[go: up one dir, main page]

WO2004007389A1 - Materiaux composites renforces comprenant un liant hydraulique ou chimique, des fibres de polyamide ainsi qu'un ou plusieurs additifs pour comportement mecanique ameliore - Google Patents

Materiaux composites renforces comprenant un liant hydraulique ou chimique, des fibres de polyamide ainsi qu'un ou plusieurs additifs pour comportement mecanique ameliore Download PDF

Info

Publication number
WO2004007389A1
WO2004007389A1 PCT/FR2003/002168 FR0302168W WO2004007389A1 WO 2004007389 A1 WO2004007389 A1 WO 2004007389A1 FR 0302168 W FR0302168 W FR 0302168W WO 2004007389 A1 WO2004007389 A1 WO 2004007389A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
chosen
composite material
material according
polyamide
Prior art date
Application number
PCT/FR2003/002168
Other languages
English (en)
Inventor
Gilles Orange
Franck Bouquerel
Bertrand Bordes
Original Assignee
Rhodia Performances Fibres
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Performances Fibres filed Critical Rhodia Performances Fibres
Priority to AU2003269015A priority Critical patent/AU2003269015A1/en
Publication of WO2004007389A1 publication Critical patent/WO2004007389A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/10Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0675Macromolecular compounds fibrous from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0691Polyamides; Polyaramides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/02Coverings or linings, e.g. for walls or ceilings of plastic materials hardening after applying, e.g. plaster
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/16Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements of fibres or chips, e.g. bonded with synthetic resins, or with an outer layer of fibres or chips
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/12Flooring or floor layers made of masses in situ, e.g. seamless magnesite floors, terrazzo gypsum floors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00586Roofing materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00948Uses not provided for elsewhere in C04B2111/00 for the fabrication of containers

Definitions

  • Reinforced composite materials comprising a hydraulic or chemical binder, polyamide fibers and one or more additives for improved mechanical behavior
  • the present invention relates to composite materials, the basic structure of which is a matrix obtained from at least one hydraulic or chemical binder, polyamide fibers and additives for improving the mechanical properties of said composite materials.
  • These composite materials can find an application in many fields and in particular that of construction, as plasters, cements, mortars, concretes, or coatings for example.
  • Fiber cement which is most commonly used, for example, as a material for making roofing articles, pipes or tanks, for example.
  • Fibrocements traditionally comprise a mixture of cement, water, optionally a rheology agent, a processability agent (flocculant, defoamer, etc.), inorganic fillers, such as calcium carbonate, and one or several fibrous materials, see for example US 5,891,516.
  • the most widespread fiber cement manufacturing technique is the Hatschek process (cf. patent application AT 5970) which consists in preparing an aqueous slurry of cement, silica, or carbonate, fibers and possibly thickeners, plasticizers, clays or pigments, to deposit a thin layer of this mixture on a porous conveyor belt and to pass this mixture on and through a series of rollers in order to laminate and shape this mixture.
  • the water contained in the slurry is drained through openings present in the conveyor belt, either naturally or by application of a vacuum, ' for example under vacuum, applied under said carpet.
  • the fiber cement sheet After passing through a series of pressure rollers, the fiber cement sheet can be dried and cut into individual sheets, or else collected in a series of layers superimposed on a collecting cylinder in order to form fiber cement tubes. Fibers can thus be produced in the most diverse forms, flat, corrugated or tubular.
  • the most common fiber for this use is or was asbestos.
  • Asbestos has a high modulus, high tensile strength and good adhesion to cement.
  • Another important characteristic of composite products obtained from asbestos fibers is a behavior of the rigid rigid type, that is to say a rupture of the composite shortly after the maximum stress, and this for a relatively low elongation at break, of the 'order of a few percent.
  • the asbestos fiber helps to give the composite a particularly high flexural breaking stress.
  • the behavior of the composite is of the rigid rigid type. Whatever the synthetic fiber envisaged, it is not possible to obtain the same levels of breaking stress at bending. It should however be noted that this fragile rigid behavior is not particularly desired in the case of composite materials of the fiber cement type which, in the form of flat, corrugated or tubular plates are intended for roofing, piping, tanks. Indeed, it is necessary to considerably oversize the breaking stress and no means can detect the next failure of the composite material.
  • the density of PP fibers remains less than 1, which means that it is difficult to include them homogeneously in a very dilute aqueous medium.
  • polyamide fibers can be used as a cement reinforcement in order to reduce the formation of cracks during setting (so-called secondary reinforcement).
  • secondary reinforcement the fibers do not make it possible to obtain composite materials whose level of bending stress is sufficient compared to composites comprising asbestos or polyvinyl alcohol fibers (so-called primary reinforcement).
  • the present invention relates to reinforced composite materials, the basic structure of which is a matrix obtained from at least one hydraulic or chemical binder, treated or untreated polyamide fibers and one or more additives used in particular to improve the properties. mechanics of said composite materials.
  • the composite materials with a hydraulic or chemical binder according to the invention do not have asbestos and therefore avoid the drawbacks mentioned above.
  • the composite materials according to the invention have improved mechanical properties, good mechanical characteristics of breaking strength in bending and ductile behavior in increased bending.
  • Composite materials comprising polyamide fibers and one or more additives, as described in the present invention, have quite interesting and improved mechanical characteristics. Among these characteristics, the flexural strength, characterized by the maximum stress that the material can withstand, and the ductility, described by the relative variation of the stress tolerable by the material when it opens in flexion after rupture of the cement matrix, have been found to be entirely satisfactory.
  • the composite materials according to the invention thus offer a completely advantageous alternative to asbestos fiber cement and to fiber cement comprising other organic fibers used until now.
  • the invention relates to reinforced composite materials, the basic structure of which is a matrix obtained from at least one hydraulic or chemical binder, treated or untreated polyamide fibers and one or more additives chosen from the group consisting of : • latex; • alkylphosphates and alkylphosphonates, their derivatives and their salts;
  • random copolymers chosen, for example, from linear polymers containing (meth) acrylic acid, in particular sulfonated or phosphated, combed polymers with poly ((meth) acrylic acid) as backbone and grafts compatible with cement such as PEG-based grafts, comb polymers with PEG as backbone and (meth) acrylic acid-based grafts; carboxylic acids and diacids and their salts; products derived from catechol; "Polyphenols; amino acids their salts; polyamide oligomers comprising less than 20 repeating units, preferably less than 10 repeating units;
  • polyamide oligomers carrying a function for example chosen from phosphates, phosphonates, sulfonates, alkoxysilanes, dicarboxylates, amino-carboxylates, anhydrides, epoxies and diols;
  • water-soluble polyamide resins in particular the resins obtained by introduction of polyamine comonomers and reaction with epichlorohydrin.
  • These additives can be used alone or in combination of two or more of them.
  • hydraulic binder within the meaning of the present invention, more particularly means a binder with hydraulic setting such as those known to those skilled in the art, that is to say an inorganic cement and / or an inorganic binder or adhesive which hardens by hydration, that is to say by taking, natural or not, of an aqueous suspension and / or dispersion (slurry or "slurry”) of various inorganic and / or organic materials.
  • a binder with hydraulic setting such as those known to those skilled in the art, that is to say an inorganic cement and / or an inorganic binder or adhesive which hardens by hydration, that is to say by taking, natural or not, of an aqueous suspension and / or dispersion (slurry or "slurry”) of various inorganic and / or organic materials.
  • the materials comprising at least one matrix with hydraulic binder belong to the class of mortars, plasters or concretes
  • the hydraulic binder can be a Portland cement, additive or not, a cement with high content in alumina, slag cement, calcium sulfate (plaster), calcium silicates formed by autoclave treatment and combinations of specific binders and other chemical binders.
  • chemical binder within the meaning of the present invention, more particularly means a binder which gives rise to setting as a result of a chemical reaction, for example acid-base, and not by hydration.
  • a chemical binder can be found in mixtures based on phosphates (MAP) and magnesia.
  • the consolidated or hardened product obtained has mechanical characteristics which can be improved by the addition of natural, artificial or synthetic, organic or inorganic fibers. These fibers can be treated with one or more additives.
  • a particularly interesting example in the context of the present invention relates to fiber cement.
  • the additive is a latex
  • this can be chosen from:
  • nanolatex such as for example a carboxylated nanolatex, a phosphated nanolatex, or a sulfonated nanolatex
  • alkali-soluble or alkali-swelling latex in particular comprising more than 30% by mass of methacryiic acid relative to the mass of dry matter.
  • alkali-soluble latex a latex which is totally or partially soluble in at least one basic compound.
  • alkali-swelling latex a latex whose particles which constitute it swell in the presence of at least one basic compound, the latex / base mixture then taking the appearance of a gel.
  • alkylphosphates and alkylphosphonates these are for example chosen from aminoalkylphosphates, aminoalkyldiphosphates, potassium laurylphosphate, potassium decylphosphate and potassium tridecylphosphate.
  • the salts of phosphonic, polyvinylphosphonic, phosphosuccinic acids and polyvinylphosphonic-acrylic copolymers can be alkaline or alkaline-earth salts.
  • the additive is chosen from polar olefins, these can be chosen from:
  • A represents a hydrolyzable radical, for example chosen from aikoxy, aikoxyalkyl and aikoxycarbonyl, linear or branched radicals containing from 1 to 6 carbon atoms, advantageously a methoxy or ethoxy radical, it being understood that when 3-n is strictly greater than 1, the radicals A can be identical or different;
  • Y represents an organic radical substituted by a functional group, in particular a group capable of reacting with amines, carboxylic acids or amides, such as for example an unsaturated bond, an acid function, an amino function, an ester function, a function anhydride, an epoxy function or an isocyanate function;
  • Z represents an inert organic radical, such as for example a linear or branched alkyl group comprising from 1 to 6 carbon atoms, it being understood that when n is strictly greater than 1, the radicals Z may be the same or different; and n represents 0, 1 or 2, preferably 0.
  • alkoxysilanes comprising an unsaturated function
  • alkoxysilanes comprising a reactive function with the polyamide
  • the additive is chosen from block copolymers prepared by controlled radical polymerization, these are for example those described in patent applications WO9858974, FR2794463, FR2799471, FR2802208, and FR2812293.
  • These polymers are synthesized from at least one ethylenically unsaturated monomer, at least one source of free radicals and at least one compound in which a homolytic cleavage of bond (for example C-O or C-halogen) is possible.
  • the monomers used are more specifically chosen from styrene and its derivatives, butadiene, chloroprene, (meth) acrylic esters, vinyl esters and vinyl nitriles.
  • the additives may be chosen for example from lauric acid and its salts and derivatives, and the ⁇ , ⁇ -dicarboxylic acids, such as for example adipic acid, glutaric acid, succinic acid and their salts and derivatives.
  • these acids, and in particular the ⁇ , ⁇ -dicarboxylic acids may advantageously be used alone or as mixtures of two or more of them and for example, the mixture of adipic, glutaric and succinic acids, obtained as a by-product in the synthesis of adipic acid.
  • Dioctylsulfosuccinics can be advantageously used.
  • the salts of dicarboxylic acids and acids can be alkaline or alkaline earth salts.
  • the additives may be chosen, for example, from tert-butyl catechol, ditert-octylcatechol, catechol disulfonate also called Tiron, salicylic acid and 4 methyl-salicylic acid.
  • the additives can be chosen, for example, from sulfonated polyphenols.
  • the additives may be chosen, for example, from aspartic acid, glutamine and methionine.
  • the amino acid salts can be alkaline or alkaline earth salts.
  • the additives may be chosen, for example, from the oligomers synthesized from adipic acid and hexamethylene diamine. These two monomers can be used in the oigomer in stoichiometric or non-stoichiometric proportions, for example with an excess of one of the two monomers which can range up to 50%.
  • the additives may be the oligomers with based on adipic acid, hexamethylene diamine and a third monomer comprising two carboxylic acid functions and a sulfonic acid function, for example sulfonated isophthalic acid AISNa.
  • the additives may be chosen, for example, from the copolymers obtained by the combination of polyols or diols with aliphatic or aromatic di-isocyanates.
  • the additives may be chosen, for example, from the resins obtained by introduction of polyamine comonomers and reaction with epichlorohydrin, such as the polyol diamines known under the trade name of Jeffamine®.
  • the additives used and mentioned above are such that they have an affinity for both the fiber and the cement matrix. In this way, they ensure a better cohesion between the fibers and the matrix with hydraulic or chemical binder, thus conferring on the composite materials the mechanical properties of resistance to bending and of ductility desired.
  • the fibers used for the invention are synthetic fibers available on a large scale, for an acceptable cost in the field of the invention.
  • Another characteristic required for the fibers of the invention and present in composite materials, such as fiber cement, is moreover great durability and good resistance to the alkalis which are generally present in the cement matrix.
  • Polyamide fibers have this chemical stability required in cement media (resistance to alkalis).
  • the hydrophilic nature of the fibers and the density slightly greater than 1 thus allow better dispersion in the cement slurry in an aqueous medium.
  • the fibers therefore offer the advantage of remaining dispersed after addition of fillers and various additives.
  • Good dispersibility of the fibers is indeed an important factor in preventing the formation of agglomerates and a uniform distribution of the fibers in the final product.
  • the polyamides used will advantageously be those usually used in the field of textile articles or yarns and fibers for technical applications.
  • the polyamides which can be used in the present invention include PA 6.6, PA 6, the PA 6.6-PA 6 copolymer, semi-aromatic polyamides, such as polyamide 6T, Amodel® (sold by the company Amoco), HTN® (sold by the company DuPont), and the other polyamides 11, 12 and 4-6, for example.
  • the polyamides are of linear structure.
  • the polyamide fibers are treated beforehand with one or more of the additives previously described.
  • the fibers according to the invention are manufactured according to conventional methods known to those skilled in the art and for example by extruding the molten polyamide material through a die then optionally drawing the threads, ribbons, cables or sheets, then cutting these fiber products.
  • any step conventional in the field of manufacturing textile fibers, intended for example to stabilize the fibers dimensionally (thermofixation) or else to give them volume through a compression box (crimping), can be applied .
  • Any other method of manufacturing fibers is also suitable.
  • the fibers which can be used in the present invention can have sections of all shapes, whether round, serrated or grooved, or even in the form of a bean, but also multilobed, in particular trilobed or pentalobate, in the shape of an X, of ribbon, hollow, square, triangular, elliptical and others.
  • the shape of the fiber section is not, however, an essential characteristic of the invention. All forms of fiber section resulting from the process for manufacturing said fibers are acceptable.
  • the fibers used in the present invention may be of constant diameter and / or section or have variations.
  • polyamide fibers according to the invention it must also be understood the multi-component fibers, for example of the "heart-skin" type, of which at least one of the components is a polyamide as defined above.
  • the fibers used in the composite materials of the present invention are characterized by their titer which will generally be greater than 0.2 decitex and less than or equal to 9 decitex, that is to say 9 g / 10,000 meters , advantageously less than 3.3 decitex.
  • the titer of the fibers entering into the composition of the composite materials of the invention will be between 0.3 and 3.3 decitex, and more preferably still between 0.4 and 2.0 decitex.
  • low titer fibers provide other advantages and in particular a higher density of fibers per cubic centimeter of composite material. This may possibly make it possible to significantly reduce the fiber content, while retaining equivalent use or mechanical properties, such as resistance to bending, and thus to obtain a more advantageous economic contribution from the reinforcement.
  • the fibers are cut to a length which can be uniform or non-uniform, including in admixture, and generally between 2 mm and 30 mm, preferably between 3 mm and 20 mm, by example about 6 mm.
  • the composite materials in accordance with the invention may also comprise other organic or inorganic, natural, artificial or synthetic fibers, other than the polyamide fibers described above. These other fibers may or may not be treated with one or more of the additives mentioned above for the treatment of polyamide fibers. The additives can then be identical or different.
  • organic fibers which can be used in combination with the treated polyamide fibers include poly (vinyl alcohol), polyester, polypropylene, poly (acrylonitrile), untreated polyamide, aramid fibers , carbon and polyolefins. Natural or artificial fibers from cellulose can for example be added.
  • inorganic fibers which can be used in combination with the polyamide fibers, mention may be made of rock wool, slag wool, glass fibers, wollastonite fibers, ceramic fibers and others.
  • the quantity of fibers present in the composite materials of the invention can vary in large proportions, depending on the use for which said composite materials are intended.
  • the total amount of fibers is generally between 0.1% to 25% by weight relative to all of the dry constituents of the matrix with a hydraulic or chemical binder.
  • the proportions by weight of fibers relative to all of the dry constituents are generally between 0.1% and 10%, preferably between 0.5% and 5% by weight, advantageously between approximately 1% and approximately 3 % in weight. In proportions of fibers less than 0.1% by weight, the reinforcing effect is considered insufficient. When the fibers are present at Due to more than 10% by weight, the implementation in the aqueous bath becomes more difficult, requiring the use of a particular process.
  • the technique of implementation preferentially used is the SIMCON technique ("Slurry Infiitrated Mat Concrete").
  • the composite materials are generally prepared from an aqueous slurry comprising at least one hydraulic or chemical binder, for example cement, silica, or carbonate, treated or untreated polyamide fibers, one or more of the additives defined above, other natural, artificial or synthetic, organic or inorganic fibers treated or not treated with one or more of the above additives and optionally fillers.
  • at least one hydraulic or chemical binder for example cement, silica, or carbonate, treated or untreated polyamide fibers, one or more of the additives defined above, other natural, artificial or synthetic, organic or inorganic fibers treated or not treated with one or more of the above additives and optionally fillers.
  • the charges can also simply be inert charges.
  • the fillers most commonly used, there are products such as ash, pozzolans, blast furnace slag, carbonates, clays, ground rock, ground quartz, amorphous silica and others.
  • the crude polyamide fiber can be treated, before being mixed with the slurry containing the hydraulic binder, with one or more of the additives previously described, according to various known methods.
  • the technique of treating the raw fiber with a roller by spray or vaporization, by soaking, the technique of padding, as well as any method used in the textile industry processing synthetic fibers.
  • This treatment can be carried out at different stages of the fiber manufacturing. These include, among other things, all the stages where sizes are conventionally added. It is thus possible to apply the additive at the bottom of the spinning loom before winding. It is also possible, in the case of so-called "fiber" processes, to apply the additive before, during or after the drawing, crimping or drying steps, for example.
  • additives in the matrix can be used alone or in combination of two or more of them.
  • an amount of additives of between 0.5% and 50% by weight relative to the total weight of the raw fibers is sufficient to obtain a composite material having the desired characteristics.
  • the percentage of additives can be between 0.2 and 5%.
  • the polyamide fiber may also be advantageous to subject the polyamide fiber to a first preliminary treatment (pretreatment) according to known methods. skilled in the art, to promote adhesion of the additive to said fiber.
  • pretreatment a first preliminary treatment
  • the fiber before or after the treatment with the additives and / or the pretreatment, to other chemical or physical treatments such as for example irradiation, dyeing and the like.
  • the composite materials according to the invention can be used for the preparation of construction articles in all their forms, flat, corrugated, molded, etc.
  • the composite materials of the invention find, for example, a use for the manufacture of plates, flagstones, roofing or facade cladding, piping, tanks, tanks, in particular rainwater tanks, containers, and all other accessory form elements. the most diverse.
  • Such articles comprising at least one composite material according to the present invention also form part of the present invention.
  • the rupture of the material is not of a rigid rigid type (sudden drop in the stress tolerable by the material once it is damaged, in other words, macroscopic rupture of the material once the cement matrix is damaged) a ductile appearance (maintenance of the bearable stress by the material even when the latter is damaged, in other words, preservation of the continuity of the material even after the cement matrix is damaged).
  • This aspect is particularly important for roof tiles. This aspect is also important for the transport of parts or their machining by drilling, nailing or cutting for example.
  • the cellulose is first pulped for one hour with vigorous stirring, then the other ingredients are added.
  • the assembly after kneading for 15 minutes, is poured into a mold, drawn under a slight primary vacuum.
  • the resulting cake is then submitted at a pressure of 10 tonnes (10 MPa) to format the samples.
  • 6 fiber cement test pieces are made: dimensions 120 x 30 x 5 mm.
  • test pieces are left for 24 hours at room temperature in an enclosure saturated with humidity, then are matured 24 hours at 60 ° C. in an enclosure always saturated with humidity, and finally left at least 24 hours in a room conditioned at 20 ° C. and with a relative humidity (RH) of 65% before test.
  • RH relative humidity
  • Table 1 shows the relative increase in the maximum stress obtained during the test of a fiber cement reinforced with additive, compared to the maximum stress obtained during the test of a fiber cement without additive. This relative increase is noted ⁇ m ax.
  • the acid PA oligomer is obtained by condensation of adipic acid and hexamethylene diamine with an acid stoichiometry of 20% relative to the equilibrium stoichiometry (1 mole of diacid for 1 mole of diamine) comprising approximately 8 with 14 motifs.
  • the polyamide oligomer AISNa is a sulphonated polyamide oligomer obtained by polycondensation of 3 monomers (adipic acid, hexamethylene diamine and sulphonated isophthalic acid) comprising approximately from 8 to 14 units.
  • Rhoximat® PAV22 is a latex powder based on acetate-versatate copolymer.
  • the polyamide fibers used are as follows:
  • PA 0.6 dtex fiber it is a polyamide 66 fiber with a round, thin section produced and marketed by Rhodia Technical Fibers for Flock application. It is an uncrimped fiber cut to 6mm whose mechanical characteristics include an elongation at break of 80%.
  • Fiber PA 0.5 dtex it is a polyamide 66 fiber of round section, ultra-fine and produced by Rhodia Technical Fibers for Flock application. It is an uncrimped fiber cut to 6mm whose mechanical characteristics include an elongation at break of 20%.
  • the abscissae correspond to the arrow of the test piece in mm.
  • the ordinates correspond to the bending stress in MPa.
  • Curve A corresponds to the polyamide fibers (Fiber PA 0.5 dtex) alone
  • Curve B corresponds to the mixture of polyamide fibers (Fiber PA 0.5 dtex) and of acid polyamide oligomer
  • - Curve C corresponds to the mixture of polyamide fibers (Fiber PA 0.5 dtex) and polyamide oligomer AISNa.
  • Curve A corresponds to polyamide fibers (Fiber PA 0.6 dtex) alone
  • Curve D corresponds to the mixture of polyamide fibers (Fiber PA 0.6 dtex) and PAV22
  • Curve E corresponds to the mixture of polyamide fibers (Fiber PA 0.6 dtex) and adipic acid and PAV22 (50/50: adipic / PAV22)
  • Curve F corresponds to the mixture of polyamide fibers (Fiber PA 0.6 dtex) and adipic acid.
  • the maximum stress tolerable by the fiber cement is increased in the presence of additives.
  • the ductility of the material can be significantly increased by the addition of an additive which represents a significant improvement in the properties of use.
  • FIGS. 1 and 2 show the advantage of using fibers of low titre so as to obtain a maximum gain both on the maximum stress tolerable by the material and on its ductility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

La présente invention concerne des matériaux composites renforcés dont la structure de base est une matrice obtenue à partir d'au moins un liant hydraulique ou chimique, des fibres de polyamide ainsi qu'un ou plusieurs additifs pour l'amélioration des propriétés mécaniques desdits matériaux composites. Ces matériaux composites peuvent trouver une application dans de nombreux domaines et notamment celui de la construction, en tant que plâtres, ciments, mortiers, bétons, ou enduits par exemple.

Description

Matériaux composites renforcés comprenant un liant hydraulique ou chimique, des fibres de polyamide ainsi qu'un ou plusieurs additifs pour comportement mécanique amélioré
La présente invention concerne des matériaux composites dont la structure de base est une matrice obtenue à partir d'au moins un liant hydraulique ou chimique, des fibres de polyamide ainsi que des additifs pour l'amélioration des propriétés mécaniques desdits matières composites. Ces matériaux composites peuvent trouver une application dans de nombreux domaines et notamment celui de la construction, en tant que plâtres, ciments, mortiers, bétons, ou enduits par exemple.
Un des matériaux composites les plus connus obtenu à partir de liant hydraulique renforcé par des fibres est le fibrociment, qui est le plus couramment utilisé par exemple comme matériau pour la réalisation d'articles de revêtement de toiture, de tuyauterie ou de réservoirs par exemple. Les fibrociments comprennent traditionnellement un mélange de ciment, d'eau, éventuellement d'un agent de rhéologie, d'un agent de processabilité (floculant, démoussant, etc.), de charges inorganiques, tel que du carbonate de calcium, et un ou plusieurs matériaux fibreux, voir par exemple US 5,891 ,516.
La technique de fabrication de matériaux fibrociments la plus répandue est le procédé Hatschek (cf. demande de brevet AT 5970) qui consiste à préparer une bouillie aqueuse de ciment, de silice, ou de carbonate, de fibres et éventuellement d'épaississants, plastifiants, argiles ou pigments, à déposer une fine couche de cette bouillie sur un tapis roulant poreux et à faire passer cette bouillie sur et au travers une série de rouleaux afin de laminer et mettre en forme cette bouillie. Pendant cette opération, l'eau contenue dans la bouillie est drainée au travers d'ouvertures présentes dans le tapis roulant, soit naturellement, soit par application d'une dépression, 'par exemple sous vide, appliquée sous le dit tapis. Après passage dans une série de rouleaux presseurs, la feuille de fibrociment peut être séchée et découpée en feuilles individuelles, ou encore recueillies en une série de couches superposées sur un cylindre collecteur afin de former des tubes de fibrociment. Les fibrociments peuvent ainsi être fabriqués sous les formes les plus diverses, planes, ondulées ou tubulaires.
La fibre la plus répandue pour cet usage est ou était l'amiante.
Pour des raisons de santé publique et de protection de l'environnement, il n'est plus souhaitable voire autorisé, par les législations en vigueur dans un nombre toujours croissant de pays, d'utiliser l'amiante. Il existe par conséquent un besoin important et urgent de trouver des produits de remplacement des fibres d'amiante, conférant aux matériaux composites, notamment les fibrociments, des caractéristiques mécaniques suffisantes.
L'amiante présente un module élevé, une grande résistance à la traction ainsi qu'une bonne adhésion au ciment. Au sein du produit final, la combinaison de résistance à la traction élevée, de module d'élasticité élevé, et d'une faible élongation à la rupture, contribuaient à une forte résistance à la flexion des articles fibrociments amiantes.
Une autre caractéristique importante des produits composites obtenus à partir de fibres d'amiante est un comportement de type rigide fragile c'est à dire une rupture du composite peu après la contrainte maximale, et ceci pour un allongement à la rupture relativement faible, de l'ordre de quelques pourcents.
De nombreuses études ont été effectuées afin de proposer des fibrociments dans lesquels l'amiante est substitué par des fibres naturelles, artificielles ou synthétiques, organiques ou inorganiques. Ces études ont déjà permis la mise en oeuvre de différents types de fibres de remplacement.
Ainsi, parmi les fibres de remplacement étudiées à ce jour, on peut citer, entre autres, les fibres de verre, de carbone, d'acier, de polyamide, de polyester, de poly(alcool vinylique), de polypropylène, et de poly(acrylonitrile).
Aucun de ces produits de substitution ne permet de reproduire exactement toutes les caractéristiques apportées par l'amiante au matériau composite. En effet, la fibre d'amiante contribue à conférer au composite une contrainte à la rupture en flexion particulièrement élevée. De plus, le comportement du composite est de type rigide fragile. Quelle que soit la fibre synthétique envisagée, il n'est pas possible d'obtenir les mêmes niveaux de contrainte à la rupture à la flexion. II est toutefois à noter que ce comportement rigide fragile n'est pas particulièrement souhaité dans le cas des matériaux composites de type fibrociment qui, sous forme de plaques planes, ondulées ou tubulaires sont destinés à des applications de revêtement de toiture, de tuyauterie, de réservoirs. En effet, il est nécessaire de considérablement surdimensionner la contrainte à la rupture et aucun moyen ne permet de détecter la rupture prochaine du matériau composite.
Des fibres naturelles, artificielles ou synthétiques permettant d'obtenir des matériaux, par exemple des fibrociments, possédant un niveau de contrainte maximal à la flexion équivalent à, ou proche de celui obtenu en utilisant des fibres d'amiante, ne peuvent être trouvées aujourd'hui. Cependant, et compte tenu de la toxicité des fibres d'amiante, des produits de substitution ont été proposés, et, parmi les plus connus aujourd'hui, on peut citer en particulier les fibres de poly(alcool vinylique), utilisées seules ou en combinaison. Ces fibres permettent de réaliser des matériaux composites dont les caractéristiques mécaniques sont satisfaisantes, sans toutefois atteindre celles conférées par l'amiante. Plus précisément, ces fibres permettent d'obtenir un niveau de contrainte à la rupture tout à fait intéressant et simultanément d'obtenir un comportement de type ductile, préféré pour les raisons précitées. Il est bien sûr à noter que, dans le cas du procédé de fabrication du fibrociment, les fibres de poly(alcool vinylique) se mélangent très bien dans le milieu aqueux. Cela est, entre autre, attribuable au caractère hydrophile de ces fibres et à leur densité, d=1 ,3 dans le cas du poly(alcool vinylique). Cependant, leur coût relativement élevé vient se répercuter sur le prix de vente des fibrociments, ce qui en fait un produit de remplacement peu utilisé à l'heure actuelle. D'autres alternatives existent, notamment avec les fibres polypropylène qui offrent a priori deux avantages majeurs. Elles sont d'une part nettement moins coûteuses que les fibres de poly(alcool vinylique) et d'autre part, elles offrent une excellente résistance aux alcalins. Toutefois, les fibres de polypropylène, si elles sont utilisées telles quelles, possèdent l'inconvénient de ne pas adhérer suffisamment à la matrice cimentaire et de conduire à des matériaux composites dont la résistance à la flexion est insuffisante.
C'est pourquoi de nombreux travaux, décrits par exemple dans EP A 0310100, EP A
0525737 et WO 99/19268, ont été réalisés afin d'améliorer les propriétés de ces fibres dans le fibrociment. Ces travaux d'amélioration du fibrociment, tels que ceux cités dans les demandes de brevets WO 99/19268 et EP A 1044939 permettent notamment de traiter en surface les fibres de polypropylène en leur conférant une meilleure affinité pour la matrice.
Il faut également signaler que ces travaux d'amélioration sont souvent très complexes, car il s'agit également de conférer au polypropylène un caractère hydrophile que celui-ci ne possède pas intrinsèquement. Ainsi, des étapes préliminaires d'attaque de la surface des fibres sont parfois nécessaires, comme indiqué dans la demande de brevet EP A 1044939.
Malgré l'ensemble des traitements, ceux-ci ne permettent cependant pas d'améliorer de façon satisfaisante l'ensemble des caractéristiques requises pour l'application fibrociment. Ainsi, par exemple, la densité des fibres de PP reste inférieure à 1 , ce qui signifie qu'il est difficile de les inclure de manière homogène dans un milieu aqueux très dilué.
Il est également connu que les fibres de polyamide peuvent être utilisées comme renfort de ciments afin de réduire la formation de fissures lors de la prise (renforcement dit secondaire). Toutefois ces fibres ne permettent pas d'obtenir des matériaux composites dont le niveau de contrainte à la flexion soit suffisant par rapport aux composites comportant de l'amiante ou des fibres de poly(alcool vinylique) (renforcement dit primaire).
Il apparaît donc aujourd'hui qu'il n'existe pas de produits de substitution de fibres d'amiante pour fibrociments qui soient totalement satisfaisants, c'est-à-dire des fibres possédant une bonne aptitude à la dispersion, d'un coût relativement peu élevé et qui permettent d'obtenir des matériaux composites, et en particulier des fibrociments, possédant des caractéristiques mécaniques élevées (contrainte mécanique à la rupture en flexion). De plus, il est intéressant que les produits présentent une non-toxicité et un comportement ductile à la flexion, souhaité en application. La présente invention concerne des matériaux composites renforcés dont la structure de base est une matrice obtenue à partir d'au moins un liant hydraulique ou chimique, des fibres de polyamide traitées ou non traitées ainsi qu'un ou plusieurs additifs utilisés notamment pour améliorer les propriétés mécaniques des dits matériaux composites. Les matériaux composites à liant hydraulique ou chimique selon l'invention ne possèdent pas d'amiante et évitent par conséquent les inconvénients cités précédemment.
Les matériaux composites selon l'invention possèdent des propriétés mécaniques améliorées, de bonnes caractéristiques mécaniques de résistance à la rupture en flexion et un comportement ductile en flexion accru.
Les matériaux composites comprenant les fibres de polyamide et un ou plusieurs additifs, tels qu'ils sont décrits dans la présente invention, possèdent des caractéristiques mécaniques tout à fait intéressantes et améliorées. Parmi ces caractéristiques, la résistance à la flexion, caractérisée par la contrainte maximale que peut supporter le matériau, et la ductilité, décrite par la variation relative de la contrainte supportable par le matériau lors de son ouverture en flexion après rupture de la matrice cimentaire, se sont avérées tout à fait satisfaisantes. Les matériaux composites selon l'invention offrent ainsi une alternative tout à fait avantageuse aux fibrociments à l'amiante et aux fibrociments comprenant d'autres fibres organiques utilisés jusqu'à présent.
Enfin, les matériaux composites de l'invention sont de faible coût.
L'invention concerne des matériaux composites renforcés dont la structure de base est une matrice obtenue à partir d'au moins un liant hydraulique ou chimique, des fibres de polyamide traitées ou non traitées ainsi qu'un ou plusieurs additifs choisis parmi le groupe constitué par : • les latex ; • les alkylphosphates et alkylphosphonates, leurs dérivés et leurs sels ;
• les aminés phosphates et aminés phosphonates, leurs dérivés et leurs sels ;
• les acides phosphonique, polyvinylphosphonique, phosphosuccinique, les copolymères polyvinylphosphonique-acrylique, et leurs sels ; • les oléfines polaires ;
• les alkoxysilanes fonctionnels ;
• les copolymères blocs préparés par polymérisation radicalaire contrôlée ;
• les copolymères statistiques choisis par exemple parmi les polymères linéaires à bas d'acide (méth)acrylique, en particulier sulfonatés ou phosphatés, les polymères peignes avec pour squelette du poly(acide (méth)acrylique) et des greffons compatibles avec le ciment comme des greffons à base PEG, les polymères peignes avec pour squelette du PEG et des greffons à base acide (méth)acrylique ; les acides et diacides carboxyliques et leurs sels; les produits dérivés du catéchol ; « les polyphénols ; les acides aminés leurs sels ; les oligomères de polyamide comprenant moins de 20 unités récurrentes, préférentiellement moins de 10 unités récurrentes ;
• les oligomères de polyamide portant une fonction par exemple choisie parmi les phosphates, phosphonates, sulfonatés, alkoxysilanes, dicarboxylates, amino- carboxylates, anhydrides, époxys et diols ;
• les résines uréthane acrylate aliphatique et polyester acrylate ; et
• les résines polyamides hydrosolubles, notamment les résines obtenues par introduction de comonomères polyamines et réaction avec l'épichlorhydrine. Ces additifs peuvent être utilisés seuls ou en combinaison de deux ou plusieurs d'entre eux.
Par liant hydraulique au sens de la présente invention, on entend plus particulièrement un liant à prise hydraulique tels que ceux connus de l'homme du métier, c'est-à-dire un ciment inorganique et/ou un liant ou adhésif inorganique qui durcit par hydratation, c'est-à-dire par prise, naturelle ou non, d'une suspension et/ou dispersion (bouillie ou "slurry") aqueuse de divers matériaux inorganiques et/ou organiques.
Ainsi, à titre d'exemple, les matériaux comportant au moins une matrice à liant hydraulique appartiennent à la classe des mortiers, des plâtres ou des bétons, et le liant hydraulique peut être un ciment Portland, additivé ou non, un ciment à haute teneur en alumine, un ciment de laitier, un sulfate de calcium (plâtre), des silicates de calcium formés par traitement à l'autoclave et des combinaisons de liants particuliers et autres liants chimiques.
Par liant chimique au sens de la présente invention, on entend plus particulièrement un liant qui donne lieu à une prise par suite d'une réaction chimique, par exemple acido-basique, et non par hydratation. Un exemple de liant chimique peut être trouvé dans les mélanges à base de phosphates (MAP) et de magnésie.
Le produit consolidé, ou durci, obtenu possède des caractéristiques mécaniques pouvant être améliorées par l'addition de fibres naturelles, artificielles ou synthétiques, organiques ou inorganiques. Ces fibres peuvent être traitées par un ou plusieurs additifs. Un exemple particulièrement intéressant dans le cadre de la présente invention concerne les fibrociments.
Lorsque l'additif est un latex, celui-ci peut-être choisi parmi :
- une dispersion aqueuse d'esters acryliques ;
- un nanolatex, comme par exemple un nanolatex carboxylé, un nanolatex phosphaté, ou un nanolatex sulfonaté ; et
- un latex alcali-soluble ou alcali-gonflant, en particulier comprenant plus de 30% massique d'acide méthacryiique par rapport à la masse de matière sèche.
Par latex alcali-soluble, on entend un latex soluble totalement ou partiellement dans au moins un composé basique. Par latex alcali-gonflant, on entend un latex dont les particules qui le constituent gonflent en présence d'au moins un composé basique, le mélange latex/base prenant alors l'aspect d'un gel.
Lorsque l'additif est choisi parmi les alkylphosphates et alkylphosphonates, les dérivés et leurs sels, ceux-ci sont par exemple choisis parmi les aminoalkylphosphates, les aminoalkyldiphosphates, le laurylphosphate de potassium, le décylphosphate de potassium et le tridécylphosphate de potassium.
Le sels d'acides phosphonique, polyvinylphosphonique, phosphosuccinique et des copolymères polyvinylphosphonique-acrylique peuvent être des sels alcalins ou alcalino-terreux. Lorsque l'additif est choisi parmi les oléfines polaires, celles-ci peuvent être choisies parmi :
- les polymères comportant des monomères oléfiniques et des groupes polaires ;
- les homopolymères et copolymères de monomères oléfiniques modifiés après synthèse par des groupes polaires choisis parmi l'anhydride maléique, l'acide acrylique, l'acide méthacryiique ; les homopolymères et copolymères de monomères oléfiniques modifiés par oxydation ; et les copolymères de monomères oléfiniques et de monomères polaires, éventuellement neutralisés par des ions. Lorsque l'additif est choisi parmi les alkoxysilanes fonctionnels, ceux-ci sont généralement de formule (I) :
Figure imgf000008_0001
dans laquelle :
A représente un radical hydrolysable, par exemple choisi parmi les radicaux aikoxy, aikoxyalkyle et aikoxycarbonyle, linéaires ou ramifiés comportant de 1 à 6 atomes de carbone, avantageusement un radical méthoxy ou éthoxy, étant entendu que lorsque 3-n est strictement supérieur à 1 , les radicaux A peuvent être identiques ou différents ;
Y représente un radical organique substitué par un groupement fonctionnel, en particulier un groupement pouvant réagir avec les aminés, les acides carboxyliques ou les amides, tel que par exemple une liaison insaturée, une fonction acide, une fonction aminé, une fonction ester, une fonction anhydride, une fonction époxy ou une fonction isocyanate ;
Z représente un radical organique inerte, tel que par exemple un groupe alkyle linéaire ou ramifié comprenant de 1 à 6 atomes de carbone, étant entendu que lorsque n est strictement supérieur à 1 , les radicaux Z peuvent être identiques ou différents ; et n représente 0, 1 ou 2, de préférence 0. Comme alkoxysilanes comportant une fonction insaturée, on peut citer les vinyltrialkoxysilanes de formule générale CR1R2=CR3-(CH2)m-Si-(OR4)3 et leurs hydrocondensats, eu m est un entier, en général compris entre 0 et 6, bornes incluses, où R1, R2, R3 et R4, identiques ou différents, sont choisis parmi l'atome d'hydrogène, un radical alkyle et un radical aikoxyalkyle, les radicaux alkyle et aikoxy dans le terme aikoxyalkyle étant linaires ou ramifiés et comportant de 1 à 6 atomes de carbone, et où le vinyltrialkoxysilane est en particulier choisi parmi le vinyltriméthoxysilane, le vinyltriéthoxysilane, le vinyltriméthoxyéthoxysilane, les (acryloxyalkyl)trialkoxysilanes, et les (méthacryloxyalkyl)trialkoxysilanes, en particulier le 3-(méthacryloxy)propyl- triméthoxysilane.
Parmi les alkoxysilanes comportant une fonction réactive avec le polyamide, on peut citer avantageusement le glycidyloxypropyltriméthoxysilane, l'isocyanatopropyltriéthoxysilane, et l'aminopropyltriéthoxysilane, ainsi que leurs hydrocondensats.
Lorsque l'additif est choisi parmi les copolymères blocs préparés par polymérisation radicalaire contrôlée, ceux-ci sont par exemple ceux décrits dans les demandes de brevet WO9858974, FR2794463, FR2799471 , FR2802208, et FR2812293. Ces polymères sont synthétisés à partir d'au moins un monomère éthyléniquement insaturé, au moins une source de radicaux libres et au moins un composé dans lequel une scission homolytique de liaison (par exemple C-O ou C-halogène) est possible. Les monomères utilisés sont plus spécifiquement choisis parmi le styrène et ses dérivés, le butadiene, le chloroprene, les esters (méth)acryliques, les esters vinyliques et les nitriles vinyliques.
Parmi les acides et diacides carboxyliques et leurs sels, les additifs pourront être choisis par exemple parmi l'acide laurique et ses sels et dérivés, et les α,ω-diacides carboxyliques, comme par exemple l'acide adipique, l'acide glutarique, l'acide succinique et leurs sels et dérivés. Ces acides, et notamment les α,ω-diacides carboxyliques pourront avantageusement être utilisés seuls ou en mélanges de deux ou plusieurs d'entre eux et par exemple, le mélange d'acides adipique, glutarique et succinique, obtenu comme sous-produit dans la synthèse de l'acide adipique. Les dioctylsulfosucciniques peuvent être avantageusement utilisés. Les sels d'acides et de diacides carboxyliques peuvent être des sels alcalins ou alcalino-terreux.
Parmi les produits dérivés du catéchol, les additifs pourront être choisis par exemple parmi le tert-butyl catéchol, le ditert-octylcatéchol, le catéchol disulfonate appelé également Tiron, l'acide salicylique et l'acide 4 méthyl-salicylique.
Parmi les polyphénols, les additifs pourront être choisis par exemple parmi les polyphénols sulfonés.
Parmi les acides aminés et leurs sels, les additifs pourront être choisis par exemple parmi l'acide aspartique, la glutamine et la méthionine. Les sels d'acides aminés peuvent être des sels alcalins ou alcalino-terreux.
Parmi les oligomères de polyamide comprenant moins de 20 unités récurrentes, les additifs pourront être choisis par exemple parmi les oligomères synthétisés à partir d'acide adipique et d'hexaméthylène diamine. Ces deux monomères peuvent être utilisés dans l'oiigomère en proportions stœchiométrique ou non- stœchiométrique, par exemple avec un excès d'un des deux monomères pouvant aller jusqu' à 50%.
Parmi, les oligomères de polyamide portant une fonction choisis par exemple parmi les phosphates, phosphonates, sulfonatés, alkoxysilanes, dicarboxylates, amino- carboxylates, anhydrides, époxys et diols, les additifs peuvent être les oligomères à base d'acide adipique, d'hexaméthylène diamine et d'un troisième monomère comportant deux fonctions acides carboxylique et une fonction acide sulfonique, par exemple l'acide isophtalique sulfoné AISNa.
Parmi les résines uréthane acrylate aliphatique et polyester acrylate, les additifs pourront être choisis par exemple parmi les copolymères obtenus par la combinaison de polyols ou de diols avec les di-isocyanates aliphatiques ou aromatiques.
Parmi les résines polyamides hydrosolubles, les additifs pourront être choisis par exemple parmi les résines obtenues par introduction de comonomères polyamines et réaction avec l'épichlorhydrine, tel que les diamines de polyols connus sous le nom commercial de Jeffamine®.
Les additifs utilisés et mentionnés précédemment sont tels qu'ils présentent une affinité à la fois avec la fibre et la matrice cimentaire. De cette façon, ils assurent une meilleure cohésion entre les fibres et la matrice à liant hydraulique ou chimique, conférant ainsi aux matériaux composites les propriétés mécaniques de résistance à la flexion et de ductilité recherchées.
Les fibres employées pour l'invention sont des fibres synthétiques disponibles à grande échelle, pour un coût acceptable dans le domaine de l'invention. Une autre caractéristique requise pour les fibres de l'invention et présentes dans les matériaux composites, tels que le fibrociment, est par ailleurs une grande durabilité et une bonne tenue aux alcalins qui sont généralement présents dans la matrice cimentaire. Les fibres de polyamide présentent cette stabilité chimique requise dans les milieux cimentaires (résistance aux alcalins).
Un autre avantage lié à l'emploi des fibres de polyamide est que ce polymère possède une densité légèrement supérieure à celle de l'eau (d = 1 ,15). De plus, ce polymère possède un fort caractère hydrophile, dû à un caractère polaire de la surface, comme pour le poly(alcool vinylique) et contrairement au polypropylène. Ces deux points sont particulièrement importants lorsque l'on sait que les fibrociments sont préparés à partir de bains aqueux très dilués, comme on le verra en détail plus loin.
Le caractère hydrophile des fibres et la densité légèrement supérieure à 1 permettent ainsi une meilleure dispersion dans la bouillie de ciment en milieu aqueux. Les fibres offrent donc l'avantage de rester dispersées après addition des charges et divers additifs. Une bonne dispersabilité des fibres est en effet un facteur important pour éviter la formation d'agglomérats et une distribution uniforme des fibres dans le produit final. Ainsi, les polyamides utilisés seront avantageusement ceux utilisés habituellement dans le domaine des articles textiles ou des fils et fibres à applications techniques. À titre d'exemple, les polyamides qui peuvent être utilisés dans la présente invention comprennent le PA 6.6, le PA 6, le copolymère PA 6.6-PA 6, les polyamides semi- aromatiques, tels que le polyamide 6T, l'Amodel® (commercialisé par la société Amoco), l'HTN® (commercialisé par la société DuPont), et les autres polyamides 11 , 12 et 4-6, par exemple. Selon un mode de réalisation particulier de l'invention, les polyamides sont de structure linéaire.
Selon l'invention, il est possible que les fibres de polyamide soient traitées au préalable par un ou plusieurs des additifs précédemment décrits.
Les fibres selon l'invention sont fabriquées selon les méthodes classiques connues de l'homme du métier et par exemple par extrusion de la matière polyamide fondue au travers d'une filière puis éventuellement étirage des fils, rubans, câbles ou nappes, puis coupe de ces produits en fibres.
Par ailleurs, toute étape, classique dans le domaine de la fabrication des fibres textiles, destinée par exemple à stabiliser dimensionnellement les fibres (thermofixation) ou bien à leur donner du volume au travers d'une boîte à compression (frisage), peut être appliquée. Tout autre procédé de fabrication de fibres convient également.
Les fibres utilisables dans la présente invention peuvent présenter des sections de toutes formes, qu'elles soient rondes, dentelées ou cannelées, ou encore en forme de haricot, mais aussi multilobées, en particulier trilobées ou pentalobées, en forme de X, de ruban, creuses, carrées, triangulaires, elliptiques et autres. La forme de la section des fibres n'est toutefois pas une caractéristique essentielle de l'invention. Toutes les formes de section de fibres résultant du procédé de fabrication des dites fibres sont acceptables. De même, les fibres utilisées dans la présente invention peuvent être de diamètre et/ou de section constante ou présenter des variations. Enfin, par fibres de polyamide selon l'invention, il doit être compris également les fibres multi-composants, par exemple de type "cœur-peau", dont un au moins des composants est un'polyamide tel que défini précédemment.
De manière générale, les fibres utilisées dans les matériaux composites de la présente invention sont caractérisées par leur titre qui sera généralement supérieur à 0,2 décitex et inférieur ou égal à 9 décitex, c'est-à-dire à 9 g/10000 mètres, avantageusement inférieur à 3,3 décitex. De manière préférée, le titre des fibres entrant dans la composition matériaux composites de l'invention sera compris entre 0,3 et 3,3 décitex, et plus préférentiellement encore entre 0,4 et 2,0 décitex.
En outre, des fibres de faible titre apportent d'autres avantages et notamment une plus grande densité de fibres par centimètre cube de matériau composite. Ceci peut éventuellement permettre de réduire sensiblement le taux de fibre, tout en conservant des propriétés d'usage ou mécaniques équivalentes, telle que résistance à la flexion, et ainsi d'obtenir une contribution économique du renfort plus intéressante.
Une autre caractéristique importante est la longueur des fibres qui sont incorporées dans les ciments et fibrociments de l'invention. D'une manière générale, cette longueur est adaptée au titre de la fibre utilisée. On évitera ainsi des longueurs de fibres trop importantes afin que ces dernières ne s'enroulent substantiellement pas sur elles-mêmes. Des fibres trop courtes, en revanche, ne permettront pas d'établir un renforcement satisfaisant entre les particules constitutives de la matrice cimentaire, et le produit fini n'aura pas le comportement mécanique souhaité. Ainsi, dans le cadre de la présente invention, les fibres sont coupées à une longueur qui peut être uniforme ou non uniforme, y compris en mélange, et comprise généralement entre 2 mm et 30 mm, de préférence entre 3 mm et 20 mm, par exemple environ 6 mm.
Les matériaux composites conformes à l'invention peuvent en outre comprendre d'autres fibres organiques ou inorganiques, naturelles, artificielles ou synthétiques, autres que les fibres de polyamide décrites plus haut. Ces autres fibres peuvent être traitées ou non avec un ou plusieurs des additifs cités précédemment pour le traitement des fibres de polyamide. Les additifs peuvent alors être identiques ou différents.
À titre d'exemple, des fibres organiques qui peuvent être utilisées en combinaison avec les fibres polyamide traitées comprennent les fibres de poly(alcool vinylique), de polyester, de polypropylène, de poly(acrylonitrile), de polyamide non traitées, d'aramide, de carbone et de polyoléfines. Les fibres naturelles ou artificielles issues de la cellulose peuvent par exemple être ajoutées.
Parmi les fibres inorganiques qui peuvent être utilisées en combinaison avec les fibres de polyamide, on peut citer la laine de roche, la laine de laitier, les fibres de verre, les fibres de wollastonite, les fibres de céramique et autres.
La quantité de fibres présentes dans les matériaux composites de l'invention peut varier dans de grandes proportions, selon l'usage auquel les dits matériaux composites sont destinés. Ainsi la quantité totale des fibres est généralement comprise entre 0,1% à 25% en poids par rapport à la totalité des constituants secs de la matrice à liant hydraulique ou chimique.
Dans le cas particulier des. fibrociments, les proportions en poids de fibres par rapport à la totalité des constituants secs sont généralement comprises entre 0,1% et 10%, de préférence comprises entre 0,5% et 5% en poids, avantageusement entre environ 1% et environ 3% en poids. Dans des proportions de fibres inférieures à 0,1% en poids, l'effet de renforcement est jugé insuffisant. Lorsque les fibres sont présentes à raison de plus de 10% en poids, la mise en oeuvre dans le bain aqueux devient plus difficile, requérant l'utilisation d'un procédé particulier.
Ainsi, dans le cas de matériaux composites pour lesquels un taux de 10% à 25% en poids de fibres est requis, la technique de mise en œuvre préférentiellement utilisée est la technique SIMCON ("Slurry Infiitrated Mat Concrète").
Les matériaux composites sont généralement préparés à partir d'une bouillie aqueuse comprenant au moins un liant hydraulique ou chimique, par exemple ciment, silice, ou carbonate, des fibres de polyamide traitées ou non traitées, un ou plusieurs des additifs définis précédemment, d'autres fibres naturelles, artificielles ou synthétiques, organiques ou inorganiques traitées ou non par un ou plusieurs des additifs précités et éventuellement des charges.
Ces charges sont de nature la plus diverse et permettent, selon les cas, une prise rapide ou lente, un meilleur comportement à l'égouttage des suspensions sur les machines d'égouttage. Les charges peuvent également être simplement des charges inertes. Parmi les charges les plus couramment utilisées, on trouve des produits tels que les cendres, pouzzolanes, laitiers de haut-fourneau, carbonates, argiles, roche moulue, quartz moulu, silice amorphe et autres.
La fibre polyamide brute peut être traitée, avant d'être mélangée à la bouillie contenant le liant hydraulique, par un ou plusieurs des additifs précédemment décrits, selon diverses méthodes connues. Parmi celles-ci, on pourra citer, à titre d'exemples et de manière non limitative, la technique de traitement de la fibre brute au rouleau, par spray ou vaporisation, par trempage, la technique du foulardage, ainsi que toute méthode utilisée dans l'industrie textile de traitement de fibres synthétiques. Ce traitement peut être effectué à différentes étapes de la manufacture de la fibre. Il s'agit entre autres de toutes les étapes où sont classiquement ajoutés des ensimages. On peut ainsi appliquer l'additif en bas de métier de filage avant renvidage. On peut aussi, dans le cas des procédés dit "fibres" appliquer l'additif avant, pendant ou après les étapes d'étirage, de frisage ou de séchage par exemple.
Comme il a déjà été indiqué, ces additifs dans la matrice peuvent être utilisés seuls ou en combinaison de deux ou plusieurs d'entre eux. En règle générale, une quantité d'additifs comprise entre 0,5% et 50% en poids par rapport au poids total des fibres brutes est suffisante pour obtenir un matériaux composites possédant les caractéristiques souhaitées.
Par rapport à la totalité des constituants secs de la matrice à liant hydraulique ou chimique, le pourcentage d'additifs peut être compris entre 0,2 et 5 %.
Dans certains cas, il pourra en outre être avantageux de faire subir à la fibre de polyamide un premier traitement préalable (prétraitement) selon des méthodes connues de l'homme du métier, afin de favoriser l'adhérence de l'additif à la dite fibre. En outre, il pourra également être envisagé de faire subir à la fibre, avant ou après le traitement par les additifs et/ou le prétraitement, d'autres traitements chimiques ou physiques tels que par exemple irradiation, teinture et autres. Les matériaux composites selon l'invention peuvent servir à l'élaboration d'articles de construction sous toutes leurs formes, planes, ondulées, moulées, etc. Ainsi les matériaux composites de l'invention trouvent par exemple une utilisation pour la fabrication de plaques, dallages, revêtement de toiture ou de façade, tuyauterie, cuves, réservoirs, notamment réservoirs pour eaux de pluie, conteneurs, et tous autres éléments accessoires de formes les plus diverses. De tels articles comprenant au moins un matériau composite selon la présente invention font également partie de la présente invention.
Il est essentiel que la rupture du matériau ne soit pas de type rigide fragile (chute brutale de la contrainte supportable par le matériau une fois celui-ci endommagé, autrement dit, rupture macroscopique du matériau une fois que la matrice cimentaire est endommagée) mais présente un aspect ductile (maintien de la contrainte supportable par le matériau alors même que celui-ci est endommagé, autrement dit, conservation de la continuité du matériau même une fois que la matrice cimentaire est endommagée). Cet aspect est en particulier important pour les tuiles de toit. Cet aspect est également important pour le transport des pièces ou leur usinage par perçage, cloutage ou découpe par exemple.
Partie Expérimentale
Différents matériaux composites, de type fibrociment, ont été préparés comme indiqué ci-après : La composition du fibrociment utilisé dans les exemples est la suivante :
- ciment, commercialisé par Lafarge sous la référence HTS 52.5 200 g ;
- fumée de silice, commercialisée par Elkem sous la référence 940 U 35 g ; - cellulose extraite de Pinus Radiata 10 g ;
- fibres de renfort polyamide 5 g ;
- additifs 2g ;
- eau 750 g.
La cellulose est d'abord dépulpée durant une heure sous agitation intense, puis les autres ingrédients sont ajoutés. L'ensemble, après malaxage pendant 15 minutes, est versé dans un moule, tiré sous léger vide primaire. Le gâteau résultant est alors soumis à une pression de 10 tonnes (10 MPa) afin de mettre en forme les échantillons. Pour chaque formulation, 6 éprouvettes de fibrociment sont effectuées : dimensions 120 x 30 x 5 mm.
Ces éprouvettes sont laissées 24 heures à température ambiante dans une enceinte saturée en humidité, puis sont mises en maturation 24 heures à 60°C dans une enceinte toujours saturée en humidité, et finalement laissées au moins 24 heures dans une salle conditionnée à 20°C et avec une humidité relative (HR) de 65% avant test.
Les essais mécaniques sont réalisés en flexion 3 points (entre axe : 100 mm), à une vitesse d'essai de 0,1 mm/min. Ce test est un test classique de flexion 3 points. On enregistre la courbe Force-Déplacement, et on calcule la contrainte équivalente correspondant au maximum de charge ( max). On calcule également la contrainte équivalente correspondant à une flèche de l'éprouvette de 2mm.
Dans tous les cas il n'est pas noté d'apparition de fissure sur les bords des éprouvettes, même lors du vieillissement à long terme des produits.
Le tableau 1 présente l'accroissement relatif de la contrainte maximale obtenue lors du test d'un fibrociment renforcé avec additif, par rapport à la contrainte maximale obtenue lors du test d'un fibrociment sans additif. Cet accroissement relatif est noté Δ m ax.
Figure imgf000015_0001
L'oligomère PA acide est obtenu par condensation d'acide adipique et d'hexaméthylène diamine avec une sur stœchiométrie en acide de 20 % par rapport à la stcechiométrie d'équilibre (1 mole de diacide pour 1 mole de diamine) comportant environ de 8 à 14 motifs. L'oligomère polyamide AISNa est un oligomère polyamide sulfoné obtenu par polycondensation de 3 monomères (acide adipique, hexaméthylène diamine et acide iso-phtalique sulfoné) comportant environ de 8 à 14 motifs.
Le PAV22 de nom commercial Rhoximat® PAV22 est une poudre de latex à base de copolymère acétate-versatate.
Les courbes représentant la contrainte supportée en fonction de la flèche de l'éprouvette sont reportées sur la Figure 1 (fibrociments avec fibres polyamide et addition d'oligomères polyamide) et sur la Figure 2 (fibrociments renforcés avec fibres polyamide et addition adipique et/ou latex).
Les fibres polyamides utilisées sont le suivantes :
Fibre PA 0,6 dtex : c'est une fibre de polyamide 66 de section ronde, fine et produite et commercialisée par Rhodia Technical Fibers pour application Flock. C'est une fibre non frisée coupée à 6mm dont les caractéristiques mécaniques sont notamment un allongement à la rupture de 80%.
Fibre PA 0,5 dtex : c'est une fibre de polyamide 66 de section ronde, ultra-fine et produite par Rhodia Technical Fibers pour application Flock. C'est une fibre non frisée coupée à 6mm dont les caractéristiques mécaniques sont notamment un allongement à la rupture de 20%.
Sur ces Figures, les abscisses correspondent à la flèche de l'éprouvette en mm., les ordonnées correspondent à la contrainte de flexion en MPa.
Sur la Figure 1 :
La courbe A correspond aux fibres polyamide (Fibre PA 0,5 dtex) seules, La courbe B correspond au mélange de fibres polyamide (Fibre PA 0,5 dtex) et d'oligomère polyamide acide, et - La courbe C correspond au mélange de fibres polyamide (Fibre PA 0,5 dtex) et d'oligomère polyamide AISNa.
Sur la Figure 2 :
La courbe A correspond aux fibres polyamide (Fibre PA 0,6 dtex) seules, - La courbe D correspond au mélange de fibres polyamide (Fibre PA 0,6 dtex) et de PAV22, La courbe E correspond au mélange de fibres polyamide (Fibre PA 0,6 dtex) et d'acide adipique et de PAV22 (50/50 : adipique/PAV22), et
La courbe F correspond au mélange de fibres polyamide (Fibre PA 0,6 dtex) et d'acide adipique.
La contrainte maximale supportable par le fibrociment est augmentée en présence d'additifs. De plus, la ductilité du matériau peut être sensiblement accrue par l'ajout d'un additif ce qui représente une amélioration notable des propriétés d'usage.
Les résultats obtenus dans les Figures 1 et 2 montre l'intérêt d'utiliser des fibres de faible titre de manière à obtenir un gain maximum tant sur la contrainte maximale supportable par le matériau que sur sa ductilité.

Claims

REVENDICATIONS
1. Matériau composite renforcé dont la structure de base est une matrice obtenue à partir d'au moins un liant hydraulique ou chimique, des fibres de polyamide et un ou plusieurs additifs choisis parmi le groupe constitué par:
• les latex ;
• les alkylphosphates, les alkyiphosphonates, leurs dérivés et leurs sels ;
• les aminés phosphates et aminés phosphonates, leurs dérivés et leurs sels ;
• les acides phosphonique, polyvinylphosphonique, phosphosuccinique, les copolymères polyvinylphosphonique-acrylique, et leurs sels ;
• les oléfines polaires ;
• les alkoxysilanes fonctionnels ;
• les copolymères blocs préparés par polymérisation radicalaire contrôlée ;
• les copolymères statistiques choisis parmi les polymères linéaires à bas d'acide (méth)acrylique, en particulier sulfonatés ou phosphatés, les polymères peignes avec pour squelette du poly(acide (méth)acrylique) et des greffons compatibles avec le ciment comme des greffons à base PEG, les polymères peignes avec pour squelette du PEG et des greffons à base acide (méth)acrylique ; les acides et diacides carboxyliques et leurs sels ; • les produits dérivés du catéchol ; les polyphénols; les acides aminés et leurs sels ; les oligomères de polyamide comprenant moins de 20 unités récurrentes ; les oligomères de polyamide portant une fonction choisie parmi les phosphates, phosphonates, sulfonatés, alkoxysilanes, dicarboxylates, amino- carboxylates, anhydrides, époxys et diols ;
• les résines uréthane acrylate aliphatique et polyester acrylate ; et
• les résines polyamides hydrosolubles.
2. Matériau composite selon la revendication 1 , caractérisé en ce que l'additif est un latex choisi parmi :
- une dispersion aqueuse d'esters acryliques ;
- un nanolatex; et
- un latex alcali-soluble ou alcali-gonflant.
3. Matériau composite selon la revendication 1 ou 2, caractérisé en ce que l'additif est choisi parmi aminoalkylphosphates, les aminoalkyldiphosphates, le laurylphosphate de potassium, le décylphosphate de potassium et le tridécylphosphate de potassium.
4. Matériau composite selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'additif est une oléfine polaire choisie parmi :
- les polymères comportant des monomères oléfiniques et des groupes polaires ;
- les homopolymères et copolymères de monomères oléfiniques modifiés après synthèse par des groupes polaires choisis parmi l'anhydride maléique, l'acide acrylique, l'acide méthacryiique ;
- les homopolymères et copolymères de monomères oléfiniques modifiés par oxydation ; et
- les copolymères de monomères oléfiniques et de monomères polaires, éventuellement neutralisés par des ions.
5. Matériau composite selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'additif est un alkoxysilane de formule (I) :
Figure imgf000019_0001
dans laquelle : A représente un radical hydrolysable, choisi parmi les radicaux aikoxy, aikoxyalkyle et aikoxycarbonyle, linéaires ou ramifiés comportant de 1 à 6 atomes de carbone, avantageusement un radical méthoxy ou éthoxy, étant entendu que lorsque 3- n est strictement supérieur à 1 , les radicaux A peuvent être identiques ou différents ;
Y représente un radical organique substitué par un groupement fonctionnel, en particulier un groupement pouvant réagir avec les aminés, les acides carboxyliques ou les amides, tel qu'une une liaison insaturée, une fonction acide, une fonction aminé, une fonction ester, une fonction anhydride, une fonction époxy ou une fonction isocyanate ;
Z représente un radical organique inerte, tel qu'un groupe alkyle linéaire ou ramifié comprenant de 1 à 6 atomes de carbone, étant entendu que lorsque n est strictement supérieur à 1 , les radicaux Z peuvent être identiques ou différents ; et n représente 0, 1 ou 2.
6. Matériau composite selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'additif est choisi parmi les vinyltrialkoxysilanes de formule générale CR1R2=CR3-(CH2)m-Si-(OR4) et leurs hydrocondensats, où m est un entier, en général compris entre 0 et 6, bornes incluses, où R1, R2, R3 et R4, identiques ou différents, sont choisis parmi l'atome d'hydrogène, un radical alkyle et un radical aikoxyalkyle, les radicaux alkyle et aikoxy dans le terme aikoxyalkyle étant linaires ou ramifiés et comportant de 1 à 6 atomes de carbone, et où le vinyltrialkoxysilane est en particulier choisi parmi le vinyltriméthoxysilane, le vinyltriéthoxysilane, le vinyltriméthoxyéthoxysilane, les (acryloxyalkyi)trialkoxysilanes, et les (méthacryloxyalkyl)trialkoxysilanes, en particulier le 3-(méthacryloxy)propyl- triméthoxysilane.
7. Matériau composite selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'additif est un alkoxysilane choisi parmi le glycidyloxypropyltriméthoxysilane, l'isocyanatopropyltriéthoxysilane, et l'aminopropyl-triéthoxysilane, ainsi que leurs hydrocondensats.
8. Matériau composite selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'additif est un copolymère bloc synthétisé par polymérisation radicalaire contrôlée d'au moins un monomère éthyléniquement insaturé choisi parmi le styrène et ses dérivés, le butadiene, le chloroprene, les esters (méth)acryliques, les esters vinyliques et les nitriles vinyliques.
9. Matériau composite selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'additif est un acide carboxylique ou dicarboxilique choisi parmi l'acide laurique et ses sels et dérivés, et les α,ω-diacides carboxyliques, comme l'acide adipique, l'acide glutarique, l'acide succinique et leurs sels et dérivés, utilisés seuls ou en mélanges de deux ou plusieurs d'entre eux.
10. Matériau composite selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les fibres de polyamide sont choisies parmi les fibres de polyamide 6.6 (PA 6.6), de polyamide 6 (PA 6), de copolymère PA 6.6-PA 6, de copolymère PA 6.6-PA 6, de polyamides semi-aromatiques, tels que le polyamide 6T, et les fibres d'autres polyamides 11 , 12, 4-6.
11. Matériau composite selon l'une quelconque des revendications 1 à 10, caractérisé en ce que les fibres de polyamide sont traitées par un ou plusieurs additifs choisis parmi le groupe constitué par • les latex ; • les alkylphosphates, les alkylphosphonates, leurs dérivés et leurs sels ;
• les aminés phosphates et aminés phosphonates, leurs dérivés et leurs sels ;
• les acides phosphonique, polyvinylphosphonique, phosphosuccinique, les copolymères polyvinylphosphonique-acrylique, et leurs sels ; • les oléfines polaires ;
• les alkoxysilanes fonctionnels ;
• les copolymères blocs préparés par polymérisation radicalaire contrôlée ;
• les copolymères statistiques choisis parmi les polymères linéaires à bas d'acide (méth)acrylique, en particulier sulfonatés ou phosphatés, les polymères peignes avec pour squelette du poly(acide (méth)acrylique) et des greffons compatibles avec le ciment comme des greffons à base PEG, les polymères peignes avec pour squelette du PEG et des greffons à base acide (méth)acrylique ; les acides et diacides carboxyliques et leurs sels; les produits dérivés du catéchol ; « les polyphénols; les acides aminés et leurs sels ; les oligomères de polyamide comprenant moins de 20 unités récurrentes ; les oligomères de polyamide portant une fonction choisie parmi les phosphates, phosphonates, sulfonatés, alkoxysilanes, dicarboxylates, amino- carboxylates, anhydrides, époxys et diols ;
• les résines uréthane acrylate aliphatique et polyester acrylate ; et
• les résines polyamides hydrosolubles.
12. Matériau composite selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que les fibres ont un titre compris entre 0,2 et 9 décitex.
13. Matériau composite selon l'une quelconque des revendications 1 à 12, caractérisé en ce que les fibres ont une longueur uniforme ou non uniforme (y compris en mélange) et comprise entre 2 mm et 30 mm.
14. Matériau composite selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'il comprend en outre d'autres fibres organiques ou inorganiques, naturelles, artificielles ou synthétiques.
15. Matériau composite selon l'une quelconque des revendications 1 à 14, caractérisé en ce que la quantité totale des fibres est comprise entre 0,1% à 25% en poids par rapport à la totalité des constituants séchés de la matrice à liant hydraulique ou chimique.
16. Matériau composite selon l'une quelconque des revendications 1 à 15, caractérisé en ce que la quantité d'additifs est comprise entre 0,5% et 50% en poids par rapport au poids total des fibres.
17. Matériau composite selon l'une quelconque des revendications 1 à 16, caractérisé en ce que le liant est un liant hydraulique choisi parmi le ciment Portland, additivé ou non, le ciment à haute teneur en alumine, le ciment de laitier, le sulfate de calcium, les silicates de calcium formés par traitement à l'autoclave et les combinaisons de liants particuliers et autres liants chimiques.
18. Utilisation de matériau composite selon l'une des revendications 1 à 17 pour la fabrication de plaques, dallages, revêtement de toiture ou de façade, tuyauterie, cuves, réservoirs, notamment réservoirs pour eaux de pluie, conteneurs.
19. Article obtenu en utilisant au moins un matériau composite selon l'une des revendications 1 à 17.
PCT/FR2003/002168 2002-07-10 2003-07-10 Materiaux composites renforces comprenant un liant hydraulique ou chimique, des fibres de polyamide ainsi qu'un ou plusieurs additifs pour comportement mecanique ameliore WO2004007389A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003269015A AU2003269015A1 (en) 2002-07-10 2003-07-10 Reinforced composite materials comprising a hydraulic or chemical binder, polyamide fibers and one or more additives for enhanced mechanical behaviour

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0208678A FR2842190A1 (fr) 2002-07-10 2002-07-10 Materiaux composites renforces comprenant un liant hydraulique ou chimique,des fibres de polyamide ainsi qu'un ou plusieurs additifs pour comportement mecanique ameliore
FR02/08678 2002-07-10

Publications (1)

Publication Number Publication Date
WO2004007389A1 true WO2004007389A1 (fr) 2004-01-22

Family

ID=29763706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/002168 WO2004007389A1 (fr) 2002-07-10 2003-07-10 Materiaux composites renforces comprenant un liant hydraulique ou chimique, des fibres de polyamide ainsi qu'un ou plusieurs additifs pour comportement mecanique ameliore

Country Status (3)

Country Link
AU (1) AU2003269015A1 (fr)
FR (1) FR2842190A1 (fr)
WO (1) WO2004007389A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2247924A1 (es) * 2004-05-14 2006-03-01 Joan Alsina Vilamala Adhesivo de base cementosa.
ITRN20130049A1 (it) * 2013-12-04 2015-06-05 Edil Impianti 2 S R L Metodo per la realizzazione di un manufatto scatolare in calcestruzzo, come una vasca o pozzetto, e vasca o pozzetto per la depurazione dell'acqua e trattamento dei liquami e vasca o pozzetto.

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2864894A1 (fr) * 2004-01-13 2005-07-15 Oreal Composition de revetement des fibres keratiniques ayant un extrait sec eleve comprenant un polymere sequence et des fibres
FR3045035B1 (fr) * 2015-12-10 2021-01-08 Vicat Materiau de construction ductile
CN106904923B (zh) * 2017-03-13 2019-07-23 中建商品混凝土有限公司 一种适用于热带地区的大体积生态混凝土及其施工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1316661A (en) * 1970-04-17 1973-05-09 Murata T Cement reinforcing materials and processes for their preparation
US4339273A (en) * 1980-02-22 1982-07-13 Ametex Ag Process for producing a fiber-reinforced, hydraulically setting composition, the composition produced and the use thereof
EP0225404A1 (fr) * 1985-11-28 1987-06-16 Mitsui Kensetsu Kabushiki Kaisha Corps en ciment moulé renforcé par des fibres
US5298071A (en) * 1990-03-23 1994-03-29 Vontech International Corporation Interground fiber cement
WO2000060150A1 (fr) * 1999-04-07 2000-10-12 Friedman, Mark, M. Fibres synthetiques et systemes a base de ciment comprenant lesdites fibres
WO2001098228A1 (fr) * 2000-06-21 2001-12-27 Rhodia Chimie Ciment comprenant des particules anisotropes de polymere, pate cimentaire, materiau consolide, preparation et utilisations
WO2002012142A1 (fr) * 2000-08-09 2002-02-14 Rhodianyl Materiau de construction comprenant un renfort fibreux ou filamentaire

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT5970B (de) 1900-03-30 1901-11-25 Ludwig Hatschek Verfahren zur Herstellung von Kunststeinplatten aus Faserstoffen und hydraulischen Bindemitteln.
DK514687D0 (da) 1987-09-30 1987-09-30 Danaklon As Polymerfibre og fremgangsmaade til fremstilling deraf
JP2937274B2 (ja) 1991-07-29 1999-08-23 チッソ株式会社 反強誘電性液晶組成物
FR2764892B1 (fr) 1997-06-23 2000-03-03 Rhodia Chimie Sa Procede de synthese de polymeres a blocs
AR015457A1 (es) 1997-10-15 2001-05-02 Redco Nv Fibras de polipropileno para el refuerzo de productos de fibrocemento, proceso para el tratamiento superficial de fibras de polipropileno, y producto formado en fibrocemento
US5891516A (en) 1998-06-12 1999-04-06 Weavexx Corporation Fabric for forming fiber cement articles
DK1044939T3 (da) 1999-04-13 2011-12-05 Redco Sa Formede fibercementemner og fibre til forstærkning af samme samt fremgangsmåde til behandling af sådanne fibre
FR2794463B1 (fr) 1999-06-04 2005-02-25 Rhodia Chimie Sa Procede de synthese de polymeres par polymerisation radicalaire controlee a l'aide de xanthates halogenes
FR2799471B1 (fr) 1999-10-11 2001-12-28 Rhodia Chimie Sa Procede de preparation de polymeres greffes
FR2802208B1 (fr) 1999-12-09 2003-02-14 Rhodia Chimie Sa Procede de synthese de polymeres par polymerisation radicalaire controlee a l'aide de xanthates
FR2812293B1 (fr) 2000-07-28 2002-12-27 Rhodia Chimie Sa Procede de synthese de polymeres a blocs par polymerisation radicalaire controlee

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1316661A (en) * 1970-04-17 1973-05-09 Murata T Cement reinforcing materials and processes for their preparation
US4339273A (en) * 1980-02-22 1982-07-13 Ametex Ag Process for producing a fiber-reinforced, hydraulically setting composition, the composition produced and the use thereof
EP0225404A1 (fr) * 1985-11-28 1987-06-16 Mitsui Kensetsu Kabushiki Kaisha Corps en ciment moulé renforcé par des fibres
US5298071A (en) * 1990-03-23 1994-03-29 Vontech International Corporation Interground fiber cement
WO2000060150A1 (fr) * 1999-04-07 2000-10-12 Friedman, Mark, M. Fibres synthetiques et systemes a base de ciment comprenant lesdites fibres
WO2001098228A1 (fr) * 2000-06-21 2001-12-27 Rhodia Chimie Ciment comprenant des particules anisotropes de polymere, pate cimentaire, materiau consolide, preparation et utilisations
WO2002012142A1 (fr) * 2000-08-09 2002-02-14 Rhodianyl Materiau de construction comprenant un renfort fibreux ou filamentaire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2247924A1 (es) * 2004-05-14 2006-03-01 Joan Alsina Vilamala Adhesivo de base cementosa.
ITRN20130049A1 (it) * 2013-12-04 2015-06-05 Edil Impianti 2 S R L Metodo per la realizzazione di un manufatto scatolare in calcestruzzo, come una vasca o pozzetto, e vasca o pozzetto per la depurazione dell'acqua e trattamento dei liquami e vasca o pozzetto.
EP2881378A1 (fr) * 2013-12-04 2015-06-10 Edil Impianti 2 S.r.l. Procédé de fabrication d'un produit en forme de boîte en béton, tel qu'un réservoir ou un bassin et réservoir ou bassin pour la purification de l'eau et le traitement des eaux d'égout

Also Published As

Publication number Publication date
FR2842190A1 (fr) 2004-01-16
AU2003269015A1 (en) 2004-02-02

Similar Documents

Publication Publication Date Title
CA2399767C (fr) Composition de beton ultra haute performance resistant au feu
CA2312033C (fr) Beton de fibres metalliques, matrice cimentaire et pre-melanges pour la preparation de la matrice et du beton
EP0537129B1 (fr) Produits manufacturés solides façonnés renforcés par des fibres
EP3038992B1 (fr) Nouvelles fibres, leurs procédés de préparation et leur utilisation dans la fabrication d'éléments renforcés
JP2001504427A (ja) コンクリート結合強度を向上させた繊維
WO1999058468A1 (fr) Beton comportant des fibres organiques dispersees dans une matrice cimentaire, matrice cimentaire du beton et premelanges
EP1047647B1 (fr) Produits faconnes en fibres-ciment et fibres de renforcement pour de tels produits
CN1968908B (zh) 抗冻-融损伤水泥湿浇铸组合物及其制备方法
EP1044939B1 (fr) Produits façonnés en fibres-ciment et fibres de renforcement pour de tels produits et procédé de traitement de telles fibres
EP0271825A2 (fr) Compositions à base de ciments hydrauliques renforcées par des fibres contenant du polyacrylonitrile polymérisé
WO2004007389A1 (fr) Materiaux composites renforces comprenant un liant hydraulique ou chimique, des fibres de polyamide ainsi qu'un ou plusieurs additifs pour comportement mecanique ameliore
EP1309521A1 (fr) Materiau de construction comprenant un renfort fibreux ou filamentaire
FR2835826A1 (fr) Materiaux composites obtenus a partir de liant hydraulique et de fibres organiques presentant un comportement mecanique ameliore
EP1009605A1 (fr) Procede destine a ameliorer des fibres de nylon classiques et utilisation dudit procede pour renforcer des materiaux composites cimentaires
EP1854770A1 (fr) Compositions de produits en fibres-ciment et produits façonnés obtenus à partir de telles compositions.
WO2004033770A1 (fr) Procede pour produits faconnes a base de ciment et fibres de renforcement pour de tels produits.
WO2004007392A2 (fr) Composition a base de liant hydraulique
WO2002022520A1 (fr) Materiau cimentaire comprenant un polymere dendritique
WO2003095721A1 (fr) Procede pour produits faconnes a base de ciment et fibres de renforcement pour de tels produits
SU1098915A1 (ru) Состав защитного покрыти дл стекл нного волокна
EP1063366A1 (fr) Materiau renforcé de construction
US20060234048A1 (en) Polyolefin reinforcing fibre, use thereof and products comprising same
Hua et al. Thin sand concrete plate of high resistance in traction
CN118420313A (zh) 一种高强度耐腐蚀混凝土的制备方法
FR2506292A1 (fr) Produits contenant des fibres, fabriques avec des liants hydrauliques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP