[go: up one dir, main page]

WO2004016650A1 - Peptides antimicrobiens, polypeptides comprenant lesdits peptides, genes codant lesdits peptides, vecteurs, organismes transformes et compositions les contenant - Google Patents

Peptides antimicrobiens, polypeptides comprenant lesdits peptides, genes codant lesdits peptides, vecteurs, organismes transformes et compositions les contenant Download PDF

Info

Publication number
WO2004016650A1
WO2004016650A1 PCT/FR2003/002517 FR0302517W WO2004016650A1 WO 2004016650 A1 WO2004016650 A1 WO 2004016650A1 FR 0302517 W FR0302517 W FR 0302517W WO 2004016650 A1 WO2004016650 A1 WO 2004016650A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
ala
lys
host organism
arg
Prior art date
Application number
PCT/FR2003/002517
Other languages
English (en)
Inventor
Jean-Philippe Meyer
Original Assignee
Entomed
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entomed filed Critical Entomed
Priority to AU2003276325A priority Critical patent/AU2003276325A1/en
Publication of WO2004016650A1 publication Critical patent/WO2004016650A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43563Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • ANTIMICROBIAL PEPTIDES POLYPEPTIDES COMPRISING SAID PEPTIDES, GENES ENCODING SAID PEPTIDES, VECTORS, TRANSFORMED ORGANISMS AND COMPOSITIONS CONTAINING THEM.
  • the present invention relates to new peptides having antimicrobial properties, polypeptides comprising said peptides, polynucleotides encoding said peptides, chimeric genes, vectors containing said polynucleotides or said chimeric genes and transformed organisms.
  • the invention also relates to antimicrobial compositions containing said peptides which can be used in human and animal therapy, in agriculture as well as in the food and plant health industry.
  • Enterococcus faecalis and Enterococcus faeci m are listed in particular.
  • Enterococcus faecalis alone is responsible for around 80% of the nosocomial infections mentioned above. Infections caused by bacteria of the genus Enterococcus are particularly difficult to treat.
  • Enterococci tolerate a wide variety of growing conditions. In particular, they have the capacity to grow in hypotonic, hypertonic, acidic, alkaline environments and in environments whose temperature range is between 10 and 45 ° C.
  • Sodium azide and bile salts which inhibit the growth or even destroy most of the microorganisms, are tolerated by Enterococci.
  • the most commonly used antibacterial compounds today are or are derived from natural substances produced by bacteria, actinomycetes and fungi.
  • antibacterial compounds are grouped according to the following main classes: ⁇ -lactams including penicillins, methicillin, cephalosporins and monobactams; aminoglycosides including streptomycin, gentamicin, neomycin, tobramycin, netilmycin and amikacin; tetracyclines including minocycline and doxycycline; sulfonamides and trimethoprimes; fluoroquinolones including ciprofloxacin, norfloxacin and ofloxacin; macrolides including erythromicin, azithromycin and clarithromycin; quinolones including ciprofloxin; polymyxins; glycopeptides including vancomycin; polymyxins; lincosamides; and chloramphenicol.
  • ⁇ -lactams including penicillins, methicillin, cephalosporins and monobactams
  • aminoglycosides including streptomycin, gent
  • Enterococci have naturally developed resistance mechanisms against most conventional antibacterials and in particular against ⁇ -lactams of penicillin and cephalosporins type, against a inoglycosides of gentamycin type, against quinolones, against glycopeptides of vancomycin type, against tetracyclines , against erythromycin-like macrolides, against chloramphenicol and against ampicillin (Diversity a ong Multidrug-Resistant Enterococci, Barbara E. Murray, Emerging Infectious Diseases, Vol. 4, No. 1, January-March 1998).
  • Peptides with antimicrobial properties are produced by a wide variety of animal and plant species, in which they participate in non-specific defense mechanisms against infections (Antimicrobial peptides of multicellular organisms, Zasloff M., Nature Vol. 415, Jan 2002, 389-395).
  • Insects have in particular developed an effective defense system against microorganisms. This immune response is largely based on the rapid and transient synthesis of antimicrobial peptides with a broad spectrum of activity (Antimicrobial peptides in insects; structure and function, Bulet P. and al., Dev. Comp. Immunol. 23, 1999, 329-344).
  • Antimicrobial peptides in insects which have properties against Gram-positive bacteria, there are in particular cecropins, defensins, thanatin and moricin.
  • Cecropins are peptides isolated from Diptera and Lepidoptera which have a three-dimensional structure of the type comprising 2 amphipatic helices (Amphipatic, ⁇ -helical antimicrobial peptides, Tossi A., Sandri L., Giangaspero A., Biopolymers, Vol. 55 , 4-30 (2000); WO 89/00194).
  • Insect defensins are peptides isolated from various orders of insects which have a three-dimensional structure of the type comprising an ⁇ helix and 2 antiparallel ⁇ strands linked by 3 disulfide bridges (EP 0349451; WO 90/13646; EP 0546213 ; FR 2695392; EP 0607080; WO 97/02286).
  • Thanatin is a peptide isolated from the hemiptera Podisus maculiventris which has a three-dimensional structure of the ⁇ -hairpin-like type comprising two antiparallel ⁇ strands linked by a disulfide bridge (WO 99/24594).
  • Moricin is a peptide isolated from the lepidoptera of the Bombycidae family, Bombyx ori (JP 08119995; JP 11215983). Among the peptides previously listed, none has been described as having activity against Gram-positive bacteria of the genus Enterococcus.
  • the technical problem posed by the present invention consists in characterizing new compounds having antifungal and / or antibacterial properties and more particularly against Gram-positive bacteria of the genus Enterococcus responsible for serious opportunistic infections in humans and / or animals.
  • antibacterial is meant according to the present invention, any molecule having bacteriostatic and / or bactericidal properties.
  • antifungal is meant according to the present invention, any molecule having fungistatic and / or fungicidal properties.
  • amino acids are represented by their one-letter code, but they can also be represented by their three-letter code according to the nomenclature below.
  • the Applicant has now isolated, purified and characterized new peptides from the hemolymph of immune larvae of the Lepidopteran of the family Nymphalidae, Caligo illioneus (FIG. 1).
  • Lepidoptera of the family Nymphalidae have a daytime activity and are characterized by the presence of antennae ending in club shape, bright colors with patterns and vertical wings at rest.
  • the peptides isolated by the Applicant from the hemolymph of immune larvae of the Lepidopteran Caligo illioneus correspond to formula (I): Xaa-Lys-Ile-Pro-Xab-Ala-Xac-Lys-Gly-Ala-Xad-Arg -Ala-Leu- Xae-Ala-Ser-Thr-Ala-Xaf-Asp-Ile-Ala-Xag-Phe-Xah-Arg-Lys- Arg-Xai (I) in which,
  • Xaa is - H2 or the peptide residue Arg or Gly
  • Xab is the peptide residue Ile-Asn or Val-Glu
  • Xac is the Ile-Lys, Ile-Arg or Leu-Lys peptide residue
  • Xad is the peptide residue Ser-Arg-Ala-Trp, Lys-Ala-Val-Gly-His-Gly-Leu or Lys-Val-Ala-Gly-Arg-Ala-Trp
  • Xae is the peptide residue Asp-Leu, Asn-Ile or
  • Xaf is the peptide residue Tyr or His
  • Xag is the peptide residue Ser-Ile, Ser-Ala or His-Leu
  • Xah is the peptide residue Asn, Asp or His
  • Xai is —OH or the peptide residue Glu, Asn or Lys-His.
  • the main subject of the present invention therefore is an isolated peptide corresponding to formula (I): Xaa-Lys-Ile-Pro-Xab-Ala-Xac-Lys-Gly-Ala-Xad-Arg-Ala-Leu- Xae-Ala -Ser-Thr-Ala-Xaf-Asp-Ile-Ala-Xag-Phe-Xah-Arg-Lys- Arg-Xai (I) in which Xaa, Xab, Xac, Xad, Xae, Xaf, Xag, Xah and Xai are as defined above, its derivatives and its fragments.
  • the formula (I) corresponds to the sequence SEQ ID NO: 1 in the sequence listing in the appendix.
  • the present invention relates more particularly to an isolated peptide corresponding to one of the following sequences:
  • peptides of the invention Mention may be made, as derivatives of the peptides of the invention, of the peptides which exhibit a post-translational modification and / or chemical modification, in particular glycosylation, amidation, acylation, acetylation, methylation as well as the peptides which carry a protective group.
  • protective group means any group making it possible to avoid the degradation of said peptides.
  • the derivatives of the peptides of the invention may also be those in which one or more amino acids are enantiomers, diastereoisomers, natural amino acids of conformation D, rare amino acids in particular 1 hydroxyproline, 1 hydroxylysine, allo- hydroxyl sine, 6-N-methyl sine, N-ethylglycine, N- methylglycine, N-ethylasparagine, allo-isoleucine, N-methylisoleucine, N-methylvaline, pyroglutamine, aminobutyric acid and synthetic amino acids, especially ornithine, norleucine, norvaline, cyclohexyl-alanine and omega-amino acids.
  • the derivatives also cover retropeptides and retro-inversopeptides, as well as peptides in which the side chain of one or more of the amino acids is substituted by groups which do not modify the antimicrobial activity of the peptides of the invention.
  • fragments of the peptides of the invention are meant fragments of at least 5 amino acids which exhibit antimicrobial activity.
  • the antimicrobial activity of the derivatives and fragments of the peptides of the invention can be demonstrated using the in vitro tests described below in Example 4.
  • the invention also relates to a polypeptide comprising a peptide of the invention.
  • the invention more particularly contemplates a polypeptide comprising a peptide of the invention, one and / or the other of the ends of said peptide comprising one or more amino acids necessary for its expression and / or its targeting in a host organism.
  • the invention also relates to an isolated polynucleotide encoding a peptide or polypeptide of the invention.
  • polynucleotide according to the present invention means a nucleic sequence of DNA or RNA type, preferably DNA, in particular double strand.
  • the invention also relates to isolated polynucleotides which comprise modifications at the level of one or more nucleotides resulting from the degeneration of the genetic code and which encode the same amino acid sequence of the peptides or polypeptides of the invention.
  • the invention also covers isolated polynucleotides encoding the peptides or polypeptides of the invention and capable of hybridizing under stringent conditions to said peptides or polypeptides.
  • stringent condition according to the present invention means the conditions taught by Sambrook et al. (Molecular cloning, 1989, Noland C. ed., New York: Cold Spring Harbor Laboratory Press).
  • the invention also covers the nucleotide sequences complementary to the isolated polynucleotides defined above as well as the corresponding RNAs.
  • the invention also relates to a chimeric gene comprising at least, operatively linked, a constitutive or inducible promoter functional in a host organism, a polynucleotide encoding a peptide or a polypeptide of the invention and a functional terminator in an organism. host.
  • operatively linked together means elements linked together so that the operation of one of the elements is affected by that of another.
  • a promoter is operably linked to a coding sequence when it is able to affect the expression of the latter. All the regulatory elements of transcription, the translation and maturation of peptides or polypeptides that the chimeric gene can understand is known to those skilled in the art and the latter is able to choose them according to the host organism.
  • the chimeric gene may in particular comprise, as an additional regulatory element, sequences coding for a signal or transit peptide so as to direct the secretion of the peptide or polypeptide of the invention in the host organism.
  • sequences are preferably the pre-BGL2 and pro sequences of MF 1 which allow the secretion of the peptide or polypeptide of the invention directly into the culture medium.
  • the chimeric gene may further include sequences encoding an endoprotease to increase proteolytic activity in the host organism during the secretion process.
  • these sequences are preferably the sequences of the KEX2 gene coding for the endoprotease yscf which makes it possible to cleave the pro sequence of the pre-pro-peptide of the invention during the secretion process.
  • the invention also relates to a cloning and / or expression vector characterized in that it contains a polynucleotide or a chimeric gene according to the invention for transforming a host organism and expressing in the latter a peptide or polypeptide of the invention .
  • the vector can be a plasmid, a cosmid, a bacteriophage or a virus, in particular a baculovirus.
  • the vector is advantageously a vector with autonomous replication comprising elements allowing its maintenance and its replication in the host organism as an origin of replication.
  • the vector may include elements allowing its selection in the host organism, for example a gene for resistance to a compound.
  • the vector can also be a shuttle vector comprising elements allowing its maintenance and its replication in each of the host organisms and elements allowing its selection in each of the host organisms.
  • Such cloning and / or expression vectors are well known to those skilled in the art and widely described in the literature.
  • the invention also relates to a host organism transformed with a vector of the invention.
  • host organism according to the present invention is meant any single or multicellular organism, lower or higher, in which a polynucleotide or a chimeric gene of the invention is introduced for the production of a peptide or polypeptide of the invention .
  • the host organism is a microorganism such as a yeast, a bacterium or a fungus. The transformation of such microorganisms makes it possible to produce the peptides or polypeptides of the invention on a semi-industrial or industrial scale.
  • bacteria the invention more particularly contemplates the bacteria of the species Escherichia coll.
  • the invention more particularly contemplates a yeast of the genus Saccharomyces, preferably of the species Saccharomyces cerevisiae, of the genus Kluyveromyces, preferably of the species Kluyveromyces lactis, of the genus Hansenula, preferably of the species Hansenula polymorpha, of the genus Pichia, preferably of the species Pichia pastoris or of the genus Schizosaccharomyces, preferably of the species Schizosaccharomyces pombe.
  • the invention envisages more particularly the filamentous fungus of the species Aspergillus nidulans.
  • the host organism is an animal, in particular an arthropod cell (for example a Spodop t era f ugiperda or Trichoplusia ni cell) or a mammalian cell.
  • an arthropod cell for example a Spodop t era f ugiperda or Trichoplusia ni cell
  • the host organism is a plant cell or a plant.
  • plant cell is meant, according to the present invention, any cell originating from a plant and which may constitute undifferentiated tissues such as calluses, differentiated tissues such as embryos, parts of plants, plants or seeds.
  • plant is meant according to the invention, any differentiated multicellular organism capable of photosynthesis, in particular monocotyledons or dicotyledons, more particularly crop plants intended or not for animal or human food.
  • the peptides of the invention are also useful for conferring on plants a character of resistance to bacterial and / or fungal diseases.
  • the invention therefore also relates to a plant cell or a plant resistant to bacterial and / or fungal diseases comprising a polynucleotide or a chimeric gene of the invention and expressing a peptide or polypeptide of the invention.
  • the peptides or polypeptides of the invention can also be chemically synthesized according to techniques known to those skilled in the art.
  • the peptides of the invention have been tested for their antimicrobial activities.
  • Tables 1 and 2 below show the in vitro antibacterial activities (IC90 ⁇ g / ml) and the in vitro antifungal activities (MIC ⁇ g / ml) of the peptides of the invention, respectively.
  • the peptides of the invention are preferably active against Gram-positive bacteria and more particularly against bacteria of the genus Enterococcus.
  • the invention therefore also aims to take advantage of the antimicrobial properties of the peptides of the invention to prevent and / or treat bacterial and / or fungal infections both in humans and animals and in plants.
  • the invention therefore advantageously relates to the use of the peptides of the invention as medicaments in human and animal therapy. It also relates to the use of the peptides of the invention for the treatment of plants against bacterial and / or fungal infections, by applying said peptides directly to the plants.
  • the invention therefore relates to an antibacterial composition
  • an antibacterial composition comprising as active agent at least one peptide of the invention advantageously combined in said composition with an acceptable vehicle.
  • the antibacterial composition may further include another antibacterial agent.
  • the antibacterial agent is preferably chosen from ⁇ -lactams and more particularly penicillins, methicillin, cephalosporins and monobactams; aminoglycosides and more particularly streptomycin, gentamicin, neomycin, tobramycin, netilmycin and amikacin; tetracyclines and more particularly minocycline and doxycycline; sulfonamides and trimethoprime; fluoroquinolones and more particularly ciprof loxacin, norfloxacin and ofloxacin; macrolides and more particularly erythromicin, azithromycin and clarithromycin; quinolones and more particularly ciprof loxine; polymyxins; glycoproteins and more particularly vancomycin and
  • the invention also relates to an antifungal composition
  • an antifungal composition comprising, as active agent, at least one peptide of the invention advantageously combined in said composition with an acceptable vehicle.
  • the antifungal composition may further comprise another antifungal agent.
  • the antifungal agent is preferably chosen from polyene derivatives and, more particularly amphotericin B, nystatin and pimaricin; azole derivatives and more particularly ketoconazole, clotrimazole, miconazole, econazole, butoconazole, oxiconazole, sulconazole, tioconazole, terconazole, fluconazole and itraconazole; allyl-thiocarbamates and more particularly tolnaftate, naftifine and terbinafine; 5-f luorocytosine; echinocandins; griseof ulvine; ciclopirox; and haloprogin.
  • vehicle is meant according to the present invention, any substance which is added to the peptide (s) of the invention to promote the transport of the peptide (s), avoid its substantial degradation in said composition and preserve its antimicrobial properties.
  • the vehicle is chosen according to the type of application of the composition. In particular, when the composition is applied to pharmaceutical use in human and animal health, the vehicle is a pharmaceutically acceptable vehicle suitable for administration of the peptide of the invention by topical route, per os or by injection. When the composition is applied for cosmetic use, the vehicle is a cosmetically acceptable vehicle suitable for administration to the skin or the integuments. When the composition is applied to an agrochemical use, the vehicle is an agrochemically acceptable vehicle suitable for administration on plants or near plants without degrading them.
  • the peptides or the composition of the invention are also of interest in the food industry. Their use makes it possible in particular to prevent contamination by bacteria, yeasts and / or fungi during the manufacture of food products and after their manufacture for their preservation.
  • the peptides or the composition of the invention can also be used for the manufacture of phytosanitary products in place of the usual products.
  • FIG. 1 represents the Lepidoptera Caligo illioneus (family of Nymphalidae; subfamily of Brassolinae) from which the peptides of the invention were isolated.
  • Example 1 Isolation of the peptides ETD-P1646, ETD-P1647 and ETD-P1648 from the hemolymph taken from immune larvae of the Lepidopteran Caligo illioneus. 1) Induction of the biological synthesis of antimicrobial substances in the hemolymph of Caligo illioneus.
  • the last larvae of the last stage of the Lepidopteran Caligo illioneus were immunized by injection of a PBS solution containing Gram positive bacteria (Micrococcus luteus and Staphylococcus aureus) and Gram negative bacteria (Pseudomonas aeruginosa), spores of filamentous fungi (Aspergillus fumigatus) and yeasts (Candida albicans).
  • the bacteria are prepared from cultures carried out in Luria-Bertani medium for 12 hours at 37 ° C.
  • the yeasts are prepared from cultures carried out in the middle of Sabouraud for 12 hours at 30 ° C.
  • the spores of A. fumigatus are taken from a frozen stock at -80 ° C.
  • the animals thus infected were kept for 24 hours on their host plant, in a ventilated space. Before the removal of the hemolymph, the larvae were cooled on ice.
  • the plasma of C. illioneus was acidified to pH 3 with a 1% trifluoroacetic acid solution (volume by volume) containing aprotinin (20 ⁇ g / ml in final concentration) and phenylthiourea (concentration 40 ⁇ M final).
  • the extraction of the peptides under acid conditions was carried out for 30 min with light stirring in an ice-water bath. The extract obtained was then centrifuged at 4 ° C for 30 min at 10000g.
  • Second step the 60% elution from the solid phase extraction described above containing the peptide was fractionated by reverse phase high performance liquid chromatography (HPLC) on a column Interchim TM brand semi-preparative, Modulocart Uptiprep type, size 250 x 10 mm, porosity 300 A and particle size 15 ⁇ m with C8 grafting.
  • the fractionation was carried out with an acetonitrile gradient / 0.05% TFA against H 2 O / 0.05% TFA from 5 to 60% in 50 minutes at a constant flow rate of 2.5 ml / min.
  • the fractions were collected automatically (Gilson TM collector type FC 204) in the first 80 wells (columns A to J) of a 96-well plate (Maximum capacity of each well: 2 ml). The collection is done per unit of time and the volume collected is approximately 1.6 ml. The collected fractions were dried under vacuum, reconstituted with ultrapure water and analyzed for their antimicrobial activities using the tests described below. The step was repeated once in order to obtain larger active fractions.
  • Second step fractions 37 and 45 from the previous step having activity against Gram-positive bacteria in the purification steps described above, eluted with a percentage of acetonitrile equal to 30 and 35 respectively, were purified so finer on a C18 reverse phase grafting analytical column of the Modulocart Uptisphere type (Interchim TM, 250 x 4.6 mm, 300 A and 5 ⁇ m), using a linear two-phase gradient of acetonitrile / 0.05% TFA against H 2 O / 0.05% TFA.
  • the gradient used ranges from 2 to 26% (31%) in 10 min and from 26 (31%) to 34% (39%) in 45 min, with a constant flow rate of 0.8 ml / min.
  • the fractions were collected manually by following the change in absorbance at 225 nm.
  • the fractions collected were dried under vacuum, reconstituted with ultrapure water and analyzed for their activities against Gram-positive bacteria in the conditions described below. The activity was found in certain sub-fractions of the fractions described above.
  • Third step the fractions described above, containing the peptides, were purified to homogeneity on a reverse phase column of Interchim TM brand of the Modulocart Uptisphere type (C18 grafting, 3 A particle size, size 150 ⁇ 2 mm) in using a linear two-phase gradient of acetonitrile / 0.05% TFA against H 2 O / 0.05% TFA (gradient depending on the percentage of elution of acetonitrile from the sub-fraction to be purified), with a constant flow rate of 0, 2 ml / min at a controlled temperature of 30 ° C.
  • the fractions were collected manually by following the change in absorbance at 225 nm.
  • the collected fractions were dried under vacuum, reconstituted with filtered ultrapure water and analyzed for their activities against Gram positive bacteria.
  • Example 2 Structural characterization of the peptides ETD-P1646, ETD-P1647 and ETD-P1648.
  • the purity check was carried out on a MALDI-TOF Bruker Biflex mass spectrometer (Bremen, Germany) in positive linear mode (see section 3 below).
  • the mass measurements were carried out on a MALDI-TOF Bruker Biflex mass spectrometer (Bremen, Germany) in positive linear mode.
  • the mass spectra were calibrated externally with a standard mixture of peptides of known m / z, respectively 2199.5 Da, 3046.4 Da and 4890.5 Da.
  • the different products to be analyzed were deposited on a thin layer of ⁇ -cyano-4-hydroxycinnamic acid crystals obtained by rapid evaporation of a saturated solution in acetone. After drying under a slight vacuum, the samples were washed with a drop of 0.1% trifluoroacetic acid before being introduced into the mass spectrometer.
  • the difference in mass observed between the S-pyridylethylated peptide and the native peptide makes it possible to determine the number of cysteine residues present in each of the peptides.
  • the peptide fragments were separated by reverse phase HPLC on a column of Interchim TM brand of the Modulocart Uptisphere type (C18 grafting, particle size 3 ⁇ , size 150 ⁇ 2 mm) with a linear gradient of acetonitrile / 0.05% TFA against H 2 O / 0.05% TFA from 2 to 60% in 80 min with a flow rate of 0.2 ml / min and a constant temperature of 37 ° C.
  • the fragments obtained were analyzed by MALDI-TOF mass spectrometry and the peptide corresponding to the C-terminal fragment was sequenced by Edman degradation.
  • the primary sequence of the ETD-P1646 peptide is represented in the sequence list in the appendix under the number SEQ ID NO: 2.
  • the molecular mass of the native ETD-P1646 peptide is 4383 Da and the molecular mass of the ETD-P1646 S peptide pyridylethylated is 4384 Da.
  • the primary sequence of the ETD-P1647 peptide is represented in the annexed sequence list under the number SEQ ID NO: 3.
  • the molecular mass of the ETD-peptide Native P1647 is 4202 Da and the molecular weight of the peptide ETD-P1647 S-pyridylethylated is 4205 Da.
  • the primary sequence of the ETD-P1648 peptide is represented in the annexed sequence list under the number SEQ ID NO: 4.
  • Native P1648 is 4408 Da and the molecular weight of the peptide ETD-P1648 S-pyridylethylated is 4410 Da.
  • Example 3 Production of the peptides ETD-P1646, ETD-P1647 and ETD-P1648.
  • ETD-P1646, ETD-P1647 and ETD-P1648 have been synthesized chemically (Altergen).
  • Antibacterial activities were assessed in vitro by determination of IC90 (Growth Inhibition ⁇ 90%). The tests were carried out on the following bacterial strains:
  • -Gram positive bacteria Staphylococcus aureus (strain 21; Gift of the Institute of Molecular and Cellular Biology, France), Enterococcus faecalis (clinical strain 17; Gift of Dr. G. Prevot, Institute of Bacteriology, France) and Enterococcus faecium (clinical strain 18; Gift of Dr. G. Prevot, Institute of Bacteriology, France); - Gram negative bacteria: Pseudomonas aeruginosa (Gift of the Institute of Molecular and Cellular Biology, France). All these strains are sensitive to the antibacterials commonly used in hospitals. a) Preparation of the bacterial suspensions.
  • a 4 ml preculture in LB medium was prepared by seeding a colony of the bacterial strain of interest.
  • the preculture was incubated at 35-37 ° C with shaking for 6 h.
  • the concentration of the preculture was evaluated by measuring the optical density at 600-620 nm according to the relation bacterial density ⁇ f (OD).
  • the concentration was adjusted by dilution so as to obtain a suspension of 2.10 6 / ml in final concentration.
  • the concentration of the bacterial suspension was checked by enumeration of the Colony Forming Units (CFU).
  • the bacterial suspension at 2.10 6 / ml was diluted in cascade (10 _1 , 10 "2 , 10 " 3 , ...
  • the IC90s were determined by a liquid test in 96-well microplates. 100 ⁇ l of test sample were distributed in duplicates so as to obtain a range of final concentrations from 64 to 0.125 ⁇ g / ml in the wells. 100 ⁇ l of bacterial suspension at 2.10 6 / ml was added to each well so as to obtain a final concentration of 10 6 / ml. The microtiter plates were incubated at 30-35 ° C for 16-18 h.
  • the IC90 corresponds to the well where the percentage of growth is less than or equal to 10%.
  • the results of the antibacterial activities (IC90) are presented in Table 1 exposed in the description. 2) Antifungal tests.
  • the antifungal activities were evaluated in vitro by determination of the Minimum Inhibitory Concentration (MIC).
  • MIC Minimum Inhibitory Concentration
  • Candida albicans IHEM 8060 strain; Gift of Dr. H. Koenig, Civil Hospital, France
  • Candida glabrata patient strain 1; Gift of Dr. H. Koenig, Civil Hospital , France
  • filamentous fungi Aspergillus fumigatus (strain GASP 4707; Gift of Dr. H. Koenig, Hôpital civil, France).
  • a) Preparation of fungal suspensions a-1) Preparation of yeast suspensions. A yeast loop taken from a stock of yeasts suspended at 4 ° C. was spread on a Sabouraud Agar agar plate. The dish was incubated at 30 ° C for 24 to 48 hours. A few yeast colonies were collected and suspended in 10 ml of liquid Sabouraud medium. The yeast suspension obtained, which must be “milky”, has been diluted (1 ml qs 10 ml of Sabouraud medium). The concentration of the suspension was evaluated by measuring the optical density at 600 nm according to the relationship 0.1 OD at 600 nm corresponds to 2.5 ⁇ 10 6 yeasts / ml.
  • the concentration was adjusted by dilution so as to obtain a suspension of 2.5 ⁇ 10 3 / ml of final concentration.
  • the concentration of the yeast suspension was checked by enumeration of the Colony Forming Units (CFU).
  • CFU Colony Forming Units
  • the 2.5.10 3 / ml yeast suspension was cascaded (10 _1 , 10 "2 , 10 " 3 , ... 10 "6 ) then 100 ⁇ l of each dilution were spread on Sabouraud agar dishes. The dishes were incubated at 30 ° C for 24 hours then the CFUs a-2) Preparation of suspensions of filamentous fungi.
  • the fungi were seeded on malt agar plates which were incubated 5 to 7 days at 37 ° C.
  • the spores formed were collected and suspended in YPG medium.
  • the concentration of the suspension was evaluated by counting an aliquot on a counting slide (Coverslide). The concentration was adjusted by dilution so as to obtain a suspension of 5.10 3 / ml of final concentration. b) Determination of MICs.
  • the MICs were determined by a liquid test on 96-well microplates according to the M27-A and M38-P protocols of the "National Committee for Clinical Standard" (NCCLS) with the difference that the RPMI-1640 medium suggested by the NCCLS protocol was replaced by Sabouraud medium (Biomérieux) for the tests on yeasts and by YPG medium (1 g peptone, 1 g yeast extract, 3 g glucose per liter) for the tests on filamentous fungi. The activities of the test samples were determined for the range of final concentrations 0.125 to 64 ⁇ g / ml.
  • b-1 Determination of MICs on yeasts.
  • the optical density of the microplates was measured at 600 nm with a spectrophotometer for microplates after 24 and 48 hours of incubation for yeasts of the genus Candida.
  • MICs were defined according to the following scores: MIC 0:% shoots ⁇ 10%; MIC 1: 10% ⁇ % sprout ⁇
  • MIC was determined in the score interval MIC 0 and MIC 2.
  • b-2) Determination of MIC on filamentous fungi. The MIC is determined by reading the microplates with the naked eye after 48 hours of incubation for Aspergillus fumigatus.
  • MICs were defined according to the following scores: MIC 0: no trace of fungi at the bottom of the well; CMI 1: a point at the bottom of the well; MIC 2: mushrooms on half the surface of the well; CMI 3: three quarters of the well is occupied by the fungus;
  • MIC 4 whole well overgrown with fungi. The MIC was determined in the score interval MIC 0 and MIC 2. The results of the antifungal activities (MIC) are presented in Table 2 set out in the description.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Insects & Arthropods (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oncology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Communicable Diseases (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La présente invention a pour objet un peptide isolé caractérisé en ce qu'il répond à la formule (I): Xaa-Lys-Ile-Pro-Xab-Ala-Xac-Lys-Gly-Ala-Xad-Arg-Ala-Leu­Xae-Ala-Ser-Thr-Ala-Xaf-Asp-Ile-Ala-Xag-Phe-Xah-Arg-Lys­ Arg-Xai (I) dans laquelle Xaa est -NH2 ou le reste peptidique Arg ou Gly, Xab est le reste peptidique Ile-Asn ou Val-Glu, Xac est le reste peptidique Ile-Lys, Ile-Arg ou Leu-Lys, Xad est le reste peptidique Ser-Arg-Ala-Trp, Lys­Ala-Val-Gly-His-Gly-Leu ou Lys-Val-Ala-Gly-Arg-Ala-Trp, Xae est le reste peptidique Asp-Leu, Asn-Ile ou Asp-Leu, Xaf est le reste peptidique Tyr ou His, Xag est le reste peptidique Ser-Ile, Ser-Ala ou His-Leu, Xah est le reste peptidique Asn, Asp ou His, Xai est -OH ou le reste peptidique Glu, Asn ou Lys-His, ses dérivés et ses fragments. L'invention concerne également un polypeptide comprenant ledit peptide, un polynucléotide codant ledit peptide, un gène chimère, un vecteur contenant ledit polynucléotide ou ledit gène chimère et un organisme transformé. L'invention concerne également une composition antibactérienne et/ou antifongique contenant au moins un peptide de l'invention utilisable en thérapie humaine et animale, en agriculture ainsi que dans l'industrie agro-alimentaire et phytosanitaire.

Description

PEPTIDES ANTIMICROBIENS , POLYPEPTIDES COMPRENANT LESDITS PEPTIDES, GENES CODANT LESDITS PEPTIDES, VECTEURS, ORGANISMES TRANSFORMES ET COMPOSITIONS LES CONTENANT.
La présente invention a pour objet de nouveaux peptides présentant des propriétés antimicrobiennes, des polypeptides comprenant lesdits peptides, des polynucleotides codant lesdits peptides, des gènes chimères, des vecteurs contenant lesdits polynucleotides ou lesdits gènes chimères et des organismes transformés. L'invention concerne également des compositions antimicrobiennes contenant lesdits peptides utilisables en thérapie humaine et animale, en agriculture ainsi que dans l'industrie agroalimentaire et phytosanitaire.
Tant en santé humaine et animale qu'en santé végétale, le besoin de nouvelles molécules permettant de lutter contre les infections d'origine bactérienne et fongique est grandissant. En santé humaine, les infections nosocomiales d'origine bactérienne et fongique constituent des infections graves qui affectent les patients hospitalisés. Elles s'avèrent particulièrement redoutables pour les patients dont le système immunitaire est fragilisé suite à des traitements comme la corticothérapie ou la chimiothérapie, des interventions comme des transplantations ou des maladies affectant le système immunitaire comme le Syndrome d' ImmunoDéficience Acquise. La situation est particulièrement préoccupante pour les patients i munodéprimés infectés par des bactéries à Gram positif de genre Enterococcus . Les Enterococci ont été reconnus depuis ces 2 dernières décennies comme étant la principale cause du développement de bactéricémies , d'infections urinaires et d'infections intra-abdominales chez les patients hospitalisés ( Pathogenicity of Enterococci, Lynn E. Hancock and Michael S. Gilmore, Gram- Positive Pathogens , ASM Publications 2000). Parmi les Enterococci les plus pathogènes, on répertorie notamment les espèces Enterococcus faecalis et Enterococcus faeci m. Enterococcus faecalis est à lui seul responsable d'environ 80% des infections nosocomiales mentionnées précédemment. Les infections causées par les bactéries de genre Enterococcus sont particulièrement difficiles à traiter. Les Enterococci tolèrent une large variété de conditions de croissance. Ils présentent notamment la capacité de croître dans des environnements hypotoniques , hypertoniques , acides, alcalins et dans des environnements dont la gamme de température s'échelonne entre 10 et 45°C. L'azide de sodium et les sels biliaires qui inhibent la croissance voire détruisent la plupart des microorganismes, sont tolérés par les Enterococci . Les composés antibactériens les plus communément utilisés à l'heure actuelle sont ou dérivent de substances naturelles produites par des bactéries, des actinomycètes et des champignons. Ces composés antibactériens sont regroupés selon les principales classes qui suivent : les β-lactams incluant les pénicillines, la méthicilline, les céphalosporines et les monobactames ; les aminoglycosides incluant la streptomycine, la gentamicine, la néomycine, la tobramycine, la nétilmycine et l'amikacine ; les tétracyclines incluant la minocycline et la doxycycline ; les sulfonamides et trimethoprimes ; les fluoroquinolones incluant la ciprofloxacine , la norfloxacine et l'ofloxacine ; les macrolides incluant l'érythromicine, l'azithromycine et la clarithromycine ; les quinolones incluant la ciprofloxine ; les polymyxines ; les glycopeptides incluant la vancomycine ; les polymyxines ; les lincosamides ; et le chloramphénicol. Les Enterococci ont naturellement développé des mécanismes de résistance contre la plupart des antibactériens classiques et notamment contre les β-lactams de type pénicilline et céphalosporines, contre les a inoglycosides de type gentamycine, contre les quinolones, contre les glycopeptides de type vancomycine, contre les tétracyclines, contre les macrolides de type érythromycine, contre le chloramphénicol et contre 1 ' ampicilline (Diversity a ong Multidrug-Resistant Enterococci, Barbara E. Murray, Emerging Infectious Diseases, Vol.4, No.l, January-March 1998). Pour exemple, le pourcentage d'infections nosocomiales causées aux Etats-Unis par les Enterococci résistants à la vancomycine a augmenté de plus d'un facteur 20 entre 1989 et 1993 soit de 0,3% à 7,9% (Multiple-Drug Résistant Enterococci : The Nature of the Problem and an Agenda for the Future, Mark M. Huycke, Daniel F. Sahm and Michael S. Gilmore, Emerging Infectious Diseases, Vol.4, No.2, April-June 1998).
Des peptides présentant des propriétés antimicrobiennes sont produits par une grande variété d'espèces tant animales que végétales, chez lesquelles ils participent à des mécanismes non spécifiques de défense contre les infections ( Antimicrobial peptides of multicellular organisms, Zasloff M., Nature Vol.415, Jan 2002, 389-395).
Les insectes ont notamment développé un système de défense efficace contre les microorganismes. Cette réponse immunitaire s'appuie pour une large part sur la synthèse rapide et transitoire de peptides antimicrobiens à large spectre d'activité (Antimicrobial peptides in insects ; structure and function, Bulet P. and al., Dev. Comp. Immunol. 23, 1999, 329-344). Parmi les peptides d'insectes qui présentent des propriétés contre les bactéries à Gram positif, on répertorie notamment les cécropines, les défensines, la thanatine et la moricine. Les cécropines sont des peptides isolés à partir de diptères et de lépidoptères qui présentent une structure tridimensionnelle du type comportant 2 hélices amphipatiques (Amphipatic, α-helical antimicrobial peptides, Tossi A., Sandri L., Giangaspero A., Biopolymers, Vol. 55, 4-30 (2000); WO 89/00194). Les défensines d'insectes sont des peptides isolés à partir d'ordres variés d'insectes qui présentent une structure tridimensionnelle du type comportant une hélice α et 2 brins β antiparallèles reliés par 3 ponts disulfure (EP 0349451 ; WO 90/13646 ; EP 0546213 ; FR 2695392 ; EP 0607080 ; WO 97/02286). La thanatine est un peptide isolé à partir de l'hémiptère Podisus maculiventris qui présente une structure tridimensionnelle du type β hairpin-like comportant deux brins β antiparallèles reliés par un pont disulfure (WO 99/24594). La moricine est un peptide isolé à partir du lépidoptère de la famille des Bombycidae, Bombyx ori (JP 08119995 ; JP 11215983). Parmi les peptides précédemment énumérés, aucun n'a été décrit comme présentant une activité contre les bactéries à Gram positif de genre Enterococcus.
Le problème technique posé par la présente invention consiste à caractériser de nouveaux composés présentant des propriétés antifongiques et/ou antibactériennes et plus particulièrement contre les bactéries à Gram positif de genre Enterococcus responsables d'infections opportunistes graves chez l'homme et/ou les animaux. Par « antibactérien » , on entend selon la présente invention, toute molécule présentant des propriétés bactériostatiques et/ou bactéricides. Par « antifongique », on entend selon la présente invention, toute molécule présentant des propriétés fongistatiques et/ou fongicides.
Dans les séquences peptidiques rapportées ci- après, les acides aminés sont représentés par leur code à une lettre, mais ils peuvent être aussi représentés par leur code à trois lettres selon la nomenclature ci-dessous.
A Ala alanine
C Cys cystéine
D Asp acide aspartique E Glu acide glutamique
F Phe phénylalanine
G Gly glycine
H His histidine
I Ile isoleucine K Lys lysine
L Leu leucine
M Met méthionine
N Asn asparagine
P Pro proline Q Gin glutamine
R Arg arginine
S Ser serine
T Thr thréonine
V Val valine W Trp tryptophane y Tyr tyrosine
La Demanderesse a maintenant isolé, purifié et caractérisé de nouveaux peptides à partir de l'hemolymphe de larves immunisées du lépidoptère de la famille des Nymphalidae, Caligo illioneus (Figure 1). Les lépidoptères de la famille des Nymphalidae ont une activité diurne et se caractérisent par la présence d'antennes se terminant en forme de massue, de couleurs vives avec motifs et d'ailes verticales au repos.
Les peptides isolés par la Demanderesse à partir de l'hemolymphe de larves immunisées du lépidoptère Caligo illioneus répondent à la formule (I) : Xaa-Lys-Ile-Pro-Xab-Ala-Xac-Lys-Gly-Ala-Xad-Arg-Ala-Leu- Xae-Ala-Ser-Thr-Ala-Xaf-Asp-Ile-Ala-Xag-Phe-Xah-Arg-Lys- Arg-Xai (I) dans laquelle,
Xaa est — H2 ou le reste peptidique Arg ou Gly, Xab est le reste peptidique Ile-Asn ou Val-Glu,
Xac est le reste peptidique Ile-Lys, Ile-Arg ou Leu-Lys ,
Xad est le reste peptidique Ser-Arg-Ala-Trp, Lys-Ala-Val-Gly-His-Gly-Leu ou Lys-Val-Ala-Gly-Arg-Ala-Trp, Xae est le reste peptidique Asp-Leu, Asn-Ile ou
Asp-Leu,
Xaf est le reste peptidique Tyr ou His,
Xag est le reste peptidique Ser-Ile, Ser-Ala ou His-Leu, Xah est le reste peptidique Asn, Asp ou His,
Xai est —OH ou le reste peptidique Glu, Asn ou Lys-His. La présente invention a donc pour principal objet un peptide isolé répondant à la formule (I): Xaa-Lys-Ile-Pro-Xab-Ala-Xac-Lys-Gly-Ala-Xad-Arg-Ala-Leu- Xae-Ala-Ser-Thr-Ala-Xaf-Asp-Ile-Ala-Xag-Phe-Xah-Arg-Lys- Arg-Xai (I) dans laquelle Xaa, Xab, Xac, Xad, Xae, Xaf, Xag, Xah et Xai sont tels que définis précédemment, ses dérivés et ses fragments .
La formule (I) correspond à la séquence SEQ ID NO :1 dans le listage de séquences en annexe.
La présente invention concerne plus particulièrement un peptide isolé répondant à l'une des séquences suivantes :
- ETD-P1646 G K I P I N A I R K G A K A V G H G L R A L N I A S T A H D I A S A F H R K R K H (SEQ ID
NO :2 dans le listage de séquences en annexe)
- ETD-P1647 R K I P V E A I K K G A S R A W R A L D L A S T A Y D I A S I F N R K R E (SEQ ID NO :3 dans le listage de séquences en annexe) - ETD-P1648 G K I P V E A L K K G A K V A G R
A W R A L D L A S T A Y D I A H L F D R K R N (SEQ ID NO :4 dans le listage de séquences en annexe), ses dérivés et ses fragments .
A titre de dérivés des peptides de l'invention, on peut citer les peptides qui présentent une modification post-traductionnelle et/ou modification chimique en particulier une glycosylation, une amidation, une acylation, une acétylation, une méthylation ainsi que les peptides qui portent un groupement protecteur. On entend par « groupement protecteur » selon la présente invention, tout groupement permettant d'éviter la dégradation desdits peptides . Les dérivés des peptides de l'invention peuvent également être ceux dont un ou plusieurs acides aminés sont des énantiomères, des diastéréoisomères, des acides aminés naturels de conformation D, des acides aminés rares notamment 1 'hydroxyproline, 1 ' hydroxylysine, l'allo- hydroxyl sine, la 6-N-méthyl sine, la N-éthylglycine, la N- méthylglycine, la N-éthylasparagine, l'allo-isoleucine, la N-méthylisoleucine, la N-méthylvaline, la pyroglutamine, l'acide aminobutyrique et les acides aminés synthétiques notamment l'ornithine, la norleucine, la norvaline, la cyclohexyl-alanine et les oméga-acides aminés. Les dérivés couvrent également les rétropeptides et les rétro- inversopeptides, de même que les peptides dont la chaîne latérale d'un ou plusieurs des acides aminés est substituée par des groupements qui ne modifient pas l'activité antimicrobienne des peptides de l'invention.
A titre de fragments des peptides de l'invention, on entend des fragments d'au moins 5 acides aminés qui présentent une activité antimicrobienne. L'activité antimicrobienne des dérivés et des fragments des peptides de l'invention peut être mise en évidence grâce aux tests in vitro décrits ci-après dans l'exemple 4.
L'invention concerne aussi un polypeptide comprenant un peptide de l'invention. L'invention envisage plus particulièrement un polypeptide comprenant un peptide de l'invention dont l'une et/ou l'autre des extrémités dudit peptide comprend un ou plusieurs acides aminés nécessaires à son expression et/ou à son ciblage dans un organisme hôte.
L'invention concerne également un polynucleotide isolé codant un peptide ou un polypeptide de l'invention. On entend par « polynucleotide » selon la présente invention, une séquence nucléique de type ADN ou ARN, de préférence ADN, notamment double brin.
L'invention concerne également les polynucleotides isolés qui comprennent des modifications au niveau d'un ou plusieurs nucléotides résultant de la dégénérescence du code génétique et qui codent une même séquence d'acides aminés des peptides ou polypeptides de l'invention. L'invention couvre également les polynucleotides isolés codant les peptides ou les polypeptides de l'invention et capables de s'hybrider dans des conditions stringentes aux dits peptides ou polypeptides. On entend par « condition stringentes » selon la présente invention, les conditions enseignées par Sambrook et al. (Molecular cloning, 1989, Noland C. éd., New York : Cold Spring Harbor Laboratory Press).
L'invention couvre également les séquences nucléotidiques complémentaires des polynucleotides isolés définis ci-dessus ainsi que les ARN correspondants.
L'invention concerne également un gène chimère comprenant au moins, liés entre eux de façon opérationnelle, un promoteur constitutif ou inductible fonctionnel dans un organisme hôte, un polynucleotide codant un peptide ou un polypeptide de l'invention et un élément terminateur fonctionnel dans un organisme hôte. On entend par « liés entre eux de façon opérationnelle » selon l'invention, des éléments liés entre eux de façon à ce que le fonctionnement d'un des éléments est affecté par celui d'un autre. A titre d'exemple, un promoteur est lié de façon opérationnelle à une séquence codante lorsqu'il est capable d'affecter l'expression de cette dernière. L'ensemble des éléments régulateurs de la transcription, de la traduction et de la maturation de peptides ou polypeptides que le gène chimère peut comprendre est connu de l'homme du métier et ce dernier est capable de les choisir en fonction de l'organisme hôte. Le gène chimère peut notamment comprendre à titre d'élément régulateur additionnel, des séquences codant pour un peptide signal ou de transit de façon à diriger la sécrétion du peptide ou polypeptide de l'invention dans l'organisme hôte. Lorsque l'organisme hôte est une levure, ces séquences sont préférentiellement les séquences pré de BGL2 et pro de MF l qui permettent la sécrétion du peptide ou polypeptide de l'invention directement dans le milieu de culture. Le gène chimère peut en outre comprendre des séquences codant une endoprotéase pour augmenter l'activité protéolytique dans l'organisme hôte durant le processus de sécrétion. Lorsque l'organisme hôte est une levure, ces séquences sont préférentiellement les séquences du gène KEX2 codant 1'endoprotéase yscf qui permet de cliver la séquence pro du pré-pro-peptide de l'invention durant le processus de sécrétion.
L'invention concerne également un vecteur de clonage et/ou d'expression caractérisé en ce qu'il contient un polynucleotide ou un gène chimère selon l'invention pour transformer un organisme hôte et exprimer dans ce dernier un peptide ou polypeptide de l'invention. Le vecteur peut être un plasmide, un cosmide, un bactériophage ou un virus en particulier un baculovirus. Le vecteur est avantageusement un vecteur à réplication autonome comportant des éléments permettant son maintien et sa réplication dans l'organisme hôte comme une origine de réplication. En outre, le vecteur peut comporter des éléments permettant sa sélection dans l'organisme hôte comme par exemple un gène de résistance à un composé antibactérien ou un gène de sélection qui assurent la complémentation avec le gène respectif délété au niveau du génome de l'organisme hôte. Le vecteur peut également être un vecteur navette comportant des éléments permettant son maintien et sa réplication dans chacun des organismes hôte et des éléments permettant sa sélection dans chacun des organismes hôte. De tels vecteurs de clonage et/ou d'expression sont bien connus de l'homme du métier et largement décrits dans la littérature.
L'invention concerne également un organisme hôte transformé par un vecteur de l'invention. Par « organisme hôte » selon la présente invention, on entend tout organisme uni- ou pluricellulaire, inférieur ou supérieur, dans lequel un polynucleotide ou un gène chimère de l'invention est introduit pour la production d'un peptide ou polypeptide de l'invention. Selon une forme préférée de l'invention, l'organisme hôte est un microorganisme tel qu'une levure, une bactérie ou un champignon. La transformation de tels microorganismes permet de produire les peptides ou polypeptides de l'invention à échelle semi-industrielle ou industrielle. A titre de bactérie, l'invention envisage plus particulièrement la bactérie de l'espèce Escherichia coll. A titre de levure, l'invention envisage plus particulièrement une levure du genre Saccharomyces , de préférence de l'espèce Saccharomyces cerevisiae, du genre Kluyveromyces , de préférence de l'espèce Kluyveromyces lactis, du genre Hansenula, de préférence de l'espèce Hansenula polymorpha, du genre Pichia, de préférence de l'espèce Pichia pastoris ou du genre Schizosaccharomyces, de préférence de l'espèce Schizosaccharomyces pombe. A titre de champignon, l'invention envisage plus particulièrement le champignon filamenteux de l'espèce Aspergillus nidulans.
Selon une autre forme de l'invention, l'organisme hôte est un animal, en particulier une cellule d'arthropode (par exemple une cellule de Spodop t era f ugiperda ou de Trichoplusia ni ) ou une cellule de mammifère.
Selon une autre forme de l'invention, l'organisme hôte est une cellule végétale ou une plante. Par « cellule de plante », on entend, selon la présente invention, toute cellule issue d'une plante et pouvant constituer des tissus indifférenciés tels que des cals, des tissus différenciés tels que des embryons, des parties de plantes, des plantes ou des semences. Par « plante », on entend selon l'invention, tout organisme pluricellulaire différencié capable de photosynthèse, en particulier monocotylédones ou dicotylédones, plus particulièrement des plantes de culture destinées ou non à l'alimentation animale ou humaine.
Les peptides de l'invention sont également utiles pour conférer aux plantes un caractère de résistance aux maladies bactériennes et/ou fongiques. L'invention concerne donc également une cellule végétale ou une plante résistante aux maladies bactériennes et/ou fongiques comprenant un polynucleotide ou un gène chimère de l'invention et exprimant un peptide ou polypeptide de l'invention.
Les peptides ou polypeptides de l'invention peuvent aussi être synthétisés chimiquement selon des techniques connues de l'homme du métier. Les peptides de l'invention ont été testés pour leurs activités antimicrobiennes. Les tableaux 1 et 2 ci- après exposent respectivement les activités antibactériennes in vitro (IC90 μg/ml) et les activités antifongiques in vitro (CMI μg/ml) des peptides de l'invention.
Tableau 1
Figure imgf000014_0001
Tableau 2
Figure imgf000014_0002
ND Non Déterminé
Les peptides de l'invention sont préférentiellement actifs contre les bactéries à Gram positif et plus particulièrement envers les bactéries du genre Enterococcus. L'invention vise donc en outre la mise à profit des propriétés antimicrobiennes des peptides de l'invention pour prévenir et/ou traiter les infections bactériennes et /ou fongiques tant chez l'homme et l'animal que chez les plantes. L'invention concerne donc avantageusement l'utilisation des peptides de l'invention à titre de médicament en thérapie humaine et animale. Elle concerne également l'utilisation des peptides de l'invention pour le traitement des plantes contre les infections bactériennes et/ou fongiques, en appliquant lesdits peptides directement sur les plantes.
L'invention concerne donc une composition antibactérienne comprenant à titre d'agent actif au moins un peptide de l'invention avantageusement associé dans ladite composition à un véhicule acceptable. La composition antibactérienne peut en outre comprendre un autre agent antibactérien. Selon la présente invention, l'agent antibactérien est, de préférence, choisi parmi les β- lactams et plus particulièrement les pénicillines, méthicilline, céphalosporines et monobactames ; les aminoglycosides et plus particulièrement la streptomycine, gentamicine, néomycine, tobramycine, nétilmycine et amikacine; les tétracyclines et plus particulièrement la minocycline et doxycycline ; les sulfonamides et trimethoprime ; les f luoroquinolones et plus particulièrement le ciprof loxacine, norfloxacine et ofloxacine ; les macrolides et plus particulièrement l'érythromicine, azithromycine et clarithromycine ; les quinolones et plus particulièrement la ciprof loxine ; les polymyxines ; les glycoprotéines et plus particulièrement la vancomycine et teicoplanine ; lipopeptides et plus particulièrement la daptomycine ; les lincosamides ; chloramphénicol ; et oxazo l idinone s et plus particulièrement le linezolide .
L ' invention concerne aussi une composition antifongique comprenant à titre d' agent actif au moins un peptide de l ' invention avantageusement associé dans ladite composition à un véhicule acceptable . La composition antifongique peut , en outre , comprendre un autre agent antifongique . Selon la présente invention , l ' agent antifongique est, de préférence , choisi parmi les dérivés polyènes et , plus particulièrement 1 ' amphotéricine B , nystatine et pimaricine ; les dérivés azolés et plus particulièrement le ketoconazole , clotrimazole, miconazole , econazole , butoconazole , oxiconazole , sulconazole , tioconazole , terconazole, fluconazole et itraconazole ; les allyliques-thiocarbamates et plus particulièrement le tolnaftate, naftifine et terbinafine ; 5-f luorocytosine ; echinocandins ; griseof ulvine ; ciclopirox ; et haloprogine .
Par « véhicule » , on entend selon la présente invention, toute substance qui est ajoutée au(x) peptide(s) de l'invention pour favoriser le transport du ou des peptides, éviter sa dégradation substantielle dans ladite composition et préserver ses propriétés antimicrobiennes. Le véhicule est choisi en fonction du type d'application de la composition. Notamment, lorsque la composition est appliquée à un usage pharmaceutique en santé humaine et animale, le véhicule est un véhicule pharmaceutiquement acceptable adapté à une administration du peptide de l'invention par voie topique, per os ou par injection. Lorsque la composition est appliquée à un usage cosmétique, le véhicule est un véhicule cosmétiquement acceptable adapté à une administration sur la peau ou les phanères . Lorsque la composition est appliquée à un usage agrochimique, le véhicule est un véhicule agrochimiquement acceptable adapté à une administration sur les plantes ou à proximité des plantes sans les dégrader.
Les peptides ou la composition de l'invention présentent également un intérêt dans l'industrie agroalimentaire. Leur utilisation permet notamment d'empêcher la contamination par les bactéries, les levures et/ou les champignons pendant la fabrication de produits alimentaires et après leur fabrication pour leur conservation.
Dans l'industrie phytosanitaire, les peptides ou la composition de l'invention peuvent également être utilisés pour la fabrication des produits phytosanitaires en lieu et place des produits usuels.
D'autres avantages et caractéristiques des peptides de l'invention apparaîtront des exemples qui suivent concernant leur préparation et leurs activités antimicrobiennes et dans lesquels il sera fait référence aux dessins en annexe dans lesquels :
-la figure 1 représente le lépidoptère Caligo illioneus (famille des Nymphalidae ; sous-famille des Brassolinae) à partir duquel les peptides de l'invention ont été isolés.
I . Exemple 1 ; Isolement des peptides ETD- P1646, ETD-P1647 et ETD-P1648 à partir de l'hemolymphe prélevée chez des larves immunisées du lépidoptère Caligo illioneus. 1) Induction de la synthèse biologique de substances antimicrobiennes dans l'hemolymphe de Caligo illioneus.
Les larves matures de dernier stade du lépidoptère Caligo illioneus ont été immunisées par injection d'une solution de PBS contenant des bactéries à Gram positif (Micrococcus luteus et Staphylococcus aureus) et à Gram négatif ( Pseudomonas aeruginosa) , des spores de champignons filamenteux (Aspergillus fumigatus ) et des levures ( Candida albicans) . Les bactéries sont préparées à partir de cultures réalisées en milieu de Luria-Bertani durant 12 heures à 37°C. Les levures sont préparées à partir de cultures réalisées en milieu de Sabouraud durant 12 heures à 30°C. Les spores d 'A. fumigatus sont prélevées d'un stock congelé à —80°C. Les animaux ainsi infectés ont été conservés pendant 24 heures sur leur plante hôte, dans un espace ventilé. Avant le prélèvement de l'hemolymphe, les larves ont été refroidies sur de la glace.
2) Préparation du plasma. L'hemolymphe de C. i l l ioneus (28 ml) a été collectée par piqûre latérale au niveau de la tête suivie d'une pression manuelle et recueillie dans des tubes de microcentrifugation en polypropylène de 1,5 ml refroidis dans de la glace et contenant de l'aprotinine comme inhibiteur de protéases (20 μg/ml en concentration finale) et de la phénylthiourée comme inhibiteur de la mélanisation (concentration finale de 40 μM) . L'hemolymphe ainsi collectée à partir des larves immunisées a été centrifugée à 8000 rpm pendant 1 min à 4°C afin d'éliminer les hemocytes. Le surnageant de centrifugation a été alors centrifugé à 12000 rpm. L'hemolymphe dépourvue des cellules sanguines a été conservée à -80°C jusqu'à son utilisation. 3) Acidification du plasma.
Après décongélation rapide, le plasma de C. illioneus a été acidifié à pH 3 avec une solution d'acide trifluoroacétique à 1% (volume à volume) contenant de l'aprotinine (20 μg/ml en concentration finale) et la phénylthiourée (concentration finale de 40 μM) . L'extraction en condition acide des peptides a été réalisée pendant 30 min sous agitation légère dans un bain d'eau glacée. L'extrait obtenu a été ensuite centrifugé à 4°C pendant 30 min à 10000g.
4) Purification des peptides. a) Prépurification par extraction en phase solide.
Une quantité d'extrait équivalente à 6 ml d'hemolymphe de C. illioneus a été déposée sur un support de 5 g de phase inverse tel que commercialisé sous la forme de cartouche (Sep-Pak™ C18, Waters Associates), équilibré avec de l'eau acidifiée (TFA 0,05%). Les molécules hydrophiles ont été éliminées par un simple lavage avec de l'eau acidifiée. L'elution du peptide a été réalisée par une solution à 60% d'acétonitrile dans de l'eau contenant
0,05% de TFA. La fraction éluée avec 60% d'acétonitrile a été séchée sous vide dans le but d'éliminer l'acétonitrile et le TFA puis elle a été reconstituée dans de l'eau acidifiée (TFA 0,05%) stérile avant d'être soumise à la première étape de purification. L'étape 4 a) a été répétée une fois afin d'obtenir la fraction éluée avec 60% d'acétonitrile en quantité plus importante. b) Purification par chromatographie liquide à haute performance (HPLC) sur colonne de phase inverse.
Première étape : l'elution 60% issue de l'extraction en phase solide décrite ci-dessus contenant le peptide a été fractionnée par chromatographie liquide à haute performance (HPLC) en phase inverse sur une colonne semi-préparative de marque Interchim™, de type Modulocart Uptiprep, de taille 250 x 10 mm, de porosité 300 A et de granulométrie 15 μm avec un greffage C8. Le fractionnement a été réalisé par un gradient d' acétonitrile/0 , 05% TFA contre H2O/0,05% TFA de 5 à 60% en 50 minutes à un débit constant de 2,5 ml/min. Les fractions ont été collectées automatiquement (collecteur Gilson™ de type FC 204) dans les 80 premiers puits (colonnes A à J) d'une plaque 96- puits (Contenance maximale de chaque puits : 2 ml) . La collecte se fait par unité de temps et le volume collecté est d'environ 1,6 ml. Les fractions recueillies ont été asséchées sous vide, reconstituées avec de l'eau ultrapure et analysées pour leurs activités antimicrobiennes en utilisant les tests décrits ci-dessous. L'étape a été répétée une fois afin d'obtenir des fractions actives en quantité plus importante.
Seconde étape : les fractions 37 et 45 issues de l'étape précédente présentant une activité contre les bactéries à Gram positif dans les étapes de purification précédemment décrites, éluées à un pourcentage d'acétonitrile égal respectivement à 30 et 35, ont été purifiées de manière plus fine sur une colonne analytique de phase inverse de greffage C18 de type Modulocart Uptisphère (Interchim™, 250 x 4,6 mm, 300 A et 5 μm) , en utilisant un gradient linéaire diphasique d'acétonitrile/0,05% TFA contre H2O/0,05% TFA. Par exemple, pour une fraction éluée à 30% (35%) d'acétonitrile, le gradient utilisé va de 2 à 26% (31%) en 10 min et de 26 (31%) à 34% (39%) en 45 min, avec un débit constant de 0,8 ml/min. Les fractions ont été collectées manuellement en suivant la variation de l'absorbance à 225 nm. Les fractions recueillies ont été asséchées sous vide, reconstituées avec de l'eau ultrapure et analysées pour leurs activités contre les bactéries à Gram positif dans les conditions décrites ci-dessous. L'activité a été retrouvée dans certaines sous-fractions des fractions décrites ci-dessus.
Troisième étape : les fractions décrites ci- dessus, contenant les peptides ont été purifiées jusqu'à homogénéité sur une colonne de phase inverse de marque Interchim™ de type Modulocart Uptisphère (greffage C18, granulométrie 3 A, de taille 150 x 2 mm) en utilisant un gradient linéaire diphasique d' acétonitrile/0 , 05% TFA contre H2O/0,05% TFA (gradient dépendant du pourcentage d'élution en acétonitrile de la sous-fraction à purifier), avec un débit constant de 0,2 ml/min à une température contrôlée de 30°C. Les fractions ont été collectées manuellement en suivant la variation de l'absorbance à 225 nm. Les fractions recueillies ont été asséchées sous vide, reconstituées avec de l'eau ultrapure filtrée et analysées pour leurs activités contre les bactéries à Gram positif.
II. Exemple 2 ; Caractérisation structurale des peptides ETD-P1646, ETD-P1647 et ETD-P1648.
1) Vérification de la pureté par Spectrométrie de masse Maldi-TOF (Matrix Assisted Laser Desorption Ionization-Time Of Flight).
Le contrôle de pureté a été effectué sur un spectrometre de masse MALDI-TOF Bruker Biflex (Bremen, Allemagne) en mode linéaire positif (voir section 3 ci- dessous) .
2) Réduction et S-pyridyléthylation en vue de la détermination du nombre de cystéines . Le nombre de résidus cystéine a été déterminé sur les peptides natifs par réduction et S- pyridyléthylation. 400 pmoles de peptide natif ont été réduites dans 40 μl de tampon Tris/HCl 0,5 M, pH 7,5 contenant 2 mM d'EDTA et 6 M de chlorure de guanidinium en présence de 2 μl de dithiothréitol 2,2 M. Le milieu réactionnel a été placé sous atmosphère d'azote. Après 60 min d'incubation à l'obscurité, 2 μl de 4-vinylpyridine fraîchement distillée ont été ajoutés à la réaction qui a été alors incubée durant 10 min à 45°C à l'obscurité et sous atmosphère d'azote. Le peptide S-pyridyléthylé a été ensuite séparé des constituants du milieu réactionnel par chromatographie de phase inverse sur une colonne analytique de phase inverse Aquapore RP-300 C8 (Brownlee™, 220 x 4,6 mm, 300 Â) , en utilisant un gradient linéaire d'acétonitrile/0,05% TFA contre H2O/0,05%TFA de 2 à 52% pendant 70 min.
3 ) Détermination de la masse du peptide natif, du peptide S-pyridyléthylé et des fragments de protéolyse par spectrometrie de masse MALDI-TOF (Matrix Assisted Laser Desorption Ionization-Time Of Flight) .
Les mesures de masses ont été effectuées sur un spectrometre de masse MALDI-TOF Bruker Biflex (Bremen, Allemagne) en mode linéaire positif. Les spectres de masse ont été calibrés de façon externe avec un mélange standard de peptides de m/z connues, respectivement 2199,5 Da, 3046,4 Da et 4890,5 Da. Les différents produits à analyser ont été déposés sur une fine couche de cristaux d'acide α- cyano-4-hydroxycinnamique obtenue par une évaporation rapide d'une solution saturée dans l'acétone. Après séchage sous un léger vide, les échantillons ont été lavés par une goutte d'acide trifluoroacétique à 0,1% avant d'être introduits dans le spectrometre de masse. La différence de masse observée entre le peptide S-pyridyléthylé et le peptide natif permet de déterminer le nombre de résidus cystéine présents dans chacun des peptides .
4) Séquençage par dégradation d'Edman.
Le séquençage automatique par dégradation d'Edman des peptides natifs, des peptides S-pyridyléthylés et des différents fragments obtenus après les différents clivages protéolytiques et la détection des dérivés phénylthiohydantoines ont été réalisés sur un sequenceur de type Procise HT sequencing System, modèle 492 de marque Applied Biosystem.
5) Clivages protéolytiques.
Confirmation des séquences peptidiques dans la région C-terminale. 200 pmoles de peptide réduit et S- pyridyléthylé ont été incubées en présence de 5 pmoles d' endoprotéinase-Asp-N ( Endoproteinase Asp-N, clivage spécifique des résidus acide aspartique du côté N-terminal, Takara, Otsu) selon les conditions préconisées par le fournisseur (tampon phosphate de sodium 20 mM, pH 8,9, en présence de Tween 20 à 0,01%) pendant 16 heures. Après arrêt de la réaction avec du TFA 1%, les fragments peptidiques ont été séparés par HPLC en phase inverse sur une colonne de marque Interchim™ de type Modulocart Uptisphère (greffage C18, granulométrie 3 Â, de taille 150 x 2 mm) avec un gradient linéaire d'acétonitrile/0,05% TFA contre H2O/0,05% TFA de 2 à 60% en 80 min avec un débit de 0,2 ml/min et une température constante de 37°C. Les fragments obtenus ont été analysés par spectrometrie de masse MALDI-TOF et le peptide correspondant au fragment C- terminal a été séquence par dégradation d'Edman.
La séquence primaire du peptide ETD-P1646 est représentée dans la liste de séquences en annexe sous le numéro SEQ ID NO: 2. La masse moléculaire du peptide ETD- P1646 natif est de 4383 Da et la masse moléculaire du peptide ETD-P1646 S-pyridyléthylé est de 4384 Da.
La séquence primaire du peptide ETD-P1647 est représentée dans la liste de séquences en annexe sous le numéro SEQ ID NO: 3. La masse moléculaire du peptide ETD- P1647 natif est de 4202 Da et la masse moléculaire du peptide ETD-P1647 S-pyridyléthylé est de 4205 Da.
La séquence primaire du peptide ETD-P1648 est représentée dans la liste de séquences en annexe sous le numéro SEQ ID NO: 4. La masse moléculaire du peptide ETD-
P1648 natif est de 4408 Da et la masse moléculaire du peptide ETD-P1648 S-pyridyléthylé est de 4410 Da.
III . Exemple 3 : Production des peptides ETD- P1646, ETD-P1647 et ETD-P1648.
Les peptides ETD-P1646, ETD-P1647 et ETD-P1648 ont été synthétisés chimiquement (Altergen) .
IV . Exemple 4 : Tests d'activité antimicrobienne in vitro.
1) Tests antibactériens.
Les activités antibactériennes ont été évaluées in vitro par détermination de l'IC90 (Inhibition de Croissance ≥ à 90%). Les tests ont été réalisés sur les souches bactériennes suivantes :
-Bactéries à Gram positif : Staphylococcus aureus (souche 21; Don de l'Institut de Biologie Moléculaire et Cellulaire, Strasbourg), Enterococcus faecalis (souche clinique 17; Don du Dr. G. Prevot, Institut de Bactériologie, Strasbourg) et Enterococcus faecium (souche clinique 18; Don du Dr. G. Prevot, Institut de Bactériologie, Strasbourg) ; - Bactéries à Gram négatif : Pseudomonas aeruginosa (Don de l'Institut de Biologie Moléculaire et Cellulaire, Strasbourg) . Toutes ces souches sont sensibles aux antibactériens communément utilisés en milieu hospitalier. a) Préparation des suspensions bactériennes. Une préculture de 4 ml en milieu LB a été préparée par ensemencement d'une colonie de la souche bactérienne d'intérêt. La préculture a été incubée à 35- 37°C sous agitation pendant 6h. La concentration de la préculture a été évaluée par mesure de la densité optique à 600-620 nm suivant la relation densité bactérienne≈f (DO) . La concentration a été ajustée par dilution de façon à obtenir une suspension de 2.106/ml en concentration finale. La concentration de la suspension bactérienne a été contrôlée par dénombrement des Unités Formant Colonies (UFC). La suspension bactérienne à 2.106/ml a été diluée en cascade (10_1, 10"2, 10"3, ... 10"6) puis 100 μl des dilutions 10"6, 10"5 et 10~4 ont été étalés sur des boîtes de gélose LB agar. Les boîtes ont été incubées à 35-37°C pendant 16 à 18h puis les UFC ont été dénombrées. b) Détermination des IC90.
Les IC90 ont été déterminées par un test liquide en microplaques de 96 puits. 100 μl d'échantillon à tester ont été distribués en duplicats de façon à obtenir une gamme de concentrations finales de 64 à 0.125 μg/ml dans les puits. 100 μl de suspension bactérienne à 2.106/ml ont été ajoutés dans chaque puits de façon à obtenir une concentration finale de 106/ml. Les plaques de microtitration ont été incubées à 30-35°C pendant 16 à 18h. La densité optique des puits a été mesurée à 600-620 nm et les résultats ont été interprétés en calculant le pourcentage de pousse dans chaque puits selon la formule : %Pousse= (DO puits - DO du TS)/(DO du TP - DO du TS)*100 où DO du TP= DO du témoin de pousse (suspension bactérienne sans échantillon à tester), DO du TS= DO du témoin de stérilité (milieu de culture sans bactéries) et DO puits= DO du puits dont on souhaite calculer le pourcentage de pousse (suspension bactérienne + échantillon à tester). L'IC90 correspond au puits où le pourcentage de pousse est inférieur ou égal à 10%. Les résultats des activités antibactériennes (IC90) sont présentés dans le tableau 1 exposée dans la description. 2) Tests antifongiques.
Les activités antifongiques ont été évaluées in vitro par détermination de la Concentration Minimale Inhibitrice (CMI ) .
Les tests ont été réalisés sur les souches de levures suivantes : Candida albicans (souche IHEM 8060; Don du Dr. H. Koenig, Hôpital civil, Strasbourg) et Candida glabrata (souche patient 1 ; Don du Dr. H. Koenig, Hôpital civil, Strasbourg) ainsi que sur les champignons filamenteux suivants : Aspergillus fumigatus (souche GASP 4707; Don du Dr. H. Koenig, Hôpital civil, Strasbourg).
Toutes ces souches sont sensibles aux antifongiques communément utilisés en milieu hospitalier, a) Préparation des suspensions fongiques. a-1) Préparation des suspensions de levures . Une anse de levures prélevée à partir d'un stock de levures en suspension à 4°C a été étalée sur une boîte de gélose Sabouraud Agar. La boîte a été incubée à 30°C pendant 24 à 48h. Quelques colonies de levures ont été prélevées et mises en suspension dans 10 ml de milieu Sabouraud liquide. La suspension de levure obtenue qui doit être « laiteuse » a été diluée (1 ml qsp 10 ml de milieu Sabouraud). La concentration de la suspension a été évaluée par mesure de la densité optique à 600 nm suivant la relation 0.1 DO à 600 nm correspond 2,5.106 levures/ml. La concentration a été ajustée par dilution de façon à obtenir une suspension de 2,5.103/ml de concentration finale. La concentration de la suspension de levure a été contrôlée par dénombrement des Unités Formant Colonies (UFC). La suspension de levures à 2,5.103/ml a été diluée en cascade (10_1, 10"2, 10"3, ... 10"6) puis 100 μl de chaque dilution ont été étalés sur des boîtes de gélose Sabouraud. Les boîtes ont été incubées à 30°C pendant 24h puis les UFC ont été dénombrées . a-2) Préparation des suspensions de champignons filamenteux.
Les champignons ont été ensemencés sur des boîtes de gélose de malt-agar qui ont été incubées 5 à 7 jours à 37°C. Les spores formées ont été récoltées et mises en suspension dans du milieu YPG. La concentration de la suspension a été évaluée par comptage d'un aliquot sur une lamelle de comptage (Coverslide) . La concentration a été ajustée par dilution de façon à obtenir une suspension de 5.103/ml de concentration finale. b) Détermination des CMI .
Les CMI ont été déterminées par un test liquide sur microplaques de 96 puits selon les protocoles M27-A et M38-P du « National Committee for Clinical Standard » (NCCLS) à la différence près que le milieu RPMI-1640 suggéré par le protocole NCCLS a été substitué par du milieu Sabouraud (Biomérieux) pour les tests sur les levures et par du milieu YPG (1 g peptone, 1 g yeast extract, 3 g glucose par litre) pour les tests sur les champignons filamenteux. Les activités des échantillons à tester ont été déterminées pour la gamme de concentrations finales 0.125 à 64 μg/ml. b-1) Détermination des CMI sur les levures. La densité optique des microplaques a été mesurée à 600 nm avec un spectrophotomètre pour microplaques après 24 et 48h d'incubation pour les levures du genre Candida .
Le pourcentage de pousse (%pousse) a été calculé à partir des valeurs de densité optique (DO) mesurées selon la formule suivante : %pousse=((DO puits avec échantillon à tester - DO milieu seul) /(DO puits sans échantillon à tester - DO milieu seul) )*100.
Les CMI ont été définies selon les scores suivants : CMI 0 : %pousse ≤ 10% ; CMI 1 : 10% < %pousse ≤
20% ; CMI 2 : 20% < %pousse <50% ; CMI 3 : > 50%. La CMI a été déterminée dans l'intervalle de score CMI 0 et CMI 2. b-2 ) Détermination des CMI sur les champignons filamenteux. La CMI est déterminée par lecture à l'œil nu des microplaques après 48h d'incubation pour Aspergillus fumigatus .
Les CMI ont été définies selon les scores suivants : CMI 0 : pas de trace de champignons au fond du puits ; CMI 1 : un point au fond du puits ; CMI 2 : champignons sur la moitié de la surface du puits ; CMI 3 : les trois quarts du puits sont occupés par le champignon ;
MIC 4 : ensemble du puits envahi de champignons . La CMI a été déterminée dans l'intervalle de score CMI 0 et CMI 2. Les résultats des activités antifongiques (CMI) sont présentés dans le tableau 2 exposé dans la description.

Claims

REVENDICATIONS
1) Peptide isolé caractérisé en ce qu'il répond à la formule ( I ) : Xaa-Lys-Ile-Pro-Xab-Ala-Xac-Lys-Gly-Ala-Xad-Arg-Ala-Leu- Xae-Ala-Ser-Thr-Ala-Xaf-Asp-Ile-Ala-Xag-Phe-Xah-Arg-Lys- Arg-Xai (I) (SEQ ID NO :1 dans la liste de séquences en annexe) dans laquelle, Xaa est —NH2 ou le reste peptidique Arg ou Gly,
Xab est le reste peptidique Ile-Asn ou Val-Glu, Xac est le reste peptidique Ile-Lys, Ile-Arg ou Leu-Lys,
Xad est le reste peptidique Ser-Arg-Ala-Trp, Lys-Ala-Val-Gly-His-Gly-Leu ou Lys-Val-Ala-Gly-Arg-Ala-Trp,
Xae est le reste peptidique Asp-Leu, Asn-Ile ou
Asp-Leu,
Xaf est le reste peptidique Tyr ou His,
Xag est le reste peptidique Ser-Ile, Ser-Ala ou His-Leu,
Xah est le reste peptidique Asn, Asp ou His, Xai est —OH ou le reste peptidique Glu, Asn ou
Lys-His, ses dérivés et ses fragments .
2) Peptide isolé selon la revendication 1, caractérisé en ce qu'il répond à l'une des séquences suivantes :
- ETD-P1646 G K I P I N A I R K G A K A V G H G L R A L N I A S T A H D I A S A F H R K R K H (SEQ ID
NO :2 dans la liste de séquences en annexe)
- ETD-P1647 R K I P V E A I K K G A S R A W R A L D L A S T A Y D I A S I F N R K R E (SEQ ID NO :3 dans la liste de séquences en annexe) - ETD-P1648 G K I P V E A L K K G A K V A G R A W R A L D L A S T A Y D I A H L F D R K R N (SEQ ID NO :4 dans la liste de séquences en annexe), ses dérivés et ses fragments.
3) Polypeptide caractérisé en ce qu'il comprend un peptide selon l'une quelconque des revendications 1 ou 2.
4) Polypeptide selon la revendication 3, caractérisé en ce qu'il comprend un peptide selon l'une quelconque des revendications 1 ou 2 dont l'une et/ou l'autre des extrémités dudit peptide comprend un ou plusieurs acides aminés nécessaires à son expression et/ou à son ciblage dans un organisme hôte.
5) Polynucleotide isolé caractérisé en ce qu'il code un peptide selon l'une quelconque des revendications 1 ou 2 ou un polypeptide selon l'une quelconque des revendications 3 ou 4.
6) Polynucleotide isolé caractérisé en ce qu'il s 'hybride à un polynucleotide selon la revendication 5.
7) Gène chimère caractérisé en ce qu'il comprend au moins, liés entre eux de façon opérationnelle : un promoteur constitutif ou inductible fonctionnel dans un organisme hôte,
- un polynucleotide selon l'une quelconque des revendications 5 ou 6, et
- un élément terminateur fonctionnel dans un organisme hôte. 8) Gène chimère selon la revendication 7, caractérisé en ce qu'il comprend en outre un peptide signal ou de transit fonctionnel dans ledit organisme hôte.
9) Vecteur d'expression et/ou de clonage caractérisé en ce qu'il comprend un polynucleotide selon l'une quelconque des revendications 5 ou 6 ou un gène chimère selon l'une quelconque des revendications 7 ou 8.
10) Vecteur d'expression et/ou de clonage selon la revendication 9, caractérisé en ce qu'il est un plasmide, un cosmide ou un bactériophage.
11) Vecteur d'expression et/ou de clonage selon la revendication 9, caractérisé en ce qu'il est un virus en particulier un baculovirus.
12) Organisme hôte caractérisé en ce qu'il comprend un vecteur selon l'une des revendications de 9 à 11.
13) Organisme hôte selon la revendication 12, caractérisé en ce qu'il est un microorganisme.
14) Organisme hôte selon la revendication 13, caractérisé en ce que le microorganisme est une levure du genre S a c c h a romyc e s , de préférence de l'espèce Saccharomyces cerevisiae, du genre Kl uyveromyces , de préférence de l'espèce Kluyveromyces lactis, du genre Hansenula, de préférence de l'espèce Hansenula polymorpha, du genre Pichia, de préférence de l'espèce Pichia pastoris ou du genre Schizosaccharomyces, de préférence de l'espèce Schizosaccharomyces pombe. 15) Organisme hôte selon la revendication 13, caractérisé en ce que le microorganisme est une bactérie, de préférence de l'espèce Escherichia coli .
16) Organisme hôte selon la revendication 13, caractérisé en ce que le microorganisme est un champignon de préférence de l'espèce Aspergillus nidulans.
17) Organisme hôte selon la revendication 12, caractérisé en ce que l'organisme hôte est une cellule d'arthropode de préférence de Spodoptera frugiperda ou de Trichoplusia ni.
18) Organisme hôte selon la revendication 12, caractérisé en ce que l'organisme hôte est une cellule de mammifère .
19) Organisme hôte selon la revendication 12, caractérisé en ce que l'organisme hôte est une cellule végétale ou une plante.
20) Cellule végétale ou plante résistante aux maladies bactériennes et/ou fongiques comprenant un polynucleotide selon l'une quelconque des revendications 5 ou 6, ou un gène chimère selon l'une quelconque des revendications 7 ou 8, et exprime un peptide selon l'une quelconque des revendications 1 ou 2 , ou un polypeptide selon l'une quelconque des revendications 3 ou 4.
21) Composition antibactérienne caractérisée en ce qu'elle comprend à titre d'agent actif au moins un peptide selon l'une quelconque des revendications 1 ou 2 , avantageusement associé dans ladite composition avec un véhicule acceptable. 22) Composition antibactérienne selon la revendication 21, caractérisée en ce qu'elle comprend en outre un autre agent antibactérien.
23) Composition antifongique caractérisée en ce qu'elle comprend à titre d'agent actif au moins un peptide selon l'une quelconque des revendications 1 ou 2, avantageusement associé dans ladite composition avec un véhicule acceptable.
24) Composition antifongique selon la revendication 23, caractérisée en ce qu'elle comprend en outre un autre agent antifongique.
25) Composition selon l'une quelconque des revendications 21 à 24 pour être utilisée chez l'homme ou 1 ' animal .
26) Composition selon l'une quelconque des revendications 21 à 24 pour être utilisée chez les plantes.
PCT/FR2003/002517 2002-08-13 2003-08-12 Peptides antimicrobiens, polypeptides comprenant lesdits peptides, genes codant lesdits peptides, vecteurs, organismes transformes et compositions les contenant WO2004016650A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003276325A AU2003276325A1 (en) 2002-08-13 2003-08-12 Antimicrobial peptides, polypeptides comprising same, genes coding for said peptides, vectors, transformed organisms and compositions containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/10278 2002-08-13
FR0210278A FR2843591B1 (fr) 2002-08-13 2002-08-13 Peptides antimicrobiens, polypeptides comprenant lesdits peptides, genes codant lesdits peptides, vecteurs, organismes transformes et compositions les contenant

Publications (1)

Publication Number Publication Date
WO2004016650A1 true WO2004016650A1 (fr) 2004-02-26

Family

ID=30775980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/002517 WO2004016650A1 (fr) 2002-08-13 2003-08-12 Peptides antimicrobiens, polypeptides comprenant lesdits peptides, genes codant lesdits peptides, vecteurs, organismes transformes et compositions les contenant

Country Status (3)

Country Link
AU (1) AU2003276325A1 (fr)
FR (1) FR2843591B1 (fr)
WO (1) WO2004016650A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113461777A (zh) * 2021-08-17 2021-10-01 安徽农业大学 一种具有抗真菌作用的抗菌肽及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2723951A1 (fr) * 1994-08-31 1996-03-01 Agric Forestry & Fisheries Peptide, agent antibacterien contenant ce peptide, gene de ce peptide, adn recombine contenant ce gene et procede de preparation de ce peptide.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2723951A1 (fr) * 1994-08-31 1996-03-01 Agric Forestry & Fisheries Peptide, agent antibacterien contenant ce peptide, gene de ce peptide, adn recombine contenant ce gene et procede de preparation de ce peptide.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HARA S & YAMAKAWA M: "Moricin, a Novel Type of Antibacterial Peptide Isolated from the Silkworm, Bombyx mori", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 270, no. 50, 15 December 1995 (1995-12-15), pages 29923 - 29927, XP002079760 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113461777A (zh) * 2021-08-17 2021-10-01 安徽农业大学 一种具有抗真菌作用的抗菌肽及其制备方法和应用
CN113461777B (zh) * 2021-08-17 2023-02-28 安徽农业大学 一种具有抗真菌作用的抗菌肽及其制备方法和应用

Also Published As

Publication number Publication date
FR2843591A1 (fr) 2004-02-20
FR2843591B1 (fr) 2004-10-08
AU2003276325A1 (en) 2004-03-03

Similar Documents

Publication Publication Date Title
Skerlavaj et al. SMAP-29: a potent antibacterial and antifungal peptide from sheep leukocytes
EP1071767B1 (fr) Gene codant pour l&#39;heliomicine et son utilisation
KR20070107748A (ko) 항미생물성 헥사펩티드
DE102007036128A1 (de) Antibiotische Peptide
FR2766191A1 (fr) Peptides anti-microbiens de crustaces
WO2010106293A1 (fr) Analogues de la temporine-sha et leurs utilisations
EP1517916B1 (fr) Sphéniscines et peptides analogues antimicrobiens pour la conservation des aliments
FR2695392A1 (fr) Peptides possédant notamment des propriétés antibactériennes, leur procédé d&#39;obtention, et leurs applications biologiques.
US20050215481A1 (en) Antimicrobial peptide, its analogs and antimicrobial composition comprising them
WO2004016650A1 (fr) Peptides antimicrobiens, polypeptides comprenant lesdits peptides, genes codant lesdits peptides, vecteurs, organismes transformes et compositions les contenant
EP1299416B1 (fr) Peptides antifongiques et/ou antibacteriens, leurs preparations et les compositions les contenant
EP1601768B1 (fr) Peptide antimicrobien appele halocyntin, gene codant ledit peptide, vecteur, organisme transforme et composition le contenant.
FR2850656A1 (fr) Peptide antifongique, polypeptide comprenant ledit peptide, gene codant ledit peptide, vecteur, organisme transforme et composition le contenant
CA2410575A1 (fr) Peptides antimicrobiens de la famille des defensines, polynucleotides codant ces peptides, vecteurs et organismes transformes les contenant
FR2839311A1 (fr) Peptides antibacteriens, genes codant les peptides, vecteurs, organismes transformes, leurs preparations et les compositions les contenant
FR2810986A1 (fr) Peptides antibacteriens et antifongiques, leur procede de preparation et les compositions les contenant
WO2003095482A2 (fr) Nouveaux peptides cycliques, leur utilisation comme agents anti-microbiens.
EP1601769B1 (fr) Peptide antimicrobien appele papillosin, gene codant ledit peptide, vecteur, organisme transforme et composition le contenant
FR2811665A1 (fr) Peptides antifongiques et/ou antibacteriens, leurs preparations et les compositions les contenant
FR2925338A1 (fr) Peptide antimicrobien, medicament et composition pharmaceutique le contenant.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP