[go: up one dir, main page]

WO2004010028A1 - Stepless speed change device - Google Patents

Stepless speed change device Download PDF

Info

Publication number
WO2004010028A1
WO2004010028A1 PCT/JP2003/009265 JP0309265W WO2004010028A1 WO 2004010028 A1 WO2004010028 A1 WO 2004010028A1 JP 0309265 W JP0309265 W JP 0309265W WO 2004010028 A1 WO2004010028 A1 WO 2004010028A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
wheel
rolling elements
shaft
transmission
Prior art date
Application number
PCT/JP2003/009265
Other languages
French (fr)
Japanese (ja)
Inventor
Suenori Tsujimoto
Original Assignee
Suenori Tsujimoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suenori Tsujimoto filed Critical Suenori Tsujimoto
Priority to AU2003281545A priority Critical patent/AU2003281545A1/en
Publication of WO2004010028A1 publication Critical patent/WO2004010028A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/40Gearings providing a continuous range of gear ratios in which two members co-operative by means of balls, or rollers of uniform effective diameter, not mounted on shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a transmission, and more particularly, to a friction type transmission capable of changing a gear ratio steplessly.
  • a forward / reverse continuously variable transmission in which a large number of small-diameter spheres are arranged is described.
  • a large number of spheres of the continuously variable transmission extend in the radial direction of the rotating plate, and are supported by a fixed plate disposed between the pair of rotating plates so as to be tiltable with respect to the input shaft and the output shaft. It is rotatably held on a shaft.
  • the continuously variable transmission rotates a small-diameter sphere at the periphery of the large-diameter rotary plate where the peripheral speed is highest, the rotation speed of the sphere becomes extremely high.
  • an automobile engine rotates at about 100 to 800 revolutions per minute
  • an aircraft or marine turbine engine rotates at about several thousand to tens of thousands of revolutions per minute.
  • the motor rotates at about 100 to 300 rotations per minute Is done. For this reason, even if forced lubrication is applied to the bearing portion of the rotating shaft that supports the sphere, a large power loss occurs in the bearing portion.
  • the present invention has been made in view of such circumstances, and has a simple structure, high transmission efficiency, low weight, and low cost that can transmit large power. It is intended to provide a step transmission.
  • a transmission according to the present invention comprises: a first and a second power wheels having circular engagement portions provided at a distal end thereof arranged to face each other; and a first power wheel formed at a tapered end portion. , Frictionally engage with the engaging portions of these power wheels via the second inclined surface, and rotate while rotating along these engaging portions.
  • a plurality of first rolling elements that revolve around the center axis of the wheel and frictionally engage with the peripheral surfaces of two adjacent first rolling elements, and the power wheel while rotating together with the first rolling elements;
  • a plurality of second rolling elements orbiting about the central axis of the second rolling element, and frictionally engaging with the peripheral surface of the second rolling element, the center of the power wheel being pressed by the first and second power wheels.
  • the first rolling element biased in the direction of the axis is supported via these second rolling elements, and the first rolling element and the second rolling element are separated from each other. And a support wheel for holding each at equal intervals in the circumferential direction.
  • the first rolling element has a tilt with respect to the center axis and a tilt corresponding to the tilt in accordance with at least one axial position of the first and second power wheels and the support wheel.
  • the distance between the engaging position of the engaging portion on the inclined surface of the and the rotating shaft is set.
  • the rotation of the input shaft is transmitted to the first rolling element by one of the first and second power wheels and the supporting wheel via the second rolling element, and the rotation of the input shaft is performed by the first rolling element.
  • the rotation output can be output to the output shaft via the other of the first and second power wheels.
  • the first rolling elements are pressed against the first and second inclined surfaces disposed on both sides by the engaging portions of the first and second power wheels, respectively. Therefore, the power wheel is urged in the direction of the central axis.
  • the peripheral surface of each of the first rolling elements is frictionally engaged with the peripheral surface of each of the two second rolling elements supported by the support wheel, so that the forces along the circumferential direction of the engaging portions are balanced.
  • each of the second rolling elements frictionally engages with two adjacent first rolling elements, so that a force along a circumferential direction of the engaging portion is balanced, and these first rolling elements are balanced.
  • the rolling elements and the second rolling elements are respectively held at equal intervals in the circumferential direction along the engaging portion of the power wheel. And the first, second, and so on.
  • the support wheel is formed of a central wheel provided on an input shaft concentric with the central axis, and the central wheel has a circumferential groove on the outer peripheral portion where the second rolling element rolls. Is preferred.
  • the driving force branched from the input shaft via the driving force branching mechanism is transmitted to one of the first and second power wheels.
  • the first and second power wheels are preferably used. It is also possible to fix either one of them and the support wheel so that they do not rotate.
  • the rotation direction of one of the first and second wheels and the center wheel is in the opposite direction, the revolving speed of the first and second rolling elements is reduced, and the input shaft and, therefore, the start-up of the motor, that is, the start-up In this case, the load of potential energy at the time of rotation is reduced, thereby increasing the responsiveness to fluctuations in the rotation speed of the prime mover.
  • the rotation direction of one of the first and second power wheels and the center wheel is in the same direction, the rotation speed of the first and second rolling elements is reduced, and each of these rolling elements is reduced. The number of rolling stakes decreases, which increases transmission efficiency.
  • an on-way clutch interposed between the driving force source and a center wheel, and a rotor connected to the center wheel
  • a first motor generator ; a second motor generator having a rotor connected to one of the first and second power wheels; an output shaft driven by the other of the first and second power wheels; And a clutch interposed between the shaft and a driven device operated by the shaft.
  • the support wheel is formed by a center wheel provided on a hollow shaft which is concentric with the center shaft and cannot rotate, and further comprises a motor having a rotor connected to one of the first and second power wheels.
  • a generator may be provided, and an operating gear unit connected to the other of the first and second power wheels and the left and right drive shafts. In this case, the internal space of the motor generator can be used efficiently.
  • the center wheel is mounted on the input shaft so as to be immovable in the circumferential direction and slidable in the axial direction, and can control the inclination of the first rolling element with respect to the center axis.
  • the first and second power wheels can be connected to each other via a transmission having a constant speed ratio.
  • the support wheel is formed of a guide that surrounds the first and second rolling elements and frictionally engages with a peripheral surface of the second rolling element, and is provided between the other of the first and second power wheels and an output shaft. It may be through a clutch. In this case, the alignment between the first rolling element and the second rolling element can be further ensured.
  • the rotation of the input shaft is transmitted to the first rolling element by one of the first and second power wheels and the supporting wheel via the second rolling element, and the first rolling element rotates.
  • the first and second power wheels are connected to each other via a speed change mechanism having a constant speed ratio.
  • the rotation of the input shaft is transmitted to the first rolling element, and the rotation output from the center wheel rotated through the second rolling element can be taken out to the output shaft.
  • the rotation output from the center wheel rotated through the second rolling element can be taken out to the output shaft.
  • FIG. 1 is a longitudinal section of a transmission according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view of the transmission of FIG. 1 taken along line ⁇ _ ⁇ .
  • FIG. 3 is a sectional view similar to FIG. 1 of a transmission according to a second embodiment.
  • FIG. 4 is an explanatory view of a state in which the transmission according to the third embodiment shown in FIG. 3 is formed for an automobile.
  • FIG. 5 is a longitudinal sectional view of a transmission according to a fourth embodiment formed for a hybrid vehicle.
  • FIG. 6 is a longitudinal sectional view of a transmission according to a fifth embodiment formed for an electric vehicle.
  • FIG. 7 is a cross-sectional view of the transmission of FIG. 6 taken along line W.
  • FIG. 8 is a longitudinal sectional view of a transmission according to a sixth embodiment.
  • FIG. 9 is a cross-sectional view of the transmission of FIG. 8 taken along line X-IX.
  • FIG. 10 is a longitudinal sectional view of a transmission according to a seventh embodiment.
  • FIG. 11 is a longitudinal sectional view of a transmission according to an eighth embodiment formed for a wind turbine generator.
  • FIG. 12 is a longitudinal sectional view of a transmission according to a ninth embodiment.
  • FIG. 13 is a cross-sectional view of the transmission of FIG. 12 taken along the line ⁇ - ⁇ .
  • 1 and 2 show a transmission according to a first embodiment of the present invention.
  • This transmission is formed as a wide range of industrial continuously variable transmissions including, for example, automobiles, and is formed in a compact structure in which the entirety is housed in a housing 10.
  • the housing 10 includes a cylindrical body 10a having both ends opened, and a lid 10b that closes both ends. 2 and the output shaft 14 penetrate these lids 10b along the central axis C common to both shafts, and are rotatably supported via appropriate bearings such as ball bearings.
  • a suitable seal member is disposed at a portion where the input shaft 12 and the output shaft 14 penetrate to prevent leakage of lubricant and the like and prevent foreign substances from entering the housing 10.
  • the lid 10b through which the input shaft 12 penetrates is recessed inward, so that the entire axial length of the power transmission system can be shortened.
  • the first drum 16 rotatably supported on the input shaft 12 and the second drum 18 coupled to the output shaft 14 are arranged inside the nozzle 10. .
  • the first drum 16 has a disk-shaped portion 16a rotatably supported on the input shaft 12 via, for example, a ball bearing, and the second drum 18 has a hollow disk-shaped portion 18a. It is integrally connected to the output shaft 14 via the boss 14a.
  • the distal end portion 12a of the input shaft 12 is inserted into the boss portion 14a, and is rotatably supported via bearings at two positions separated in the axial direction. I have.
  • the nozzle 10 extends beyond the outer peripheral portion of the second drum 18 toward the first drum 16, and the tip thereof extends to the first drum 16.
  • a connecting member 20 fixed to the outer peripheral portion of the drum 16 is rotatably supported by a boss portion 14a of the output shaft via an axial bearing 22.
  • the axial bearing 22 acts as a force in the opposite direction via the second drum 18 and the second drum 18 to cancel each other.
  • the housing 10 can be formed in a lightweight structure.
  • the boss portion 14a of the output shaft 14 is fixed to the disc-shaped portion 18a instead of being formed integrally with the disc-shaped portion 18a of the second drum 18. It can be formed as a separate member.
  • the first and second drums 16 and 18 have annular inner holes 26 and 28 opposed to each other at positions close to the outer peripheral portions thereof.
  • the first, second, and third wheels 30 and 32 can be moved only in the axial direction along the central axis C by, for example, a spline (not shown). Will be accommodated.
  • the front ends of these power wheels 30 and 32 are formed with first and second engaging portions 30a and 32a, which are frictionally engaged with a power roller described later.
  • the seven first rolling elements that is, the power rollers 40, are located between the power wheels 40 and 32 at positions separated from the center axis C with respect to the rotation axis r. Is pressed from both sides.
  • 3 2 engagement portion 3 that presses frictionally engage these power rollers 4 0 0 a, 3 2 a is Bruno, 0 Wah Russia over La 4 0 rotation axis r and between the center axis C of the It has a circular shape with a radius larger than the distance.
  • Each of the power rollers 40 sandwiched between the power wheels 30 and 32 has a hollow structure in which both ends are formed in a tapered or hemispherical shape. 1, 2nd inclined surface 40a, 40b Force S no. ⁇ Frictionally engages with the engaging portions 30a and 32a of the wheels 30 and 32.
  • each of the seven second rolling elements that is, the spherical planetary rollers 44
  • each of the planetary rollers 44 is arranged in the circumferential direction of two power rollers adjacent to each other. Fit into groove 42.
  • Each of the planetary rollers 44 rolls along the circumferential groove 42 and frictionally engages with a circumferential surface formed on the bottom surface of the circumferential groove 42 at a contact point s (see FIG. 2).
  • the rotation axis p passing through the center point of these planetary rollers 44 is closer to the center axis C, that is, radially inward than the straight line connecting the rotation axes r of the two adjacent power rollers 40. To position.
  • each power roller 40 is located radially outward from the center axis C with respect to a straight line connecting the rotation axes ⁇ of the two planetary rollers 44 adjacent to each other.
  • the planetary rollers 44 are not limited to the spherical structure as shown, but may be formed in a plate-like or cylindrical structure.
  • the respective first rollers 40 become the first and second inclined surfaces 4.
  • a support wheel 46 which is a central wheel formed integrally with the input shaft 12 in this embodiment.
  • a circumferential groove formed on the outer peripheral surface of the support wheel 46 is provided with a guide groove 46 a that frictionally engages with the planetary roller 44 to prevent axial movement and guides in the circumferential direction. It works. With this, no ,. Circumferential forces acting on the word rollers 40 and the planetary rollers 44 cancel each other out and are held at equal intervals in the circumferential direction about the center axis C.
  • the circumferential groove 42 formed on the power roller 40 and the guide groove 46 a of the support wheel 46 are formed by a smooth annular curved surface. The axial movement of the power roller 4 ⁇ and the support wheel 46 is prevented. Due to this, no. When the wheels 30 and 32 move in the same direction along the central axis C while pressing the power rollers 40 sandwiched therebetween from both sides, the power rollers 40 move more than the rotation axis r. Engagement parts 30a, 3
  • the distance between the engagement position of the engagement portions 30a, 30b on the inclined surfaces 40a, 40b and the rotation axis r is: It is set at an angle of inclination centered on the contact s of the warlor 40.
  • the power wheels 30 and 32 have pressure chambers 26 a and 28 a partitioned into annular bores 26 and 28, respectively, and the pipelines 36 and 28.
  • a speed ratio changing means is formed by the pressure fluid control device supplied through the pressure fluid control device 38 and the pressure chambers 26 a and 28 a from a pressure fluid source (not shown) through the pressure fluid control device.
  • the driving force splitting mechanism 50 of the present embodiment includes an external gear 52 provided on the outer periphery of the input shaft 12 and a support shaft 54 projecting from the inner surface of the lid 10b on the input shaft 12 side.
  • An intermediate gear 56 that is rotatably mounted and mates with the external gear 52, and an internal gear that is provided on the disk-shaped portion 16a of the first drum 16 and mates with the intermediate gear 56. 5 8 and. Since the intermediate gear 5 6 is interposed between the external gear 52 and the internal gear 58, the speed of the external gear 52 and the internal gear 58 is inversely proportional to the number of teeth. Rotate in opposite directions by the ratio.
  • the first power wheel 30 and the support wheel 46 rotate the input shaft 12 in rotation.
  • the speed-changed rotation output transmitted to the power roller 40 and output from the second power wheel 32 can be output to the output shaft 14.
  • the driving force extracted from the output shaft 14 can be transmitted to a driven device such as a propeller shaft of an automobile, for example.
  • the center wheel 46 is driven by a power roller via a planetary roller 44. Rotate 40 in the same direction as this center wheel 46.
  • the internal gear 58 through the external gear 52 of the input shaft 12 and the intermediate gear 10 causes the first drum 16 to rotate in the opposite direction to the input shaft 12 at a predetermined speed ratio. Rotate.
  • Each power roller 40 has a first and a second power wheel from both sides.
  • the first drum 16 and the center wheel 46 cause the input shaft 12 to be pressed by the center wheels 46 through the planetary rollers 44 and pressed by the rollers 30 and 32.
  • the rotation is transmitted to the power roller 40.
  • each power roller 40 rotates while revolving around the center wheel 46.
  • the second power wheel 32 becomes the first power wheel. It rotates in the same direction as the wheel 30, and the driving force is transmitted to the output shaft 14 through the second drum 18.
  • the trajectory radii drawn by 30a and 3Ob around the rotation axis r are represented by rl and r2.
  • each power roller is moved.
  • the second nozzle wheel 32 rotates at an increased speed, and the reduced rotational driving force is transmitted to the output shaft 14 through the second drum 18.
  • the first, second When the wheels 30 and 32 are moved to the input shaft 12 side, the respective power rollers 40 are inclined to the input shaft 12 side so that r 2 ⁇ r 1, and the engagement portion 32 a Peripheral speed is lower than engagement part 30a And Thus, the second wheel, the second power wheel 32, is rotated at a reduced speed, and the reduced driving force is transmitted to the output shaft 14 through the second drum 18.
  • the input of the driving force is performed through both the first drum 16 and the center wheel 46 via the planetary rollers 44, and the input is lower than the conventional one-way input.
  • the speed ratio can be reduced with respect to rotation.
  • the pair of power wheels 30 and 32 that press the roller 40 rotate with each of the drums 16 and 18. Driving force can be efficiently transmitted without hindering rotation and revolution of the word rollers 40, and transmission loss can be significantly reduced.
  • the engaging portion 30a of the first power wheel 30 that transmits the driving force by changing the speed is frictionally engaged with the power roller 40 near the maximum radial position of the transmission, It is possible to simultaneously reduce the size and weight while increasing the workload.
  • the central wheel 46 is arranged along the central axis C, the speed change device can be made robust and the durability can be improved.
  • the power roller 40 and the planetary roller 44 can be used. Are maintained at equal intervals around the center wheel 46 without requiring a special support mechanism, thereby reducing the loss of driving force due to rotation and further improving transmission efficiency. Can be done.
  • FIG. 3 shows a transmission according to a second embodiment. Since various embodiments described below are basically the same as the above-described embodiments, similar parts are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the driving force branching mechanism 50 is formed by a planetary gear set, and the first drum 16 and the first drum 16.
  • the present embodiment differs from the above-described embodiment only in that the wheel 30 is rotated in the same direction as the input shaft 12.
  • a support shaft 54 for supporting the intermediate gear 56 is provided on the disk-shaped portion 16a of the first drum 16 and the internal gear 58 is connected to the input shaft 12 side.
  • the lid 10b of the camera Provided on the lid 10b of the camera.
  • each of the power rollers 40 is rotationally driven in the same direction by both the center wheel 46 and the first power wheel 30 with the rotary shaft interposed therebetween, so that the rotation speed thereof is reduced. Be confused Thereby, the rolling resistance of each power roller 40 is reduced, and the transmission efficiency is improved.
  • the speed ratio of the rotation speed of the output shaft 14 to the rotation speed of the input shaft 12 is the first and second nose.
  • Various settings can be made according to the effective diameter of each of the wheel 30, 32, the center wheel 46, and the power roller 40, that is, the diameter actually formed by the engaging portion of each member.
  • a forward rotation region that rotates in the same direction as the input shaft 12 and a reverse rotation region that rotates in the opposite direction to the input shaft 12 can be provided.
  • the forward rotation region and the reverse rotation region be in a one-to-one relationship, and that the intermediate point be a neutral position. Further, when used for construction equipment such as bulldozers, it is preferable to set the ratio of the forward or forward rotation region to the reverse or reverse rotation region to be 2 to 3. When it is used as a vehicle tractor, it is preferable that the ratio of the forward area to the reverse area is about 5 to 2. Thus, it is easy to change the speed ratio of the speed change device according to the application, and the efficiency and convenience of the speed change device are improved.
  • FIG. 4 shows a transmission according to a third embodiment.
  • the transmission shown in FIG. 3 is optimized for an automobile, so that the forward rotation region for forward movement is expanded, and the output shaft 14 and the propeller shaft 60 as a driven device are enlarged. Between them, an intervening clutch mechanism 62 is interposed.
  • Such a combined clutch mechanism 62 for connecting or separating the output shaft 14 and the propeller shaft 58 can be formed in an appropriate structure.
  • the combined clutch mechanism 62 of the present embodiment includes a cam block 64 non-rotatably connected to the output shaft 14 by a suitable means such as a screw, for example, and a propeller shaft 60.
  • a shifter 68 that is non-rotatably mounted on the top and is movable in the axial direction by a shift lever 66. Both ends of the shifter 68 are formed with teeth or ridges extending in the radial direction, and are combined with the teeth or ridges formed on the cam block 64 and the control housing 10c. I can.
  • the shifter 168 engages with the cam block 64, thereby connecting the input shaft 14 and the propeller shaft 60. Is done.
  • the shift lever 68 is engaged with the control housing 10 c, whereby the propeller shaft 60 is separated from the input shaft 14. This propeller shaft 60 is It is fixed to the housing 10 c to prevent rotation of the propeller shaft.
  • the opening shaft 60 is separated from both the input shaft 14 and the control housing 10c.
  • the shift lever 66 can be arranged at the P position or the N position. Only then can a mechanical or electrical interlocking mechanism be provided to allow the engine to start. As a result, when the crankshaft of the engine is connected to the propeller shaft 60 via the transmission, the engine cannot be started, and an excessive load on the engine is prevented. At the same time, runaway of the vehicle when the engine is started can be reliably prevented.
  • the shift lever 66 is located at the position P, the propeller shaft 60 is made unrotatable, so that braking during parking can be secured and the movement of the vehicle can be prevented.
  • the propeller shaft 60 can freely rotate to secure the rotation of the engine trouble and the like. It is possible to secure the movement of the vehicle, for example, by towing when the vehicle is unable to run.
  • FIG. 5 shows a transmission according to a fourth embodiment.
  • This embodiment is formed for a hybrid vehicle, and the first drum 16 is driven to rotate by a motor generator instead of the driving force branching mechanism 50 in the above-described embodiment. can do.
  • the coupling 72 is attached to the end of the input shaft 12 via a one-way clutch 70, and the rotor 76 of the first motor generator 74 is connected to the nut 78. It is fixed with.
  • This one-way clutch 70 is preferably formed by a coupling with a damper for damping the rotational vibration of an engine connected via a spline joint, for example. When the number of revolutions is equal to or less than the number of revolutions of the drive shaft of the engine connected via the power ring 72, these input shafts 12 and the drive shaft are connected.
  • the rotor 82 of the second motor generator 80 is fixed to the connecting member 20.
  • the stators 75, 81 of these first and second motor generators 74, 80 are fixed inside the body 10a of the housing, respectively, and the rotors 76, 82 are Opposite to the stator, permanent magnets 76a and 82a, for example, neodymium magnets, are arranged at equal intervals along the periphery thereof, and are formed as a so-called PM motor.
  • the housing 10 housing such motor generators 74 and 80 preferably has a liquid-tight interior.
  • first and second motor generators 74 and 80 act as drive motors which are rotated by electric power from a battery as necessary by a motor generator controller (not shown). Or act as a generator to power the battery, so that kinetic and electrical energy can be maintained even when the weight of the vehicle fluctuates significantly due to the load or the number of passengers. Can be converted efficiently. For example, it increases the acceleration force when starting a car and increases the energy efficiency when decelerating. By recovering at a low rate, fuel efficiency can be reduced.
  • the transmission equipped with the two motor generators 74 and 80 can be operated in various modes according to the situation of the vehicle. Will be described. If the remaining amount of the battery is insufficient, the vehicle is brought into a braking state in advance, and the shift lever 66 is arranged at the position D. In addition, the first and second motor generators 74 and 80 are brought into a power generation state via the motor generator control device. In this state, when the input shaft 12 is rotated by an engine (not shown), the rotor 76 of the first motor generator 74 is rotated at the same speed in the same direction as the drive shaft, and charges the battery.
  • the second drum 18 and the second power wheel 32 remain stationary, and the lower roller 40 has its second inclined surface 40 b Is frictionally engaged with the engagement portion 32 a, and revolves while rotating along the second wheel 32. This causes the first power wheel 30 and the first drum 16 to rotate the rotor 82 of the second motor generator 80 on the first inclined surface 40a, thereby removing the battery. Charge.
  • the input shaft 12 is fixed to the housing 10 and does not rotate.
  • the second motor generator 80 is driven, the power roller 40 rolls along the engaging portion 30a of the first power wheel 3 ⁇ , thereby Then, the second No. 3 wheel 32 is rotated at a speed relative to the first power wheel, and 2 Drum 18, output shaft 14 and propeller shaft 60 rotate.
  • the driving by the second motor generator 80 is controlled by controlling the rotation of the second motor generator 80 when the running resistance of the vehicle is the smallest.
  • the speed can be changed from a state in which the vehicle is started forward or backward to the cruising speed, and therefore, it is possible to travel with the minimum power by the second motor generator 80 having a small output. Obviously, it is also possible to move the first and second power wheels 30, 32 in the axial direction if necessary.
  • the output shaft 14 rotates. Furthermore, the first, is rotated synchronously with the second Motor generators 7 4, 8 0, Nono 0 Waro over La 4 0 does not rotate, therefore, the output shaft 1 4 same as the input shaft 1 2 speed And the speed ratio becomes 1: 1. Since the movable member of the continuously variable transmission transmits the rotation of the input shaft 12 to the output shaft 14 and the propeller shaft 60 without rotating relatively, the transmission efficiency is highest. In addition, the first and second power wheels 30 and 32 are moved through the speed ratio changing means, and are notched. As in the above-described embodiment, the speed ratio between the input shaft 12 and the output shaft 14 can be changed over a wide range by setting the tilt position of the word roller 40.
  • a hybrid drive suitable for an automobile is formed. If integrated into a car, through a suitable motor generator control It can be operated as follows.
  • the input shaft 12 is driven by the first motor generator 74.
  • the one-way clutch 70 separates the drive shaft of the engine from the input shaft 12. Then, the rotation of the first drum 16 is stopped, the electric power is supplied to the first motor generator 74, and the input shaft 12 is driven to rotate.
  • the motor generator control device rotationally drives the first motor generator 74 with an output corresponding to a signal requested by the driver, which is sent based on, for example, an accelerator pedal (not shown). If the output of the first motor generator 74 is insufficient, the second motor generator 80 is further driven to rotate, and the output shaft 14 is rotated by the driving force required by the driver.
  • the motor generator controller When the vehicle travels at a speed that is efficient for driving by the engine, the motor generator controller reduces the power supplied to the first and second motor generators 74, 80, and the engine, which is the main driving force source, To rotate the output shaft 1 2. Also, when the driver decelerates the accelerator pedal when decelerating the car, the rotation speed of the engine decreases, and the on-way clutch 70 separates the input shaft 12 from the engine. Then, the first motor generator 74 is operated as a generator, recovers kinetic energy associated with the deceleration of the vehicle as electric energy, and stores it in the knotter.
  • the second motor generator 80 is also operated as a generator, and the first and second motor generators are also operated.
  • the speed ratio of this transmission can be increased.
  • the braking force is increased, thereby increasing the amount of power generated by the first and second motor generators 74, 80 and hence the braking force.
  • the transmission according to the fourth embodiment like the transmissions according to the above-described embodiments, not only exhibits quick response and high transmission efficiency, but also has a large acceleration force when starting and accelerating. Thus, energy can be recovered with high efficiency at the time of deceleration, thereby making it possible to reduce the fuel consumption of the vehicle.
  • the number of motor generators is not limited to two, but may be one or three or more.
  • FIG. 6 shows a transmission according to a fifth embodiment formed for an electric vehicle.
  • a non-rotatable hollow shaft 13 having one end fixed to the housing 10 extends coaxially with the center axis C in place of the input shaft 12 in the above-described embodiment, and the other end is a boss. 14 a and a hollow output shaft 14.
  • the first and second drums 16 and 18, the boss 14 a and the output shaft 14 are rotatably supported on the hollow shaft 13.
  • the connecting member 20 extends over substantially the entire length of the body 10a of the housing 10 and is supported by the second drum 18 via an axial bearing 22 instead of the boss 14a.
  • a large number of permanent magnets 84 are fixed to the outer periphery of the connecting member 20, and a stator coil 86 is fixed to the inner peripheral surface of the body 10 a opposed thereto.
  • the connecting member 20 functions as a rotor of the motor generator 88, and drives the first drum 16 and thus the first power wheel 30 to rotate.
  • This motor energy In order to make the radiator 88 have a liquid-tight structure, it is necessary to place the first drum 16 between the fixed shaft 13 and the connecting member 20 and the partition plate 11 in the housing 10 respectively A seal member is provided.
  • a planetary gear set 90 functioning as a final reduction mechanism is arranged in the housing 10 around the output shaft 14 and the rotational output of the output shaft 14 is transmitted to the left and right drive shafts.
  • a differential gear device 92 for transmitting to 94 and 96 is arranged.
  • the left and right drive shafts 94, 96 are rotatably supported in the hollow shaft 13.
  • the planetary gear set 90 and the differential gear set 92 are interlocked with each other via a carrier 91 of the planetary gear set 90 and laid out.
  • the trajectory radii drawn at the center are denoted by r 1 and r 2.
  • r 2 r 1
  • the power wheel 30 rotates the second power wheel 32 at a constant speed.
  • the respective power rollers 40 are inclined rightward so that r 2> r 1.
  • the peripheral speed of the engaging part 3 2a is The speed becomes larger than 30a, and the second No. 3 wheel 32 is accelerated.
  • first and second When the wheels 30 and 32 are moved to the left, the respective power rollers 40 are inclined to the left, so that r 2 ⁇ r 1, and the peripheral speed of the engaging portion 32 a becomes the engaging portion 30 a As it becomes smaller, the second power wheel 32 is decelerated and rotates.
  • the output shaft 14 rotates, and the planetary gear unit 90 reduces the speed to a predetermined reduction ratio to support a plurality of planetary gears.
  • the differential gear device 9 2 is driven via the carrier 91.
  • a planetary gear 93 rotatably supported by a carrier 91 revolves around a center axis C, and a sun gear 95 connected to a left drive shaft 94.
  • the internal gears 9 7 and 9 7 fixed to the right drive shaft 9 6 are rotationally driven.
  • the axial ball bearing 22 of the present embodiment cancels the reaction force of each of the power wheels 30 and 32 pressing the power roller 40 and also reduces the thrust load acting on the housing 10. .
  • the first and second power wheels 30 and 32 rotate at a constant speed, only the thrust load acts on the axial ball bearing 22.
  • the first and second no-wheels 30 and 32 rotate in synchronism with the rotational speed difference generated according to the tilt angle, and large-capacity bearings are mounted on the left and right sides of the housing as in the conventional case.
  • the transmission efficiency is improved by greatly reducing the loss as compared with the case of mounting.
  • the latest PM motors for electric vehicles that use permanent magnets are more efficient in the low-speed rotation range than conventional electric vehicle motors. Is excellent, but the starting torque is small, and there is a problem that the efficiency is extremely reduced in the field of weakening in the constant output region and in the high-speed rotation region.
  • the transmission according to the fifth embodiment overcomes the problems of the motor for PM electric vehicles, and satisfies the demands for a highly efficient continuously variable transmission for electric vehicles.
  • a space is formed in the rotor of a conventional PM motor for electric vehicles using permanent magnets.
  • the transmission of the present embodiment utilizes the internal space effectively by being housed in this internal space together with the final reduction gear 90 and the differential gear 92.
  • it is suitable as a drive device for an electric vehicle of an FF (front engine drive / front wheel drive) vehicle which is limited by space.
  • FF front engine drive / front wheel drive
  • the first and second power wheels 30 and 32 are formed integrally with the first and second drums, respectively, and the first and second power wheels 30 and 3 are formed integrally with the first and second drums.
  • the tilting of Nono 0 word b over La 4 0 that supported by two rows cormorants also Ru Nodea axial movement of the central wheel Lumpur 4 6.
  • a slide-shaped slider 98 that is slidable in the axial direction and relatively non-rotatable is mounted on the input shaft 12 by, for example, a spline. , Through the planetary rollers 4 4.
  • the center wheel 46 supporting the roller 40 is formed integrally with the slider 98.
  • the slider 98 has a flange portion 98a formed at the end of the input shaft 12 side, and the outer periphery of the input shaft 12 has the flange portion 98a.
  • a cylindrical box portion 100 for receiving 98a is provided.
  • the flange 98a is accommodated in the annular space of the box 100, and the open end of the box 100 is closed with the cover 102. Accordingly, the annular space in the box portion 100 is divided into two pressure chambers 104a and 104b, each of which is formed in a liquid-tight manner.
  • the first and second inclined surfaces 40a and 40b of the word roll 40 form a part of a circle having the swing center q as a base point.
  • the box portion 100 is disposed in a concave portion 16b formed in the disk-shaped portion 16b of the first drum 16, and a roller bearing is provided.
  • the first disk 16 is rotatably supported.
  • the thrust load acting on the first disk 16 is applied to the housing via the support cylindrical portion 106 and the axial bearing 108 connected to the disk-shaped portion 16a.
  • the thrust load acting on the second disk 18 on the opposite side is transmitted from the disk-shaped portion 18a to the boss portion 14 via the ball cam 110 and axially It is transmitted to the housing 10 via the bearing 1 1 2.
  • the pole cam 110 is formed of a normal pressure cam, and generates an axial thrust load according to the size of the tonnolek, and the second disk 18 and therefore the second disk. Automatically adjusts the pressing force of power wheel 40 against power wheel 40. This acts on the first and second disks 16 and 18. These thrust loads cancel each other out in the housing 10 to form a compact and lightweight transmission.
  • a shaft portion 19a extends from the disk-shaped portion 18a of the second disk 18 in the direction of the input shaft 12 and is inserted into the recess of the input shaft 12 to be rotatable. It is supported by.
  • the shaft 18b extending toward the output shaft 14 is inserted into the boss 14a and the output shaft 14 1.
  • the second disk 18 is supported by the rotation axis on the center axis C together with the input shaft 12 and the output shaft 14.
  • the coil spring 114 accommodated in the boss portion 14 does not act on the second disk when the pressing force of the cam 110 is not acting, that is, when the output shaft 14 is stopped. 1 8 and the second power wheel 3 2 are pressed, whereby all of the nozzles are pressed. Maintain the alignment of the warr rollers 40 and the planetary rollers 44 and secure the torque at the beginning of driving.
  • This transmission operates in the same manner as the second embodiment shown in FIG. 3, except that the tilting of the power roller 40 is performed through the axial movement of the central wheel 46.
  • FIG. 10 shows a transmission according to a seventh embodiment.
  • the first and second power wheels 30 and 32 and thus the first and second drums 16 and 18 are connected to each other via a transmission mechanism 120 having a constant gear ratio.
  • the boss portion 14a is formed in a solid structure, and the shaft portion 14b is inserted into the concave portions of the center wheel 46 and the input shaft 12, and is rotatably supported. You.
  • the transmission mechanism 120 in this embodiment is provided outside the output shaft 14.
  • An intermediate gear 1 2 which is rotatably mounted on an external gear 1 2 2 provided on the periphery and a support shaft 1 2 4 protruding from the wall of the connecting member 20, and which is combined with the external gear 1 2 2. 6 and an internal gear 1 28 provided on the output shaft 14 b of the nosing 10 on the side of the output shaft 10 b and corresponding to the intermediate gear 12 6.
  • the first power wheel 30 functions as a driving force combining mechanism that combines the torque of the first drum 16 and the torque of the output shaft 14.
  • the transmission of the present embodiment is different from the transmission of the second embodiment shown in FIG. 3 in that the driving force splitting mechanism 50 is replaced by a driving force combining mechanism 120 and a first drum 16 and an output shaft 14.
  • the input shaft 12 and the output shaft 14 of the transmission shown in FIG. 3 are reversed.
  • the speed ratio of the transmission mechanism that is, the driving force synthesizing mechanism 120, it can be used for various applications.
  • FIG. 11 shows a transmission according to an eighth embodiment.
  • the transmission according to this embodiment is formed for a wind power generator, and a plate 13 2 of a wind turbine 130 is fixed to an input shaft 12 by, for example, a nut 13 4. .
  • the input shaft 12 is formed integrally with the first drum 16, and the tip 12 a is inserted into the boss 14 a forming the center wheel 46, and is rotatably supported and supported. .
  • the second wheel 18 is rotatably mounted on the boss 14a via a ball bearing, and projects inward from the lid 10b on the output shaft 14 side of the housing 10. It is rotatably supported on an annular tubular portion 10 c via an axial bearing 22.
  • This The axial bearing 22 supports not only the thrust load of the second drum 18 but also the thrust load of the plate 13 2 acting via the input shaft 12.
  • the thrust load and the radial load acting on the input shaft 12 in the opposite direction are supported by the axial bearing 23 interposed between the input shaft 12 and the lid 10b on the input shaft side. .
  • the second drum 18 and the input shaft 12 are connected by a driving force branching mechanism 50 which is a speed changing mechanism having a constant speed ratio.
  • a rotatable support shaft 54 is provided on the connecting member 20 fixed integrally with the second drum 18. Therefore, when the input shaft 12 rotates, the intermediate gear 56 is combined with the external gear 56 provided on the input shaft 12 and the internal gear 58 provided on the cover member 10b. Then, it revolves around the central axis C while revolving, and rotates the second drum 18. As a result, the power roller 40 is the first and second nodes.
  • the rotation of the input shaft 12 is transmitted via the wheel 3G, 32, and revolves along the circumferential groove 46a of the central wheel 46 while revolving, via the planetary rollers 44. Rotating the center wheel 4 6, and thus the output shaft 14.
  • the second drum 18 that transmits the rotation of the input shaft 12 to the power roller 40 together with the first drum 16 has a coil spring 29 disposed in its annular inner hole 28.
  • the coil spring 29 keeps the second power wheel 32 pressed against the power roller 40 with a constant pressing force at all times, and maintains a state in which the power roller 40 and the planetary roller 44 are arranged at equal intervals. As a result, the torque at the initial Can be secured.
  • a rotor 13 formed by winding a coil 13 around a core 13 is fastened and fixed with a nut 15.
  • the circumference of the rotor 13 is A compact power generator is formed together with a stator 1339 fixed to the inner surface of the body 10a of the housing 10 with a predetermined gap disposed in the housing.
  • This transmission is rotatably mounted on the top of the table T via a turntable 140 so that the blade 132 can always be arranged in the direction of the wind.
  • the output shaft 14 also functions as a rotating shaft of the generator, thereby reducing the number of parts of the power generation device and reducing the cost. The whole can be reduced in size.
  • by moving the first and second power rollers 30 and 32 in the axial direction to control the inclination angle of the power roller 40 with respect to the center axis C it is possible to respond to the constantly changing wind force. By rotating the rotor 1338 at the optimum gear ratio, the power generation efficiency of the power generator can be improved.
  • FIGS. 12 and 13 show a transmission according to a ninth embodiment.
  • the input shaft 12 is formed into a relatively short hollow structure, and the end wall 14 2 provided at the end on the output shaft 14 side is formed.
  • the dry ling 144 extends from the outer edge to form a gap between the outer periphery of the first drum 16.
  • a guide 144 that covers the gap between the first and second power wheels 30 and 32 is formed at the tip of the driving ring 144.
  • the guide 1 46 supports a planetary roller 44 formed in an annular plate-like structure in the present embodiment through a guide groove 1 46 a having an arcuate cross section formed on the inner surface thereof. Further, the planetary roller 44 is supported by a circumferential groove 42 of the power roller 40 and a ridge 42a projecting from a side wall thereof. Therefore, the guide 146 acts as a support wheel that holds the power roller 40 and the planetary roller 44 at equal intervals in the circumferential direction.
  • this guide 1 46 is the planetary roller 4 4 and the nozzle. ⁇ ⁇
  • each planetary roller 44 frictionally engages with the peripheral surface formed by the bottom surface of the circumferential groove 42 at the contact point s.
  • the rotation axis p of these planetary rollers 44 is more radially away from the center axis C than the straight line connecting the rotation axes r of the two adjacent power rollers 40.
  • the rotation axis r of each power roller 40 is located further radially outward from the center axis C than the straight line connecting the rotation axes p of the two planetary rollers 44 adjacent to each other.
  • each power roller 40 engages a portion separated from the central axis C with respect to the rotation axis r. It is pressed by 30a and 32a, and rotates about the contact point s with the adjacent planetary roller 44. As a result, the engagement portions on the inclined surfaces 40a and 40b
  • the engagement position of 30a and 32a moves, and the distance from the rotation axis r changes.
  • the inclination angle of the rotation axis r of each power roller 40 with respect to the center axis C is simultaneously changed to the same angle, and at the same time, the circumferential groove is formed.
  • Each planetary roller 44 fitted to 42 is also urged by the power roller 40 via the ridge 42a, and the adjacent power roller while maintaining frictional engagement with the guide groove 144a. Rotate all around the same angle around the contact s with 40. As a result, the rotation axis r of the power roller 40 and the rotation axis p of the planetary roller 44 are disposed at substantially the same angle with respect to the center axis C.
  • the connecting member 20 extends from the center of the first drum 16 along the center axis C, is connected to the boss 14a, and the nut 17 is placed on the boss 14a. It is connected to the second drum 18 via an axial bearing 22 fixed at the position.
  • a transmission mechanism 120 acting as a driving force synthesizing mechanism for the first and second drums 16 and 18 is disposed in the concave portion of the second drum 18 so that the intermediate gear 12 26 can rotate freely.
  • a supporting shaft 124 supports the second drum 18 and the axial bearing 22 mechanically.
  • the speed change mechanism 120 has an intermediate gear 122 mounted rotatably on a support shaft 124, an external gear 122 provided on a pos part 14a, and a housing 10 provided on a housing 110. And the first and second drums 16 and 18 at a constant speed ratio as a planetary gear device that revolves around the center axis C while rotating. Rotate.
  • a vane clutch 70 is disposed between the inner peripheral side of the input shaft 12 and the spline shaft 148 connecting the drive shaft of the engine.
  • a motor generator 150 for driving the above-mentioned guide 144 is provided on the outer peripheral side of the input shaft 12.
  • This motor generator 150 is preferably formed by a PM motor, and a number of permanent magnets 152 are fixed to the inner peripheral side of the extension portion 148 of the driving ring 144, and this is combined with the motor generator 150.
  • the stator coils 154 facing each other with a predetermined gap are attached to a cylindrical support portion 156 projecting inward from the housing lid 1 Ob.
  • the transmission according to this embodiment shifts in substantially the same manner as the transmission shown in FIG. However, the transmission shown in FIG. While the roller 44 rotates in the opposite direction to the input shaft 12, the transmission of the present embodiment has the idler roller 44 inscribed in the guide groove 144 a of the guide 146. The idler roller 4 rotates in the same direction as the input shaft 12.
  • the first and second nose urge the power roller 40 from both sides. ⁇ ⁇ ⁇ ⁇ Wheels 30 and 32 for power output.
  • the forces are balanced on both sides of the word roller 40 and the planetary rollers 44, so that the alignment of the near roller 40 and the planetary rollers 44 can be ensured.
  • the one-way clutch 70 integrally with the input shaft 12, the connection of the drive shaft such as an engine to the input shaft 12 can be made compact. ⁇
  • the permanent magnets 152 of the motor generator 150 are arranged on the inner peripheral side of the extension portion 148 of the dry ring 144, the permanent magnets are prevented from being separated and scattered by centrifugal force. It can be prevented reliably. As a result, the motor generator 150 can be rotated at a high speed, the operating radius of the magnetic force can be increased, and the output of the motor generator 150 can be increased, which is suitable for automobiles. It is possible to form a hybrid drive device.
  • motor generator 150 When such a motor generator 150 is incorporated in an automobile, it can be operated as follows through a suitable motor generator control device.
  • the motor generator 150 which exhibits high efficiency at low speeds, is supplied from the battery. It is driven by the supplied power.
  • the motor generator 150 When the engine speed rises above the speed of the input shaft 12 and the drive shaft and the input shaft 12 are connected via the one-way clutch 70, the motor generator The power supply to 70 can be stopped, and the input shaft 12 can be rotationally driven by the engine.
  • the input shaft 12 is mainly driven by the engine.
  • the power supplied to the motor generator 70 is suppressed, and the battery is charged by operating the motor generator 70 as a generator to charge the battery.
  • the motor generator 70 is operated as a motor, and the driving force of the motor generator 70 is added to the driving force of the engine. Can also respond to the acceleration required by the driver.
  • the motor generator 70 When the vehicle is decelerated, the motor generator 70 operates as a generator, and the power generated at this time is stored in a battery. That is, when the vehicle is decelerated, the accelerator pedal is loosened, and when the rotation speed of the engine is reduced, the one-way clutch 70 separates the drive shaft 60 from the input shaft 12, which causes Then, all the rotating forces acting on the input shafts 12 act on the motor generator 70 as generated energy, and are converted into electric power. The braking energy converted to this electric power is stored in the notifier.
  • the transmission according to the present embodiment not only exhibits quick responsiveness and high transmission efficiency, but also has a great performance when starting and accelerating. It forms an accelerating force and recovers energy with high efficiency during deceleration, which makes it possible to reduce the fuel consumption of automobiles.
  • the pressure difference in the housing 10 to circulate the lubricating oil to the lubricant cooling device 86, there is no need to provide a circulating pump for cooling.
  • the overall structure of the device can be simplified and the weight can be reduced.
  • a continuously variable transmission that has a simple structure, high transmission efficiency, and is capable of transmitting large power while being lightweight is manufactured at low cost. can do. This makes it possible to support an extremely wide range of industrial uses such as automobiles, ships, construction machinery, agriculture, and power generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Friction Gearing (AREA)

Abstract

A stepless speed change device comprises power rollers (40) frictionally engaged between a pair of power wheels (30, 32) through inclined surfaces (40a, 40b) at the opposite ends and making an orbital motion around the center axis (C) of the power wheel while each rotating around its own axis, and planetary rollers (44) frictionally engaged with the peripheral surfaces of these power rollers and making an orbital motion around the center axis (C) of the power wheel while each rotating around its own axis. A guide surface (46) frictionally engaged with the peripheral surfaces of the planetary rollers supports the power rollers (40) urged in the direction of the center axis (C) of the power wheel by the pressing force produced by the pair of power wheels, through these planetary rollers (44), and holds the power rollers (40) and the planetary rollers (44) at peripherally equispaced intervals.

Description

明 細 書  Specification
無段変速装置 Continuously variable transmission
技術分野 Technical field
本発明は、 変速装置に関 し、 特に、 変速比を無段階的に変 更可能な摩擦式変速装置に関する。  The present invention relates to a transmission, and more particularly, to a friction type transmission capable of changing a gear ratio steplessly.
背景技術 Background art
一般に、 無段変速装置と して、 種々の形式の摩擦式変速装 置が開発されている。  In general, various types of friction type transmissions have been developed as continuously variable transmissions.
例えば特開平 7 _ 1 3 3 8 5 7号公報には、 入力軸に結合 した一次側回転板と 出力軸に結合した二次側回転板と の間に これらの回転板の周縁部に摩擦係合する小径の球体を多数配 置した正逆転用無段変速機が記載されている。 こ の無段変速 機の多数の球体は、 それぞれ回転板の半径方向に延びかつ一 対の回転板間に配置された固定板で入力軸および出力軸に対 して傾動可能に支持された回転軸に、 回動自在に保持されて いる。 これらの回転軸を一斉に傾動する こ と によ り 、 一次側 回転板および二次側回転板の周縁が球体外面に対して押圧ナ る位置を変更する。 これによ り 、 一次側回転板と二次側回転 板と の回転数比が無段階的に変更される。  For example, in Japanese Patent Application Laid-Open No. 7-1333857, friction between the primary rotary plate connected to the input shaft and the secondary rotary plate connected to the output shaft is attached to the peripheral edges of these rotary plates. A forward / reverse continuously variable transmission in which a large number of small-diameter spheres are arranged is described. A large number of spheres of the continuously variable transmission extend in the radial direction of the rotating plate, and are supported by a fixed plate disposed between the pair of rotating plates so as to be tiltable with respect to the input shaft and the output shaft. It is rotatably held on a shaft. By tilting these rotating shafts at the same time, the positions where the peripheral edges of the primary side rotating plate and the secondary side rotating plate press against the outer surface of the sphere are changed. As a result, the rotational speed ratio between the primary side rotating plate and the secondary side rotating plate is steplessly changed.
しかし、 この無段変速機は、 大径の回転板の最も周速度の 高い周縁部で小径の球体を回転するため、 こ の球体の回転数 は極めた高く なる。 例えば、 自動車用エンジンでは、 毎分 1 0 0 0 〜 8 0 0 0回転程度で回転し、 航空機用または舶用の ター ビンエ ンジンでは毎分数千〜数万回転程度で回転し、 一 般的なモータでは、 毎分 1 0 0 0 〜 3 0 0 0 回転程度で回転 される。 このため、 球体を支持する回転軸の軸受部に強制潤 滑を施しても、 この軸受部における大きな動力損失が発生す る。 更に、 各回転板の周縁部に沿って配置 した多数の球体を 一斉に移動するために、 乱調を生じやすく 、 球体を支持する 回転軸、 および球体の傾動を制御する制御機構の負荷が増大 する。 これによ り 、 球体を支持する回転軸、 および制御機構 の耐久性に問題を生じ、 更に、 このよ う な多数の球体おょぴ その制御機構のコス ト も嵩むこ と になる。 However, since the continuously variable transmission rotates a small-diameter sphere at the periphery of the large-diameter rotary plate where the peripheral speed is highest, the rotation speed of the sphere becomes extremely high. For example, an automobile engine rotates at about 100 to 800 revolutions per minute, and an aircraft or marine turbine engine rotates at about several thousand to tens of thousands of revolutions per minute. The motor rotates at about 100 to 300 rotations per minute Is done. For this reason, even if forced lubrication is applied to the bearing portion of the rotating shaft that supports the sphere, a large power loss occurs in the bearing portion. Furthermore, since a large number of spheres arranged along the periphery of each rotating plate are moved at the same time, turbulence is likely to occur, and the load on the rotating shaft supporting the spheres and the control mechanism for controlling the tilt of the spheres increases. . This causes a problem in the durability of the rotating shaft supporting the spheres and the control mechanism, and also increases the cost of such a large number of spheres and the control mechanism.
発明の開示 Disclosure of the invention
本発明は、 このよ う な事情に基づいてなされたも ので、 構 造が簡単で伝達効率が高く 、 軽量であ り なが らも大きな動力 を伝達する こ と のでき る低コス ト の無段変速装置を提供する こ と を 目 的とする。  The present invention has been made in view of such circumstances, and has a simple structure, high transmission efficiency, low weight, and low cost that can transmit large power. It is intended to provide a step transmission.
上記目的を達成する本発明の変速装置は、 先端部に設けた 円形状係合部を互いに対向させて配置 した第 1 , 第 2パワー ホイ ール と 、 テーパ状端部に形成された第 1 , 第 2傾斜面を 介してこれらのパワーホイールの係合部に摩擦係合し、 これ らの係合部に沿って 自転しつつノ、。ヮーホイールの中心軸の回 り を公転する複数の第 1 転動体と、 それぞれが互いに隣接す る 2つの第 1 転動体の周面と摩擦係合 し、 第 1転動体と共に 自転しつつ前記パワーホイールの中心軸を中心と して公転す る複数の第 2転動体と、 これらの第 2転動体の周面に摩擦係 合し、 前記第 1 , 第 2パワーホイールによる押圧力でパワー ホイールの中心軸の方向に付勢される第 1 転動体を、 これら の第 2転動体を介して支え、 第 1 転動体と第 2転動体と のそ れぞれを周方向に等間隔に保持する支持ホイールと を備える。 前記第 1 転動体は、 前記第 1 , 第 2パワーホイールと支持ホ ィ ールと の少な く と も一方の軸方向位置に応じて、 前記中心 軸に対する傾き と、 こ の傾きに対応するそれぞれの傾斜面上 における係合部の係合位置と回転軸と の間の距離と を設定さ れる。 これらの第 1 , 第 2パワーホイールの一方と第 2転動 体を介する支持ホイールと によ り 、 入力軸の回転を第 1 転動 体に伝達し、 この第 1 転動体で回転される前記第 1 , 第 2パ ヮーホイールの他方を介して、 出力軸に回転出力を取出 し可 能である。 To achieve the above object, a transmission according to the present invention comprises: a first and a second power wheels having circular engagement portions provided at a distal end thereof arranged to face each other; and a first power wheel formed at a tapered end portion. , Frictionally engage with the engaging portions of these power wheels via the second inclined surface, and rotate while rotating along these engaging portions. A plurality of first rolling elements that revolve around the center axis of the wheel and frictionally engage with the peripheral surfaces of two adjacent first rolling elements, and the power wheel while rotating together with the first rolling elements; A plurality of second rolling elements orbiting about the central axis of the second rolling element, and frictionally engaging with the peripheral surface of the second rolling element, the center of the power wheel being pressed by the first and second power wheels. The first rolling element biased in the direction of the axis is supported via these second rolling elements, and the first rolling element and the second rolling element are separated from each other. And a support wheel for holding each at equal intervals in the circumferential direction. The first rolling element has a tilt with respect to the center axis and a tilt corresponding to the tilt in accordance with at least one axial position of the first and second power wheels and the support wheel. The distance between the engaging position of the engaging portion on the inclined surface of the and the rotating shaft is set. The rotation of the input shaft is transmitted to the first rolling element by one of the first and second power wheels and the supporting wheel via the second rolling element, and the rotation of the input shaft is performed by the first rolling element. The rotation output can be output to the output shaft via the other of the first and second power wheels.
この変速装置によ る と、 それぞれの第 1 転動体は、 両側に 配置した第 1 , '第 2傾斜面をそれぞれ第 1 , 第 2パワーホイ 一ルの係合部で押圧される こ と によ り 、 このパワーホイール の中心軸の方向に付勢される。 各第 1 転動体の周面には、 支 持ホイールで支えられたそれぞれ 2つの第 2転動体の周面が 摩擦係合する こ と によ り 、 係合部の周方向に沿う 力が平衡さ れ、 また、 第 2転動体のそれぞれは互いに隣接する 2つの第 1 転動体と摩擦係合する こ と によ り 、 係合部の周方向に沿 う 力が平衡され、 これらの第 1転動体と第 2転動体と はそれぞ れパワーホイールの係合部に沿 う周方向に等間隔に保持され る。 そ して、 第 1 , 第 2ノ、。ヮーホイ ールと支持ホイールと の 少なく と も一方が、 その中心軸の方向に沿って移動する と、 この中心軸に対する第 1転動体の回転軸の傾きが変化する。 これによ り 、 第 1 , 第 2傾斜面上における各係合部の回転軸 からの距離が変化し、 第 1 パワーホイールあるいは第 2転動 体で回転される こ と によ り 、 第 2係合面に摩擦係合する第 2 パワーホイールを回転する。 この第 1 転動体には、 第 1 , 第 2パワーホイールの一方と第 2転動体を介する支持ホイ ール と によ り 、 入力軸の回転が伝達され、 この第 1 転動体で回転 される第 1 , 第 2パワーホイールの他方を介 して、 出力軸に 回転出力を取出すこ と ができ る。 According to this transmission, the first rolling elements are pressed against the first and second inclined surfaces disposed on both sides by the engaging portions of the first and second power wheels, respectively. Therefore, the power wheel is urged in the direction of the central axis. The peripheral surface of each of the first rolling elements is frictionally engaged with the peripheral surface of each of the two second rolling elements supported by the support wheel, so that the forces along the circumferential direction of the engaging portions are balanced. Further, each of the second rolling elements frictionally engages with two adjacent first rolling elements, so that a force along a circumferential direction of the engaging portion is balanced, and these first rolling elements are balanced. The rolling elements and the second rolling elements are respectively held at equal intervals in the circumferential direction along the engaging portion of the power wheel. And the first, second, and so on. When at least one of the wheel and the support wheel moves along the direction of the center axis, the inclination of the rotation axis of the first rolling element with respect to the center axis changes. As a result, the distance of each engagement portion from the rotation axis on the first and second inclined surfaces changes, and the first power wheel or the second rolling wheel is rotated. By being rotated by the body, the second power wheel that frictionally engages with the second engagement surface is rotated. The rotation of the input shaft is transmitted to the first rolling element by one of the first and second power wheels and the supporting wheel via the second rolling element, and the first rolling element is rotated by the first rolling element. Rotational output can be output to the output shaft via the other of the first and second power wheels.
前記支持ホイールは、 前記中心軸と 同心状の入力軸に設け られた中央ホイ ールで形成され、 この中央ホイールは、 前記 第 2転動体が転動する周方向溝を外周部に有する こ とが好ま しい。  The support wheel is formed of a central wheel provided on an input shaft concentric with the central axis, and the central wheel has a circumferential groove on the outer peripheral portion where the second rolling element rolls. Is preferred.
この場合、 前記入力軸から駆動力分岐機構を介して分岐し た駆動力を前記第 1 , 第 2 パワーホイールの一方に伝達する こ と が好ま しく 、 これに代え、 第 1 , 第 2 パワーホイールの 一方と支持ホイ ールと のいずれか一方を、 回転しないよ う に 固定する こ と も可能である。 第 1 , 第 2 ノ ヮ一ホイールの一 方と 中央ホイールと の回転方向が逆方向の場合には、 第 1, 第 2転動体の公転速度が減 じられ、 入力軸したがって原動機 始動時すなわち立ち上がり の際の位置エネルギの負荷を軽減 し、 これによ り 、 原動機の回転数の変動に対する応答性が高 まる。 これと は反対に、 第 1 , 第 2パワーホイールの一方と 中央ホイ ルと の回転方向が同方向の場合には、 第 1 , 第 2 転動体の 自転速度が減じられ、 これらの各転動体の転が り 抵 杭が減少 し、 これによ り伝達効率が増大する。 In this case, it is preferable that the driving force branched from the input shaft via the driving force branching mechanism is transmitted to one of the first and second power wheels. Instead, the first and second power wheels are preferably used. It is also possible to fix either one of them and the support wheel so that they do not rotate. When the rotation direction of one of the first and second wheels and the center wheel is in the opposite direction, the revolving speed of the first and second rolling elements is reduced, and the input shaft and, therefore, the start-up of the motor, that is, the start-up In this case, the load of potential energy at the time of rotation is reduced, thereby increasing the responsiveness to fluctuations in the rotation speed of the prime mover. Conversely, if the rotation direction of one of the first and second power wheels and the center wheel is in the same direction, the rotation speed of the first and second rolling elements is reduced, and each of these rolling elements is reduced. The number of rolling stakes decreases, which increases transmission efficiency.
また、 前記駆動力源と中央ホイールと の間に介揷されたヮ ンウェイ ク ラ ッチと、 前記中央ホイールにロータ を連結 した 第 1 モータジェネ レータ と 、 前記第 1 , 第 2パワーホイール の一方にロータ を連結した第 2 モータジェネ レータ と、 前記 第 1 , 第 2パワーホイールの他方で駆動される出力軸と、 こ の出力軸で作動される被駆動装置との間に介挿されたク ラ ッ チと を備えても よい。 これらの第 1 , 第 2 モータジエネ レー タを好適に切換える こ と によ り 、 積載貨物または搭乗人員の 変動によって車両重量が大き く 変動する場合でも、 運動エネ ルギと電気工ネルギと を効率良く 変換する こ とができ る。 Also, an on-way clutch interposed between the driving force source and a center wheel, and a rotor connected to the center wheel A first motor generator; a second motor generator having a rotor connected to one of the first and second power wheels; an output shaft driven by the other of the first and second power wheels; And a clutch interposed between the shaft and a driven device operated by the shaft. By suitably switching between the first and second motor generators, even if the vehicle weight fluctuates greatly due to changes in the loaded cargo or the number of passengers, the kinetic energy and the electric energy can be efficiently converted. can do.
更に、 前記支持ホイールは、 前記中心軸と同心状でかつ回 転不能の中空軸に設け られた中央ホイールで形成され、 更に、 前記第 1 , 第 2 パワーホイールの一方にロータを連結したモ ータ ジェ ネ レータ と、 前記第 1 , 第 2 パワ ーホイールの他方 と左右の駆動軸と に連結された作動歯車装置と を備えても よ い。 この場合には、 モータ ジェネ レータの内部ス ペースを効 率良く利用する こ とができ る。  Further, the support wheel is formed by a center wheel provided on a hollow shaft which is concentric with the center shaft and cannot rotate, and further comprises a motor having a rotor connected to one of the first and second power wheels. A generator may be provided, and an operating gear unit connected to the other of the first and second power wheels and the left and right drive shafts. In this case, the internal space of the motor generator can be used efficiently.
前記中央ホイールは、 入力軸上に周方向に移動不能でかつ 軸方向に摺動自在に装着され、 前記第 1転動体の中心軸に対 する傾き を制御する こ と もでき る。  The center wheel is mounted on the input shaft so as to be immovable in the circumferential direction and slidable in the axial direction, and can control the inclination of the first rolling element with respect to the center axis.
前記第 1 , 第 2パワーホイールを、 変速比が一定の変速機 構を介して相互に連結する こ と もでき る。  The first and second power wheels can be connected to each other via a transmission having a constant speed ratio.
前記支持ホイールは、 第 1 , 第 2転動体を囲みかつ第 2転 動体の周面に摩擦係合するガイ ドで形成し、 前記第 1 , 第 2 パワーホイールの他方と出力軸と の間にク ラ ツチを介揷して も よい。 この場合には、 第 1 転動体と第 2転動体と の整列を、 よ り 確実にする こ とができ る。 上述のよ う に第 1 , 第 2パワーホイールの一方と第 2転動 体を介する支持ホイールと によ り 、 入力軸の回転を第 1 転動 体に伝達し、 この第 1 転動体で回転される第 1 , 第 2パワー ホイールの他方を介 して、 出力軸に回転出力を取出する こ と に代え、 前記第 1 , 第 2パワーホイールを、 変速比が一定の 変速機構を介して相互に連結し、 入力軸の回転を第 1 転動体 に伝達し、 第 2転動体を介 して回転される中央ホイールから 出力軸に回転出力を取出すこ と もでき る。 この場合には、 例 えば風車の羽根で入力軸を回転し、 出力軸で発電機を駆動す る こ と によ り 、 発電装置の小型化と発電効率の向上と を実現 する こ と ができ る。 The support wheel is formed of a guide that surrounds the first and second rolling elements and frictionally engages with a peripheral surface of the second rolling element, and is provided between the other of the first and second power wheels and an output shaft. It may be through a clutch. In this case, the alignment between the first rolling element and the second rolling element can be further ensured. As described above, the rotation of the input shaft is transmitted to the first rolling element by one of the first and second power wheels and the supporting wheel via the second rolling element, and the first rolling element rotates. Instead of taking out the rotational output to the output shaft via the other of the first and second power wheels, the first and second power wheels are connected to each other via a speed change mechanism having a constant speed ratio. In addition, the rotation of the input shaft is transmitted to the first rolling element, and the rotation output from the center wheel rotated through the second rolling element can be taken out to the output shaft. In this case, for example, by rotating the input shaft with the blades of a wind turbine and driving the generator with the output shaft, it is possible to achieve a reduction in the size of the power generation device and an improvement in the power generation efficiency. You.
図面の簡単な説明 ' Brief description of the drawings ''
図 1 は、 本発明の第 1 の実施形態による変速装置の縦断面 図 2 は 図 1 の変速装置の Π _ Π線に沿う 断面図。  FIG. 1 is a longitudinal section of a transmission according to a first embodiment of the present invention. FIG. 2 is a sectional view of the transmission of FIG. 1 taken along line Π_Π.
図 3 は 第 2 の実施形態によ る変速装置の図 1 と 同様な断 面図。  FIG. 3 is a sectional view similar to FIG. 1 of a transmission according to a second embodiment.
図 4 は 図 3 に示す第 3 の実施形態による変速装置を自動 車用 と して形成した状態の説明図。  FIG. 4 is an explanatory view of a state in which the transmission according to the third embodiment shown in FIG. 3 is formed for an automobile.
図 5 は、 ハイプリ ッ ド自動車用 と して形成した第 4 の実施 形態によ る変速装置の縦断面図。  FIG. 5 is a longitudinal sectional view of a transmission according to a fourth embodiment formed for a hybrid vehicle.
図 6 は、 電気自動車用 と して形成した第 5 の実施形態によ る変速装置の縦断面図。  FIG. 6 is a longitudinal sectional view of a transmission according to a fifth embodiment formed for an electric vehicle.
図 7 は、 図 6 の変速装置の — W線に沿う 断面図。  FIG. 7 is a cross-sectional view of the transmission of FIG. 6 taken along line W.
図 8 は、 第 6 の実施形態によ る変速装置の縦断面図。 図 9 は、 図 8 の変速装置の] X— IX線に沿 う 断面図。 FIG. 8 is a longitudinal sectional view of a transmission according to a sixth embodiment. FIG. 9 is a cross-sectional view of the transmission of FIG. 8 taken along line X-IX.
図 1 0 は、 第 7の実施形態によ る変速装置の縦断面図。  FIG. 10 is a longitudinal sectional view of a transmission according to a seventh embodiment.
図 1 1 は、 風力発電装置用 と して形成した第 8 の実施形態 によ る変速装置の縦断面図。  FIG. 11 is a longitudinal sectional view of a transmission according to an eighth embodiment formed for a wind turbine generator.
図 1 2 は、 第 9 の実施形態によ る変速装置の縦断面図。  FIG. 12 is a longitudinal sectional view of a transmission according to a ninth embodiment.
図 1 3 は、 図 1 2 の変速装置の Χ ΠΙ— Χ ΠΙ線に沿 う 断面図。 発明を実施するための最良の形態  FIG. 13 is a cross-sectional view of the transmission of FIG. 12 taken along the line Χ-ΠΙ. BEST MODE FOR CARRYING OUT THE INVENTION
図 1 および図 2 は、 本発明の第 1 の実施形態によ る変速装 置を示す。  1 and 2 show a transmission according to a first embodiment of the present invention.
こ の変速装置は、 例えば自動車を含む広範囲の産業用無段 変速装置と して形成 してあ り 、 全体をハウジング 1 0 内に収 容したコ ンパク トな構造に形成 してある。  This transmission is formed as a wide range of industrial continuously variable transmissions including, for example, automobiles, and is formed in a compact structure in which the entirety is housed in a housing 10.
図 1 に示すよ う に、 このハウジング 1 0 は両端を開口 させ た円筒状の胴部 1 0 a と、 この両端部を閉塞する蓋部 1 0 b と を備え、 この変速装置の入力軸 1 2 と出力軸 1 4 とが双方 の軸に共通の中心軸 Cに沿ってこれらの蓋部 1 0 b を貫通 し、 例えば玉軸受等の適宜の軸受を介 して回転自在に支持される。 これらの入力軸 1 2 および出力軸 1 4が貫通する部位には好 適なシール部材を配置 し、 潤滑剤等の漏洩を防止する と共に、 ハウジング 1 0 内に異物が入り 込むのを防止する。 また、 本 実施形態では、 入力軸 1 2 が貫通する蓋部 1 0 b を内方に凹 設してあ り 、 動力伝達系統の全体の軸方向長さ を短く する こ とができ る。 なお、 本明細書中における 「入力」 および 「出 力」 は説明の便宜上の用語であ り 、 この変速装置の使用態様 によっては 「入力」 と 「出力」 と が逆となる場合もある。 ノヽウジング 1 0 の内部には、 入力軸 1 2上に回動自在に支 えられた第 1 ドラム 1 6 と、 出力軸 1 4 に結合される第 2 ド ラム 1 8 とが配置されている。 第 1 ドラム 1 6 は、 ディ スク 状部 1 6 a が例えば球軸受を介 して入力軸 1 2上に回転自在 に支えられ、 第 2 ドラ ム 1 8 はディ スク状部 1 8 a の中空状 のボス部 1 4 a を介して出力軸 1 4 と一体的に連結される。 本実施形態では、 入力軸 1 2 の先端部 1 2 a が、 このボス部 1 4 a 内に差し込まれ、 軸方向に離隔 した 2 つの位置でそれ ぞれ軸受を介して回転自在に支え られている。 As shown in FIG. 1, the housing 10 includes a cylindrical body 10a having both ends opened, and a lid 10b that closes both ends. 2 and the output shaft 14 penetrate these lids 10b along the central axis C common to both shafts, and are rotatably supported via appropriate bearings such as ball bearings. A suitable seal member is disposed at a portion where the input shaft 12 and the output shaft 14 penetrate to prevent leakage of lubricant and the like and prevent foreign substances from entering the housing 10. Further, in the present embodiment, the lid 10b through which the input shaft 12 penetrates is recessed inward, so that the entire axial length of the power transmission system can be shortened. It should be noted that “input” and “output” in the present specification are terms for convenience of explanation, and “input” and “output” may be reversed depending on how the transmission is used. The first drum 16 rotatably supported on the input shaft 12 and the second drum 18 coupled to the output shaft 14 are arranged inside the nozzle 10. . The first drum 16 has a disk-shaped portion 16a rotatably supported on the input shaft 12 via, for example, a ball bearing, and the second drum 18 has a hollow disk-shaped portion 18a. It is integrally connected to the output shaft 14 via the boss 14a. In the present embodiment, the distal end portion 12a of the input shaft 12 is inserted into the boss portion 14a, and is rotatably supported via bearings at two positions separated in the axial direction. I have.
更に、 ノヽウジング 1 0 内には、 互いに逆方向のスラス ト荷 重を相殺するために、 第 2 ドラム 1 8 の外周部を超えて第 1 ドラム 1 6側に延び、 その先端を第 1 ドラ ム 1 6 の外周部に 固定した連結部材 2 0 が、 アキシャル軸受 2 2 を介して出力 軸のボス部 1 4 a に回転自在に支えられている。 このよ う に 連結部材 2 0 をアキシャル軸受 2 2 を介してボス部 1 4 a 上 に回転自在-に装着する こ と によ り 、 後述する 対のパワーホ ィールの押圧力が第 1 ドラム 1 6 および第 2 ドラム 1 8 を介 して、 このアキシャル軸受 2 2 に逆方向の力 と して作用 し、 互いに打消 しあ う。 これによ り 、 ハウジング 1 0 を軽量構造 に形成する こ と ができ る。 なお、 出力軸 1 4 のボス部 1 4 a は、 第 2 ドラム 1 8 のディ スク状部 1 8 a と一体的に形成す る こ と に代え、 このディ スク状部 1 8 a に固定する別部材と して形成する こ と も可能である。  Further, in order to offset thrust loads in opposite directions, the nozzle 10 extends beyond the outer peripheral portion of the second drum 18 toward the first drum 16, and the tip thereof extends to the first drum 16. A connecting member 20 fixed to the outer peripheral portion of the drum 16 is rotatably supported by a boss portion 14a of the output shaft via an axial bearing 22. By mounting the connecting member 20 rotatably on the boss portion 14a via the axial bearing 22 in this manner, the pressing force of a pair of power wheels described later can be reduced by the first drum 16. The axial bearing 22 acts as a force in the opposite direction via the second drum 18 and the second drum 18 to cancel each other. Thereby, the housing 10 can be formed in a lightweight structure. The boss portion 14a of the output shaft 14 is fixed to the disc-shaped portion 18a instead of being formed integrally with the disc-shaped portion 18a of the second drum 18. It can be formed as a separate member.
第 1 ドラム 1 6 と第 2 ドラム 1 8 と は、 互いに対向する環 状内孔 2 6 , 2 8 をその外周部に近接した位置に形成してあ り 、 これらの環状内孔内に、 第 1 , 第 2 ノ、 °ヮ一ホイール 3 0 , 3 2 が例えば図示しないスプライ ン等によ り 、 中心軸 C に沿 う軸方向にのみ移動可能に収容される。 これらのパワーホイ ール 3 0 , 3 2 の先端部には、 後述するパワーローラ と摩擦 係合する第 1 , 第 2係合部 3 0 a , 3 2 a を形成 してあ り 、 後端部はそれぞれの環状内孔 2 6 , 2 8 内に圧力室 2 6 a , 2 8 a を区画する。 これらの圧力室 2 6 a , 2 8 a は、 それ ぞれ適宜の管路 3 6 , 3 8 を介して圧力流体制御装置に接続 され、 これから供給された流体圧力によ り 、 パワーホイール 3 0 , 3 2 を互いに対向する方向に付勢する。 The first and second drums 16 and 18 have annular inner holes 26 and 28 opposed to each other at positions close to the outer peripheral portions thereof. In these annular bores, the first, second, and third wheels 30 and 32 can be moved only in the axial direction along the central axis C by, for example, a spline (not shown). Will be accommodated. The front ends of these power wheels 30 and 32 are formed with first and second engaging portions 30a and 32a, which are frictionally engaged with a power roller described later. Defines pressure chambers 26a, 28a in the respective annular bores 26, 28. These pressure chambers 26a, 28a are connected to the pressure fluid control device via appropriate pipes 36, 38, respectively, and the power wheel 30 is supplied by the fluid pressure supplied thereto. , 32 in opposite directions.
これらのノヽ。ヮーホイール 3 0 , 3 2 間には、 図 2 に示すよ う に、 本実施形態では 7 つ の第 1 転動体すなわちパワーロ ー ラ 4 0 がその回転軸 r よ り も中心軸 Cから離隔した部位を両 側から押圧されている。 換言する と、 ノ ヮ一ホイール 3 0 , These nose. As shown in FIG. 2, in the present embodiment, the seven first rolling elements, that is, the power rollers 40, are located between the power wheels 40 and 32 at positions separated from the center axis C with respect to the rotation axis r. Is pressed from both sides. In other words, the No. 1 wheel 30,
3 2 がこれらのパワーローラ 4 0 に摩擦係合して押圧する係 合部 3 0 a , 3 2 a は、 ノ、0ワー ロ ーラ 4 0 の回転軸 r と 中心 軸 C と の間の距離よ り も半径の大きな円形形状を有する。 3 2 engagement portion 3 that presses frictionally engage these power rollers 4 0 0 a, 3 2 a is Bruno, 0 Wah Russia over La 4 0 rotation axis r and between the center axis C of the It has a circular shape with a radius larger than the distance.
このよ う なノヽ。ヮーホイール 3 0 , 3 2 間に挟持される各パ ワー ロ ーラ 4 0 は、 両端部を先細のテーパ状あるいは半球状 に形成された中空構造を有し、 これらの両端部に形成された 第 1 , 第 2傾斜面 4 0 a , 4 0 b 力 Sノヽ。ヮーホイール 3 0 , 3 2 の係合部 3 0 a , 3 2 a に摩擦係合する。 各パワーローラ Such a thing. Each of the power rollers 40 sandwiched between the power wheels 30 and 32 has a hollow structure in which both ends are formed in a tapered or hemispherical shape. 1, 2nd inclined surface 40a, 40b Force S no.摩擦 Frictionally engages with the engaging portions 30a and 32a of the wheels 30 and 32. Each power roller
4 0 は、 外周部に開 口する周方向溝 4 2 を有する。 本実施形 態では 7 つである第 2転動体すなわち球状の遊星ローラ 4 4 のそれぞれが、 互いに隣接する 2つのパワーローラの周方向 溝 4 2 に嵌合する。 各遊星ローラ 4 4 は、 周方向溝 4 2 に沿 つて転動し、 こ の周方向溝 4 2 の底面で形成される周面と接 点 s (図 2参照) で摩擦係合する。 これらの遊星ローラ 4 4 の中心点を通る回転軸 p は、 隣接する 2 つのパワーローラ 4 0 の回転軸 r を結ぶ直線よ り も、 中心軸 Cに近接した位置す なわち半径方向内方に位置する。 また、 各パワーローラ 4 0 の回転軸 r は、 互いに隣接する 2 つの遊星ローラ 4 4 の回転 軸 ρ を結ぶ直線よ り も中心軸 Cから半径方向外方に離隔 して 位置する。 なお、 遊星ローラ 4 4 は、 図示のよ う な球状構造 に限らず、 板状あるいは円筒状構造に形成しても よい。 40 has a circumferential groove 42 which opens in the outer periphery. In the present embodiment, each of the seven second rolling elements, that is, the spherical planetary rollers 44, is arranged in the circumferential direction of two power rollers adjacent to each other. Fit into groove 42. Each of the planetary rollers 44 rolls along the circumferential groove 42 and frictionally engages with a circumferential surface formed on the bottom surface of the circumferential groove 42 at a contact point s (see FIG. 2). The rotation axis p passing through the center point of these planetary rollers 44 is closer to the center axis C, that is, radially inward than the straight line connecting the rotation axes r of the two adjacent power rollers 40. To position. Further, the rotation axis r of each power roller 40 is located radially outward from the center axis C with respect to a straight line connecting the rotation axes ρ of the two planetary rollers 44 adjacent to each other. The planetary rollers 44 are not limited to the spherical structure as shown, but may be formed in a plate-like or cylindrical structure.
ノ ヮ一ホイール 3 0 , 3 2 がそれぞれの圧力室 2 6 a , 2 8 a 内の圧力で互いに対向する方向に押圧される と、 各パヮ 一ローラ 4 0 は第 1 , 第 2傾斜面 4 0 a , 4 0 b の作用によ り 、 中心軸 Cに向けて半径方向内方に付勢される。 各遊星口 ーラ 4 4 は、 互いに隣接する 2つのノ ワー ロ ーラ 4 0 力、らそ れぞれ大きさの等しい力を両側から受け、 中心軸 Cに向けて 半径方向内方に付勢される。 そ して、 この よ う に半径方向内 方に付勢された遊星ローラ 4 4 は、 本実施形態では入力軸 1 2 と一体構造に形成された中央ホイールである支持ホイ ール 4 6 で支えられる。 こ の支持ホイ ール 4 6 の外周面に形成さ れた周方向溝が、 遊星ローラ 4 4 に摩擦係合して軸方向移動 を防止 しつつ周方向に案内するガイ ド溝 4 6 a と して作用す る。 これによ り 、 ノ、。ワー ロ ーラ 4 0 と遊星ローラ 4 4 と に作 用する周方向の力は互いに打消 しあい、 それぞれ中心軸 Cを 中心と して周方向に等間隔に保持される。 本実施形態では、 パワーローラ 4 0 に形成した周方向溝 4 2 と支持ホイール 4 6 のガイ ド溝 4 6 a と は滑らかな円環状 の曲面で形成 してあ り 、 遊星ローラ 4 4 は、 これらのパワー ローラ 4 ◦ および支持ホイール 4 6 に対して軸方向移動を阻 止される。 これによ り 、 ノヽ。ヮーホイール 3 0 , 3 2が、 その 間に挟持したパワーローラ 4 0 を両側から押圧しつつ中心軸 Cに沿って同方向に移動する と、 各パワーローラ 4 0 は、 回 転軸 r よ り も 中心軸 Cから離隔 した部位を係合部 3 0 a , 3When the first wheels 30 and 32 are pressed in the directions facing each other by the pressures in the respective pressure chambers 26 a and 28 a, the respective first rollers 40 become the first and second inclined surfaces 4. By the action of 0 a and 40 b, it is urged radially inward toward the central axis C. Each planetary roller 44 receives two equalizing forces from two sides, each having an equal magnitude, and applies radially inward toward the center axis C. Urged. In this embodiment, the planetary roller 44 urged inward in the radial direction is supported by a support wheel 46 which is a central wheel formed integrally with the input shaft 12 in this embodiment. Can be A circumferential groove formed on the outer peripheral surface of the support wheel 46 is provided with a guide groove 46 a that frictionally engages with the planetary roller 44 to prevent axial movement and guides in the circumferential direction. It works. With this, no ,. Circumferential forces acting on the word rollers 40 and the planetary rollers 44 cancel each other out and are held at equal intervals in the circumferential direction about the center axis C. In the present embodiment, the circumferential groove 42 formed on the power roller 40 and the guide groove 46 a of the support wheel 46 are formed by a smooth annular curved surface. The axial movement of the power roller 4 ◦ and the support wheel 46 is prevented. Due to this, no. When the wheels 30 and 32 move in the same direction along the central axis C while pressing the power rollers 40 sandwiched therebetween from both sides, the power rollers 40 move more than the rotation axis r. Engagement parts 30a, 3
2 a で押圧され、 隣接する遊星ローラ 4 4 と の接点 s を中心 と して一斉に傾動する。 これによ り 、 各傾斜面 4 0 a , 4 0 b上における係合部 3 0 a , 3 2 a の係合位置が移動し、 回 転軸 r からの距離が変化する。 換言する と、 傾斜面 4 0 a , 4 0 b 上における係合部 3 0 a , 3 0 b の係合位置と回転軸 r と の間の距離は、 ノ、。ワーローラ 4 0 の接点 s を中心と した 傾斜角度で設定される。 · It is pressed by 2a and tilts all together about the contact point s with the adjacent planetary roller 44. As a result, the engagement positions of the engagement portions 30a and 32a on the inclined surfaces 40a and 40b move, and the distance from the rotation axis r changes. In other words, the distance between the engagement position of the engagement portions 30a, 30b on the inclined surfaces 40a, 40b and the rotation axis r is: It is set at an angle of inclination centered on the contact s of the warlor 40. ·
本実施形態では、 パワーホイ ール 3 0 , 3 2 が環状内孔 2 6 , 2 8 内に区画した圧力室 2 6 a , 2 8 a と、 管路 3 6 , In this embodiment, the power wheels 30 and 32 have pressure chambers 26 a and 28 a partitioned into annular bores 26 and 28, respectively, and the pipelines 36 and 28.
3 8 を介 して供給する圧力流体制御装置と で速比変更手段を 形成 してお り 、 この圧力流体制御装置を介 して、 図示しない 圧力流体源から圧力室 2 6 a , 2 8 a 内に供給する圧力流体 の圧力およびその量を制御する こ と によ り 、 パワーホイール 3 0 , 3 2 が内孔 2 6 , 2 8 から突出する量すなわち係合部 3 0 a , 3 2 a の軸方向位置おょぴ回転軸 r の中心軸 C に対 する傾斜角度を調整する こ と ができ る。 A speed ratio changing means is formed by the pressure fluid control device supplied through the pressure fluid control device 38 and the pressure chambers 26 a and 28 a from a pressure fluid source (not shown) through the pressure fluid control device. By controlling the pressure of the pressurized fluid supplied to the inside and the amount thereof, the amount by which the power wheels 30 and 32 project from the inner holes 26 and 28, that is, the engaging portions 30 a and 32 a It is possible to adjust the inclination angle of the rotation axis r with respect to the center axis C of the rotation axis r.
更に、 本実施形態では、 入力軸 1 2 から駆動力の一部を分 岐かつ変速して第 1 ドラム 1 6 に伝達する駆動力分岐機構 5 0 を設けてある。 本実施形態の駆動力分岐機構 5 0 は、 入力 軸 1 2 の外周部に設けた外歯歯車 5 2 と、 入力軸 1 2側の蓋 部 1 0 b の内面から突出する支持軸 5 4 に回転自在に装着さ れて、 外歯歯車 5 2 と嚙合 う 中間歯車 5 6 と、 第 1 ドラム 1 6 のディ スク状部 1 6 a に設け られて、 中間歯車 5 6 と嚙合 う 内歯歯車 5 8 と を有する。 外歯歯車 5 2 と内歯歯車 5 8 と の間に、 中間歯車 5 6 が介揷されているため、 外歯葉車 5 2 と 内歯歯車 5 8 とは、 その歯数に反比例した速比で互いに逆 方向に回転する。 Further, in this embodiment, a part of the driving force is divided from the input shaft 12. There is provided a driving force branching mechanism 50 for transmitting the power to the first drum 16 at a divergent speed. The driving force splitting mechanism 50 of the present embodiment includes an external gear 52 provided on the outer periphery of the input shaft 12 and a support shaft 54 projecting from the inner surface of the lid 10b on the input shaft 12 side. An intermediate gear 56 that is rotatably mounted and mates with the external gear 52, and an internal gear that is provided on the disk-shaped portion 16a of the first drum 16 and mates with the intermediate gear 56. 5 8 and. Since the intermediate gear 5 6 is interposed between the external gear 52 and the internal gear 58, the speed of the external gear 52 and the internal gear 58 is inversely proportional to the number of teeth. Rotate in opposite directions by the ratio.
次に、 上述の変速装置の作用について説明する。  Next, the operation of the above-described transmission will be described.
この変速装置では、 第 1 パワーホイ ール 3 0 と支持ホイ一 ル 4 6 と で、 入力軸 1 2 の回転がノ、。ワーローラ 4 0 に伝達さ れ、 第 2パワーホイール 3 2 から、 変速された回転出力を出 力軸 1 4 に取出すこ とができ る。 この出力軸 1 4 から取出 し た駆動力を、 例えば自動車のプロペラ軸等の被駆動装置に伝 達する こ と ができる。  In this transmission, the first power wheel 30 and the support wheel 46 rotate the input shaft 12 in rotation. The speed-changed rotation output transmitted to the power roller 40 and output from the second power wheel 32 can be output to the output shaft 14. The driving force extracted from the output shaft 14 can be transmitted to a driven device such as a propeller shaft of an automobile, for example.
具体的には、 入力軸 1 2 が例えばスプラ イ ン継手を介して 連結された図示 しない駆動力源であるエンジンで駆動される と、 中央ホイール 4 6 が遊星ローラ 4 4 を介してパワーロー ラ 4 0 を、 この中央ホイール 4 6 と 同 じ方向に回転する。 一 方、 入力軸 1 2 の外歯歯車 5 2 と 中間歯車 1 0 と を介 して内 歯歯車 5 8 が、 第 1 ドラム 1 6 を、 所定の速比で入力軸 1 2 と逆方向に回動させる。  Specifically, when the input shaft 12 is driven by, for example, an engine which is a driving force source (not shown) connected via a spline joint, the center wheel 46 is driven by a power roller via a planetary roller 44. Rotate 40 in the same direction as this center wheel 46. On the other hand, the internal gear 58 through the external gear 52 of the input shaft 12 and the intermediate gear 10 causes the first drum 16 to rotate in the opposite direction to the input shaft 12 at a predetermined speed ratio. Rotate.
各パワーローラ 4 0 は、 両側から第 1 , 第 2 パワーホイ一 ル 3 0 , 3 2 によ り 押圧され、 遊星ローラ 4 4 を介して中央 ホイール 4 6 で支え られているため、 第 1 ドラム 1 6 と 中央 ホイール 4 6 と によ り 、 入力軸 1 2 の回転がパワーローラ 4 0 に伝達される。 これによ り 、 各パワーローラ 4 0 は中央ホ ィール 4 6 の回 り を公転しつつ自転する。 これによ り 、 第 2 パワーホイール 3 2 が第 1 ノ、。ヮーホイール 3 0 と 同方向に回 動し、 第 2 ドラム 1 8 を通 じて駆動力が出力軸 1 4 に伝達さ れる。 Each power roller 40 has a first and a second power wheel from both sides. The first drum 16 and the center wheel 46 cause the input shaft 12 to be pressed by the center wheels 46 through the planetary rollers 44 and pressed by the rollers 30 and 32. The rotation is transmitted to the power roller 40. As a result, each power roller 40 rotates while revolving around the center wheel 46. As a result, the second power wheel 32 becomes the first power wheel. It rotates in the same direction as the wheel 30, and the driving force is transmitted to the output shaft 14 through the second drum 18.
こ こで、 説明の便宜と して、 パワーローラ 4 0 の各係合部 Here, for convenience of explanation, each engaging portion of the power roller 40 is described.
3 0 a , 3 O b が回転軸 r を中心に描く 軌跡半径を r l , r 2 と表す。 The trajectory radii drawn by 30a and 3Ob around the rotation axis r are represented by rl and r2.
図 1 に示すよ う にパワーローラ 4 0 の回転軸 r が中心軸 C と並行の状態では r 2 = r 1 と な り 、 第 1 ノ、。ヮーホイール 3 0 は第 2 ノ ヮ一ホイール 3 2 を等速度で回動させ、 第 2 ドラ ム 1 8 を通 じて出力軸 1 4 に駆動力分岐機構 5 0 による速比 で変速された回転駆動力が伝達される。  As shown in FIG. 1, when the rotation axis r of the power roller 40 is parallel to the center axis C, r 2 = r 1. The wheel 30 rotates the second wheel 32 at a constant speed, and the rotational drive is shifted to the output shaft 14 through the second drum 18 at the speed ratio by the driving force branching mechanism 50. Power is transmitted.
一方、 圧力流体制御装置によ り 、 第 1 , 第 2 パワーホイ一 ル 3 0 , 3 2 を出力軸 1 4側に移動する と、 各パワーローラ On the other hand, when the first and second power wheels 30 and 32 are moved to the output shaft 14 side by the pressure fluid control device, each power roller is moved.
4 0 が出力軸 1 4側に傾斜して r 2 > r 1 と な り 、 係合部 3 2 a の周速度が係合部 3 0 a よ り 大と なる。 よって、 第 2 ノ ヮーホイール 3 2が増速されて回転し、 第 2 ドラム 1 8 を通 じて出力軸 1 4 に增速された回転駆動力が伝達される。 逆に、 第 1 , 第 2 ノ、。ヮ一ホイール 3 0 , 3 2 を入力軸 1 2側に移動 する と、 各パワーローラ 4 0 が入力軸 1 2側に傾斜して r 2 < r 1 と な り 、 係合部 3 2 a の周速度が係合部 3 0 a よ り 小 と なる。 よって、 第 2 ノ、°ヮーホイール 3 2 が減速されて回転 し、 第 2 ドラム 1 8 を通じて出力軸 1 4 に減速された回転駆 動力が伝達される。 40 is inclined to the output shaft 14 side so that r 2> r 1, and the peripheral speed of the engaging portion 32 a becomes higher than that of the engaging portion 30 a. Therefore, the second nozzle wheel 32 rotates at an increased speed, and the reduced rotational driving force is transmitted to the output shaft 14 through the second drum 18. Conversely, the first, second,. When the wheels 30 and 32 are moved to the input shaft 12 side, the respective power rollers 40 are inclined to the input shaft 12 side so that r 2 <r 1, and the engagement portion 32 a Peripheral speed is lower than engagement part 30a And Thus, the second wheel, the second power wheel 32, is rotated at a reduced speed, and the reduced driving force is transmitted to the output shaft 14 through the second drum 18.
上述の変速装置では、 駆動力の入力は第 1 ドラム 1 6 およ び遊星ローラ 4 4 を介する 中央ホイール 4 6 の双方を通 じて 行われ、 従来の一方向の入力と比較して低い入力回転に対し ても速比を小さ く でき、 しかもノ、。ワー ロ ーラ 4 0 を押圧する 一対のパワーホイール 3 0 , 3 2 は、 各 ドラム 1 6 , 1 8 と 共に回動するため、 ノ、。ワーローラ 4 0 の 自転および公転を阻 害する こ と なく 駆動力を効率的に伝達し、 伝達ロスを著しく 低減する こ とができ る。  In the transmission described above, the input of the driving force is performed through both the first drum 16 and the center wheel 46 via the planetary rollers 44, and the input is lower than the conventional one-way input. The speed ratio can be reduced with respect to rotation. The pair of power wheels 30 and 32 that press the roller 40 rotate with each of the drums 16 and 18. Driving force can be efficiently transmitted without hindering rotation and revolution of the word rollers 40, and transmission loss can be significantly reduced.
また、 変速して駆動力を伝達する第 1 パワーホイ ール 3 0 の係合部 3 0 a がこの変速装置の最大半径位置の近傍でパヮ 一ローラ 4 0 に摩擦係合するため、 変速装置の仕事量を増大 させながら小型軽量化を同時に図る こ と ができ る。 しかも、 中心軸 Cに沿って中央ホイール 4 6 を配置 したため、 こ の変 速装置を堅固にする と と もに耐久性を向上させる こ とができ、 更に、 パワーローラ 4 0 および遊星ローラ 4 4 が特別の支持 機構を要する こ と な く 、 中央ホイール 4 6 の周部に等間隔に 保持されるため、 回転に伴 う駆動力の損失を軽減して、 伝達 効率をよ り 向上する こ とができ る。  Further, since the engaging portion 30a of the first power wheel 30 that transmits the driving force by changing the speed is frictionally engaged with the power roller 40 near the maximum radial position of the transmission, It is possible to simultaneously reduce the size and weight while increasing the workload. In addition, since the central wheel 46 is arranged along the central axis C, the speed change device can be made robust and the durability can be improved. In addition, the power roller 40 and the planetary roller 44 can be used. Are maintained at equal intervals around the center wheel 46 without requiring a special support mechanism, thereby reducing the loss of driving force due to rotation and further improving transmission efficiency. Can be done.
図 3 は、 第 2 の実施形態によ る変速装置を示す。 なお、 以 下に示す種々の実施形態は、 基本的には上述の実施形態と同 様であるため、 同様な部分には同様な符号を付し、 その詳細 な説明を省略する。 この実施形態では、 駆動力分岐機構 5 0 が遊星歯車装置で 形成され、 第 1 ドラム 1 6 および第 1 ノ、。ヮーホイール 3 0 を、 入力軸 1 2 と 同 じ方向に回転する点でのみ上述の実施形態と 相違する。 この駆動力分岐機構 5 0 では、 中間齒車 5 6 を支 える支持軸 5 4 を第 1 ドラム 1 6 のディ スク状部 1 6 a に設 け、 内歯歯車 5 8 を入力軸 1 2側の蓋部 1 0 b に設けてある。 FIG. 3 shows a transmission according to a second embodiment. Since various embodiments described below are basically the same as the above-described embodiments, similar parts are denoted by the same reference numerals, and detailed description thereof will be omitted. In this embodiment, the driving force branching mechanism 50 is formed by a planetary gear set, and the first drum 16 and the first drum 16. The present embodiment differs from the above-described embodiment only in that the wheel 30 is rotated in the same direction as the input shaft 12. In this driving force branching mechanism 50, a support shaft 54 for supporting the intermediate gear 56 is provided on the disk-shaped portion 16a of the first drum 16 and the internal gear 58 is connected to the input shaft 12 side. Provided on the lid 10b of the camera.
この変速装置によ る と、 各パワーローラ 4 0 は、 回転軸 で を挟んで中央ホイール 4 6 および第 1 パワーホイール 3 0 の 双方から同 じ方向に回転駆動されるため、 その 自転速度が減 じられる。 これによ り 、 各パワーローラ 4 0 の転力 S り抵抗が 低下し、 伝達効率が向上する。  According to this transmission, each of the power rollers 40 is rotationally driven in the same direction by both the center wheel 46 and the first power wheel 30 with the rotary shaft interposed therebetween, so that the rotation speed thereof is reduced. Be confused Thereby, the rolling resistance of each power roller 40 is reduced, and the transmission efficiency is improved.
なお、 上述の第 1 実施形態および第 2実施形態においても、 入力軸 1 2 の回転数に対する出力軸 1 4 の回転数の速比は、 第 1 , 第 2 ノヽ。ヮーホイール 3 0 , 3 2 、 中央ホイール 4 6 お よびパワーローラ 4 0 のそれぞれの有効径すなわち実際に各 部材の係合部が形成する径によ って種々 に設定する こ と がで . き、 また、 出力軸 1 4 の回転方向について も、 入力軸 1 2 と 同 じ方向に回転する正転領域、 および入力軸 1 2 と反対方向 に回転する逆転領域を設ける こ とができ る。 例えば自動二輪 車に用いる場合は、 出力軸 1 4 が入力軸 1 2 と 同 じ方向に回 転する正転領域のみに設定する こ とが好ま しい。 また、 舶用 と して用いる場合は、 正転領域と逆転領域と を 1 対 1 と し、 中間点を中立位置とする こ とが好ま しい。 更に、 ブル ドーザ 等の建設機械に用いる場合は、 前進すなわち正転領域対後進 すなわち逆転領域の比を 2対 3 とする こ と が好ま しく 、 農業 用 ト ラ ク タ に用いる場合は、 前進領域対後進領域を 5 対 2 程 度の比 とする こ と が好ま しい。 こ のよ う に、 用途に応じて変 速装置の速比を変更する こ とが容易であ り 、 変速装置の効率 および利便性が向上する。 In the first and second embodiments described above, the speed ratio of the rotation speed of the output shaft 14 to the rotation speed of the input shaft 12 is the first and second nose. Various settings can be made according to the effective diameter of each of the wheel 30, 32, the center wheel 46, and the power roller 40, that is, the diameter actually formed by the engaging portion of each member. Regarding the rotation direction of the output shaft 14, a forward rotation region that rotates in the same direction as the input shaft 12 and a reverse rotation region that rotates in the opposite direction to the input shaft 12 can be provided. For example, when used in a motorcycle, it is preferable to set only the forward rotation region in which the output shaft 14 rotates in the same direction as the input shaft 12. When used for marine applications, it is preferable that the forward rotation region and the reverse rotation region be in a one-to-one relationship, and that the intermediate point be a neutral position. Further, when used for construction equipment such as bulldozers, it is preferable to set the ratio of the forward or forward rotation region to the reverse or reverse rotation region to be 2 to 3. When it is used as a vehicle tractor, it is preferable that the ratio of the forward area to the reverse area is about 5 to 2. Thus, it is easy to change the speed ratio of the speed change device according to the application, and the efficiency and convenience of the speed change device are improved.
図 4 は、 第 3 の実施形態によ る変速装置を示す。  FIG. 4 shows a transmission according to a third embodiment.
こ の実施形態は、 図 3 に示す変速装置を 自動車用 と して最 適化 した も ので、 前進用の正転領域を拡大 し、 出力軸 1 4 と 被駆動装置であ るプロペラ軸 6 0 と の間に、 嚙合いク ラ ッチ 機構 6 2 を介揷 してある。  In this embodiment, the transmission shown in FIG. 3 is optimized for an automobile, so that the forward rotation region for forward movement is expanded, and the output shaft 14 and the propeller shaft 60 as a driven device are enlarged. Between them, an intervening clutch mechanism 62 is interposed.
こ の よ う な出力軸 1 4 と プロペラ軸 5 8 と を連結あるいは 分離する嚙合ク ラ ッチ機構 6 2 は、 適宜の構造に形成する こ と が可能である。 本実施形態の嚙合ク ラ ッチ機構 6 2 は、 出 力軸 1 4 上に例えばね じ止め等の好適な手段で回転不能に結 合されたカ ムプロ ッ ク 6 4 と 、 プロペラ軸 6 0 上に回転不能 に装着されかつシフ ト レバー 6 6 によ り 軸方向に移動可能な シフター 6 8 .と を備える。 この シフター 6 8 の両端面には、 半径方向に延びる歯あるいは突条を形成 してあ り 、 カムプロ ック 6 4 お よび制御ハ ウジング 1 0 c に形成された歯あ るい は突条と 嚙合 う こ と ができ る。  Such a combined clutch mechanism 62 for connecting or separating the output shaft 14 and the propeller shaft 58 can be formed in an appropriate structure. The combined clutch mechanism 62 of the present embodiment includes a cam block 64 non-rotatably connected to the output shaft 14 by a suitable means such as a screw, for example, and a propeller shaft 60. And a shifter 68 that is non-rotatably mounted on the top and is movable in the axial direction by a shift lever 66. Both ends of the shifter 68 are formed with teeth or ridges extending in the radial direction, and are combined with the teeth or ridges formed on the cam block 64 and the control housing 10c. I can.
シフ ト レバー 6 6 が実線で示す D位置に配置される と 、 シ フタ一 6 8 がカ ムブロ ッ ク 6 4 と 嚙合い、 これに よ り 、 入力 軸 1 4 と プロペラ軸 6 0 と が連結される。 一方、 シフ ト レバ 一 6 6 が点線で示す P位置に配置 される と 、 シフター 6 8 カ 制御ハウジング 1 0 c と 嚙合い、 これに よ り 、 プロペラ軸 6 0 は入力軸 1 4 から分離され、 こ のプロペラ軸 6 0 が制御ハ ウジング 1 0 c に固定され、 プロペラ軸の回転が防止される。 また、 シフ ト レバー 6 6 が中間の N位置に配置される と、 プ 口ペラ軸 6 0 は入力軸 1 4 と制御ハウジング 1 0 c との双方 から分離される。 When the shift lever 66 is positioned at the position D indicated by the solid line, the shifter 168 engages with the cam block 64, thereby connecting the input shaft 14 and the propeller shaft 60. Is done. On the other hand, when the shift lever 66 is located at the position P indicated by the dotted line, the shift lever 68 is engaged with the control housing 10 c, whereby the propeller shaft 60 is separated from the input shaft 14. This propeller shaft 60 is It is fixed to the housing 10 c to prevent rotation of the propeller shaft. When the shift lever 66 is located at the middle position N, the opening shaft 60 is separated from both the input shaft 14 and the control housing 10c.
この よ う な嚙合いク ラ ッチ機構 6 2 を、 出力軸 1 4 と プロ ペラ軸 6 0 との間に設ける こ と によ り 、 シフ ト レバー 6 6 を P位置あるいは N位置に配置されたと きにのみ、 エンジンを 始動可能とする機械的あるいは電気的なイ ンター口 ック機構 を配置する こ と ができ る。 これによ り 、 エンジンのク ラ ンク シャ フ ト が変速装置を介してプロペラ軸 6 0 と連結されてい る と き には、 エンジンの始動不能状態が確保され、 エンジン の過大な負荷を防止する と共に、 エンジン始動時における 自 動車の暴走を確実に防止でき る。 また、 シフ ト レバー 6 6 を P位置に配置したと きは、 プロペラ軸 6 0 を回転不能とする こ と によ り 、 駐車時における制動を確保し、 自動車の移動を 防止でき る。 更に、 シフ ト レバー 6 6 を N位置に配置した状 態では、 変速装置がニュー ト ラル位置以外の位置にあっても、 プロペラ軸 6 0 の自 由な回転を確保し、 エンジン ト ラブル等 の自走不能状態での例えば牽引等によ る 自動車の移動を確保 する こ と ができ る。  By providing such a joint clutch mechanism 62 between the output shaft 14 and the propeller shaft 60, the shift lever 66 can be arranged at the P position or the N position. Only then can a mechanical or electrical interlocking mechanism be provided to allow the engine to start. As a result, when the crankshaft of the engine is connected to the propeller shaft 60 via the transmission, the engine cannot be started, and an excessive load on the engine is prevented. At the same time, runaway of the vehicle when the engine is started can be reliably prevented. When the shift lever 66 is located at the position P, the propeller shaft 60 is made unrotatable, so that braking during parking can be secured and the movement of the vehicle can be prevented. Further, in a state where the shift lever 66 is located at the N position, even when the transmission is at a position other than the neutral position, the propeller shaft 60 can freely rotate to secure the rotation of the engine trouble and the like. It is possible to secure the movement of the vehicle, for example, by towing when the vehicle is unable to run.
図 5 は、 第 4 の実施形態によ る変速装置を示す。  FIG. 5 shows a transmission according to a fourth embodiment.
こ の実施形態は、 ハイプリ ッ ド自動車用 と して形成してあ り 、 上述の実施形態における駆動力分岐機構 5 0 に代えてモ ータ ジェネ レータによ り第 1 ドラム 1 6 を回転駆動する こ と ができ る。 この実施形態では、 入力軸 1 2 の端部にワ ンウェイ ク ラ ッ チ 7 0 を介 してカ ップリ ング 7 2 を取付ける と共に、 第 1 モ ータジェネ レータ 7 4 のロータ 7 6 をナツ ト 7 8 で固定して ある。 こ の ワ ンウェイ ク ラ ッチ 7 0 は、 例えばスプライ ン継 手を介して連結されるエンジンの回転振動を緩衝するダンパ 一付きカ ップリ ングで形成するのが好ま し く 、 入力軸 1 2 の 回転数が力 ップリ ング 7 2 を介 して連結されたエンジンの駆 動軸の回転数以下のと きに、 これらの入力軸 1 2 と駆動軸と を連結する。 また、 連結部材 2 0 には第 2 モータジエネ レー タ 8 0 のロータ 8 2 を固定してある。 これらの第 1 , 第 2 モ ータジェネ レータ 7 4, 8 0 のステータ 7 5, 8 1 はそれぞ れハウジングの胴部 1 0 a の内側に固定してあ り 、 ロータ 7 6 , 8 2 は、 このステータ に対向 して例えばネオジゥム磁石 である永久磁石 7 6 a, 8 2 a をその周部に沿って等間隔に 配置 した、 いわゆる P Mモータ と して形成 してある。 このよ う なモータ ジェネ レータ 7 4, 8 0 を収容 したハウジング 1 0 は、 内部を液密構造とする こ と が好ま しい。 This embodiment is formed for a hybrid vehicle, and the first drum 16 is driven to rotate by a motor generator instead of the driving force branching mechanism 50 in the above-described embodiment. can do. In this embodiment, the coupling 72 is attached to the end of the input shaft 12 via a one-way clutch 70, and the rotor 76 of the first motor generator 74 is connected to the nut 78. It is fixed with. This one-way clutch 70 is preferably formed by a coupling with a damper for damping the rotational vibration of an engine connected via a spline joint, for example. When the number of revolutions is equal to or less than the number of revolutions of the drive shaft of the engine connected via the power ring 72, these input shafts 12 and the drive shaft are connected. Further, the rotor 82 of the second motor generator 80 is fixed to the connecting member 20. The stators 75, 81 of these first and second motor generators 74, 80 are fixed inside the body 10a of the housing, respectively, and the rotors 76, 82 are Opposite to the stator, permanent magnets 76a and 82a, for example, neodymium magnets, are arranged at equal intervals along the periphery thereof, and are formed as a so-called PM motor. The housing 10 housing such motor generators 74 and 80 preferably has a liquid-tight interior.
これら の第 1 , 第 2 モータジェネ レータ 7 4 , 8 0 は、 図 示 しないモータ ジェネ レータ制御装置によ り 、 必要に応じて、 パッテ リ からの電力で回転駆動される駆動モータ と して作用 し、 あるいは、 バッテ リ に電力を供給する発電機と して作用 する こ と によ り 、 積載貨物または搭乗人員の多少によって大 き く 車両重量が変動する場合でも、 運動エネルギと電気エネ ルギと を効率良く 変換する こ と ができ る。 例えば自動車の発 進時における加速力を増大させ、 減速時にはエネルギを高効 率で回収する こ と によ り 、 低燃費化する こ とができ る。 These first and second motor generators 74 and 80 act as drive motors which are rotated by electric power from a battery as necessary by a motor generator controller (not shown). Or act as a generator to power the battery, so that kinetic and electrical energy can be maintained even when the weight of the vehicle fluctuates significantly due to the load or the number of passengers. Can be converted efficiently. For example, it increases the acceleration force when starting a car and increases the energy efficiency when decelerating. By recovering at a low rate, fuel efficiency can be reduced.
このよ う に 2つのモータ ジェネ レータ 7 4 , 8 0 を備えた 変速装置では、 自動車の状況に応じて様々 の態様で作動させ る こ とが可能であ り 、 以下にその代表的な作動例を説明する。 パッテ リ の残量が不足している場合には、 予め、 自動車を 制動状態と し、 シフ ト レバー 6 6 を D位置に配置 しておく 。 また、 モータジェネ レータ制御装置を通 じて第 1 , 第 2 モー タジェネ レータ 7 4 , 8 0 を発電状態とする。 この状態で図 示しないエンジンで入力軸 1 2 を回転する と、 第 1 モータジ エネ レータ 7 4 のロータ 7 6 が駆動軸と同 じ方向に同 じ速度 で回転され、 バッテ リ を充電する。 プロペラ軸 6 0 が制動さ れているため、 第 2 ドラム 1 8 および第 2パワーホイール 3 2 が静止状態を維持してお り 、 ノ ワー ロ ーラ 4 0 はその第 2 傾斜面 4 0 b を係合部 3 2 a に摩擦係合させ、 第 2 ノ、 °ヮーホ ィール 3 2 に沿って 自転しつつ公転する。 これによ り 、 第 1 パワーホイ ール 3 0 お よび第 1 ドラ ム 1 6 したがって第 2 モ ータ ジェネ レータ 8 0 のロータ 8 2が第 1傾斜面 4 0 a で回 転され、 パッテ リ を充電する。  The transmission equipped with the two motor generators 74 and 80 can be operated in various modes according to the situation of the vehicle. Will be described. If the remaining amount of the battery is insufficient, the vehicle is brought into a braking state in advance, and the shift lever 66 is arranged at the position D. In addition, the first and second motor generators 74 and 80 are brought into a power generation state via the motor generator control device. In this state, when the input shaft 12 is rotated by an engine (not shown), the rotor 76 of the first motor generator 74 is rotated at the same speed in the same direction as the drive shaft, and charges the battery. Since the propeller shaft 60 is being braked, the second drum 18 and the second power wheel 32 remain stationary, and the lower roller 40 has its second inclined surface 40 b Is frictionally engaged with the engagement portion 32 a, and revolves while rotating along the second wheel 32. This causes the first power wheel 30 and the first drum 16 to rotate the rotor 82 of the second motor generator 80 on the first inclined surface 40a, thereby removing the battery. Charge.
バッテ リ が充電された状態で、 エンジンを停止 し、 第 1 モ ータジェネ レータ 7 4 のロータ 7 6 を制動する と、 入力軸 1 2ハウジング 1 0 に固定された状態と な り 、 回転しない。 自 動車の制動を解除し、 第 2モータ ジェネ レータ 8 0 を駆動す る と 、 パワーローラ 4 0 が第 1 パワーホイ ール 3 ◦ の係合部 3 0 a に沿って転動され、 これによ り 、 第 2ノ ヮ一ホイール 3 2 が第 1 パワーホイールに対して変速されて回転され、 '第 2 ドラム 1 8 、 出力軸 1 4 およびプロペラ軸 6 0 が回転する。 このよ う な第 2 モータ ジェネ レータ 8 0 によ る駆動は、 自動 車の走行抵抗が最も小さいと き に、 こ の第 2 モータジエネ レ ータ 8 0 の回転を制御する こ と によ り 、 前方または後方に発 進させた状態から巡航速度に至るまで変速する こ とができ、 したがって、 出力の小さな第 2 モータジェネ レータ 8 0 によ る最小の電力で走行する こ とが可能と なる。 必要な場合には、 第 1 , 第 2 パ ワ ーホイール 3 0 , 3 2 を軸方向に移動する こ と も可能なこ と は明 らかである。 If the engine is stopped and the rotor 76 of the first motor generator 74 is braked while the battery is charged, the input shaft 12 is fixed to the housing 10 and does not rotate. When the braking of the vehicle is released and the second motor generator 80 is driven, the power roller 40 rolls along the engaging portion 30a of the first power wheel 3◦, thereby Then, the second No. 3 wheel 32 is rotated at a speed relative to the first power wheel, and 2 Drum 18, output shaft 14 and propeller shaft 60 rotate. The driving by the second motor generator 80 is controlled by controlling the rotation of the second motor generator 80 when the running resistance of the vehicle is the smallest. The speed can be changed from a state in which the vehicle is started forward or backward to the cruising speed, and therefore, it is possible to travel with the minimum power by the second motor generator 80 having a small output. Obviously, it is also possible to move the first and second power wheels 30, 32 in the axial direction if necessary.
また、 第 2 モータ ジェネ レータ 8 0 のロータ 8 2すなわち 第 1 ドラム 1 6 を制動 し、 第 1 モータジェネ レータ 7 4 を駆 動する と、 こ の出力軸 1 4 が回転する。 更に、 第 1 , 第 2 モ ータ ジェネ レータ 7 4 , 8 0 を同期回転させる と 、 ノヽ0ヮーロ ーラ 4 0 は自転せず、 したがって、 出力軸 1 4 は入力軸 1 2 と 同 じ速度で回転し、 速比は 1 : 1 と なる。 こ の無段変速装 置の可動部材は相対回転する こ と なく 、 入力軸 1 2の回転を. 出力軸 1 4およびプロペラ軸 6 0 に伝達するため、 伝達効率 が最も高く なる。 なお、 速比変更手段を通 じて第 1 , 第 2パ ヮーホイール 3 0 , 3 2 を移動してノヽ。ワーローラ 4 0 の傾動 位置を設定する こ と によ り 、 入力軸 1 2 と 出力軸 1 4 と の間 の速比を広範囲に変更可能なこ と は、 上述の実施形態と 同様 である。 When the rotor 82 of the second motor generator 80, that is, the first drum 16 is braked and the first motor generator 74 is driven, the output shaft 14 rotates. Furthermore, the first, is rotated synchronously with the second Motor generators 7 4, 8 0, Nono 0 Waro over La 4 0 does not rotate, therefore, the output shaft 1 4 same as the input shaft 1 2 speed And the speed ratio becomes 1: 1. Since the movable member of the continuously variable transmission transmits the rotation of the input shaft 12 to the output shaft 14 and the propeller shaft 60 without rotating relatively, the transmission efficiency is highest. In addition, the first and second power wheels 30 and 32 are moved through the speed ratio changing means, and are notched. As in the above-described embodiment, the speed ratio between the input shaft 12 and the output shaft 14 can be changed over a wide range by setting the tilt position of the word roller 40.
この変速装置をエンジンと組合せる こ と によ り 、 自動車用 と して好適なハイブリ ッ ド駆動装置を形成する。 自動車に組 込む場合には、 好適なモータジェネレータ制御装置を通 じて 以下のよ う に作動させる こ とができ る。 By combining this transmission with an engine, a hybrid drive suitable for an automobile is formed. If integrated into a car, through a suitable motor generator control It can be operated as follows.
自動車の発進時あるいは低速走行時は、 入力軸 1 2 を第 1 モータジェネ レータ 7 4 で駆動する。 ワ ンウェイ ク ラ ッチ 7 0 は、 エ ンジンの駆動軸を入力軸 1 2 から分離する。 そ して、 第 1 ドラム 1 6 の回転を阻止 し、 第 1 モータジェネレータ 7 4 に電力を供給し、 入力軸 1 2 を回転駆動する。 モータジェ ネ レータ制御装置は、 例えば図示しないアクセルぺダルの踏 込み量に基づいて送られる運転者の要求する信号に応じた出 力で第 1 モータ ジェネ レータ 7 4 を回転駆動する。 そ して、 第 1 モータジェネ レータ 7 4 の出力が不足 している場合は、 更に第 2 モータ ジェネ レータ 8 0 を回転駆動 し、 出力軸 1 4 を運転者の要求する駆動力で回転させる。  When the vehicle starts or runs at low speed, the input shaft 12 is driven by the first motor generator 74. The one-way clutch 70 separates the drive shaft of the engine from the input shaft 12. Then, the rotation of the first drum 16 is stopped, the electric power is supplied to the first motor generator 74, and the input shaft 12 is driven to rotate. The motor generator control device rotationally drives the first motor generator 74 with an output corresponding to a signal requested by the driver, which is sent based on, for example, an accelerator pedal (not shown). If the output of the first motor generator 74 is insufficient, the second motor generator 80 is further driven to rotate, and the output shaft 14 is rotated by the driving force required by the driver.
エ ンジンによ る走行に効率的な車速に達する と、 モー タジ エネ レータ制御装置は第 1 , 第 2 モー タ ジェネ レータ 7 4, 8 0 に供給する電力を減じ、 主駆動力源であるエンジンで出 力軸 1 2 を回転する。 また、 自動車を減速する際、 運転者が ア ク セルペダルを緩める と、 エ ンジンの回転数が低下し、 ヮ ンウェイ ク ラ ッチ 7 0 が入力軸 1 2 とエンジンと を分離する。 そ して、 第 1 モータジェネ レータ 7 4 は発電機と して作動さ れ、 自動車の減速に伴 う運動エネルギを電気工ネルギと して 回収 し、 ノ ッテ リ に蓄える。 更に、 自動車の減速に伴う運動 エネルギが第 1 モータジェネ レータ 7 4 のみでは回収できな い場合は、 第 2 モータジェネ レータ 8 0 も発電機と して作用 させる と共に、 第 1 , 第 2 ノ ヮ一ホイール 3 0, 3 2 の軸方 向位置を変更する こ と によ り 、 こ の変速装置の速比を大き く し、 制動力を増大させ、 これによ り 第 1 , 第 2 モータジエネ レータ 7 4 , 8 0 の発電量したがって制動力を増大させる。 When the vehicle travels at a speed that is efficient for driving by the engine, the motor generator controller reduces the power supplied to the first and second motor generators 74, 80, and the engine, which is the main driving force source, To rotate the output shaft 1 2. Also, when the driver decelerates the accelerator pedal when decelerating the car, the rotation speed of the engine decreases, and the on-way clutch 70 separates the input shaft 12 from the engine. Then, the first motor generator 74 is operated as a generator, recovers kinetic energy associated with the deceleration of the vehicle as electric energy, and stores it in the knotter. Further, when the kinetic energy due to the deceleration of the vehicle cannot be recovered only by the first motor generator 74, the second motor generator 80 is also operated as a generator, and the first and second motor generators are also operated. By changing the axial position of one wheel 30, 32, the speed ratio of this transmission can be increased. Then, the braking force is increased, thereby increasing the amount of power generated by the first and second motor generators 74, 80 and hence the braking force.
したがって、 第 4実施形態における変速装置は、 上述の各 実施形態における変速装置と同様に、 迅速な応答性と高い伝 動効率と を発揮する こ と に加え、 発進時および加速時に大き な加速力を形成し、 減速時に高効率でエネルギを回収する こ とができ、 これによ り 、 自動車の低燃費化を可能とする。 なお、 モータジェネ レータは 2つに限る ものではなく 、 1 つのみでも よ く 、 あるいは 3つ以上であっても よい。  Therefore, the transmission according to the fourth embodiment, like the transmissions according to the above-described embodiments, not only exhibits quick response and high transmission efficiency, but also has a large acceleration force when starting and accelerating. Thus, energy can be recovered with high efficiency at the time of deceleration, thereby making it possible to reduce the fuel consumption of the vehicle. It should be noted that the number of motor generators is not limited to two, but may be one or three or more.
図 6 は、 電気自動車用 と して形成した第 5 の実施形態によ る変速装置を示す。  FIG. 6 shows a transmission according to a fifth embodiment formed for an electric vehicle.
この実施形態では、 上述の実施形態における入力軸 1 2 に 代え、 ハウジング 1 0 に一端を固定した回転不能の中空軸 1 3 が、 中心軸 C と 同心状に延設され、 その他端がボス部 1 4 a および中空の出力軸 1 4 内に差し込まれている。 第 1 , 第 2 ドラム 1 6, 1 8 およびボス部 1 4 a , 出力軸 1 4は、 こ の中空軸 1 3 上に回転自在に支え られている。  In this embodiment, a non-rotatable hollow shaft 13 having one end fixed to the housing 10 extends coaxially with the center axis C in place of the input shaft 12 in the above-described embodiment, and the other end is a boss. 14 a and a hollow output shaft 14. The first and second drums 16 and 18, the boss 14 a and the output shaft 14 are rotatably supported on the hollow shaft 13.
また、 連結部材 2 0 はハウジング 1 0 の胴部 1 0 a のほぼ 全長にわたって延び、 ボス部 1 4 a に代え、 第 2 ドラム 1 8 にアキシヤノレ軸受 2 2 を介して支えられている。 こ の連結部 材 2 0 の外周部には多数の永久磁石 8 4 を固定してあり 、 こ れと対向する胴部 1 0 a の内周面にはステータ コ イ ル 8 6 力 S 固定してあ り 、 したがって、 連結部材 2 0 はモータジエネ レ ータ 8 8 のロータ と して機能し、 第 1 ドラ ム 1 6 したがって 第 1 パワ ーホイール 3 0 を回転駆動する。 こ のモータジエネ レータ 8 8 を液密構造とするため、 第 1 ドラ ム 1 6 と 固定軸 1 3 との間、 および、 連結部材 2 0 とハウジング 1 0 内の仕 切 り 板 1 1 と の間のそれぞれにシール部材を配置してある。 The connecting member 20 extends over substantially the entire length of the body 10a of the housing 10 and is supported by the second drum 18 via an axial bearing 22 instead of the boss 14a. A large number of permanent magnets 84 are fixed to the outer periphery of the connecting member 20, and a stator coil 86 is fixed to the inner peripheral surface of the body 10 a opposed thereto. Accordingly, the connecting member 20 functions as a rotor of the motor generator 88, and drives the first drum 16 and thus the first power wheel 30 to rotate. This motor energy In order to make the radiator 88 have a liquid-tight structure, it is necessary to place the first drum 16 between the fixed shaft 13 and the connecting member 20 and the partition plate 11 in the housing 10 respectively A seal member is provided.
更に、 ハウジング 1 0内には、 終減速機構と して機能する 遊星歯車装置 9 0 を出力軸 1 4 の周部に配置する と共に、 こ の出力軸 1 4 の回転出力を、 左右の駆動軸 9 4 , 9 6 に伝達 する差動歯車装置 9 2 を配置してある。 本実施形態では、 左 右の駆動軸 9 4 , 9 6 は、 中空軸 1 3 内に回転自在に支えら れている。 また、 遊星歯車装置 9 0 と差動歯車装置 9 2 と は、 遊星歯車装置 9 0 のキャ リ ア 9 1 を介 して、 互いに連動され てレヽる。  Further, a planetary gear set 90 functioning as a final reduction mechanism is arranged in the housing 10 around the output shaft 14 and the rotational output of the output shaft 14 is transmitted to the left and right drive shafts. A differential gear device 92 for transmitting to 94 and 96 is arranged. In the present embodiment, the left and right drive shafts 94, 96 are rotatably supported in the hollow shaft 13. Further, the planetary gear set 90 and the differential gear set 92 are interlocked with each other via a carrier 91 of the planetary gear set 90 and laid out.
こ の変速装置では、 モータジェネ レータ 8 8 を駆動する と、 ロータすなわち連結部材 2 ◦ を介 して第 1 ドラム 1 6 および 第 1 ノ、。ヮーホイール 3 0が回転する。 中央ホイール 4 6 が回 転しないため、 パワーローラ 4 0 は自転しつつ中心軸 C の周 り を公転し、 第 2パワーホイール 3 2 を回転する。  In this transmission, when the motor generator 88 is driven, the first drum 16 and the first drum 16 are driven through the rotor, that is, the connecting member 2.ホ イ ー ル Wheel 30 rotates. Since the center wheel 46 does not rotate, the power roller 40 revolves around the central axis C while rotating, and rotates the second power wheel 32.
こ こで、 パワーロ ーラ 4 0 の第 1 , 第 2傾斜面 4 0 a , 4 O b にノヽ0ヮーホイール 3 0 , 3 2 の係合部 3 0 a , 3 2 a ;^ 回転軸 r を中心に描く 軌跡半径を r 1 , r 2 と表す。 各パヮ 一ローラ 4 0 の回転軸 r が中心軸 C と平行の状態では r 2 = r 1 と な り 、 第 1 ノヽ。ヮーホイール 3 0 は第 2 パワーホイ ール 3 2 を等速度で回動させる。 In here, the first Pawaro over La 4 0, the second inclined surface 4 0 a, 4 O b in Nono 0 Wahoiru 3 0, 3 2 of the engaging portion 3 0 a, 3 2 a; a ^ rotation axis r The trajectory radii drawn at the center are denoted by r 1 and r 2. When the rotation axis r of each roller 40 is parallel to the center axis C, r 2 = r 1, and the first node. The power wheel 30 rotates the second power wheel 32 at a constant speed.
上述の速比変更手段によ り 、 第 1 , 第 2パワーホイ ール 3 0 , 3 2 を右方に移動する と、 各パワーローラ 4 0 が右側に 傾斜して r 2 > r 1 と なり 、 係合部 3 2 a の周速度が係合部 3 0 a よ り も大となって第 2 ノ ヮ一ホイール 3 2 が増速され る。 逆に第 1 , 第 2 ノ、。ヮーホイール 3 0 , 3 2 を左方に移動 する と、 各パワーローラ 4 0 が左側に傾斜して r 2 < r 1 と な り 、 係合部 3 2 a の周速度が係合部 3 0 a よ り 小と なって 第 2 パワーホイール 3 2 が減速されて回転する。 When the first and second power wheels 30 and 32 are moved rightward by the above-described speed ratio changing means, the respective power rollers 40 are inclined rightward so that r 2> r 1. The peripheral speed of the engaging part 3 2a is The speed becomes larger than 30a, and the second No. 3 wheel 32 is accelerated. Conversely, first and second. When the wheels 30 and 32 are moved to the left, the respective power rollers 40 are inclined to the left, so that r 2 <r 1, and the peripheral speed of the engaging portion 32 a becomes the engaging portion 30 a As it becomes smaller, the second power wheel 32 is decelerated and rotates.
こ の第 2 パワーホイール 3 2およぴ第 2 ドラム 1 8 が回転 する こ と で出力軸 1 4 が回転し、 遊星歯車装置 9 0 で所定の 減速比に減速され、 複数の遊星歯車を支えるキャ リ ア 9 1 を 介して差動歯車装置 9 2 を駆動する。 この差動歯車装置 9 2 内では、 キャ リ ア 9 1 に回転自在に支えられた遊星歯車 9 3 が中心軸 Cの回 り を公転し、 左駆動軸 9 4 に連結された太陽 歯車 9 5 と右駆動軸 9 6 に固定された内歯歯車 9 7 と を回転 駆動する。  When the second power wheel 32 and the second drum 18 rotate, the output shaft 14 rotates, and the planetary gear unit 90 reduces the speed to a predetermined reduction ratio to support a plurality of planetary gears. The differential gear device 9 2 is driven via the carrier 91. In this differential gear device 92, a planetary gear 93 rotatably supported by a carrier 91 revolves around a center axis C, and a sun gear 95 connected to a left drive shaft 94. And the internal gears 9 7 and 9 7 fixed to the right drive shaft 9 6 are rotationally driven.
本実施形態のアキシャル球軸受 2 2 は、 各パワーホイール 3 0, 3 2 がパワーローラ 4 0 を押圧する反力を相殺する と と もにハウジング 1 0 に作用する ス ラ ス ト負荷を軽減する。 運転中、 こ のアキシャル球軸受 2 2 には、 第 1 , 第 2 パワー ホイール 3 0, 3 2 が等速回転する際はスラス ト荷重のみが 作用 し、 これ以外の場合でもパワーローラ 4 0 の傾動角に応 じて発生する、 第 1 , 第 2 ノ ヮ一ホイール 3 0 , 3 2 の回転 数差で連動する こ と と な り 、 従来のよ う にハウジングの左右 に大容量の軸受けを装着した場合と比較してロスを大幅に軽 減して伝達効率が向上する。  The axial ball bearing 22 of the present embodiment cancels the reaction force of each of the power wheels 30 and 32 pressing the power roller 40 and also reduces the thrust load acting on the housing 10. . During operation, when the first and second power wheels 30 and 32 rotate at a constant speed, only the thrust load acts on the axial ball bearing 22. The first and second no-wheels 30 and 32 rotate in synchronism with the rotational speed difference generated according to the tilt angle, and large-capacity bearings are mounted on the left and right sides of the housing as in the conventional case. The transmission efficiency is improved by greatly reducing the loss as compared with the case of mounting.
特に、 最新の永久磁石を用いた電気自動車用 P Mモータは 従来の電気自動車用モータ と比較 して低速回転領域での効率 は優れているが、 起動 トルクが小さ く 、 定出力領域の弱め界 磁の際と 、 高速回転領域では極端に効率が低下する とい う 問 題がある。 こ の第 5 の実施形態による変速装置は、 P M電気 自動車用モー タ の課題を克服する も ので、 高効率な電気自動 車用無段変速装置と して求め られている要求を満足する。 In particular, the latest PM motors for electric vehicles that use permanent magnets are more efficient in the low-speed rotation range than conventional electric vehicle motors. Is excellent, but the starting torque is small, and there is a problem that the efficiency is extremely reduced in the field of weakening in the constant output region and in the high-speed rotation region. The transmission according to the fifth embodiment overcomes the problems of the motor for PM electric vehicles, and satisfies the demands for a highly efficient continuously variable transmission for electric vehicles.
また、 従来の永久磁石を用いた電気自動車用 P Mモータの ロータ内には、 空間が形成されている。 本実施形態の変速装 置は、 終減速装置 9 0 および差動歯車装置 9 2 と共にこ の内 部ス ペース内に収容する こ と によ り 、 こ の内部スペースを有 効に活用する。 特に、 スペース の制約を受ける F F (ェンジ ン前置き · 前輪駆動) 車の電気自動車用駆動装置と して好適 なものである。  In addition, a space is formed in the rotor of a conventional PM motor for electric vehicles using permanent magnets. The transmission of the present embodiment utilizes the internal space effectively by being housed in this internal space together with the final reduction gear 90 and the differential gear 92. In particular, it is suitable as a drive device for an electric vehicle of an FF (front engine drive / front wheel drive) vehicle which is limited by space.
図 8 および図 9 は、 第 6 の実施形態による変速装置を示す。 こ の変速装置は、 第 1 , 第 2 パワーホイール 3 0 , 3 2 を それぞれ第 1 , 第 2 ドラム と一体構造に形成し、 これらの第 1 , 第 2 ノ ヮ—ホイ 一ノレ 3 0 , 3 2 で支えたノヽ0ワー ロ ーラ 4 0 の傾動を、 中央ホイ ール 4 6 の軸方向移動で行 う も のであ る。 8 and 9 show a transmission according to a sixth embodiment. In this transmission, the first and second power wheels 30 and 32 are formed integrally with the first and second drums, respectively, and the first and second power wheels 30 and 3 are formed integrally with the first and second drums. the tilting of Nono 0 word b over La 4 0 that supported by two rows cormorants also Ru Nodea axial movement of the central wheel Lumpur 4 6.
本実施形態の変速装置では、 入力軸 1 2上に、 例えばス プ ライ ン等によ り 、 軸方向に摺動可能でかつ相対回転不能にス リ ーブ状のス ライダ 9 8 が装着され、 遊星ローラ 4 4 を介し てノ、。ワー ロ ーラ 4 0 を支える中央ホイ "ル 4 6 力 S こ のス ライ ダ 9 8 と一体に形成されている。  In the transmission of the present embodiment, a slide-shaped slider 98 that is slidable in the axial direction and relatively non-rotatable is mounted on the input shaft 12 by, for example, a spline. , Through the planetary rollers 4 4. The center wheel 46 supporting the roller 40 is formed integrally with the slider 98.
こ のス ライ ダ 9 8 の入力軸 1 2側端部には、 フ ラ ンジ部 9 8 a が形成され、 入力軸 1 2 の外周部には、 こ の フ ラ ンジ部 9 8 a を受入れる 円筒状のボッ ク ス部 1 0 0 が設け られてい る。 フ ラ ンジ部 9 8 a をこのボ ッ ク ス部 1 0 0 の環状スぺー ス 内に収容 し、 ボッ ク ス部 1 0 0 の開 口端を蓋部 1 0 2 で閉 じる こ と によ り 、 ボ ッ ク ス部 1 0 0 内の環状スペースがそれ ぞれ液密に形成された 2 つの圧力室 1 0 4 a , 1 0 4 b に区 画される。 これ らの圧力室 1 0 4 a , 1 0 4 b に圧力流体制 御装置か ら供給する圧力流体を制御する こ と によ り 、 ス ライ ダ 9 8 および中央ホイ ール 4 6 が中心軸 C に沿っ て移動 し、 パワーロ ーラ 4 0 をその揺動中心 q を中心 と して傾動させる。 換言する と、 ノ、。ワー ロ ーラ 4 0 の第 1 , 第 2傾斜面 4 0 a , 4 0 b はこの揺動中心 q を基点 と した円の一部を形成する。 本実施形態では、 ボ ッ ク ス部 1 0 0 は、 第 1 ドラム 1 6 の ディ ス ク 状部 1 6 b に凹設 した凹部 1 6 b 内に配置 してあ り 、 ロ ーラ軸受けを介 して、 第 1 ディ スク 1 6 を回転自在に支え ている。 また、 この第 1 ディ ス ク 1 6 に作用する ス ラ ス ト荷 重は、 ディ ス ク 状部 1 6 a に連結 した支持筒部 1 0 6 および アキシャル軸受 1 0 8 を介 してハ ウジング 1 0 に伝達される。 一方、 反対側の第 2 ディ ス ク 1 8 に作用する ス ラ ス ト荷重は、 ディ ス ク 状部 1 8 a か らボールカ ム 1 1 0 を介 してボス部 1 4 に伝達され、アキシャル軸受 1 1 2 を介 してハウ ジング 1 0 に伝達される。 ポールカ ム 1 1 0 は、 通常の圧力カ ムで形 成 してあ り 、 トノレク の大き さ に したがって軸方向のス ラ ス ト 荷重を発生させ、 第 2 ディ スク 1 8 したがって第 2 ノ、。ヮーホ ィ ール 3 2 のパワーロ ーラ 4 0 に対する押圧力を 自動的に調 整する。 これに よ り 、 第 1 , 第 2 ディ ス ク 1 6 , 1 8 に作用 するスラス ト荷重はハウジング 1 0 内で互いに打ち消され、 コ ンパク トかつ軽量構造の変速装置を形成する。 The slider 98 has a flange portion 98a formed at the end of the input shaft 12 side, and the outer periphery of the input shaft 12 has the flange portion 98a. A cylindrical box portion 100 for receiving 98a is provided. The flange 98a is accommodated in the annular space of the box 100, and the open end of the box 100 is closed with the cover 102. Accordingly, the annular space in the box portion 100 is divided into two pressure chambers 104a and 104b, each of which is formed in a liquid-tight manner. By controlling the pressure fluid supplied from the pressure flow control device to these pressure chambers 104 a and 104 b, the slider 98 and the central wheel 46 become central axes. Move along C, and tilt the power roller 40 about its swing center q. In other words, no. The first and second inclined surfaces 40a and 40b of the word roll 40 form a part of a circle having the swing center q as a base point. In the present embodiment, the box portion 100 is disposed in a concave portion 16b formed in the disk-shaped portion 16b of the first drum 16, and a roller bearing is provided. Thus, the first disk 16 is rotatably supported. The thrust load acting on the first disk 16 is applied to the housing via the support cylindrical portion 106 and the axial bearing 108 connected to the disk-shaped portion 16a. Transmitted to 10 On the other hand, the thrust load acting on the second disk 18 on the opposite side is transmitted from the disk-shaped portion 18a to the boss portion 14 via the ball cam 110 and axially It is transmitted to the housing 10 via the bearing 1 1 2. The pole cam 110 is formed of a normal pressure cam, and generates an axial thrust load according to the size of the tonnolek, and the second disk 18 and therefore the second disk. Automatically adjusts the pressing force of power wheel 40 against power wheel 40. This acts on the first and second disks 16 and 18. These thrust loads cancel each other out in the housing 10 to form a compact and lightweight transmission.
更に、 本実施形態では、 第 2ディ スク 1 8 のディ スク状部 1 8 a から入力軸 1 2 の方向に軸部 1 9 a が延び、 入力軸 1 2 の凹部内に差し込まれ、 回転自在に支え られている。 また、 出力軸 1 4側に延びる軸部 1 8 b はボス部 1 4 a および出力 軸 1 4 內差し込まれている。 これによ り 、 第 2ディ スク 1 8 は、 入力軸 1 2および出力軸 1 4 と共に中心軸 C上で回転自 在に支えられる。 なお、 ボス部 1 4内に収容されたコイルス プリ ング 1 1 4 は、 カム 1 1 0 による押圧力が作用 していな いと き、 すなわち出力軸 1 4 が停止している時に、 第 2ディ スク 1 8 および第 2パワーホイール 3 2 を押圧し、 これによ り 、 全てのノヽ。ワーローラ 4 0および遊星ローラ 4 4 の整列を 維持する と共に駆動初期の トルク を確保する。  Furthermore, in the present embodiment, a shaft portion 19a extends from the disk-shaped portion 18a of the second disk 18 in the direction of the input shaft 12 and is inserted into the recess of the input shaft 12 to be rotatable. It is supported by. The shaft 18b extending toward the output shaft 14 is inserted into the boss 14a and the output shaft 14 1. Thus, the second disk 18 is supported by the rotation axis on the center axis C together with the input shaft 12 and the output shaft 14. The coil spring 114 accommodated in the boss portion 14 does not act on the second disk when the pressing force of the cam 110 is not acting, that is, when the output shaft 14 is stopped. 1 8 and the second power wheel 3 2 are pressed, whereby all of the nozzles are pressed. Maintain the alignment of the warr rollers 40 and the planetary rollers 44 and secure the torque at the beginning of driving.
この変速装置は、 パワーローラ 4 0 の傾動を中央ホイ ール 4 6 の軸方向移動を通 じて行う こ と を除いて、 図 3 に示す第 2 の実施形態と 同様に作用する。  This transmission operates in the same manner as the second embodiment shown in FIG. 3, except that the tilting of the power roller 40 is performed through the axial movement of the central wheel 46.
図 1 0 は、 第 7 の実施形態によ る変速装置を示す。  FIG. 10 shows a transmission according to a seventh embodiment.
本実施形態の変速装置は、 第 1 , 第 2パワーホイール 3 0 , 3 2 したがって第 1 , 第 2 ドラム 1 6 , 1 8 を変速比が一定 の変速機構 1 2 0 を介 して相互に連結してある。 また、 ボス 部 1 4 a は中実構造に形成 してあ り、 軸部 1 4 b が中央ホイ ール 4 6 および入力軸 1 2 の凹部内に差し込まれ、 回転自在 に支えられてレ、る。  In the transmission of the present embodiment, the first and second power wheels 30 and 32 and thus the first and second drums 16 and 18 are connected to each other via a transmission mechanism 120 having a constant gear ratio. I have. The boss portion 14a is formed in a solid structure, and the shaft portion 14b is inserted into the concave portions of the center wheel 46 and the input shaft 12, and is rotatably supported. You.
この実施形態における変速機構 1 2 0 は、 出力軸 1 4 の外 周部に設けた外歯歯車 1 2 2 と、 連結部材 2 0 の壁部から突 出する支持軸 1 2 4 に回転自在に装着されて、 外歯歯車 1 2 2 と嚙合 う 中間歯車 1 2 6 と、 ノヽウジング 1 0 の出力軸 1 4 側羞部 1 0 b に設け られて、 中間歯車 1 2 6 に嚙合う 内歯歯 車 1 2 8 と を有する遊星歯車装置で形成してあ り 、 第 1 パヮ 一ホイール 3 0 したがって第 1 ドラ ム 1 6 の トルク と 出力軸 1 4 の トルク と を合成する駆動力合成機構と して機能する。 The transmission mechanism 120 in this embodiment is provided outside the output shaft 14. An intermediate gear 1 2 which is rotatably mounted on an external gear 1 2 2 provided on the periphery and a support shaft 1 2 4 protruding from the wall of the connecting member 20, and which is combined with the external gear 1 2 2. 6 and an internal gear 1 28 provided on the output shaft 14 b of the nosing 10 on the side of the output shaft 10 b and corresponding to the intermediate gear 12 6. Thus, the first power wheel 30 functions as a driving force combining mechanism that combines the torque of the first drum 16 and the torque of the output shaft 14.
したがって、 本実施形態の変速装置は、 図 3 に示す第 2 の 実施形態による変速装置における駆動力分岐機構 5 0 に代え、 駆動力合成機構 1 2 0 を第 1 ドラム 1 6 と 出力軸 1 4 と の間 に配置したもので、 図 3 に示す変速装置の入力軸 1 2 と 出力 軸 1 4 と を逆に したものである。 変速機構すなわち駆動力合 成機構 1 2 0 の速比を変更する こ と によ り 、 種々 の用途に用 いる こ とができ る。  Therefore, the transmission of the present embodiment is different from the transmission of the second embodiment shown in FIG. 3 in that the driving force splitting mechanism 50 is replaced by a driving force combining mechanism 120 and a first drum 16 and an output shaft 14. The input shaft 12 and the output shaft 14 of the transmission shown in FIG. 3 are reversed. By changing the speed ratio of the transmission mechanism, that is, the driving force synthesizing mechanism 120, it can be used for various applications.
図 1 1.は、 第 8 の実施形態によ る変速装置を示す。  FIG. 11 shows a transmission according to an eighth embodiment.
この実施形態の変速装置は、 風力発電装置用 と して形成し てあ り 、 入力軸 1 2 に風車 1 3 0 のプレー ド 1 3 2 が例えば ナッ ト 1 3 4 で締付け られ、 固定される。 この入力軸 1 2 は 第 1 ドラム 1 6 と一体に形成し、 中央ホイール 4 6 を形成し たボス部 1 4 a 内に、 先端部 1 2 a が差し込まれ、 回転自在 に支えられてレヽる。  The transmission according to this embodiment is formed for a wind power generator, and a plate 13 2 of a wind turbine 130 is fixed to an input shaft 12 by, for example, a nut 13 4. . The input shaft 12 is formed integrally with the first drum 16, and the tip 12 a is inserted into the boss 14 a forming the center wheel 46, and is rotatably supported and supported. .
また、 第 2 ホイール 1 8 は、 ボス部 1 4 a 上に球軸受を介 して回転自在に装着される と共に、 ハウジング 1 0 の出力軸 1 4側の蓋部 1 0 b から内方に突出する管状部 1 0 c 上に、 アキシャル軸受 2 2 を介して回転自在に支え られている。 こ のアキシャル軸受 2 2 は、 第 2 ドラム 1 8 のスラス ト荷重を 支える こ と に加え、 入力軸 1 2 を介して作用するプレー ド 1 3 2 のス ラ ス ト荷重も支える。 一方、 入力軸 1 2 に作用する 逆方向のス ラス ト荷重と ラジアル荷重が、 入力軸 1 2 と入力 軸側の蓋部 1 0 b と の間に介揷されたアキシャル軸受 2 3 で 支え られる。 The second wheel 18 is rotatably mounted on the boss 14a via a ball bearing, and projects inward from the lid 10b on the output shaft 14 side of the housing 10. It is rotatably supported on an annular tubular portion 10 c via an axial bearing 22. This The axial bearing 22 supports not only the thrust load of the second drum 18 but also the thrust load of the plate 13 2 acting via the input shaft 12. On the other hand, the thrust load and the radial load acting on the input shaft 12 in the opposite direction are supported by the axial bearing 23 interposed between the input shaft 12 and the lid 10b on the input shaft side. .
こ の第 2 ドラム 1 8 と入力軸 1 2 と は、 変速比が一定の変 速機構である駆動力分岐機構 5 0 で連結されており 、 この駆 動力分岐機構 5 0 の中間歯車 5 6 を回転自在に支える支持軸 5 4 が、 第 2 ドラム 1 8 と一体的に固定された連結部材 2 0 に設け られている。 このため、 入力軸 1 2 が回転する と、 こ の中間歯車 5 6 が入力軸 1 2 に設け られた外歯歯車 5 6 と蓋 部材 1 0 b に設けられた内歯歯車 5 8 と に嚙合して、 中心軸 Cの周 り を公転しつつ自転し、 第 2 ドラム 1 8 を回転させる。 これによ り 、 パワーローラ 4 0 は第 1 , 第 2 ノヽ。ヮーホイール 3 G , 3 2 を介 して入力軸 1 2 の回転を伝達され、 中央ホイ ール 4 6 の周方向溝 4 6 a に沿って公転しつつ自転し、 遊星 ローラ 4 4 を介 して中央ホイール 4 6 、 したがって出力軸 1 4 を回転する。  The second drum 18 and the input shaft 12 are connected by a driving force branching mechanism 50 which is a speed changing mechanism having a constant speed ratio. A rotatable support shaft 54 is provided on the connecting member 20 fixed integrally with the second drum 18. Therefore, when the input shaft 12 rotates, the intermediate gear 56 is combined with the external gear 56 provided on the input shaft 12 and the internal gear 58 provided on the cover member 10b. Then, it revolves around the central axis C while revolving, and rotates the second drum 18. As a result, the power roller 40 is the first and second nodes. The rotation of the input shaft 12 is transmitted via the wheel 3G, 32, and revolves along the circumferential groove 46a of the central wheel 46 while revolving, via the planetary rollers 44. Rotating the center wheel 4 6, and thus the output shaft 14.
第 1 ドラ ム 1 6 と共にパワーローラ 4 0 に入力軸 1 2 の回 転を伝達する第 2 ドラム 1 8 は、 その環状内孔 2 8 に、 コィ ルバネ 2 9 を配置してある。 この コイルバネ 2 9 は、 第 2 パ ヮーホイール 3 2 を常時一定の押圧力でパワーローラ 4 0 に 圧接させ、 各パワーローラ 4 0 および遊星ローラ 4 4 が等間 隔に整列 した状態を維持する。 これによ り 、 起動初期の トル ク を確保する こ とができる。 The second drum 18 that transmits the rotation of the input shaft 12 to the power roller 40 together with the first drum 16 has a coil spring 29 disposed in its annular inner hole 28. The coil spring 29 keeps the second power wheel 32 pressed against the power roller 40 with a constant pressing force at all times, and maintains a state in which the power roller 40 and the planetary roller 44 are arranged at equal intervals. As a result, the torque at the initial Can be secured.
なお、 出力軸 1 4 には、 コア 1 3 4 にコィノレ 1 3 6 を卷回 して形成 したロータ 1 3 8 がナツ ト 1 5 で締付け固定してあ り 、 こ のロータ 1 3 8 の周部に所定の間隙を配置してハウジ ング 1 0 の胴部 1 0 a の内面に固定したステータ 1 3 9 と共 にコ ンパク ト な発電装置を形成する。 こ の変速装置は、 タ ヮ 一 T の頂部にター ンテーブル 1 4 0 を介 して回動自在に搭載 され、 常に風の向き にブレー ド 1 3 2 を配置する こ とができ る。  On the output shaft 14, a rotor 13 formed by winding a coil 13 around a core 13 is fastened and fixed with a nut 15. The circumference of the rotor 13 is A compact power generator is formed together with a stator 1339 fixed to the inner surface of the body 10a of the housing 10 with a predetermined gap disposed in the housing. This transmission is rotatably mounted on the top of the table T via a turntable 140 so that the blade 132 can always be arranged in the direction of the wind.
こ の変速装置によ る と、 風車のブレー ドを介して作用する 大き なス ラ ス ト荷重が入力軸 1 2 を介 してアキシャル軸受 2 2 に伝達されるため、 風車用の回転軸およびス ラ ス ト軸受を 必要とせず、 これによ り.発電装置が簡略化される と共に、 騷 音、 重量およびコ ス ト の低減を図る こ とができ る。 また、 出 力軸 1 4 は、 発電機の回転軸と しても機能し、 これによ り発 電装置の部品点数を減少させ、 コ ス ト の低減を図る と と もに、 · この装置全体を小型化する こ と ができ る。 しかも、 第 1 , 第 2パワーローラ 3 0 , 3 2 を軸方向に移動 してパワーローラ 4 0 の中心軸 C に対する傾斜角度を制御する こ と によ り 、 常 に変化する風力に応 じて最適の変速比でロータ 1 3 8 を回転 させ、 発電装置の発電効率を向上させる こ と ができ る。  According to this transmission, a large thrust load acting via the blade of the wind turbine is transmitted to the axial bearing 22 via the input shaft 12, so that the rotating shaft for the wind turbine and This eliminates the need for thrust bearings, thereby simplifying the power generation device and reducing noise, weight and cost. In addition, the output shaft 14 also functions as a rotating shaft of the generator, thereby reducing the number of parts of the power generation device and reducing the cost. The whole can be reduced in size. Moreover, by moving the first and second power rollers 30 and 32 in the axial direction to control the inclination angle of the power roller 40 with respect to the center axis C, it is possible to respond to the constantly changing wind force. By rotating the rotor 1338 at the optimum gear ratio, the power generation efficiency of the power generator can be improved.
図 1 2 および図 1 3 は、 第 9 の実施形態による変速装置を 示す。  FIGS. 12 and 13 show a transmission according to a ninth embodiment.
こ の変速装置は、 入力軸 1 2 を比較的短い中空構造に形成 する と共に、 その出力軸 1 4側の端部に設けた端壁 1 4 2の 外縁部から、 第 1 ドラム 1 6 の外周部との間に間隙を形成し て ドライプリ ング 1 4 4 が延びる。 この ドライブ リ ング 1 4 4 の先端に、 第 1 , 第 2パワーホイール 3 0, 3 2 間の間隙 を覆 う ガイ ド 1 4 6 が形成される。 このガイ ド 1 4 6 は、 そ の内面に形成された断面円弧状のガイ ド溝 1 4 6 a を介して、 本実施形態では環状の板状構造に形成された遊星ローラ 4 4 を支え、 更にこ の遊星ローラ 4 4 がパワーローラ 4 0 の周方 向溝 4 2 およびその側壁部から突出する突条 4 2 a で支える。 したがって、 ガイ ド 1 4 6 は、 パワーローラ 4 0 および遊星 ローラ 4 4 をそれぞれ周方向に等間隔に保持する支持ホイ一 ルと して作用する。 In this transmission, the input shaft 12 is formed into a relatively short hollow structure, and the end wall 14 2 provided at the end on the output shaft 14 side is formed. The dry ling 144 extends from the outer edge to form a gap between the outer periphery of the first drum 16. A guide 144 that covers the gap between the first and second power wheels 30 and 32 is formed at the tip of the driving ring 144. The guide 1 46 supports a planetary roller 44 formed in an annular plate-like structure in the present embodiment through a guide groove 1 46 a having an arcuate cross section formed on the inner surface thereof. Further, the planetary roller 44 is supported by a circumferential groove 42 of the power roller 40 and a ridge 42a projecting from a side wall thereof. Therefore, the guide 146 acts as a support wheel that holds the power roller 40 and the planetary roller 44 at equal intervals in the circumferential direction.
図 1 3 に、 このガイ ド 1 4 6 が遊星ローラ 4 4 およびノヽ。ヮ 一ローラ 4 0 を支える状態を示すよ う に、 各遊星ローラ 4 4 は、 外周部がこの周方向溝 4 2 の底面で形成される周面と接 点 s で摩擦係合する。 これらの遊星ローラ 4 4 の回転軸 p は、 隣接する 2つのパワーローラ 4 0 の回転軸 r を結ぶ直線よ り も、 中心軸 Cから半径方向外方に離隔する。 また、 各パワー ローラ 4 0 の回転軸 r も、 互いに隣接する 2つの遊星ローラ 4 4 の回転軸 p を結ぶ直線よ り も中心軸 Cから半径方向外方 に離隔 して位置する。  In Fig. 13, this guide 1 46 is the planetary roller 4 4 and the nozzle.示 す As shown in a state supporting one roller 40, each planetary roller 44 frictionally engages with the peripheral surface formed by the bottom surface of the circumferential groove 42 at the contact point s. The rotation axis p of these planetary rollers 44 is more radially away from the center axis C than the straight line connecting the rotation axes r of the two adjacent power rollers 40. Also, the rotation axis r of each power roller 40 is located further radially outward from the center axis C than the straight line connecting the rotation axes p of the two planetary rollers 44 adjacent to each other.
各ノヽ。ワーローラ 4 0 が第 1 , 第 2傾斜面 4 0 a , 4 0 b の 作用によ り 、 中心軸 Cに向けて半径方向内方に付勢される と、 各遊星ローラ 4 4 は、 互いに隣接する 2つのパワーローラ 4 0 からそれぞれ大き さの等 しい力を両側から受け、 パワー口 ーラ 4 0 と は逆に中心軸から離隔する方向に向けて半径方向 外方に付勢される。 そ して、 こ の よ う に半径方向外方に付勢 された遊星ローラ 4 4 は、 ガイ ド溝 1 4 6 a に摩擦係合し、 このガイ ド 1 4 6 で支えられる。 これによ り 、 ノ、。ワー ロ ーラ 4 0 と遊星ローラ 4 4 と に作用する周方向の力は互いに打消 しあい、 それぞれ中心軸 C を中心と して周方向に等間隔に保 持される。 Each node. When the water roller 40 is urged radially inward toward the center axis C by the action of the first and second inclined surfaces 40a and 40b, the planetary rollers 44 are adjacent to each other. The two power rollers 40 receive equal force from both sides from both sides, and in the radial direction away from the central axis, opposite to the power roller 40 It is urged outward. Then, the planetary roller 44 urged radially outward in this manner frictionally engages with the guide groove 144a and is supported by the guide 144. With this, no ,. Circumferential forces acting on the word rollers 40 and the planetary rollers 44 cancel each other out, and are kept at equal intervals in the circumferential direction about the central axis C.
また、 ノ ヮ 一ホイール 3 0 , 3 2が中心軸 Cに沿って同 じ 方向に移動する と、 各パワーローラ 4 0 は、 回転軸 r よ り も 中心軸 Cから離隔した部位を係合部 3 0 a , 3 2 a で押圧さ れ、 隣接する遊星ローラ 4 4 と の接点 s を中心と して回動す る。 これによ り 、 各傾斜面 4 0 a , 4 0 b 上における係合部 When the wheels 30 and 32 move in the same direction along the central axis C, each power roller 40 engages a portion separated from the central axis C with respect to the rotation axis r. It is pressed by 30a and 32a, and rotates about the contact point s with the adjacent planetary roller 44. As a result, the engagement portions on the inclined surfaces 40a and 40b
3 0 a , 3 2 a の係合位置が移動 し、 回転軸 r からの距離が 変化する。 The engagement position of 30a and 32a moves, and the distance from the rotation axis r changes.
更に、 各パワーローラ 4 0 の回転軸 r の中心軸 Cに対する 傾斜角度が一斉に同 じ角度に変更される と 同時に、 周方向溝 Further, the inclination angle of the rotation axis r of each power roller 40 with respect to the center axis C is simultaneously changed to the same angle, and at the same time, the circumferential groove is formed.
4 2 に嵌合した各遊星ローラ 4 4 も突条 4 2 a を介してパヮ 一ローラ 4 0 で付勢され、 ガイ ド溝 1 4 6 a との摩擦係合を 維持しつつ隣接するパワーローラ 4 0 との接点 s を中心と し て一斉に同 じ角度にわたって回動する。 この結果、 パワー口 ーラ 4 0 の回転軸 r と遊星ローラ 4 4 の回転軸 p と は、 それ ぞれ中心軸 Cに対してほぼ等しい角度に配置される。 Each planetary roller 44 fitted to 42 is also urged by the power roller 40 via the ridge 42a, and the adjacent power roller while maintaining frictional engagement with the guide groove 144a. Rotate all around the same angle around the contact s with 40. As a result, the rotation axis r of the power roller 40 and the rotation axis p of the planetary roller 44 are disposed at substantially the same angle with respect to the center axis C.
更に、 本実施形態では、 連結部材 2 0 が第 1 ドラム 1 6 の 中心部から中心軸 Cに沿って延び、 ボス部 1 4 a に結合され、 このボス部 1 4 a 上にナツ ト 1 7 で固定されたアキシャル軸 受 2 2 を介 して第 2 ドラム 1 8 と連結されている。 また、 第 1 , 第 2 ドラム 1 6, 1 8 の駆動力合成機構と して作用する 変速機構 1 2 0 が第 2 ドラム 1 8 の凹設部に配置されており 、 中間歯車 1 2 6 を回転自在に支える支持軸 1 2 4 が第 2 ドラ ム 1 8 と アキシャル軸受 2 2 と を機械的に連結する。 この変 速機構 1 2 0 は、 支持軸 1 2 4 に回転自在に装着された中間 歯車 1 2 6 を、 ポス部 1 4 a に設け られた外歯歯車 1 2 2 と、 ハウジング 1 0 に設け られた内歯歯車 1 2 8 と に嚙合させ、 中心軸 C の周 り を自転しつつ公転する遊星歯車装置と して、 第 1 , 第 2 ドラ ム 1 6 , 1 8 を一定の速比で回転させる。 Further, in this embodiment, the connecting member 20 extends from the center of the first drum 16 along the center axis C, is connected to the boss 14a, and the nut 17 is placed on the boss 14a. It is connected to the second drum 18 via an axial bearing 22 fixed at the position. Also, A transmission mechanism 120 acting as a driving force synthesizing mechanism for the first and second drums 16 and 18 is disposed in the concave portion of the second drum 18 so that the intermediate gear 12 26 can rotate freely. A supporting shaft 124 supports the second drum 18 and the axial bearing 22 mechanically. The speed change mechanism 120 has an intermediate gear 122 mounted rotatably on a support shaft 124, an external gear 122 provided on a pos part 14a, and a housing 10 provided on a housing 110. And the first and second drums 16 and 18 at a constant speed ratio as a planetary gear device that revolves around the center axis C while rotating. Rotate.
この支持軸 1 2 4 に回転自在に装着 した中間歯車 1 2 6 の 脱落を防ぐと共に、 こ の支持軸 1 2 4 の軸方向移動を防止す るため、 アキシャル軸受 2 2 の円錐コ 口軸受を収容する リ ン グ 1 2 5 力 Sこの支持軸 1 2 5 にね じ止め されてレ、る。  In order to prevent the intermediate gears 126 that are rotatably mounted on the support shafts 124 from falling off, and to prevent the support shafts 124 from moving in the axial direction, the conical shaft bearings of the axial bearings 22 are used. Ring to be accommodated 1 2 5 Force S Screwed to this support shaft 1 2 5
更に、 この変速装置には、 入力軸 1 2 の内周側と、 ェンジ ンの駆動軸を連結するスプライ ン軸 1 4 8 と の間にワ ンゥェ イ ク ラ ツチ 7 0 を-配置 し、 この入力軸 1 2 の外周側に、 上述 のガイ ド 1 4 7 を回転駆動するモータジェネ レータ 1 5 0力 S 設け られている。 このモータジェネレータ 1 5 0 は、 P Mモ ータで形成する のが好ま しく 、 ドライ ブリ ング 1 4 4 の延長 部 1 4 8 の内周側に多数の永久磁石 1 5 2 を固定し、 これと 所定の間隙を介 して対向する ステータ コイル 1 5 4 を、 ハウ ジングの蓋部 1 O b から内方に突出する円筒状の支持部 1 5 6 に取付けてある。  Further, in this transmission, a vane clutch 70 is disposed between the inner peripheral side of the input shaft 12 and the spline shaft 148 connecting the drive shaft of the engine. On the outer peripheral side of the input shaft 12, a motor generator 150 for driving the above-mentioned guide 144 is provided. This motor generator 150 is preferably formed by a PM motor, and a number of permanent magnets 152 are fixed to the inner peripheral side of the extension portion 148 of the driving ring 144, and this is combined with the motor generator 150. The stator coils 154 facing each other with a predetermined gap are attached to a cylindrical support portion 156 projecting inward from the housing lid 1 Ob.
この実施形態によ る変速装置は、 図 1 0 に示す変速装置と ほぼ同様に変速する。 但し、 図 1 0 に示す変速装置が、 遊動 ローラ 4 4 を入力軸 1 2 と逆方向に回転するのに対し、 本実 施形態の変速装置は、 遊動ローラ 4 4 がガイ ド 1 4 6 のガイ ド溝 1 4 6 a に内接するため、 遊動ローラ 4 4 は入力軸 1 2 と同 じ方向に回転する。 The transmission according to this embodiment shifts in substantially the same manner as the transmission shown in FIG. However, the transmission shown in FIG. While the roller 44 rotates in the opposite direction to the input shaft 12, the transmission of the present embodiment has the idler roller 44 inscribed in the guide groove 144 a of the guide 146. The idler roller 4 rotates in the same direction as the input shaft 12.
この変速装置では、 パワーローラ 4 0 を両側から付勢する 第 1 , 第 2 ノヽ。ヮーホイール 3 0 , 3 2 力、ら出力するため、 ノ、。 ワー ロ ーラ 4 0 および遊星ローラ 4 4 の両側で力が平衡され、 これらのノ ワー ロ ーラ 4 0および遊星ローラ 4 4 の整列をよ り確実に行 う こ とができ る。 また、 ワ ンウェイ ク ラ ッチ 7 0 を入力軸 1 2 に一体的に形成する こ と によ り 、 入力軸 1 2 に 対するエンジン等の駆動軸の接続部のコンパク ト化が図 られ る。 . ·  In this transmission, the first and second nose urge the power roller 40 from both sides.ホ イ ー ル Wheels 30 and 32 for power output. The forces are balanced on both sides of the word roller 40 and the planetary rollers 44, so that the alignment of the near roller 40 and the planetary rollers 44 can be ensured. Further, by forming the one-way clutch 70 integrally with the input shaft 12, the connection of the drive shaft such as an engine to the input shaft 12 can be made compact. ·
そ して、 モータジェネ レータ 1 5 0 の永久磁石 1 5 2 を、 ドライプリ ング 1 4 4 の延長部 1 4 8 の内周側に配置したた め、 遠心力によ る永久磁石の剥離飛散を確実に防止する こ と ができ る。. これによ り 、 モータジェネ レータ 1 5 0 の高速回 転化を図る と共に、 磁力の作用半径を大き く してモータ ジェ ネレータ 1 5 0 の出力の増大を図 り 、 自動車用 と して好適な ハイ プリ ッ ド駆動装置を形成する こ と ができ る。  In addition, since the permanent magnets 152 of the motor generator 150 are arranged on the inner peripheral side of the extension portion 148 of the dry ring 144, the permanent magnets are prevented from being separated and scattered by centrifugal force. It can be prevented reliably. As a result, the motor generator 150 can be rotated at a high speed, the operating radius of the magnetic force can be increased, and the output of the motor generator 150 can be increased, which is suitable for automobiles. It is possible to form a hybrid drive device.
このよ う なモータ ジェネ レータ 1 5 0 を自動車に組込む場 合には、 好適なモータジェネ レータ制御装置を通 じて以下の よ う に作動させる こ とができる。  When such a motor generator 150 is incorporated in an automobile, it can be operated as follows through a suitable motor generator control device.
自動車の発進時および低速走行時は、 エンジンの回転数が 低いため、 燃費が極めて悪い。 こ のため、 低速走行時に高い 効率を発揮するモータジェネ レータ 1 5 0 をバッテ リ から供 給する電力で駆動する。 エンジン回転数が入力軸 1 2 の回転 数よ り も上昇し、 ワ ンウェイ ク ラ ッチ 7 0 を介して駆動軸と 入力軸 1 2 とが連結される状態になったと き に、 モータジェ ネ レータ 7 0への電力供給を停止 し、 エンジンで入力軸 1 2 を回転駆動する こ と ができ る。 When the vehicle starts and runs at low speed, the fuel consumption is extremely poor due to the low engine speed. For this reason, the motor generator 150, which exhibits high efficiency at low speeds, is supplied from the battery. It is driven by the supplied power. When the engine speed rises above the speed of the input shaft 12 and the drive shaft and the input shaft 12 are connected via the one-way clutch 70, the motor generator The power supply to 70 can be stopped, and the input shaft 12 can be rotationally driven by the engine.
通常の走行時は、 主と してエンジンで入力軸 1 2 を駆動す る。 ノ ッテ リ の残量が少ない場合は、 モータジェネ レータ 7 0 に供給する電力を抑制する と共に、 このモータジエネ レー タ 7 0 を発電機と して作動させてバッテ リ を充電し、 次にモ ータ ジェネ レータ 7 0 を作動する準備を行う。 走行中に加速 する場合は、 モータジェネ レータ 7 0 をモータ と して作動さ せ、 エンジンの駆動力にモータ ジェネ レータ 7 0 の駆動力を 追加する こ とで、 エンジン出力が小さい場合であっても、 運 転者の求める加速度に応える こ と ができ る。  During normal driving, the input shaft 12 is mainly driven by the engine. When the remaining amount of the battery is low, the power supplied to the motor generator 70 is suppressed, and the battery is charged by operating the motor generator 70 as a generator to charge the battery. Prepare to operate the data generator 70. When accelerating during driving, the motor generator 70 is operated as a motor, and the driving force of the motor generator 70 is added to the driving force of the engine. Can also respond to the acceleration required by the driver.
自動車を減速する際は、 このモータジェネ レータ 7 0 を発 電機と して作用- せ、 この と き に発電された電力をバッテ リ に蓄える。 すなわち、 自動車を減速の際に、 アク セルぺダル を緩め、 エンジンの回転速度が低下する と、 ワンウェイ ク ラ ツチ 7 0 が駆動軸 6 0 と入力軸 1 2 と を分離し、 これによ り 、 入力軸 1 2 に作用する全ての回転力が発電エネルギと してモ ータ ジェネ レータ 7 0 に作用 し、 電力に変換される。 この電 力に変換された制動エネルギは、 ノ ッテ リ に蓄えられる。  When the vehicle is decelerated, the motor generator 70 operates as a generator, and the power generated at this time is stored in a battery. That is, when the vehicle is decelerated, the accelerator pedal is loosened, and when the rotation speed of the engine is reduced, the one-way clutch 70 separates the drive shaft 60 from the input shaft 12, which causes Then, all the rotating forces acting on the input shafts 12 act on the motor generator 70 as generated energy, and are converted into electric power. The braking energy converted to this electric power is stored in the notifier.
したがって、 本実施形態における変速装置は、 上述の各実 施形態における変速装置と 同様に、 迅速な応答性と高い伝動 効率と を発揮する こ と に加え、 発進時および加速時に大きな 加速力を形成し、 減速時に高効率でエネルギを回収し、 これ によ り 、 自動車の低燃費化を可能とする。 更に、 ハウジング 1 0 内の圧力差を利用 して潤滑剤冷却装置 8 6 に潤滑油を循 環させる こ と によ り 、 冷却用の循環ポンプを設ける必要がな く 、 これによ り 、 変速装置の全体の構造を簡略化し、 軽量化 する こ と もでき る。 Therefore, similarly to the transmissions in the above-described embodiments, the transmission according to the present embodiment not only exhibits quick responsiveness and high transmission efficiency, but also has a great performance when starting and accelerating. It forms an accelerating force and recovers energy with high efficiency during deceleration, which makes it possible to reduce the fuel consumption of automobiles. Further, by utilizing the pressure difference in the housing 10 to circulate the lubricating oil to the lubricant cooling device 86, there is no need to provide a circulating pump for cooling. The overall structure of the device can be simplified and the weight can be reduced.
なお、 上述の各実施形態における作動説明は一例であ り 、 第 1 , 第 2パワーホイール 3 0 , 3 2 と、 遊動ローラ 4 4 と 、 パワーローラ 4 0 と、 支持ホイールすなわち中央ホイール 4 6 あるいはガイ ド 1 4 6 の大き さ、 寸法あるいは形状等によ り種々変更する こ とが可能なこ と は明 らかである。  The description of the operation in each of the above-described embodiments is an example, and the first and second power wheels 30 and 32, the idle roller 44, the power roller 40, the support wheel, that is, the center wheel 46 or It is clear that various changes can be made depending on the size, size, shape, etc. of guide 146.
産業上の利用可能性 Industrial applicability
以上説明 したよ う に、 本発明の変速装置によれば、 構造が 簡単で伝達効率が高く 、 軽量であ り ながら も大きな動力を伝 達する こ と のできる無段変速装置を低コス トで製造する こ と ができ る。 これによ り 、 自動車用、 舶用、 建設機械用、 農業 用あるいは発電用等の産業上の極めて広範囲の用途に対応さ せる こ と ができ る。  As described above, according to the transmission of the present invention, a continuously variable transmission that has a simple structure, high transmission efficiency, and is capable of transmitting large power while being lightweight is manufactured at low cost. can do. This makes it possible to support an extremely wide range of industrial uses such as automobiles, ships, construction machinery, agriculture, and power generation.
以上、 本発明について、 種々 の図に示す好ま しい実施形態 と共に説明 してきたが、 本発明から逸脱する こ と なく 、 本発 明の機能をなすために、 他の同様な実施形態を用い、 あるい は、 上述の実施形態を変更し、 これに追加する こ と が可能な こ と は明 らかである。 したがって、 本発明はいずれかの単一 の実施形態に制限される ものではなく 、 請求の範囲の記載に したがってその幅および範囲が定まる ものである。  While the present invention has been described in connection with the preferred embodiments illustrated in the various figures, other similar embodiments may be used to perform the functions of the present invention without departing from the invention. Or, it is clear that the above-described embodiment can be modified and added to it. Therefore, the present invention is not limited to any single embodiment, but has its width and range defined by the claims.

Claims

求 の 範 囲 Range of request
1 . 先端部に設けた円形状係合部 ( 3 0 a , 3 2 a ) を互 いに対向 させて配置した第 1 , 第 2パワーホイール ( 3 0 , 1. The first and second power wheels (30, 30) in which the circular engaging portions (30a, 32a) provided at the tip end are arranged to face each other.
3 2 ) と、 3 2)
テーパ状端部に形成された第 1 , 第 2傾斜面 ( 4 0 a , 4 0 b ) を介 してこれ ら のパワーホイールの係合部に摩擦係合 し、 これらの係合部に沿って自転しつつパワーホイールの中 心軸 ( C ) の回 り を公転する複数の第 1転動体 ( 4 0 ) と、 それぞれが互いに隣接する 2つの第 1 転動体の周面と摩擦 係合 し、 第 1転動体と共に 自転しつつ前記パワーホイールの 中心軸 ( C ) を中心と して公転する複数の第 2転動体 ( 4 It frictionally engages with the engaging portions of these power wheels via the first and second inclined surfaces (40a, 40b) formed at the tapered end portion, and follows these engaging portions. A plurality of first rolling elements (40) that revolve around the center axis (C) of the power wheel while rotating, and frictionally engage with the peripheral surfaces of two first rolling elements adjacent to each other. The plurality of second rolling elements (4) revolving around the center axis (C) of the power wheel while rotating together with the first rolling elements.
4 ) と、 4) and
これらの第 2転動体 ( 4 4 ) の周面に摩擦係合 し、 前記第 1 , 第 2 ノヽ。ヮーホイール ( 3 0 , 3 2 ) によ る押圧力でパヮ 一ホイールの中心軸 ( C ) の方向に付勢される第 1 転動体を、 これ らの第 2転動体を介して支え、 第 1 転動体と第 2転動体 と のそれぞれを周方向に等間隔に保持する支持ホイール ( 4 6 ) と を備え、  The first rolling elements (44) are frictionally engaged with the peripheral surfaces of the first and second rolling elements (44). The first rolling elements urged in the direction of the center axis (C) of the power wheel by the pressing force of the power wheels (30, 32) are supported via these second rolling elements, A support wheel (46) for holding each of the rolling elements and the second rolling elements at equal intervals in the circumferential direction;
前記第 1 転動体 ( 4 0 ) は、 前記第 1 , 第 2パワーホイ一 ノレ ( 3 0 , 3 2 ) と支持ホイ一 ノレ ( 4 6 ) と の少なく と も一 方の軸方向位置に応 じて、 前記中心軸 ( C ) に対する傾き と 、 この傾き に対応するそれぞれの傾斜面 ( 4 0 a , 4 0 b ) 上 における係合部 ( 3 0 a , 3 2 a ) の係合位置と 回転軸  The first rolling element (40) corresponds to at least one axial position of the first and second power wheels (30, 32) and the supporting wheels (46). The inclination with respect to the central axis (C), the engagement position and rotation of the engagement portions (30a, 32a) on the respective inclined surfaces (40a, 40b) corresponding to the inclination. Axis
( r ) と の間の距離と を設定され、  (r) The distance between and is set, and
これら の第 1 , 第 2 パワーホイ ール ( 3 0 , 3 2 ) の一方 と第 2転動体 ( 4 4 ) を介する支持ホイール ( 4 6 ) と によ り 、 駆動力源で回転駆動される入力軸 ( 1 2 ) の回転を第 1 転動体 ( 4 0 ) に伝達し、 こ の第 1転動体で回転される前記 第 1 , 第 2 ノ ヮ一ホイ ール ( 3 0, 3 2 ) の他方を介して、 出力軸 ( 1 4 ) に回転出力を取出 し可能と したこ と を特徴と する変速装置。 One of these first and second power wheels (30, 32) And the supporting wheel (46) via the second rolling element (44) transmits the rotation of the input shaft (12), which is rotationally driven by the driving force source, to the first rolling element (40). The rotation output can be output to the output shaft (14) via the other of the first and second noisy wheels (30, 32) rotated by the first rolling element. A transmission characterized by the following.
2 . 前記支持ホイール ( 4 6 ) は、 前記中心軸 ( C ) と同 心状の入力軸 ( 1 2 ) に設け られた中央ホイールで形成され、 こ の中央ホイールは、 前記第 2転動体が転動するガイ ド溝 2. The support wheel (46) is formed by a center wheel provided on an input shaft (12) concentric with the center shaft (C), and the center wheel is provided with a second rolling element. Guide grooves that roll
( 4 6 a ) を外周部に有する こ と を特徴とする請求項 1 に記 載の変速装置。 The transmission according to claim 1, wherein (46a) is provided on an outer peripheral portion.
3 . 前記入力軸 ( 1 2 ) から駆動力分岐機構 ( 5 0 ) を介 して分岐した駆動力を前記第 1 , 第 2 パワーホイール ( 3 0 , 3. The driving force branched from the input shaft (12) via the driving force branching mechanism (50) is applied to the first and second power wheels (30,
3 2 ) の一方に伝達する こ と を特徴とする請求項 2 に記載の 変速装置。 3. The transmission according to claim 2, wherein the transmission is transmitted to one of (3) and (2).
4... 前記駆動力源と 中央ホイール ( 4 6 ) と の間に介揷さ れたワ ンウェイ ク ラ ッチ ( 7 0 ) と、 前記中央ホイールに口 ータ ( 7 6 ) を連結した第 1 モータジェネ レータ ( 7 4 ) と、 前記第 1 , 第 2 ノヽ。 ヮ ーホイール ( 3 0 , 3 2 ) の一方にロ ー タ ( 8 2 ) を連結した第 2 モータジェネ レータ ( 8 0 ) と、 前記第 1 , 第 2 パワーホイール ( 3 0 , 3 2 ) の他方で駆動 される出力軸 ( 1 4 ) と、 こ の出力軸で作動される被駆動装 置 ( 6 0 ) と の間に介揷されたク ラ ッチ ( 6 2 ) と を備える こ と を特徴とする請求項 2 に記載の変速装置。  4. A one-way clutch (70) interposed between the driving force source and a center wheel (46), and a motor (76) connected to the center wheel A first motor generator (74); and the first and second nodes. A second motor generator (80) in which a rotor (82) is connected to one of the power wheels (30, 32); and the other of the first and second power wheels (30, 32). And a clutch (62) interposed between an output shaft (14) driven by the motor and a driven device (60) operated by the output shaft. The transmission according to claim 2, wherein:
5 . 前記支持ホイ ールは、 前記中心軸 ( C ) と 同心状でか つ回転不能の中空軸に設け られた中央ホイール ( 4 6 ) で形 成され、 更に、 前記第 1 , 第 2パワーホイール ( 3 0, 3 2 ) の一方にロータ を連結したモータジェネ レータ ( 8 8 ) と、 前記第 1 , 第 2 パ ワ ーホイール ( 3 0 , 3 2 ) の他方と 左右の駆動軸 ( 9 4 , 9 6 ) と に連結された差動歯車装置 5. The support wheel is concentric with the center axis (C). A motor generator (8) formed of a central wheel (46) provided on a non-rotatable hollow shaft, and further having a rotor connected to one of the first and second power wheels (30, 32). 8) and a differential gear device connected to the other of the first and second power wheels (30, 32) and the left and right drive shafts (94, 96).
( 9 2 ) と を備える こ と を特徴とする請求項 1 に記載の変速  The transmission according to claim 1, characterized in that:
6 . 前記中央ホイール ( 4 6 ) は、 入力軸 ( 1 2 ) 上に周 方向に移動不能でかつ軸方向に摺動自在に装着され、 前記第 1転動体 ( 4 0 ) の中心軸 ( C ) に対する傾きを制御する こ と を特徴とする請求項 2 に記載の変速装置。 6. The center wheel (46) is mounted on the input shaft (12) so as to be immovable in the circumferential direction and slidable in the axial direction, and the center shaft (C) of the first rolling element (40) is 3. The transmission according to claim 2, wherein the inclination of the transmission is controlled.
7. 前記第 1 , 第 2 パ ワ ーホイール ( 3 0 , 3 2 ) を、 変 速比が一定の変速機構 ( 1 2 2 ) を介 して相互に連結したこ と を特徴とする請求項 1 に記載の変速装置。  7. The first and second power wheels (30, 32) are interconnected via a speed change mechanism (122) having a constant speed change ratio. 3. The transmission according to claim 1.
8 . 前記支持ホイールは、 第 1 , 第 2転動体を囲みかつ第 2転動体の-周—面に摩擦係合するガイ ドで形成され、 前記第 1 , 第 2パワーホイールの他方と出力軸と の間にク ラ ッチを介揷 したこ と を特徴とする請求項 7 に記載の変速装置。  8. The support wheel is formed of a guide that surrounds the first and second rolling elements and frictionally engages with the -circumferential surface of the second rolling element, and the other of the first and second power wheels and the output shaft. The transmission according to claim 7, wherein a clutch is interposed between and.
9 . 先端部に設けた円形状係合部 ( 3 0 a , 3 2 a ) を互 いに対向 させて配置 した第 1 , 第 2パワーホイール ( 3 0 , 3 2 ) と、 9. First and second power wheels (30, 32) in which the circular engagement portions (30a, 32a) provided at the distal end are arranged to face each other;
テーパ状端部に形成された第 1 , 第 2傾斜面 ( 4 0 a , 4 0 b ) を介 してこれ ら のパワーホイールの係合部に摩擦係合 し、 これらの係合部に沿って自転しつつノ、ヮーホイールの中 心軸 ( C ) の回 り を公転する複数の第 1 転動体 ( 4 0 ) と、 それぞれが互いに隣接する 2つの第 1 転動体の周面と摩擦 係合し、 第 1転動体と共に自転しつつ前記パワーホイールの 中心軸を中心と して公転する複数の第 2転動体 ( 4 4 ) と、 これ ら の第 2転動体 ( 4 4 ) の周面に摩擦係合し、 前記第 1 , 第 2 ノヽ。ヮーホイール ( 3 0 , 3 2 ) によ る押圧力でパヮ 一ホイールの中心軸 ( C ) の方向に付勢される第 1 転動体を、 これ らの第 2転動体を介して支え、 第 1 転動体と第 2転動体 と のそれぞれを周方向に等間隔に保持する、 前記中心軸と同 軸配置の中央ホイール ( 4 6 ) と を備え、 It frictionally engages with the engaging portions of these power wheels via the first and second inclined surfaces (40a, 40b) formed on the tapered end, and follows these engaging portions. A plurality of first rolling elements (40) that revolve around the center axis (C) of the wheel, while rotating A plurality of second rolling elements (44) that frictionally engage with the peripheral surfaces of two adjacent first rolling elements and revolve around the center axis of the power wheel while rotating with the first rolling elements. ), And frictionally engage with the peripheral surfaces of these second rolling elements (44). The first rolling elements urged in the direction of the center axis (C) of the power wheel by the pressing force of the power wheels (30, 32) are supported via these second rolling elements, A center wheel (46) coaxially arranged with the center axis, for holding each of the rolling elements and the second rolling elements at equal intervals in the circumferential direction;
前記第 1 転動体 ( 4 0 ) は、 前記第 1 , 第 2パワーホイ一 ル ( 3 0 , 3 2 ) と支持ホイ ール ( 4 6 ) と の少なく と も一 方の軸方向位置に応 じて、 前記中心軸 ( C ) に対する傾き と、 この傾き に対応するそれぞれの傾斜面 ( 4 0 a , 4 0 b ) 上 における係合部 ( 3 0 a , 3 2 a ) の係合位置と回転軸  The first rolling element (40) is responsive to at least one axial position of the first and second power wheels (30, 32) and the support wheel (46). The inclination with respect to the central axis (C), and the engagement position and rotation of the engagement portions (30a, 32a) on the respective inclined surfaces (40a, 40b) corresponding to the inclination. Axis
( r ) と の間の距離と を設定され、  (r) The distance between and is set, and
前記第 1 , 第 2パワーホイールは、 変速比が一定の変速機 構を介 して相互に連結され、 入力軸の回転を第 1転動体に伝 達し、 第 2転動体を介して回転される 中央ホイールから、 出 力軸に回転出力を取出 し可能と したこ と を特徴とする変速装 置。  The first and second power wheels are connected to each other via a transmission mechanism having a constant speed ratio, transmit the rotation of the input shaft to the first rolling element, and are rotated via the second rolling element. A transmission that can output rotational output from the center wheel to the output shaft.
1 0 . 前記入力軸は、 風車の羽根に連結され、 前記出力軸 は発電機のロータに連結される こ と を特徴とする請求項 9 に 記載の変速装置。  10. The transmission according to claim 9, wherein the input shaft is connected to a blade of a windmill, and the output shaft is connected to a rotor of a generator.
PCT/JP2003/009265 2002-07-22 2003-07-22 Stepless speed change device WO2004010028A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003281545A AU2003281545A1 (en) 2002-07-22 2003-07-22 Stepless speed change device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-212576 2002-07-22
JP2002212576A JP2006052739A (en) 2002-07-22 2002-07-22 Continuously variable transmission

Publications (1)

Publication Number Publication Date
WO2004010028A1 true WO2004010028A1 (en) 2004-01-29

Family

ID=30767812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009265 WO2004010028A1 (en) 2002-07-22 2003-07-22 Stepless speed change device

Country Status (3)

Country Link
JP (1) JP2006052739A (en)
AU (1) AU2003281545A1 (en)
WO (1) WO2004010028A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2860530A (en) * 1954-10-29 1958-11-18 Curtiss Wright Corp Ball speed changers
US2974547A (en) * 1960-03-03 1961-03-14 Egan Joseph Thomas Speed change mechanism
JPS55100743U (en) * 1979-01-09 1980-07-14
US4667525A (en) * 1984-12-19 1987-05-26 Henry Schottler Variable speed frictional drive transmissions
JPH04272553A (en) * 1991-02-26 1992-09-29 Suzuki Motor Corp Friction continuously variable transmission
JPH06294462A (en) * 1993-04-02 1994-10-21 Mazda Motor Corp Toroidal type continuously variable transmission
JPH0783300A (en) * 1993-09-14 1995-03-28 Mitsubishi Heavy Ind Ltd Planetary friction transmitting device
US5433282A (en) * 1992-05-19 1995-07-18 Kabushikikaisha Equos Research Hybrid vehicle powered by an internal combustion engine and an electric motor
US20010016532A1 (en) * 1999-12-28 2001-08-23 Hu-Yong Jung Transmission for hybrid electric vehicle
JP2002181153A (en) * 2000-12-15 2002-06-26 Nsk Ltd Toroidal type continuously variable transmission
WO2003019044A1 (en) * 2001-08-23 2003-03-06 Suenori Tsujimoto Continuously variable transmission apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2860530A (en) * 1954-10-29 1958-11-18 Curtiss Wright Corp Ball speed changers
US2974547A (en) * 1960-03-03 1961-03-14 Egan Joseph Thomas Speed change mechanism
JPS55100743U (en) * 1979-01-09 1980-07-14
US4667525A (en) * 1984-12-19 1987-05-26 Henry Schottler Variable speed frictional drive transmissions
JPH04272553A (en) * 1991-02-26 1992-09-29 Suzuki Motor Corp Friction continuously variable transmission
US5433282A (en) * 1992-05-19 1995-07-18 Kabushikikaisha Equos Research Hybrid vehicle powered by an internal combustion engine and an electric motor
JPH06294462A (en) * 1993-04-02 1994-10-21 Mazda Motor Corp Toroidal type continuously variable transmission
JPH0783300A (en) * 1993-09-14 1995-03-28 Mitsubishi Heavy Ind Ltd Planetary friction transmitting device
US20010016532A1 (en) * 1999-12-28 2001-08-23 Hu-Yong Jung Transmission for hybrid electric vehicle
JP2002181153A (en) * 2000-12-15 2002-06-26 Nsk Ltd Toroidal type continuously variable transmission
WO2003019044A1 (en) * 2001-08-23 2003-03-06 Suenori Tsujimoto Continuously variable transmission apparatus

Also Published As

Publication number Publication date
JP2006052739A (en) 2006-02-23
AU2003281545A1 (en) 2004-02-09

Similar Documents

Publication Publication Date Title
JP6548835B2 (en) Electric drive
US5845731A (en) Hybrid motor vehicle
US5931271A (en) Hybrid drive with one-way drive connections
CN102822030B (en) The engine start control device of motor vehicle driven by mixed power
JP3456159B2 (en) Hybrid car
US8337171B2 (en) Pump drive system
EP1038722A1 (en) Hybrid driver
JP2000343966A (en) Drive train
WO1996022914A1 (en) Power transmission device for helicopter
US10704662B2 (en) Power-split continuously variable transmission device
US6508348B2 (en) Transmission unit for hybrid vehicle
JP2007261346A (en) Hybrid vehicle
JP5903834B2 (en) Friction roller speed reducer and electric vehicle drive device
US10641373B2 (en) Power-split continuously variable transmission device
JP2001504570A (en) System and device for multi-input and dual-output electric differential motor transmission
JP2015017664A (en) Electric vehicle drive
KR101805100B1 (en) The two-speed transmission using differential gear assembly
CN101248294B (en) Automatic Transmission
JP5337744B2 (en) Power transmission device and hybrid drive device
JP2015500963A (en) Transmission device, powertrain, energy storage device, and vehicle with such equipment
US10626969B2 (en) Power-split continuously variable transmission device
WO2004010028A1 (en) Stepless speed change device
KR101302046B1 (en) Regenerating Brake Type Drive Wheel
JP3745708B2 (en) Continuously variable transmission
JP3670603B2 (en) Continuously variable transmission

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP