[go: up one dir, main page]

WO2004006329A1 - Thin-film substrate having post via - Google Patents

Thin-film substrate having post via Download PDF

Info

Publication number
WO2004006329A1
WO2004006329A1 PCT/JP2002/006847 JP0206847W WO2004006329A1 WO 2004006329 A1 WO2004006329 A1 WO 2004006329A1 JP 0206847 W JP0206847 W JP 0206847W WO 2004006329 A1 WO2004006329 A1 WO 2004006329A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
thin film
film substrate
dummy
post
Prior art date
Application number
PCT/JP2002/006847
Other languages
French (fr)
Japanese (ja)
Inventor
Masateru Koide
Naomi Fukunaga
Misao Umematsu
Satoshi Ohsawa
Tomohisa Yamamoto
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2002/006847 priority Critical patent/WO2004006329A1/en
Priority to JP2004519184A priority patent/JP4478567B2/en
Publication of WO2004006329A1 publication Critical patent/WO2004006329A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4647Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits by applying an insulating layer around previously made via studs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76819Smoothing of the dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09781Dummy conductors, i.e. not used for normal transport of current; Dummy electrodes of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/025Abrading, e.g. grinding or sand blasting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0733Method for plating stud vias, i.e. massive vias formed by plating the bottom of a hole without plating on the walls

Definitions

  • the present invention relates to a thin film substrate, and more particularly to a thin film substrate having a post via extending into an insulating layer between wiring layers.
  • a thin film substrate is used as a package substrate of a semiconductor device.
  • Wiring layers are formed on the upper and lower surfaces of the thin film substrate, and the upper and lower wiring layers are electrically connected by relatively long pillar-shaped vias called post vias.
  • Post vias are typically formed by filling elongated holes formed in resist with a conductive material such as metal.
  • the thin film substrate is formed by embedding the thus formed post via in an insulating “green” resin layer.
  • a copper post is formed by filling an elongated hole formed in the resist layer with copper by copper plating or the like. Then, the resist layer is removed and copper posts are embedded in the insulating layer. The insulating layer with the embedded copper posts is polished by mechanical buffing (mechanical polishing). Thereby, the thickness of the thin film substrate is reduced, and the surface of the substrate is made flat.
  • the electrode pads formed on the surface of the package substrate are arranged based on the electrode arrangement of the semiconductor chip to be packaged. For example, in a package substrate used for a semiconductor chip having a peripheral array electrode structure, many electrode pads are formed in a peripheral portion of the substrate. Therefore, the number of post vias connecting the electrode pad and the wiring (electrode pad) formed on the opposite side of the substrate is also large in the peripheral portion of the substrate and small in the central portion. That is, the distribution density of the post vias is large in the peripheral portion of the substrate, and small in the central portion.
  • FIG. 1 shows a package base with a portion where the distribution density of bostvia differs as described above.
  • FIG. 4 is a cross-sectional view of an insulating layer in a state before performing mechanical buffering in a step of forming a plate.
  • FIG. 2 is a cross-sectional view showing a state after the insulating layer shown in FIG. 1 has been subjected to mechanical buffering.
  • a plurality of Bostvias 2 formed by copper plating or the like are embedded in an insulating layer 4 for forming the Bostvias 2.
  • the tip of each bost via 2 protrudes from the surface 4 a of the insulating layer 4. This is to sufficiently fill the copper holes in the holes for the post vias formed in the insulating layer 4.
  • the surface 4a of the insulating layer 4 is polished to a predetermined thickness, and the surface 4a of the insulating layer 4 is flattened. Dagger. This polishing is performed by the mechanical backing described above.
  • the bost via 2 is also polished. Since the insulating layer 4 is formed of an insulating resin or the like, the hardness of the insulating layer 4 is much lower than the hardness of the post via 2 formed by copper plating. Therefore, the polishing rate of the insulating layer 4 is higher than the polishing rate of the boast via 2 during mechanical buffing.
  • the insulating layer 4 is polished almost uniformly to have a uniform thickness, and the polished surface 4a of the insulating layer 4 is flat. Be tan.
  • the distribution density of the post vias 2 in the insulating layer 4 is partially different as shown in FIG. 1, the surface 4a of the insulating layer 4 after mechanical puffing becomes as shown in FIG. It is not flat.
  • the post via 2 becomes lower than other portions.
  • the central portion of the insulating layer is lower than the peripheral portion, and a depression is formed.
  • the thickness of the insulating layer is not uniform, signal transmission characteristics may vary, and interlayer short-circuit may occur during long-term use. Disclosure of the invention
  • a general object of the present invention is to provide an improved and useful thin film substrate which solves the above-mentioned problems. Is to provide a structure.
  • a more specific object of the present invention is to uniformly polish the entire polished surface when the insulating layer in which the bostvia is embedded is subjected to mechanical buffering in the manufacturing process of the thin film substrate having the bostvia. It is to provide a structure of a thin film substrate.
  • a thin film substrate for a semiconductor device comprising: at least two wiring layers for forming pattern wiring; an insulating layer located between the wiring layers; A post via extending inside and electrically connecting the wiring layer; and at least one dummy post via arranged in a portion of the insulating layer where the density of the boast via is smaller than other portions and not connected to the signal transmission circuit.
  • the dummy post via is preferably formed of the same material as the post via.
  • the dummy post via is preferably an electrically isolated post via that is not connected to an external circuit.
  • the dummy post via may be a part of the power supply wiring or the ground wiring.
  • the insulating layer may be exposed around a portion of the wiring layer to which the dummy post via is connected, and the exposed insulating layer may form a gas vent hole.
  • the density distribution of the vias is substantially constant over the entire surface of the insulating layer, and the insulating layer is polished to a flat state even when mechanical puffing is performed. be able to. Therefore, the thickness of the insulating layer can be made uniform, and the long-term reliability of the semiconductor device formed using the thin film substrate according to the present invention can be improved.
  • FIG. 1 is a cross-sectional view of a resin layer in which post vias are embedded, before performing mechanical buffering.
  • FIG. 2 is a cross-sectional view showing a state after the resin layer shown in FIG.
  • FIG. 3 is a sectional view of a part of a thin film substrate according to one embodiment of the present invention.
  • FIG. 4 is a view for explaining a part of the process of forming a boss via.
  • FIG. 5 is a view for explaining a part of the step of forming the bost via.
  • FIG. 6 is a cross-sectional view of the insulating layer in which dummy bost vias are formed.
  • FIG. 7 is a cross-sectional view showing a state after the insulating layer shown in FIG. 6 has been mechanically buffered.
  • FIG. 8 is a cross-sectional view showing an example in which a gas vent hole is provided in a solid pattern wiring connected to a dummy post via.
  • FIG. 9 is a plan view of the solid pattern wiring shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 3 is a sectional view showing a part of a thin film substrate according to one embodiment of the present invention.
  • the thin film substrate 10 shown in FIG. 3 includes a core layer 11 and thin film layers 12 formed on both sides thereof.
  • the thin film layer 12 has a multilayer structure, and a plurality of pattern wirings 13 are stacked via an insulating layer 14.
  • the pattern wirings 13 are electrically connected to each other by the post vias 15.
  • the electrodes 15 formed on the front surface and the rear surface of the thin film substrate 10 are electrically connected.
  • the arrangement of the boss vias 15 depends on the electrode arrangement of the semiconductor chip mounted on the thin film substrate 10, and the density of the horizontal boss vias 14 in the thin film layer 12 is not uniform.
  • a dummy post via 17 which does not function as a wiring is provided.
  • the density of the post vias in the thin film layer 12 is made uniform to some extent, thereby solving the problem of mechanical backing as described later.
  • FIG. 4 and FIG. 4 and 5 are views each showing a part of a manufacturing process of a thin film substrate having a post via. Bost vias 15 and dummy post vias 17 in FIG. 3 are formed.
  • a seed layer 18 is formed on the insulating layer 14 (FIG. 4 (a)) by electroless plating or the like (FIG. 4 (b)).
  • a dry film resist (DFR) 19 is pasted on the seed layer 18 (FIG. 4 (c)), and exposed and developed to remove the resist 19 while leaving a predetermined pattern (FIG. 4 (C)). d)).
  • the seed layer 18 is exposed at the portion where the resist 19 is removed. This portion becomes the pattern wiring 13 of the thin film substrate 10.
  • a metal layer (copper layer) 20 is formed on the seed layer 18 by electrolytic plating (43 (e)), and the resist 19 is removed (FIG. 4 (f)).
  • a dry film resist 21 is attached on the metal layer 20 (FIG. 4 (g)), and the resist 21 is exposed to light and developed to remove a portion where a post via is to be formed, thereby forming an elongated hole 21a ( Figure 4 (h)).
  • the part where the post via is formed is a predetermined position on the pattern wiring formed by the metal layer 20.
  • the hole 21a is filled with metal (copper) by, for example, plating to form a bost via 15 (FIG. 4 (i)). At this time, plating is performed until the metal protrudes from the hole 21a so that the metal is sufficiently filled in the hole 21a.
  • the resist 21 is removed (FIG. 4 (k)), and the exposed seed layer 18 is removed by etching (FIG. 4 (1)).
  • a metal layer 20 pattern wiring 13 is formed on the insulating layer 14 and a post via 15 is formed thereon.
  • an insulating resin sheet is pasted on the metal layer 20 and hardened to form an insulating layer 22 (FIG. 4 (m)).
  • the post via 15 formed on the metal layer 20 is embedded in the insulating layer 22.
  • the surface of the insulating layer 22 is polished by mechanical buffing to expose the tip 15a of the post via 15 to the surface of the insulating layer 22 (FIG. 5 (a)). Then, the insulating layer 22 is subjected to a surface treatment by etching or the like to be cleaned (FIG. 5B). Thus, the formation of the bost via 15 is completed.
  • a seed layer 23 is formed on the surface of the insulating layer 22 and the end surface 15a of the post via 15 (FIG. 5 (c)), and a driver is formed on the seed layer 23.
  • Paste the resist film 24 (Fig. 5 (d)).
  • the resist 24 is removed in the shape of the wiring pattern (FIG. 5 (e)), and a metal layer (copper) 25 is formed on the seed layer 23 by electrolytic plating (FIG. 5 (f)).
  • This metal layer 25 becomes the pattern wiring 13. Therefore, a structure in which the metal layer 25 (pattern wiring) and the metal layer 20 (pattern wiring) are electrically connected by the post via 15 is formed.
  • the resist 24 is removed (FIG. 5 (g)), and the exposed seed layer 23 is removed by etching (FIG. 5 (h)).
  • an insulating layer 26 is formed on the metal layer 25.
  • the above is the step of forming a part of the thin film layer 12 of the thin film substrate 10.
  • the above steps are repeated to make the thin film layer 12 multilayer.
  • formation of post vias and mechanical buffing are also repeated.
  • the dummy post via 17 in the above embodiment will be described in detail. If the distribution density of the post vias 15 is not uniform, as described above, in the mechanical force / rebuffing process shown in FIG. (Equivalent to the insulating layer 22 in FIG. 5 (a).) As a result, the long-term reliability of the semiconductor device using the thin film substrate is impaired.
  • the distribution density of the post vias is kept within a certain range by arranging the dummy post vias 17 in portions (regions) where the distribution density of the bost vias 15 is low.
  • the dummy post via 17 is an isolated via that is not connected to an external circuit, and is provided only for mechanical cavitation, not for a via required for an electric circuit of a thin film substrate.
  • the via density distribution is almost constant over the entire surface of the insulating layer 14, and the insulating layer 14 is in a flat state as shown in Fig. 7 even when the two-way buffering is performed. Can be polished. Therefore, the thickness of the insulating layer 14 In this case, the semiconductor device formed using the thin film substrate 10 according to the present embodiment can have improved long-term reliability.
  • Dummy Bost Via 17 can be formed simultaneously with Bost Via 15 in the process of forming normal Bost Via 15. It is not necessary to provide. Therefore, the dummy via 17 can be formed without increasing the manufacturing cost of the thin film substrate.
  • a plurality of dummy boost vias 17 are provided in an area where the density of the signal vias 15 is low, but in such a case, a plurality of dummy boost vias 17 are placed on the solid pattern wiring. Can be formed. That is, a plurality of dummy vias 17 can be formed on one electrically isolated pattern wiring. This is because even if the dummy post vias 17 are electrically connected to each other, the dummy post vias 17 need only be separated from the signal pattern wiring as a whole.
  • the gas vent hole is an opening for releasing moisture existing inside the thin film substrate to the outside, and is not a cavity but a part of the resin layer exposed from the solid pattern wiring.
  • FIG. 8 is a cross-sectional view of an insulating layer 14 having a solid pattern wiring provided with dummy boost vias
  • FIG. 9 is a plan view of the solid pattern wiring 26 shown in FIG. Dummy bost via 17 is located at a position avoiding signal pattern wiring.So, the periphery of dummy post via 17 of solid pattern rota-line 26 Hole 27.
  • the dummy bost via is an electrically isolated via.
  • a dummy bost via can be formed as a part of a power wiring or a ground wiring other than the signal wiring, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

An insulating layer (14) is formed between two wiring layers forming pattern wiring. A post via (15) for signal transmission electrically interconnects the wiring layers. A dummy post via (17) is disposed in a portion where the density of the post vias (15) is lower than that of the other portions in the insulating layer (14). The dummy post via (17) is an isolated post via not connected to a signal transmission circuit. As a result, the distribution density of the post vias in the insulating layer (14) is uniformed to some extent, and the whole insulating layer (14) is polished to a uniform thickness.

Description

ボストビアを有する薄膜基板 技術分野  Technical field of thin film substrate with bost via
本発明は薄膜基板に係り、 特に配線層の間の絶縁層中に延在するポストビアを 有する薄膜基板に関する。 背景技術  The present invention relates to a thin film substrate, and more particularly to a thin film substrate having a post via extending into an insulating layer between wiring layers. Background art
半導体装置のパッケージ基板として薄膜基板が用いられる。 薄膜基板の上面及 ぴ下面には配線層が形成され、 上下の配線層はポストビアと称される比較的長い 柱状のビアにより電気的に接続される。 ポストビアは、 通常、 レジストにより形 成された細長い穴に金属のような導電性材料を充填することにより形成される。 そのようにして形成されたボストビアを、 絶縁"生の樹脂層中に埋め込むことによ り、 薄膜基板が形成される。  A thin film substrate is used as a package substrate of a semiconductor device. Wiring layers are formed on the upper and lower surfaces of the thin film substrate, and the upper and lower wiring layers are electrically connected by relatively long pillar-shaped vias called post vias. Post vias are typically formed by filling elongated holes formed in resist with a conductive material such as metal. The thin film substrate is formed by embedding the thus formed post via in an insulating “green” resin layer.
例えば、 レジスト層に形成された細長い穴に銅メツキ等により銅を充填するこ とにより銅ポストが形成される。 そして、 レジスト層を除去して銅ポストを絶縁 層中に埋め込む。 銅ポストが埋め込まれた絶縁層は、 メカニカルバッフイング ( 機械研磨) により研磨される。 これにより、 薄膜基板の厚みを減少し、 且つ基板 表面を平坦にする。  For example, a copper post is formed by filling an elongated hole formed in the resist layer with copper by copper plating or the like. Then, the resist layer is removed and copper posts are embedded in the insulating layer. The insulating layer with the embedded copper posts is polished by mechanical buffing (mechanical polishing). Thereby, the thickness of the thin film substrate is reduced, and the surface of the substrate is made flat.
ここで、 上述のメカニカルバッフイングを行う際の問題点について説明する。 パッケージ基板の表面に形成される電極パッドは、 パッケージされる半導体チッ プの電極配列に基づいて配置される。 例えば、 周辺配列電極構造の半導体チップ に用いられるパッケージ基板では、 基板の周辺部分に多くの電極パッドが形成さ れる。 したがって、 この電極パッドと基板の反対側に形成される配線 (電極パッ ド) とを接続するポストビアも、 基板の周辺部分に多く形成され、 中央部分は少 ない。 すなわち、 基板の周囲部分においてポストビアの分布密度が大きく、 中央 部分では分布密度が小さレ、。  Here, problems in performing the above-described mechanical buffering will be described. The electrode pads formed on the surface of the package substrate are arranged based on the electrode arrangement of the semiconductor chip to be packaged. For example, in a package substrate used for a semiconductor chip having a peripheral array electrode structure, many electrode pads are formed in a peripheral portion of the substrate. Therefore, the number of post vias connecting the electrode pad and the wiring (electrode pad) formed on the opposite side of the substrate is also large in the peripheral portion of the substrate and small in the central portion. That is, the distribution density of the post vias is large in the peripheral portion of the substrate, and small in the central portion.
図 1は上述のようにボストビアの分布密度が異なる部分を有するパッケージ基 板を形成する工程において、 メカニカルバッフイングを行う前の状態の絶縁層の 断面図である。 また、 図 2は図 1に示す絶縁層をメカニカルバッフイングした後 の状態を示す断面図である。 Figure 1 shows a package base with a portion where the distribution density of bostvia differs as described above. FIG. 4 is a cross-sectional view of an insulating layer in a state before performing mechanical buffering in a step of forming a plate. FIG. 2 is a cross-sectional view showing a state after the insulating layer shown in FIG. 1 has been subjected to mechanical buffering.
図 1において、 銅メツキ等により形成された複数のボストビア 2は、 ボストビ ァ 2形成のための絶縁層 4中に埋め込まれている。 各ボストビア 2の先端は絶縁 層 4の表面 4 aから突出している。 これは、 絶縁層 4に形成されたポストビア用 の穴に銅メツキを十分に充填するためである。 図 1に示すように絶縁層 4中にポ ストビア 2を形成した後、 絶縁層 4の表面 4 aを研磨して絶縁層 4を所定の厚み とし、 且つ絶縁層 4の表面 4 aを平坦ィ匕する。 この研磨が上述のメカニカルバッ フイングにより行われる。  In FIG. 1, a plurality of Bostvias 2 formed by copper plating or the like are embedded in an insulating layer 4 for forming the Bostvias 2. The tip of each bost via 2 protrudes from the surface 4 a of the insulating layer 4. This is to sufficiently fill the copper holes in the holes for the post vias formed in the insulating layer 4. After the post vias 2 are formed in the insulating layer 4 as shown in FIG. 1, the surface 4a of the insulating layer 4 is polished to a predetermined thickness, and the surface 4a of the insulating layer 4 is flattened. Dagger. This polishing is performed by the mechanical backing described above.
ここで、 絶縁層 4の表面 4 aを研磨する際、 ボストビア 2も一緒に研磨するこ ととなる。 絶縁層 4は絶縁性樹脂等により形成されるため、 絶縁層 4の硬度は、 銅メツキにより形成されたボストビア 2の硬度よりはるかに低い。 したがって、 メカニカルバフイングの際に絶縁層 4の研磨速度の方がボストビア 2の研磨速度 より大きい。  Here, when polishing the surface 4a of the insulating layer 4, the bost via 2 is also polished. Since the insulating layer 4 is formed of an insulating resin or the like, the hardness of the insulating layer 4 is much lower than the hardness of the post via 2 formed by copper plating. Therefore, the polishing rate of the insulating layer 4 is higher than the polishing rate of the boast via 2 during mechanical buffing.
絶縁層 4中のボストビア 2の分布密度が絶縁層 4全体で一様であれば、 絶縁層 4はほぼ一様に研磨されて均一な厚みとなり、 研磨後の絶縁層 4の表面 4 aは平 坦となる。 し力 し、 絶縁層 4中のポストビア 2の分布密度が図 1に示すように部 分的に異なっていると、 メカニカルパッフイング後の絶縁層 4の表面 4 aは、 図 2に示すように平坦ではなくなつてしまう。  If the distribution density of the boss vias 2 in the insulating layer 4 is uniform throughout the insulating layer 4, the insulating layer 4 is polished almost uniformly to have a uniform thickness, and the polished surface 4a of the insulating layer 4 is flat. Be tan. When the distribution density of the post vias 2 in the insulating layer 4 is partially different as shown in FIG. 1, the surface 4a of the insulating layer 4 after mechanical puffing becomes as shown in FIG. It is not flat.
すなわち、 図 1に示すようにポストビア 2の分布密度の小さい部分があると、 その部分だけ多く研磨され、 他の部分より低くなつてしまう。 例えば、 上述のよ うに周辺配置電極構造の半導体チップ用の薄膜基板の場合、 絶縁層の中央部分が 周囲部分に比べて低くなり窪みができてしまう。 このように、 絶縁層の厚みが一 様でないと、 信号伝送特性がばらついたり、 長期使用の間に層間ショートを起こ すおそれがある。 発明の開示  That is, as shown in FIG. 1, if there is a portion where the distribution density of the post via 2 is small, only that portion is polished, and the post via 2 becomes lower than other portions. For example, in the case of a thin film substrate for a semiconductor chip having a peripheral arrangement electrode structure as described above, the central portion of the insulating layer is lower than the peripheral portion, and a depression is formed. As described above, if the thickness of the insulating layer is not uniform, signal transmission characteristics may vary, and interlayer short-circuit may occur during long-term use. Disclosure of the invention
本発明の総括的な目的は、 上述の問題を解消した改良された有用な薄膜基板の 構造を提供することである。 A general object of the present invention is to provide an improved and useful thin film substrate which solves the above-mentioned problems. Is to provide a structure.
本発明のより具体的な目的は、 ボストビアを有する薄膜基板の製造工程におい て、 ボストビアが埋め込まれた絶縁層をメ力二カルバッフイングする際に研磨面 全体を一様に研磨することのできる薄膜基板の構造を提供することである。 上述の目的を達成するために、 本発明によれば、 半導体装置用薄膜基板であつ て、 パターン配線を形成する少なくとも 2つの配線層と、 配線層の間に位置する 絶縁層と、 絶縁層の中に延在し配線層を電気的に接続するポストビアと、 絶縁層 内でボストビアの密度が他の部分より小さい部分に配置され、 信号伝達回路に接 続されない少なくとも一つのダミーポストビアとを有する半導体装置用薄膜基板 が提供される。  A more specific object of the present invention is to uniformly polish the entire polished surface when the insulating layer in which the bostvia is embedded is subjected to mechanical buffering in the manufacturing process of the thin film substrate having the bostvia. It is to provide a structure of a thin film substrate. In order to achieve the above object, according to the present invention, there is provided a thin film substrate for a semiconductor device, comprising: at least two wiring layers for forming pattern wiring; an insulating layer located between the wiring layers; A post via extending inside and electrically connecting the wiring layer; and at least one dummy post via arranged in a portion of the insulating layer where the density of the boast via is smaller than other portions and not connected to the signal transmission circuit. A thin film substrate for a semiconductor device is provided.
上述の本発明による半導体装置用薄膜基板において、 ダミーポストビアは、 ポ ストビアと同じ材料により形成されることが好ましい。 また、 ダミーポストビア ) は、 外部回路に接続されずに電気的に孤立したポストビアとすることが好まし レ、。 代わりに、 ダミーポストビアを、 電源配線又は接地配線の一部としてもよい 。 更に、 配線層のダミーポストビアが接続された部分の周囲に絶縁層が露出し、 露出した絶縁層はガス抜き穴を形成することとしてもよい。  In the above-described thin film substrate for a semiconductor device according to the present invention, the dummy post via is preferably formed of the same material as the post via. Also, the dummy post via is preferably an electrically isolated post via that is not connected to an external circuit. Alternatively, the dummy post via may be a part of the power supply wiring or the ground wiring. Further, the insulating layer may be exposed around a portion of the wiring layer to which the dummy post via is connected, and the exposed insulating layer may form a gas vent hole.
上述の発明によれば、 ダミーポストビアが存在するため、 絶縁層の表面全体に おいてビアの密度分布がほぼ一定となり、 メカニカルパッフイングを行っても絶 縁層を平坦な状態に研磨することができる。 したがって、 絶縁層の厚みを均一に することができ、 本発明による薄膜基板を用いて形成した半導体装置の長期信頼 性を向上することができる。  According to the invention described above, since the dummy post vias are present, the density distribution of the vias is substantially constant over the entire surface of the insulating layer, and the insulating layer is polished to a flat state even when mechanical puffing is performed. be able to. Therefore, the thickness of the insulating layer can be made uniform, and the long-term reliability of the semiconductor device formed using the thin film substrate according to the present invention can be improved.
本発明の他の目的、 特徴及び利点は添付の図面を参照しながら以下の詳細な説 明を読むことにより、 一層明瞭となるであろう。 図面の簡単な説明  Other objects, features and advantages of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1はポストビアが埋め込まれた樹脂層のメカニカルバッフイングを行う前の 断面図である。  FIG. 1 is a cross-sectional view of a resin layer in which post vias are embedded, before performing mechanical buffering.
図 2は図 1に示す樹脂層をメ力二力ルバッフィングした後の状態を示す断面図 である。 図 3は本発明の一実施例による薄膜基板の一部の断面図である。 FIG. 2 is a cross-sectional view showing a state after the resin layer shown in FIG. FIG. 3 is a sectional view of a part of a thin film substrate according to one embodiment of the present invention.
図 4はボストビァを形成する工程の一部を説明するための図である。  FIG. 4 is a view for explaining a part of the process of forming a boss via.
図 5はボストビアを形成する工程の一部を説明するための図である。 二 図 6はダミーボストビアが形成された絶縁層の断面図である。  FIG. 5 is a view for explaining a part of the step of forming the bost via. (B) FIG. 6 is a cross-sectional view of the insulating layer in which dummy bost vias are formed.
図 7は図 6に示す絶縁層をメカ二力ルバッフイングした後の状態を示す断面図 である。  FIG. 7 is a cross-sectional view showing a state after the insulating layer shown in FIG. 6 has been mechanically buffered.
図 8はダミーポストビアが接続されたべタパターン配線にガス抜き穴を設けた 例を示す断面図である。  FIG. 8 is a cross-sectional view showing an example in which a gas vent hole is provided in a solid pattern wiring connected to a dummy post via.
図 9は図 8に示すベタパターン配線の平面図である。 発明を実施するための最良の形態  FIG. 9 is a plan view of the solid pattern wiring shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の実施例について図面を参照しつつ説明する。 なお、 図中同等 の構成部品には同じ符号を付す。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same reference numerals are given to the same components.
図 3は本発明の一実施例による薄膜基板の一部を示す断面図である。 図 3に示 す薄膜基板 1 0は、 コア層 1 1とその両側に形成された薄膜層 1 2とよりなる。 薄膜層 1 2は多層構造を有しており、 複数のパターン配線 1 3が絶縁層 1 4を介 して積層されている。  FIG. 3 is a sectional view showing a part of a thin film substrate according to one embodiment of the present invention. The thin film substrate 10 shown in FIG. 3 includes a core layer 11 and thin film layers 12 formed on both sides thereof. The thin film layer 12 has a multilayer structure, and a plurality of pattern wirings 13 are stacked via an insulating layer 14.
本実施例において、 上述のパターン配線 1 3の間はポストビア 1 5により電気 的に接続され、 例えば、 薄膜基板 1 0の表面と裏面に形成された電極 1 5を電気 的に接続する。 ボストビア 1 5の配置は薄膜基板 1 0に搭載される半導体チップ の電極配列に依存し、 薄膜層 1 2における水平方向のボストビア 1 4の密度は均 一ではない。  In the present embodiment, the pattern wirings 13 are electrically connected to each other by the post vias 15. For example, the electrodes 15 formed on the front surface and the rear surface of the thin film substrate 10 are electrically connected. The arrangement of the boss vias 15 depends on the electrode arrangement of the semiconductor chip mounted on the thin film substrate 10, and the density of the horizontal boss vias 14 in the thin film layer 12 is not uniform.
そこで、 本実施例では薄膜基板 1 0内の配線に必要なボストビア 1 5以外に、 配線として機能しないダミーポストビア 1 7を設けている。 これにより、 薄膜層 1 2中のポストビアの密度をある程度均一化して、 後述のようにメカニカルバッ フイングの際の問題を解決している。  Therefore, in the present embodiment, besides the bost via 15 necessary for the wiring in the thin film substrate 10, a dummy post via 17 which does not function as a wiring is provided. As a result, the density of the post vias in the thin film layer 12 is made uniform to some extent, thereby solving the problem of mechanical backing as described later.
ここで、 薄膜基板 1 0のポストビアが配置される部分の製造工程について、 図 4及ぴ図 5を参照しながら説明する。 図 4及び図 5の各々は、 ポストビアを有す る薄膜基板の製造工程の一部を示す図であり、 図 4及び図 5に示すの工程により 図 3におけるボストビア 15及ぴダミーポストビア 17が形成される。 Here, a manufacturing process of a portion where the post via of the thin film substrate 10 is arranged will be described with reference to FIG. 4 and FIG. 4 and 5 are views each showing a part of a manufacturing process of a thin film substrate having a post via. Bost vias 15 and dummy post vias 17 in FIG. 3 are formed.
まず絶縁層 14 (図 4 (a) ) の上にシード層 18を無電解メツキ等により形 成する (図 4 (b) ) 。 次に、 シード層 18の上にドライフィルムレジスト (D FR) 19を貼り付け (図 4 (c) ) 、 露光 ·現像処理を施してレジスト 19を 所定のパターンを残して除去する (図 4 (d) ) 。 レジスト 1 9を除去した部分 にはシード層 18が露出する。 この部分が薄膜基板 10のパターン配線 13とな る。  First, a seed layer 18 is formed on the insulating layer 14 (FIG. 4 (a)) by electroless plating or the like (FIG. 4 (b)). Next, a dry film resist (DFR) 19 is pasted on the seed layer 18 (FIG. 4 (c)), and exposed and developed to remove the resist 19 while leaving a predetermined pattern (FIG. 4 (C)). d)). The seed layer 18 is exposed at the portion where the resist 19 is removed. This portion becomes the pattern wiring 13 of the thin film substrate 10.
その後、 電解メツキにより金属層 (銅層) 20をシード層 18上に形成し (4 3 ( e ) ) 、 レジスト 19を除去する (図 4 ( f ) ) 。 そして、 金属層 20上に ドライフィルムレジスト 21を貼り付け (図 4 (g) ) 、 レジスト 21を露光 ' 現像処理することにより、 ポストビアを形成する部分を除去して細長い穴 21 a を形成する (図 4 (h) ) 。 ポストビアを形成する部分は、 金属層 20により形 成されたパタ一ン配線上の所定の位置である。  Thereafter, a metal layer (copper layer) 20 is formed on the seed layer 18 by electrolytic plating (43 (e)), and the resist 19 is removed (FIG. 4 (f)). Then, a dry film resist 21 is attached on the metal layer 20 (FIG. 4 (g)), and the resist 21 is exposed to light and developed to remove a portion where a post via is to be formed, thereby forming an elongated hole 21a ( Figure 4 (h)). The part where the post via is formed is a predetermined position on the pattern wiring formed by the metal layer 20.
次に、 穴 21 aの中に例えばメツキにより金属 (銅) を充填してボストビア 1 5を形成する (図 4 (i) ) 。 この際、 穴 21 a内に十分金属が充填されるよう に、 金属が穴 21 aから突出する程度までメツキを施す。  Next, the hole 21a is filled with metal (copper) by, for example, plating to form a bost via 15 (FIG. 4 (i)). At this time, plating is performed until the metal protrudes from the hole 21a so that the metal is sufficiently filled in the hole 21a.
続いて、 ポストビアが所定の高さとなるまで、 レジスト 21の表面 21とポス トビア 15の先端部分とをメカニカルメカバッフイングにより研磨する (図 4 ( j ) ) o  Then, the surface 21 of the resist 21 and the tip of the post via 15 are polished by mechanical mechanical buffering until the post via reaches a predetermined height (FIG. 4 (j)).
次に、 レジスト 21を除去し (図 4 (k) ) 、 露出しているシード層 18をェ ツチングにより除去する (図 4 (1) ) 。 シード層 18を除去すると、 絶縁層 1 4の上に金属層 20 (パターン配線 13) が形成され、 その上にポストビア 15 が形成された状態となる。  Next, the resist 21 is removed (FIG. 4 (k)), and the exposed seed layer 18 is removed by etching (FIG. 4 (1)). When the seed layer 18 is removed, a metal layer 20 (pattern wiring 13) is formed on the insulating layer 14 and a post via 15 is formed thereon.
ここで、 金属層 20の上に絶縁樹月旨シートを貼り付けて硬ィ匕させ、 絶縁層 22 を形成する (図 4 (m) ) 。 この際、 金属層 20の上に形成されているポストビ ァ 15は、 絶縁層 22の中に埋め込まれる。  Here, an insulating resin sheet is pasted on the metal layer 20 and hardened to form an insulating layer 22 (FIG. 4 (m)). At this time, the post via 15 formed on the metal layer 20 is embedded in the insulating layer 22.
次に、 絶縁層 22の表面をメカニカルバッフイングにより研磨して、 ポストビ ァ 15の先端 15 aを絶縁層 22の表面に露出させる.(図 5 (a) ) 。 そして、 絶縁層 22にエッチング等により表面処理を施して清浄ィヒする (図 5 (b) ) 。 以上でボストビア 1 5の形成が完了する。 Next, the surface of the insulating layer 22 is polished by mechanical buffing to expose the tip 15a of the post via 15 to the surface of the insulating layer 22 (FIG. 5 (a)). Then, the insulating layer 22 is subjected to a surface treatment by etching or the like to be cleaned (FIG. 5B). Thus, the formation of the bost via 15 is completed.
ボストビア 1 5の形成が完了したら、 絶縁層 2 2の表面及ぴポストビア 1 5の 端面 1 5 aの上にシード層 2 3を形成し (図 5 ( c ) ) 、 シード層 2 3上にドラ ィレジストフイルム 2 4を貼り付ける (図 5 ( d ) ) 。 そして、 レジスト 2 4を 配線パターンの形状に除去し (図 5 ( e ) ) 、 電解メツキにより金属層 (銅) 2 5をシード層 2 3の上に形成する (図 5 ( f ) ) 。 この金属層 2 5がパターン配 線 1 3となる。 したがって、 金属層 2 5 (パターン配線) と金属層 2 0 (パター ン配線) とがポストビア 1 5により電気的に接続された構造が形成される。 その後、 レジスト 2 4を除去し (図 5 ( g ) ) 、 露出したシード層 2 3をエツ チングにより除去する (図 5 ( h ) ) 。 最後に、 金属層 2 5の上に絶縁層 2 6を 形成する。  When the formation of the bost via 15 is completed, a seed layer 23 is formed on the surface of the insulating layer 22 and the end surface 15a of the post via 15 (FIG. 5 (c)), and a driver is formed on the seed layer 23. Paste the resist film 24 (Fig. 5 (d)). Then, the resist 24 is removed in the shape of the wiring pattern (FIG. 5 (e)), and a metal layer (copper) 25 is formed on the seed layer 23 by electrolytic plating (FIG. 5 (f)). This metal layer 25 becomes the pattern wiring 13. Therefore, a structure in which the metal layer 25 (pattern wiring) and the metal layer 20 (pattern wiring) are electrically connected by the post via 15 is formed. Thereafter, the resist 24 is removed (FIG. 5 (g)), and the exposed seed layer 23 is removed by etching (FIG. 5 (h)). Finally, an insulating layer 26 is formed on the metal layer 25.
以上が薄膜基板 1 0の薄膜層 1 2の一部を形成する工程であるが、 薄膜基板を 多層パッケージ基板とするには、 上述の工程を繰り返すことにより、 薄膜層 1 2 を多層化する。 その際、 ポストビアの形成及びメカニカルバッフイングも繰り返 し行われる。  The above is the step of forming a part of the thin film layer 12 of the thin film substrate 10. To make the thin film substrate a multilayer package substrate, the above steps are repeated to make the thin film layer 12 multilayer. At that time, formation of post vias and mechanical buffing are also repeated.
次に、 上述の実施例におけるダミーポストビア 1 7について詳細に説明する。 ポストビア 1 5の分布密度が一様でないと、 上述のように図 5 ( a ) に示すメカ 二力/レバッフイングの工程において、 ポストビアの密度の小さい部分の研磨量が 多くなり、 絶縁層' 1 4 (図 5 ( a ) にける絶縁層 2 2に相当) に窪みが生じたり して平坦度が悪くなる。 これにより、 薄膜基板を用いた半導体装置の長期信頼性 が損なわれてしまう。  Next, the dummy post via 17 in the above embodiment will be described in detail. If the distribution density of the post vias 15 is not uniform, as described above, in the mechanical force / rebuffing process shown in FIG. (Equivalent to the insulating layer 22 in FIG. 5 (a).) As a result, the long-term reliability of the semiconductor device using the thin film substrate is impaired.
そこで、 本実施例では図 6に示すように、 ボストビア 1 5の分布密度が低い部 分 (領域) にダミーポストビア 1 7を配置することにより、 ポストビアの分布密 度を一定の範囲にする。 ダミーポストビア 1 7は、 外部回路に接続されない孤立 したビアであり、 薄膜基板の電気回路上必要なビアではなく、 メカニカルバフィ ングのためだけに設けられる。  Therefore, in this embodiment, as shown in FIG. 6, the distribution density of the post vias is kept within a certain range by arranging the dummy post vias 17 in portions (regions) where the distribution density of the bost vias 15 is low. The dummy post via 17 is an isolated via that is not connected to an external circuit, and is provided only for mechanical cavitation, not for a via required for an electric circuit of a thin film substrate.
ダミーボストビア 1 7が存在するため、 絶縁層 1 4表面全体においてビアの密 度分布がほぼ一定となり、 メ力二力ルバッフイングを行っても図 7に示すように 絶縁層 1 4を平坦な状態に研磨することができる。 したがって、 絶縁層 1 4の厚 みを均一にすることができ、 本実施例による薄膜基板 1 0を用いて形成した半導 体装置の長期信頼性を向上することができる。 Due to the presence of the dummy bost vias 17, the via density distribution is almost constant over the entire surface of the insulating layer 14, and the insulating layer 14 is in a flat state as shown in Fig. 7 even when the two-way buffering is performed. Can be polished. Therefore, the thickness of the insulating layer 14 In this case, the semiconductor device formed using the thin film substrate 10 according to the present embodiment can have improved long-term reliability.
ダミーボストビア 1 7は通常のボストビア 1 5を形成する工程においてボスト ビア 1 5と同時に形成することができるため、 特別な工程を、 ダミーポストビア 1 7を形成するためだけのために特別な工程を設ける必要はない。 したがって、 薄膜基板の製造コストを増大することなくダミ一ボストビア 1 7を形成すること ができる。  Dummy Bost Via 17 can be formed simultaneously with Bost Via 15 in the process of forming normal Bost Via 15. It is not necessary to provide. Therefore, the dummy via 17 can be formed without increasing the manufacturing cost of the thin film substrate.
ダミーボストビア 1 7は、 信号配線用のボストビア 1 5の密度が低い領域に複 数個まとめて設けられることが多いが、 このような場合には複数のダミーボスト ビア 1 7をべタパターン配線上に形成することができる。 すなわち、 複数のダミ 一ボストビア 1 7を一つの電気的に孤立したパターン配線上に形成することがで きる。 ダミーポストビア 1 7同士が電気的に接続されていても、 全体として信号 用パターン配線から分離されていればよいためである。  In many cases, a plurality of dummy boost vias 17 are provided in an area where the density of the signal vias 15 is low, but in such a case, a plurality of dummy boost vias 17 are placed on the solid pattern wiring. Can be formed. That is, a plurality of dummy vias 17 can be formed on one electrically isolated pattern wiring. This is because even if the dummy post vias 17 are electrically connected to each other, the dummy post vias 17 need only be separated from the signal pattern wiring as a whole.
ただし、 ダミーポストビア 1 7が設けられるベタパターン配線が大きい場合は 、 ガス抜き穴としてべタパターン配線中に開口を設ける必要がある。 ガス抜き穴 とは、 薄膜基板の内部に存在する水分を外部に放出するための開口であり、 空洞 ではなく樹脂層の一部がベタパターン配線から露出した部分である。  However, when the solid pattern wiring on which the dummy post via 17 is provided is large, it is necessary to provide an opening in the solid pattern wiring as a gas vent hole. The gas vent hole is an opening for releasing moisture existing inside the thin film substrate to the outside, and is not a cavity but a part of the resin layer exposed from the solid pattern wiring.
図 8はダミーボストビアが設けられたべタパターン配線を有する絶縁層 1 4の 断面図であり、 図 9は図 8に示すベタパターン配線 2 6の平面図である。 ダミー ボストビア 1 7は信号用パターン配線を避けた位置に配置されているので、 ダミ 一ボストビア用のベタパターン酉己線 2 6のダミーポストビア 1 7の周囲を除去し て開口として環状のガス抜き用穴 2 7とすることができる。  FIG. 8 is a cross-sectional view of an insulating layer 14 having a solid pattern wiring provided with dummy boost vias, and FIG. 9 is a plan view of the solid pattern wiring 26 shown in FIG. Dummy bost via 17 is located at a position avoiding signal pattern wiring.So, the periphery of dummy post via 17 of solid pattern rota-line 26 Hole 27.
上述の実施例では、 ダミーボストビアを電気的に孤立したビアとしたが、 ダミ 一ボストビアは信号配線以外の例えば電源配線や接地配線の一部として形成する こともできる。 ダミ一ボストビアを電源配線や接地配線の一部として形成し、 且 つダミーボストビアが接続されるパターン配線により信号配線を包囲することに より、 信号配線をシールドする効果を得ることもできる。  In the above embodiment, the dummy bost via is an electrically isolated via. However, a dummy bost via can be formed as a part of a power wiring or a ground wiring other than the signal wiring, for example. By forming the dummy bus via as a part of the power supply wiring or the ground wiring and surrounding the signal wiring with the pattern wiring to which the dummy boost via is connected, the effect of shielding the signal wiring can be obtained.
本発明は具体的に開示された実施例に限定されることなく、 本発明の範囲内で 様々な変形例及ぴ改良例がなされるであろう。  The present invention is not limited to the specifically disclosed embodiments, and various modifications and improvements may be made within the scope of the present invention.

Claims

請求の範囲 The scope of the claims
1 . 半導体装置用薄膜基板であって、 1. A thin film substrate for a semiconductor device,
パターン配線を形成する少なくとも 2つの配線層と、  At least two wiring layers forming pattern wiring;
該配線層の間に位置する絶縁層と、  An insulating layer located between the wiring layers;
該絶縁層の中に延在し、 該配線層を電気的に接続するポストビアと、 前記絶縁層内で前記ボストビアの密度が他の部分より小さい部分に配置され、 信号伝達回路に接続されない、 少なくとも一つのダミーボストビアと  A post via extending into the insulating layer and electrically connecting the wiring layer; and a post via having a density smaller than that of the other portion in the insulating layer and not connected to a signal transmission circuit. With one dummy Bostvia
を有する半導体装置用薄膜基板。  A thin film substrate for a semiconductor device, comprising:
2 . 請求の範囲第 1項記載の半導体装置用薄膜基板であって、 2. The thin film substrate for a semiconductor device according to claim 1, wherein
前記ダミーボストビアは、 前記ボストビアと同じ材料により形成された半導体  The dummy bost via is a semiconductor formed of the same material as the bost via
3 . 請求の範囲第 1項記載の半導体装置用薄膜基板であって、 3. The thin film substrate for a semiconductor device according to claim 1, wherein
前記ダミーボストビァは、 外部回路に接続されずに電気的に孤立したボストビ ァである半導体装置用薄膜基板。  The thin film substrate for a semiconductor device, wherein the dummy boss via is an electrically isolated boss via which is not connected to an external circuit.
4 . 請求の範囲第 1項記載の半導体装置用薄膜基板であって、 4. The thin film substrate for a semiconductor device according to claim 1, wherein
前記ダミーボストビァは、 電源配線又は接地配線の一部である半導体装置用薄  The dummy boss via is a thin film for a semiconductor device which is a part of a power supply wiring or a ground wiring.
5 . 請求の範囲第 1項記載の半導体装置用薄膜基板であって、 5. The thin film substrate for a semiconductor device according to claim 1, wherein
前記配線層の前記ダミーボストビアが接続された部分の周囲に前記絶縁層が露 出し、 該露出した絶縁層はガス抜き穴を形成する半導体装置用薄膜基板。  A thin film substrate for a semiconductor device, wherein the insulating layer is exposed around a portion of the wiring layer to which the dummy bost via is connected, and the exposed insulating layer forms a gas vent hole.
PCT/JP2002/006847 2002-07-05 2002-07-05 Thin-film substrate having post via WO2004006329A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2002/006847 WO2004006329A1 (en) 2002-07-05 2002-07-05 Thin-film substrate having post via
JP2004519184A JP4478567B2 (en) 2002-07-05 2002-07-05 Thin film substrate with post via

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/006847 WO2004006329A1 (en) 2002-07-05 2002-07-05 Thin-film substrate having post via

Publications (1)

Publication Number Publication Date
WO2004006329A1 true WO2004006329A1 (en) 2004-01-15

Family

ID=30022623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006847 WO2004006329A1 (en) 2002-07-05 2002-07-05 Thin-film substrate having post via

Country Status (2)

Country Link
JP (1) JP4478567B2 (en)
WO (1) WO2004006329A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200785A (en) * 2014-04-08 2015-11-12 新光電気工業株式会社 Optical waveguide device and manufacturing method thereof
JP2016181574A (en) * 2015-03-24 2016-10-13 京セラ株式会社 Wiring board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766552A (en) * 1993-08-23 1995-03-10 Hitachi Ltd Wiring board manufacturing method
JP2002009444A (en) * 2000-06-22 2002-01-11 Hitachi Ltd Structure of ceramic multilayer wiring board
JP2002043750A (en) * 2000-07-27 2002-02-08 Toppan Printing Co Ltd Method for manufacturing multilayer flexible wiring board and multilayer flexible wiring board manufactured thereby

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766552A (en) * 1993-08-23 1995-03-10 Hitachi Ltd Wiring board manufacturing method
JP2002009444A (en) * 2000-06-22 2002-01-11 Hitachi Ltd Structure of ceramic multilayer wiring board
JP2002043750A (en) * 2000-07-27 2002-02-08 Toppan Printing Co Ltd Method for manufacturing multilayer flexible wiring board and multilayer flexible wiring board manufactured thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200785A (en) * 2014-04-08 2015-11-12 新光電気工業株式会社 Optical waveguide device and manufacturing method thereof
JP2016181574A (en) * 2015-03-24 2016-10-13 京セラ株式会社 Wiring board

Also Published As

Publication number Publication date
JPWO2004006329A1 (en) 2005-11-10
JP4478567B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4145301B2 (en) Semiconductor device and three-dimensional mounting semiconductor device
TWI445144B (en) Stackable wafer level packages and related methods
JP3918681B2 (en) Semiconductor device
US7190064B2 (en) Semiconductor device and method of manufacturing the same
JP4380130B2 (en) Semiconductor device
US7795736B2 (en) Interconnects with interlocks
US20080157396A1 (en) Wafer level package with die receiving through-hole and method of the same
TW201916310A (en) Package structure
CN101170088A (en) Semiconductor packaging structure and forming method thereof
KR20180121893A (en) Fan-out 3D package structure of embedded silicon substrate
JP2008270810A (en) Semiconductor device package for improving heat sink and earth shield functions
US20020070446A1 (en) Semiconductor device and method for the production thereof
TW201121015A (en) Substrate structure with die embedded inside and dual build-up layers over both side surfaces and method of the same
JP2014110337A (en) Electronic component device manufacturing method, electronic component device and electronic device
TW201605299A (en) Interposer substrate and a method for fabricating the same
JP2020025019A (en) Semiconductor device
US20060267190A1 (en) Semiconductor device, laminated semiconductor device, and method for producing semiconductor device
JP3896038B2 (en) Multilayer semiconductor module
JP7404665B2 (en) Flip chip package, flip chip package substrate and flip chip package manufacturing method
WO2004006329A1 (en) Thin-film substrate having post via
KR20120026380A (en) Semiconductor chip and stack chip semiconductor package and the method of the same
JP2004342862A (en) Semiconductor device and its manufacturing method, false wafer and its manufacturing method, and multi-chip module
JP4337858B2 (en) Semiconductor device
KR100787547B1 (en) Semiconductor device, three-dimensional mounting semiconductor device and manufacturing method of semiconductor device
US20190189591A1 (en) Semiconductor storage cube with enhanced sidewall planarity

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2004519184

Country of ref document: JP