WO2004002882A1 - Vorrichtung und verfahren zur erzeugung von chlortrifluorid und anlage zu ätzung von halbleitersubstraten mit dieser vorrichtung - Google Patents
Vorrichtung und verfahren zur erzeugung von chlortrifluorid und anlage zu ätzung von halbleitersubstraten mit dieser vorrichtung Download PDFInfo
- Publication number
- WO2004002882A1 WO2004002882A1 PCT/DE2003/001014 DE0301014W WO2004002882A1 WO 2004002882 A1 WO2004002882 A1 WO 2004002882A1 DE 0301014 W DE0301014 W DE 0301014W WO 2004002882 A1 WO2004002882 A1 WO 2004002882A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- plasma
- plasma reactor
- chlorine trifluoride
- density
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 239000000758 substrate Substances 0.000 title claims abstract description 33
- 238000005530 etching Methods 0.000 title claims abstract description 32
- JOHWNGGYGAVMGU-UHFFFAOYSA-N trifluorochlorine Chemical compound FCl(F)F JOHWNGGYGAVMGU-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 239000004065 semiconductor Substances 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000007789 gas Substances 0.000 claims abstract description 89
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 19
- 239000010703 silicon Substances 0.000 claims abstract description 19
- 235000012431 wafers Nutrition 0.000 claims abstract description 10
- 239000000460 chlorine Substances 0.000 claims description 25
- 230000005284 excitation Effects 0.000 claims description 19
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 8
- 230000001939 inductive effect Effects 0.000 claims description 8
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims 2
- 239000010453 quartz Substances 0.000 claims 2
- 125000001309 chloro group Chemical group Cl* 0.000 claims 1
- 125000001153 fluoro group Chemical group F* 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 5
- 238000011144 upstream manufacturing Methods 0.000 abstract description 4
- 210000002381 plasma Anatomy 0.000 description 72
- 238000006243 chemical reaction Methods 0.000 description 29
- 229910052731 fluorine Inorganic materials 0.000 description 20
- 239000011737 fluorine Substances 0.000 description 17
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 9
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 8
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- OMRRUNXAWXNVFW-UHFFFAOYSA-N fluoridochlorine Chemical compound ClF OMRRUNXAWXNVFW-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000011224 oxide ceramic Substances 0.000 description 3
- 229910052574 oxide ceramic Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 238000012619 stoichiometric conversion Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008921 facial expression Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 231100001231 less toxic Toxicity 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 206010001488 Aggression Diseases 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000016571 aggressive behavior Effects 0.000 description 1
- 208000012761 aggressive behavior Diseases 0.000 description 1
- 229910001515 alkali metal fluoride Inorganic materials 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical class F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000563 toxic property Toxicity 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/087—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
- B01J19/088—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/24—Inter-halogen compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
- H05H1/4645—Radiofrequency discharges
- H05H1/4652—Radiofrequency discharges using inductive coupling means, e.g. coils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0894—Processes carried out in the presence of a plasma
Definitions
- the invention relates to a device and a method for producing chlorine trifluoride and a system for etching semiconductor substrates, in particular silicon wafers, with this device, according to the preamble of the independent claims
- the object of the present invention was to provide a device and a method for producing chlorine trifluoride, and a system for etching semiconductor substrates with this device, in which chlorine trifluoride is used as the etching gas, the method and the device allowing the production of chlorine trifluoride directly on site , so that a stocking of this material, which is critical from a safety point of view, in particular in liquid form, can be avoided. It should also be possible to generate the chlorine trifluoride from comparatively harmless or uncritical raw materials efficiently and cost-effectively as precisely as possible in the amount required for etching.
- the device according to the invention has the advantage over the prior art that chlorine trifluoride can now be used in ClF 3 -based etching processes, in particular in the etching of silicon substrates, without this having to be stored as such. Rather, the C1F 3 is generated in a highly efficient plasma reaction in a high-density plasma, and can thus be fed immediately after generation to a process chamber assigned to the plasma reactor, in which it acts on the semiconductor substrate located there.
- the chlorine trifluoride in the process according to the invention and with the aid of the device according to the invention can be produced from non-critical, high-purity and inexpensive gases which serve as precursor gases in the production of C1F 3 .
- the device according to the invention for producing chlorine trifluoride can be easily implemented and reliably controlled using the existing technology.
- this device can be used as an additional module for any suitable etching chamber or existing valcuum system upstream for etching semiconductor substrates or integrated as an additional component in a conventional device for supplying an etching chamber with process gases.
- FIG. 1 shows a schematic diagram of a system for etching a semiconductor substrate with a device for producing chlorine trifluoride with inductive plasma excitation
- FIG. 2 shows a schematic diagram of an alternative system for etching a semiconductor substrate with a device for producing chlorine trifluoride, the plasma being excited via microwaves.
- the device 6 forms an etching system 5 with the process chamber 10, to which it is connected via a gas outlet 20, and with add-on parts that are still explained below.
- the core of the device 6 is a plasma reactor 100 in the form of a reaction chamber.
- supplied gases so-called “precursor gases”
- precursor gases are broken up as far as possible by means of inductive high-frequency excitation or alternatively according to FIG. 2 by means of microwave excitation to form radicals which, with a corresponding ratio of fluorine to chlorine, ie preferably a gas flow of 3: 1 of the fluorine radicals concerned or equivalent
- reactants or chlorine radicals or corresponding reactive species releasing gases to C1F 3 and are subsequently fed to the process chamber 10.
- the gases F 2 and Cl 2 are used , which are fed to the plasma reactor 100 via respective gas bottles 21, 25 for F 2 and Cl 2 and the gas bottles 21, 25, each of which has a downstream mass flow controller 22, 26.
- fluorine is not an optimal recycle gas because it is not available in high purity, has corrosive and highly toxic properties, and requires a high dissociation energy for the decomposition or radical formation.
- a second, preferred variant is therefore based on precursor gases which, under plasma excitation, release fluorine radicals particularly efficiently and easily and at the same time in large quantities.
- the gases SF ⁇ or NF 3 are preferred as an alternative to F 2 .
- SF 6 releases two fluorine radicals on average under plasma excitation and thereby changes into the stable SF.
- Recombination reactions of generated fluorine radicals with SF 4 and thus back reactions to a higher SF X in the direction of the starting material SF 6 i.e. the re-capture of already generated fluorine radicals by SF 4 , are unlikely since SF 4 represents a stable end product and therefore only a comparatively low affinity for fluorine radicals having. This characteristic distinguishes SF 6 from other fluorine suppliers such as fluorocarbons (water).
- C1F 3 is now built up in the plasma reactor 100 by means of the reactions: SF 6 ⁇ SF 4 + 2 F * CI 2 + F * ⁇ C1F + C1 * C1F + 2 F * ⁇ C1F 3 C1 * + F 2 , F * ⁇ C1F 3
- SF 6 and Cl 2 are fed to the plasma reactor 100 in a ratio of the gas flows SF 6 : C1 2 of 3: 1 in the sense of a stoichiometric conversion to C1F 3 .
- the precursor gas SF 6 is therefore not optimal, especially when etching silicon wafers with C1F 3 , since with a view to a high conversion efficiency to C1F 3 , very high excitation densities, ie high plasma power in a comparatively small volume, are aimed for, and especially below These conditions lead to increased sulfur formation.
- NF 3 is therefore used instead of SF 6 with adaptation of the gas flows.
- a mixture of SF 6 with NF 3 can also be used, less preferably.
- the gas NF 3 has the advantage that it cannot form any residues such as sulfur during the reaction, for example with Cl 2 to C1F 3 .
- nitrogen trifluoride is often used as a cleaning gas in semiconductor processes, ie it is inexpensive, stable, available in high purity, not corrosive and is only considered to be less toxic. NF 3 behaves completely different at low plasma densities than at high plasma densities.
- NF X fragments of the form NF X , which can also be of a radical nature (NF X ), dominate the plasma chemistry of the NF 3 .
- Their characteristics are low selectivity towards dielectrics, a comparatively low efficiency of silicon removal due to relatively small amounts of available free fluorine radicals due to a pronounced tendency towards recombination reactions to the starting product or to intermediates with a higher fluorine content, and an extremely aggressive behavior towards organic materials.
- the sum of these properties makes NF 3 an excellent cleaning gas for plasma deposition systems and as a scavenger gas in etching applications where the excitation densities are usually comparatively low.
- the reaction in plasma at low plasma densities thus follows:
- the optimal ratio of gas flows from NF 3 to Cl 2 is 2: 1.
- NF 3 is thus a particularly advantageous gas which, together with Cl 2 as a further gas, leads to the highly efficient ClF 3 generation. It supplies large amounts of fluorine radicals under these conditions and does not lead to the formation of undesirable impurities or residues.
- Cl 2 gaseous hydrogen chloride (HCl) is also suitable. This gas has the advantage over Cl 2 that it is less dangerous, that is, it is immediately noticeable due to its acidic smell, and is less toxic.
- HF is also added to the chlorine trifluoride produced as the end product. Since anhydrous (dry) HF generally does not interfere with the etching reaction of the C1F 3 with silicon and does not attack oxides or corrode metal surfaces without the presence of moisture, this associated gas can generally be tolerated. If HF should be undesirable as a gas component, it can also be removed selectively from the gas generated in the plasma reactor using a suitable filter, for example by adsorption on alkali metal fluorides or metal fluorides (NaF + HF -> NaHF 2 ).
- the gas NF 3 is first taken from a first gas reservoir 21, for example a gas bottle, and the gas Cl 2 or HCl from a second gas reservoir 25, for example a gas bottle, via an assigned first mass flow controller 22 or an assigned second mass flow controller 26 and the Plasma reactor 100 is supplied, in which high-density plasma excitation of these two supplied precursor gases and conversion of the plasma fragments to C1F 3 and N 2 and, in the case of HCl, also HF, which is generated via the gas outlet 20, which can also be referred to as a connecting tube or serves, the actual process chamber 10 for etching the semiconductor substrate 30 is supplied.
- the gas outlet 20 is preferably designed in the form of a metallic tube and separates the high-density plasma 105 or the plasma reactor 100 from the process chamber 10. At least some of the charged particles in the high-density plasma 105 are thus on the way from the plasma reactor 105 to the process chamber 10 discharged in the gas outlet 20 and thus the process chamber 10 is electrically decoupled from the plasma reactor 100. Further can in the As an alternative or in addition, gas outlet 20 can also be used, which serve for the complete or further electrical decoupling of the process chamber 10 from the plasma reactor 100.
- FIG. 1 shows an inductively coupled, high-frequency excited plasma reactor 100, a coil 110 being wound around a tube made of quartz glass or preferably an aluminum oxide ceramic, which is preferably polished on the inside to avoid particle generation, with which a high-frequency power or a high-frequency alternating electromagnetic field is wound is coupled into the interior of the reactor 100.
- This drives a high-density inductive plasma 105 over a large working range of pressure and gas flows.
- the high frequency generated by a high-frequency generator 130 is coupled to the coil 110 via a customary matching network 120, a so-called “matchbox", which adjusts the impedance of the Guaranteed output of the high frequency generator to the inductive plasma 105.
- Preferred high-frequency outputs are 200 watts to 3 kW, depending on the gas flow, a frequency of 13.56 MHz being used, for example.
- the gas flows of the precursor gases NF 3 and Cl 2 or HCL into the plasma reactor 100 are preferably 100 sccm to 1 slmNF 3 and corresponding to the optimal stoichiometric mixing ratio of 2: 1 compared to Ck or. 4: 3 compared to HCl at 50 sccm to 500 sccm Cl 2 or 75 sccm to 750 sccm HCl.
- the working pressures in the plasma reactor 100 correspond to the pressures preferably used in the process chamber 10, ie they are between 1 mbar and 100 mbar, preferably 10 mbar to 30 mbar. At this pressure, high-density inductive plasmas can still be operated stably in tubes with cross sections from a few cm to about 10 cm and a correspondingly high excitation density.
- the ignition of the high-density plasma 105 can be facilitated by an auxiliary electrode 190 integrated in the process chamber 100, in particular in the form of a metal tip, to which high-voltage pulses, for example from an inductor or an ignition coil, are applied.
- FIG. 2 shows a second possibility for generating the high-density plasma 105.
- a tubular plasma reactor 100 made of quartz glass or preferably an aluminum oxide ceramic is again used, with good surface quality, ie polished inner walls of the plasma reactor 100 being particularly important in the case of the design made of aluminum oxide tube is.
- a particularly high-quality aluminum oxide ceramic with an Al 2 O 3 content of more than 99.5%, preferably more than 99.9% is preferably used in order to avoid unwanted microwave absorption and to increase the surfatron effect.
- the tubular plasma reactor 100 crosses a microwave waveguide 150 in a crossed arrangement, which is fed with microwave power via a circulator 160 for mode mode adaptation and separation of forward and reverse power from a magnetron 170.
- the waveguide 150 has an adjustable waveguide termination 180, a so-called “terminator”, and tuning elements 155, so-called “studs”, for adapting to the high-density plasma 105 generated in the plasma reactor 100 and for optimally setting the surfatron effect.
- the expansion of the microwave field forms the high-density plasma 105 at least almost over the entire length of the tubular plasma reactor 100.
- the waveguide 150 is drilled through at a suitable point, so that the plasma reactor 100 can be inserted through it.
- suitable microwave shields not shown, from the environment are to be provided in order to enable safe operation.
- the plasma reactor 100 is located within the waveguide 150, that is, between the tuning elements 155 and the waveguide termination 180.
- the plasma reactor 100 is located in a favorable field area and thus efficient plasma excitation is ensured.
- Microwave powers of 200 W to 6 kW are preferably used at a frequency of preferably 2.45 GHz, since inexpensive magnetrons 170 of high power are available at this frequency.
- the ignition of the high-density plasma 105 can be facilitated by an auxiliary electrode 190 integrated in the process chamber 100, as explained above.
- the process chamber 10 has a substrate electrode 40 on which a silicon wafer as a semiconductor substrate 30 can be clamped.
- This clamping is preferably carried out via a clamping device 41, for example an electrostatic chuck, by means of which the overlying side of the semiconductor substrate 30 is also protected from the gases in the process chamber 10.
- the overlying side of the semiconductor substrate 30 is also preferably subjected to He in order to achieve a good thermal To achieve connection to the substrate electrode 41 and additional insulation against the gases of the process chamber 10.
- the substrate electrode 40 also has electrical inlets or outlets 42 for the clamping device 41 and an electrical heater which may be provided and which can be provided in the substrate electrode 41 for temperature control or temperature adjustment.
- Measurement data for example the electrode temperature or the helium back pressure, can preferably also be transmitted to the outside via the electrical feeds or discharges 42.
- the substrate electrode 40 has a gas supply or gas discharge 43, via which He can preferably be supplied or removed as a convection medium for cooling the semiconductor substrate 30 at an adjustable pressure.
- a further supply or discharge 44 allows a refrigerant to be circulated through the substrate electrode 40 in order to adjust its temperature and, in particular, to remove any heat of reaction arising on the semiconductor substrate 30 from an exothermic etching reaction.
- the substrate temperature is preferably -30 ° C to 30 ° C for optimal etching conditions. and mask selectivity. Fluorinerts ® or ethylene glycol / water mixtures can be used as refrigerants.
- the process chamber 10 also has two pumping stations with a first pump 60, in particular a turbomolecular pump, and a second pump 80, in particular a rotary vane pump, which can be coupled in the sense that the rotary vane pump 80 also temporarily serves as a backing pump for the turbomolecular pump 60 can.
- the rotary vane pump 80 which is preferably designed as a dry-running pump, is used to "Rou 'ghing" of the entire plant 5 for a venting and as a process pump to the process gases while performing an etching process to pump.
- a control valve is used to pressure control 70.
- the 'pressure measurement takes place via a pressure gauge 90, which may be embodied as Baratron or as a combined Baratron and IONIVAC.
- Pressure meter 90 and control valve 70 are used to set the desired process pressure of preferably 5 to 100 mbar, in particular 10 to 30 mbar, stably during the processing of the semiconductor substrate 30.
- the turbo pump 60 in conjunction with a shut-off valve 50 serves to achieve the best possible ultimate vacuum before and after the processing, for example better than 10 "4 Pa. This is important because, as mentioned, on the one hand the residual moisture in the process chamber 10 or on the Semiconductor substrate 30 interferes with the etching process, but on the other hand residues of the process gases should also be removed before unloading the semiconductor substrate 30.
- the turbopump 60 is separated from the process chamber 10 via the shut-off valve 50, since it cannot be used at process pressures in the mbar range is.
- the silicon wafer is first introduced into the etching system 6 and clamped on the substrate electrode 40.
- the turbopump 60 now pumps the chamber 10 and the associated facial expressions of the gas supply with the plasma reactor 100 until the desired base vacuum is reached.
- valve 50 is closed and turbopump 60 is switched off.
- the desired quantities of the process gases are now supplied by means of the mass flow controllers 22, 26, for example 100 sccm to 1 slm NF 3 and 50 sccm to 500 sccmCl 2 or 75 sccm to 750 sccm HCl.
- the plasma reaction in the plasma reactor 100 is started by switching on the high-frequency generator 130 to the inductive plasma source or coil 110 or by switching on the magnetron 170 to the waveguide arrangement 150.
- the pressure in the process chamber 10 and thus also in the upstream plasma reactor 100 is measured by means of the pressure meter 90 and stabilized to the desired value by means of the combination of rotary vane pump 80 and control valve 70.
- the silicon wafer is then etched by the supply of the C1F 3 generated in the plasma reactor 100 from the precursor gases.
- the high-frequency or microwave supply to the plasma reactor 100 is then switched off, the process gas supply is stopped and the process chamber 10 and the facial expressions of the gas supply with the plasma reactor 100 are pumped empty.
- the turbopump 60 takes over the pumping to the lowest possible final pressure, for example better than 10 " Pa.
- the control valve 70 in front of the rotary vane pump 80 is closed, ie the rotary vane pump 80 can be used as a backing pump for the turbopump 60 during this time
- the silicon wafer is unloaded into a connected lock device.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03720246A EP1519895A1 (de) | 2002-06-28 | 2003-03-27 | Vorrichtung und verfahren zur erzeugung von chlortrifluorid und anlage zur ätzung von halbleitersubstraten mit dieser vorrichtung |
JP2004516435A JP4499559B2 (ja) | 2002-06-28 | 2003-03-27 | 三フッ化塩素の製造装置を備えた半導体基板のエッチングプラントおよび三フッ化塩素の製法 |
US10/519,724 US8382940B2 (en) | 2002-06-28 | 2003-03-27 | Device and method for producing chlorine trifluoride and system for etching semiconductor substrates using this device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10229037.7 | 2002-06-28 | ||
DE10229037A DE10229037A1 (de) | 2002-06-28 | 2002-06-28 | Vorrichtung und Verfahren zur Erzeugung von Chlortrifluorid und Anlage zur Ätzung von Halbleitersubstraten mit dieser Vorrichtung |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004002882A1 true WO2004002882A1 (de) | 2004-01-08 |
Family
ID=29795931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2003/001014 WO2004002882A1 (de) | 2002-06-28 | 2003-03-27 | Vorrichtung und verfahren zur erzeugung von chlortrifluorid und anlage zu ätzung von halbleitersubstraten mit dieser vorrichtung |
Country Status (5)
Country | Link |
---|---|
US (1) | US8382940B2 (de) |
EP (1) | EP1519895A1 (de) |
JP (1) | JP4499559B2 (de) |
DE (1) | DE10229037A1 (de) |
WO (1) | WO2004002882A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009010391A1 (de) * | 2007-07-19 | 2009-01-22 | Robert Bosch Gmbh | Verfahren zum ätzen einer schicht auf einem silizium-halbleitersubstrat |
Families Citing this family (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005031602A1 (de) * | 2005-07-06 | 2007-01-11 | Robert Bosch Gmbh | Reaktor zur Durchführung eines Ätzverfahrens für einen Stapel von maskierten Wafern und Ätzverfahren |
US7998651B2 (en) | 2006-05-15 | 2011-08-16 | Asml Netherlands B.V. | Imprint lithography |
US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US8999856B2 (en) | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
US8808563B2 (en) | 2011-10-07 | 2014-08-19 | Applied Materials, Inc. | Selective etch of silicon by way of metastable hydrogen termination |
US9267739B2 (en) | 2012-07-18 | 2016-02-23 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US9034770B2 (en) | 2012-09-17 | 2015-05-19 | Applied Materials, Inc. | Differential silicon oxide etch |
US9023734B2 (en) | 2012-09-18 | 2015-05-05 | Applied Materials, Inc. | Radical-component oxide etch |
US9390937B2 (en) | 2012-09-20 | 2016-07-12 | Applied Materials, Inc. | Silicon-carbon-nitride selective etch |
US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US8969212B2 (en) | 2012-11-20 | 2015-03-03 | Applied Materials, Inc. | Dry-etch selectivity |
US8980763B2 (en) | 2012-11-30 | 2015-03-17 | Applied Materials, Inc. | Dry-etch for selective tungsten removal |
US9111877B2 (en) | 2012-12-18 | 2015-08-18 | Applied Materials, Inc. | Non-local plasma oxide etch |
US8921234B2 (en) | 2012-12-21 | 2014-12-30 | Applied Materials, Inc. | Selective titanium nitride etching |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9040422B2 (en) | 2013-03-05 | 2015-05-26 | Applied Materials, Inc. | Selective titanium nitride removal |
US20140271097A1 (en) | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
US9236265B2 (en) * | 2013-11-04 | 2016-01-12 | Applied Materials, Inc. | Silicon germanium processing |
US9520303B2 (en) | 2013-11-12 | 2016-12-13 | Applied Materials, Inc. | Aluminum selective etch |
US9245762B2 (en) | 2013-12-02 | 2016-01-26 | Applied Materials, Inc. | Procedure for etch rate consistency |
US9287095B2 (en) | 2013-12-17 | 2016-03-15 | Applied Materials, Inc. | Semiconductor system assemblies and methods of operation |
US9287134B2 (en) | 2014-01-17 | 2016-03-15 | Applied Materials, Inc. | Titanium oxide etch |
US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
US9293568B2 (en) | 2014-01-27 | 2016-03-22 | Applied Materials, Inc. | Method of fin patterning |
US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
US9499898B2 (en) | 2014-03-03 | 2016-11-22 | Applied Materials, Inc. | Layered thin film heater and method of fabrication |
US9299575B2 (en) | 2014-03-17 | 2016-03-29 | Applied Materials, Inc. | Gas-phase tungsten etch |
US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
US9269590B2 (en) | 2014-04-07 | 2016-02-23 | Applied Materials, Inc. | Spacer formation |
US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
US9378969B2 (en) | 2014-06-19 | 2016-06-28 | Applied Materials, Inc. | Low temperature gas-phase carbon removal |
US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
US9425058B2 (en) | 2014-07-24 | 2016-08-23 | Applied Materials, Inc. | Simplified litho-etch-litho-etch process |
US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9378978B2 (en) | 2014-07-31 | 2016-06-28 | Applied Materials, Inc. | Integrated oxide recess and floating gate fin trimming |
US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
US9355856B2 (en) | 2014-09-12 | 2016-05-31 | Applied Materials, Inc. | V trench dry etch |
US9368364B2 (en) | 2014-09-24 | 2016-06-14 | Applied Materials, Inc. | Silicon etch process with tunable selectivity to SiO2 and other materials |
US9355862B2 (en) | 2014-09-24 | 2016-05-31 | Applied Materials, Inc. | Fluorine-based hardmask removal |
US9613822B2 (en) | 2014-09-25 | 2017-04-04 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
US9355922B2 (en) | 2014-10-14 | 2016-05-31 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
CN104477850B (zh) * | 2014-12-02 | 2016-08-24 | 中国船舶重工集团公司第七一八研究所 | 一种三氟化氯的制备方法及装置 |
US9299583B1 (en) | 2014-12-05 | 2016-03-29 | Applied Materials, Inc. | Aluminum oxide selective etch |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US9502258B2 (en) | 2014-12-23 | 2016-11-22 | Applied Materials, Inc. | Anisotropic gap etch |
CN104555927B (zh) * | 2014-12-31 | 2016-07-20 | 中国船舶重工集团公司第七一八研究所 | 一种三氟化氯的纯化方法 |
US9343272B1 (en) | 2015-01-08 | 2016-05-17 | Applied Materials, Inc. | Self-aligned process |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US9373522B1 (en) | 2015-01-22 | 2016-06-21 | Applied Mateials, Inc. | Titanium nitride removal |
US9449846B2 (en) | 2015-01-28 | 2016-09-20 | Applied Materials, Inc. | Vertical gate separation |
US20160225652A1 (en) | 2015-02-03 | 2016-08-04 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US9728437B2 (en) | 2015-02-03 | 2017-08-08 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
JP5989835B2 (ja) * | 2015-03-16 | 2016-09-07 | 芝浦メカトロニクス株式会社 | プラズマ処理方法及びプラズマ処理装置 |
US9691645B2 (en) | 2015-08-06 | 2017-06-27 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US9349605B1 (en) | 2015-08-07 | 2016-05-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
KR102314586B1 (ko) * | 2016-04-05 | 2021-10-18 | 칸토 덴카 코교 가부시키가이샤 | 불화염소의 공급 방법 |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US9721789B1 (en) | 2016-10-04 | 2017-08-01 | Applied Materials, Inc. | Saving ion-damaged spacers |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
JP7176860B6 (ja) | 2017-05-17 | 2022-12-16 | アプライド マテリアルズ インコーポレイテッド | 前駆体の流れを改善する半導体処理チャンバ |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
TWI766433B (zh) | 2018-02-28 | 2022-06-01 | 美商應用材料股份有限公司 | 形成氣隙的系統及方法 |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
CN114715850A (zh) * | 2021-01-04 | 2022-07-08 | 欧中电子材料(重庆)有限公司 | 一种高收率合成三氟化氯的方法 |
CN112915719A (zh) * | 2021-02-02 | 2021-06-08 | 福建德尔科技有限公司 | 电子级三氟化氯的分离装置及分离方法 |
CN113856233B (zh) * | 2021-10-22 | 2022-11-25 | 中船(邯郸)派瑞特种气体股份有限公司 | 一种高效的三氟化氯精馏装置 |
CN116610924B (zh) * | 2023-07-17 | 2023-09-15 | 福建德尔科技股份有限公司 | 一种三氟化氯泄漏预测系统及方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4472254A (en) * | 1983-05-02 | 1984-09-18 | Olin Corporation | Electric plasma discharge combustion synthesis of chlorine dioxide |
GB2332302A (en) * | 1997-12-05 | 1999-06-16 | Samsung Electronics Co Ltd | Etching polysilicon films |
WO2000051938A1 (en) | 1999-03-04 | 2000-09-08 | Surface Technology Systems Limited | Chlorotrifluorine gas generator system |
DE19919469A1 (de) | 1999-04-29 | 2000-11-02 | Bosch Gmbh Robert | Verfahren zum Plasmaätzen von Silizium |
US6190507B1 (en) * | 1998-07-24 | 2001-02-20 | The United States Of America As Represented By The Department Of Energy | Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity |
JP2001068422A (ja) | 1999-08-24 | 2001-03-16 | Junichi Hanna | 半導体基材の製造方法 |
JP2001267241A (ja) * | 2000-03-10 | 2001-09-28 | L'air Liquide | クリーニング方法及び装置並びにエッチング方法及び装置 |
US20020074946A1 (en) * | 1998-10-23 | 2002-06-20 | Mitsubishi Heavy Industries, Inc. | Microwave plasma generator, method of decomposing organic halide, and system for decomposing organic halide |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3354646A (en) * | 1963-01-21 | 1967-11-28 | North American Aviation Inc | Chlorine pentafluoride and method |
FR2616030A1 (fr) * | 1987-06-01 | 1988-12-02 | Commissariat Energie Atomique | Procede de gravure ou de depot par plasma et dispositif pour la mise en oeuvre du procede |
JPH03158481A (ja) * | 1989-11-16 | 1991-07-08 | Konica Corp | 基体の再生方法 |
US5002632A (en) * | 1989-11-22 | 1991-03-26 | Texas Instruments Incorporated | Method and apparatus for etching semiconductor materials |
DE4317623C2 (de) * | 1993-05-27 | 2003-08-21 | Bosch Gmbh Robert | Verfahren und Vorrichtung zum anisotropen Plasmaätzen von Substraten und dessen Verwendung |
US5741396A (en) * | 1994-04-29 | 1998-04-21 | Texas Instruments Incorporated | Isotropic nitride stripping |
JPH08153711A (ja) | 1994-11-26 | 1996-06-11 | Semiconductor Energy Lab Co Ltd | エッチング装置 |
JP3454951B2 (ja) * | 1994-12-12 | 2003-10-06 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
US5756400A (en) * | 1995-12-08 | 1998-05-26 | Applied Materials, Inc. | Method and apparatus for cleaning by-products from plasma chamber surfaces |
TW487983B (en) * | 1996-04-26 | 2002-05-21 | Hitachi Ltd | Manufacturing method for semiconductor device |
US6274058B1 (en) * | 1997-07-11 | 2001-08-14 | Applied Materials, Inc. | Remote plasma cleaning method for processing chambers |
JP2823555B2 (ja) * | 1997-08-12 | 1998-11-11 | セントラル硝子株式会社 | 薄膜形成装置の表面清浄に三フッ化塩素を用いる方法 |
US5814365A (en) * | 1997-08-15 | 1998-09-29 | Micro C Technologies, Inc. | Reactor and method of processing a semiconductor substate |
JP3893023B2 (ja) * | 1997-10-17 | 2007-03-14 | 株式会社荏原製作所 | 半導体製造排ガスの処理方法及び装置 |
US6042654A (en) * | 1998-01-13 | 2000-03-28 | Applied Materials, Inc. | Method of cleaning CVD cold-wall chamber and exhaust lines |
GB9904925D0 (en) | 1999-03-04 | 1999-04-28 | Surface Tech Sys Ltd | Gas delivery system |
JP2000036488A (ja) * | 1998-07-21 | 2000-02-02 | Speedfam-Ipec Co Ltd | ウエハ平坦化方法及びそのシステム |
US6783627B1 (en) * | 2000-01-20 | 2004-08-31 | Kokusai Semiconductor Equipment Corporation | Reactor with remote plasma system and method of processing a semiconductor substrate |
-
2002
- 2002-06-28 DE DE10229037A patent/DE10229037A1/de not_active Ceased
-
2003
- 2003-03-27 JP JP2004516435A patent/JP4499559B2/ja not_active Expired - Fee Related
- 2003-03-27 US US10/519,724 patent/US8382940B2/en not_active Expired - Fee Related
- 2003-03-27 EP EP03720246A patent/EP1519895A1/de not_active Withdrawn
- 2003-03-27 WO PCT/DE2003/001014 patent/WO2004002882A1/de active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4472254A (en) * | 1983-05-02 | 1984-09-18 | Olin Corporation | Electric plasma discharge combustion synthesis of chlorine dioxide |
GB2332302A (en) * | 1997-12-05 | 1999-06-16 | Samsung Electronics Co Ltd | Etching polysilicon films |
US6190507B1 (en) * | 1998-07-24 | 2001-02-20 | The United States Of America As Represented By The Department Of Energy | Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity |
US20020074946A1 (en) * | 1998-10-23 | 2002-06-20 | Mitsubishi Heavy Industries, Inc. | Microwave plasma generator, method of decomposing organic halide, and system for decomposing organic halide |
WO2000051938A1 (en) | 1999-03-04 | 2000-09-08 | Surface Technology Systems Limited | Chlorotrifluorine gas generator system |
DE19919469A1 (de) | 1999-04-29 | 2000-11-02 | Bosch Gmbh Robert | Verfahren zum Plasmaätzen von Silizium |
JP2001068422A (ja) | 1999-08-24 | 2001-03-16 | Junichi Hanna | 半導体基材の製造方法 |
JP2001267241A (ja) * | 2000-03-10 | 2001-09-28 | L'air Liquide | クリーニング方法及び装置並びにエッチング方法及び装置 |
Non-Patent Citations (2)
Title |
---|
JOURDAN A ET AL: "Recent developments in fluorine chemistry for microelectronic applications - Some examples at Comurhex", JOURNAL OF FLUORINE CHEMISTRY, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 107, no. 2, February 2001 (2001-02-01), pages 255 - 264, XP004315006, ISSN: 0022-1139 * |
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 26 1 July 2002 (2002-07-01) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009010391A1 (de) * | 2007-07-19 | 2009-01-22 | Robert Bosch Gmbh | Verfahren zum ätzen einer schicht auf einem silizium-halbleitersubstrat |
US8946090B2 (en) | 2007-07-19 | 2015-02-03 | Robert Bosch Gmbh | Method for etching a layer on a silicon semiconductor substrate |
Also Published As
Publication number | Publication date |
---|---|
US20060006057A1 (en) | 2006-01-12 |
EP1519895A1 (de) | 2005-04-06 |
JP4499559B2 (ja) | 2010-07-07 |
US8382940B2 (en) | 2013-02-26 |
DE10229037A1 (de) | 2004-01-29 |
JP2005531479A (ja) | 2005-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004002882A1 (de) | Vorrichtung und verfahren zur erzeugung von chlortrifluorid und anlage zu ätzung von halbleitersubstraten mit dieser vorrichtung | |
EP2171750B1 (de) | Verfahren zum ätzen einer schicht auf einem silizium-halbleitersubstrat | |
DE69719925T2 (de) | Vorrichtung und Verfahren zur Plasmabrennerserzeugung | |
DE68928402T2 (de) | Verfahren zur Entfernung einer Oxidschicht auf einem Substrat | |
DE69835032T2 (de) | Verbesserte methode eine oxidschicht zu ätzen | |
DE69513758T2 (de) | Ätzverfahren und Plasmareaktor zur Durchführung desselben | |
DE4202158C1 (de) | ||
DE69224640T2 (de) | VERFAHREN ZUR BESCHICHTUNG EINES SIOx FILMES MIT REDUZIERTER INTRINSISCHER SPANNUNG UND/ODER REDUZIERTEM WASSERSTOFFGEHALT | |
DE69500898T2 (de) | Texturierter Fokussierring und dessen Verwendung in einer Plasmabearbeitungsvorrichtung | |
DE4104762A1 (de) | Verfahren und vorrichtung zur bearbeitung einer oberflaeche | |
DE102004001099A1 (de) | Oxidationsverfahren mit hochdichtem Plasma | |
EP2459767A1 (de) | Reinigen einer prozesskammer | |
WO2002062114A1 (de) | Plasmaanlage und verfahren zur erzeugung einer funktionsbeschichtung | |
DE4105103C2 (de) | ||
CN102598202B (zh) | 用于等离子灰化设备的调谐硬件和使用该调谐硬件的方法 | |
EP3708547A1 (de) | Bauteil aus dotiertem quarzglas für den einsatz in einem plasma-unterstützten fertigungsprozess sowie verfahren zur herstellung des bauteils | |
EP1040506B1 (de) | Vorrichtung zur erzeugung angeregter/ionisierter teilchen in einem plasma | |
JPH1176740A (ja) | 有機フッ素系排ガスの分解処理方法及び分解処理装置 | |
DE20220316U1 (de) | Vorrichtung zur Erzeugung von Chlortrifluorid und Anlage zur Ätzung von Halbleitersubstraten mit dieser Vorrichtung | |
DE69836146T2 (de) | Plasma-abscheidung von filmen | |
EP1565592B1 (de) | Verfahren zum reinigen einer prozesskammer | |
EP3526812B1 (de) | Verfahren zum anisotropen drie-ätzen mit fluorgasmischung | |
EP1287546A1 (de) | Plasmaätzanlage | |
EP1210468B1 (de) | Verfahren zum reinigen eines pvd- oder cvd-reaktors sowie von abgasleitungen desselben | |
DE10045793C2 (de) | Verfahren zum Strukturieren eines Substrats |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REEP | Request for entry into the european phase |
Ref document number: 2003720246 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003720246 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2006006057 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10519724 Country of ref document: US Ref document number: 2004516435 Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 2003720246 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10519724 Country of ref document: US |