietin carbohydrate structure, Anal Chem., 67(8), 1442-52; Ta- keuchi, Kobata, 1991, Structures and functional roles of the sugar chains of human erythropoietins, Glycobiology, 1(4), 337-46 (Review).
- the HAS may be directly conjugated to the EPO or, alternatively, via a linker molecule.
- the nature of the linker molecule depends on the way how the HAS is linked to the EPO. Possible functional groups of linkers are described in Table 1 and below. Several linkers are commercially available (e.g. from Pierce, available from Perbio Science GmbH, Bonn, Germany)). Some suitable linkers are described in Table 2. The nature of the linker and its purpose are described in detail below in the section concerning the method for the production of HES- EPO.
- the HAS is conjugated to the EPO via a carbohydrate moiety.
- carboxylate refers to hydroxyaldehydes or hydroxyketones as well as to chemical modifications thereof th
- the carbohydrate moiety may be linked directly to the EPO polypeptide backbone.
- the carbohydrate moiety is part of a carbohydrate side chain.
- further carbohydrate moieties may be present between the carbohydrate moiety to which HAS is linked and the EPO polypeptide backbone. More preferably, the carbohydrate moiety is the terminal moiety of the carbohydrate side chain.
- the HAS is conjugated to a galactose residue of the carbohydrate side chains, preferably the terminal galactose residue of the carbohydrate side chain.
- This galactose residue can be made available for conjugation by removal of terminal sialic acids, followed by oxidation (see below).
- the HAS is conjugated to a sialic acid residue of the carbohydrate side chains, preferably the terminal sialic acid residue of the carbohydrate side chain.
- the HAS may be conjugated to the EPO via a thioether.
- the S atom can be derived from any SH group attached to the EPO, both naturally or non naturally occurring.
- the S atom may be derived from a SH group which has been introduced in an oxidized carbohydrate moiety of HES, preferably an oxidized carbohydrate moiety which is part of a carbohydrate side chain of EPO (see below).
- the S atom in the thioether is derived from a naturally-occurring cysteine or from an added cysteine.
- the EPO has the amino acid sequence of human EPO and the naturally occurring cysteines are cysteine 29 and or 33.
- HAS is conjugated to cysteine 29 and cysteine 33 is replaced by another amino acid.
- HAS may be conjugated to cysteine 33 and cysteine 29 is replaced by another amino acid.
- the term “added cysteines” it is meant that the polypeptides, preferably EPO, comprise a cysteine residue which is not present in the wild-type polypeptide.
- cysteine may be an additional amino acid added at the N- or C-terminal end of EPO.
- the added cysteine may have been added by replacing a naturally occuring amino acid by a cysteine. Suitable methods are known in the art (see above).
- the EPO is human EPO and the replaced amino acid residue is serine 126.
- the second component of the HAS-EPO is hydroxyalkylstarch (HAS).
- hydroxyalkylstarch is used to indicate starch derivatives which have been substituted by hydroxyalkylgroups.
- the alkyl group may be substituted.
- the hydroxyalkyl con- tains 2-10 carbon atoms, more preferably 2-4 carbon atoms.
- "Hydroxyalkylstarch” therefore preferably comprises hydroxyethylstarch, hydroxypropylstarch and hy- droxybutylstarch, wherein hydroxyethylstarch and hydroxypropylstarch are preferred.
- the hydroxyalkylgroup(s) of HAS contain at least one OH-group.
- hydroxyalkylstarch also includes derivatives wherein the alkyl group is mono- or polysubstituted. In this context, it is preferred that the alkyl group is substituted with an halogen, especially flourine, or with an aryl group, provided that the HAS remains water soluble. Furthermore, the terminal hydroxy group of hydroxyalkyl may be esterified or etherified. In addition, the alkyl group of the hydroxyalkylstarch may be linear or branched.
- alkyl instead of alkyl, also linear or branched substituted or unsubstituted alkene groups may be used.
- Hydroxyethylstarch (HES) is most preferred for all embodiments of the present invention.
- hydroxyethylstarch may have a mean mo- lecular weight (weight mean) of 1-300 kDa, wherein a mean molecular weight of 5-100 kDa is more preferred. Hydroxyethylstarch can further exhibit a molar degree of substitution of 0.1 to 0.8 and a ratio between C 2 :C 6 -substitution in the range of 2-20, with respect to the hydroxyethylgroups.
- the HAS-EPO may comprise 1-12, preferably 1-9, 1-6 or 1-3, most preferred 1-4 HAS molecules per EPO molecule.
- the number of HAS-molecules per EPO molecule can be determined by quantitative carbohydrate compositional analysis using GC-MS after hydrolysis of the product and derivatisation of the resulting monosaccharides (see Chaplin and Kennedy (eds.), 1986, Carbohydrate Analysis: a practical approach, IRL Press Practical approach series (ISBN 0-947946-44-3), especially Chapter 1, Monosaccharides, page 1-36; Chapter 2, Oligosaccharides, page 37-53, Chapter 3, Neutral Polysaccharides, page 55-96).
- the HAS-EPO conjugate of the invention may exhibit essentially the same in- vitro biological activity as recombinant native EPO, since the in-vitro biological activity only measures binding affinity to the EPO receptor. Methods for determining the in-vitro biological activity are known in the art (see above).
- the HAS-EPO exibits a greater in vivo activity than the EPO used as a starting material for conjugation (unconjugated EPO).
- Methods for determining the in vivo biological activity are known in the art (see above).
- assays for the determination of in vivo and in vitro EPO activity are given in Examples 9 and 10.
- the HAS-EPO conjugate may exhibit an in vivo activity of 110 to 500 %, preferably 300 to 400 %, or 110 % to 300 %, preferably 110 % to 200 %, more preferred 110 % to 180 % or 110 to 150 %, most preferred 110 % to 140 %, if the in vivo activity of the unconjugated EPO is set as 100 %.
- the HAS- EPO exibits preferably at least 50%, more preferred at least 70 %, even more preferred at least 85 % or at least 95 %, at least 150 %, at least 200 % or at least 300 % of the in vivo activity of the highly sialylated EPO, if the in vivo activity of highly sialylated EPO is set as 100 %. Most preferred, it exhibits at least 95 % of the in vivo activity of the highly sialylated EPO.
- the high in vivo biological activity of the HAS-EPO conjugate of the invention mainly results from the fact that the HAS-EPO conjugate remains longer in the circulation than the unconjugated EPO, because it is less recognized by the re- moval systems of the liver and because renal clearance is reduced due to the higher molecular weight.
- Methods for the determination of the in vivo half life time of EPO in the circulation are known in the art (Sytkowski, Lunn, Davis, Feldman, Siekman, 1998, Human erythropoietin dimers with markedly enhanced in vivo activity, Proc. Natl. Acad. Sci. USA, 95(3), 1184-8).
- HAS-EPO is provided that may be administered less frequently than the EPO preparations commercially available at present. While standard EPO preparations have to be administered at least all 3 days, the HAS-EPO conjugate of the invention is preferable adminstered twice a week, more preferably once a week.
- Hydroxyalkylstarch is an ether derivative of starch.
- ether derivatives also other starch derivatives can be used in the context of the present invention.
- derivatives are useful which comprise esterified hydroxy groups. These derivatives may be e.g. derivatives of unsubstituted mono- or di- carboxylic acids with 2-12 carbon atoms or of substituted derivatives thereof.
- Es- pecially useful are derivatives of unsubstituted monocarboxylic acids with 2-6 carbon atoms, especially of acetic acid, In this context, acetylstarch, butylstarch or propylstarch are preferred.
- the second carboxy group of the dicarboxylic acid is also esterified.
- derivatives of monoalkyl esters of dicarboxylic acids are also suitable in the context of the pre- sent invention.
- the substitute groups may be preferably the same as mentioned above for substituted alkyl residues.
- the present invention relates to a method for the production of a hydroxyalkylstarch (HAS)-erythropoietin (EPO)-conjugate (HAS-EPO), comprising the steps of:
- a) providing EPO being capable of reacting with modified HAS b) providing modified HAS being capable of reacting with the EPO of step a), and c) reacting the EPO of step a) with the HAS of step b), whereby an HAS- EPO is produced comprising one or more HAS molecules, wherein each HAS is conjugated to the EPO via i) a carbohydrate moiety; or ii) a thioether.
- the method of the invention has the advantage that a HAS-EPO conjugate is produced which exhibits a high biological activity. Furthermore, the method of the invention has the advantage that an effective EPO derivative can be produced at reduced costs since the method does not comprise extensive and time consuming purification steps resulting in low final yield, e.g. it is not necessary to purify away undersialylated EPO forms which are known to exhibit low or no in-vivo biological activity. Especially Example 20 demonstrates that a HES-EPO produced with few modifications steps exhibits a 3 -fold activity over standard BRP EPO. Accordingly, in the first step of the method of the invention, an EPO is provided which is capable of reacting with modified HAS.
- step a) EPO in step b) HAS
- step b) HAS HAS
- step a this includes the purification of EPO from natural sources as well as the recombinant production in host cells or organisms, and, if necessary, the modification of the EPO so obtained.
- the EPO has the amino acid sequence of human EPO.
- the EPO is recombinantly produced.
- the EPO may be expressed in transgenic animals (e.g. in body fluids like milk, blood, etc.), in eggs of transgenic birds, especially poultry, preferred chicken, or in transgenic plants.
- the recombinant production of a polypeptide is known in the art. In general, this includes the transfection of host cells with an appropriate expression vector, the cultivation of the host cells under conditions which enable the production of the polypeptide and the purification of the polypeptide from the host cells (Krystal, Pankratz, Farber, Smart, 1986, Purification of human erythropoietin to homogene- ity by a rapid five-step procedure, Blood, 67(1), 71-9; Jo, Caslake, Burkert, Wojchowski, 1989, High-level expression and purification of a recombinant human erythropoietin produced using a baculovirus vector, Blood, 74(2), 652-7; EP 640619 Bl and EP 668 351 Bl).
- the EPO may comprise one or more carbohydrate side chains attached to the EPO via N- and/ or O-linked glycosylation, i.e. the EPO is glycosylated.
- the EPO is glycosylated.
- the carbohydrate side chains may have been attached to the EPO during production in mammalian, especially human, insect or yeast cells, which may be cells of a transgenic animal (see above), either extracted from the animal or still in the animal.
- carbohydrate side chains may have been chemically or enzymatically modi- fied after the expression in the appropriate cells, e.g. by removing or adding one or more carbohydrate moieties (see e.g. Dittmar, Conradt, Hauser, Hofer, Lin- denmaier, 1989, Advances in Protein design; Bloecker, Collins, Schmidt, and Schomburg eds., GBF-Monographs, 12, 231-246, NCH Publishers, Weinheim, New York, Cambridge)
- the object of the method of the invention to provide an HAS-EPO comprising one or more HAS molecules where the HAS is conjugated to the EPO via a carbohydrate moiety (i) or via a thioether (ii). Consequently, the EPO provided in step a) should have the properties that a conjugation via a carbohydrate moiety and/ or via a thioether is possible. Therefore the EPO after step a) may preferably contain either
- the EPO of step a) is preferably obtainable by conjugating an appropriate linker molecule to the SH-group(s) or carbohydrate moieties of EPO.
- An example for such a modified EPO is provided in Example 4, 2.1. It is important to ensure that the addition of the linker molecule does not damage the EPO. However, this is known to the person skilled in the art.
- the modified HAS is conjugated to the EPO via a carbohydrate moiety.
- the carbohydrate moiety may be linked directly to the EPO polypeptide back- bone.
- the carbohydrate moiety is part of a carbohydrate side chain.
- further carbohydrate moieties may be present between the carbohydrate moiety to which HAS is linked and the EPO polypeptide backbone. More preferably, the carbohydrate moiety is the terminal moiety of the carbohydrate side chain.
- the modified HAS is attached (via a linker or not, see below) to carbohydrate chains linked to N- and or O- glycosylation sites of EPO.
- the EPO contains (a) further carbohydrate moiet(y)ies to which the modified HAS is conjugated.
- Techniques for attaching carbohydrate moieties to polypeptides, either enzymatically or by genetic engineering, followed by expression in appropriate cells, are known in the art (Berger, Greber, Mosbach, 1986, Galactosyltransferase-dependent sialy- lation of complex and endo-N-acetylglucosaminidase H-treated core N-glycans in vitro, FEBS Lett., 203(1), 64-8; Dittmar, Conradt, Hauser, Hofer, Lindenmaier, 1989, Advances in Protein design; Bloecker, Collins, Schmidt, and Schomburg eds., GBF-Monographs, 12, 231-246, VCH Publishers, Weinheim, New York, Cambridge).
- the carbohydrate moi- ety is oxidized in order to be able to react with the modified HAS. This oxidation can be performed either chemically or enzymatically.
- the carbohydrate moiety may be oxidized enzymatically.
- Enzymes for the oxidation of the individual carbohydrate moieties are known in the art, e.g. in the case of galactose the enzyme is galactose oxidase.
- the carbohydrate moiety to which the modified HAS is to be attached is attached to the EPO within step a).
- this can be achieved by the means of galactosyltransferase.
- the methods are known in the art (Berger, Greber, Mosbach, 1986, Galactosyltransferase-dependent sialylation of complex and endo-N-acetylglucosaminidase H-treated core N-glycans in vitro, FEBS Lett., 203(1), 64-8).
- the EPO is modified by oxidizing at least one terminal saccharide unit, preferably galactose, of the one or more carbohydrate side chains of the EPO, preferably after partial or complete (enzymatic and/or chemical) removal of the terminal sialic acid, if necessary (see above).
- the modified HAS is conjugated to the oxidized terminal saccharide unit of the carbohydrate chain, preferably galactose.
- the modified HAS may be preferably conjugated to a terminal sialic acid, which is preferably oxidized in step a) of the method of the invention.
- the EPO comprises at least one free SH-group.
- this SH group may be linked to a preferably oxidized carbohydrate moiety, e.g. by using a hydroxylamine derivative, e.g. 2-(aminooxy)ethylmercaptan hydrochloride (Bauer L. et al., 1965, J. Org. Chem., 30, 949) or by using a hydrazide derivative, e.g. thioglycolic acid hydrazide (Whitesides et al., 1977, J. Org. Chem., 42, 332.)
- the methods for conjugating these molecules to the oxidized carbohydrate moiety of EPO may be analogous to those described in Example Protocols 8 and 9.
- the free SH-group is part of a naturally-occurring cysteine or of an added cysteine.
- Mammalian EPO has several cysteines which normally form disulfide bonds. However, by replacing at least one of the cysteines by another amino acid (e.g. by recombinant means), it is possible to obtain an EPO where at least one of the naturally occurring cysteines comprises a free SH-group.
- Methods for the replacement of amino acids are known in the art (Elliott, Lorenzini, Chang, Barzilay, Delorme, 1997, Mapping of the active site of recombinant human erythropoietin, Blood, 89(2), 493-502; Boissel, Lee, Presnell, Cohen, Bunn, 1993, Erythropoietin structure-function relationships. Mutant proteins that test a model of tertiary structure, J Biol Chem., 268(21), 15983-93)).
- the EPO has the amino acid sequence of human EPO and the naturally occurring cysteines are cysteine 29 and/ or 33.
- cysteine 33 is replaced by another amino acid and in step c) the modified HAS is conjugated to cysteine 29.
- cysteine 29 is replaced by another amino acid and in step c) the modified HAS is conjugated to cysteine 33.
- the polypeptides preferably EPO
- the polypeptides comprise a cysteine residue which is not present in the wild type polypeptide.
- This can be achieved by adding (e.g. by recombinant means) a cysteine residue either at the N- or at the C-terminus of the polypeptide or by replacing (e.g. by recombinant means) a naturally-occurring amino acid by cysteine.
- the respective methods are known to the person skilled in the art (see above).
- the added cysteine has been added by replacing a naturally occuring amino acid by a cysteine.
- the EPO is human EPO and the replaced amino acid 5 residue is serine 126.
- the modified HAS is conjugated in step c) to the added cysteine.
- step b) of the method of the invention modified HAS is provided which is ca- 10 pable of reacting with the EPO of step a).
- the HAS may be preferably modified at its reducing end. This has the advantage that the chemical reaction can be controlled easily and that the skilled person can be sure which group of HAS is modified during the reaction. 15 Since only one group is introduced into the HAS, crosslinking between different EPO molecules by multifunctional HAS molecules and other side reactions can be prevented.
- the modified HAS may be capable of reacting either with
- the modified HAS may be capable of reacting with oxidized carbohydrate moieties, preferably a terminal saccharide residue, more preferably galactose, or a terminal sialic acid.
- HAS such that it is capable of reacting with an oxidized, preferably terminal saccharide residue.
- this modification may be introduced regioselectively at the reducing end of the HES-chain.
- the aldehyde group is oxidized to a lactone.
- the modifications include, but are not limited to the addition of hydrazide, amino (also hy- droxylamino), semicarbazide or thiol functions to HAS, either directly or via a linker. These techniques are explained in further detail in Examples 2-4.
- the mechanisms per se are known in the art (see e.g.
- the addition of a hydrazide or hydroxylamino function is preferred.
- step c) of the method of the present invention at a pH of 5.5, it is ensured that the modified HAS reacts selectively with the oxidized carbohydrate moiety of EPO without inter- or intramolecular EPO cross-linking by imine formation of lysin side chains with the oxidized saccharide residue.
- linker molecules which are useful in the context of the present invention are known in the art or commercially available (e.g. from Pierce, available from Perbio Science GmbH, Bonn, Germany). Examples are given in Table 2.
- step c) of the method of the present invention the EPO of step a) with the HAS of step b) is reacted, whereby an HAS-EPO is produced comprising one or more HAS molecules, wherein the HAS is conjugated to the EPO via a carbohydrate moiety or via a thioether.
- Step c) may be performed in a reaction medium comprising at least 10 % per weight H 2 0.
- the reaction medium in this preferred embodiment of the method of the invention comprises at least 10 % per weight water, preferred at least 50 %, more preferred at least 80 %, e.g. 90 % or up to 100 %.
- the degree of organic solvents is calculated respectively. Consequently, the reaction takes place in an aqueous phase.
- the preferred reaction medium is water.
- One advantage of this embodiment of the method of the invention is, that it is not necessary to use toxicologically critical solvents and that therefore it is not necessary to remove these solvents after the production process, in order to avoid the contamination with the solvent. Furthermore, it is not necessary to perform addi- tional quality controls with respect to residual toxicologically critical solvents. It is preferred to use as organic solvents toxicologically not critical solvents like ethanol or propylenglycol.
- Another advantage of the method of the invention is that irreversible or reversible structural changes are avoided which are induced by organic solvents. Consequently, polypeptides obtained according to the method of the invention are different from those prepared in organic solvents such as DMSO.
- hydroxyalkylstarch is used to indicate starch derivatives which have been substituted by hydroxyalkylgroups.
- the alkyl group may be substituted.
- the hydroxyalkyl con- tains 2-10 carbon atoms, more preferably 2-4 carbon atoms.
- "Hydroxyalkylstarch” therefore preferably comprises hydroxyethylstarch, hydroxypropylstarch and hy- droxybutylstarch, wherein hydroxyethylstarch and hydroxypropylstarch are preferred.
- the hydroxyalkylgroup(s) of HAS contain at least one OH-group.
- Hydroxyethylstarch (HES) is most preferred for all embodiments of the present invention.
- hydroxyalkylstarch also includes derivatives wherein the alkyl group is mono- or polysubstituted. In this context, it is preferred that the alkyl group is substituted with a halogen, especially flourine, or with an aryl group, provided that the HAS remains water soluble. Furthermore, the terminal hydroxy group of hydroxyalkyl may be esterified or etherified. In addition, the alkyl group of the hydroxyalkylstarch may be linear or branched.
- alkyl instead of alkyl, also linear or branched substituted or unsubstituted alkylene groups may be used.
- hydroxyethylstarch may have a mean molecular weight (weight mean) of 1-300 kDa, wherein a mean molecular weight of 5-100 kDa is more preferred. Hydroxyethylstarch may further exhibit a molar degree of substitution of 0.1 to 0.8 and a ratio between C 2 :C 6 -substitution in the range of 2-20, with respect to the hydroxyethylgroups.
- Isolation of the HAS-EPO can be performed by using known procedures for the purification of natural and recombinant EPO (e.g.size exclusion chromatography, ion-exchange chromatography, RP-HPLC, hydroxyapatite chromatography, hy- drophobic interaction chromatography, the procedure described in Example 20.8 or combinations thereof).
- HAS covalent attachment of HAS to the EPO polypetide
- carbohydrate compositional analysis after hydrolysis of the modified protein ratio of hydroxyethylglucose and mannose present on the three N-glycosylation sites of EPO.
- Demonstration of HAS modification at N-linked oligosaccharides of EPO can be accomplished by removal of the HAS modified N-glycans and observation of the predicted shift to higher mobility in SDS-PAGE +/- Western Blotting analysis.
- HAS modification of EPO at cysteine residues can be demonstrated by the failure to detect the corresponding proteolytic Cys-peptide in RP-HPLC and MALDI/TOF-MS in the proteolytic fragments of the HAS-modified product (Zhou et al., 1998, Application of capillary electrophoresis, liquid chromatography, electrospray-mass spectrometry and matrix-assisted laserdesorp- tion/ionization - time of flight - mass spectrometry to the characterization of re- combinant human erythropoietin. Electrophoresis, 19(13), 2348-55).
- the isolation of the HAS-containing fraction after proteolytic digestion of the Cys-modified EPO enables the verification in this fraction of the corresponding peptide by conventional amino acid compositional analysis.
- the invention further relates to a HAS-EPO, obtainable by the method of the in- vention.
- this HAS-EPO has the features as defined for the above HAS- EPO of the invention.
- the invention further relates to a HAS-EPO according to the invention for use in a method for treatment of the human or animal body.
- the present invention relates to a pharmaceutical composition
- a pharmaceutical composition comprising the HAS-EPO of the invention.
- the pharmaceutical composition comprises further at least one pharmaceutically acceptable diluent, adjuvant and/or carrier useful in erythropoietin therapy.
- the pharmaceutical composition is preferably used for the treatment of anemic disorders or hematopoietic dysfunction disorders or diseases related thereto.
- a "therapeutically effective amount” as used herein refers to that amount which provides therapeutic effect for a given condition and administration regimen.
- the administration of erythropoietin isoforms is preferably by parenteral routes. The specific route chosen will depend upon the condition being treated.
- the administration of erythropoietin isoforms is preferably done as part of a formulation containing a suitable carrier, such as human serum albumin, a suitable diluent, such as a buffered saline solution, and/or a suitable adjuvant.
- the required dosage will be in amounts sufficient to raise the hematocrit of patients and will vary depending upon the severity of the condition being treated, the method of administration used and the like.
- the object of the treatment with the pharmaceutical composition of the invention is preferably an increase of the hemoglobin value of more than 6.8 mmol/1 in the blood.
- the pharmaceutical composition may be administered in a way that the hemoglobin value increases between 0.6 mmol/1 and 1.6 mmol/1 per week.
- the composition of the invention is preferably used in a formulation suitable for subcutaneous or intravenous or parenteral injection.
- suitable excipients and carriers are e.g. sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium chlorate, polysorbate 80, HSA and water for injection.
- the composition may be administered three times a week, preferably two times a week, more preferably once a week, and most preferably every two weeks.
- the pharmaceutical composition is administered in an amount of 0.01- 10 ⁇ g/kg body weight of the patient, more preferably 0,1 to 5 ⁇ g/kg, 0,1 to 1 ⁇ g/kg, or 0.2-0.9 ⁇ g/kg, most preferably 0.3-0.7 ⁇ g/kg, and most preferred 0.4-0.6 ⁇ g/kg body weight.
- the invention further relates to the use of a HAS-EPO of the invention for the preparation of a medicament for the treatment of anemic disorders or hematopoietic dysfunction disorders or diseases related hereto.
- HAS hydroxyalkylstarch
- HAS-polypeptide conjugated to the polypeptide via
- the HAS-polypeptide of the invention has the advantage that it exhibits an improved biological stability when compared to the polypeptide before conjugation. This is mainly due to the fact that HAS-polypeptide is less or not recognized by the removal systems of the liver and kidney and therefore persists in the circula- tory system for a longer period of time. Furthermore, since the HAS is attached site-specifically, the risk of destroying the in vivo biological activity of the polypeptide by conjugation of HAS to the polypeptide is minimized.
- the HAS-polypeptide of the invention has mainly two components, namely the polypeptide and the hydroxyalkylstarch (HAS) linked thereto.
- the polypeptide can be of any human or animal source. In a preferred embodiment, the polypeptide is of human source.
- the polypeptide may be a cytokine, especially erythropoietin, an antithrombin (AT) such as AT III, an interleukin, especially interleukin-2, IFN-beta, IFN-alpha, G-CSF, CSF, interleukin-6 and therapeutic antibodies.
- AT antithrombin
- interleukin especially interleukin-2, IFN-beta, IFN-alpha, G-CSF, CSF, interleukin-6 and therapeutic antibodies.
- the polypeptide is an antithrombin (AT), preferably AT III (Levy JH, Weisinger A, Ziomek CA, Echelard Y, Recombinant Antithrombin: Production and Role in Cardiovascular Disorder, Seminars in Thrombosis and Hemostasis 27, 4 (2001) 405-416; Edmunds T, Van Patten SM, Pollock J, Hanson E, Bernasconi R, Higgins E, Manavalan P, Ziomek C, Meade H, McPherson J, Cole ES, Transge ically Produced Human Antithrombin: Structural and Functional Comparison to Human Plasma-Derived Antithrombin, Blood 91, 12 (1998) 4661-4671; Minnema MC, Chang ACK, Jansen PM, Lubbers YTP, Pratt BM, Whittaker BG, Taylor FB, Bush CE, Friedman B, Recombinant human antithrombin III improves survival and attenuates
- AT antithrombin
- the polypeptide is human IFN-beta, in particular IFN-beta la (cf. Avonex®, REBIF®) and IFN-beta lb (cf. BETASERON®).
- a further preferred polypeptide is human G-CSF (granulocyte colony stimulating factor). See, e.g., Nagata et al., The chromosomal gene structure and two mRNAs
- Souza et al. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells, Science 232 (1986) 61-65; and Herman et al., Characterization, formulation, and stability of Neupogen® (Filgrastim), a recombinant human granulocyte-colony stimulating factor, in: Formulalion, characterization, and stability of protein drugs, Rodney Pearlman and Y. John Wang, eds., Plenum Press, New York, 1996, 303-328.
- the polypeptide is recombinantly produced.
- the polypeptide may be expressed in transgenic animals (e.g. in body fluids like milk, blood, etc.), in eggs of transgenic birds, especially poultry, preferred chicken, or in transgenic plants.
- the recombinant production of a polypeptide is known in the art. In general, this includes the transfection of host cells with an appropriate expression vector, the cultivation of the host cells under conditions which enable the production of the polypeptide and the purification of the polypeptide from the host cells. For detained information see e.g.
- the polypeptide may comprise one or more carbohydrate side chains attached to the polyppetide via N- and or O-linked glycosylation, i.e. the polypeptide is glycosylated.
- carbohydrate side chains may have been attached to the polypeptide during biosynthesis in mammalian, especially human, insect or yeast cells.
- the HAS may be directly conjugated to the polypeptide or, alternatively, via a linker molecule.
- the nature of the linker molecule depends on the way how the HAS is linked to the polypeptide. Several linkers are commercially available (e.g. from Pierce, see above). The nature of the linker and its purpose are described in detail below in the section concerning the method for the production of HES- polypeptide is discussed.
- the HAS is conjugated to the polypeptide via a carbohydrate moiety.
- the polypeptide is an antithrombin, preferably AT III.
- carbohydrate moiety refers to hydroxyaldehydes or hydroxyketones as well as to chemical modifications thereof (see R ⁇ mpp Chemielexikon, 1990, Thieme Verlag Stuttgart, Germany, 9 th edition, 9, 2281-2285 and the literature cited therein). Furthermore, it also refers to derivatives of naturally occuring carbohydrate moieties like glucose, galactose, man- nose, sialic acid, and the like. The term also includes chemically oxidized naturally occuring carbohydrate moieties wherein the ring structure has been opened.
- the carbohydrate moiety may be linked directly to the polypeptide backbone.
- the carbohydrate moiety is part of a carbohydrate side chain.
- further carbohydrate moieties may be present between the carbohydrate moiety to which HAS is linked and the polypeptide backbone. More preferably, the carbohydrate moiety is the terminal moiety of the carbohydrate side chain.
- the HAS is conjugated to a galactose residue of the carbohydrate side chains, preferably the terminal galactose residue of the carbohydrate side chain.
- This galactose residue can be made available for conjugation by removal of terminal sialic acids, followed by oxidation (see below).
- the HAS is conjugated to a sialic acid residue of the carbohydrate side chains, preferably the terminal sialic acid residue of the carbohydrate side chain.
- the HAS may be conjugated to the polypeptide via a thioether.
- the S atom can be derived from any SH group attached to the polypeptide, both naturally or non naturally occurring.
- the S atom may be derived from a SH group which has been introduced in an oxidized carbohydrate moiety of HES, preferably an oxidized carbohydrate moiety which is part of a carbohydrate side chain of the polypeptide (see below).
- the S atom in the thioether is derived from a naturally-occurring cysteine or from an added cysteine.
- the term “added cysteines” it is meant that the polypeptides comprise a cysteine residue which is not present in the wild- type polypeptide.
- the cysteine may be an additional amino acid added at the N- or C-terminal end of the polypeptide. Furthermore, the added cysteine may have been added by replacing a naturally occuring amino acid by a cysteine.
- the second component of the HAS-polypeptide is HAS.
- hydroxyalkylstarch is used to indicate starch derivatives which have been substituted by hydroxyalkylgroups.
- the alkyl group may be substituted.
- the hydroxyalkyl con- tains 2-10 carbon atoms, more preferably 2-4 carbon atoms.
- "Hydroxyalkylstarch” therefore preferably comprises hydroxyethylstarch, hydroxypropylstarch and hy- droxybutylstarch, wherein hydroxyethylstarch and hydroxypropylstarch are preferred.
- the hydroxyalkylgroup(s) of HAS contain at least one OH-group.
- hydroxyalkylstarch also includes derivatives wherein the alkyl group is mono- or polysubstituted. In this context, it is preferred that the alkyl group is substituted with an halogen, especially flourine, or with an aryl group, provided that the HAS remains water soluble. Furthermore, the terminal hydroxy group of hydroxyalkyl may be esterified or etherified. In addition, the alkyl group of the hydroxyalkylstarch may be linear or branched.
- alkyl instead of alkyl, also linear or branched substituted or unsubstituted alkene groups may be used.
- Hydroxyethylstarch (HES) is most preferred for all embodiments of the present invention.
- hydroxyethylstarch may have a mean molecular weight (weight mean) of 1-300 kDa, wherein a mean molecular weight of 5-100 kDa is more preferred. Hydroxyethylstarch can further exhibit a molar degree of substitution of 0.1 to 0.8 and a ratio between C 2 ⁇ -substitution in the range of 2-20, with respect to the hydroxyethylgroups.
- the HAS-polypeptide may comprise 1-12, preferably 1-9, 1-6 or 1-3, most preferred 1-4 HAS molecules per polypeptide molecule.
- the number of HAS- molecules per polypeptide molecule can be determined by quantitative carbohydrate compositional analysis using GC-MS after hydrolysis of the product and derivatisation of the resulting monosaccharides (Chaplin and Kennedy, 1986, Carbohydrate Analysis (eds.): a practical approach ed., Chapter 1. Monosaccharides page 1-36; Chapter 2. Oligosaccharides page 37-53; Chapter 3. Neutral Polysaccharides; 55-96; IRL Press Practical approach series (ISBN 0-947946-44- 3).
- Hydroxyalkylstarch is an ether derivative of starch.
- ether derivatives also other starch derivatives can be used in the context of the present invention.
- derivatives are useful which comprise esterified hydroxy groups. These derivatives may be e.g. derivatives of unsubstituted mono- or dicarboxylic acids with 2-12 carbon atoms or of substituted derivatives thereof.
- derivatives of unsubstituted monocarboxylic acids with 2-6 carbon atoms especially of acetic acid, In this context, acetylstarch, butylstarch or propylstarch are preferred.
- derivatives of unsubstituted dicarboxylic acids with 2-6 carbon atoms are preferred.
- derivatives of dicarboxylic acids it is useful that the second carboxy group of the dicarboxylic acid is also esterified. Furthermore, derivatives of monoalkyl esters of dicarboxylic acids are also suitable in the context of the present invention.
- the substitute groups may be preferably the same as mentioned above for substituted alkyl residues.
- the present invention relates to a method for the production of a hydroxyalkylstarch (HAS)-polypeptide-conjugate (HAS-polypeptide), comprising the steps of:
- the method of the invention has the advantage that a HAS-polypeptide conjugate is produced which exhibits a high biological activity. Furthermore, the method of the invention has the advantage that an effective polypetide derivative can be produced at reduced cost since the method does not comprise extensive and time consuming purification steps resulting in low final yield.
- a polypeptide is provided which is capable of reacting with modified HAS.
- step b) HAS HAS
- step a this includes the purification of the polypeptide from natural sources as well as the recombinant production in host cells or organism, and, if necessary, the modification of the polypeptide so obtained.
- polypeptide being the starting material of the present invention
- erythropoietin being part of the HAS-polypeptide conjugate of the invention.
- preferred embodiments disclosed above apply also for the method of the invention.
- the polypeptide is recombinantly produced.
- the polypeptide may be expressed in trans- genic animals (e.g. in body fluids like milk, blood, etc.), in eggs of transgenic birds, especially poultry, preferred chicken, or in transgenic plants.
- the recombinant production of a polypeptide is known in the art. In general, this includes the transfection of host cells with an appropriate expression vector, the cultivation of the host cells under conditions which enable the production of the polypeptide and the purification of the polypeptide from the host cells (Krystal, Pankratz, Farber, Smart, 1986, Purification of human erythropoietin to homogeneity by a rapid five-step procedure, Blood, 67(1), 71-9; Jo, Caslake, Burkert, Wojchowski, 1989, High-level expression and purification of a recombinant human erythropoietin produced using a baculovirus vector, Blood, 74(2), 652-7; EP 640619 Bl an EP 668 351 Bl).
- the polypeptide may comprise one or more carbohydrate side chains attached to the polypeptide via N- and or O-linked glycosylation, i.e. the polypeptide is glycosylated.
- carbohydrate side chains may have been attached to the polypeptide during production in mammalian, especially human, insect or yeast cells, wherein the cells may be those of a transgenic animal or plant (see above).
- carbohydrate side chains may have been chemically or enzymatically modified after the expression in the appropriate cells, e.g. by removing or adding one or more carbohydrate moieties (see e.g. Dittmar, Conradt, Hauser, Hofer, Lindenmaier, 1989, Advances in Protein design; Bloecker, Collins, Schmidt, and Schomburg eds., GBF-Monographs, 12, 231-246, VCH Publishers, Weinheim, New York, Cambridge)
- the object of the method of the invention to provide an HAS-polypeptide comprising one or more HAS molecules wherein the HAS is conjugated to the polypeptide via a carbohydrate moiety (i) or via a thioether (ii). Consequently, the polypeptide provided in step a) should have the properties that a conjugation via a carbohydrate moiety and/ or via a thioether is possible. Therefore the polypeptide after step a) may preferably contain either
- the polypeptide of step a) is preferably obtainable by conjugating an appropriate linker molecule to the SH-group(s) or carbohydrate moieties of the polypeptide.
- an appropriate linker molecule is provided in Example 4, 2.1. It is important to ensure that the addition of the linker molecule does not damage the polypeptide. However, this is known to the person skilled in the art.
- the modified HAS is conjugated to the polypeptide via a carbohydrate moiety.
- the carbohydrate moiety may be linked directly to the polypeptide backbone.
- the carbohydrate moiety is part of a carbohydrate side chain.
- further carbohydrate moieties may be present between the carbohydrate moiety to which HAS is linked and the polypeptide backbone. More preferably, the carbohydrate moiety is the terminal moiety of the carbohydrate side chain.
- the modified HAS is attached (via a linker or not, see below) to carbohydrate chains linked to N- and/ or O- glycosylation sites of the polypeptide.
- the polypeptide contains (a) further carbohydrate moiet(y)ies to which the modified HAS is conjugated.
- Techniques for attaching carbohydrate moieties to polypeptides are known in the art (Berger, Greber, Mosbach, 1986, Galactosyltransferase- dependent sialylation of complex and endo-N-acetylglucosaminidase H-treated core N-glycans in vitro, FEBS Lett., 203(1), 64-8; Dittmar, Conradt, Hauser, Hofer, Lindenmaier, 1989, Advances in Protein design; Bloecker, Collins, Schmidt, and Schomburg eds., GBF -Monographs, 12, 231-246, VCH Publishers, Weinheim, New York, Cambridge).
- the carbohydrate moiety is oxidized in order to be able to react with the modified HAS.
- This oxidation can be performed either chemically or enzymatically.
- the carbohydrate moiety may be oxidized enzymatically.
- Enzymes for the oxidation of the individual carbohydrate moieties are known in the art, e.g. in the case of galactose the enzyme is galactose oxidase.
- terminal galactose moieties If it is intended to oxidize terminal galactose moieties, it will be eventually necessary to remove terminal sialic acids (partially or completely) if the polypeptide has been produced in cells capable of attaching sialic acids to carbohydrate chains, e.g. in mammalian cells or in cells which have been genetically modified to be capable of attaching sialic acids to carbohydrate chains.
- Chemical or enzymatic methods for the removal of sialic acids are known in the art (Chaplin and Kennedy (eds.), 1996, Carbohydrate Analysis: a practical approach, especially Chap- ter 5 Montreuill, Glycoproteins, pages 175-177; IRL Press Practical approach series (ISBN 0-947946-44-3)).
- the carbohydrate moiety to which the modified HAS is to be attached is attached to the polypeptide within step a).
- this can be achieved by the means of galactose transferase.
- the methods are known in the art (Berger, Greber, Mosbach, 1986, Galactosyltransferase-dependent sialylation of complex and endo-N-acetylglucosaminidase H-treated core N-glycans in vitro, FEBS Lett., 203(1), 64-8).
- the polypeptide in step a) is modified by oxidizing at least one terminal saccharide unit, preferably galactose, of the one or more carbohydrate side chains of the polypeptide, preferably after partial or complete (enzymatic and/ or chemical) removal of the terminal sialic acid, if necessary (see above).
- the modified HAS is conjugated to the oxidized terminal saccharide unit of the carbohydrate chain, preferably galactose.
- polypeptide com- prises at least one free SH-group.
- the free SH-group is part of a naturally- occurring cysteine or of an added cysteine.
- cysteine residue either at the N- or at the C-terminus of the polypeptide or by replacing (e.g. by recombinant means) a naturally-occurring amino acid by cysteine.
- the respective methods are known to the person skilled in the art (see above).
- the added cysteine has been added by replacing a naturally occuring amino acid by a cysteine.
- the modified HAS is conjugated in step c) to the added cysteine.
- step b) of the method of the invention modified HAS is provided which is capable of reacting with the polypeptide of step a).
- the HAS may be preferably modified at its reducing end. This has the advantage that the chemical reaction can be controlled easily and that the skilled person can be sure which group of HAS is modified during the reaction. Since only one group is introduced into the HAS, crosslinking between different polypeptide molecules by multifunctional HAS molecules and other side reactions can be prevented.
- the modified HAS may be capable of reacting either with
- the modified HAS may be capable of reacting with oxidized carbohydrate moieties, preferably a terminal saccharide residue, more preferably galactose, or with a terminal sialic acid.
- HAS such that it is capable of reacting with an oxidized, preferably terminal saccharide residue.
- this modification may be introduced regioselectively at the reducing end of the HES-chain.
- the aldehyde group is oxidized to a lactone.
- the modi- fications include, but are not limited to the addition of hydrazide, amino (also hy- droxylamino), semicarbazide or thiol functions to HAS, either directly or via a linker. These techniques are explained in further detail in Examples 2-4.
- the mechanisms per se are known in the art (see e.g.
- the addition of a hydrazide or hydroxylamino function is preferred.
- step c) of the method of the present invention at a pH of 5.5, it is ensured that the modified HAS reacts selectively with the oxidized carbohydrate moiety of the polypeptide without inter- or intramolecular polypeptide cross-linking by imine formation of lysine side chains with the oxidized saccharide residue.
- HAS such that it is capable of reacting with a free SH-group.
- this modification is introduced regioselectively at the reducing end of the HES-chain.
- the methods include, but are not limited to the addition of maleimide, disulfide or halogen acetamide functions to HAS. These techniques are explained in further detail in Examples 2-4
- linker molecules which are useful in the context of the present invention are known in the art or commercially available (e.g. from Pierce, available from Perbio Science GmbH, Bonn, Germany).
- step c) of the method of the present invention the polypeptide of step a) with the HAS of step b) is reacted, whereby an HAS-polypeptide is produced comprising one or more HAS molecules wherein the HAS is conjugated to the polypeptide via a carbohydrate moiety or via a thioether.
- Step c) may be performed in a reaction medium comprising at least 10 % per weight H 0.
- the reaction medium in this preferred embodiment of the method of the invention comprises at least 10 % per weight water, preferred at least 50 %, more preferred at least 80 %, e.g. 90 % or up to 100 %.
- the degree of organic solvents is calculated respectively. Consequently, the reaction takes place in an aqueous phase.
- the preferred reaction medium is water.
- One advantage of this embodiment of the method of the invention is, that it is not necessary to use toxicologically critical solvents and that therefore it is not necessary to remove these solvents after the production process, in order to avoid the contamination with the solvent. Furthermore, it is not necessary to perform additional quality controls with respect to residual toxicologically critical solvents. It is preferred to use as organic solvents toxicologically not critical solvents like ethanol or propylenglycol.
- Another advantage of the method of the invention is that irreversible or reversible structural changes are avoided which are induced by organic solvents. Consequently, polypeptides obtained according to the method of the invention are different from those prepared in organic solvents such as DMSO. Furthermore, it has been surprisingly observed that the conjugation of HAS to drugs in an aqueous solution avoids side reactions. Consequently, this embodiment of the method of the invention leads to improved products with great purity.
- hydroxyalkylstarch is used to indicate starch derivatives which have been substituted by hydroxyalkylgroups.
- the alkyl group may be substituted.
- the hydroxyalkyl contains 2-1 carbon atoms, more preferably 2-4 carbon atoms.
- "Hydroxyalkylstarch” therefore preferably comprises hydroxyethylstarch, hydroxypropylstarch and hy- droxybutylstarch, wherein hydroxyethylstarch and hydroxypropylstarch are preferred.
- the hydroxyalkylgroup(s) of HAS contain at least one OH-group.
- Hydroxyethylstarch (HES) is most preferred for all embodiments of the present invention.
- hydroxyalkylstarch also includes derivatives wherein the alkyl group is mono- or polysubstituted. In this context, it is preferred that the alkyl group is substituted with an halogen, especially flourine, or with an aryl group, provided that the HAS remains water soluble. Furthermore, the terminal hydroxy group of hydroxyalkyl may be esterified or etherified. In addition, the alkyl group of the hydroxyalkylstarch may be linear or branched.
- alkyl instead of alkyl, also linear or branched substituted or unsubstituted alkylene groups may be used.
- hydroxyethylstarch may have a mean molecular weight (weight mean) of 1-300 kDa, wherein a mean molecular weight of 5-100 kDa is more preferred.
- Hydroxyethylstarch may fiirther exhibit a molar degree of substitution of 0.1 to 0.8 and a ratio between C 2 :C 6 -substitution in the range of 2-20, with respect to the hydroxyethylgroups.
- Isolation of the HAS-polypeptide can be performed by using known procedures for the purification of natural and recombinant polypeptides (e.g. size exclusion chromatography, ion-exchange chromatography, RP-HPLC, hydroxyapatite chromatography, hydrophobic interaction chromatography, the procedure described in Example 20.8 or combinations thereof ).
- HAS covalent attachment of HAS to the polypetide
- carbohydrate compositional analysis after hydrolysis of the modified protein can be verified by carbohydrate compositional analysis after hydrolysis of the modified protein.
- Demonstration of HAS modification at N-linked oligosaccharides of the polypeptide can be accomplished by removal of the HAS modified N-glycans and observation of the predicted shift to higher mobility in SDS-PAGE +/- Western Blotting analysis.
- HAS modification of the polypeptide at cysteine residues can be demonstrated by the failure to detect the corresponding proteolytic Cys-peptide in RP-HPLC and MALDI/TOF-MS in the proteolytic fragments of the HAS-modified product (Zhou et al., 1998, Application of capillary electrophoresis, liquid chromatogra- phy, electrospray-mass spectrometry and matrix-assisted laserdesorp- tion/ionization - time of flight - mass spectrometry to the characterization of recombinant human erythropoietin, Electrophoresis, 19(13), 2348-55).
- the invention further relates to a HAS-polypeptide, obtainable by the method of the invention.
- this HAS-polypeptide has the features as defined for the above HAS-polypeptide of the invention.
- the HAS used has the following formula (I)
- hydroxyalkyl starch as used in the present invention is not limited to compounds where the terminal carbohydrate moiety comprises hydroxyalkyl groups Rj, R 2 , and/or R 3 as depicted, for the sake of brevity, in formula (I), but also refers to compounds in which at least one hydroxy group present anywhere, either in the terminal carbohydrate moiety and/or in the remaining part of the starch molecule, HAS', is substituted by a hydroxyalkyl group Rj, R 2 , or R 3 .
- the alkyl group may be a linear or branched alkyl group which may be suitably substituted.
- the hydroxyalkyl group contains 1 to 10 carbon atoms, more preferably from 1 to 6 carbon atoms, more preferably from 1 to 4 carbon atoms, and even more preferably 2-4 carbon atoms.
- "Hy- droxyalkyl starch” therefore preferably comprises hydroxyethyl starch, hy- droxypropyl starch and hydroxybutyl starch, wherein hydroxyethyl starch and hydroxypropyl starch are particularly preferred, hydroxyethyl starch being especially preferred.
- HAS and preferably HES may be reacted with a crosslinking compound which reacts with HAS, preferably HES, and the polypeptide such as the polypeptides described above.
- HAS may be reacted having a structure according to formula (I)
- HAS according to formula (I) is reacted with a crosslinking compound
- the reaction preferably takes place in an aqueous medium.
- HAS according to formula (Ha) and/or (lib) is reacted with a crosslinking compound
- the reaction preferably takes place in a non-aqueous medium such as in a polar aprotic solvent or solvent mixture such as DMSO and/or in DMF.
- the HAS-polypeptide conjugate of the present invention is produced via reaction of a HAS derivative, comprising HAS and a crosslinking compound, with the oxidised carbohydrate moiety of the polypeptide
- the crosslinking compound is preferably a compound
- HAS-polypeptide conjugate of the present invention is produced via reaction of a HAS derivative, comprising HAS and at least one crosslinking compound, with the thio group of the polypeptide, it is preferred to react HAS at its optionally oxidized reducing end with a first crosslinking compound which is preferably a compound
- the HAS derivative comprises, as functional group which is reacted with the second crosslinking compound, the structure -NH-, as described above in detail, the following types of second crosslinking compounds with functional groups Fl and F2 are, among others, preferred:
- the hydroxyalkyl starch deri- vate obtainable by the method or methods described above may have the following constitutions (Ilia):
- the present invention also relates to a hydroxyalkyl starch derivative as described above having a constitution according to formula (Ilia).
- the hydroxyalkyl starch derivate obtainable by the method or methods described above may have the following constitutions (Ilia) or (IHb) where (Ilia) and (Illb) may be both present in the reaction mixture having a certain equilibrium distribution:
- the present invention also relates to a hydroxyalkyl starch derivative as described above having a constitution according to formula (Illb).
- the present invention also relates to a hydroxyalkyl starch derivative as described above being present in a mixture of constitutions according to formulae ( ⁇ l ⁇ a) and (Illb).
- the compounds according to formula (Ilia) may be present with the N atom in equatorial or axial position where also a mixture of both forms may be present having a certain equilibrium distribution.
- the compounds according to formula (Illb) may be present with the C-N double bond in E or Z conformation where also a mixture of both forms may be present having a certain equilibrium distribution.
- acylation of the compound according to formula (Ilia) is particularly preferred, especially in the case where R' is hydrogen.
- acylation reagent all suitable reagents may be used which result in the desired hydroxyalkyl starch derivative according to formula (IVa)
- the residue Ra being part of the acylation reagent is methyl.
- acylation reagents car- boxylic acid anhydrides, carboxylic acid halides and carboxylic acid activated esters are preferably used.
- the present invention also relates to a hydroxyalkyl starch derivate ob- tainable by a method as described above wherein said derivative has a constitution according to formula (IVa).
- the acylation is carried at a temperature in the range of from 0 to 30 °C, preferably in the range of from 2 to 20 °C and especially preferably in the range of from 4 to lO °C.
- stabilizing method reduction of the compound according to formula (Illb) is particularly preferred, especially in the case where R' is hydrogen.
- reduction reagent all suitable reagents may be used which result in the desired hydroxyalkyl starch derivative according to formula (JNb)
- boro hydrides such as ⁇ aC ⁇ BH 3 or NaBFL; are used.
- the present invention also relates to a hydroxyalkyl starch derivate obtainable by a method as described above wherein said derivative has a constitution according to formula (INb).
- the reduction is carried at a temperature in the range of from 4 to 100 °C, preferably in the range of from 10 to 90 °C and especially preferably in the range of from 25 to 80 °C.
- the present invention further relates to mixtures of compounds (Ilia) and (Illb), (IVa) and (IVb), (Ilia) and (IVa), (Ilia) and (IVb), (Illb) and (IVa), (Illb) and (IVb), (Ilia) and (Illb) and (IVa), (Ilia) and (Illb) and (IVb), (IVa) and (IVb) and (Ilia), and (IVa) and (IVb) and (Illia), and (IVa) and (IVb) and (Illb) and (Illb) wherein (Ilia) and/or (IVa) may be independently present in a conformation where the ⁇ atom in equatorial or axial posi- tion and/or wherein (Illb) may be present with the C-N double bond in E or Z conformation.
- the invention further relates to a HAS-polypeptide according to the invention for use in a method for treatment of the human or animal body.
- the present invention relates to a pharmaceutical composition
- a pharmaceutical composition comprising the HAS-polypeptide of the invention.
- the pharmaceutical composition comprises further at least one pharmaceutically ac- ceptable diluent, adjuvant and/or carrier useful in erythropoietin therapy.
- the invention further relates to the use of a HAS-polypeptide of the invention for the preparation of a medicament for the treatment of anemic disorders or hemato- poietic dysfunction disorders or diseases related hereto.
- FIG. 1 shows an SDS page analysis of two HES-EPO conjugates
- Lane 1 HES-EPO produced according to example protocol 8: EPO is conjugated to hydrazido-HES 12KD L
- Lane 2 HES-EPO produced according to example protocol 9 : EPO is conjugated to hydroxylamino HES 12 KD K
- control unconjugated EPO
- the upper band represents EPO dimer
- Figure 2 demonstrates that the HES is conjugated to a carbohydrate moiety of a carbohydrate side chain by showing a digestion of HAS modified EPO forms with polyppetide N-glycosidase
- Lane 1 HES-EPO produced according to example protocol 8 after digestion with N-glycosidase
- Lane 2 HES-EPO produced according to example protocol 9 after digestion with N-glycosidase
- Lane 3 BRP EPO standard
- Lane 4 BRP EPO standard after digestion with N-glycosidase mw: marker (Bio-Rad SDS-PAGE Standards Low range Catalog No
- Figure 3 shows an SDS page analysis of the HES-EPO conjugate, produced according to example 17.1.
- Lane A Protein marker Roti®-Mark PRESTAINED (Carl Roth GmbH+Co, Düsseldorf, D); molecular weights (in kD) of the protein marker from top to bottom: 245, 123, 77, 42, 30, 25.4, and 17.
- Lane B Crude product after conjugation according to example 17.1.
- Lane C EPO starting material.
- Figure 4 shows an SDS page analysis of the HES-EPO conjugate, produced according to example 17.3.
- Lane A Crude product after conjugation according to example 17.3. Lane B: EPO starting material.
- Lane C Protein marker Roti®-Mark PRESTAINED (Carl Roth GmbH+Co, Düsseldorf, D); molecular weights (in kD) of the protein marker from top to bottom: 245, 123, 77, 42, 30, 25.4, and 17.
- Figure 5 shows an SDS page analysis of the HES-EPO conjugate, produced according to example 17.4 and 17.5.
- Lane A Protein marker Roti®-Mark PRESTAINED (Carl Roth GmbH+Co, Düsseldorf, D); molecular weights (in kD) of the protein marker from top to bottom: 245, 123, 77, 42, 30, 25.4, and 17.
- Lane B Crude product after conjugation according to example 17.4.
- Lane C Crude product after conjugation according to example 17.5.
- Lane D EPO starting material.
- Figure 6 shows an SDS page analysis of HES-EPO conjugates, produced according to examples 19.1 and 19.4.
- Lane A Protein marker Roti®-Mark PRESTAINED (Carl Roth GmbH+Co, Düsseldorf, D); molecular weights (in kD) of the protein marker from top to bottom: 245, 123, 77, 2, 30, 25.4, and 17. Lane B: Crude product after conjugation according to example 19.4. Lane C: Crude product after conjugation according to example 19.1. Lane D: EPO starting material.
- Figure 7 shows an SDS page analysis of HES-EPO conjugates, produced according to examples 19.2, 19.3, 19.5, and 19.6.
- Lane A Protein marker Roti®-Mark PRESTAINED (Carl Roth GmbH+Co, Düsseldorf, D); molecular weights (in kD) of the protein marker from top to bottom: 245, 123, 77, 42, 30, 25.4, and 17.
- Lane B Crude product after conjugation according to example 19.6, based on example 13.3 b)
- Lane C Crude product after conjugation according to example 19.5, based on example 13.1 b).
- Lane D Crude product after conjugation according to example 19.6, based on example 13.3 a).
- Lane E Crude product after conjugation according to example 19.5, based on example 13.1 a).
- Lane F Crude product after conjugation according to example 19.2.
- Lane G Crude product after conjugation according to example 19.3.
- Lane K EPO starting material.
- Figure 8 shows an SDS page analysis of HES-EPO conjugates, produced according to examples 19.7, 19.8, 19.9, 19.10, 19.11, and 19.12.
- Lane A Protein marker Roti®-Mark PRESTAINED (Carl Roth GmbH+Co, Düsseldorf, D); molecular weights (in kD) of the protein marker from top to bottom: 245, 123, 77, 42, 30, 25.4, and 17.
- Lane B Crude product after conjugation according to example 19.11.
- Lane C Crude product after conjugation according to example 19.10.
- Lane D Crude product after conjugation according to example 19.7.
- Lane E Crude product after conjugation according to example 19.8.
- Lane F Crude product after conjugation according to example 19.12.
- Lane G EPO starting material.
- Lane K Crude product after conjugation according to example 19.9.
- HPAEC-PAD pattern of native oligosaccharides isolated from untreated EPO and from EPO incubated for 5 min and 10 min under mild acid hydrolysis conditions and subsequent periodate treatment.
- the elution area of oligosaccharides struc- tures without and with 1-4 sialic acid is indicated by brackets 1-5.
- Figures 19 to 25 represent MALDI/TOF mass spectra of the enzymatically liberated and chemically desialylated N-glycans isolated from HES-modified EPO and control EPO preparations.
- Major signals at m/z 1809.7, 2174.8, 2539.9, 2905.0 and 3270.1 correspond to di- to tetraantennary complex-type N-glycan structures with no, one or two N-acetyllactosamine repeats accompanied by weak signals due to loss of fucose or galactose which are due to acid hydrolysis conditions employed for the desialylation of samples for MS analysis.
- MALDI/TOF spectrum desialylated oligosaccharides of HES-modified EPO A2.
- MALDI/TOF spectrum desialylated oligosaccharides of EPO GT-l-A.
- MALDI/TOF spectrum desialylated oligosaccharides of EPO K2.
- MALDI/TOF spectrum desialylated oligosaccharides of EPO-GT-1 subjected to acid hydrolysis for 5 min.
- MALDI/TOF spectrum desialylated oligosaccharides of EPO-GT-1 subjected to acid hydrolysis for 10 min.
- MALDI/TOF spectrum desialylated oligosaccharides of EPO-GT-1 subjected to acid hydrolysis for 60 min.
- Recombinant EPO was produced in CHO cells as follows
- a plasmid harbouring the human EPO cDNA was cloned into the eukaryotic expression vector (pCR3 and named afterwards pCREPO).
- Site directed mutagene- sis was performed using standard procedures as described (Grabenhorst, Nimtz, Costa et al., 1998, In vivo specificity of human alpha 1,3/4-fucosyltransferases III- VII in the biosynthesis of Lewis(x) and sialyl Lewis(x) motifs on complex- type N-glycans -Coexpression studies from BHK-21 cells together with human beta-trace protein, J. Biol. Chem., 273(47), 30985-30994).
- CHO cells stably expressing human EPO or amino acid variants e.g. Cys- 29-»Ser/Ala, or Cys-33-»Ser/Ala , Ser-126 ⁇ Ala etc.
- human EPO or amino acid variants e.g. Cys- 29-»Ser/Ala, or Cys-33-»Ser/Ala , Ser-126 ⁇ Ala etc.
- EPO EPO expression levels by Western blot analysis and by IEF/Westem Blot analysis.
- EPO was produced from stable subclones in spinner flasks or in 21 perfusion reactors. Different glycoforms of EPO with different amounts of NeuAc (e.g. 2-8, 4- 10, 8-12 NeuAc residues) were isolated according to published protocols using combinations various chromatographic procedures as described below.
- Recombinant human EPO was produced from insect cell lines SF9 and SF 21 after infection of cells with recombinant baculovirus vector containing the human EPO cDNA under control of the polyhedrin promoter as described in the literature.
- EPO was purified by Blue sepharose chromatography, ion-exchange chromatography on Q-Sepharose and finally RP-HPLC on C 4 -Phase. Purity of the product was checked by SDS-PAGE and N-terminal sequencing . Detailled carbohydrate structural analysis (N- and O-glycosylation) was performed according to published procedures.
- Oxo-HES12KD (Fresenius German Patent DE 196 28 705 Al) were dissolved in 0.3 mL absolute dimethyl sulfoxide (DMSO) and were added dropwise under nitrogen to a mixture of 34 mg (0.15 mmol) EMCH (Perbio Science, GmbH, Bonn, Germany) in 1.5 mL DMSO. After stirring for 19 h at 60°C the reaction mixture was added to 16 mL of a 1 :1 mixture of ethanol and acetone. The precipitate was collected by centrifugation, redissolved in 3 mL DMSO and again precipitated as described. The SH-reactiv-HES12KD B was obtained by centrifugation and drying in vaccuo. The conjugation reaction with Thio-EPO is described in Exam- pie 3, 2.2.
- cross-linkers which exhibit a hydrazide- and a maleimide function, separated by a spacer.
- Table 2 Further examples for molecules of that group, available from Perbio Science, Kunststoff GmbH, Bonn, Germany, are shown in table 2; marked with an "A".
- Another group of cross-linkers exhibiting an activated disulfide function instead of a maleimide funcion could also be used.
- HES12KD A 1 mg sample of HES12KD was dissolved in 3 mL of saturated ammo- nium bicarbonate. Additional solid ammonium bicarbonate was then added to maintain saturation of the solution during incubation for 120 h at 30°C. The Amino-HES12KD C was desalted by direct lyopbilization of the reaction mixture.
- acylation of amino groups other activated forms of halogen acidic acids can be used, e.g.
- esters e.g. N-hydroxysuccinimide ester, esters with substituted phenoles
- cross-linkers having an amino reactive group and a halogen acetyl function, separated by a spacer could be used.
- An example thereof is SBAP. This molecule and others are available from Perbio Science GmbH, Bonn, Germany. They are marked in table 2 with an "D”.
- cross-linkers for the ligation of amino-HES with thio-EPO without isolation of the halogenacetamid-HES derivatives see remarks in example 3, 1.2.
- the precipitate Amino-HES 12KD E was collected by centrifugation, redissolved in 40 mL of water an dialysed for 4 days against water (SnakeSkin dialysis tubing, 3.5 KD cut off, Perbio Science GmbH, Bonn, Germany) and lyophilized.
- Chloroacetamide-HES 12KD Fl was prepared as described for Chloroacetamide-HES 12KD DI in 1.3 above.
- the precipitated product J was collected by centrifugation, redis- solved in 40 mL of water and dialysed for 2 days against a 0.5 % (v/v) triethylamine in water solution and for 2 days against water (SnakeSkin dialysis tubing, 3.5 KD cut off, Perbio Science GmbH, Bonn, Germany) and lyophilized.
- the conjugation reaction with oxidised Glyco-EPO is described in Example 4, 2.2.
- derivatives can be used, wherein 2 hydrazid groups are separated by any spacer.
- O-[2-(2-aminooxy-ethoxy)-ethyl]-hydroxylamine was synthesized as described by Boturyn et al in 2 steps from commercially available materials. 5 1,44 g (0.12 mmol) of Oxo-HES 12KD were dissolved in 3 mL absolute dimethyl sulfoxide (DMSO) and were added dropwise under nitrogen to a mixture of 2.04 g (15 mmol) O-[2-(2-aminooxy-ethoxy)-ethyl]-hydroxylamine in 15 mL DMSO. After stirring for 48 h at 65 °C the reaction mixture was added to 160 mL of a 1:1 mixture of ethanol and acetone.
- DMSO dimethyl sulfoxide
- the precipitated product K was collected by centrifugation, redissolved in 40 mL of water and dialysed for 4 days against water (SnakeSkin dialysis tubing, 3.5 KD cut off, Perbio Science GmbH, Bonn, Germany) and lyophilized.
- the conjugation reaction with oxidised Glyco- EPO is described in Example 4, 3.1.
- Oxo-HES 12KD 1,44 g (0.12 mmol) of Oxo-HES 12KD were dissolved in 3 mL absolute dimethyl sulfoxide (DMSO) and were added to a mixture of 1.16 g (15 mmol) cysteamine in 15 mL DMSO under nitrogen dropwise. After stirring for 24 h at 40°C the reaction mixture was added to 160 mL of a 1 :1 mixture of ethanol and acetone.
- DMSO dimethyl sulfoxide
- the precipitated product M was collected by centrifugation, re-dissolved in 40 mL of water and dialysed for 2 days against a 0.5 % (v/v) triethylamine in water solution and for 2 days against water (SnakeSkin dialysis tubing, 3.5 KD cut off, Perbio Science GmbH, Bonn, Germany) and lyophilized.
- the conjugation reaction with oxidised Glyco-EPO is described in Example 4, 2.1.
- Derivatives could be used, wherein the amino group and the thio-function are separated by any spacer. Furthermore, the amino group in the derivatives could be replaced by a hydrazine, a hydrazid or a hydroxy lamine.
- the thio- function could be protected in the form of e.g. a disulfide or a trityl-derivative. However, in this case, a further deprotection step must be preformed before the conjugation, which would release a component being analogous to M.
- the deprotection was performed in a 50 mM sodium phosphate buffer, containing 25 mM EDTA and 0.5M hydroxylamine, pH7.5 for 2 hours at room temperature and the product O was purified by dialysis against a 0.1 M sodium acetate buffer pH 5.5, containing 1 mM EDTA.
- the deprotection reaction was performed immediately before the conjugation reaction which is described in Example 4, 2.1.
- the deprotection was performed in a solution of 12 mg dithiothreitol (DTT) per 0.5 mL 100 mM sodiumacetate buffer, containing 100 mM so- dium chloride at pH 4.5 for 30 min at room temperature and the product Q was purified by dialysis against a 0.1 M sodium acetate buffer pH 5.5, containing 1 mM EDTA.
- DTT dithiothreitol
- thio-HES derivatives For the conversion of amino- to thiol-groups, either in free form or protected, several reagants are available. After the modification, the products could be isolated. Alternatively, as accepted for the use of cross-linkers, they could be directly used for the conjugation reaction, preferably after a purification step. For the isolation and storage of thio-HES derivatives, the synthesis of thio-HES derivatives in a protected form may be useful. For this, all derivatives being analogous to SATA could be used, which have an active ester-function and a thioester-function, separated by any spacer. SATP, being a further member of this group, is found in table 2, marked with an "H".
- the derivatives being analogous to SPDP could have an acitve ester-function and a disulfide-function, separated by any spacer. Further members of these groups are found in table 2, marked with an "F”. Further analogous derivatives could have an active ester-function and a thiol-function, protected as a trityl derivative, separated by any spacer.
- Composition was 50 mM sodium borate, pH 8.3, 5 mM
- PBS phosphate buffered saline: 10 mM sodium phosphate, 150 mM NaCl, pH 7.4.
- Microconcentrator Microcon YM-3 (amicon, Milipore GmbH, Eschbom,
- reaction mixture was applied to a desalting column equilibrated with PBS buffer and the protein content of the fractions were monitored with a Coomassie protein assay reagent. All fractions containing the protein conjugate were pooled and the the conjugate was obtained by lyophylisation after dialysis against water over night.
- cross-linkers which have a succinimide- or a sulfosuccinimide function and a iodoacetamide function separated by a spacer. Further examples are found in table 2. They are marked with a "C” and are avialable from Perbio Science GmbH, Bonn, Germany.
- A. Phosphate buffer. Composition was 100 mM sodium phosphate, pH 6.1, 5 mM EDTA.
- amino HES12KD (E, H, I) could be linked with a cross-linker via a succinim- ide- and a bromoacetamid function (see 1.1 above).
- SBAP is a member of this group of cross-linkers and is found in table 2, marked with a "D".
- HES12KD 10 mg/mL in 0.1 M sodium acetate buffer, pH 5.5
- Phosphate/NaCI 0.1 M sodium phosphate, 50 mM NaCI, pH 7.0
- Microconcentrator Microcon YM-3 (amicon, Milipore GmbH, Eschborn,
- the hydrazone adduct is slightly less stable at extremes of pH.
- Phosphate/NaCI 0.1 M sodium phosphate, 50 mM NaCl, pH 7.0
- PBS phosphate buffered saline: 10 mM sodium phosphate, 150 mM NaCl, pH 7.4.
- Microconcentrator Microcon YM-10 (amicon, Milipore GmbH, Eschbom, Germany).
- PBS phosphate buffered saline: 10 mM sodium phosphate, 150 mM NaCl, pH 7.4.
- ThioEPO 1 solution 5 mg/mL of ThioEPO 1 in PBS buffer.
- Reactivity of the excess maleimide was quenched at the end of the incubation period by the addition of cysteine to a final concentration of 10 mM.
- the reaction mixture was applied to a desalting column equilibrated with PBS buffer.
- the protein content of the fractions were monitored with a Coomassie protein assay reagent, all fractions containing the pro- tein conjugate were pooled and the conjugate was obtained by lyophylisation after dialysis against water over night.
- cross-linkers could be used which have a succinimide- or a sulfosuccinimide function and a maleimide-function, separated by a spacer.
- Glyco-EPO solution 10 mg/mL of Glyco-EPO in acetate buffer
- Sodium meta-periodate solution 10 mM or 100 mM sodium periodate in acetate buffer, prepared fresh. Keep in dark. Using these solutions, the final concentration of sodium periodate in the oxidation mixture is 1 mM or 10 mM, respectively.
- Microconcentrator Microcon YM-3 (amicon, Milipore GmbH, Eschborn, Germany) Method
- Microconcentrator Microcon YM-3 (amicon, Milipore GmbH, Eschborn, Germany)
- M 2 C 2 H stock solution was added to 1 mL of oxidized Glyco-EPO to a final concentration of 1 mM and was allowed to react with agitation for 2 hours at room temperature.
- the excess crosslinker was removed by centrifuging the sample at 14000 x g for 60 minutes using a microconcentrator. After centrifuging the sample was brought up to its original volume in phosphate/NaCI buffer and this process was repeated two more times.
- O or Q solution was added and the reaction mixture was incubated for 16 hours at room temperature.
- the hydrazone adduct is slightly less stable at extremes of pH.
- we reduced the hydrazone by treatment with 30 mM sodium cyanoborohydride in PBS buffer to a hydrazine.
- Acetate buffer 0.1 M sodium acetate buffer, pH 5.5
- PBS phosphate buffered saline: 10 mM sodium phosphate, 150 mM NaCl, pH 7.4
- the hydrazone adduct is slightly less stable at extremes of pH. For applications that may involve treatment at low pH, we reduced the hydrazone by treatment with 30 mM sodium cyanoborohydride in PBS buffer to a hydrazine. For most applications, this extra step was unnecessary.
- Acetate buffer 0.1 M sodium acetate buffer, pH 5.5
- EPO or partially desialylated EPO forms were incubated with galactose oxidase in the presence of catalase at 37°C from 30 min - 4 hours at 37°C in 0.05 M Na-phosphate buffer pH 7.0. Progress of the reaction was monitored by removal of 50 ⁇ g aliquots of the EPO and subsequent treatment of the protein with polypeptide N-glycanase.
- HAS modified EPO forms from nonreacted EPO and HAS- precursor molecules was achieved by gel filtration using e.g. Ultrogel AcA 44 / 54 or similar gel filtration media.
- nonreacted HAS was removed by immuno affinity isolation of EPO on a 4 mL column containing a monoclonal antibody coupled to Affigel (BioRad) and subsequent separation of unmodified EPO by gel filtration (e.g. using a matrix enabling the separation of globular proteins of a relative molecular mass between 20 kDa and 200 kDa ).
- HAS modified EPOs were identified by SDS-PAGE analysis (using 12.5 or 10% acrylamide gels) through detection of their higher molecular weight compared to unmodified EPO upon staining of gels with Coomassie Brillant Blue. The higher molecular weight of HAS modified EPO polypeptides was also identified by Western Blot analysis of samples using a polyclonal antibody raised against re- combinant human EPO.
- N-glycan modification of EPO forms was demonstrated by their successful removal from the EPO protein with polypeptide N-glycanase (recombinant N- glycosidase from Roche, Germany employing 25 units / mg EPO protein at 37°C for 16 hours); analysis by SDS-PAGE resulted in a typical shift of the EPO pro- tein to a migration position of the N-glycosidase treated unmodified EPO of approximately 20 KDa.
- Modification of the single desialylated and glacatose oxidase treated EPO O- glycan at Ser 126 was demonstrated by SDS-PAGE migration of the de-N- glycosylated product by detection of its migration position compared to nonreacted de-N-glycosylated EPO. If required, modified EPO was fractionated by RP- HPLC on a C8-phase before SDS-PAGE analysis. HAS O-glycan modification of EPO was also analysed by ⁇ -elimination of the O-glycan and detection of the de- O-glycosylated form of EPO in Western blots using a polyclonal antibody raised against recombinant human EPO.
- EPO forms where quantitated by UV measurements as described in Ph.Eur (2000, Erythropoietini solutio concentrata, 1316, 780-785) and compared to the interna- tional BRP reference EPO standard.
- EPO concentrations were determined by a RP-HPLC assay using a RP-C4-column and absorption at 254 nm employing 20, 40 , 80 and 120 ⁇ g of the BRP standard EPO reference preparation for calibration.
- Purified HES-modified EPO was tested for activity using the erythropoietin bioac- tivity assay as described by Krystal [Krystal, 1984, Exp. Heamatol., 11, 649-660]. Anemia was induced in NMRI mice by treatment with phenylhydrazine hydro- chloride and spleen cells were collected and used as described in [Fibi et al., 1991, Blood, 77, 1203 ff.]. Dilutions of EPO were incubated with 3xl0 5 cells/well in 96- well microtiter plates.
- EPO bioactivity was measured by an in vitro assay using the EPO- sensitive cell line TF-1 (Kitamura et. al., [J. cell Phys., 140. 323-334]. Exponentially growing cells were washed free of growth factors and were incubated in the presence of serial dilutions of the EPO for further 48 hours. Proliferation of the cells was assessed by using the MTT reduction assay as described by Mosmann [Mosman, 1983, J.Immunol. Methods, 65, 55-63].
- In vivo activity determinations were performed in normocythemic mice by measuring the increase of reticulocytes after 4 days after animals received the foreseen dose of EPO or modified EPO forms. Assays were performed using the BRP EPO standard which was calibrated against the WHO EPO standard in the poly- cythemic mouse assay. EPO samples were diluted in phosphate buffered saline containing 1 mg/ml of bovine serum albumin (Sigma).
- EPO test solution 0.5 ml of the EPO test solution in Dulbecco's buffered saline (corresponding to an EPO protein equivalent of a 100, 80, 40 or 20 IU/ml of the BRP standard EPO) were infected subcutaneously per animal. Blood samples were taken after 4 days after injection and reticulocytes were stained with acridine orange; quantitation of reticulocytes was performed by flow-cytometry by counting a total of 30,000 blood cells within 5 hours after the blood sample was taken (see Ph. Eur, 2000, Erythropoietini solutio concentrata, 1316, pages 780-785) and European Pharma- copoeia (1996/2000, attachment 2002).
- Rabbits were injected intravenously with specified amounts of unmodified or HAS-modified EPO forms. Blood samples were obtained at specified times, and serum was prepared. Serum erythropoietin levels were determined by in vitro bio- assay or by an EPO-specific commercial ELISA.
- mice Each animal received 300 IU EPO/kg subcutaneously. Seven days after the post-treatment hematocrit of each animal was determined. A substantial increase in hematocrit was observed 9in all animals treated with modified EPO, an expected result in view o the relatively short half-life of untreated EPO. The mean change in hematocrit of the modified EPO-treated group was significantly different from that of the untreated EPO group and that of the control group.
- Rabbits were treated with a single dose of unmodified or HAS- modified EPO corresponding to 200 or up to 800 ng/kg body weight. After 2, 6, 16, 24 and 48 hours blood samples were analyzed by using a commercial EPO- specific ELISA for determination of plasma concentrations. Mean plasma EPO concentrations were determined and the average initial half-lives ( ⁇ -phase) and the terminal half-lives ( ⁇ -phase) were calculated from the ELISA values as described: (Zettimissl et al., 1989, J. Biol. Chem., 264, 21153-21159).
- Modified IL2 was recovered by gelfiltration on Ultrogel AcA 54. Aliquots of corresponding fraction were sterile filtrated and IL2 bioactivity was determined by using the IL2 dependent murine CTLL-2 cell line [Gillis, Ferm, On, and Smith, 1978, J.Immunol., 120, 2027-2032]. Activity was related to the international reference IL2 standard preparation.
- Example 13 Formation of hydroxyethyl starch derivatives by reductive amination of the non-oxidised reducing end
- Example 14 Formation of hydroxyethyl starch derivatives by conjugation with the non-oxidised reducing end
- the precipitated product was collected by centrifugation, re- dissolved in 40 ml water, and centrifugated for 15 min at 4,500 rpm.
- the clear supernatant was dialysed for 3 d against water (SnakeSkin dialysis tubing, 3.5 KD cut off, Perbio Science GmbH, Bonn, D), and lyophilized.
- Example 14.4 Reaction of hydroxyethyl starch with O-[2-(2-aminooxy- ethoxy)-ethyl]-hydroxyl amine ,O.
- the precipitated product was collected by centrifugation, re-dissolved in 40 ml water, and dialysed for 3 d against water (SnakeSkin dialysis tubing, 3.5 KD cut off, Perbio Science GmbH, Bonn, D), and lyophilized.
- DMSO absolute dimethyl sulfoxide
- DMSO dimethyl sulfoxide
- the precipitated product was collected by centrifugation, redissolved in 40 mL of water and dialysed for 2 days against a 0.5 % (v/v) triethylamine in water solution and for 2 days against water (SnakeSkin dialysis tubing, 3.5 KD cut off, Perbio Science GmbH, Bonn, Germany) and lyophilized.
- the precipitated product was collected by centrifugation, redissolved in 40 ml of water and dialysed for 4 days against water (SnakeSkin dialysis tubing, 3.5 KD cut off, Perbio Science GmbH, Bonn, Germany) and lyophilized.
- reaction mixture After stirring for 68 h at 60°C the reaction mixture was added to 200 ml of water The solution containing the reaction product was dialysed for 2 days against a 0.5 % (v/v) triethylamine in water solution and for 2 days against water (SnakeSkin dialysis tubing, 3.5 KD cut off, Perbio Science GmbH, Bonn, Germany) and lyophilized.
- the precipitate Amino-HES lOKD/0.4 was collected by centrifugation, redissolved in 40 ml of water and dialysed for 4 days against water (SnakeSkin di- alysis tubing, 3.5 KD cut off, Perbio Science GmbH, Bonn, Germany) and lyophilized.
- Example 16 Oxidation of erythropoietin Oxidized erythropoietin was produced as described in Example 20. As oxidized erythropoietin, EPO-GT-1 -A as described in Example 20.11(c) was used (EPO- GT-1 without acid hydroylsis, treated with mild periodate oxidation).
- Example 17 Conjugation of hydroxyethyl starch derivatives with oxidized erythropoietin of example 4
- Oxidized EPO (1.055 ⁇ g/ ⁇ l) in 20 mM PBS buffer was adjusted to pH 5.3 with 5 M sodium acetate buffer, pH 5.2.
- 18 ⁇ l of a solution of the HES derivate as produced according to example 14.1 was added, and the mixture was incubated for 16 h at 25 °C.
- the crude product was analyzed by SDS-Page with NuPAGE 10% Bis-Tris Gels/MOPS buffer (Invitrogen, Carlsbad, CA, USA) as described in the instructions given by Invitrogen. The gel is stained with Roti-Blue Coomassie staining reagent (Roth, Düsseldorf, D) over- night.
- Fig. 3 The experimental result is shown in Fig. 3. A successful conjugation is indicated by the migration of the protein band to higher molecular weights. The increased bandwidth is due to the molecular weight distribution of the HES derivatives used and the number of HES derivatives linked to the protein.
- Oxidized EPO (1.055 ⁇ g/ ⁇ l) in 20 mM PBS buffer was adjusted to pH 5.3 with 5 M sodium acetate buffer, pH 5.2.
- 18 ⁇ l of a solution of the HES derivate as produced according to example 14.3 was added, and the mixture was incubated for 16 h at 25 °C.
- the crude product was analyzed by SDS-Page with NuPAGE 10% Bis-Tris Gels/MOPS buffer (Invitrogen, Carls- bad, CA, USA) as described in the instructions given by Invitrogen.
- Oxidized EPO (1.055 ⁇ g/ ⁇ l) in 20 mM PBS buffer was adjusted to pH 5.3 with 5 M sodium acetate buffer, pH 5.2.
- 18 ⁇ l of a solution of the HES derivate as produced according to example 14.4 was added, and the mixture was incubated for 16 h at 25 °C.
- the crude product was analyzed by SDS-Page with NuPAGE 10% Bis-Tris Gels/MOPS buffer (Invitrogen, Carlsbad, CA, USA) as described in the instructions given by Invitrogen. The gel is stained with Roti-B ue Coomassie staining reagent (Roth, Düsseldorf, D) overnight.
- Fig. 4 The experimental result is shown in Fig. 4. A successful conjugation is indicated by the migration of the protein band to higher molecular weights. The increased bandwidth is due to the molecular weight distribution of the HES derivatives used and the number of HES derivatives linked to the protein.
- Oxidized EPO (1.055 ⁇ g/ ⁇ l) in 20 mM PBS buffer was adjusted to pH 5.3 with 5
- the experimental result is shown in Fig. 5.
- a successful conjugation is indicated by the migration of the protein band to higher molecular weights.
- the increased bandwidth is due to the molecular weight distribution of the HES derivatives used and the number of HES derivatives linked to the protein.
- Oxidized EPO (1.055 ⁇ g/ ⁇ l) in 20 mM PBS buffer was adjusted to pH 5.3 with 5 M sodium acetate buffer, pH 5.2.
- 18 ⁇ l of a solution of the HES derivate as produced according to example 15.1 was added, and the mixture was incubated for 16 h at 25 °C.
- the crude product was analyzed by SDS-Page with NuPAGE 10% Bis-Tris Gels/MOPS buffer (Invitrogen, Carlsbad, CA, USA) as described in the instructions given by Invitrogen. The gel is stained with Roti-Blue Coomassie staining reagent (Roth, Düsseldorf, D) overnight.
- Example 18 Formation of Thio-EPO by reduction of erythropoietin 241.5 ⁇ g erythropoietin (EPO-GT-1, see Example 20) in 500 ⁇ l of a 0.1 M sodium borate buffer, 5 mM EDTA, 10 mM DTT (Lancaster, Morcambe, UK), pH 8.3, were incubated for 1 h at 37 °C.
- the DTT was removed by centrifugal filtration with a VIVASPIN 0.5 ml concentrator, 10 KD MWCO (VIVASCIENCE, Hannover, D) at 13,000 rpm, subsequent washing 3 times with the borate buffer and twice with a phosphate buffer (0.1 M, 9.15 M NaCl, 50 mM EDTA, pH 7.2).
- Example 19 Conjugation of hydroxyethyl starch derivatives with thio- erythropoietin using a crosslinking compound
- the experimental result is shown in Fig. 6.
- a successful conjugation is indicated by the migration of the protein band to higher molecular weights.
- the increased bandwidth is due to the molecular weight distribution of the HES derivatives used and the number of HES derivatives linked to the protein.
- Fig. 7 The experimental result is shown in Fig. 7. A successful conjugation is indicated by the migration of the protein band to higher molecular weights. The increased bandwidth is due to the molecular weight distribution of the HES derivatives used and the number of HES derivatives linked to the protein.
- Example 19.4 Reaction of thio-erythropoietin with the reaction product of example 14.4 and the crosslinking compound
- 10 ⁇ l of a solution of 2.5 ⁇ mol AMAS (Sigma Aldrich, Tauf Wegn, D) in DMSO were added. The clear solution was incubated for 80 min at 25 °C and 20 min at 40 °C.
- Remaining AMAS was removed by centrifugal filtration with a VIVASPIN 0.5 ml concentrator, 5 KD MWCO (VIVASCIENCE, Hannover, D) at 13,000 rpm, washing 4 times and 30 min with the phosphate buffer.
- the experimental result is shown in Fig 6.
- a successful conjugation is indicated by the migration of the protein band to higher molecular weights.
- the increased bandwidth is due to the molecular weight distribution of the HES derivatives used and the number of HES derivatives linked to the protein.
- Remaining AMAS was removed by centrifugal filtration with a VIVASPIN 0.5 ml concentrator, 5 KD MWCO (VIVASCIENCE, Hannover, D) at 13,000 rpm, washing 4 times and 30 min with the phosphate buffer.
- VIVASPIN 0.5 ml concentrator 5 KD MWCO
- To the residual solution 15 ⁇ g of ThioEPO as produced according to example 18 (1 ⁇ g/ ⁇ l in phosphate buffer) were added, and the mixture was incubated for 16 h at 25 °C. After lyophilisation, the crude product was analysed by SDS-Page with NuPAGE 10% Bis-Tris Gels/MOPS buffer (Invitrogen, Carlsbad, USA) as described in the instructions given by Invitrogen. The gel is stained with Roti-Blue Coomassie staining reagent (Roth, Düsseldorf, D) overnight.
- Fig. 7 The experimental result is shown in Fig. 7. A successful conjugation is indicated by the migration of the protein band to higher molecular weights. The increased bandwidth is due to the molecular weight distribution of the HES derivatives used and the number of HES derivatives linked to the protein.
- Remaining AMAS was removed by centrifugal filtration with a VIVASPIN 0.5 ml concentrator, 5 KD MWCO (VIVASCIENCE, Hannover, D) at 13,000 rpm, washing 4 times and 30 min with the phosphate buffer.
- Fig 8 The experimental result is shown in Fig 8. A successful conjugation is indicated by the migration of the protein band to higher molecular weights. The increased bandwidth is due to the molecular weight distribution of the HES derivatives used and the number of HES derivatives linked to the protein.
- Example 19.8 Reaction of thio-erythropoietin with the reaction product of example 15.2 and the crosslinking compound
- 50 nmol HES derivate produced according to Example 15.2 and dissolved in 200 ⁇ l phosphate buffer (0.1 M, 9.15 M NaCl, 50 mM EDTA, pH 7.2), 10 ⁇ l of a solution of 2.5 ⁇ mol AMAS (Sigma Aldrich, Tauf Wegn, D) in DMSO was added, and the clear solution was incubated for 80 min at 25 °C and 20 min at 40 °C.
- phosphate buffer 0.1 M, 9.15 M NaCl, 50 mM EDTA, pH 7.2
- the AMAS was removed by centrifugal filtration with a VIVASPIN 0.5 ml concentrator, 5 KD MWCO (VIVASCIENCE, Hannover, Germany) at 13,000 rpm and washing 4 times for 30 min with the phosphate buffer.
- Fig 8 The experimental result is shown in Fig 8. A successful conjugation is indicated by the migration of the protein band to higher molecular weights. The increased bandwidth is due to the molecular weight distribution of the HES derivatives used and the number of HES derivatives linked to the protein.
- Fig 8 The experimental result is shown in Fig 8. A successful conjugation is indicated by the migration of the protein band to higher molecular weights. The increased bandwidth is due to the molecular weight distribution of the HES derivatives used and the number of HES derivatives linked to the protein.
- Fig 8 The experimental result is shown in Fig 8. A successful conjugation is indicated by the migration of the protein band to higher molecular weights. The increased bandwidth is due to the molecular weight distribution of the HES derivatives used and the number of HES derivatives linked to the protein.
- Example 19.12 Reaction of thio-erythropoietin with the reaction product of example 15.6 and the crosslinking compound
- 50 nmol HES derivate produced according to Example 15.6 and dissolved in 200 ⁇ l phosphate buffer (0.1 M, 9.15 M NaCl, 50 mM EDTA, pH 7.2), 10 ⁇ l of a solution of 2.5 ⁇ mol AMAS (Sigma Aldrich, Tauf Wegn, D) in DMSO was added, and the clear solution was incubated for 80 min at 25 °C and 20 min at 40 °C.
- phosphate buffer 0.1 M, 9.15 M NaCl, 50 mM EDTA, pH 7.2
- the AMAS was removed by centrifugal filtration with a VIVASPIN 0.5 ml concentrator, 5 KD MWCO (VIVASCIENCE, Hannover, Germany) at 13,000 rpm and washing 4 times for 30 min with the phosphate buffer.
- Fig 8 The experimental result is shown in Fig 8. A successful conjugation is indicated by the migration of the protein band to higher molecular weights. The increased bandwidth is due to the molecular weight distribution of the HES derivatives used and the number of HES derivatives linked to the protein.
- HES-EPO conjugates were synthesized by coupling of HES derivatives (average mw of 18,000 Dalton; hydroxyethyl substitution degree of 0.4) to the partially (mild periodate) oxidized sialic acid residues on the oligosaccharide chains of recombinant human EPO. Based on carbohydrate structural analysis the modifica- tions introduced did not affect the structural integrity of the core oligosaccharide chains since MALDI/TOF-MS of the mild acid treated HES-modified glycans revealed intact neutral N-acetyllactosaniine-type chains which were indistinguishable from those observed in unmodified EPO product.
- the results obtained indicate that at least 3 modified HES-residues are attached per EPO molecule in the case of the EPO preparation which was subjected to modification without prior partial sialic acid removal.
- An EPO variant lacking about 50% of the sialic acid residues of the former protein showed a similar apparent high molecular weight mobility in SDS-PAGE (60-110 KDa vs 40 KDa for the BRP EPO standard).
- the HES modified EPO is stable under standard ion-exchange chromatography conditions at room temperature at pH 3-10.
- the EPO-bioassay in the normocythaemic mouse system indicates that the HES- modified EPO has 2.5-3.0 fold higher specific activity (IU/mg) in this assay when compared to the International BRP EPO reference standard based on protein determination using the UV absorption value from the European Pharmacopeia and an RP-HPLC EPO protein determination method calibrated against the BRP EPO standard preparation.
- the oligosaccharides in the pooled supernatants were dried in a vacuum centrifuge (Speed Vac concen- trator, Savant Instruments Inc., USA).
- the glycan samples were desalted using Hypercarb cartridges (25 mg or 100 mg of HyperCarb) as follows prior to use: the columns were washed with 3 x 500 ⁇ l of 80% acetonitrile (v/v) in 0.1% TFA followed by washes with 3 x 500 ⁇ l of water.
- the samples were diluted with water to a final volume of 300 ⁇ l - 600 ⁇ l before loading onto the cartridge which then was rigorously washed with water.
- Oligosaccharides were eluted with 1.2 ml (25 mg cartridges; 1.8 ml in the case of 100 mg cartridges) 25% acetonitrile in water containing 0.1% trifluoroacetic acid (v/v).
- the eluted oligosaccharides were neutralized with 2 M NH 4 OH and were dried in a Speed Vac concentrator.
- desalting of N-glycosidase released oligosaccharides was performed by adsorption of the digestion mixture from samples ⁇ 100 ⁇ g of total (glyco)protein onto 100 mg Hypercarb cartridges.
- TOF/TOF time-of-flight
- native desialylated oligosaccharides were analyzed using 2,5-dihydroxybenzoic acid as UV-absorbing material in the positive as well as in the negative ion mode using the reflectron in both cases.
- selected parent ions were subjected to laser induced dissociation (LID) and the resulting fragment ions separated by the second TOF stage (LIFT) of the instrument.
- Sample solutions of 1 ⁇ l and an approximate concentration of 1-10 pmol ⁇ l "1 were mixed with equal amounts of the respective matrix. This mixture was spotted onto a stainless steel target and dried at room temperature before analysis.
- EPO was expressed from recombinant CHO cells as described (Mueller PP et al., 1999, Dorner AJ et al., 1984) and the preparations were characterized according to methods described in the Eur. Phar. (Ph. Eur. 4, Monography 01/2002:1316: Erythropoietin concentrated solution).
- the final product had a sialic acid content of 12 nMol (+/- 1.5 nMol) per nMol of protein.
- the structures of N-linked oligosaccharides were determined by HPAEC-PAD and by MALDI/TOF-MS as de- scribed (Nimtz et al., 1999, Grabenhorst, 1999).
- the EPO preparations that were obtained contained di-, tri- and tetrasialylated oligosaccharides (2-12%, 15-28% and 60-80%, respectively, sulphated and pentasialylated chains were present in small amounts).
- the overall glycosylation characteristics of EPO preparations were similar to that of the international BRP EPO standard preparation.
- the isoelectric focusing pattern of the recombinant EPO was comparable to that of the international BRP Reference EPO standard preparation showing the corresponding isoforms. 25% of the EPO protein lacked O-glycosylation at Seri 26 of the polypeptide chain.
- EPO GT-1 protein (2.84 mg/ml) was heated to 80°C in 20 mM Na-phosphate buffer pH 7.0 and then 100 ⁇ l of 1 N H 2 SO 4 was added per 1 ml of the EPO solu- tion; incubation was continued for 5 min, 10 min and 60 min, respectively, yielding EPO preparations of different degree of sialylation. Quantitation of oligosaccharides with 0-4 sialic acids was performed after liberation of oligosaccharides with polypeptide N-glycosidase and isolation of N-linked chains was performed by desalting using Hypercarb cartridges (25 mg HyperSep Hypercarb; Thermo- Hypersil-Keystone, UK). EPO preparations were neutralized by addition of 1 N NaOH and were frozen in liquid N 2 and were stored at -20°C until further use.
- the partially oxidized EPO forms were separated from reagents by desalting using VIVASPIN concentrators (10,000 MWCO, PES Vivascience AG, Hannover, Germany) according to manufacturer's recommendation at 3000 rpm in a laboratory centrifuge equipped with a fixed angle rotor. After freezing in liquid nitrogen the EPO preparations were stored in a final volume of 4 ml at -20°C.
- VIVASPIN concentrators 10,000 MWCO, PES Vivascience AG, Hannover, Germany
- oligosaccharides were isolated using Hypercarb cartridges as described. Oligosaccharides were desialylated by mild acid treatment and were analyzed by HPAEC-PAD and their retention times were compared to those of authentic standard oligosaccharides as described (Nimtz et al., 1990 and 1993).
- EPO-GT-1 5 mg was incubated in 5 ml of 0.1 M Tris/HCl buffer pH 8.1 in the presence of 30 mM dithioerythreitol (DTT) at 37°C for 60 minutes; removal of DTT was achieved by using a Vivaspin concentrator at 4 °C, 4 cycles of buffer exchange.
- DTT dithioerythreitol
- EPO protein Quantitative determination of EPO protein was performed by measuring UV absorption at 280 nm according to the Eur. Phar. (European Pharmacopeia 4, Mono- graphy 01/2002: 1316: erythropoietin concentrated solution) in a cuvette with 1 cm path length.
- EPO was quantitated by applying a RP-HPLC method using a RP-C4 column (Vydac Protein C4, Cat.# 214TP5410, Grace Vydac, Ca, US); the HPLC method was calibrated using the erythropoietin BRP 1 reference standard (European Pharmacopeia, Riverside de l'Europe B.P. 907-F67029, France Cedex 1).
- EPO protein were diluted 1:10 with buffer A (20 mM N-morpholine propane sulfonic acid [MOPS/NaOH] in H 2 O bidest, pH 8.0) and were applied to a column containing 3 ml Q-Sepharose HP (Pharmacia Code no. 17-1014-03, Lot no.
- buffer B (20 mM morpholine ethane sulfonic acid [MES NaOH], 0.5 M NaCl in H 2 O bidest, pH 6.5) at a flow rate of 0.5 ml/min.
- EPO was detected by UV absorption at 280 nrn and eluted in about 6 ml.
- the column was regenerated by using 3 CV of buffer C (20 mM MES, 1.5 M NaCl in H 2 O adjusted to pH 6.5) and was re-equilibrated by using 10
- Purified native and desialylated oligosaccharides were analyzed by high-pH anion-exchange (HPAE) chromatography using a Dionex BioLC system (Dionex, USA) equipped with a CarboPac PA1 column (0.4 x 25 cm) in combination with a pulsed amperometric detector (PAD) (Schr ⁇ ter et al., 1999; Nimtz et al., 1999).
- HPAE high-pH anion-exchange
- Detector potentials (E) and pulse durations (T) were: El: +50 mV, TI: 480 ms; E2: +500 mV, T2: 120 ms; E3: -500 mV, T3: 60 ms, and the output range was 500-1500 nA.
- the oligosaccharides were then injected onto the CarboPac PA1 column which was equilibrated with 100% solvent A.
- For desialylated oligosaccharides elution (flow rate: 1 ml-min "1 ) was performed by applying a linear gradi- ent (0-20%) of solvent B over a period of 40 min followed by a linear increase from 20-100% solvent B over 5 min.
- Solvent A was 0.2 M NaOH in bidistilled H 2 O
- solvent B consisted of 0.6 M NaOAc in solvent A.
- elution flow rate: 1 ml-min "1 ) was performed by applying a linear gradient (0-35%) of solvent D over a period of 48 min followed by a linear in- crease from 35-100% solvent D over 10 min.
- Solvent D consisted of 0.6 M NaAc in solvent C.
- Example 20 Monosaccharide compositional analysis of N-glycans, HES- modified N-glycans and EPO protein by GC-MS
- Monosaccharides were identified by their retention time and characteristic fragmentation pattern. The uncorrected results of electronic peak integration were used for quantification. Monosaccharides yielding more than one peak due to anomericity and/or the presence of furanoid and pyranoid forms were quantified by adding all major peaks. 0.5 ⁇ g of myo-inositol was used as an internal standard compound.
- EPO-GT-1 preparations subjected to mild acid treatment for 5, 10 or 60 min. were analyzed by SDS-PAGE before and after liberation of ⁇ -linked oligosaccharides by incubation with ⁇ -glycosidase as shown in Figure 9.
- ⁇ -linked oligosaccharides were subjected to HPAEC-PAD oligosaccharide mapping ( Figure 10).
- the untreated EPO-GT-1 contained >90% of ⁇ -linked oligosaccharides with 3 or 4 sialic acid residues whereas after 5 min. of incubation in the presence of mild acid ⁇ 40% of carbohydrate chains had 3 or 4 sialic acid residues.
- HPAEC-PAD of the desialylated N-glycans revealed that the ratio of neutral oligosaccharides that were detected for the untreated EPO-GT-1 and remained stable in the preparations sub- jected to acid treatment for 5, 10 or 60 min.
- MALDI/TOF-MS of the desialylated glycans revealed that ⁇ 90% of the proximal fucose was present after mild acid treatment of the protein.
- hydroxylamine-modified HES derivative X 400 ⁇ g was added to 20 ⁇ g of EPO-GT-1-A (mild periodate oxidized EPO, not acid hydrolyzed prior to mild periodate oxidation) in 20 ⁇ L of 0.5 M NaOAc buffer pH 5.5 and the reaction was stopped after 30 min, 2, 4, and 17 hours, respectively, by freezing samples in liquid nitrogen. Subsequently samples were stored at -20°C until further analysis.
- HES-EPO conjugates I originating from EPO-GT-1 after mild periodate oxidation, i.e. from EPO-GT-1-A
- II resulting from EPO-GT-1 subjected to 5 min acid hydrolysis and mild periodate oxidation
- III resulting from EPO-GT-1 subjected to 10 min acid hydrolysis and mild periodate oxidation
- K was included containing unmodified EPO-GT-1 under the same buffer conditions to which an equivalent amount of unmodified HES was added. The incubation mixtures were subjected to further purification for subsequent biochemical analysis of the HES-EPO derivatives.
- HES-modified EPO sample A and K were compared to periodate oxidized form EPO-GT-1-A.
- the samples were subjected to N-glycosidase treatment and as is depicted in Figures 16a and 16b the release of N-glycans resulted in the two low molecular weight bands at the position of the O-glycosylated and nonglycosylated EPO forms of the standard EPO preparation.
- sample A a further band migrating at the position of the 28 KDa mw standard was detected suggesting HES-modification at the O-glycan of this EPO variant (cf. Example 20.11(c)(aa)).
- oligosaccharide fractions from the RP-C18 step of ⁇ -glycosidase-treated sample A, EPO GT-l-A and sample K were neutralized and subjected to desalting using Hypercarb cartridges as described before.
- the isolated oligosaccharides were subjected to HPAEC-PAD mapping before (see Figures 17) and after mild acid treatment under conditions which enabled quantitative removal of sialic acids from glycans (see Figures 18).
- the HPAEC-PAD profile for the native material obtained from the HES-modified sample A showed only neglectable signals for oligosaccharides whereas EPO GT- 1-A-derived oligosaccharides exhibited the same glycan profile as the one shown in Fig. 13 (sample named EPO-GT-1 after mild periodate treatment).
- the elution profile of oligosaccharides obtained from the control EPO sample (K) yielded the expected pattern (compare profile in Figure 10).
- the native oligo- saccharide profile of the international BRP-EPO standard is included for comparison and as reference standard.
- EPO samples were digested with N-glycosidase and the EPO protein was adsorbed onto RP-C18 cartridges whereas oligosaccharide material was washed off as described above.
- oligosaccharide material was washed off as described above.
- glucose and hydroxyethy- lated glucose derivatives were detected only in the EPO protein which was sub- jected to HES-modification at cysteine residues and in oligosaccharide fractions of EPO sample A2.
- the EPO-bioassay in the normocythaemic mouse system indicates was performed according to the procedures described in the European Pharmacopeia; the laboratory that carried out the EPO assay was using the International BRP EPO reference standard preparation.
- the HES-modified EPO A2 preparation a mean value for the specific activity of 294,600 units per mg EPO of protein was determined indicating an approximately 3 -fold higher specific activity when compared to the International BRP EPO reference standard preparation that was included in the samples sent for activity assays.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Materials Engineering (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Dermatology (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Peptides Or Proteins (AREA)
- Medicinal Preparation (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
Claims
Priority Applications (61)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003253399A AU2003253399B2 (en) | 2002-09-11 | 2003-08-08 | Hasylated polypeptides, especially hasylated erythropoietin |
MXPA05002594A MXPA05002594A (en) | 2002-09-11 | 2003-08-08 | Hasylated polypeptides, especially hasylated erythropoietin. |
IL16650603A IL166506A0 (en) | 2002-09-11 | 2003-08-08 | Hasylated polypeptides especially hasylated erythropoietin |
JP2004535075A JP2006516534A (en) | 2002-09-11 | 2003-08-08 | HAS polypeptide, in particular HAS erythropoietin |
BR0314106-3A BR0314106A (en) | 2002-09-11 | 2003-08-08 | Hashed polypeptides, especially hashed erythropoietin |
CA002495242A CA2495242A1 (en) | 2002-09-11 | 2003-08-08 | Hasylated polypeptides, especially hasylated erythropoietin |
ARP030103141A AR041097A1 (en) | 2002-09-11 | 2003-08-29 | DERIVATIVES OF POLYPEPTIDES WITH HYDROXYLALQUILALMIDON ESPECIALLY DERIVED FROM ERYTHROPOYETIN WITH HYDROXYLALQUILALMIDON |
TW092124954A TW200418875A (en) | 2002-09-11 | 2003-09-10 | HASylated polypeptides, especially HASylated erythropoietin |
PT03020423T PT1398322E (en) | 2002-09-11 | 2003-09-11 | HASPOLED POLYPEPTIDES, ESPECIALLY HASPED ERYTHROPOIETIN |
EP10011835A EP2316850A3 (en) | 2002-09-11 | 2003-09-11 | HASylated polypeptides, especially HASylated erythropoietin |
EP03020423A EP1398322B1 (en) | 2002-09-11 | 2003-09-11 | HASylated polypeptides, especially HASylated erythropoietin |
DE60304640T DE60304640T2 (en) | 2002-09-11 | 2003-09-11 | HASylated polypeptides, especially HASylated erythropoietin |
ES03020423T ES2213505T3 (en) | 2002-09-11 | 2003-09-11 | HAIRED POLYPEPTIDES, ESPECIALLY HAIRED ERYTHROPOYETIN. |
DE0001398322T DE03020423T1 (en) | 2002-09-11 | 2003-09-11 | HASylated polypeptides, especially HASylated erythropoietin |
AT03020423T ATE323723T1 (en) | 2002-09-11 | 2003-09-11 | HASYLATED POLYPEPTIDES, ESPECIALLY HASYLATED ERYTHROPOIETIN |
EP06007266.7A EP1681303B1 (en) | 2002-09-11 | 2003-09-11 | HASylated polypeptides, especially HASylated erythropoietin |
DK03020423T DK1398322T3 (en) | 2002-09-11 | 2003-09-11 | HASylated polypeptides, especially HASylated erythropoietin |
TW093123647A TW200519128A (en) | 2003-08-08 | 2004-08-06 | Conjugates of hydroxyalkyl starch and a protein |
TW093123649A TWI348470B (en) | 2003-08-08 | 2004-08-06 | Hydroxyalkyl starch derivatives |
PCT/EP2004/008818 WO2005014050A2 (en) | 2003-08-08 | 2004-08-06 | Conjugates of hydroxyalkyl starch and g-csf |
SG200806055-0A SG145746A1 (en) | 2003-08-08 | 2004-08-06 | Conjugates of hydroxyalkyl starch and g-csf |
JP2006522324A JP2007501870A (en) | 2003-08-08 | 2004-08-06 | Complex of hydroxyalkyl starch and G-CSF |
BRPI0413450-8A BRPI0413450A (en) | 2003-08-08 | 2004-08-06 | hydroxyalkyl starch and g-csf conjugates |
BRPI0412671-8A BRPI0412671A (en) | 2003-08-08 | 2004-08-06 | conjugates of a polymer and a protein linked by an oxime linking group |
MXPA06001359A MXPA06001359A (en) | 2003-08-08 | 2004-08-06 | Conjugates of a polymer and a protein linked by an oxime linking group. |
PL04763853T PL1660134T3 (en) | 2003-08-08 | 2004-08-06 | Conjugates of hydroxyalkyl starch and g-csf |
US10/567,266 US20080274948A1 (en) | 2003-08-08 | 2004-08-06 | Conjugates of Hydroxyalkyl Starch and G-Csf |
TW093123553A TWI357337B (en) | 2003-08-08 | 2004-08-06 | Conjugates of hydroxyalkyl starch and g-csf |
AT04763853T ATE493150T1 (en) | 2003-08-08 | 2004-08-06 | CONJUGATES OF HYDROXYALKYL STARCH AND G-CSF |
SI200431617T SI1660134T1 (en) | 2003-08-08 | 2004-08-06 | Conjugates of hydroxyalkyl starch and g-csf |
DE602004030805T DE602004030805D1 (en) | 2003-08-08 | 2004-08-06 | CONJUGATES OF HYDROXYALKYL STARCH AND G-CSF |
PCT/EP2004/008821 WO2005014655A2 (en) | 2003-08-08 | 2004-08-06 | Conjugates of hydroxyalkyl starch and a protein |
CA002534412A CA2534412A1 (en) | 2003-08-08 | 2004-08-06 | Conjugates of a polymer and a protein linked by an oxime linking group |
CN2004800226500A CN1832762B (en) | 2003-08-08 | 2004-08-06 | Conjugates of hydroxyalkyl starch and g-csf |
RU2006106926/15A RU2370281C2 (en) | 2003-08-08 | 2004-08-06 | Hydroxyalkyl starch and g-csf conjugates |
TW093123642A TWI356065B (en) | 2003-08-08 | 2004-08-06 | Method of producing hydroxyalkyl starch derivative |
KR1020067002747A KR101154343B1 (en) | 2003-08-08 | 2004-08-06 | Conjugates of hydroxyalkyl starch and g-csf |
DK04763853.1T DK1660134T3 (en) | 2003-08-08 | 2004-08-06 | Hydroxyalkyl starch conjugates and G-CSF |
EP04763853A EP1660134B1 (en) | 2003-08-08 | 2004-08-06 | Conjugates of hydroxyalkyl starch and g-csf |
US10/567,265 US20080206182A1 (en) | 2003-08-08 | 2004-08-06 | Conjugates of a Polymer and a Protein Linked by an Oxime Group |
MXPA06001358A MXPA06001358A (en) | 2003-08-08 | 2004-08-06 | Conjugates of hydroxyalkyl starch and g-csf. |
EP04763855A EP1653991A2 (en) | 2003-08-08 | 2004-08-06 | Conjugates of a polymer and a protein linked by an oxime linking group |
PCT/EP2004/008820 WO2005014024A2 (en) | 2003-08-08 | 2004-08-06 | Conjugates of a polymer and a protein linked by an oxime linking group |
AU2004262921A AU2004262921B2 (en) | 2003-08-08 | 2004-08-06 | Conjugates of hydroxyalkyl starch and G-CSF |
CA002534418A CA2534418A1 (en) | 2003-08-08 | 2004-08-06 | Conjugates of hydroxyalkyl starch and g-csf |
ARP040102852A AR045236A1 (en) | 2003-08-08 | 2004-08-09 | CONJUGATES OF HYDROXIALQUIL ALMIDON AND G-CSF |
ARP040102850A AR045234A1 (en) | 2002-09-11 | 2004-08-09 | METHOD TO PRODUCE DERIVATIVES OF THE HYDROXIALQUIL ALMIDON AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM. |
ARP040102853A AR045450A1 (en) | 2003-08-08 | 2004-08-09 | CONJUGATES OF ALMIDON DE HIDROXIALQUILO AND A PROTEIN |
ARP040102851A AR045235A1 (en) | 2002-09-11 | 2004-08-09 | METHOD TO PRODUCE DERIVATIVES OF THE HYDROXIALQUIL ALMIDON AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM. |
HK04106171A HK1063475A1 (en) | 2002-09-11 | 2004-08-18 | Hasylated polypeptides, especially hasylated erythropoietin |
IL166506A IL166506A (en) | 2002-09-11 | 2005-01-26 | Hasylated polypeptides, especially hasylated erythropoietin |
US11/078,582 US8618266B2 (en) | 2002-09-11 | 2005-03-11 | Hasylated polypeptides |
NO20051419A NO20051419L (en) | 2002-09-11 | 2005-03-17 | Hasylated polypeptides, especially hasylated erythropoietin |
IL173187A IL173187A (en) | 2003-08-08 | 2006-01-17 | Method for preparing a conjugate comprising a granulocyte colony stimulating factor protein and a hydroxyalkyl starch polymer derivative and various aspects related thereto |
NO20061121A NO20061121L (en) | 2003-08-08 | 2006-03-08 | Hydroxyalkyl starch conjugates and G-CSF |
HK06110272.2A HK1089683A1 (en) | 2003-08-08 | 2006-09-15 | Conjugates of hydroxyalkyl starch and g-csf |
IL200150A IL200150A0 (en) | 2002-09-11 | 2009-07-30 | Hydroxyalkylstrach (has)-polypeptide-conjugate(has-polypeptide), a method for its production and use thereof in the manufacture of medicaments for therating anemic disorders |
AU2011200158A AU2011200158B2 (en) | 2002-09-11 | 2011-01-14 | Hasylated polypeptides, especially hasylated erythropoietin |
AU2011200219A AU2011200219B2 (en) | 2002-09-11 | 2011-01-14 | Hasylated polypeptides, especially hasylated erythropoietin |
HR20110056T HRP20110056T1 (en) | 2003-08-08 | 2011-01-24 | Conjugates of hydroxyalkyl starch and g-csf |
JP2012130094A JP2012211329A (en) | 2003-08-08 | 2012-06-07 | Conjugate of hydroxyalkyl starch and g-csf |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US40978102P | 2002-09-11 | 2002-09-11 | |
EP02020425A EP1400533A1 (en) | 2002-09-11 | 2002-09-11 | HASylated polypeptides, especially HASylated erythropoietin |
EP02020425.1 | 2002-09-11 | ||
US60/409,781 | 2002-09-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/078,582 Continuation-In-Part US8618266B2 (en) | 2002-09-11 | 2005-03-11 | Hasylated polypeptides |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004024761A1 true WO2004024761A1 (en) | 2004-03-25 |
Family
ID=31995520
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2003/008858 WO2004024761A1 (en) | 2002-09-11 | 2003-08-08 | Hasylated polypeptides, especially hasylated erythropoietin |
PCT/EP2003/008829 WO2004024776A1 (en) | 2002-09-11 | 2003-08-08 | Method of producing hydroxyalkyl starch derivatives |
PCT/EP2003/008859 WO2004024777A1 (en) | 2002-09-11 | 2003-08-08 | Hydroxyalkyl starch derivatives |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2003/008829 WO2004024776A1 (en) | 2002-09-11 | 2003-08-08 | Method of producing hydroxyalkyl starch derivatives |
PCT/EP2003/008859 WO2004024777A1 (en) | 2002-09-11 | 2003-08-08 | Hydroxyalkyl starch derivatives |
Country Status (25)
Country | Link |
---|---|
US (5) | US8618266B2 (en) |
EP (8) | EP2316850A3 (en) |
JP (4) | JP2006516534A (en) |
KR (3) | KR101045422B1 (en) |
CN (2) | CN100348618C (en) |
AR (3) | AR041097A1 (en) |
AT (3) | ATE323723T1 (en) |
AU (6) | AU2003253399B2 (en) |
BR (3) | BR0314106A (en) |
CA (2) | CA2495242A1 (en) |
CY (1) | CY1109813T1 (en) |
DE (7) | DE60304640T2 (en) |
DK (3) | DK1398328T3 (en) |
ES (4) | ES2213506T3 (en) |
HK (4) | HK1063477A1 (en) |
IL (5) | IL166506A0 (en) |
MX (4) | MXPA05002593A (en) |
NO (2) | NO20051427L (en) |
PL (3) | PL375037A1 (en) |
PT (3) | PT1398322E (en) |
RU (3) | RU2329274C2 (en) |
SI (2) | SI1398327T1 (en) |
TW (1) | TW200418875A (en) |
WO (3) | WO2004024761A1 (en) |
ZA (1) | ZA200600651B (en) |
Cited By (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005014655A2 (en) * | 2003-08-08 | 2005-02-17 | Fresenius Kabi Deutschland Gmbh | Conjugates of hydroxyalkyl starch and a protein |
WO2005014050A3 (en) * | 2003-08-08 | 2005-04-14 | Fresenius Kabi De Gmbh | Conjugates of hydroxyalkyl starch and g-csf |
WO2005092928A1 (en) * | 2004-03-11 | 2005-10-06 | Fresenius Kabi Deutschland Gmbh | Conjugates of hydroxyalkyl starch and a protein, prepared by reductive amination |
WO2005092391A3 (en) * | 2004-03-11 | 2006-07-20 | Fresenius Kabi De Gmbh | Conjugates of hydroxyalkyl starch and a protein |
WO2009094551A1 (en) | 2008-01-25 | 2009-07-30 | Amgen Inc. | Ferroportin antibodies and methods of use |
US7589063B2 (en) | 2004-12-14 | 2009-09-15 | Aplagen Gmbh | Molecules which promote hematopoiesis |
EP2166085A1 (en) | 2008-07-16 | 2010-03-24 | Suomen Punainen Risti Veripalvelu | Divalent modified cells |
WO2010033240A2 (en) * | 2008-09-19 | 2010-03-25 | Nektar Therapeutics | Carbohydrate-based drug delivery polymers and conjugates thereof |
WO2010056981A2 (en) | 2008-11-13 | 2010-05-20 | Massachusetts General Hospital | Methods and compositions for regulating iron homeostasis by modulation bmp-6 |
WO2010136242A1 (en) * | 2009-03-31 | 2010-12-02 | B. Braun Melsungen Ag | Bonding products of aminated polysaccharides |
EP2275142A2 (en) | 2006-06-30 | 2011-01-19 | Andre Koltermann | Conjugates for immunotherapy of cancer |
WO2011050333A1 (en) | 2009-10-23 | 2011-04-28 | Amgen Inc. | Vial adapter and system |
WO2011098095A1 (en) | 2010-02-09 | 2011-08-18 | Aplagen Gmbh | Peptides binding the tpo receptor |
WO2011156373A1 (en) | 2010-06-07 | 2011-12-15 | Amgen Inc. | Drug delivery device |
WO2012135315A1 (en) | 2011-03-31 | 2012-10-04 | Amgen Inc. | Vial adapter and system |
US8383114B2 (en) | 2007-09-27 | 2013-02-26 | Amgen Inc. | Pharmaceutical formulations |
WO2013055873A1 (en) | 2011-10-14 | 2013-04-18 | Amgen Inc. | Injector and method of assembly |
EP2620448A1 (en) | 2008-05-01 | 2013-07-31 | Amgen Inc. | Anti-hepcidin antibodies and methods of use |
WO2014081780A1 (en) | 2012-11-21 | 2014-05-30 | Amgen Inc. | Drug delivery device |
WO2014143770A1 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | Body contour adaptable autoinjector device |
WO2014144096A1 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | Drug cassette, autoinjector, and autoinjector system |
WO2014147174A1 (en) * | 2013-03-20 | 2014-09-25 | Fresenius Kabi Deutschland Gmbh | Process for the preparation of thiol functionalized hydroxyalkyl starch derivatives |
WO2014149357A1 (en) | 2013-03-22 | 2014-09-25 | Amgen Inc. | Injector and method of assembly |
WO2014147173A1 (en) * | 2013-03-20 | 2014-09-25 | Fresenius Kabi Deutschland Gmbh | Hydroxyalkyl starch derivatives as reactants for coupling to thiol groups |
WO2014147175A1 (en) * | 2013-03-20 | 2014-09-25 | Fresenius Kabi Deutschland Gmbh | Hydroxyalkyl starch derivatives as reactants for coupling to thiol groups |
US8916518B2 (en) | 2002-03-06 | 2014-12-23 | Fresenius Kabi Deutschland Gmbh | Coupling proteins to a modified polysaccharide |
US9011920B2 (en) | 2008-12-06 | 2015-04-21 | B. Braun Melsungen Ag | Transport-mediating colloidal pharmaceutical compounds |
WO2015061389A1 (en) | 2013-10-24 | 2015-04-30 | Amgen Inc. | Drug delivery system with temperature-sensitive control |
WO2015061386A1 (en) | 2013-10-24 | 2015-04-30 | Amgen Inc. | Injector and method of assembly |
WO2015119906A1 (en) | 2014-02-05 | 2015-08-13 | Amgen Inc. | Drug delivery system with electromagnetic field generator |
WO2015132724A1 (en) | 2014-03-05 | 2015-09-11 | Pfizer Inc. | Improved muteins of clotting factor viii |
WO2015171777A1 (en) | 2014-05-07 | 2015-11-12 | Amgen Inc. | Autoinjector with shock reducing elements |
WO2015187799A1 (en) | 2014-06-03 | 2015-12-10 | Amgen Inc. | Systems and methods for remotely processing data collected by a drug delivery device |
WO2016049036A1 (en) | 2014-09-22 | 2016-03-31 | Intrinsic Lifesciences Llc | Humanized anti-hepcidin antibodies and uses thereof |
WO2016061220A2 (en) | 2014-10-14 | 2016-04-21 | Amgen Inc. | Drug injection device with visual and audio indicators |
WO2016100781A1 (en) | 2014-12-19 | 2016-06-23 | Amgen Inc. | Drug delivery device with proximity sensor |
WO2016100055A1 (en) | 2014-12-19 | 2016-06-23 | Amgen Inc. | Drug delivery device with live button or user interface field |
WO2017039786A1 (en) | 2015-09-02 | 2017-03-09 | Amgen Inc. | Syringe assembly adapter for a syringe |
US9657098B2 (en) | 2013-03-15 | 2017-05-23 | Intrinsic Lifesciences, Llc | Anti-hepcidin antibodies and uses thereof |
WO2017100501A1 (en) | 2015-12-09 | 2017-06-15 | Amgen Inc. | Auto-injector with signaling cap |
WO2017120178A1 (en) | 2016-01-06 | 2017-07-13 | Amgen Inc. | Auto-injector with signaling electronics |
WO2017160799A1 (en) | 2016-03-15 | 2017-09-21 | Amgen Inc. | Reducing probability of glass breakage in drug delivery devices |
WO2017189089A1 (en) | 2016-04-29 | 2017-11-02 | Amgen Inc. | Drug delivery device with messaging label |
WO2017192287A1 (en) | 2016-05-02 | 2017-11-09 | Amgen Inc. | Syringe adapter and guide for filling an on-body injector |
WO2017197222A1 (en) | 2016-05-13 | 2017-11-16 | Amgen Inc. | Vial sleeve assembly |
WO2017200989A1 (en) | 2016-05-16 | 2017-11-23 | Amgen Inc. | Data encryption in medical devices with limited computational capability |
WO2017202933A1 (en) | 2016-05-24 | 2017-11-30 | Syntab Therapeutics Gmbh | Synthetic compound |
WO2017209899A1 (en) | 2016-06-03 | 2017-12-07 | Amgen Inc. | Impact testing apparatuses and methods for drug delivery devices |
WO2018004842A1 (en) | 2016-07-01 | 2018-01-04 | Amgen Inc. | Drug delivery device having minimized risk of component fracture upon impact events |
WO2018034784A1 (en) | 2016-08-17 | 2018-02-22 | Amgen Inc. | Drug delivery device with placement detection |
WO2018081234A1 (en) | 2016-10-25 | 2018-05-03 | Amgen Inc. | On-body injector |
WO2018136398A1 (en) | 2017-01-17 | 2018-07-26 | Amgen Inc. | Injection devices and related methods of use and assembly |
WO2018151890A1 (en) | 2017-02-17 | 2018-08-23 | Amgen Inc. | Drug delivery device with sterile fluid flowpath and related method of assembly |
WO2018152073A1 (en) | 2017-02-17 | 2018-08-23 | Amgen Inc. | Insertion mechanism for drug delivery device |
WO2018164829A1 (en) | 2017-03-07 | 2018-09-13 | Amgen Inc. | Needle insertion by overpressure |
WO2018165143A1 (en) | 2017-03-06 | 2018-09-13 | Amgen Inc. | Drug delivery device with activation prevention feature |
WO2018165499A1 (en) | 2017-03-09 | 2018-09-13 | Amgen Inc. | Insertion mechanism for drug delivery device |
WO2018172219A1 (en) | 2017-03-20 | 2018-09-27 | F. Hoffmann-La Roche Ag | Method for in vitro glycoengineering of an erythropoiesis stimulating protein |
EP3381445A2 (en) | 2007-11-15 | 2018-10-03 | Amgen Inc. | Aqueous formulation of antibody stablised by antioxidants for parenteral administration |
WO2018183039A1 (en) | 2017-03-28 | 2018-10-04 | Amgen Inc. | Plunger rod and syringe assembly system and method |
WO2018226515A1 (en) | 2017-06-08 | 2018-12-13 | Amgen Inc. | Syringe assembly for a drug delivery device and method of assembly |
WO2018226565A1 (en) | 2017-06-08 | 2018-12-13 | Amgen Inc. | Torque driven drug delivery device |
WO2018236619A1 (en) | 2017-06-22 | 2018-12-27 | Amgen Inc. | Device activation impact/shock reduction |
WO2018237225A1 (en) | 2017-06-23 | 2018-12-27 | Amgen Inc. | Electronic drug delivery device comprising a cap activated by a switch assembly |
WO2019014014A1 (en) | 2017-07-14 | 2019-01-17 | Amgen Inc. | Needle insertion-retraction system having dual torsion spring system |
WO2019018169A1 (en) | 2017-07-21 | 2019-01-24 | Amgen Inc. | Gas permeable sealing member for drug container and methods of assembly |
WO2019022950A1 (en) | 2017-07-25 | 2019-01-31 | Amgen Inc. | Drug delivery device with container access system and related method of assembly |
WO2019022951A1 (en) | 2017-07-25 | 2019-01-31 | Amgen Inc. | Drug delivery device with gear module and related method of assembly |
WO2019032482A2 (en) | 2017-08-09 | 2019-02-14 | Amgen Inc. | Hydraulic-pneumatic pressurized chamber drug delivery system |
WO2019036181A1 (en) | 2017-08-18 | 2019-02-21 | Amgen Inc. | Wearable injector with sterile adhesive patch |
WO2019040548A1 (en) | 2017-08-22 | 2019-02-28 | Amgen Inc. | Needle insertion mechanism for drug delivery device |
WO2019070552A1 (en) | 2017-10-06 | 2019-04-11 | Amgen Inc. | Drug delivery device with interlock assembly and related method of assembly |
WO2019070472A1 (en) | 2017-10-04 | 2019-04-11 | Amgen Inc. | Flow adapter for drug delivery device |
WO2019074579A1 (en) | 2017-10-09 | 2019-04-18 | Amgen Inc. | Drug delivery device with drive assembly and related method of assembly |
WO2019089178A1 (en) | 2017-11-06 | 2019-05-09 | Amgen Inc. | Drug delivery device with placement and flow sensing |
WO2019090086A1 (en) | 2017-11-03 | 2019-05-09 | Amgen Inc. | Systems and approaches for sterilizing a drug delivery device |
WO2019090303A1 (en) | 2017-11-06 | 2019-05-09 | Amgen Inc. | Fill-finish assemblies and related methods |
WO2019094138A1 (en) | 2017-11-10 | 2019-05-16 | Amgen Inc. | Plungers for drug delivery devices |
WO2019099324A1 (en) | 2017-11-16 | 2019-05-23 | Amgen Inc. | Door latch mechanism for drug delivery device |
WO2019099322A1 (en) | 2017-11-16 | 2019-05-23 | Amgen Inc. | Autoinjector with stall and end point detection |
EP3498323A2 (en) | 2011-04-20 | 2019-06-19 | Amgen Inc. | Autoinjector apparatus |
EP3556411A1 (en) | 2015-02-17 | 2019-10-23 | Amgen Inc. | Drug delivery device with vacuum assisted securement and/or feedback |
WO2019212377A1 (en) * | 2018-05-04 | 2019-11-07 | Farber Boris Slavinovich | Polymyxin-based pharmaceutical composition for treating infectious diseases |
WO2019231582A1 (en) | 2018-05-30 | 2019-12-05 | Amgen Inc. | Thermal spring release mechanism for a drug delivery device |
WO2019231618A1 (en) | 2018-06-01 | 2019-12-05 | Amgen Inc. | Modular fluid path assemblies for drug delivery devices |
EP3593839A1 (en) | 2013-03-15 | 2020-01-15 | Amgen Inc. | Drug cassette |
WO2020023336A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Hybrid drug delivery devices with grip portion |
WO2020023220A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Hybrid drug delivery devices with tacky skin attachment portion and related method of preparation |
WO2020023444A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Delivery devices for administering drugs |
WO2020023451A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Delivery devices for administering drugs |
WO2020028009A1 (en) | 2018-07-31 | 2020-02-06 | Amgen Inc. | Fluid path assembly for a drug delivery device |
WO2020068623A1 (en) | 2018-09-24 | 2020-04-02 | Amgen Inc. | Interventional dosing systems and methods |
WO2020068476A1 (en) | 2018-09-28 | 2020-04-02 | Amgen Inc. | Muscle wire escapement activation assembly for a drug delivery device |
WO2020072577A1 (en) | 2018-10-02 | 2020-04-09 | Amgen Inc. | Injection systems for drug delivery with internal force transmission |
WO2020072846A1 (en) | 2018-10-05 | 2020-04-09 | Amgen Inc. | Drug delivery device having dose indicator |
WO2020081479A1 (en) | 2018-10-15 | 2020-04-23 | Amgen Inc. | Drug delivery device having damping mechanism |
WO2020081480A1 (en) | 2018-10-15 | 2020-04-23 | Amgen Inc. | Platform assembly process for drug delivery device |
WO2020092056A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial needle retraction |
WO2020091956A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial drug delivery member retraction |
WO2020091981A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial drug delivery member retraction |
WO2020219482A1 (en) | 2019-04-24 | 2020-10-29 | Amgen Inc. | Syringe sterilization verification assemblies and methods |
WO2021041067A2 (en) | 2019-08-23 | 2021-03-04 | Amgen Inc. | Drug delivery device with configurable needle shield engagement components and related methods |
EP3981450A1 (en) | 2015-02-27 | 2022-04-13 | Amgen, Inc | Drug delivery device having a needle guard mechanism with a tunable threshold of resistance to needle guard movement |
WO2022246055A1 (en) | 2021-05-21 | 2022-11-24 | Amgen Inc. | Method of optimizing a filling recipe for a drug container |
WO2024094457A1 (en) | 2022-11-02 | 2024-05-10 | F. Hoffmann-La Roche Ag | Method for producing glycoprotein compositions |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10112825A1 (en) * | 2001-03-16 | 2002-10-02 | Fresenius Kabi De Gmbh | HESylation of active ingredients in aqueous solution |
DE10209822A1 (en) | 2002-03-06 | 2003-09-25 | Biotechnologie Ges Mittelhesse | Coupling of low molecular weight substances to a modified polysaccharide |
DE10242076A1 (en) * | 2002-09-11 | 2004-03-25 | Fresenius Kabi Deutschland Gmbh | New covalently bonded conjugates of hydroxyalkyl starch with allergens, useful as modified allergens with depot effect for use in specific immunotherapy for combating allergies, e.g. hay fever |
DE02020425T1 (en) * | 2002-09-11 | 2004-07-15 | Fresenius Kabi Deutschland Gmbh | Hasylated polypeptides, especially hasylated erythropoietin |
CN100348618C (en) | 2002-09-11 | 2007-11-14 | 弗雷泽纽斯卡比德国有限公司 | Process for producing hydroxyalkyl starch derivatives |
WO2004032971A1 (en) | 2002-10-08 | 2004-04-22 | Fresenius Kabi Deutschland Gmbh | Pharmaceutically active oligosaccharide conjugates |
DE10256558A1 (en) * | 2002-12-04 | 2004-09-16 | Supramol Parenteral Colloids Gmbh | Esters of polysaccharide aldonic acids, process for their preparation and use for coupling to active pharmaceutical ingredients |
US20080206182A1 (en) * | 2003-08-08 | 2008-08-28 | Fresenius Kabi Deutschland Gmbh | Conjugates of a Polymer and a Protein Linked by an Oxime Group |
SG145746A1 (en) * | 2003-08-08 | 2008-09-29 | Fresenius Kabi De Gmbh | Conjugates of hydroxyalkyl starch and g-csf |
US8754031B2 (en) | 2004-03-08 | 2014-06-17 | Oncolix, Inc. | Use of prolactin receptor antagonists in combination with an agent that inactivates the HER2/neu signaling pathway |
WO2005092369A2 (en) * | 2004-03-11 | 2005-10-06 | Fresenius Kabi Deutschland Gmbh | Conjugates of hydroxyethyl starch and erythropoietin |
JP2008532966A (en) * | 2005-03-11 | 2008-08-21 | フレゼニウス・カビ・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Production of bioactive glycoproteins from inert starting materials |
WO2006094826A2 (en) * | 2005-03-11 | 2006-09-14 | Fresenius Kabi Deutschland Gmbh | Method for coupling enzymatically activated glycoconjugates to a hydroxyalkyl starch |
EP1762250A1 (en) * | 2005-09-12 | 2007-03-14 | Fresenius Kabi Deutschland GmbH | Conjugates of hydroxyalkyl starch and an active substance, prepared by chemical ligation via thiazolidine |
EP2041167B1 (en) | 2006-07-25 | 2010-05-12 | Lipoxen Technologies Limited | Derivatisation of granulocyte colony-stimulating factor |
EP2120998B1 (en) | 2006-11-28 | 2013-08-07 | HanAll Biopharma Co., Ltd. | Modified erythropoietin polypeptides and uses thereof for treatment |
ES2655639T3 (en) * | 2006-12-15 | 2018-02-21 | Baxalta GmbH | Conjugate of factor VIIa - (poly) sialic acid that has a prolonged half-life in vivo |
JP5999867B2 (en) | 2007-01-18 | 2016-09-28 | ジェンザイム・コーポレーション | Oligosaccharides containing aminooxy groups and conjugates thereof |
EP2070951A1 (en) * | 2007-12-14 | 2009-06-17 | Fresenius Kabi Deutschland GmbH | Method for producing a hydroxyalkyl starch derivatives with two linkers |
EP2070950A1 (en) | 2007-12-14 | 2009-06-17 | Fresenius Kabi Deutschland GmbH | Hydroxyalkyl starch derivatives and process for their preparation |
CN104888263B (en) | 2008-01-14 | 2018-11-30 | 北京环球利康科技有限公司 | Biocompatible hemostatic prevents adhesion, promoting healing, the closed modified starch material of surgery |
EP2310423A1 (en) * | 2008-04-28 | 2011-04-20 | SurModics, Inc. | Poly- (1 4)glucopyranose-based matrices with hydrazide crosslinking |
PL2318029T3 (en) | 2008-07-23 | 2018-03-30 | Elanco Us Inc. | Modified bovine g-csf polypeptides and their uses |
US8648046B2 (en) | 2009-02-26 | 2014-02-11 | Oncolix, Inc. | Compositions and methods for visualizing and eliminating cancer stem cells |
US8754035B2 (en) | 2009-02-26 | 2014-06-17 | Oncolix, Inc. | Compositions and methods for visualizing and eliminating cancer stem cells |
KR101832937B1 (en) | 2009-07-27 | 2018-02-28 | 박스알타 인코퍼레이티드 | Blood coagulation protein conjugates |
US8809501B2 (en) | 2009-07-27 | 2014-08-19 | Baxter International Inc. | Nucleophilic catalysts for oxime linkage |
CA2769244A1 (en) * | 2009-07-27 | 2011-02-03 | Lipoxen Technologies Limited | Glycopolysialylation of non-blood coagulation proteins |
EP3093029A1 (en) | 2009-07-27 | 2016-11-16 | Baxalta GmbH | Blood coagulation protein conjugates |
US8642737B2 (en) | 2010-07-26 | 2014-02-04 | Baxter International Inc. | Nucleophilic catalysts for oxime linkage |
WO2011087808A1 (en) | 2009-12-21 | 2011-07-21 | Ambrx, Inc. | Modified bovine somatotropin polypeptides and their uses |
CN104017063A (en) | 2009-12-21 | 2014-09-03 | Ambrx公司 | Modified porcine somatotropin polypeptides and their uses |
US20140073779A9 (en) * | 2010-07-09 | 2014-03-13 | Fresenius Kabi Deutschland Gmbh | Conjugates comprising hydroxyalkyl starch and a cytotoxic agent and process for their preparation |
EP2591009A1 (en) | 2010-07-09 | 2013-05-15 | Fresenius Kabi Deutschland GmbH | Nitric oxide delivering hydroxyalkyl starch derivatives |
WO2012004007A1 (en) * | 2010-07-09 | 2012-01-12 | Fresenius Kabi Deutschland Gmbh | Conjugates comprising hydroxyalkyl starch and a cytotoxic agent and process for their preparation |
WO2012004009A1 (en) * | 2010-07-09 | 2012-01-12 | Fresenius Kabi Deutschland Gmbh | Conjugates comprising hydroxyalkyl starch and a cytotoxic agent and process for their preparation |
HUE043790T2 (en) | 2010-07-30 | 2019-09-30 | Baxalta GmbH | Nucleophilic catalysts for oxime linkage |
TWI480288B (en) | 2010-09-23 | 2015-04-11 | Lilly Co Eli | Formulations for bovine granulocyte colony stimulating factor and variants thereof |
CA2822591C (en) | 2010-12-22 | 2020-12-29 | Baxter International Inc. | Materials and methods for conjugating a water soluble fatty acid derivative to a protein |
WO2012166622A1 (en) | 2011-05-27 | 2012-12-06 | Baxter International Inc. | Therapeutic proteins with increased half-life and methods of preparing same |
WO2012170396A1 (en) * | 2011-06-07 | 2012-12-13 | Philadelphia Health & Education Corporation | Spla2 monitoring strip |
EP2741780A1 (en) | 2011-08-10 | 2014-06-18 | Ludwig-Maximilians-Universität München | Method for the controlled intracellular delivery of nucleic acids |
WO2013113503A1 (en) | 2012-01-31 | 2013-08-08 | Fresenius Kabi Deutschland Gmbh | Conjugates of hydroxyalkyl starch and an oligonucleotide |
AU2013204754C1 (en) | 2012-05-16 | 2018-10-11 | Takeda Pharmaceutical Company Limited | Nucleophilic Catalysts for Oxime Linkage |
JP6219308B2 (en) * | 2012-11-30 | 2017-10-25 | 株式会社糖鎖工学研究所 | Glycosylation linker, compound containing glycosylation linker and physiologically active substance or salt thereof, and production method thereof |
WO2015046183A1 (en) | 2013-09-24 | 2015-04-02 | 味の素株式会社 | Glycoamino acid and use thereof |
CN107913646A (en) * | 2014-02-10 | 2018-04-17 | 霍尼韦尔国际公司 | Reactor for liquid-phase fluorination designs |
CN104072608A (en) * | 2014-06-23 | 2014-10-01 | 山东齐都药业有限公司 | Bovine serum albumin conjugate modified through carboxyl-containing hydroxyethyl starch derivative and preparation method thereof |
AU2017267047B2 (en) | 2016-05-20 | 2023-11-09 | Octapharma Ag | Glycosylated VWF fusion proteins with improved pharmacokinetics |
CN108503718B (en) * | 2018-02-08 | 2020-03-20 | 华中科技大学 | Hydroxyalkyl starch conjugate and preparation method and application thereof |
CN108403641B (en) * | 2018-02-08 | 2020-03-20 | 华中科技大学 | Drug-loaded nano material and preparation method thereof |
CN108219019B (en) * | 2018-02-08 | 2020-03-20 | 华中科技大学 | Sulfhydrylation hydroxyethyl starch, nano material modified by sulfhydrylation hydroxyethyl starch and preparation method |
CN111157736A (en) * | 2018-11-08 | 2020-05-15 | 中国科学院大连化学物理研究所 | Human serum O glycosylation identification method based on chemoenzymatic |
WO2024241086A1 (en) | 2023-05-24 | 2024-11-28 | Ambrx, Inc. | Pegylated bovine interferon lambda and methods of use thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4847325A (en) * | 1988-01-20 | 1989-07-11 | Cetus Corporation | Conjugation of polymer to colony stimulating factor-1 |
US5281698A (en) * | 1991-07-23 | 1994-01-25 | Cetus Oncology Corporation | Preparation of an activated polymer ester for protein conjugation |
WO1994028024A1 (en) * | 1993-06-01 | 1994-12-08 | Enzon, Inc. | Carbohydrate-modified polymer conjugates with erythropoietic activity |
EP0809996A2 (en) * | 1996-05-31 | 1997-12-03 | F. Hoffmann-La Roche Ag | Interferon conjugates |
DE19628705A1 (en) * | 1996-07-08 | 1998-01-15 | Fresenius Ag | New oxygen transport agents, hemoglobin-hydroxyethyl starch conjugates containing them, processes for their preparation and their use as blood substitutes |
Family Cites Families (152)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE279486C (en) | ||||
US3191291A (en) * | 1959-01-21 | 1965-06-29 | Continental Can Co | Art of producing very thin steel and like sheets in wide strips |
NL269801A (en) * | 1960-10-04 | 1964-03-10 | Farbwerke Höchst Ag | PROCESS FOR THE PREPARATION OF WATER-INSOLUBLE DYES |
GB1385403A (en) | 1971-07-14 | 1975-02-26 | Unilever Ltd | Process for preparing oxidised carbohydrates |
GB1419080A (en) | 1972-12-29 | 1975-12-24 | Cheminova As | Chemical compounds having juvenile hormone activity |
US4179337A (en) * | 1973-07-20 | 1979-12-18 | Davis Frank F | Non-immunogenic polypeptides |
US4125492A (en) * | 1974-05-31 | 1978-11-14 | Pedro Cuatrecasas | Affinity chromatography of vibrio cholerae enterotoxin-ganglioside polysaccharide and the biological effects of ganglioside-containing soluble polymers |
US4061736A (en) | 1975-02-02 | 1977-12-06 | Alza Corporation | Pharmaceutically acceptable intramolecularly cross-linked, stromal-free hemoglobin |
US4001401A (en) * | 1975-02-02 | 1977-01-04 | Alza Corporation | Blood substitute and blood plasma expander comprising polyhemoglobin |
US4001200A (en) * | 1975-02-27 | 1977-01-04 | Alza Corporation | Novel polymerized, cross-linked, stromal-free hemoglobin |
US4053590A (en) * | 1975-02-27 | 1977-10-11 | Alza Corporation | Compositions of matter comprising macromolecular hemoglobin |
CA1055932A (en) * | 1975-10-22 | 1979-06-05 | Hematech Inc. | Blood substitute based on hemoglobin |
DE2616086C2 (en) * | 1976-04-13 | 1986-04-03 | Dr. Eduard Fresenius, Chemisch-pharmazeutische Industrie KG, 6380 Bad Homburg | Substance for use in a colloidal blood volume substitute made from hydroxyethyl starch and hemoglobin |
GB1578348A (en) | 1976-08-17 | 1980-11-05 | Pharmacia Ab | Products and a method for the therapeutic suppression of reaginic antibodies responsible for common allergic |
FR2378094A2 (en) | 1977-01-24 | 1978-08-18 | Inst Nat Sante Rech Med | Biological reagent for diagnosis of specific illnesses - having an oxidised gluco-protein antibody on an insoluble support |
EP0019403B1 (en) * | 1979-05-10 | 1985-07-31 | American Hospital Supply Corporation | Hydroxyalkyl-starch drug carrier |
DE3029307A1 (en) * | 1980-08-01 | 1982-03-04 | Dr. Eduard Fresenius, Chemisch-pharmazeutische Industrie KG, 6380 Bad Homburg | Blood substitute with oxygen transport properties - produced by coupling of a polysaccharide e.g. dextran with cell-free haemoglobin |
US4454161A (en) * | 1981-02-07 | 1984-06-12 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Process for the production of branching enzyme, and a method for improving the qualities of food products therewith |
JPS57206622A (en) * | 1981-06-10 | 1982-12-18 | Ajinomoto Co Inc | Blood substitute |
FI82266C (en) | 1982-10-19 | 1991-02-11 | Cetus Corp | Process for Preparation of IL-2 Mutein |
EP0127839B1 (en) | 1983-05-27 | 1992-07-15 | THE TEXAS A&M UNIVERSITY SYSTEM | Method for producing a recombinant baculovirus expression vector |
FR2553099B1 (en) | 1983-10-11 | 1989-09-08 | Fidia Spa | HYALURONIC ACID FRACTIONS HAVING PHARMACEUTICAL ACTIVITY, METHODS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
US4703008A (en) | 1983-12-13 | 1987-10-27 | Kiren-Amgen, Inc. | DNA sequences encoding erythropoietin |
NZ210501A (en) | 1983-12-13 | 1991-08-27 | Kirin Amgen Inc | Erythropoietin produced by procaryotic or eucaryotic expression of an exogenous dna sequence |
US4496689A (en) * | 1983-12-27 | 1985-01-29 | Miles Laboratories, Inc. | Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer |
US4952496A (en) * | 1984-03-30 | 1990-08-28 | Associated Universities, Inc. | Cloning and expression of the gene for bacteriophage T7 RNA polymerase |
IL77081A (en) | 1984-12-04 | 1999-10-28 | Genetics Inst | Dna sequence encoding human erythropoietin process for the preparation thereof and a pharmaceutical composition of human erythropoietin |
DE3501616A1 (en) | 1985-01-17 | 1986-07-17 | Schering AG, 1000 Berlin und 4709 Bergkamen | Process for the preparation of hydroxylamine derivatives |
US4667016A (en) | 1985-06-20 | 1987-05-19 | Kirin-Amgen, Inc. | Erythropoietin purification |
US4766106A (en) * | 1985-06-26 | 1988-08-23 | Cetus Corporation | Solubilization of proteins for pharmaceutical compositions using polymer conjugation |
US5217998A (en) | 1985-07-02 | 1993-06-08 | Biomedical Frontiers, Inc. | Composition for the stabilization of deferoxamine to chelate free ions in physiological fluid |
US4863964A (en) * | 1985-07-02 | 1989-09-05 | Biomedical Frontiers, Inc. | Method for the stabilization of deferoxamine to chelate free ions in physiological fluid |
GB8610551D0 (en) | 1986-04-30 | 1986-06-04 | Hoffmann La Roche | Polypeptide & protein derivatives |
IT1203814B (en) | 1986-06-30 | 1989-02-23 | Fidia Farmaceutici | ESTERS OF ALGINIC ACID |
FR2600894B1 (en) * | 1986-07-02 | 1989-01-13 | Centre Nat Rech Scient | MACROMOLECULAR CONJUGATES OF HEMOGLOBIN, THEIR PREPARATION PROCESS AND THEIR APPLICATIONS |
US5362853A (en) | 1986-12-23 | 1994-11-08 | Kyowa Hakko Kogyo Co., Ltd. | Polypeptide derivatives of human granulocyte colony stimulating factor |
US5214132A (en) * | 1986-12-23 | 1993-05-25 | Kyowa Hakko Kogyo Co., Ltd. | Polypeptide derivatives of human granulocyte colony stimulating factor |
JP2594123B2 (en) * | 1987-09-12 | 1997-03-26 | 株式会社林原生物化学研究所 | Desensitizer |
EP0307827A3 (en) | 1987-09-15 | 1989-12-27 | Kuraray Co., Ltd. | Novel macromolecular complexes, process for producing same and medicinal use of such complexes |
IL84252A (en) | 1987-10-23 | 1994-02-27 | Yissum Res Dev Co | Phospholipase inhibiting compositions |
US4904584A (en) | 1987-12-23 | 1990-02-27 | Genetics Institute, Inc. | Site-specific homogeneous modification of polypeptides |
DK110188D0 (en) | 1988-03-02 | 1988-03-02 | Claus Selch Larsen | HIGH MOLECULAR WEIGHT PRODRUG DERIVATIVES OF ANTI-FLAMMATORY DRUGS |
FR2630329B1 (en) | 1988-04-20 | 1991-07-05 | Merieux Inst | MACROMOLECULAR CONJUGATES OF HEMOGLOBIN, THEIR PREPARATION PROCESS AND THEIR APPLICATIONS |
IT1219942B (en) | 1988-05-13 | 1990-05-24 | Fidia Farmaceutici | POLYSACCHARIDIC ESTERS |
US4900780A (en) | 1988-05-25 | 1990-02-13 | Masonic Medical Research Laboratory | Acellular resuscitative fluid |
US4925677A (en) * | 1988-08-31 | 1990-05-15 | Theratech, Inc. | Biodegradable hydrogel matrices for the controlled release of pharmacologically active agents |
US5420105A (en) * | 1988-09-23 | 1995-05-30 | Gustavson; Linda M. | Polymeric carriers for non-covalent drug conjugation |
US5218092A (en) | 1988-09-29 | 1993-06-08 | Kyowa Hakko Kogyo Co., Ltd. | Modified granulocyte-colony stimulating factor polypeptide with added carbohydrate chains |
DE3836600A1 (en) * | 1988-10-27 | 1990-05-03 | Wolff Walsrode Ag | CARBONIC ESTERES OF POLYSACCHARIDES AND METHOD FOR THE PRODUCTION THEREOF |
EP0401384B1 (en) * | 1988-12-22 | 1996-03-13 | Kirin-Amgen, Inc. | Chemically modified granulocyte colony stimulating factor |
US6261800B1 (en) * | 1989-05-05 | 2001-07-17 | Genentech, Inc. | Luteinizing hormone/choriogonadotropin (LH/CG) receptor |
DE3919729C3 (en) | 1989-06-16 | 1997-06-19 | Fresenius Ag | Hydroxyethyl starch as a plasma expander, process for their preparation and use as a colloidal plasma substitute |
JP2896580B2 (en) * | 1989-08-25 | 1999-05-31 | チッソ株式会社 | Amylose-lysozyme hybrid, activated sugar and its production |
JP2838800B2 (en) * | 1989-09-02 | 1998-12-16 | 株式会社林原生物化学研究所 | Desensitizer |
KR100221066B1 (en) | 1989-10-13 | 1999-10-01 | 스튜어트 엘.왓트 | Erythropoietin analogs and pharmaceutical compositions comprising them |
JP2975632B2 (en) | 1990-03-30 | 1999-11-10 | 生化学工業株式会社 | Glycosaminoglycan-modified protein |
US5169784A (en) | 1990-09-17 | 1992-12-08 | The Texas A & M University System | Baculovirus dual promoter expression vector |
DK130991D0 (en) | 1991-07-04 | 1991-07-04 | Immunodex K S | POLYMER CONJUGATES |
DE4130807A1 (en) * | 1991-09-17 | 1993-03-18 | Wolff Walsrode Ag | METHOD FOR PRODUCING POLYSACCHARIDE CARBONATES |
US6172208B1 (en) * | 1992-07-06 | 2001-01-09 | Genzyme Corporation | Oligonucleotides modified with conjugate groups |
WO1994005332A2 (en) * | 1992-09-01 | 1994-03-17 | Berlex Laboratories, Inc. | Glycolation of glycosylated macromolecules |
GB2270920B (en) * | 1992-09-25 | 1997-04-02 | Univ Keele | Alginate-bioactive agent conjugates |
NZ250375A (en) | 1992-12-09 | 1995-07-26 | Ortho Pharma Corp | Peg hydrazone and peg oxime linkage forming reagents and protein derivatives |
FI935485A (en) * | 1992-12-09 | 1994-06-10 | Ortho Pharma Corp | The PEG-hydrazone and PEG-oxime bonds form reagents and protein derivatives thereof |
CA2110543A1 (en) | 1992-12-09 | 1994-06-10 | David E. Wright | Peg hydrazone and peg oxime linkage forming reagents and protein derivatives thereof |
EP0601417A3 (en) * | 1992-12-11 | 1998-07-01 | Hoechst Aktiengesellschaft | Physiologically compatible and degradable polymer-based carbohydrate receptor blockers, a method for their preparation and their use |
US5581476A (en) | 1993-01-28 | 1996-12-03 | Amgen Inc. | Computer-based methods and articles of manufacture for preparing G-CSF analogs |
DE69401109T2 (en) | 1993-03-16 | 1997-05-28 | Hemosol Inc | SELECTIVE CROSSLINKING OF HEMOGLOBIN WITH OXIDIZED, RING OPENED SACCHARIDES |
CN1057534C (en) | 1993-08-17 | 2000-10-18 | 柯瑞英-艾格公司 | Erythropoietin analogs |
US5840900A (en) * | 1993-10-20 | 1998-11-24 | Enzon, Inc. | High molecular weight polymer-based prodrugs |
JPH07188291A (en) | 1993-12-27 | 1995-07-25 | Hayashibara Biochem Lab Inc | Protein, its production and use |
US5876980A (en) | 1995-04-11 | 1999-03-02 | Cytel Corporation | Enzymatic synthesis of oligosaccharides |
US6214331B1 (en) * | 1995-06-06 | 2001-04-10 | C. R. Bard, Inc. | Process for the preparation of aqueous dispersions of particles of water-soluble polymers and the particles obtained |
WO1996040662A2 (en) | 1995-06-07 | 1996-12-19 | Cellpro, Incorporated | Aminooxy-containing linker compounds and their application in conjugates |
US5736533A (en) * | 1995-06-07 | 1998-04-07 | Neose Technologies, Inc. | Bacterial inhibition with an oligosaccharide compound |
WO1997021452A2 (en) * | 1995-12-14 | 1997-06-19 | Advanced Magnetics, Inc. | Macromolecular prodrugs of nucleotide analogs |
US5723589A (en) | 1995-12-21 | 1998-03-03 | Icn Pharmaceuticals | Carbohydrate conjugated bio-active compounds |
EP0932399B1 (en) * | 1996-03-12 | 2006-01-04 | PG-TXL Company, L.P. | Water soluble paclitaxel prodrugs |
US5696152A (en) | 1996-05-07 | 1997-12-09 | Wisconsin Alumni Research Foundation | Taxol composition for use as organ preservation and cardioplegic agents |
US5770645A (en) * | 1996-08-02 | 1998-06-23 | Duke University Medical Center | Polymers for delivering nitric oxide in vivo |
US5851984A (en) * | 1996-08-16 | 1998-12-22 | Genentech, Inc. | Method of enhancing proliferation or differentiation of hematopoietic stem cells using Wnt polypeptides |
US6011008A (en) * | 1997-01-08 | 2000-01-04 | Yissum Research Developement Company Of The Hebrew University Of Jerusalem | Conjugates of biologically active substances |
US5952347A (en) | 1997-03-13 | 1999-09-14 | Merck & Co., Inc. | Quinoline leukotriene antagonists |
US6299881B1 (en) * | 1997-03-24 | 2001-10-09 | Henry M. Jackson Foundation For The Advancement Of Military Medicine | Uronium salts for activating hydroxyls, carboxyls, and polysaccharides, and conjugate vaccines, immunogens, and other useful immunological reagents produced using uronium salts |
US5990237A (en) * | 1997-05-21 | 1999-11-23 | Shearwater Polymers, Inc. | Poly(ethylene glycol) aldehyde hydrates and related polymers and applications in modifying amines |
DE69825288D1 (en) | 1997-08-07 | 2004-09-02 | Univ Utah | PRODRUGS AND CONJUGATES OF SELENOL-CONTAINING COMPOUNDS AND THEIR USE |
US5847110A (en) * | 1997-08-15 | 1998-12-08 | Biomedical Frontiers, Inc. | Method of reducing a schiff base |
US6875594B2 (en) * | 1997-11-13 | 2005-04-05 | The Rockefeller University | Methods of ligating expressed proteins |
US6624142B2 (en) | 1997-12-30 | 2003-09-23 | Enzon, Inc. | Trimethyl lock based tetrapartate prodrugs |
DE19808079A1 (en) | 1998-02-20 | 1999-08-26 | Schering Ag | New hydroxyethyl starch conjugates useful as X-ray, NMR and blood-pool diagnostic agents, e.g. for diagnosis of tumors, cardiovascular disorders and inflammation |
WO1999045163A1 (en) | 1998-03-05 | 1999-09-10 | Asahi Glass Company Ltd. | Sputtering target, transparent conductive film, and method for producing the same |
CA2233725A1 (en) | 1998-03-31 | 1999-09-30 | Hemosol Inc. | Hemoglobin-hydroxyethyl starch complexes |
US6153655A (en) * | 1998-04-17 | 2000-11-28 | Enzon, Inc. | Terminally-branched polymeric linkers and polymeric conjugates containing the same |
US6660843B1 (en) * | 1998-10-23 | 2003-12-09 | Amgen Inc. | Modified peptides as therapeutic agents |
US6261594B1 (en) * | 1998-11-25 | 2001-07-17 | The University Of Akron | Chitosan-based nitric oxide donor compositions |
EP1035137A1 (en) | 1999-03-12 | 2000-09-13 | Pasteur Merieux Serums Et Vaccins | Method for the reductive amination of polysaccharides |
CZ299516B6 (en) * | 1999-07-02 | 2008-08-20 | F. Hoffmann-La Roche Ag | Erythropoietin glycoprotein conjugate, process for its preparation and use and pharmaceutical composition containing thereof |
US7279176B1 (en) | 1999-09-02 | 2007-10-09 | Rice University | Nitric oxide-producing hydrogel materials |
US20020065410A1 (en) * | 1999-12-02 | 2002-05-30 | Antrim Richard L. | Branched starches and branched starch hydrolyzates |
US6555660B2 (en) * | 2000-01-10 | 2003-04-29 | Maxygen Holdings Ltd. | G-CSF conjugates |
US6749865B2 (en) * | 2000-02-15 | 2004-06-15 | Genzyme Corporation | Modification of biopolymers for improved drug delivery |
US6586398B1 (en) | 2000-04-07 | 2003-07-01 | Amgen, Inc. | Chemically modified novel erythropoietin stimulating protein compositions and methods |
JP2001294601A (en) | 2000-04-11 | 2001-10-23 | Akita Prefecture | Highly branched starch and method for producing the same |
JP2002003398A (en) | 2000-04-17 | 2002-01-09 | Ltt Institute Co Ltd | Sustained-release preparation, method for preparing the same, and vaccine therefrom |
DE10023051B4 (en) * | 2000-05-11 | 2004-02-19 | Roche Diagnostics Gmbh | Process for the preparation of fluorescein isothiocyanate sinistrin, its use and diagnostic preparation containing fluorescein isothiocyanate sinistrin |
FR2811967B1 (en) | 2000-07-24 | 2002-12-13 | Cebal | TUBE PROVIDED WITH A FIXING HEAD FOR VARIOUS PLUGS AND VARIOUS PLUGS PROVIDED WITH FIXING MEANS ON SAID TUBE |
DE10041541A1 (en) | 2000-08-24 | 2002-03-14 | Michael Duchene | New nucleic acid encoding moth allergens, related polypeptides and antibodies, useful in the diagnosis and treatment of arthropod allergies |
US6417347B1 (en) * | 2000-08-24 | 2002-07-09 | Scimed Life Systems, Inc. | High yield S-nitrosylation process |
KR20030057529A (en) | 2000-09-08 | 2003-07-04 | 그리폰 테라퓨틱스, 인코포레이티드 | Synthetic erythropoiesis stimulating proteins |
DE10105921A1 (en) | 2001-02-09 | 2002-08-14 | Braun Melsungen Ag | Active pharmaceutical ingredients bound to colloids |
DE10112825A1 (en) | 2001-03-16 | 2002-10-02 | Fresenius Kabi De Gmbh | HESylation of active ingredients in aqueous solution |
DE10126158A1 (en) | 2001-05-30 | 2002-12-12 | Novira Chem Gmbh | Mixtures of alpha-hydroxy-omega-alkoxy- and alpha-omega-dialkoxy-polyoxyalkylene containing little or no dihydroxy-polyoxyalkylene, used for coupling and modification of proteins and other bioactive molecules |
DE10129369C1 (en) * | 2001-06-21 | 2003-03-06 | Fresenius Kabi De Gmbh | Water soluble antibiotic in the form of a polysaccharide conjugate containing an aminosugar |
DE10135694A1 (en) | 2001-07-21 | 2003-02-06 | Supramol Parenteral Colloids | New amphiphilic conjugate of starch or hydroxyethylstarch, useful as drug carrier, contain e.g. fatty acyl residues, are not taken up by the reticuloendothelial system |
US7179617B2 (en) | 2001-10-10 | 2007-02-20 | Neose Technologies, Inc. | Factor IX: remolding and glycoconjugation of Factor IX |
US7125843B2 (en) * | 2001-10-19 | 2006-10-24 | Neose Technologies, Inc. | Glycoconjugates including more than one peptide |
EP1438321B1 (en) * | 2001-10-26 | 2010-05-26 | Noxxon Pharma AG | Modified l-nucleic acid |
US6375846B1 (en) | 2001-11-01 | 2002-04-23 | Harry Wellington Jarrett | Cyanogen bromide-activation of hydroxyls on silica for high pressure affinity chromatography |
DE10155098A1 (en) | 2001-11-09 | 2003-05-22 | Supramol Parenteral Colloids | Agent for protecting cell and tissue cultures against fungi, comprises water-soluble conjugate of polyene macrolide and polysaccharide |
US6916962B2 (en) | 2001-12-11 | 2005-07-12 | Sun Bio, Inc. | Monofunctional polyethylene glycol aldehydes |
DE10207072A1 (en) * | 2002-02-20 | 2003-08-28 | Supramol Parenteral Colloids | New N-(haloacetylaminoalkyl) amides of starch carboxylic acids, useful as modifying agents for drugs containing thiol groups, e.g. to increase solubility or plasma half-life or reduce antigenicity |
DE10209822A1 (en) * | 2002-03-06 | 2003-09-25 | Biotechnologie Ges Mittelhesse | Coupling of low molecular weight substances to a modified polysaccharide |
DE10209821A1 (en) | 2002-03-06 | 2003-09-25 | Biotechnologie Ges Mittelhesse | Coupling of proteins to a modified polysaccharide |
DE60315145T2 (en) | 2002-03-13 | 2008-04-30 | Beijing Jiankai Technology Co., Ltd. | HYDROPHILIC Y-BRANCH POLYMER DERIVATIVE AND METHOD OF MANUFACTURING THEREOF; ABOVE CONNECTED MEDICAL COMPOSITE |
DE10217994A1 (en) | 2002-04-23 | 2003-11-06 | Supramol Parenteral Colloids | A coupling product from (sic) chemical compounds of hyperbranched polysaccharide completely catabolized in the body under control of the body enzymes useful for parenteral pharmaceutically active materials |
EP1514107B1 (en) * | 2002-06-03 | 2013-05-15 | The Institute for Systems Biology | Methods for quantitative proteome analysis of glycoproteins |
US20040101546A1 (en) | 2002-11-26 | 2004-05-27 | Gorman Anne Jessica | Hemostatic wound dressing containing aldehyde-modified polysaccharide and hemostatic agents |
EP1591467A1 (en) | 2002-09-09 | 2005-11-02 | Nektar Therapeutics Al, Corporation | Conjugate between a polyethylene glycol having a terminal alkanal group and a human growth hormone |
GEP20074193B (en) | 2002-09-09 | 2007-09-10 | Nektar Therapeutics Al Corp | Water-soluble polymer alkanals |
DE10242076A1 (en) * | 2002-09-11 | 2004-03-25 | Fresenius Kabi Deutschland Gmbh | New covalently bonded conjugates of hydroxyalkyl starch with allergens, useful as modified allergens with depot effect for use in specific immunotherapy for combating allergies, e.g. hay fever |
DE02020425T1 (en) | 2002-09-11 | 2004-07-15 | Fresenius Kabi Deutschland Gmbh | Hasylated polypeptides, especially hasylated erythropoietin |
CN100348618C (en) | 2002-09-11 | 2007-11-14 | 弗雷泽纽斯卡比德国有限公司 | Process for producing hydroxyalkyl starch derivatives |
WO2004032971A1 (en) * | 2002-10-08 | 2004-04-22 | Fresenius Kabi Deutschland Gmbh | Pharmaceutically active oligosaccharide conjugates |
DE10254745A1 (en) | 2002-11-23 | 2004-06-03 | Supramol Parenteral Colloids Gmbh | New aldonic acid imidazolides of starch compounds selectively oxidized at the reducing terminal, useful for coupling with amino functions of pharmaceutically active agents, e.g. proteins |
DE10256558A1 (en) | 2002-12-04 | 2004-09-16 | Supramol Parenteral Colloids Gmbh | Esters of polysaccharide aldonic acids, process for their preparation and use for coupling to active pharmaceutical ingredients |
AU2004262921B2 (en) | 2003-08-08 | 2010-05-13 | Octapharma Ag | Conjugates of hydroxyalkyl starch and G-CSF |
SG145746A1 (en) | 2003-08-08 | 2008-09-29 | Fresenius Kabi De Gmbh | Conjugates of hydroxyalkyl starch and g-csf |
US20080206182A1 (en) * | 2003-08-08 | 2008-08-28 | Fresenius Kabi Deutschland Gmbh | Conjugates of a Polymer and a Protein Linked by an Oxime Group |
WO2005014655A2 (en) * | 2003-08-08 | 2005-02-17 | Fresenius Kabi Deutschland Gmbh | Conjugates of hydroxyalkyl starch and a protein |
CA2556169C (en) | 2004-01-29 | 2011-11-22 | Andrew Lees | Use of amino-oxy functional groups in the preparation of vaccines |
DE102004009783A1 (en) | 2004-02-28 | 2005-09-15 | Supramol Parenteral Colloids Gmbh | Hyperbranched starch fraction, process for its preparation and its conjugates with pharmaceutical agents |
JP5396019B2 (en) * | 2004-03-11 | 2014-01-22 | フレゼニウス・カビ・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Conjugates of hydroxyalkyl starch and protein |
CA2558738C (en) | 2004-03-11 | 2013-02-05 | Fresenius Kabi Deutschland Gmbh | Conjugates of hydroxyalkyl starch and a protein, prepared by reductive amination |
WO2005092369A2 (en) * | 2004-03-11 | 2005-10-06 | Fresenius Kabi Deutschland Gmbh | Conjugates of hydroxyethyl starch and erythropoietin |
US20050265958A1 (en) | 2004-05-14 | 2005-12-01 | West Jennifer L | Nitric oxide releasing compositions and associated methods |
JP2008532966A (en) * | 2005-03-11 | 2008-08-21 | フレゼニウス・カビ・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Production of bioactive glycoproteins from inert starting materials |
EP1762250A1 (en) * | 2005-09-12 | 2007-03-14 | Fresenius Kabi Deutschland GmbH | Conjugates of hydroxyalkyl starch and an active substance, prepared by chemical ligation via thiazolidine |
WO2007053292A2 (en) | 2005-10-31 | 2007-05-10 | Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Polysaccharide-derived nitric oxide-releasing carbon-bound diazeniumdiolates |
JP2009093397A (en) | 2007-10-09 | 2009-04-30 | Panasonic Corp | Touch panel and input device using the same |
EP2070951A1 (en) * | 2007-12-14 | 2009-06-17 | Fresenius Kabi Deutschland GmbH | Method for producing a hydroxyalkyl starch derivatives with two linkers |
EP2070950A1 (en) | 2007-12-14 | 2009-06-17 | Fresenius Kabi Deutschland GmbH | Hydroxyalkyl starch derivatives and process for their preparation |
CA2739757C (en) | 2008-10-07 | 2016-07-05 | Rexahn Pharmaceuticals, Inc. | Hpma - docetaxel or gemcitabine conjugates and uses therefore |
-
2003
- 2003-08-08 CN CNB038214652A patent/CN100348618C/en not_active Expired - Fee Related
- 2003-08-08 MX MXPA05002593A patent/MXPA05002593A/en active IP Right Grant
- 2003-08-08 KR KR1020057003902A patent/KR101045422B1/en not_active IP Right Cessation
- 2003-08-08 AU AU2003253399A patent/AU2003253399B2/en not_active Ceased
- 2003-08-08 CA CA002495242A patent/CA2495242A1/en not_active Abandoned
- 2003-08-08 AU AU2003255406A patent/AU2003255406B2/en not_active Ceased
- 2003-08-08 IL IL16650603A patent/IL166506A0/en unknown
- 2003-08-08 RU RU2005110415/04A patent/RU2329274C2/en not_active IP Right Cessation
- 2003-08-08 RU RU2005110423/04A patent/RU2328505C2/en not_active IP Right Cessation
- 2003-08-08 KR KR1020057003928A patent/KR101174510B1/en not_active IP Right Cessation
- 2003-08-08 JP JP2004535075A patent/JP2006516534A/en not_active Withdrawn
- 2003-08-08 WO PCT/EP2003/008858 patent/WO2004024761A1/en active Application Filing
- 2003-08-08 CA CA2496317A patent/CA2496317C/en not_active Expired - Fee Related
- 2003-08-08 MX MXPA05002591A patent/MXPA05002591A/en active IP Right Grant
- 2003-08-08 KR KR1020057004002A patent/KR101045401B1/en not_active IP Right Cessation
- 2003-08-08 BR BR0314106-3A patent/BR0314106A/en not_active IP Right Cessation
- 2003-08-08 AU AU2003260393A patent/AU2003260393B2/en not_active Ceased
- 2003-08-08 BR BR0314227-2A patent/BR0314227A/en not_active Application Discontinuation
- 2003-08-08 WO PCT/EP2003/008829 patent/WO2004024776A1/en active Application Filing
- 2003-08-08 PL PL03375037A patent/PL375037A1/en unknown
- 2003-08-08 MX MXPA05002594A patent/MXPA05002594A/en active IP Right Grant
- 2003-08-08 BR BR0314107-1A patent/BR0314107A/en not_active Application Discontinuation
- 2003-08-08 PL PL374490A patent/PL217085B1/en unknown
- 2003-08-08 RU RU2005110412/04A patent/RU2326891C2/en not_active IP Right Cessation
- 2003-08-08 WO PCT/EP2003/008859 patent/WO2004024777A1/en active Application Filing
- 2003-08-08 CN CNA038214644A patent/CN1681844A/en active Pending
- 2003-08-08 PL PL374969A patent/PL216545B1/en not_active IP Right Cessation
- 2003-08-29 AR ARP030103141A patent/AR041097A1/en active IP Right Grant
- 2003-09-10 TW TW092124954A patent/TW200418875A/en unknown
- 2003-09-11 ES ES03020424T patent/ES2213506T3/en not_active Expired - Lifetime
- 2003-09-11 DE DE60304640T patent/DE60304640T2/en not_active Expired - Lifetime
- 2003-09-11 AT AT03020423T patent/ATE323723T1/en active
- 2003-09-11 EP EP10011835A patent/EP2316850A3/en not_active Withdrawn
- 2003-09-11 EP EP09014352A patent/EP2154160A1/en not_active Withdrawn
- 2003-09-11 DE DE60323192T patent/DE60323192D1/en not_active Expired - Lifetime
- 2003-09-11 DE DE0001398327T patent/DE03020424T1/en active Pending
- 2003-09-11 EP EP10011836.3A patent/EP2272865A3/en not_active Withdrawn
- 2003-09-11 EP EP08012908A patent/EP2017287A3/en not_active Withdrawn
- 2003-09-11 EP EP09012453A patent/EP2143736B1/en not_active Expired - Lifetime
- 2003-09-11 PT PT03020423T patent/PT1398322E/en unknown
- 2003-09-11 AT AT03020425T patent/ATE449112T1/en active
- 2003-09-11 DK DK03020425.9T patent/DK1398328T3/en active
- 2003-09-11 DK DK03020423T patent/DK1398322T3/en active
- 2003-09-11 EP EP03020423A patent/EP1398322B1/en not_active Expired - Lifetime
- 2003-09-11 DE DE20321836U patent/DE20321836U1/en not_active Expired - Lifetime
- 2003-09-11 EP EP03020425A patent/EP1398328B1/en not_active Expired - Lifetime
- 2003-09-11 SI SI200331431T patent/SI1398327T1/en unknown
- 2003-09-11 ES ES03020425T patent/ES2213507T3/en not_active Expired - Lifetime
- 2003-09-11 ES ES03020423T patent/ES2213505T3/en not_active Expired - Lifetime
- 2003-09-11 PT PT03020425T patent/PT1398328E/en unknown
- 2003-09-11 EP EP03020424A patent/EP1398327B1/en not_active Expired - Lifetime
- 2003-09-11 ES ES09012453T patent/ES2399006T3/en not_active Expired - Lifetime
- 2003-09-11 SI SI200331733T patent/SI1398328T1/en unknown
- 2003-09-11 DE DE60330098T patent/DE60330098D1/en not_active Expired - Lifetime
- 2003-09-11 AT AT03020424T patent/ATE406387T1/en active
- 2003-09-11 DE DE0001398328T patent/DE03020425T1/en active Pending
- 2003-09-11 DK DK03020424T patent/DK1398327T3/en active
- 2003-09-11 DE DE0001398322T patent/DE03020423T1/en active Pending
- 2003-09-11 PT PT03020424T patent/PT1398327E/en unknown
-
2004
- 2004-08-06 ZA ZA200600651A patent/ZA200600651B/en unknown
- 2004-08-09 AR ARP040102850A patent/AR045234A1/en active IP Right Grant
- 2004-08-09 AR ARP040102851A patent/AR045235A1/en active IP Right Grant
- 2004-08-18 HK HK04106173A patent/HK1063477A1/en not_active IP Right Cessation
- 2004-08-18 HK HK04106171A patent/HK1063475A1/en not_active IP Right Cessation
- 2004-08-18 HK HK10103783.3A patent/HK1136226A1/en not_active IP Right Cessation
- 2004-08-18 HK HK04106174.1A patent/HK1063478A1/en not_active IP Right Cessation
-
2005
- 2005-01-26 IL IL166506A patent/IL166506A/en not_active IP Right Cessation
- 2005-02-16 IL IL166931A patent/IL166931A/en not_active IP Right Cessation
- 2005-02-16 IL IL166930A patent/IL166930A/en not_active IP Right Cessation
- 2005-03-11 US US11/078,582 patent/US8618266B2/en not_active Expired - Fee Related
- 2005-03-11 US US11/077,906 patent/US7815893B2/en not_active Expired - Fee Related
- 2005-03-11 US US11/078,098 patent/US20050238723A1/en not_active Abandoned
- 2005-03-17 NO NO20051427A patent/NO20051427L/en not_active Application Discontinuation
- 2005-03-17 NO NO20051419A patent/NO20051419L/en active IP Right Review Request
-
2009
- 2009-07-30 IL IL200150A patent/IL200150A0/en unknown
- 2009-11-20 AU AU2009238372A patent/AU2009238372B2/en not_active Ceased
-
2010
- 2010-02-16 CY CY20101100153T patent/CY1109813T1/en unknown
- 2010-06-04 MX MX2010006175A patent/MX2010006175A/en active IP Right Grant
- 2010-06-28 US US12/824,618 patent/US20120046240A9/en not_active Abandoned
- 2010-07-06 JP JP2010153808A patent/JP5275293B2/en not_active Expired - Fee Related
- 2010-07-06 JP JP2010153807A patent/JP5455821B2/en not_active Expired - Fee Related
- 2010-08-12 US US12/855,381 patent/US8475765B2/en not_active Expired - Fee Related
- 2010-11-30 JP JP2010266646A patent/JP2011089125A/en active Pending
-
2011
- 2011-01-14 AU AU2011200158A patent/AU2011200158B2/en not_active Ceased
- 2011-01-14 AU AU2011200219A patent/AU2011200219B2/en not_active Ceased
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4847325A (en) * | 1988-01-20 | 1989-07-11 | Cetus Corporation | Conjugation of polymer to colony stimulating factor-1 |
US5281698A (en) * | 1991-07-23 | 1994-01-25 | Cetus Oncology Corporation | Preparation of an activated polymer ester for protein conjugation |
WO1994028024A1 (en) * | 1993-06-01 | 1994-12-08 | Enzon, Inc. | Carbohydrate-modified polymer conjugates with erythropoietic activity |
EP0809996A2 (en) * | 1996-05-31 | 1997-12-03 | F. Hoffmann-La Roche Ag | Interferon conjugates |
DE19628705A1 (en) * | 1996-07-08 | 1998-01-15 | Fresenius Ag | New oxygen transport agents, hemoglobin-hydroxyethyl starch conjugates containing them, processes for their preparation and their use as blood substitutes |
Non-Patent Citations (1)
Title |
---|
LARIONOVA NATHALIA I ET AL: "Conjugation of the Bowman-Birk soybean proteinase inhibitor with hydroxyethylstarch.", APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, vol. 62, no. 2-3, 1997, pages 175 - 182, XP001122297, ISSN: 0273-2289 * |
Cited By (180)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8916518B2 (en) | 2002-03-06 | 2014-12-23 | Fresenius Kabi Deutschland Gmbh | Coupling proteins to a modified polysaccharide |
WO2005014050A3 (en) * | 2003-08-08 | 2005-04-14 | Fresenius Kabi De Gmbh | Conjugates of hydroxyalkyl starch and g-csf |
WO2005014655A3 (en) * | 2003-08-08 | 2005-06-16 | Fresenius Kabi De Gmbh | Conjugates of hydroxyalkyl starch and a protein |
WO2005014655A2 (en) * | 2003-08-08 | 2005-02-17 | Fresenius Kabi Deutschland Gmbh | Conjugates of hydroxyalkyl starch and a protein |
AU2004262921B2 (en) * | 2003-08-08 | 2010-05-13 | Octapharma Ag | Conjugates of hydroxyalkyl starch and G-CSF |
EA010501B1 (en) * | 2004-03-11 | 2008-10-30 | Фрезениус Каби Дойчланд Гмбх | Conjugates of hydroxyalkyl starch and a protein, prepared by reductive amination |
EA014103B1 (en) * | 2004-03-11 | 2010-10-29 | Фрезениус Каби Дойчланд Гмбх | Conjugate comprising protein and polymer or derivative thereof (variants), method of producing conjugate and pharmaceutical composition comprising thereof |
WO2005092391A3 (en) * | 2004-03-11 | 2006-07-20 | Fresenius Kabi De Gmbh | Conjugates of hydroxyalkyl starch and a protein |
TWI417303B (en) * | 2004-03-11 | 2013-12-01 | Fresenius Kabi De Gmbh | Conjugates of hydroxyalkyl starch and a protein, prepared by reductive amination |
EP2336192A1 (en) * | 2004-03-11 | 2011-06-22 | Fresenius Kabi Deutschland GmbH | Conjugates of hydroxyalkyl starch and a protein, prepared by reductive amination |
WO2005092390A3 (en) * | 2004-03-11 | 2006-06-08 | Fresenius Kabi De Gmbh | Conjugates of hydroxyalkyl starch and a protein |
US8840879B2 (en) | 2004-03-11 | 2014-09-23 | Fresenius Kabi Deutschland Gmbh | Conjugates of hydroxyalkyl starch and a protein |
WO2005092928A1 (en) * | 2004-03-11 | 2005-10-06 | Fresenius Kabi Deutschland Gmbh | Conjugates of hydroxyalkyl starch and a protein, prepared by reductive amination |
US7589063B2 (en) | 2004-12-14 | 2009-09-15 | Aplagen Gmbh | Molecules which promote hematopoiesis |
US8470963B2 (en) | 2006-06-30 | 2013-06-25 | Sku Asset Management Gmbh | Multifunctional compounds for pharmaceutical purposes |
EP2275142A2 (en) | 2006-06-30 | 2011-01-19 | Andre Koltermann | Conjugates for immunotherapy of cancer |
EP3669894A2 (en) | 2006-06-30 | 2020-06-24 | Syntab Therapeutics GmbH | Novel multifunctional compounds for pharmaceutical purposes |
US9320797B2 (en) | 2007-09-27 | 2016-04-26 | Amgen Inc. | Pharmaceutical formulations |
US8383114B2 (en) | 2007-09-27 | 2013-02-26 | Amgen Inc. | Pharmaceutical formulations |
US10653781B2 (en) | 2007-09-27 | 2020-05-19 | Amgen Inc. | Pharmaceutical formulations |
EP3381445A2 (en) | 2007-11-15 | 2018-10-03 | Amgen Inc. | Aqueous formulation of antibody stablised by antioxidants for parenteral administration |
WO2009094551A1 (en) | 2008-01-25 | 2009-07-30 | Amgen Inc. | Ferroportin antibodies and methods of use |
EP2803675A2 (en) | 2008-01-25 | 2014-11-19 | Amgen, Inc | Ferroportin antibodies and methods of use |
EP2574628A1 (en) | 2008-01-25 | 2013-04-03 | Amgen Inc. | Ferroportin antibodies and methods of use |
US9175078B2 (en) | 2008-01-25 | 2015-11-03 | Amgen Inc. | Ferroportin antibodies and methods of use |
US9688759B2 (en) | 2008-01-25 | 2017-06-27 | Amgen, Inc. | Ferroportin antibodies and methods of use |
EP2816059A1 (en) | 2008-05-01 | 2014-12-24 | Amgen, Inc | Anti-hepcidin antibodies and methods of use |
EP2620448A1 (en) | 2008-05-01 | 2013-07-31 | Amgen Inc. | Anti-hepcidin antibodies and methods of use |
EP2166085A1 (en) | 2008-07-16 | 2010-03-24 | Suomen Punainen Risti Veripalvelu | Divalent modified cells |
US9173951B2 (en) | 2008-09-19 | 2015-11-03 | Nektar Therapeutics | Carbohydrate-based drug delivery polymers and conjugates thereof |
US9682153B2 (en) | 2008-09-19 | 2017-06-20 | Nektar Therapeutics | Polymer conjugates of therapeutic peptides |
US8680263B2 (en) | 2008-09-19 | 2014-03-25 | Nektar Therapeutics | Carbohydrate-based drug delivery polymers and conjugates thereof |
WO2010033240A2 (en) * | 2008-09-19 | 2010-03-25 | Nektar Therapeutics | Carbohydrate-based drug delivery polymers and conjugates thereof |
US20110171716A1 (en) * | 2008-09-19 | 2011-07-14 | Nektar Therapeutics | Carbohydrate-based drug delivery polymers and conjugates thereof |
WO2010033240A3 (en) * | 2008-09-19 | 2010-06-17 | Nektar Therapeutics | Carbohydrate-based drug delivery polymers and conjugates thereof |
EP3693014A1 (en) | 2008-11-13 | 2020-08-12 | The General Hospital Corporation | Methods and compositions for regulating iron homeostasis by modulation bmp-6 |
WO2010056981A2 (en) | 2008-11-13 | 2010-05-20 | Massachusetts General Hospital | Methods and compositions for regulating iron homeostasis by modulation bmp-6 |
US9011920B2 (en) | 2008-12-06 | 2015-04-21 | B. Braun Melsungen Ag | Transport-mediating colloidal pharmaceutical compounds |
US9018372B2 (en) | 2009-03-31 | 2015-04-28 | B. Braun Melsungen Ag | Bonding products of aminated polysaccharides |
WO2010136242A1 (en) * | 2009-03-31 | 2010-12-02 | B. Braun Melsungen Ag | Bonding products of aminated polysaccharides |
RU2549492C2 (en) * | 2009-03-31 | 2015-04-27 | Б. Браун Мельзунген Аг | Bonding products of aminated polysaccharides |
WO2011050333A1 (en) | 2009-10-23 | 2011-04-28 | Amgen Inc. | Vial adapter and system |
WO2011098095A1 (en) | 2010-02-09 | 2011-08-18 | Aplagen Gmbh | Peptides binding the tpo receptor |
WO2011156373A1 (en) | 2010-06-07 | 2011-12-15 | Amgen Inc. | Drug delivery device |
WO2012135315A1 (en) | 2011-03-31 | 2012-10-04 | Amgen Inc. | Vial adapter and system |
EP3498323A2 (en) | 2011-04-20 | 2019-06-19 | Amgen Inc. | Autoinjector apparatus |
EP4074355A1 (en) | 2011-04-20 | 2022-10-19 | Amgen Inc. | Autoinjector apparatus |
EP3045190A1 (en) | 2011-10-14 | 2016-07-20 | Amgen, Inc | Injector and method of assembly |
EP3045189A1 (en) | 2011-10-14 | 2016-07-20 | Amgen, Inc | Injector and method of assembly |
EP3045187A1 (en) | 2011-10-14 | 2016-07-20 | Amgen, Inc | Injector and method of assembly |
EP3045188A1 (en) | 2011-10-14 | 2016-07-20 | Amgen, Inc | Injector and method of assembly |
EP3744371A1 (en) | 2011-10-14 | 2020-12-02 | Amgen, Inc | Injector and method of assembly |
EP3269413A1 (en) | 2011-10-14 | 2018-01-17 | Amgen, Inc | Injector and method of assembly |
WO2013055873A1 (en) | 2011-10-14 | 2013-04-18 | Amgen Inc. | Injector and method of assembly |
EP3335747A1 (en) | 2011-10-14 | 2018-06-20 | Amgen Inc. | Injector and method of assembly |
US10682474B2 (en) | 2012-11-21 | 2020-06-16 | Amgen Inc. | Drug delivery device |
US12115341B2 (en) | 2012-11-21 | 2024-10-15 | Amgen Inc. | Drug delivery device |
US11344681B2 (en) | 2012-11-21 | 2022-05-31 | Amgen Inc. | Drug delivery device |
EP3656426A1 (en) | 2012-11-21 | 2020-05-27 | Amgen, Inc | Drug delivery device |
EP4234694A2 (en) | 2012-11-21 | 2023-08-30 | Amgen Inc. | Drug delivery device |
WO2014081780A1 (en) | 2012-11-21 | 2014-05-30 | Amgen Inc. | Drug delivery device |
US11439745B2 (en) | 2012-11-21 | 2022-09-13 | Amgen Inc. | Drug delivery device |
US11458247B2 (en) | 2012-11-21 | 2022-10-04 | Amgen Inc. | Drug delivery device |
EP3072548A1 (en) | 2012-11-21 | 2016-09-28 | Amgen, Inc | Drug delivery device |
EP3081249A1 (en) | 2012-11-21 | 2016-10-19 | Amgen, Inc | Drug delivery device |
WO2014143770A1 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | Body contour adaptable autoinjector device |
EP3593839A1 (en) | 2013-03-15 | 2020-01-15 | Amgen Inc. | Drug cassette |
WO2014144096A1 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | Drug cassette, autoinjector, and autoinjector system |
US9657098B2 (en) | 2013-03-15 | 2017-05-23 | Intrinsic Lifesciences, Llc | Anti-hepcidin antibodies and uses thereof |
US10239941B2 (en) | 2013-03-15 | 2019-03-26 | Intrinsic Lifesciences Llc | Anti-hepcidin antibodies and uses thereof |
US9803011B2 (en) | 2013-03-15 | 2017-10-31 | Intrinsic Lifesciences Llc | Anti-hepcidin antibodies and uses thereof |
WO2014147175A1 (en) * | 2013-03-20 | 2014-09-25 | Fresenius Kabi Deutschland Gmbh | Hydroxyalkyl starch derivatives as reactants for coupling to thiol groups |
WO2014147173A1 (en) * | 2013-03-20 | 2014-09-25 | Fresenius Kabi Deutschland Gmbh | Hydroxyalkyl starch derivatives as reactants for coupling to thiol groups |
WO2014147174A1 (en) * | 2013-03-20 | 2014-09-25 | Fresenius Kabi Deutschland Gmbh | Process for the preparation of thiol functionalized hydroxyalkyl starch derivatives |
EP3831427A1 (en) | 2013-03-22 | 2021-06-09 | Amgen Inc. | Injector and method of assembly |
WO2014149357A1 (en) | 2013-03-22 | 2014-09-25 | Amgen Inc. | Injector and method of assembly |
EP3501575A1 (en) | 2013-10-24 | 2019-06-26 | Amgen, Inc | Drug delivery system with temperature-sensitive-control |
EP3421066A1 (en) | 2013-10-24 | 2019-01-02 | Amgen, Inc | Injector and method of assembly |
WO2015061389A1 (en) | 2013-10-24 | 2015-04-30 | Amgen Inc. | Drug delivery system with temperature-sensitive control |
EP3789064A1 (en) | 2013-10-24 | 2021-03-10 | Amgen, Inc | Injector and method of assembly |
EP3957345A1 (en) | 2013-10-24 | 2022-02-23 | Amgen, Inc | Drug delivery system with temperature-sensitive control |
WO2015061386A1 (en) | 2013-10-24 | 2015-04-30 | Amgen Inc. | Injector and method of assembly |
WO2015119906A1 (en) | 2014-02-05 | 2015-08-13 | Amgen Inc. | Drug delivery system with electromagnetic field generator |
WO2015132724A1 (en) | 2014-03-05 | 2015-09-11 | Pfizer Inc. | Improved muteins of clotting factor viii |
US10570189B2 (en) | 2014-03-05 | 2020-02-25 | Pfizer Inc. | Muteins of clotting factor VIII |
WO2015171777A1 (en) | 2014-05-07 | 2015-11-12 | Amgen Inc. | Autoinjector with shock reducing elements |
EP3785749A1 (en) | 2014-05-07 | 2021-03-03 | Amgen Inc. | Autoinjector with shock reducing elements |
WO2015187793A1 (en) | 2014-06-03 | 2015-12-10 | Amgen Inc. | Drug delivery system and method of use |
EP4036924A1 (en) | 2014-06-03 | 2022-08-03 | Amgen, Inc | Devices and methods for assisting a user of a drug delivery device |
WO2015187797A1 (en) | 2014-06-03 | 2015-12-10 | Amgen Inc. | Controllable drug delivery system and method of use |
US11992659B2 (en) | 2014-06-03 | 2024-05-28 | Amgen Inc. | Controllable drug delivery system and method of use |
EP4362039A2 (en) | 2014-06-03 | 2024-05-01 | Amgen Inc. | Controllable drug delivery system and method of use |
WO2015187799A1 (en) | 2014-06-03 | 2015-12-10 | Amgen Inc. | Systems and methods for remotely processing data collected by a drug delivery device |
US11738146B2 (en) | 2014-06-03 | 2023-08-29 | Amgen Inc. | Drug delivery system and method of use |
US11213624B2 (en) | 2014-06-03 | 2022-01-04 | Amgen Inc. | Controllable drug delivery system and method of use |
WO2016049036A1 (en) | 2014-09-22 | 2016-03-31 | Intrinsic Lifesciences Llc | Humanized anti-hepcidin antibodies and uses thereof |
US10323088B2 (en) | 2014-09-22 | 2019-06-18 | Intrinsic Lifesciences Llc | Humanized anti-hepcidin antibodies and uses thereof |
EP3943135A2 (en) | 2014-10-14 | 2022-01-26 | Amgen Inc. | Drug injection device with visual and audible indicators |
WO2016061220A2 (en) | 2014-10-14 | 2016-04-21 | Amgen Inc. | Drug injection device with visual and audio indicators |
US10799630B2 (en) | 2014-12-19 | 2020-10-13 | Amgen Inc. | Drug delivery device with proximity sensor |
US11944794B2 (en) | 2014-12-19 | 2024-04-02 | Amgen Inc. | Drug delivery device with proximity sensor |
EP3848072A1 (en) | 2014-12-19 | 2021-07-14 | Amgen Inc. | Drug delivery device with proximity sensor |
EP3689394A1 (en) | 2014-12-19 | 2020-08-05 | Amgen Inc. | Drug delivery device with live button or user interface field |
US11357916B2 (en) | 2014-12-19 | 2022-06-14 | Amgen Inc. | Drug delivery device with live button or user interface field |
WO2016100781A1 (en) | 2014-12-19 | 2016-06-23 | Amgen Inc. | Drug delivery device with proximity sensor |
WO2016100055A1 (en) | 2014-12-19 | 2016-06-23 | Amgen Inc. | Drug delivery device with live button or user interface field |
US10765801B2 (en) | 2014-12-19 | 2020-09-08 | Amgen Inc. | Drug delivery device with proximity sensor |
EP3556411A1 (en) | 2015-02-17 | 2019-10-23 | Amgen Inc. | Drug delivery device with vacuum assisted securement and/or feedback |
EP3981450A1 (en) | 2015-02-27 | 2022-04-13 | Amgen, Inc | Drug delivery device having a needle guard mechanism with a tunable threshold of resistance to needle guard movement |
WO2017039786A1 (en) | 2015-09-02 | 2017-03-09 | Amgen Inc. | Syringe assembly adapter for a syringe |
WO2017100501A1 (en) | 2015-12-09 | 2017-06-15 | Amgen Inc. | Auto-injector with signaling cap |
WO2017120178A1 (en) | 2016-01-06 | 2017-07-13 | Amgen Inc. | Auto-injector with signaling electronics |
WO2017160799A1 (en) | 2016-03-15 | 2017-09-21 | Amgen Inc. | Reducing probability of glass breakage in drug delivery devices |
EP4035711A1 (en) | 2016-03-15 | 2022-08-03 | Amgen Inc. | Reducing probability of glass breakage in drug delivery devices |
EP3721922A1 (en) | 2016-03-15 | 2020-10-14 | Amgen Inc. | Reducing probability of glass breakage in drug delivery devices |
WO2017189089A1 (en) | 2016-04-29 | 2017-11-02 | Amgen Inc. | Drug delivery device with messaging label |
WO2017192287A1 (en) | 2016-05-02 | 2017-11-09 | Amgen Inc. | Syringe adapter and guide for filling an on-body injector |
WO2017197222A1 (en) | 2016-05-13 | 2017-11-16 | Amgen Inc. | Vial sleeve assembly |
WO2017200989A1 (en) | 2016-05-16 | 2017-11-23 | Amgen Inc. | Data encryption in medical devices with limited computational capability |
US11318208B2 (en) | 2016-05-24 | 2022-05-03 | Syntab Therapeutics Gmbh | Synthetic compound |
WO2017202933A1 (en) | 2016-05-24 | 2017-11-30 | Syntab Therapeutics Gmbh | Synthetic compound |
WO2017209899A1 (en) | 2016-06-03 | 2017-12-07 | Amgen Inc. | Impact testing apparatuses and methods for drug delivery devices |
WO2018004842A1 (en) | 2016-07-01 | 2018-01-04 | Amgen Inc. | Drug delivery device having minimized risk of component fracture upon impact events |
WO2018034784A1 (en) | 2016-08-17 | 2018-02-22 | Amgen Inc. | Drug delivery device with placement detection |
WO2018081234A1 (en) | 2016-10-25 | 2018-05-03 | Amgen Inc. | On-body injector |
WO2018136398A1 (en) | 2017-01-17 | 2018-07-26 | Amgen Inc. | Injection devices and related methods of use and assembly |
WO2018152073A1 (en) | 2017-02-17 | 2018-08-23 | Amgen Inc. | Insertion mechanism for drug delivery device |
WO2018151890A1 (en) | 2017-02-17 | 2018-08-23 | Amgen Inc. | Drug delivery device with sterile fluid flowpath and related method of assembly |
WO2018165143A1 (en) | 2017-03-06 | 2018-09-13 | Amgen Inc. | Drug delivery device with activation prevention feature |
WO2018164829A1 (en) | 2017-03-07 | 2018-09-13 | Amgen Inc. | Needle insertion by overpressure |
WO2018165499A1 (en) | 2017-03-09 | 2018-09-13 | Amgen Inc. | Insertion mechanism for drug delivery device |
WO2018172219A1 (en) | 2017-03-20 | 2018-09-27 | F. Hoffmann-La Roche Ag | Method for in vitro glycoengineering of an erythropoiesis stimulating protein |
EP4241807A2 (en) | 2017-03-28 | 2023-09-13 | Amgen Inc. | Plunger rod and syringe assembly system and method |
EP4512445A2 (en) | 2017-03-28 | 2025-02-26 | Amgen Inc. | Plunger rod and syringe assembly system |
WO2018183039A1 (en) | 2017-03-28 | 2018-10-04 | Amgen Inc. | Plunger rod and syringe assembly system and method |
WO2018226515A1 (en) | 2017-06-08 | 2018-12-13 | Amgen Inc. | Syringe assembly for a drug delivery device and method of assembly |
WO2018226565A1 (en) | 2017-06-08 | 2018-12-13 | Amgen Inc. | Torque driven drug delivery device |
WO2018236619A1 (en) | 2017-06-22 | 2018-12-27 | Amgen Inc. | Device activation impact/shock reduction |
WO2018237225A1 (en) | 2017-06-23 | 2018-12-27 | Amgen Inc. | Electronic drug delivery device comprising a cap activated by a switch assembly |
WO2019014014A1 (en) | 2017-07-14 | 2019-01-17 | Amgen Inc. | Needle insertion-retraction system having dual torsion spring system |
EP4292576A2 (en) | 2017-07-21 | 2023-12-20 | Amgen Inc. | Gas permeable sealing member for drug container and methods of assembly |
WO2019018169A1 (en) | 2017-07-21 | 2019-01-24 | Amgen Inc. | Gas permeable sealing member for drug container and methods of assembly |
WO2019022950A1 (en) | 2017-07-25 | 2019-01-31 | Amgen Inc. | Drug delivery device with container access system and related method of assembly |
EP4085942A1 (en) | 2017-07-25 | 2022-11-09 | Amgen Inc. | Drug delivery device with gear module and related method of assembly |
WO2019022951A1 (en) | 2017-07-25 | 2019-01-31 | Amgen Inc. | Drug delivery device with gear module and related method of assembly |
WO2019032482A2 (en) | 2017-08-09 | 2019-02-14 | Amgen Inc. | Hydraulic-pneumatic pressurized chamber drug delivery system |
WO2019036181A1 (en) | 2017-08-18 | 2019-02-21 | Amgen Inc. | Wearable injector with sterile adhesive patch |
WO2019040548A1 (en) | 2017-08-22 | 2019-02-28 | Amgen Inc. | Needle insertion mechanism for drug delivery device |
WO2019070472A1 (en) | 2017-10-04 | 2019-04-11 | Amgen Inc. | Flow adapter for drug delivery device |
EP4257164A2 (en) | 2017-10-06 | 2023-10-11 | Amgen Inc. | Drug delivery device with interlock assembly and related method of assembly |
WO2019070552A1 (en) | 2017-10-06 | 2019-04-11 | Amgen Inc. | Drug delivery device with interlock assembly and related method of assembly |
WO2019074579A1 (en) | 2017-10-09 | 2019-04-18 | Amgen Inc. | Drug delivery device with drive assembly and related method of assembly |
WO2019090086A1 (en) | 2017-11-03 | 2019-05-09 | Amgen Inc. | Systems and approaches for sterilizing a drug delivery device |
WO2019090079A1 (en) | 2017-11-03 | 2019-05-09 | Amgen Inc. | System and approaches for sterilizing a drug delivery device |
WO2019090303A1 (en) | 2017-11-06 | 2019-05-09 | Amgen Inc. | Fill-finish assemblies and related methods |
WO2019089178A1 (en) | 2017-11-06 | 2019-05-09 | Amgen Inc. | Drug delivery device with placement and flow sensing |
WO2019094138A1 (en) | 2017-11-10 | 2019-05-16 | Amgen Inc. | Plungers for drug delivery devices |
WO2019099324A1 (en) | 2017-11-16 | 2019-05-23 | Amgen Inc. | Door latch mechanism for drug delivery device |
WO2019099322A1 (en) | 2017-11-16 | 2019-05-23 | Amgen Inc. | Autoinjector with stall and end point detection |
WO2019212377A1 (en) * | 2018-05-04 | 2019-11-07 | Farber Boris Slavinovich | Polymyxin-based pharmaceutical composition for treating infectious diseases |
WO2019231582A1 (en) | 2018-05-30 | 2019-12-05 | Amgen Inc. | Thermal spring release mechanism for a drug delivery device |
WO2019231618A1 (en) | 2018-06-01 | 2019-12-05 | Amgen Inc. | Modular fluid path assemblies for drug delivery devices |
WO2020023336A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Hybrid drug delivery devices with grip portion |
WO2020023444A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Delivery devices for administering drugs |
WO2020023451A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Delivery devices for administering drugs |
WO2020023220A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Hybrid drug delivery devices with tacky skin attachment portion and related method of preparation |
WO2020028009A1 (en) | 2018-07-31 | 2020-02-06 | Amgen Inc. | Fluid path assembly for a drug delivery device |
WO2020068623A1 (en) | 2018-09-24 | 2020-04-02 | Amgen Inc. | Interventional dosing systems and methods |
WO2020068476A1 (en) | 2018-09-28 | 2020-04-02 | Amgen Inc. | Muscle wire escapement activation assembly for a drug delivery device |
WO2020072577A1 (en) | 2018-10-02 | 2020-04-09 | Amgen Inc. | Injection systems for drug delivery with internal force transmission |
WO2020072846A1 (en) | 2018-10-05 | 2020-04-09 | Amgen Inc. | Drug delivery device having dose indicator |
WO2020081480A1 (en) | 2018-10-15 | 2020-04-23 | Amgen Inc. | Platform assembly process for drug delivery device |
WO2020081479A1 (en) | 2018-10-15 | 2020-04-23 | Amgen Inc. | Drug delivery device having damping mechanism |
WO2020091981A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial drug delivery member retraction |
WO2020091956A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial drug delivery member retraction |
WO2020092056A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial needle retraction |
WO2020219482A1 (en) | 2019-04-24 | 2020-10-29 | Amgen Inc. | Syringe sterilization verification assemblies and methods |
WO2021041067A2 (en) | 2019-08-23 | 2021-03-04 | Amgen Inc. | Drug delivery device with configurable needle shield engagement components and related methods |
WO2022246055A1 (en) | 2021-05-21 | 2022-11-24 | Amgen Inc. | Method of optimizing a filling recipe for a drug container |
WO2024094457A1 (en) | 2022-11-02 | 2024-05-10 | F. Hoffmann-La Roche Ag | Method for producing glycoprotein compositions |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1398322B1 (en) | HASylated polypeptides, especially HASylated erythropoietin | |
JP4688494B2 (en) | Process for producing hydroxyalkyl starch derivatives | |
EP1681303B1 (en) | HASylated polypeptides, especially HASylated erythropoietin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 166506 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 393/DELNP/2005 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2495242 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005/01729 Country of ref document: ZA Ref document number: 200501729 Country of ref document: ZA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020057003928 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2005/002594 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038214644 Country of ref document: CN Ref document number: 374490 Country of ref document: PL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11078582 Country of ref document: US Ref document number: 2003253399 Country of ref document: AU Ref document number: 2004535075 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2005110423 Country of ref document: RU Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057003928 Country of ref document: KR |
|
122 | Ep: pct application non-entry in european phase | ||
WWP | Wipo information: published in national office |
Ref document number: 11078582 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200150 Country of ref document: IL |