WO2003104727A1 - Heat pump and dehumidifying air conditioner - Google Patents
Heat pump and dehumidifying air conditioner Download PDFInfo
- Publication number
- WO2003104727A1 WO2003104727A1 PCT/JP2003/007328 JP0307328W WO03104727A1 WO 2003104727 A1 WO2003104727 A1 WO 2003104727A1 JP 0307328 W JP0307328 W JP 0307328W WO 03104727 A1 WO03104727 A1 WO 03104727A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- evaporator
- section
- air
- pressure
- Prior art date
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 208
- 238000001704 evaporation Methods 0.000 claims abstract description 124
- 238000001816 cooling Methods 0.000 claims abstract description 93
- 230000007246 mechanism Effects 0.000 claims abstract description 47
- 230000001965 increasing effect Effects 0.000 claims abstract description 39
- 230000008020 evaporation Effects 0.000 claims abstract description 35
- 230000007423 decrease Effects 0.000 claims abstract description 26
- 230000003247 decreasing effect Effects 0.000 claims abstract description 24
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 239000012530 fluid Substances 0.000 claims abstract description 22
- 238000009833 condensation Methods 0.000 claims abstract description 21
- 230000005494 condensation Effects 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 21
- 239000002826 coolant Substances 0.000 claims description 10
- 238000009834 vaporization Methods 0.000 claims 1
- 230000008016 vaporization Effects 0.000 claims 1
- 239000007788 liquid Substances 0.000 description 30
- 238000007791 dehumidification Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 18
- 238000005192 partition Methods 0.000 description 16
- 239000012071 phase Substances 0.000 description 15
- 238000004378 air conditioning Methods 0.000 description 13
- 229920006395 saturated elastomer Polymers 0.000 description 8
- 230000000149 penetrating effect Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 239000011555 saturated liquid Substances 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000003303 reheating Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 210000005239 tubule Anatomy 0.000 description 2
- 241001634822 Biston Species 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- FFGPTBGBLSHEPO-UHFFFAOYSA-N carbamazepine Chemical compound C1=CC2=CC=CC=C2N(C(=O)N)C2=CC=CC=C21 FFGPTBGBLSHEPO-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/04—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/86—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/153—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/385—Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F2003/144—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
- F24F2003/1446—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/20—Humidity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/021—Inverters therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/022—Compressor control arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to a heat pump and a dehumidifying air conditioner, and more particularly to a heat pump that does not cause a problem in the operation of an evaporator even if the degree of throttle of a throttle mechanism is reduced, and a dehumidifier that can easily cope with both a cooling operation and a dehumidifying operation. It concerns air conditioners. Background art
- FIG. 1 Conventionally, there has been a dehumidifying air conditioner as shown in FIG.
- This device comprises a compressor 260 for compressing the refrigerant C, a condenser 220 for condensing the compressed refrigerant C in the outside air B, and an expansion valve with bypass 2 having solenoid pulp for the condensed refrigerant C.
- the pressure is reduced at 91, and the heat exchanger 300,, which repeats evaporation and condensation at an intermediate pressure, and the refrigerant C condensed here is depressurized at an expansion valve with a bypass 2992 having a solenoid valve.
- an evaporator 210 for evaporating the processing air A from the air-conditioned space 101 to the dew point temperature.
- the bypass solenoid pulp of the expansion valve 292 is closed, and the evaporation and condensation pressures of the heat exchangers 300, are reduced by the condensation pressure of the condenser 220 and the evaporator 210. Intermediate pressure of the evaporation pressure.
- the heat exchanger 300 is opened by opening the solenoid valve of the expansion valve 292 to make the pressure of the heat exchanger 300 '' equal to the evaporation pressure of the evaporator 210. Operate,, and as part of the evaporator.
- the heat exchanger 300 '' Heat exchange is performed between the treated air before and after being cooled to the dew point temperature in 210 using a refrigerant as a medium. In this way, the process air A cooled to the dew point in the evaporator 210 is reheated in the heat exchanger 300 ′ ′′.
- the heat transfer area for cooling the processing air during the cooling operation is the total area of the evaporator 210 and the heat exchanger 300 ′ ′′.
- the evaporator 210 only has a heat transfer area for cooling the processing air to the dew point temperature and removing moisture. Therefore, the evaporation temperature of the evaporator 210 decreases due to the large volume flow rate of the refrigerant (the amount of pressure applied to the compressor) suitable for the cooling operation from the compressor 260, which causes problems such as frost formation. Easy. Further, if the cooling capacity is determined so as to cover the cooling load, the capacity becomes excessively large as compared with the capacity required for the dehumidifying load, and the frequency of starting and stopping of the compressor 260 increases, which causes a problem. Disclosure of the invention
- an object of the present invention is to provide a heat pump that does not cause a problem in the operation of the evaporator even if the throttle degree of the throttle mechanism is increased or decreased, and a dehumidifying air conditioner that can easily cope with both the cooling operation and the dehumidifying operation. .
- a heat pump HP1 includes, as shown in FIG. 1, for example, a booster 260 for increasing the pressure of a refrigerant; And a condenser 220 for heating the high heat source fluid B and evaporating the refrigerant to cool the low mature source fluid A; connecting the condenser 220 and the evaporator 210
- the refrigerant is evaporated and condensed at an intermediate pressure between the condensing pressure of the condenser 220 and the evaporating pressure of the evaporator 210 provided in the refrigerant passage that performs the cooling operation.
- Heat exchange means 300 for cooling and heating the low heat source fluid A by the intermediate pressure condensation; heat exchange Recommendation 28
- a first throttle mechanism 292 provided in the refrigerant path between the means 300 and the evaporator 210 and capable of increasing and decreasing the degree of throttle; a condenser 220 and heat exchange means 3
- a first controller for increasing / decreasing the refrigerant flow rate; a low heat source fluid A is provided for cooling in the heat exchange means 300, cooling in the evaporator 210, and heating in the heat exchange means 300; Are received in this order.
- the second aperture mechanism can also typically increase or decrease the aperture.
- the aperture is typically increased or decreased by increasing or decreasing the opening area.
- the aperture may be increased or decreased by increasing or decreasing the length of the capillary tube or the number of apertures arranged in series.
- the flow rate of the refrigerant passing through the evaporator is typically increased or decreased by making the rotation speed of the booster driving motor variable.
- the motor is an inverter motor
- the controller is a controller that adjusts the output frequency of the inverter. If the rotation speed of the booster is changed, for example, if the rotation speed is reduced, the suction volume flow rate (pumping amount) of the booster decreases, and it is possible to prevent the evaporation pressure of the evaporator from becoming too low.
- the increase and decrease of the degree of restriction and the increase and decrease of the refrigerant flow rate are typically performed according to the amount of heat transferred from the low heat source fluid to the high heat source fluid.
- the first controller that reduces the flow rate of the refrigerant passing through the evaporator in accordance with the increase or decrease of the throttle degree of the first throttle mechanism is provided, the increase or decrease of the throttle degree of the first throttle mechanism is provided. It is possible to adjust the refrigerant flow rate to match the operation mode corresponding to the above.
- the throttle degree of the throttle mechanism 292 may be configured to be able to be reduced to a throttle degree sufficient for the intermediate pressure to be substantially the same as the evaporation pressure of the evaporator 210. With this configuration, the degree of throttle of the first throttle mechanism can be reduced to a degree of throttle sufficient to make the above-mentioned intermediate pressure substantially equal to the evaporating pressure of the evaporator.
- the heat exchange means 300 can be combined with the evaporator 210 to act as a part of the evaporator.
- the first controller 292 is configured to be capable of adjusting the refrigerant flow rate at a maximum set flow rate or less, and the first throttle mechanism 292 is provided.
- the above-mentioned refrigerant flow rate can be adjusted to be equal to or less than the first set maximum flow rate at the time of the operation at the sufficient throttle degree, and at the time of the operation at which the first throttle mechanism 292 is throttled below the sufficient throttle degree.
- the coolant flow rate can be adjusted to be equal to or less than a second set maximum flow rate, and the second set maximum flow rate is configured to be smaller than the first set maximum flow rate.
- the second set maximum flow rate is smaller than the first set maximum flow rate, so that the refrigerant flow rate does not become excessive when the first throttle mechanism is operated with a sufficient degree of throttle. You can do so.
- the second throttle mechanism 291 is configured so that the degree of throttle can be increased or decreased, and the refrigerant flow rate is equal to or less than the maximum set flow rate.
- a second controller 501 that increases or decreases according to the degree of aperture of the aperture mechanism 291 may be provided.
- the first and second controllers may be different controllers or may be configured as the same controller.
- the heat pump includes inverter motors 502, 505 for driving a booster 260; the increase / decrease of the coolant flow * is controlled by the inverter motor 5 Adjust the rotation speed of 02, 505 P03 07328
- a dehumidifying air conditioner 21 includes, as shown in FIG. 1, a booster 260 for increasing the refrigerant C; A condenser 220 for condensing and heating the high heat source fluid B; an evaporator 210 for evaporating the coolant C to cool the processing air A to the dew point temperature; a condenser 220 and an evaporator 2
- the refrigerant C is evaporated and condensed at an intermediate pressure between the condensing pressure of the condenser 220 and the evaporating pressure of the evaporator 210, which is provided in the refrigerant path connecting the evaporator 210 and the evaporator 210.
- Heat exchange means 300 for cooling the processing air A by the intermediate pressure condensation, and heating the processing air A by the intermediate pressure condensation; and provided in the refrigerant path between the heat exchange means 300 and the evaporator 210.
- a first throttle mechanism 292 capable of increasing or decreasing the degree of throttle; and a second throttle provided in the refrigerant path between the condenser 220 and the heat exchange means 300.
- Structure 291 a first controller 5101 for increasing or decreasing the flow rate of the refrigerant passing through the evaporator 210 in accordance with an increase or decrease in the degree of throttle of the first throttle mechanism 291; Is configured to receive cooling in the heat exchange means 300, cooling in the evaporator 210, and heating in the heat exchange means 300 in this order.
- a dehumidifying air conditioner 21 includes, as shown in FIG. 1, a booster 260 for increasing the refrigerant C; A condenser 220 for condensing and heating the high heat source fluid B; an evaporator 210 for evaporating the coolant C to cool the processing air A to the dew point temperature; a condenser 220 and an evaporator 2
- the refrigerant C is evaporated and condensed at an intermediate pressure between the condensing pressure of the condenser 220 and the evaporating pressure of the evaporator 210, which is provided in the refrigerant path connecting the evaporator 210 and the evaporator 210.
- a second operation mode for cooling the processing air A is configured to be switchable; and a first controller 50 for increasing or decreasing the flow rate of the refrigerant passing through the evaporator 210 in response to the switching of the operation mode.
- FIG. 1 is a flowchart of a dehumidifying air conditioner according to a first embodiment of the present invention.
- FIG. 2 is a block diagram showing the configuration of the controller shown in FIG.
- 3A to 3C are a schematic side view and a perspective view of a heat exchanger showing an installation state of the dehumidifying air conditioner shown in FIG.
- FIG. 4 is a Mollier diagram of the heat pump of the dehumidifying air conditioner shown in FIG.
- FIG. 5 is a bar graph illustrating the relationship between the dehumidification load and the cooling load.
- FIG. 6 is a psychrometric chart illustrating the operation of the dehumidifying air conditioner of FIG. 1 in the dehumidifying operation mode.
- FIG. 7 is a partial flow chart of the dehumidifying air conditioner according to the second embodiment of the present invention.
- FIG. 8A and 8B are a schematic side view showing a state of installation of the dehumidifying air conditioner shown in FIG. 7 and a perspective view of a heat exchanger.
- FIG. 9 is a Mollier diagram of the heat pump of the dehumidifying air conditioner shown in FIG.
- FIG. 10 is a flowchart of a conventional heat pump and a dehumidifying air conditioner.
- FIG. 1 is a flow chart of a heat pump HP1 according to a first embodiment of the present invention and a dehumidifying air conditioner 21 provided with the heat pump HP1 as an example of the dehumidifying air conditioner of the present invention.
- the dehumidifying air conditioner 21 is a dehumidifying air conditioner 21 that cools the processing air A to its dew point temperature, removes moisture, reheats and dehumidifies by reheating, and a cooling operation that mainly removes sensible heat.
- processing air A may be slightly overcooled, but in this case, it is "cooled to dew point temperature or less and dehumidified”. However, this concept is also included.
- air that has been cooled to the dew point temperature to remove moisture has a lower dew point temperature than the original air.Therefore, based on the initial dew point temperature, it is ⁇ cooled below the dew point temperature and dehumidified ''. Including just in case.
- the evaporator 210 lowers the humidity of the processing air A as a low heat source fluid, and maintains the air-conditioned space 101 to which the processing air A is supplied in a comfortable environment.
- the processing air-related equipment configuration will be described along the route of the processing air A from the air-conditioned space 101.
- the path 107 connected to the air-conditioned space 101, the first section 310 of the heat exchanger 300 as a heat exchange means, the path 108, and the processing air A are kept below their dew point temperature.
- Evaporator to be cooled 210, route 1 109, connected to second section 3200 of heat exchanger 300, route 110, route 110 A blower 102 for circulating the processed air A is arranged in this order with a path 111, and is configured to return to the air-conditioned space 101.
- SA the air supplied from the dehumidifying air conditioner 21 to the air conditioning space 101
- the air returning from the air conditioning space 101 to the dehumidifying air conditioner is indicated by.
- cooling air (outside air) B as a high heat source fluid from the outdoor OA
- path 124, condenser 220 for cooling and condensing refrigerant C, path 125, and cooling air B are blown.
- the air blower 140 and the path 126 are arranged in this order, and are configured to discharge the exhaust air EX to the outdoor OA.
- the equipment configuration of the heat pump HP1 will be described along the path of the refrigerant C from the evaporator 210.
- the evaporator 210, route 204 compresses the refrigerant C evaporated and gasified in the evaporator 210 (pressurizes).
- Compressor 260 as a booster, route 201, condenser 2 20, path 202, restrictor 330, evaporator section 251, which cools process air A flowing through first section 310 of heat exchanger 300, second section 320 of heat exchanger 300 Flowing process
- the heat pump HP 1 is constructed in such a way that the condensing section 25 2 which heats (reheats) the air A, the path 203 and the throttle 250 are arranged in this order, and returns to the evaporator 210 again. ing.
- the evaporating section 25 1 is formed by a tube meandering in the first section 310, and the condensing section 25 2 is formed by a tube meandering in the second section 320.
- the evaporating section 25 1 is connected to the condensing section 252 after meandering the first section 3 10 several times.
- the condensing section 25 2 is connected to the path 203 after meandering the second section 320 multiple times.
- each section is shown to meander in a plane along the flow of the processing air A, but the flow of the processing air A is actually It is better to meander in a plane perpendicular to the plane (see Fig. 3B and Fig. 3C).
- a plurality of orthogonal surfaces may be provided so that there are a plurality of meandering layers.
- the evaporating section 25 1 and the condensing section 25 2 are formed by a continuous heat transfer tube, and after the evaporating section 25 1 is fully meandered several times in the first section 3 10, If the condensing section 255 is meandered several times in the second section after evaporating the flowing refrigerant, the number of pipes connecting the evaporating section 251 and the condensing section 252 is one or a minimum. (2 to 4) is enough, so it is easy to install the first section 310 and the second section 320 separately (see Figs. 3B and 3C).
- a path 202 A for bypassing the throttle 330 is provided in the path 202 of the refrigerant C, and a throttle 335, solenoid pulp and 336 are provided in series in the path 202A.
- a path 203 A that bypasses the throttle 250 is provided in the path 203 of the refrigerant C, and a solenoid valve 25 3 is provided in the path 203 A.
- the second throttle mechanism 291, including the aperture 330, the aperture 335, and the solenoid valve 336, is configured.
- the first aperture mechanism 292, including the aperture 250 and the solenoid valve 25, is formed. It is configured.
- the solenoid pulp 253 is opened, the opening area is formed so as to be approximately equal to the cross-sectional area of the passage 203. In other words, when the solenoid valve 25 3 is opened, the aperture of the first aperture mechanism 292 is reduced (the aperture area is increased), and an aperture that is so large that it does not substantially act as an aperture is provided. Will have.
- the second diaphragm mechanism 291 forms a diaphragm having a large opening area (the opening area of the diaphragm 330 and the opening area of the plus diaphragm 335). At this time, the aperture of the second aperture mechanism decreases That is, the opening becomes large.
- the solenoid pulp 336 is closed, the second diaphragm mechanism 291 forms a diaphragm having a small opening area (the opening area of the diaphragm 330). At this time, the degree of aperture of the second aperture mechanism is increased and good! The aperture is smaller.
- the opening area of the first drawing mechanism 29 2 becomes large, and the first drawing mechanism 29 2 is set so that it does not substantially form a drawing. You.
- the opening area of the first aperture mechanism 29 2 is reduced, and the first aperture mechanism 29 2 is set to form an aperture.
- the heat exchanger 300 is a heat exchanger that indirectly exchanges heat between the treated air A before and after flowing into the evaporator 210 via the refrigerant C.
- the heat exchanger 300 has a first section 310 for flowing the processing air A before passing through the evaporator 210 and a second section 310 for flowing the processing air A after passing the evaporator 210.
- the two sections 320 form separate rectangular parallelepiped spaces. Both compartments are provided with partitions 301 and 302 so that the processing air flowing through both compartments is not mixed, and connect the evaporating section 251, which is a heat exchange tube, to the condensing section 252
- the pipe 202B penetrates the partition walls of these two sections.
- the treated air A before being introduced into the evaporator 210 is supplied to the first section 310 from the right through the path 107 and from the left through the path 108 from the left. get out.
- treated air A which has been cooled to the dew point temperature (below) through the evaporator 210 and has a reduced absolute humidity, is supplied from the left side in the figure to the second section 320 through the path 109, and from the right side. Exit through Route 1 110.
- the dehumidifying air conditioner 21 according to the present embodiment is configured such that the return air RA has a wet passage 107.
- a temperature detector 503 and a temperature detector 504 are provided.
- the compressor 260 is configured to be driven by an AC motor 505, and the AC motor 505 is supplied with AC power from an impeller 502, which is a frequency converter.
- a controller 501 for controlling the dehumidifying air conditioner 21 is provided.
- the controller 501 is connected to the humidity detector 503, temperature detector 504, inverter 505, and solenoid valves 253, 336 via signal wiring.
- the controller 501 will be described with reference to the block diagram of FIG.
- the controller 501 may be constituted by a so-called microphone computer.
- the controller 501 includes a control section 501A and a memory section 501D.
- the control unit 501A includes a mode selection module 501B and an impeller control module 501C.
- the mode selection module 503 B determines whether to select the dehumidification operation mode or the cooling operation mode based on the signal from the humidity detector 503 and the signal from the temperature detector 504, and makes the determination. According to the result, a signal for opening and closing is transmitted to the solenoid pulp 253 and 336. That is, when the humidity is high and the temperature (air temperature) is relatively low, the dehumidifying operation mode is selected, the solenoid pulp 253 is closed, and the solenoid valve 336 is closed. When the solenoid pulp 253 is closed, the refrigerant pipe between the heat exchanger 300 and the evaporator 210 is connected via the throttle 250 and the heat exchanger 300 The evaporating pressure and the condensing pressure at become the intermediate pressure.
- the temperature air temperature
- the absolute humidity is usually high. In this case, it is better to select the cooling operation mode and actively remove both sensible heat and latent heat. 12.
- the selection of the dehumidifying operation mode and the cooling operation mode may be performed manually without depending on the mode selection module. High and low humidity also have personal preferences. Also, regardless of the humidity or temperature, there may be cases where it is desired to forcibly lower the temperature anyway, or for simply drying the room in order to lower the humidity anyway.
- the refrigerant pipe between the heat exchanger 300 and the evaporator 210 is connected substantially without restriction, and the inside of the heat exchanger 300
- the pressure inside the heat transfer tube is substantially equal to the evaporation pressure of the evaporator 210 in both the evaporator section 25 1 and the condensing section 25 2. Acts as an evaporator.
- the inverter control module 501C adjusts the frequency of the inverter 502.
- the maximum rotation speed of the AC motor 505 is stored in the memory section. This value can be freely changed and set from a maximum rotation speed setting input unit (not shown) provided in the controller 501.
- the mode selection module 501 0 stores the maximum rotation speed 501 0 in the dehumidifying operation mode or the maximum rotation speed 501 0F in the cooling operation mode according to the selected mode. Read from section 501 D to specify.
- the inverter control module 501C adjusts the frequency output of the inverter 502 with the specified maximum rotation speed as an upper limit. That is, the rotation speed of the motor 505 is adjusted.
- the displacement of the refrigerant of the compressor 260 (when the compressor is a reciprocating compressor having a piston, the displacement is determined by the volume and rotation speed of one stroke of the biston). Can be adjusted with the maximum flow rate during dehumidification, which is the second maximum flow rate, as the upper limit.
- the amount of refrigerant to be pushed by the compressor 260 can be adjusted with the first maximum flow rate, which is the maximum flow rate during cooling, as the upper limit.
- the maximum rotation speed in the cooling operation mode is set to be lower than the maximum rotation speed in the cooling operation mode. In this case, the mass flow rate of the refrigerant is adjusted in accordance with the adjustment of the amount of award.
- the opening degree (reciprocal of the degree of throttling) corresponding to the degree of throttling of the throttling mechanism 292 is reduced, and the amount of displacement of the refrigerant of the compressor 260 is reduced. Since the pressure is reduced to reduce the evaporation pressure of the evaporator 210, it is possible to prevent the evaporator 210 from lowering, and to prevent, for example, frost on the evaporator 210. In other words, the amount of displacement of the compressor 260 may increase or decrease in accordance with the operation mode.
- the compressor 260 operates at a constant rotational speed at the maximum rotational speed of each operation mode, stops cooling when it is too cold in the cooling operation mode, and stops when it is too dry in the dehumidification operation mode. Off operation may be performed, or the maximum rotation speed may be set as the upper limit, and the rotation speed may be set so that the temperature becomes a predetermined set value in the cooling operation mode and the humidity becomes the predetermined set value in the dehumidification operation mode. May be controlled.
- valve 336 has been described as an on / off solenoid valve, it may be a control valve capable of adjusting the degree of throttling according to a cooling load or a dehumidifying load. At this time, the aperture 3 3 5 is not necessary.
- the compressor 260 is a positive displacement compressor driven by an electric motor with variable rotation speed (for example, a reciprocating type having a piston and a cylinder), and increases or decreases the rotation speed to increase or decrease the flow rate of the refrigerant.
- variable rotation speed for example, a reciprocating type having a piston and a cylinder
- the number of cylinders to be used may be increased or decreased to increase or decrease the amount of coolant supplied. It is also possible to provide a plurality of compressors and adjust them by increasing or decreasing the number of operating units. For larger dehumidifying air conditioners, centrifugal compressors are used, It may be adjusted by a damper or inlet damper control.
- the evaporator 210 and the heat exchanger 30 A configuration example of 0 will be specifically described.
- the evaporating section 251 which is composed of heat transfer tubes (capillaries), is arranged to penetrate many plate fins. They are connected to each other by U-tubes outside the outermost fins. In this way, the heat transfer tube penetrates the first section 310 multiple times while meandering.
- the first section 310 is a rectangular parallelepiped space formed by arranging a large number of rectangular plate fins in parallel. Further, it is preferable that the outer surface of the rectangular parallelepiped space for accommodating the plate fin and the thin tube group is surrounded by a plate housing. However, two opposing surfaces of the housing are open, and the processing air passes through the openings.
- the condensing section 25 which is a heat transfer tube, penetrates the second section 3 20 several times in a meandering manner.
- the second section 320 is also a rectangular parallelepiped space having the same structure as the first section 310.
- the end of the evaporating section 25 1 and the end of the condensing section 25 2 are connected by a pipe 202B.
- the pipe 202B is configured as a part of a continuous tube forming the evaporating section 251 and the condensing section 252.
- the evaporating section 251 which is the refrigerant flow path, and the condensing section 255, respectively, constitute a meandering narrow tube group.
- the refrigerant C flowing in one direction as a whole from the evaporating section 25 1 to the condensing section 25 2 flows in a meandering manner in the group of small tubes while evaporating.
- heat from the hot process air A flowing through the first compartment 310 is transferred to the cooler air flowing through the second compartment 320. Inform process air A.
- the evaporator 210 also has a heat transfer tube formed through a number of rectangular plate fins.
- the configuration is configured as a rectangular parallelepiped space like the first section 310 and the second section 320. They are connected by U-tubes outside the outermost fins. In this way, the heat transfer tube penetrates the fin several times while meandering.
- the evaporating section 25 1 and the condensing section 25 2 are each configured as a single-layer thin tube group arranged in a meandering manner in one plane orthogonal to the flow of the processing air A.
- the evaporator 210 is configured as a two-layered thin tube group arranged in a meandering manner in two planes orthogonal to the flow of the processing air A.
- the number of layers is not limited to this, and may be determined according to the amount of heat transfer.
- the distribution of the heat transfer area of the thin tube group in the heat exchanger 300 and the evaporator 210 may be determined according to the ratio between the latent heat load and the sensible heat load, as described later.
- the evaporator 210 is disposed between the first section 310 and the second section 320.
- a first compartment 3 1 0, the evaporator 2 1 0, can be configured as a second compartment 3 2 0, structure Becomes simple. It is preferable that the fins are cut so as to be discontinuous as shown in the drawing between each of the sections 310, 320 and the evaporator 210. This is because the temperature of each adjacent part is different.
- each tube is connected by a simple U-tube, and one or a few pipes (or tubes) are connected between each section 310 and 320 and between the evaporators 210.
- the configuration is simple and the manufacturing is easy because it is only necessary to connect with a part).
- a heat exchanger assembly comprising a first section 310, an evaporator 210, and a second section 320 And a blower 102 for circulating the return air RA and the supply air SA. If a cross flow fan is used as the blower 102, the indoor units can be compacted.
- a dust filter is provided on the upstream side of the flow of the return air RA in the first section 310.
- a drain pan 450 is provided below the heat exchanger 300 and the evaporator 210. From the drain pan 450, a drain pipe is led outside.
- Return air RA is filtered through a filter, pre-cooled in the first section 310, further cooled in the evaporator 210 and dehumidified to saturated air.
- This saturated air is reheated in the second section 320 and supplied to the air-conditioned space 101 by the blower 102 as supply air SA having an appropriate absolute humidity and an appropriate temperature, that is, an appropriate relative humidity. Is done.
- the treated air is pre-cooled while passing in one direction through a mass of plate fins and small tubing that looks like a normal cooling fin tube heat exchanger (although there is a gap between each section and the evaporator). , Moisture removal and reheating are all performed at once, resulting in supply air SA with appropriate humidity and temperature.
- a condenser 220, a compressor 260, and a blower 140 are housed in an outdoor unit installed outside the air-conditioned space 101. Then, the condenser 220 and the evaporating section 25 1 of the first section 310 are connected by a pipe 202, and the evaporating The unit 210 and the compressor 260 are connected by a pipe 203. That is, the indoor unit and the outdoor unit are connected only by two pipes 202 and 203. In this drawing, the aperture mechanisms 29 1 and 29 2 are not shown.
- the operation of the heat pump HP 1 will be described with reference to a refrigerant Mollier diagram in a dehumidifying operation mode as a first operation mode of the heat pump HP 1.
- FIG. 1 the case of the dehumidification operation mode as the first operation mode will be described first.
- the solenoid pulp 336 is closed and the solenoid pulp 253 is also closed.
- the refrigerant gas C compressed by the compressor 260 is guided to the condenser 220 via a refrigerant gas pipe 201 connected to a discharge port of the compressor 260.
- the refrigerant gas C compressed by the compressor 260 is cooled and condensed by the outside air B as cooling air.
- the refrigerant outlet of the condenser 220 is connected to the inlet of the evaporating section 25 1 of the heat exchanger 300 by a refrigerant path 202.
- a throttle 330 is connected to the refrigerant path 202, and a bypass path 202A that bypasses the refrigerant path restriction 330.
- the liquid refrigerant C that has exited the condenser 220 is depressurized by the throttle 330, expands, and a part of the refrigerant C evaporates (flashes).
- the refrigerant C mixed with the liquid and the gas reaches the evaporating section 251, where the liquid refrigerant C penetrates the plate fin and wets the inner wall of the meandering evaporating section 251 tube.
- the treated air A that flows and evaporates in the first section 310 before flowing into the evaporator 210 is cooled (precooled).
- the refrigerant which has been evaporated to some extent in the evaporating section 251, and has become a mixture of gas and liquid, is led to the pipe 202B and flows into the condensing section 2552.
- Process air A flowing through the second section 320 that is, pre-cooled in the first section 310, cooled and dehumidified in the evaporator 210, and has a lower temperature than before flowing into the evaporator 210
- the treated air A is heated (reheated), and the refrigerant itself is deprived of heat and condensed.
- the condensing section 52 is formed of a series of tubes (including U tubes). That is, since the refrigerant gas C (and the refrigerant liquid C that did not evaporate) evaporated in the evaporating section 25 1 is configured as an integral flow path, the condensing section
- the heat is transferred at the same time as mass transfer by flowing into and condensing into 25 2.
- the outlet side of the last condensing section 250 of the heat exchanger 300 is connected to the evaporator 210 by a refrigerant liquid pipe 203, and an expansion valve 250 is provided in the refrigerant pipe 203. Also, a solenoid valve 253 that bypasses the expansion valve 250 is provided.
- the refrigerant liquid C condensed in the condensing section is decompressed by the throttle 250 and expanded to lower the temperature, enters the evaporator 210 and evaporates, and cools the processing air A by the heat of evaporation.
- the throttles 330 and 250 for example, orifices, capillary tubes, expansion valves, and the like are used. Since the solenoid pulp 253 is closed, the refrigerant liquid C does not pass through the solenoid pulp 253.
- the controller 501 closes the solenoid valve 25 3 and switches the degree of throttle of the first throttle mechanism 29 2 to an increased value (small opening area).
- the rotation speed of the drive inverter motor 505 is reduced so as to reduce the amount of the refrigerant of the machine 260.
- Evaporator 2 1 The evaporation pressure of 0 becomes appropriate, and the refrigerant mass flow rate as the refrigerant flow rate passing through the evaporator also decreases.
- the refrigerant C evaporated and gasified by the evaporator 210 is led to the suction side of the compressor 260 through the path 204, and the above cycle is repeated.
- the behavior of the refrigerant C in the evaporating section 25 1 and the condensing section 25 2 of the heat exchanger 300 will be described.
- the liquid-phase and gas-phase refrigerant C flows into the evaporating section 25 1.
- Refrigerant liquid C which is partially vaporized and slightly contains a gas phase may be used.
- the refrigerant C pre-cools the processing air A and heats itself, and flows into the condensing section 252 while increasing the gas phase.
- the condensing section 255 heats the processing air A, which has a lower temperature than the processing air A in the evaporating section 251, by being cooled and dehumidified, and deprives itself of heat to condense the gas-phase refrigerant C. .
- the refrigerant C flows through the refrigerant flow path while undergoing a phase change between a gas phase and a liquid phase, and the treated air A before being cooled by the evaporator 210 and the absolute humidity by being cooled by the evaporator 210 Is exchanged with the treated air A in which the temperature is reduced.
- the solenoid valve 33 is closed to open and the refrigerant C is allowed to flow through the throttle 35, and the solenoid valve 25 is closed and opened to restrict the refrigerant C.
- a pressure drop is prevented from occurring around 250, and the operation mode is switched from the dehumidification operation as the first operation mode to the cooling operation as the second operation mode.
- the operating speed of the compressor 260 is increased to increase the amount of coolant dispensed.
- the evaporation pressure of the evaporator 210 becomes appropriate, and the refrigerant mass flow rate as the refrigerant flow rate passing through the evaporator also increases.
- the pressure drop of the refrigerant C around the throttle 250 is reduced to almost zero, and the pressure drop of the refrigerant C excluding the pipe pressure loss occurs at the throttles 330 and 335.
- the pressure of the refrigerant C in the condensing section 25 2 of the heat exchanger 300 and the evaporating section 25 1 becomes approximately equal to the pressure of the refrigerant C in the evaporator 210, and the evaporator 2
- refrigerant C also evaporates in the condensing section 25 2 and the evaporating section 25 1. Therefore, the heat transfer area of evaporation increases, so that the cooling capacity, that is, the sensible heat treatment capacity can be increased.
- the dehumidifying operation mode by using the heat exchanger 300 as a reheat heat exchanger for the processing air A before and after passing through the evaporator 210, the amount of water condensed by cooling can be reduced as compared with the cooling operation mode. It is possible to increase the dehumidifying capacity, that is, the latent heat treatment capacity, from the cooling operation mode. As a result, in the dehumidifying operation mode, the humidity can be reduced more quickly than in the cooling operation mode, and it is possible to cope with a so-called low sensible heat ratio and a high humidity indoor air-conditioning load.
- the amount of dew condensation may be increased by reducing the amount of air blown by the blower 102 from that in the cooling operation mode.
- the blower 102 is also driven by a variable speed motor (not shown) to control the increase and decrease of the rotation speed.
- the dehumidifying air conditioner of the first embodiment When the dehumidifying air conditioner of the first embodiment is applied to a home air conditioner, the dehumidifying operation can be performed to prevent the room from becoming too cold during the rainy season or sleeping at night in the summer, and provide a comfortable environment with low humidity. Can be made.
- the dehumidifying air conditioner of the present embodiment has a variable sensible heat ratio of the air conditioning load, and can perform energy-saving operation in both the dehumidifying operation and the cooling operation.
- the cooling speed is controlled by controlling the rotation speed of the compressor driving motor 505.
- the medium flow rate was adjusted to cope with the cooling load and dehumidification load.At the same time, turning on and off the electric motor and the compressor enabled adjustment beyond the rotational speed control to respond to a wide range of load fluctuations. It may be configured as follows. Next, the operation of the heat pump HP 1 in the dehumidifying operation mode will be described with reference to the Mollier diagram in FIG. For equipment, etc., refer to FIG. 1 as appropriate.
- FIG. 4 is a Mollier diagram when the refrigerant HF C134a is used. In this diagram, the horizontal axis is enthalpy and the vertical axis is pressure.
- examples of the refrigerant C suitable for the heat pump and the dehumidifying air conditioner of the present invention include HF C407C and HFC41OA. These refrigerants C have an operating pressure region shifted to a higher pressure side than HF C134a.
- point a is the state of the refrigerant outlet of the evaporator 210, and the refrigerant C is in a saturated gas state.
- the pressure is 0.34MPa
- the temperature is 5 ° C
- the enthalpy is 400.9 kj / kg.
- the state where this gas is sucked and compressed by the compressor 260 and the state at the discharge port of the compressor 260 are indicated by a point b. In this state, the pressure is 0.94 MPa, and the state is a superheated gas.
- This refrigerant gas C is cooled in the condenser 220 and reaches a point c on the Mollier diagram.
- This point is a state of saturated gas, pressure is 0.94MPa, temperature is 38 ° C. Under this pressure, it is further cooled and condensed, reaching point d.
- This point is a saturated liquid state, the pressure and temperature are the same as point c, and the enthalpy is 250.5 kjZkg.
- the refrigerant liquid C is decompressed by the throttle 330 and flows into the evaporating section 251 of the heat exchanger 300. On the Mollier diagram, it is indicated by point e.
- the pressure is an intermediate pressure of the present invention, and in this embodiment, is a value intermediate between 0.34 MPa and 0.94 MPa.
- a part of the liquid is evaporated and the liquid and the gas are mixed.
- the refrigerant liquid C evaporates under the intermediate pressure and reaches a point f between the saturated liquid line and the saturated gas line at the same pressure.
- a part of the liquid has evaporated, but the refrigerant liquid C remains to some extent.
- the refrigerant C in the state indicated by the point f flows into the condensing section 2 52.
- the refrigerant C is deprived of heat by the low temperature process air A flowing through the second section 320, and reaches point g.
- Point g is on the saturated liquid line in the Mollier diagram.
- the temperature is 18 ° C and the enthalpy is 223.3 kjZkg.
- the refrigerant liquid C at the point g is reduced in pressure to 0.34 MPa, which is a saturation pressure at a temperature of 5 ° C., by the throttle 250, and reaches the point.
- the refrigerant C at this point j reaches the evaporator 210 as a mixture of the refrigerant liquid C and the refrigerant gas C at 5 ° C, where it removes heat from the treated air A, evaporates, and points on the Mollier diagram. It becomes saturated gas in the state of a and is sucked into the compressor 260 again, and the above cycle is repeated.
- the refrigerant C changes the state of evaporation from the point e to the point f in the evaporating section 251, and changes from the point ⁇ to the point g1 in the condensing section 2552.
- the heat transfer coefficient is very high and the heat exchange efficiency is high because of the heat transfer between evaporation and condensation.
- the compression heat pump HP 1 including the compressor 260, the condenser 220, the throttles 330, 250, and the evaporator 210
- the operation of the heat pump HP1 in the cooling operation mode will be described.
- the operation up to point d in the figure is the same as that in the dehumidification operation mode, and the description up to point d is omitted.
- the refrigerant C After leaving the condenser 220, the refrigerant C passes through the throttle 330. After passing through the restrictor, the pressure decreases from 0.94 MPa force to 0.34 MPa, and moves from point d to point j 'in the figure.
- the enthalpy at this point j ' is 250.5 kJ / kg and the temperature is 5 ° C.
- the refrigerant evaporates in the heat exchanger 300 and the evaporator 210 to reach the point a.
- the dehumidification load and the cooling load will be described with reference to the bar graph in FIG.
- the maximum value of the dehumidification load (latent heat load) of the air conditioning load is not so different between the midsummer and the rainy season.
- the sensible heat load increases remarkably in the middle of summer, for example, in August. Therefore, as the design maximum load of the air conditioner that combines cooling and dehumidification, the load at the time of midsummer must be adopted.
- the maximum load in the dehumidifying operation mode is less than half of the maximum load in the cooling operation mode.
- the latent heat load is 30 and the total load in the rainy season such as the rainy season is 40, and the latent heat load is 2 5
- the amount of heat to be taken by the evaporator is much higher in the cooling operation mode than in the dehumidification operation mode. This is because the sensible heat load increases as the load increases. However, the latent heat load does not change much between rainy season and midsummer.
- the heat transfer area that can be used as the evaporator is added to the heat exchanger 300 in addition to the evaporator 210. Therefore, sufficient heat transfer can be secured.
- the heat transfer area that can be used as the evaporator corresponds to the evaporator 210, and can be a heat transfer area suitable for the dehumidification load.
- the heat exchanger 300 can be used for reheating the so-called excessively cooled process air after dehumidification, and at the same time, for pre-cooling the process air.
- the heat transfer area of the evaporator which has a sufficient heat transfer area for the air conditioner dedicated to cooling, is divided into three, and the evaporator 210, evaporator section 251, and condensing section 25 It should be 2.
- a compact and efficient air conditioner for both cooling and dehumidification can be constructed by adjusting the refrigerant piping with the same size as the evaporator of the air conditioner dedicated to cooling.
- the rotation speed of the compressor 260 can be changed to be lower than that in the cooling operation mode, that is, the flow rate of the refrigerant (the amount of rejection) can be reduced. Problems such as frost formation can be prevented even in the heat transfer area. Conversely, if the rotation speed of the compressor 260 cannot be changed, the heat transfer area of the evaporator must be large even in the dehumidifying operation mode (however, the compression load is small because the load is small). According to the embodiment of the present invention, this is not necessary.
- FIG. 6 Referring to the psychrometric chart in the dehumidifying operation mode of the dehumidifying air conditioner 21 shown in FIG. 6 and the configuration as appropriate with reference to FIG. 1, the dehumidifying operation of the dehumidifying air conditioner 21 equipped with the heat pump HP 1 The operation in the mode will be described.
- Figure In 6 the alphabetic symbols K, X, L, and M indicate the air condition in each part. This symbol corresponds to the letter circled in the flow diagram in Figure 1.
- FIG. 6 is applicable to the dehumidifying air conditioner according to another embodiment, which will be described later, as the psychrometric chart.
- process air A (state K) from the air-conditioned space 101 is sent through the process air path 107 to the first section 310 of the heat exchanger 300, where it is evaporated. Cooled to some extent by refrigerant C evaporating in 25 1. Since this is preparatory cooling before the evaporator 210 cools to the dew point temperature (below), it can be called precooling. During this time, while being pre-cooled in the evaporating section 251, a certain amount of water is removed and the absolute humidity is slightly reduced to reach the point X. Point X is on the saturation line. Alternatively, in the pre-cooling stage, the cooling may be performed to an intermediate point between the point K and the point X. Alternatively, it may be cooled down beyond the point X to a point slightly shifted to a low humidity side on the saturation line.
- the pre-cooled process air A is introduced into the evaporator 210 through the passage 108.
- the processing air A is cooled down to its dew point temperature (below) by the refrigerant C, which is decompressed by the expansion valve 250 and evaporates at a low temperature. Down to point L.
- the bold line indicating the change from point X to point L is drawn off the saturation line for convenience, but actually overlaps the saturation line.
- the treated air A in the state of the point L flows into the second section 320 of the heat exchanger 300 through the path 109.
- the refrigerant is condensed in the condensing section 252 and is heated to the point M while the absolute humidity is kept constant.
- the absolute humidity is sufficiently lower than point K, the dry-bulb temperature is not too low, and the air is sucked in by the blower 102 as air with an appropriate relative humidity and returned to the air-conditioned space 101. Is done.
- the processing air A is pre-cooled by evaporating the refrigerant C in the evaporating section 251, and the processing air A is reheated by condensing the refrigerant C in the condensing section 250.
- the refrigerant C evaporated in the evaporating section 25 1 is condensed in the condensing section 25 2. In this way, the heat exchange between the treated air A before and after being cooled by the evaporator 210 is indirectly performed by the same evaporation and condensation of the refrigerant C.
- Outside air B is introduced into the condenser 222 through the path 124. This outside air B takes heat from the condensing refrigerant C, and the heated outside air B is sucked into the blower 140 via the route 125 and discharged outside via the route 126 to be discharged as EX. Is done.
- the heat quantity of pre-cooling the processing air A in the first section 310 that is, the processing air A is re-cooled in the second section 320.
- the amount of heat ⁇ ⁇ is the amount of heat recovered, and the amount of heat obtained by cooling the processing air A by the evaporator 210 is AQ.
- the cooling effect of cooling the air-conditioned space 101 is ⁇ i.
- the dehumidifying air conditioner 21 has a heat transfer area of the evaporator by using the heat exchanger 300 as an air * air heat exchanger as the evaporator in the cooling operation mode. (5) By elevating the evaporation temperature, the cooling capacity, that is, the sensible heat treatment capacity, can be increased. As a result, the room temperature can be quickly lowered, and it is possible to cope with a so-called high sensible heat ratio, a dry and high-temperature indoor air conditioning load.
- the processing air A that has exited the air-conditioning space 101 (FIG. 1) (state K) is the first section 310 of the heat exchanger.
- Figure 1, evaporator 210 ( Figure 1), second section 3 of heat exchanger The treated air A cooled at 20 (FIG. 1) and exiting the second section 320 of the heat exchanger is in a state represented by a point near point X in the figure.
- the air flow rate of the blower 102 is set to be larger than that in the dehumidification operation mode. This is because a large amount of sensible heat can be easily obtained.
- the dehumidifying air conditioner 21 of the present embodiment has a heat exchanger in the dehumidifying operation mode.
- the amount of water condensed by cooling can be increased from that in the cooling operation mode, and the dehumidification capacity, that is, the latent heat treatment capacity, can be increased. it can.
- the dehumidification capacity that is, the latent heat treatment capacity
- the dehumidifying air conditioner 21 has a variable sensible heat ratio of the air conditioning load, and can perform energy-saving operation in both the dehumidifying operation and the cooling operation.
- FIG. 7 is a flowchart of a heat pump HP 2 according to a second embodiment of the present invention and a dehumidifying air conditioner 22 that is provided with the heat pump HP 2 and is an example of the dehumidifying air conditioner of the present invention.
- the difference from the dehumidifying air conditioner of the first embodiment is that the heat exchanger 300 ′ has a first section 310 ′ and a second section 320, which will be described in detail later. It consists of This dehumidifying air conditioner 22 is similar to the dehumidifying air conditioner 21 in that it can perform a dehumidifying operation in which the processing air A is cooled to its dew point temperature (hereinafter, dehumidifying) and a cooling operation.
- dehumidifying dehumidifying
- Evaporation section 2 51 that cools process air A flowing through first section 3 10 ′ of heat exchanger 300 ′, heats process air A flowing through second section 3 20 ′ of heat exchanger 300 ′ After alternately passing through the condensing section 25 2, the evaporating section 25 1 and the condensing section 25 2 (reheating), the path 203, the throttle 250 are arranged in this order, and again the evaporator 2. It returns to 10.
- the heat exchanger 300 ′ is a heat exchanger that indirectly exchanges heat between the treated air A before and after flowing into the evaporator 210 via the refrigerant C.
- the heat exchanger 300 ′ is provided with a heat exchange tube (fine) as a refrigerant flow path in each of a plurality of different planes PA, PB, and PC * orthogonal to the plane of the drawing and orthogonal to the flow of the processing air A. Pipes) are arranged substantially in parallel. In this figure, only one tube is shown in each plane for convenience of illustration.
- the heat exchanger 300 ′ has a first section 310, through which the processing air A before passing through the evaporator 210 flows, and a second section 310, through which the processing air A flows after passing through the evaporator 210.
- the second section 3 20 ′ constitutes a separate rectangular parallelepiped space.
- a partition 301 and a partition 302 are provided adjacent to each other, and a heat exchange tube is provided through the two partitions.
- the heat exchanger 300 divides one rectangular parallelepiped space by one partition wall 301, and a heat exchange tube passes through the partition wall 301 to form a first partition 310 'And the second section 3 20' may be alternately penetrated.
- the treated air A before being introduced into the evaporator 210 is supplied from the right through the passage 107 to the first section 310, and from the left through the passage 108. get out. It is also cooled to the dew point temperature (below) through the evaporator 210.
- the treated air A whose absolute humidity has decreased, is supplied from the left side of the figure through the route 109 to the second section 320, and from the right side through the route 110 is the point of the first implementation. This is the same as the embodiment.
- the plurality of heat exchange tubes are provided so as to penetrate the first section 310 ′ and the second section 320, and the partition 301 and the partition 302 that partition between the sections. I have.
- a portion penetrating the first section 310 ′ is an evaporation section 251A as a first refrigerant flow path (hereinafter, a plurality of evaporation sections are individually separated).
- the evaporation section 251 When it is not necessary to discuss the above, it is simply referred to as an evaporation section 251, and the portion penetrating the second section 3 20 'is referred to as a condensation section 25 2A (hereinafter a plurality of sections) as a second refrigerant flow path.
- a condensation section 25 2A hereinafter a plurality of sections
- the condensing sections do not need to be discussed individually, they are simply referred to as condensing sections.
- the evaporating section 251 A and the condensing section 25 2 A are a pair of a first section penetrating section and a second section penetrating section, and constitute a refrigerant flow path.
- the evaporating section which is a portion penetrating the first section 310, is designated as 251B.
- a portion penetrating the second section 320 which forms a pair of refrigerant flow paths with the evaporating section, is a condensing section 255B as a second refrigerant flow path.
- the refrigerant flow path is configured for the planes P C ⁇ similarly to the plane P B.
- the evaporating section 25 1 A and the condensing section 25 52 A form a pair, and are configured as an integrated flow path by one tube. Therefore, in combination with the fact that the first section 3 10 and the second section 3 20 ′ are provided adjacent to each other via the two partition walls 3 0 1 and 3 0 2, the heat exchanger 300, can be formed as a small compact as a whole.
- the evaporating sections are arranged in the order of 25 1 A, 25 1 B, 25 1 C from the right in the figure, and the condensing section is also on the right in the figure. From 25 2 A, 25 2 B, 25 2 C ⁇ '.
- the end of the condensing section 250 A (the end opposite the bulkhead 302) and the end of the condensing section 250B (the end opposite the bulkhead 302) And are connected by a U-tube (YouTube).
- the end of the evaporating section 25 1 B and the end of the evaporating section 25 1 C are similarly connected by a U-tube (see Fig. 8B).
- the refrigerant C flowing in one direction as a whole from the evaporating section 25 A to the condensing section 25 A is guided to the condensing section 25 B by the U-tube, and flows therefrom to the evaporating section 25 B.
- the U-tube is configured to flow to the evaporating section 25 1 C.
- the coolant flow path including the evaporating section and the condensing section alternately repeats and penetrates the first section 310 ′ and the second section 320. Therefore, the heat exchange means 300 is configured such that the evaporation and the condensation performed at the intermediate pressure are performed alternately and repeatedly.
- the refrigerant flow path forms a meandering group of small tubes.
- the tubules pass through the first section 310 'and the second section 320 while meandering, and alternately contact the processing air A with high temperature and the processing air A with low temperature.
- the evaporating section 251 and the condensing section 252 which are composed of heat transfer tubes (small tubes), are arranged through many plate fins. They are connected to each other by U-tubes outside the outermost fins.
- the first section 310 and the second section 320 are rectangular parallelepiped spaces formed by arranging a large number of rectangular plate fins in the horizontal direction in the figure. Between the two spaces, there are partitions 301 and 302 (or one partition 301).
- the condensing section 252, which is a heat transfer tube connected to the evaporating section 251, passes through the first section 310 and the second section 320 while meandering vertically in the figure. ing.
- FIG. 8B shows a state in which the plate fin without the housing is exposed.
- the evaporating section 251 which is the refrigerant flow path, and the condensing section 255, respectively, constitute a group of meandering thin tubes.
- the refrigerant C flowing in one direction as a whole from the evaporating section 25 1 to the condensing section 25 2 evaporates in the evaporating section 25 1 while flowing in a meandering manner in the small tube group.
- heat from the warmer process air A flowing through the first compartment 310 ' is transferred to the cooler process air A flowing through the second compartment 320'.
- the evaporator 210 also has a structure in which heat transfer tubes pass through a number of rectangular plate fins arranged vertically in the figure.
- the heat transfer tube penetrates the fins meandering in the horizontal direction in the figure.
- the evaporator 210 has the same configuration as that of the first embodiment.
- the evaporator 210 is disposed between the first partition 310 ′ and the second partition 320 in terms of the flow of the processing air A. In practice, the evaporator 210 is located adjacent to the second compartment 320, 10, is disposed vertically above the second section 320.
- the evaporator 210 may be arranged adjacent to the first section 310 '.
- the above-described dehumidifying air conditioner is applied as an air conditioner in the air-conditioned space 101
- the first section 310 ', the evaporator 210, and the second section 320' are formed by heat exchange.
- a blower 102 for circulating the return air RA and the supply air SA is housed.
- the blower 102 is arranged in a space sandwiched between the first section 310 arranged in an L-shape and the evaporator 210. In this way, the indoor units can be compacted.
- the refrigerant outlet of the condenser 220 (not shown in FIG. 7) is connected to the inlet of the evaporating section 25A of the heat exchanger 300 'via a refrigerant path 202.
- the liquid refrigerant C that has exited the condenser 220 is depressurized by a throttle 330 (not shown in FIG. 7), expanded, and a part of the refrigerant C evaporates (flashes).
- the refrigerant C in which the liquid and gas are mixed reaches the evaporating section 25A, where the liquid refrigerant C flows so as to wet the inner wall of the tube of the evaporating section 25A, and evaporates. Cools (pre-cools) the process air A flowing through the section 310 ′ before flowing into the evaporator 210.
- the evaporating section 25 1 A and the condensing section 25 2 A are a series of tubes. It is a loop. That is, since the refrigerant gas C (and the refrigerant liquid C that did not evaporate) flows into the condensing section 25A because it is configured as an integrated flow path, the second section 320 ' Heats (reheats) the treated air A, which has been cooled and dehumidified by the evaporator 210 and has a lower temperature than before flowing into the evaporator 210, and is itself deprived of heat and condensed.
- the heat exchanger 300 ′ connects the evaporating section, which is the refrigerant flow path passing through the first section 310, in the first plane PA, and the second section 320 ′. It has a condensing section (at least a pair, for example, an evaporating section 25 1 A and a condensing section 25 2 A), which is a refrigerant flow path penetrating therethrough, and a second section 3 20 in the second plane PB.
- a condensing section at least a pair, for example, an evaporating section 25 1 A and a condensing section 25 2 A
- the condensing section which is a refrigerant flow path passing through the first section
- the evaporating section which is a refrigerant flow path passing through the first section 310 (at least one pair, for example, the condensing section 25 2B and the evaporating section 25) 1 B).
- the outlet side of the last condensing section 2 52 2 E of the heat exchanger 300 ′ is connected to the evaporator 210 by a refrigerant liquid pipe 203, and an expansion valve 25 is provided in the refrigerant pipe 203. 0, Solenoid pulp 253 that bypasses the expansion valve 250 is installed.
- the refrigerant liquid C may include a small amount of a partially vaporized gas phase. While flowing through the evaporating section 25A, the refrigerant C pre-cools the processing air A and heats itself and flows into the condensing section 25A while increasing the gas phase.
- the condensing section 25 2 A heats the processing air A, which has a lower temperature than the processing air A in the evaporating section 25 1 A by cooling and dehumidification, and deprives itself of heat and condenses the gas-phase refrigerant C. While letting It enters the next condensing section 25 2 B. While flowing through the condensing section 25 2 B, the refrigerant C is further deprived of heat by the low-temperature process air A, and further condenses the gas-phase refrigerant C. Then, it flows into the next evaporation section 25 1 B. Thus, the refrigerant C flows through the refrigerant channel while changing the phase between the gas phase and the liquid phase. In this way, heat is exchanged between the processing air A before being cooled by the evaporator 210 and the processing air A cooled by the evaporator 210 to reduce the absolute humidity.
- the solenoid valve 292 and the solenoid valve 336 are opened to switch from the dehumidification operation as the first operation mode to the second operation mode.
- the operation mode is switched to the cooling operation as the mode. This is the same as in the first embodiment.
- FIG. 9 is a Mollier diagram when the refrigerant HFC134a is used.
- points a, b, c, and d are the same as those in the first embodiment, and a description thereof will be omitted.
- the refrigerant liquid C at the point d is decompressed by the throttle 330 and flows into the evaporation section 25A of the heat exchanger 300. On the Mollier diagram, it is indicated by point e.
- the pressure is an intermediate pressure of the present invention, and in the present embodiment, is a value intermediate between 0.34 MPa and 0.94 MPa. Here, a part of the liquid is evaporated and the liquid and the gas are mixed.
- the refrigerant liquid C evaporates under the intermediate pressure and reaches a point f1 between the saturated liquid line and the saturated gas line at the same pressure.
- a part of the liquid has evaporated, but a considerable amount of the refrigerant liquid C remains.
- the refrigerant C in the state indicated by the point f1 flows into the condensing section 25A. You. In the condensing section 25 2 A, the refrigerant C is deprived of heat by the cold process air A flowing through the second section 3 20 ′ and reaches the point gl.
- the coolant C in the state at the point g 1 flows into the evaporating section 2 5 1 B, where by increasing the heat is removed liquid phase lead to a point f 2, which inflows into the condensing section 2 5 2 B.
- the liquid phase is increased to reach point g2.
- evaporation and condensation in the evaporating section and the condensing section are repeated.
- the surface: PC evaporating and condensing sections are omitted, and the condensing section 25 2 B is connected to the expansion valve 2. It is shown as connected to 50.
- Point g 2 is on the saturated liquid line in the Mollier diagram.
- the temperature is 18 ° C and the enthalpy is 23.3 kj / kg.
- Refrigerant liquid C at point g 2 is reduced in pressure to 0.34 MPa, which is a saturation pressure at a temperature of 5 ° C., at throttle 250, and reaches point j.
- 0.34 MPa is a saturation pressure at a temperature of 5 ° C., at throttle 250, and reaches point j.
- the refrigerant C condenses the change in the state of evaporation from point e to point f 1 or from g 1 to f 2 in the evaporation section 25 1.
- the state of condensation changes from point f1 to point g1 or from point f2 to point g2. Very high efficiency and high heat exchange efficiency.
- the first embodiment has the advantage that the amount of gas circulating through the compressor 260 and, consequently, the required power can be significantly reduced for the same cooling load. This is the same as the embodiment.
- the refrigerant can be used repeatedly for the air-air heat exchange in the heat exchanger 300 ′, so that the refrigerant is completely contained in the evaporation section. Without drying out and also condensing section There is an advantage that the refrigerant can be used as a heat transfer medium without being completely condensed inside.
- the heat transfer tubes must be arranged so that the refrigerant goes back and forth many times between the first section 310 and the second section 320 ′, the first section 310, There are restrictions on the placement of and the second compartment 320.
- the drain pan 450 is shown in FIGS.
- this is not limited to the area below the evaporator 210 and also covers the area below the heat exchangers 300 and 300 ′. It is better to provide it as follows. In particular, it is preferable to provide it below the first section 310, 310,. In the first section 310, 310 of the heat exchangers 300, 300, the process air A is mainly precooled, but some moisture may condense here. is there.
- the flow rate (refrigerant mass flow rate) of the refrigerant passing through the evaporator 210 is increased or decreased by increasing or decreasing the rotation speed of the compressor 260.
- the present invention is not limited to this, and a throttle having a variable opening area may be inserted between the evaporator 210 and the compressor 260 to return the refrigerant gas from the discharge side of the compressor 260 to the suction side.
- a so-called hot gas bypass may be provided, or a hot gas bypass for introducing the discharge gas of the compressor 260 may be provided between the condenser 220 and the second throttle mechanism 291.
- the return air from the air-conditioned space 101 is introduced into the first sections 310, 310, but the air-conditioned space 10 Outside air may be introduced without introducing return air from 1. It is preferable to pre-cool external air with high humidity and temperature before cooling it with the evaporator 210. This configuration allows air conditioning of hospitals and restaurants that require all external air with a high COP. Can be.
- the repetition of evaporation and condensation of the refrigerant C occurs as a cycle even if the refrigerant enters the supercooling region beyond the saturated liquid line. Is satisfied, but considering the heat exchange between the processing airs A, it is preferable that the phase change of the refrigerant C is performed in the wet region. Therefore, in the heat exchanger shown in FIG. 9, it is preferable that the heat transfer area of the first evaporator section connected to the throttle 330 (FIG. 1) be larger than the heat transfer area of the subsequent evaporator section. . Also, since the refrigerant C flowing into the throttle 250 (FIGS. 1 and 7) is preferably in a saturated or supercooled region, the heat transfer area of the condensing section connected to the throttle 250 is reduced by It is preferable that the heat transfer area be larger than the heat transfer area of the condensing section.
- the evaporator 210 for cooling the processing air A to the dew point (below), and the heat exchangers 300, 300 as pre-coolers for pre-cooling the processing air A Since the same refrigerant is used for the heat transfer medium of the heat exchangers 300 and 300 'as reheaters for performing reheating, the refrigerant system is simplified to a single unit, and the evaporator 21 0, the pressure difference between the condensers 220 can be used, the circulation becomes active, and the boiling phenomenon accompanied by the phase change can be applied to the heat exchange of pre-cooling and re-heating. can do.
- the dehumidifying air-conditioning apparatus of the present invention is not limited to an air-conditioned space and is applied as a general dehumidifying apparatus to other spaces requiring dehumidification.
- the dehumidifying air conditioner of the present invention includes such a case.
- the first controller that increases or decreases the flow rate of the refrigerant passing through the evaporator in accordance with the increase or decrease of the degree of throttle of the first throttle mechanism is provided.
- a heat pump that can adjust the refrigerant flow rate to match the operation mode corresponding to the increase or decrease of the throttle degree.
- the present invention can be suitably used for a heat pump which does not cause a problem in the operation of the evaporator even if the degree of throttle of the throttle mechanism is increased or decreased, and a dehumidifying air conditioner which can easily cope with both the cooling operation and the dehumidifying operation.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Air Conditioning Control Device (AREA)
Abstract
A heat pump, comprising a refrigerant booster (260), a refrigerant condenser (220)
for heating high heat source fluid (B), a refrigerant evaporator (210) for cooling
low heat source fluid (A), a heat exchange means (300) installed between the condenser
(220) and the evaporator (210), performing the evaporation and condensation
of the refrigerant at an intermediate pressure between the condensing pressure
of the condenser (220) and the evaporating pressure of the evaporator (210),
cooling the low heat source fluid (A) by an intermediate pressure evaporation, and
heating the low heat source fluid (A) by an intermediate pressure condensation, a
first restriction mechanism (292) installed between the heat exchange means (300)
and the evaporator (210) and allowing to increase and decrease the degree of the
restriction thereof, a second restriction mechanism (291) installed between
the condenser (220) and the heat exchange means (300), and a first controller (501)
increasing and decreasing the flow of the refrigerant passing the evaporator (210)
according to an increase and a decrease in the degree of the restriction of the
first restriction mechanism (292), wherein the low heat source fluid (A) is formed
so as to be cooled by the heat exchange means (300), cooled by the evaporator (210),
and heated by the heat exchange means (300) in this order.
Description
明 細 書 ヒートポンプ及び除湿空調装置 技術分野 Description Heat pump and dehumidifying air conditioner Technical field
本発明は、 ヒートポンプ及び除湿空調装置に関し、 特に絞り機構の絞 り度を增減しても蒸発器の運転に問題が起こらないヒートポンプと、 冷 房運転と除湿運転の両方に容易に対応できる除湿空調装置に関するも のである。 背景技術 The present invention relates to a heat pump and a dehumidifying air conditioner, and more particularly to a heat pump that does not cause a problem in the operation of an evaporator even if the degree of throttle of a throttle mechanism is reduced, and a dehumidifier that can easily cope with both a cooling operation and a dehumidifying operation. It concerns air conditioners. Background art
従来、 図 1 0に示すような除湿空調装置があった。 この装置は、 冷媒 Cを圧縮する圧縮機 2 6 0と、 圧縮された冷媒 Cを外気 Bで凝縮する凝 縮器 2 2 0と、 凝縮した冷媒 Cをソレノィ ドパルプを有するバイパス付 き膨張弁 2 9 1で減圧し、 中間圧力で蒸発と凝縮を繰り返して行う熱交 換器 3 0 0, , と、 ここで凝縮した冷媒 Cをソレノイ ドバルブを有する バイパス付き膨張弁 2 9 2で減圧し、 これを蒸発させて空調空間 1 0 1 からの処理空気 Aを露点温度に冷却する蒸発器 2 1 0とを備える。 Conventionally, there has been a dehumidifying air conditioner as shown in FIG. This device comprises a compressor 260 for compressing the refrigerant C, a condenser 220 for condensing the compressed refrigerant C in the outside air B, and an expansion valve with bypass 2 having solenoid pulp for the condensed refrigerant C. The pressure is reduced at 91, and the heat exchanger 300,,, which repeats evaporation and condensation at an intermediate pressure, and the refrigerant C condensed here is depressurized at an expansion valve with a bypass 2992 having a solenoid valve. And an evaporator 210 for evaporating the processing air A from the air-conditioned space 101 to the dew point temperature.
この装置では、 除湿運転モード時には膨張弁 2 9 2のバイパスソレノ イ ドパルプを閉として熱交換器 3 0 0, , の蒸発と凝縮の圧力を凝縮器 2 2 0の凝縮圧力と蒸発器 2 1 0の蒸発圧力の中間圧力とする。 また、 冷房運転モード時には膨張弁 2 9 2のソレノィ ドバルブを開として、 熱 交換器 3 0 0 ' ' の圧力を蒸発器 2 1 0の蒸発圧力と等しくすることに より、 熱交換器 3 0 0, , を蒸発器の一部として作動させる。 In this device, in the dehumidifying operation mode, the bypass solenoid pulp of the expansion valve 292 is closed, and the evaporation and condensation pressures of the heat exchangers 300,, are reduced by the condensation pressure of the condenser 220 and the evaporator 210. Intermediate pressure of the evaporation pressure. Also, in the cooling operation mode, the heat exchanger 300 is opened by opening the solenoid valve of the expansion valve 292 to make the pressure of the heat exchanger 300 '' equal to the evaporation pressure of the evaporator 210. Operate,, and as part of the evaporator.
したがって、 除湿運転モード時には、 熱交換器 3 0 0 ' ' は、 蒸発器
2 1 0で露点温度に冷却される前後の処理空気同士の間で、 冷媒を媒体 として熱交換を行う。 このようにして、 蒸発器 2 1 0で露点に冷却され た処理空気 Aは、 熱交換器 3 0 0 ' ' で再熱される。 Therefore, in the dehumidifying operation mode, the heat exchanger 300 '' Heat exchange is performed between the treated air before and after being cooled to the dew point temperature in 210 using a refrigerant as a medium. In this way, the process air A cooled to the dew point in the evaporator 210 is reheated in the heat exchanger 300 ′ ″.
以上のような従来の除湿空調装置では、 冷房運転時には処理空気を冷 却するための伝熱面積は蒸発器 2 1 0と熱交換器 3 0 0 ' ' の合計面積 になる。 一方、 除湿運転時には処理空気を露点温度に冷却して水分を除 去するための伝熱面積は、 蒸発器 2 1 0だけになる。 したがって、 圧縮 機 2 6 0からの冷房運転に適した大きい冷媒の体積流量 (圧縮機おしの け量) を受けて蒸発器 2 1 0の蒸発温度が低下し、 着霜等の問題が起こ りやすい。 また冷却容量を冷房負荷がまかなえるように決めると、 容量 が除湿負荷に必要な容量に比べて過大となり、 圧縮機 2 6 0の発停頻度 が高くなり勝ちという問題があった。 発明の開示 In the conventional dehumidifying air conditioner described above, the heat transfer area for cooling the processing air during the cooling operation is the total area of the evaporator 210 and the heat exchanger 300 ′ ″. On the other hand, during the dehumidification operation, the evaporator 210 only has a heat transfer area for cooling the processing air to the dew point temperature and removing moisture. Therefore, the evaporation temperature of the evaporator 210 decreases due to the large volume flow rate of the refrigerant (the amount of pressure applied to the compressor) suitable for the cooling operation from the compressor 260, which causes problems such as frost formation. Easy. Further, if the cooling capacity is determined so as to cover the cooling load, the capacity becomes excessively large as compared with the capacity required for the dehumidifying load, and the frequency of starting and stopping of the compressor 260 increases, which causes a problem. Disclosure of the invention
そこで本発明は、 絞り機構の絞り度を増減しても蒸発器の運転に問題 が起こらないヒートポンプと、 冷房運転と除湿運転の両方に容易に対応 できる除湿空調装置を提供することを目的としている。 Therefore, an object of the present invention is to provide a heat pump that does not cause a problem in the operation of the evaporator even if the throttle degree of the throttle mechanism is increased or decreased, and a dehumidifying air conditioner that can easily cope with both the cooling operation and the dehumidifying operation. .
上記目的を達成するために、 本発明の第 1の態様によれば、 ヒートポ ンプ H P 1は、 例えば図 1に示されるように、 冷媒を昇圧する昇圧機 2 6 0と ;上記冷媒を凝縮して高熱源流体 Bを加熱する凝縮器 2 2 0と ; 上記冷媒を蒸発して低熟源流体 Aを冷却する蒸発器 2 1 0と ;凝縮器 2 2 0と蒸発器 2 1 0とを接続する冷媒経路中に設けられた、 凝縮器 2 2 0の凝縮圧力と蒸発器 2 1 0の蒸発圧力との中間の圧力で冷媒の蒸発 と凝縮を行い、 上記中間圧力蒸発により低熱源流体 Aを冷却し、 上記中 間圧力凝縮により低熱源流体 Aを加熱する熱交換手段 3 0 0と ;熱交換
薦 28 To achieve the above object, according to a first aspect of the present invention, a heat pump HP1 includes, as shown in FIG. 1, for example, a booster 260 for increasing the pressure of a refrigerant; And a condenser 220 for heating the high heat source fluid B and evaporating the refrigerant to cool the low mature source fluid A; connecting the condenser 220 and the evaporator 210 The refrigerant is evaporated and condensed at an intermediate pressure between the condensing pressure of the condenser 220 and the evaporating pressure of the evaporator 210 provided in the refrigerant passage that performs the cooling operation. Heat exchange means 300 for cooling and heating the low heat source fluid A by the intermediate pressure condensation; heat exchange Recommendation 28
3 手段 3 0 0と蒸発器 2 1 0との間の上記冷媒経路中に設けられた、 絞り 度が増減可能な第 1の絞り機構 2 9 2と ;凝縮器 2 2 0と熱交換手段 3 0 0 との間の上記冷媒経路中に設けられた第 2の絞り機構 2 9 1 と ;第 1の絞り機構 2 9 2の絞り度の増減に対応して蒸発器 2 1 0を通過す る冷媒流量を増減する第 1のコントローラ 5 0 1を備え;低熱源流体 A は、 熱交換手段 3 0 0での冷却と蒸発器 2 1 0での冷却と熱交換手段 3 0 0での加熱とをこの順番で受けるように構成されている。 3 A first throttle mechanism 292 provided in the refrigerant path between the means 300 and the evaporator 210 and capable of increasing and decreasing the degree of throttle; a condenser 220 and heat exchange means 3 A second throttle mechanism 291, which is provided in the refrigerant path between 0 and 0; passes through the evaporator 210 in response to an increase or decrease in the degree of throttle of the first throttle mechanism 292. A first controller for increasing / decreasing the refrigerant flow rate; a low heat source fluid A is provided for cooling in the heat exchange means 300, cooling in the evaporator 210, and heating in the heat exchange means 300; Are received in this order.
第 2の絞り機構も典型的には絞り度が増減可能である。 絞り度の増減 は典型的には開口面積の増減により行うが、 例えばキヤビラリチューブ の長短、 直列に配置した絞りの個数の増減等によるものであってもよい。 また、 蒸発器を通過する冷媒流量の増減は、 典型的には昇圧機駆動用駆 動機の回転速度を可変とすることにより行う。 例えばモータをィンパー タモータと し、 コントローラはィンバータの出力周波数を調節するコン トローラである。 昇圧機の回転速度を変えると、 例えば低くすると、 昇 圧機の吸い込み体積流量 (おしのけ量) が小さくなり、 蒸発器の蒸発圧 力が低くなり過ぎるのを防止することができる。 The second aperture mechanism can also typically increase or decrease the aperture. The aperture is typically increased or decreased by increasing or decreasing the opening area. For example, the aperture may be increased or decreased by increasing or decreasing the length of the capillary tube or the number of apertures arranged in series. Also, the flow rate of the refrigerant passing through the evaporator is typically increased or decreased by making the rotation speed of the booster driving motor variable. For example, the motor is an inverter motor, and the controller is a controller that adjusts the output frequency of the inverter. If the rotation speed of the booster is changed, for example, if the rotation speed is reduced, the suction volume flow rate (pumping amount) of the booster decreases, and it is possible to prevent the evaporation pressure of the evaporator from becoming too low.
絞り度の増減、 冷媒流量の増減は、 典型的には低熱源流体から高熱源 流体へ移動する熱量に応じて行われる。 The increase and decrease of the degree of restriction and the increase and decrease of the refrigerant flow rate are typically performed according to the amount of heat transferred from the low heat source fluid to the high heat source fluid.
このように構成すると、 第 1の絞り機構の絞り度の増減に対応して蒸 発器を通過する冷媒流量を增減する第 1のコントローラを備えるので、 第 1の絞り機構の絞り度の増減に対応する運転形態に合致した冷媒流 量に調節することができる。 With this configuration, since the first controller that reduces the flow rate of the refrigerant passing through the evaporator in accordance with the increase or decrease of the throttle degree of the first throttle mechanism is provided, the increase or decrease of the throttle degree of the first throttle mechanism is provided. It is possible to adjust the refrigerant flow rate to match the operation mode corresponding to the above.
また、 本発明の好ましい一態様によれば、 上記ヒートポンプでは、 第 Further, according to a preferred aspect of the present invention, in the heat pump,
1の絞り機構 2 9 2の絞り度は、 上記中間の圧力が蒸発器 2 1 0の蒸発 圧力とほぼ同じになるに十分な絞り度まで減少可能に構成してもよい。
このように構成すると、 第 1の絞り機構の絞り度は、 上記中間の圧力 が蒸発器の蒸発圧力とほぼ同じになるに十分な絞り度まで減少可能 (開 口で言えばこれを大にすることが可能) に構成されているので、 熱交換 手段 3 0 0を蒸発器 2 1 0とあわせて、 蒸発器の一部として作用させる ことができる。 The throttle degree of the throttle mechanism 292 may be configured to be able to be reduced to a throttle degree sufficient for the intermediate pressure to be substantially the same as the evaporation pressure of the evaporator 210. With this configuration, the degree of throttle of the first throttle mechanism can be reduced to a degree of throttle sufficient to make the above-mentioned intermediate pressure substantially equal to the evaporating pressure of the evaporator. The heat exchange means 300 can be combined with the evaporator 210 to act as a part of the evaporator.
また、 本発明の好ましい一態様によれば、 上記ヒートポンプでは、 第 1のコントローラ 2 9 2は、 上記冷媒流量を最大設定流量以下で調節可 能に構成され、 第 1の絞り機構 2 9 2が上記十分な絞り度である運転の 際の上記冷媒流量を第 1の設定最大流量以下で調整可能に、 また第 1の 絞り機構 2 9 2が上記十分な絞り度よりも絞られた運転の際の上記冷 媒流量を第 2の設定最大流量以下で調整可能に構成され、 上記第 2の設 定最大流量は上記第 1の設定最大流量よりも、 小さいように構成されて いる。 Further, according to a preferred aspect of the present invention, in the heat pump, the first controller 292 is configured to be capable of adjusting the refrigerant flow rate at a maximum set flow rate or less, and the first throttle mechanism 292 is provided. The above-mentioned refrigerant flow rate can be adjusted to be equal to or less than the first set maximum flow rate at the time of the operation at the sufficient throttle degree, and at the time of the operation at which the first throttle mechanism 292 is throttled below the sufficient throttle degree. The coolant flow rate can be adjusted to be equal to or less than a second set maximum flow rate, and the second set maximum flow rate is configured to be smaller than the first set maximum flow rate.
このように構成すると、 第 2の設定最大流量は第 1の設定最大流量よ りも小さいので、 第 1の絞り機構が十分な絞り度よりも絞られた運転の 際の冷媒流量が過大とならないようにすることができる。 With this configuration, the second set maximum flow rate is smaller than the first set maximum flow rate, so that the refrigerant flow rate does not become excessive when the first throttle mechanism is operated with a sufficient degree of throttle. You can do so.
また、 本発明の好ましい一態様によれば、 上記ヒートポンプでは、 第 2の絞り機構 2 9 1は絞り度が増減可能に構成され、 上記冷媒流量は上 記最大設定流量以下の範囲で第 2の絞り機構 2 9 1の絞り度に対応し て増減する第 2のコントローラ 5 0 1を備えてもよい。 ここで、 第 1 と 第 2のコントローラは別のコントローラであってもよいし、 同じコント ローラとして構成されていてもよい。 Further, according to a preferred aspect of the present invention, in the heat pump, the second throttle mechanism 291 is configured so that the degree of throttle can be increased or decreased, and the refrigerant flow rate is equal to or less than the maximum set flow rate. A second controller 501 that increases or decreases according to the degree of aperture of the aperture mechanism 291 may be provided. Here, the first and second controllers may be different controllers or may be configured as the same controller.
また、 本発明の好ましい一態様によれば、 上記ヒートポンプでは、 昇 圧機 2 6 0を駆動するインバ^ "タモータ 5 0 2, 5 0 5を備え ;上記冷 媒流 *の増減はィンバータモータ 5 0 2, 5 0 5の回転速度を調節する
P03 07328 Further, according to a preferred embodiment of the present invention, the heat pump includes inverter motors 502, 505 for driving a booster 260; the increase / decrease of the coolant flow * is controlled by the inverter motor 5 Adjust the rotation speed of 02, 505 P03 07328
5 ことにより行うように構成されていてもよい。 5 It may be configured to do so.
上記目的を達成するために、 本発明の第 2の態様によれば、 除湿空調 装置 2 1は、 例えば図 1に示されるように、 冷媒 Cを昇圧する昇圧機 2 6 0と ;冷媒 Cを凝縮して高熱源流体 Bを加熱する凝縮器 2 2 0と ;冷 媒 Cを蒸発して処理空気 Aを露点温度まで冷却する蒸発器 2 1 0と ;凝 縮器 2 2 0と蒸発器 2 1 0とを接続する冷媒経路中に設けられた、 凝縮 器 2 2 0の凝縮圧力と蒸発器 2 1 0の蒸発圧力との中間の圧力で冷媒 Cの蒸発と凝縮を行い、 上記中間圧力蒸発により処理空気 Aを冷却し、 上記中間圧力凝縮により処理空気 Aを加熱する熱交換手段 3 0 0と ;熱 交換手段 3 0 0と蒸発器 2 1 0との間の上記冷媒経路中に設けられた、 絞り度が増減可能な第 1の絞り機構 2 9 2と ;凝縮器 2 2 0と熱交換手 段 3 0 0との間の上記冷媒経路中に設けられた第 2の絞り機構 2 9 1 と ;第 1の絞り機構 2 9 1の絞り度の増減に対応して上記蒸発器 2 1 0 を通過する冷媒流量を増減する第 1のコントローラ 5 0 1を備え ;処理 空気 Aは、 熱交換手段 3 0 0での冷却と蒸発器 2 1 0での冷却と熱交換 手段 3 0 0での加熱とをこの順番で受けるように構成される。 To achieve the above object, according to a second aspect of the present invention, a dehumidifying air conditioner 21 includes, as shown in FIG. 1, a booster 260 for increasing the refrigerant C; A condenser 220 for condensing and heating the high heat source fluid B; an evaporator 210 for evaporating the coolant C to cool the processing air A to the dew point temperature; a condenser 220 and an evaporator 2 The refrigerant C is evaporated and condensed at an intermediate pressure between the condensing pressure of the condenser 220 and the evaporating pressure of the evaporator 210, which is provided in the refrigerant path connecting the evaporator 210 and the evaporator 210. Heat exchange means 300 for cooling the processing air A by the intermediate pressure condensation, and heating the processing air A by the intermediate pressure condensation; and provided in the refrigerant path between the heat exchange means 300 and the evaporator 210. A first throttle mechanism 292 capable of increasing or decreasing the degree of throttle; and a second throttle provided in the refrigerant path between the condenser 220 and the heat exchange means 300. Structure 291, a first controller 5101 for increasing or decreasing the flow rate of the refrigerant passing through the evaporator 210 in accordance with an increase or decrease in the degree of throttle of the first throttle mechanism 291; Is configured to receive cooling in the heat exchange means 300, cooling in the evaporator 210, and heating in the heat exchange means 300 in this order.
上記目的を達成するために、 本発明の第 3の態様によれば、 除湿空調 装置 2 1は、 例えば図 1に示されるように、 冷媒 Cを昇圧する昇圧機 2 6 0と ;冷媒 Cを凝縮して高熱源流体 Bを加熱する凝縮器 2 2 0と ;冷 媒 Cを蒸発して処理空気 Aを露点温度まで冷却する蒸発器 2 1 0と ;凝 縮器 2 2 0と蒸発器 2 1 0とを接続する冷媒経路中に設けられた、 凝縮 器 2 2 0の凝縮圧力と蒸発器 2 1 0の蒸発圧力との中間の圧力で冷媒 Cの蒸発と凝縮を行い、 上記中間圧力蒸発により処理空気 Aを蒸発器 2 1 0に入る前に冷却し、 上記中間圧力凝縮により処理空気 Aを蒸発器 2 1 0 ^出た後に加熱する熱交換手段 3 0 0とを備え;熱交換手段 3 0 0
によって処理空気 Aを冷却した後熱交換手段 3 0 0によって加熱する 第 1の運転形態と、 熱交換手段 3 0 0を蒸発器 2 1 0とほぼ同じ圧力で 冷媒 Cを蒸発させるように切り替えることによって処理空気 Aを冷却 する第 2の運転形態とを切り替え可能に構成し ; さらに、 上記運転形態 の切り替えに対応して蒸発器 2 1 0を通過する冷媒流量を増減する第 1のコントローラ 5 0 1を備える。 図面の簡単な説明 To achieve the above object, according to a third aspect of the present invention, a dehumidifying air conditioner 21 includes, as shown in FIG. 1, a booster 260 for increasing the refrigerant C; A condenser 220 for condensing and heating the high heat source fluid B; an evaporator 210 for evaporating the coolant C to cool the processing air A to the dew point temperature; a condenser 220 and an evaporator 2 The refrigerant C is evaporated and condensed at an intermediate pressure between the condensing pressure of the condenser 220 and the evaporating pressure of the evaporator 210, which is provided in the refrigerant path connecting the evaporator 210 and the evaporator 210. A heat exchange means for cooling the processing air A before entering the evaporator 210 by heating the air after leaving the evaporator 210 by the intermediate pressure condensation; and a heat exchange means. 3 0 0 The first operation mode in which the treated air A is cooled by the heat exchange means 300 and then the heat exchange means 300 is switched so that the refrigerant C is evaporated at substantially the same pressure as the evaporator 210. And a second operation mode for cooling the processing air A is configured to be switchable; and a first controller 50 for increasing or decreasing the flow rate of the refrigerant passing through the evaporator 210 in response to the switching of the operation mode. With 1. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第 1の実施の形態である除湿空調装置のフロー図で ある。 FIG. 1 is a flowchart of a dehumidifying air conditioner according to a first embodiment of the present invention.
図 2は図 1に示すコントローラの構成を示すプロック図である。 FIG. 2 is a block diagram showing the configuration of the controller shown in FIG.
図 3 A乃至図 3 Cは図 1に示す除湿空調装置の設置状態を示す模式 的側面図と熱交換器の斜視図である。 3A to 3C are a schematic side view and a perspective view of a heat exchanger showing an installation state of the dehumidifying air conditioner shown in FIG.
図 4は図 1に示す除湿空調装置のヒートポンプのモリェ線図である。 図 5は除湿負荷と冷房負荷の関係を説明する棒グラフの図である。 図 6は図 1の除湿空調装置の除湿運転モード時の作動を説明する湿 り空気線図である。 FIG. 4 is a Mollier diagram of the heat pump of the dehumidifying air conditioner shown in FIG. FIG. 5 is a bar graph illustrating the relationship between the dehumidification load and the cooling load. FIG. 6 is a psychrometric chart illustrating the operation of the dehumidifying air conditioner of FIG. 1 in the dehumidifying operation mode.
図 7は本発明の第 2の実施の形態である除湿空調装置の部分フロー 図である。 FIG. 7 is a partial flow chart of the dehumidifying air conditioner according to the second embodiment of the present invention.
図 8 A及び図 8 Bは図 7に示す除湿空調装置の設置状態を示す模式 的側面図と熱交換器の斜視図である。 8A and 8B are a schematic side view showing a state of installation of the dehumidifying air conditioner shown in FIG. 7 and a perspective view of a heat exchanger.
図 9は図 7に示す除湿空調装置のヒートポンプのモリェ線図である。 図 1 0は従来のヒートポンプと除湿空調装置のフロー図である。
発明を実施するための最良の形態 FIG. 9 is a Mollier diagram of the heat pump of the dehumidifying air conditioner shown in FIG. FIG. 10 is a flowchart of a conventional heat pump and a dehumidifying air conditioner. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態について、図面を参照して説明する。なお、 各図において互いに同一あるいは相当する部材には同一符号あるいは 類似符号を付し、 重複した説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each of the drawings, the same or corresponding members are denoted by the same or similar reference numerals, and redundant description is omitted.
図 1は、 本発明による第 1の実施の形態であるヒートポンプ H P 1 と それを備える、 本発明の除湿空調装置の一例である除湿空調装置 2 1の フロー図である。 この除湿空調装置 2 1は処理空気 Aをその露点温度に 冷却して水分を除いた後に再熱して除湿する除湿運転と、 主として顕熱 を奪う冷房運転ができる除湿空調装置 2 1である。 ここで、 「処理空気 Aをその露点温度に冷却して除湿」 というとき、 処理空気 Aは多少過冷 却されることがあるが、 このときは 「露点温度以下に冷却して除湿」 と なるが、 この概念も含むものとする。 また露点温度に冷却されて水分が 除かれた空気は当初の空気よりも露点温度が低下するので、 当初の露点 温度を基準にすると 「露点温度以下に冷却して除湿」 となるが、 この概 念も含む。 FIG. 1 is a flow chart of a heat pump HP1 according to a first embodiment of the present invention and a dehumidifying air conditioner 21 provided with the heat pump HP1 as an example of the dehumidifying air conditioner of the present invention. The dehumidifying air conditioner 21 is a dehumidifying air conditioner 21 that cools the processing air A to its dew point temperature, removes moisture, reheats and dehumidifies by reheating, and a cooling operation that mainly removes sensible heat. Here, when "processing air A is cooled to its dew point temperature and dehumidified", processing air A may be slightly overcooled, but in this case, it is "cooled to dew point temperature or less and dehumidified". However, this concept is also included. In addition, air that has been cooled to the dew point temperature to remove moisture has a lower dew point temperature than the original air.Therefore, based on the initial dew point temperature, it is `` cooled below the dew point temperature and dehumidified ''. Including just in case.
図 1を参照して、 第 1の実施の形態であるヒートポンプ H P 1及びそ' れを備える除湿空調装置 2 1の構成を説明する。 この除湿空調装置 2 1 は、 蒸発器 2 1 0によって低熱源流体としての処理空気 Aの湿度を下げ、 処理空気 Aの供給される空調空間 1 0 1を快適な環境に維持するもの である。 The configuration of the heat pump HP 1 according to the first embodiment and the dehumidifying air conditioner 21 including the same will be described with reference to FIG. In the dehumidifying air conditioner 21, the evaporator 210 lowers the humidity of the processing air A as a low heat source fluid, and maintains the air-conditioned space 101 to which the processing air A is supplied in a comfortable environment.
図中、 空調空間 1 0 1から処理空気 Aの経路に沿って、 処理空気関連 の機器構成を説明する。 まず、空調空間 1 0 1に接続された経路 1 0 7、 熱交換手段としての熱交換器 3 0 0の第 1の区画 3 1 0、 経路 1 0 8、 処理空気 Aをその露点温度以下に冷却する蒸発器 2 1 0、 経路 1 0 9、 熱交換器 3 0 0の第 2の区画 3 2 0、 経路 1 1 0、 経路 1 1 0に接続さ
れた処理空気 Aを循環するための送風機 1 0 2、 経路 1 1 1 とこの順番 で配列され、そして空調空間 1 0 1に戻るように構成されている。図中、 除湿空調装置 2 1から空調空間 1 0 1に供給される空気を SA、 空調空 間 1 0 1から除湿空調装置に戻る空気を として示してある。 In the figure, the processing air-related equipment configuration will be described along the route of the processing air A from the air-conditioned space 101. First, the path 107 connected to the air-conditioned space 101, the first section 310 of the heat exchanger 300 as a heat exchange means, the path 108, and the processing air A are kept below their dew point temperature. Evaporator to be cooled 210, route 1 109, connected to second section 3200 of heat exchanger 300, route 110, route 110 A blower 102 for circulating the processed air A is arranged in this order with a path 111, and is configured to return to the air-conditioned space 101. In the figure, the air supplied from the dehumidifying air conditioner 21 to the air conditioning space 101 is indicated by SA, and the air returning from the air conditioning space 101 to the dehumidifying air conditioner is indicated by.
また、 屋外 OAから高熱源流体としての冷却空気 (外気) Bの経路に 沿って、 経路 1 24、 冷媒 Cを冷却して凝縮させる凝縮器 2 20、 経路 1 2 5、 冷却空気 Bを送風するための送風機 1 40、 経路 1 26とこの 順番で配列され、 そして屋外 OAに排気 EXを排出するように構成され ている。 In addition, along the path of cooling air (outside air) B as a high heat source fluid from the outdoor OA, path 124, condenser 220 for cooling and condensing refrigerant C, path 125, and cooling air B are blown. The air blower 140 and the path 126 are arranged in this order, and are configured to discharge the exhaust air EX to the outdoor OA.
次に、 蒸発器 2 1 0から冷媒 Cの経路に沿って、 ヒートポンプ HP 1 の機器構成を説明する。 図中蒸発器 2 1 0、 経路 204、 蒸発器 2 1 0 で蒸発してガスになった冷媒 Cを圧縮する (昇圧する) 昇圧機としての 圧縮機 2 6 0、 経路 20 1、 凝縮器 2 20、 経路 20 2、 絞り 3 3 0、 熱交換器 300の第 1の区画 3 1 0を流れる処理空気 Aを冷却する蒸 発セクション 2 5 1、 熱交換器 300の第 2の区画 3 20を流れる処理 空気 Aを加熱 (再熱) する凝縮セクション 25 2、 経路 20 3、 絞り 2 5 0がこの順番で配列され、 そして再び蒸発器 2 1 0に戻るようにして、 ヒートポンプ HP 1が構成されている。 Next, the equipment configuration of the heat pump HP1 will be described along the path of the refrigerant C from the evaporator 210. In the figure, the evaporator 210, route 204, compresses the refrigerant C evaporated and gasified in the evaporator 210 (pressurizes). Compressor 260 as a booster, route 201, condenser 2 20, path 202, restrictor 330, evaporator section 251, which cools process air A flowing through first section 310 of heat exchanger 300, second section 320 of heat exchanger 300 Flowing process The heat pump HP 1 is constructed in such a way that the condensing section 25 2 which heats (reheats) the air A, the path 203 and the throttle 250 are arranged in this order, and returns to the evaporator 210 again. ing.
なお、 蒸発セクション 2 5 1は第 1の区画 3 1 0中を蛇行するチュー ブで形成され、 凝縮セクション 2 5 2は第 2の区画 3 20中を蛇行する チューブで形成されている。 本実施の形態では、 蒸発セクション 2 5 1 は第 1の区画 3 1 0を複数回蛇行した後、 凝縮セクション 25 2に接続 される。 凝縮セクション 2 5 2は第 2の区画 3 20を複数回蛇行した後、 経路 20 3に接続される。 図中、 各セクションは、 処理空気 Aの流れに 沿った面内で蛇行するように示されているが、 実際は処理空気 Aの流れ
に直交する面内で蛇行するようにするとよい(図 3 B及ぴ図 3 C参照)。 但し、 直交する面を複数設けて蛇行層が複数あるようにしてもよい。 The evaporating section 25 1 is formed by a tube meandering in the first section 310, and the condensing section 25 2 is formed by a tube meandering in the second section 320. In the present embodiment, the evaporating section 25 1 is connected to the condensing section 252 after meandering the first section 3 10 several times. The condensing section 25 2 is connected to the path 203 after meandering the second section 320 multiple times. In the figure, each section is shown to meander in a plane along the flow of the processing air A, but the flow of the processing air A is actually It is better to meander in a plane perpendicular to the plane (see Fig. 3B and Fig. 3C). However, a plurality of orthogonal surfaces may be provided so that there are a plurality of meandering layers.
このように蒸発セクシヨン 2 5 1 と凝縮セクシヨン 25 2とを連続 した伝熱チューブで形成し、 蒸発セクション 25 1を第 1の区画 3 1 0 内で複数回十分に蛇行させた後に、 即ち内部を流れる冷媒を蒸発させた 後に、 凝縮セクション 2 5 2を第 2の区画内で複数回蛇行させる構成に すると、 蒸発セクション 2 5 1 と凝縮セクション 2 5 2を接続する配管 が 1本乃至は最小限 (2〜4本) の本数で足りるので、 第 1の区画 3 1 0と第 2の区画 3 20とを離間して設置し易い (図 3 B及ぴ図 3 C参 照) 。 In this way, the evaporating section 25 1 and the condensing section 25 2 are formed by a continuous heat transfer tube, and after the evaporating section 25 1 is fully meandered several times in the first section 3 10, If the condensing section 255 is meandered several times in the second section after evaporating the flowing refrigerant, the number of pipes connecting the evaporating section 251 and the condensing section 252 is one or a minimum. (2 to 4) is enough, so it is easy to install the first section 310 and the second section 320 separately (see Figs. 3B and 3C).
なお、 冷媒 Cの経路 202に絞り 3 3 0をパイパスする経路 20 2 A を設け、 経路 20 2 Aに絞り 3 3 5とソレノィ ドパルプ、 33 6を直列に 設けてある。 また、 冷媒 Cの経路 20 3に絞り 2 50をパイパスする経 路 20 3 Aを設け、 経路 203 Aにソレノィ ドバルブ 2 5 3を設けてあ る。 絞り 3 30と、 絞り 3 35と、 ソレノィ ドバルブ 3 36とを含んで 第 2の絞り機構 2 9 1が構成され、 絞り 2 50とソレノィ ドバルブ 2 5 3を含んで第 1の絞り機構 29 2が構成されている。 ソレノィ ドパルプ 25 3が開となると、 開口面積は経路 20 3の断面積にほぼ等しくなる ように形成されている。 言い換えれば、 ソレノイ ドバルブ 2 5 3が開と なったときは、 第 1の絞り機構 29 2の絞り度が減って (開口面積が増 えて) 、 実質的に絞り としては作用しない程度に大きい開口を有するこ とになる。 A path 202 A for bypassing the throttle 330 is provided in the path 202 of the refrigerant C, and a throttle 335, solenoid pulp and 336 are provided in series in the path 202A. In addition, a path 203 A that bypasses the throttle 250 is provided in the path 203 of the refrigerant C, and a solenoid valve 25 3 is provided in the path 203 A. The second throttle mechanism 291, including the aperture 330, the aperture 335, and the solenoid valve 336, is configured. The first aperture mechanism 292, including the aperture 250 and the solenoid valve 25, is formed. It is configured. When the solenoid pulp 253 is opened, the opening area is formed so as to be approximately equal to the cross-sectional area of the passage 203. In other words, when the solenoid valve 25 3 is opened, the aperture of the first aperture mechanism 292 is reduced (the aperture area is increased), and an aperture that is so large that it does not substantially act as an aperture is provided. Will have.
ソレノィ ドバルブ 3 3 6を開とすると、 第 2の絞り機構 2 9 1は開口 面積が大きい (絞り 3 30の開口面積、 プラス絞り 3 3 5の開口面積) 絞りを形成するようになる。 このとき、 第 2の絞り機構の絞り度は減つ
て、 即ち開口が大きくなる。 ソレノィ ドパルプ 3 3 6を閉とすると、 第 2の絞り機構 2 9 1は開口面積が小さい絞り (絞り 3 3 0の開口面積) を形成するようになる。 このとき第 2の絞り機構の絞り度は増えて、 良!] ち開口が小さくなる。 When the solenoid valve 3336 is opened, the second diaphragm mechanism 291 forms a diaphragm having a large opening area (the opening area of the diaphragm 330 and the opening area of the plus diaphragm 335). At this time, the aperture of the second aperture mechanism decreases That is, the opening becomes large. When the solenoid pulp 336 is closed, the second diaphragm mechanism 291 forms a diaphragm having a small opening area (the opening area of the diaphragm 330). At this time, the degree of aperture of the second aperture mechanism is increased and good! The aperture is smaller.
言い換えれば、 ソレノィ ドパルプ 2 5 3を開とすると、 第 1の絞り機 構 2 9 2の開口面積が大きくなり、 第 1の絞り機構 2 9 2が実質的に絞 りを形成しないように設定される。 ソレノィ ドパルプ 2 5 3を閉とする と、 第 1の絞り機構 2 9 2の開口面積が小さくなり、 第 1の絞り機構 2 9 2が絞りを形成するように設定される。 In other words, when the solenoid pulp 25 3 is opened, the opening area of the first drawing mechanism 29 2 becomes large, and the first drawing mechanism 29 2 is set so that it does not substantially form a drawing. You. When the solenoid pulp 25 3 is closed, the opening area of the first aperture mechanism 29 2 is reduced, and the first aperture mechanism 29 2 is set to form an aperture.
ここで、 熱交換器 3 0 0の構成を説明する。 熱交換器 3 0 0は、 蒸発 器 2 1 0に流入する前後の処理空気 A同士の間で、 冷媒 Cを介して間接 的に熱交換をさせる熱交換器である。 Here, the configuration of the heat exchanger 300 will be described. The heat exchanger 300 is a heat exchanger that indirectly exchanges heat between the treated air A before and after flowing into the evaporator 210 via the refrigerant C.
この熱交換器 3 0 0は、 蒸発器 2 1 0を通過する前の処理空気 Aを流 す第 1の区画 3 1 0と、 蒸発器 2 1 0を通過した後の処理空気 Aを流す 第 2の区画 3 2 0とが、 別々の直方体空間を構成している。 両区画は、 双方を流れる処理空気が混合しないように隔壁 3 0 1 , 3 0 2が設けら れており、 熱交換チューブである蒸発セクション 2 5 1と凝縮セクショ ン 2 5 2とを接続する配管 2 0 2 Bはこの 2つの区画の隔壁を貫通し ている。 The heat exchanger 300 has a first section 310 for flowing the processing air A before passing through the evaporator 210 and a second section 310 for flowing the processing air A after passing the evaporator 210. The two sections 320 form separate rectangular parallelepiped spaces. Both compartments are provided with partitions 301 and 302 so that the processing air flowing through both compartments is not mixed, and connect the evaporating section 251, which is a heat exchange tube, to the condensing section 252 The pipe 202B penetrates the partition walls of these two sections.
図中、 蒸発器 2 1 0に導入される前の処理空気 Aは、 右方から経路 1 0 7を通して、 第 1の区画 3 1 0に供給され、 左方から経路 1 0 8を通 して出て行く。 また蒸発器 2 1 0を通して露点温度 (以下) に冷却され 絶対湿度の低下した処理空気 Aは、 図中左方から経路 1 0 9を通して第 2の区画 3 2 0に供給され、 その右方から経路 1 1 0を通して出て行く。 本実施の形態の除湿空調装置 2 1は、 戻り空気 R Aの経路 1 0 7に湿
度検出器 5 0 3と温度検出器 5 0 4とを備える。 また圧縮機 2 6 0は交 流電動機 5 0 5により駆動されるように構成され、 交流電動機 5 0 5は 周波数変換器であるインパータ 5 0 2から交流電力を供給される。 また、 除湿空調装置 2 1を制御するコントローラ 5 0 1を備えている。 In the figure, the treated air A before being introduced into the evaporator 210 is supplied to the first section 310 from the right through the path 107 and from the left through the path 108 from the left. get out. In addition, treated air A, which has been cooled to the dew point temperature (below) through the evaporator 210 and has a reduced absolute humidity, is supplied from the left side in the figure to the second section 320 through the path 109, and from the right side. Exit through Route 1 110. The dehumidifying air conditioner 21 according to the present embodiment is configured such that the return air RA has a wet passage 107. A temperature detector 503 and a temperature detector 504 are provided. The compressor 260 is configured to be driven by an AC motor 505, and the AC motor 505 is supplied with AC power from an impeller 502, which is a frequency converter. Further, a controller 501 for controlling the dehumidifying air conditioner 21 is provided.
コントローラ 5 0 1は、 湿度検出器 5 0 3、 温度検出器 5 0 4、 イン バータ 5 0 5、 ソレノィ ドバルブ 2 5 3, 3 3 6と信号配線で接続され ている。 The controller 501 is connected to the humidity detector 503, temperature detector 504, inverter 505, and solenoid valves 253, 336 via signal wiring.
図 2のブロック図を参照して、 コントローラ 5 0 1を説明する。 コン トローラ 5 0 1は所謂マイク口コンピュータで構成するとよい。 コント ローラ 5 0 1は、 制御部 5 0 1 Aとメモリー部 5 0 1 Dを含んで構成さ れる。 制御部 5 0 1 Aは、 モード選択モジュール 5 0 1 Bとインパータ 制御モジュール 5 0 1 Cを含んで構成される。 The controller 501 will be described with reference to the block diagram of FIG. The controller 501 may be constituted by a so-called microphone computer. The controller 501 includes a control section 501A and a memory section 501D. The control unit 501A includes a mode selection module 501B and an impeller control module 501C.
モード選択モジュール 5 0 1 Bは、 湿度検出器 5 0 3からの信号及ぴ 温度検出器 5 0 4からの信号に基づき除湿運転モードを選択すべきか 冷房運転モードを選択すべきか判定し、 その判定結果に従ってソレノィ ドパルプ 2 5 3及び 3 3 6に開閉を指示する信号を送信する。 即ち、 湿 度が高く温度 (気温) が比較的低いときは除湿運転モードを選択し、 ソ レノィ ドパルプ 2 5 3を閉じ、 またソレノィ ドバルブ 3 3 6を閉じる。 ソレノィ ドパルプ 2 5 3を閉じると、 熱交換器 3 0 0と蒸発器 2 1 0 との間の冷媒配管は、 絞り 2 5 0を介して接続されることになり、 熱交 換器 3 0 0における蒸発圧力及び凝縮圧力は中間圧力となる。 The mode selection module 503 B determines whether to select the dehumidification operation mode or the cooling operation mode based on the signal from the humidity detector 503 and the signal from the temperature detector 504, and makes the determination. According to the result, a signal for opening and closing is transmitted to the solenoid pulp 253 and 336. That is, when the humidity is high and the temperature (air temperature) is relatively low, the dehumidifying operation mode is selected, the solenoid pulp 253 is closed, and the solenoid valve 336 is closed. When the solenoid pulp 253 is closed, the refrigerant pipe between the heat exchanger 300 and the evaporator 210 is connected via the throttle 250 and the heat exchanger 300 The evaporating pressure and the condensing pressure at become the intermediate pressure.
温度 (気温) が比較的高いときは冷房運転モードを選択し、 ソレノィ ドバルブ 2 5 3を開き、 またソレノィ ドバルブ 3 3 6も開く。 特に日本 の気候では、 気温の高いときは、 通常は絶対湿度も高い。 このときは冷 房運転モードを選択して、 顕熱と潜熱の両方を積極的に奪うのがよい。
12 . , なお、 除湿運転モード、 冷房運転モードの選択は、 モード選択モジュ ールによらず、 手動で行ってもよい。 湿度の高い低いは個人的好みもあ る。 また、 湿度や温度にかかわらず、 強制的にとにかく温度を下げたい 場合や、 室内を強制的に乾燥させるためにとにかく湿度を下げたい場合 もあるからである。 If the temperature (air temperature) is relatively high, select the cooling operation mode and open the solenoid valves 2 5 3 and 3 6. Especially in Japan, when the temperature is high, the absolute humidity is usually high. In this case, it is better to select the cooling operation mode and actively remove both sensible heat and latent heat. 12., Note that the selection of the dehumidifying operation mode and the cooling operation mode may be performed manually without depending on the mode selection module. High and low humidity also have personal preferences. Also, regardless of the humidity or temperature, there may be cases where it is desired to forcibly lower the temperature anyway, or for simply drying the room in order to lower the humidity anyway.
ソレノィ ドパルプ 2 5 3を開にすると、 熱交換器 3 0 0と蒸発器 2 1 0との間の冷媒配管は、 実質的に絞りなしで接続されることになり、 熱 交換器 3 0 0内の伝熱チューブ内の圧力は蒸発セクション 2 5 1 と凝 縮セクション 2 5 2共に蒸発器 2 1 0の蒸発圧力と実質的に等しくな り、 熱交換器 3 0 0も蒸発器 2 1 0と共に蒸発器として作用する。 When the solenoid pulp 253 is opened, the refrigerant pipe between the heat exchanger 300 and the evaporator 210 is connected substantially without restriction, and the inside of the heat exchanger 300 The pressure inside the heat transfer tube is substantially equal to the evaporation pressure of the evaporator 210 in both the evaporator section 25 1 and the condensing section 25 2. Acts as an evaporator.
ィンバータ制御モジュール 5 0 1 Cは、 ィンバータ 5 0 2の周波数を 調節する。 メモリー部には、 交流電動機 5 0 5の最高回転速度を記憶し ている。 この値は、 コントローラ 5 0 1に備えられた不図示の最高回転 速度設定入力部から自由に変更し設定することもできる。 The inverter control module 501C adjusts the frequency of the inverter 502. The maximum rotation speed of the AC motor 505 is stored in the memory section. This value can be freely changed and set from a maximum rotation speed setting input unit (not shown) provided in the controller 501.
モード選択モジュール 5 0 1 Βは、 モードを選択すると選択されたモ 一ドに応じて、 除湿運転モード時最高回転速度 5 0 1 Ε又は冷房運転モ 一ド時最高回転速度 5 0 1 Fをメモリー部 5 0 1 Dから読み出して指 定する。 インバータ制御モジュール 5 0 1 Cは、 指定された最高回転速 度を上限として、 インバータ 5 0 2の周波数出力を調節する。 即ち、 電 動機 5 0 5の回転速度を調節する。 この調節により、 圧縮機 2 6 0の冷 媒おしのけ量 (圧縮機がピス トンを有する往復動圧縮機の場合、 おしの け量はビス トンの 1ス トローク分の体積と回転速度により定まる) を第 2の最大流量である除湿時最大流量を上限として調整ができる。 同様に して、 冷房運転モードでは、 圧縮機 2 6 0の冷媒おしのけ量を第 1の最 大流量である冷房時最大流量を上限として調整ができる。 除湿運転モー
ド時最高回転速度 5 0 1 Eは、 冷房運転モード時最高回転速度 5 0 1 F よりも低く設定されている。 この場合、 おしのけ量の調整に伴って冷媒 の質量流量も調整されている。 When the mode is selected, the mode selection module 501 0 stores the maximum rotation speed 501 0 in the dehumidifying operation mode or the maximum rotation speed 501 0F in the cooling operation mode according to the selected mode. Read from section 501 D to specify. The inverter control module 501C adjusts the frequency output of the inverter 502 with the specified maximum rotation speed as an upper limit. That is, the rotation speed of the motor 505 is adjusted. By this adjustment, the displacement of the refrigerant of the compressor 260 (when the compressor is a reciprocating compressor having a piston, the displacement is determined by the volume and rotation speed of one stroke of the biston). Can be adjusted with the maximum flow rate during dehumidification, which is the second maximum flow rate, as the upper limit. Similarly, in the cooling operation mode, the amount of refrigerant to be pushed by the compressor 260 can be adjusted with the first maximum flow rate, which is the maximum flow rate during cooling, as the upper limit. Dehumidifying operation mode The maximum rotation speed in the cooling operation mode is set to be lower than the maximum rotation speed in the cooling operation mode. In this case, the mass flow rate of the refrigerant is adjusted in accordance with the adjustment of the amount of award.
このようにして、 例えば除湿運転モードの運転では、 絞り機構 2 9 2 の絞り度に対応する開度 (絞り度の逆数) を小さく したのに対応して、 圧縮機 2 6 0の冷媒おしのけ量を減らして低くするので、 蒸発器 2 1 0 の蒸発圧力が低下するのを防止し、 例えば蒸発器 2 1 0への霜付きを防 止することができる。 圧縮機 2 6 0のおしのけ量は、 運転モードに対応 して増減すると言い換えてもよい。 In this way, for example, in the operation in the dehumidifying operation mode, the opening degree (reciprocal of the degree of throttling) corresponding to the degree of throttling of the throttling mechanism 292 is reduced, and the amount of displacement of the refrigerant of the compressor 260 is reduced. Since the pressure is reduced to reduce the evaporation pressure of the evaporator 210, it is possible to prevent the evaporator 210 from lowering, and to prevent, for example, frost on the evaporator 210. In other words, the amount of displacement of the compressor 260 may increase or decrease in accordance with the operation mode.
圧縮機 2 6 0は、 それぞれの運転モードの最高回転速度で一定回転速 度運転をし、 冷房運転モー ドでは冷えすぎ、 除湿運転モードでは乾きす ぎになったら運転を停止するという、 オン ·オフ運転をしてもよいし、 最高回転速度を上限として、 冷房運転モードでは温度が所定の設定値に なるように、 また除湿運転モードでは湿度が所定の設定値になるように、 それぞれ回転速度を変える回転速度制御をしてもよい。 The compressor 260 operates at a constant rotational speed at the maximum rotational speed of each operation mode, stops cooling when it is too cold in the cooling operation mode, and stops when it is too dry in the dehumidification operation mode. Off operation may be performed, or the maximum rotation speed may be set as the upper limit, and the rotation speed may be set so that the temperature becomes a predetermined set value in the cooling operation mode and the humidity becomes the predetermined set value in the dehumidification operation mode. May be controlled.
またバルブ 3 3 6は、 オン · オフのソレノィ ドバルブとして説明した が、 冷房負荷、 あるいは除湿負荷に応じて絞り度を調節できる調節弁と してもよい。 このときは絞り 3 3 5はなくてもよレ、。 Although the valve 336 has been described as an on / off solenoid valve, it may be a control valve capable of adjusting the degree of throttling according to a cooling load or a dehumidifying load. At this time, the aperture 3 3 5 is not necessary.
圧縮機 2 6 0は、 回転速度可変の電動機で駆動する容積型 (例えばピ ス トンとシリンダを有する往復動型) 圧縮機とし、 回転速度を上下する ことにより冷媒流量 (おしのけ量) を増減するものとして説明したが、 複数の気筒を有するものとし、 使用する気筒数を増減することにより冷 媒おしのけ量を増減し調節するようにしてもよい。 また複数台の圧縮機 を備え、 運転台数を増減することにより調節するものとしてもよい。 さ らに大型の除湿空調装置では、 遠心圧縮機とし、 入ロベーンコントロー
ル又は入口ダンパコントロールにより調節するものとしてもよい。 The compressor 260 is a positive displacement compressor driven by an electric motor with variable rotation speed (for example, a reciprocating type having a piston and a cylinder), and increases or decreases the rotation speed to increase or decrease the flow rate of the refrigerant. Although it has been described as having a plurality of cylinders, the number of cylinders to be used may be increased or decreased to increase or decrease the amount of coolant supplied. It is also possible to provide a plurality of compressors and adjust them by increasing or decreasing the number of operating units. For larger dehumidifying air conditioners, centrifugal compressors are used, It may be adjusted by a damper or inlet damper control.
次に、 図 3 Aの除湿空調装置の設置状態を示す模式的側面図と図 3 B 及び図 3 Bの熱交換器の斜視図を参照して、 蒸発器 2 1 0と熱交換器 3 0 0の構成例を具体的に説明する。 図 3 B及び図 3 Cに示すように、 伝 熱チューブ (細管) で構成される蒸発セクション 2 5 1は多数のプレー トフィンを貫通して配置されている。 そして最も外側のフィンの外側で Uチューブ (ユーチューブ) により互いに接続されている。 このように して、 伝熱チューブは第 1の区画 3 1 0を蛇行しながら複数回貫通して いる。 Next, referring to the schematic side view showing the installation state of the dehumidifying air conditioner in FIG. 3A and the perspective views of the heat exchanger in FIGS. 3B and 3B, the evaporator 210 and the heat exchanger 30 A configuration example of 0 will be specifically described. As shown in Fig. 3B and Fig. 3C, the evaporating section 251, which is composed of heat transfer tubes (capillaries), is arranged to penetrate many plate fins. They are connected to each other by U-tubes outside the outermost fins. In this way, the heat transfer tube penetrates the first section 310 multiple times while meandering.
第 1の区画 3 1 0は、 長方形のプレートフィンを多数平行に並べるこ とにより形成される直方体の空間である。 また、 そのプレートフィンと 細管群を収納する直方体空間の外面をプレート製のハウジングで囲む ようにするとよい。 ただしそのハウジングの対向する 2つの面は開口し ており、 該開口を処理空気が通過する。 The first section 310 is a rectangular parallelepiped space formed by arranging a large number of rectangular plate fins in parallel. Further, it is preferable that the outer surface of the rectangular parallelepiped space for accommodating the plate fin and the thin tube group is surrounded by a plate housing. However, two opposing surfaces of the housing are open, and the processing air passes through the openings.
同様に、 伝熱チューブである凝縮セクション 2 5 2は、 第 2の区画 3 2 0を蛇行しながら複数回貫通している。 第 2の区画 3 2 0も第 1の区 画 3 1 0と同様な構造を有する直方体の空間である。 Similarly, the condensing section 25 2, which is a heat transfer tube, penetrates the second section 3 20 several times in a meandering manner. The second section 320 is also a rectangular parallelepiped space having the same structure as the first section 310.
蒸発セクシヨン 2 5 1の端部と凝縮セクシヨン 2 5 2の端部とは、 配 管 2 0 2 Bで接続されている。 本実施の形態では、 配管 2 0 2 Bは、 蒸 発セクション 2 5 1 と凝縮セクション 2 5 2を構成する連続したチュ ーブの一部として構成されている。 The end of the evaporating section 25 1 and the end of the condensing section 25 2 are connected by a pipe 202B. In the present embodiment, the pipe 202B is configured as a part of a continuous tube forming the evaporating section 251 and the condensing section 252.
以上説明したように、 冷媒流路である蒸発セクション 2 5 1 と凝縮セ クシヨン 2 5 2は、 それぞれ蛇行する細管群を構成している。 このよう にして、 蒸発セクション 2 5 1から凝縮セクション 2 5 2を、 全体とし て一方向に流れる冷媒 Cは、 細管群中を蛇行して流れながら、 蒸発セク
シヨン 2 5 1で蒸発し凝縮セクション 2 5 2で凝縮する間に、 第 1の区 画 3 1 0を流れる温度の高い処理空気 Aからの熱を第 2の区画 3 2 0 を流れる温度の低い処理空気 Aに伝える。 As described above, the evaporating section 251, which is the refrigerant flow path, and the condensing section 255, respectively, constitute a meandering narrow tube group. In this manner, the refrigerant C flowing in one direction as a whole from the evaporating section 25 1 to the condensing section 25 2 flows in a meandering manner in the group of small tubes while evaporating. While evaporating in Chillon 25 1 and condensing in condensing section 25 2, heat from the hot process air A flowing through the first compartment 310 is transferred to the cooler air flowing through the second compartment 320. Inform process air A.
蒸発器 2 1 0も同様に、 伝熱チューブが多数の長方形のプレートフィ ンを貫通して構成されている。 その構成は第 1の区画 3 1 0、 第 2の区 画 3 2 0と同様に直方体の空間として構成されている。 そして最も外側 のフィンの外側で Uチューブ (ユーチューブ) により接続されている。 このようにして、 伝熱チューブはフィンを蛇行しながら複数回貫通して いる。 Similarly, the evaporator 210 also has a heat transfer tube formed through a number of rectangular plate fins. The configuration is configured as a rectangular parallelepiped space like the first section 310 and the second section 320. They are connected by U-tubes outside the outermost fins. In this way, the heat transfer tube penetrates the fin several times while meandering.
本実施の形態では、蒸発セクション 2 5 1、凝縮セクション 2 5 2が、 それぞれ処理空気 Aの流れに直交する 1つの平面内に蛇行して配置さ れた 1層の細管群として構成されているのに対して、 蒸発器 2 1 0は、 処理空気 Aの流れに直交する 2つの平面内に蛇行して配置された 2層 の細管群として構成されている。 但しこれに限らず、 層数は伝熱量に応 じて決めればよい。 また、 熱交換器 3 0 0と蒸発器 2 1 0における細管 群の伝熱面積の配分は、 後で説明するように、 潜熱負荷と顕熱負荷との 割合に応じて決めればよい。 In the present embodiment, the evaporating section 25 1 and the condensing section 25 2 are each configured as a single-layer thin tube group arranged in a meandering manner in one plane orthogonal to the flow of the processing air A. On the other hand, the evaporator 210 is configured as a two-layered thin tube group arranged in a meandering manner in two planes orthogonal to the flow of the processing air A. However, the number of layers is not limited to this, and may be determined according to the amount of heat transfer. In addition, the distribution of the heat transfer area of the thin tube group in the heat exchanger 300 and the evaporator 210 may be determined according to the ratio between the latent heat load and the sensible heat load, as described later.
また、 蒸発器 2 1 0は第 1の区画 3 1 0と第 2の区画 3 2 0との間に 配置されている。 このように配置すると、 1つの直方体空間を 3つに分 割して、 それぞれを第 1の区画 3 1 0、 蒸発器2 1 0、 第 2の区画3 2 0として構成することができ、 構造が単純になる。 各区画 3 1 0 , 3 2 0と蒸発器 2 1 0との間では、 フィンは図示のように不連続となるよう に切れ目を入れるのが好ましい。 隣り合う各部の温度が異なるからであ る。 Further, the evaporator 210 is disposed between the first section 310 and the second section 320. With this arrangement, by split one rectangular spaces 3, respectively a first compartment 3 1 0, the evaporator 2 1 0, can be configured as a second compartment 3 2 0, structure Becomes simple. It is preferable that the fins are cut so as to be discontinuous as shown in the drawing between each of the sections 310, 320 and the evaporator 210. This is because the temperature of each adjacent part is different.
この構成では、 細管群は等間隔でフィンに貫通させて拡管してフィン
に固定し、 各細管の間は単純な Uチューブで接続し、 各区画 3 1 0, 3 2 0間、 また蒸発器 2 1 0との間は、 1本又は少数の配管 (あるいは細 管の一部) で接続すればよいので、 構成が単純で、 製造も容易である。 次に、 図 3 Aの模式的断面図を参照して、 以上説明した除湿空調装置 を空調空間 1 0 1の空調機として応用した例を説明する。 空調空間 1 0 1中即ち室内に設置される室内機中には、 第 1の区画 3 1 0、 蒸発器 2 1 0、 第 2の区画 3 2 0がー体で形成された熱交換器組立と、 戻り空気 R A、 供給空気 S Aを循環させる送風機 1 0 2が収納されている。 送風 機 1 0 2としてはクロスフローファンを用いると室内機をコンパク ト にまとめることができる。 第 1の区画 3 1 0の戻り空気 R Aの流れの上 流側には除塵フィルタが設けられている。 In this configuration, the tubules are pierced at equal intervals through And each tube is connected by a simple U-tube, and one or a few pipes (or tubes) are connected between each section 310 and 320 and between the evaporators 210. The configuration is simple and the manufacturing is easy because it is only necessary to connect with a part). Next, an example in which the above-described dehumidifying air conditioner is applied as an air conditioner of the air-conditioned space 101 will be described with reference to the schematic cross-sectional view of FIG. 3A. In the air-conditioned space 101, that is, in the indoor unit installed indoors, a heat exchanger assembly comprising a first section 310, an evaporator 210, and a second section 320 And a blower 102 for circulating the return air RA and the supply air SA. If a cross flow fan is used as the blower 102, the indoor units can be compacted. A dust filter is provided on the upstream side of the flow of the return air RA in the first section 310.
熱交換器 3 0 0、 蒸発器 2 1 0の下方にはドレンパン 4 5 0が備えら れ、 ドレンパン 4 5 0からはドレンパイプが屋外に導かれている。 A drain pan 450 is provided below the heat exchanger 300 and the evaporator 210. From the drain pan 450, a drain pipe is led outside.
戻り空気 R Aはフィルタを通って除塵され、 第 1の区画 3 1 0で予冷 され、 蒸発器 2 1 0でさらに冷却されて除湿され飽和空気となる。 この 飽和空気は第 2の区画 3 2 0で再熱されて適度な絶対湿度で適度な温 度の即ち適度な相対湿度の供給空気 S Aとして、 送風機 1 0 2により空 調空間 1 0 1に供給される。 すなわち処理空気は、 (各区画と蒸発器と の間に切れ目はあるものの) 一見すると通常の冷房用フィンチューブ熱 交換器に見える一塊のプレートフインと細管群を一方向に通過する間 に、 予冷、 水分除去、 再熱の 3つのプロセスが一気に行われ、 適度な湿 度と温度の供給空気 S Aとなる。 Return air RA is filtered through a filter, pre-cooled in the first section 310, further cooled in the evaporator 210 and dehumidified to saturated air. This saturated air is reheated in the second section 320 and supplied to the air-conditioned space 101 by the blower 102 as supply air SA having an appropriate absolute humidity and an appropriate temperature, that is, an appropriate relative humidity. Is done. In other words, the treated air is pre-cooled while passing in one direction through a mass of plate fins and small tubing that looks like a normal cooling fin tube heat exchanger (although there is a gap between each section and the evaporator). , Moisture removal and reheating are all performed at once, resulting in supply air SA with appropriate humidity and temperature.
空調空間 1 0 1外に設置される室外機中には、 凝縮器 2 2 0、 圧縮機 2 6 0、 送風機 1 4 0が収納されている。 そして、 凝縮器 2 2 0と第 1 の区画 3 1 0の蒸発セクション 2 5 1 とは配管 2 0 2で接続され、 蒸発
器 2 1 0と圧縮機 2 6 0とは配管 2 0 3で接続されている。 即ち、 室内 機と室外機とは 2本の配管 2 0 2と 2 0 3だけで接続されている。 なお 本図では、 絞り機構 2 9 1 , 2 9 2は図示を省略してある。 A condenser 220, a compressor 260, and a blower 140 are housed in an outdoor unit installed outside the air-conditioned space 101. Then, the condenser 220 and the evaporating section 25 1 of the first section 310 are connected by a pipe 202, and the evaporating The unit 210 and the compressor 260 are connected by a pipe 203. That is, the indoor unit and the outdoor unit are connected only by two pipes 202 and 203. In this drawing, the aperture mechanisms 29 1 and 29 2 are not shown.
次に、 まず図 1を参照して、 各機器間の冷媒 Cの流れを説明し、 続け て図 4に示 Next, referring first to FIG. 1, the flow of the refrigerant C between the respective devices will be described.
すヒートポンプ H P 1の第 1の運転形態としての除湿運転モード時の 冷媒モリエ線図を参照して、 ヒートポンプ H P 1の作用を説明する。 図 1において、 まず第 1の運転形態としての除湿運転モード時の場合 を説明する。 このときは、 ソレノイ ドパルプ 3 3 6は閉、 ソレノイ ドバ ルプ 2 5 3も閉とする。 圧縮機 2 6 0により圧縮された冷媒ガス Cは、 圧縮機 2 6 0の吐出口に接続された冷媒ガス配管 2 0 1を経由して凝 縮器 2 2 0に導かれる。 圧縮機 2 6 0で圧縮された冷媒ガス Cは、'冷却 空気としての外気 Bで冷却され凝縮する。 The operation of the heat pump HP 1 will be described with reference to a refrigerant Mollier diagram in a dehumidifying operation mode as a first operation mode of the heat pump HP 1. In FIG. 1, the case of the dehumidification operation mode as the first operation mode will be described first. At this time, the solenoid pulp 336 is closed and the solenoid pulp 253 is also closed. The refrigerant gas C compressed by the compressor 260 is guided to the condenser 220 via a refrigerant gas pipe 201 connected to a discharge port of the compressor 260. The refrigerant gas C compressed by the compressor 260 is cooled and condensed by the outside air B as cooling air.
凝縮器 2 2 0の冷媒出口は、 熱交換器 3 0 0の蒸発セクション 2 5 1 の入り 口に冷媒経路 2 0 2により接続されている。 冷媒経路 2 0 2の途 中、 蒸発セクション 2 5 1の入り 口近傍には、 絞り 3 3 0が冷媒経路 2 0 2に、 冷媒経路の絞り 3 3 0をパイパスするパイパス経路 2 0 2 Aに は絞り 3 3 5及びソレノィ ドパルプ 3 3 6が直列に設けられ、 ソレノィ ドバルブ 3 3 6は閉となっている。 ソレノィ ドパルプ 3 3 6が閉である のは、 後述のように、 通常は除湿運転モードでは必要な冷媒流量は冷房 運転モードよりも少ないからである。 The refrigerant outlet of the condenser 220 is connected to the inlet of the evaporating section 25 1 of the heat exchanger 300 by a refrigerant path 202. In the middle of the refrigerant path 202, near the entrance of the evaporating section 251, a throttle 330 is connected to the refrigerant path 202, and a bypass path 202A that bypasses the refrigerant path restriction 330. Has a throttle 335 and a solenoid pulp 336 connected in series, and the solenoid valve 336 is closed. The reason why the solenoid pulp 336 is closed is that the required refrigerant flow rate is usually smaller in the dehumidifying operation mode than in the cooling operation mode, as described later.
凝縮器 2 2 0を出た液冷媒 Cは、 絞り 3 3 0で減圧され、 膨張して一 部の冷媒 Cが蒸発 (フラッシュ) する。 その液とガスの混合した冷媒 C は、 蒸発セクション 2 5 1に到り、 ここで液冷媒 Cはプレートフインを 貫通しながら蛇行する蒸発セクション 2 5 1のチューブの内壁を濡ら
すように流れ蒸発して、 第 1の区画 3 1 0を流れる、 蒸発器 2 1 0に流 入する前の処理空気 Aを冷却 (予冷) する。 The liquid refrigerant C that has exited the condenser 220 is depressurized by the throttle 330, expands, and a part of the refrigerant C evaporates (flashes). The refrigerant C mixed with the liquid and the gas reaches the evaporating section 251, where the liquid refrigerant C penetrates the plate fin and wets the inner wall of the meandering evaporating section 251 tube. The treated air A that flows and evaporates in the first section 310 before flowing into the evaporator 210 is cooled (precooled).
蒸発セクション 2 5 1である程度蒸発し、 ガスと液の混合物となった 冷媒は、 配管 2 0 2 Bに導かれて、 凝縮セクション 2 5 2に流入する。 第 2の区画 3 2 0を流れる処理空気 A、 即ち第 1の区画 3 1 0で予冷さ れた後に蒸発器 2 1 0で冷却除湿され、 蒸発器 2 1 0に流入する前より 温度が低くなつた処理空気 Aを加熱 (再熱) し、 冷媒自身は熱を奪われ 凝縮する。 本実施の形態では蒸発セクション 2 5 1 と凝縮セクション 2 The refrigerant, which has been evaporated to some extent in the evaporating section 251, and has become a mixture of gas and liquid, is led to the pipe 202B and flows into the condensing section 2552. Process air A flowing through the second section 320, that is, pre-cooled in the first section 310, cooled and dehumidified in the evaporator 210, and has a lower temperature than before flowing into the evaporator 210 The treated air A is heated (reheated), and the refrigerant itself is deprived of heat and condensed. In the present embodiment, the evaporating section 25 1 and the condensing section 2
5 2とは一連のチューブ (Uチューブを含む) で形成されている。 すな わち一体の流路として構成されているので、 蒸発セクション 2 5 1で蒸 発した冷媒ガス C (及び蒸発しなかった冷媒液 C ) は、 凝縮セクショ ン52 is formed of a series of tubes (including U tubes). That is, since the refrigerant gas C (and the refrigerant liquid C that did not evaporate) evaporated in the evaporating section 25 1 is configured as an integral flow path, the condensing section
2 5 2に流入して凝縮することにより、 物質移動と同時に熱移動を行う。 熱交換器 3 0 0の最後の凝縮セクション 2 5 2の出口側は、 冷媒液配 管 2 0 3により、 蒸発器 2 1 0に接続され、 冷媒配管 2 0 3中には膨張 弁 2 5 0、 膨張弁 2 5 0をバイパスするソレノィ ドバルブ 2 5 3が設置 されている。 The heat is transferred at the same time as mass transfer by flowing into and condensing into 25 2. The outlet side of the last condensing section 250 of the heat exchanger 300 is connected to the evaporator 210 by a refrigerant liquid pipe 203, and an expansion valve 250 is provided in the refrigerant pipe 203. Also, a solenoid valve 253 that bypasses the expansion valve 250 is provided.
凝縮セクションで凝縮した冷媒液 Cは、 絞り 2 5 0で減圧され膨張し て温度を下げて、 蒸発器 2 1 0に入り蒸発し、 その蒸発熱で処理空気 A を冷却する。 絞り 3 3 0、 2 5 0としては、 例えばオリフィス、 キヤピ ラリチューブ、 膨張弁等を用いる。 ソレノイ ドパルプ 2 5 3は閉となつ ているので、 冷媒液 Cはソレノイ ドパルプ 2 5 3を通過しない。 なお、 除湿運転モードでは、 コントローラ 5 0 1はソレノィ ドバルブ 2 5 3を 閉とし第 1の絞り機構 2 9 2の絞り度を増 (開口面積が小) に切り替え ているので、 それに対応して圧縮機 2 6 0の冷媒のおしのけ量を減らす ように、 駆動ィンバータモータ 5 0 5の回転速度を下げる。 蒸発器 2 1
0の蒸発圧力が適正となり、 蒸発器を通過する冷媒流量としての冷媒質 量流量も減る。 The refrigerant liquid C condensed in the condensing section is decompressed by the throttle 250 and expanded to lower the temperature, enters the evaporator 210 and evaporates, and cools the processing air A by the heat of evaporation. As the throttles 330 and 250, for example, orifices, capillary tubes, expansion valves, and the like are used. Since the solenoid pulp 253 is closed, the refrigerant liquid C does not pass through the solenoid pulp 253. In the dehumidifying operation mode, the controller 501 closes the solenoid valve 25 3 and switches the degree of throttle of the first throttle mechanism 29 2 to an increased value (small opening area). The rotation speed of the drive inverter motor 505 is reduced so as to reduce the amount of the refrigerant of the machine 260. Evaporator 2 1 The evaporation pressure of 0 becomes appropriate, and the refrigerant mass flow rate as the refrigerant flow rate passing through the evaporator also decreases.
蒸発器 2 1 0で蒸発してガス化した冷媒 Cは、 経路 2 0 4を通して圧 縮機 2 6 0の吸込側に導かれ、 以上のサイクルを繰り返す。 The refrigerant C evaporated and gasified by the evaporator 210 is led to the suction side of the compressor 260 through the path 204, and the above cycle is repeated.
図中、 熱交換器 3 0 0の蒸発セクション 2 5 1 と凝縮セクション 2 5 2内の冷媒 Cの挙動を説明する。 まず蒸発セクション 2 5 1には、 液相 及び気相の冷媒 Cが流入する。 一部が気化した、 気相を僅かに含む冷媒 液 Cであってもよい。 この冷媒 Cは、 蒸発セクション 2 5 1を流れる間 に、 処理空気 Aを予冷し自身は加熱され気相を増やしながら凝縮セクシ ヨン 2 5 2に流入する。 凝縮セクション 2 5 2では、 冷却除湿されるこ とにより蒸発セクション 2 5 1の処理空気 Aよりも温度の低くなった 処理空気 Aを加熱し、 自身は熱を奪われ気相冷媒 Cを凝縮させる。 この ように冷媒 Cは気相と液相の相変化をしながら冷媒流路を流れ、 蒸発器 2 1 0で冷却される前の処理空気 Aと、 蒸発器 2 1 0で冷却されて絶対 湿度を低下させた処理空気 Aとの間で熱交換させる。 In the figure, the behavior of the refrigerant C in the evaporating section 25 1 and the condensing section 25 2 of the heat exchanger 300 will be described. First, the liquid-phase and gas-phase refrigerant C flows into the evaporating section 25 1. Refrigerant liquid C which is partially vaporized and slightly contains a gas phase may be used. While flowing through the evaporating section 251, the refrigerant C pre-cools the processing air A and heats itself, and flows into the condensing section 252 while increasing the gas phase. The condensing section 255 heats the processing air A, which has a lower temperature than the processing air A in the evaporating section 251, by being cooled and dehumidified, and deprives itself of heat to condense the gas-phase refrigerant C. . As described above, the refrigerant C flows through the refrigerant flow path while undergoing a phase change between a gas phase and a liquid phase, and the treated air A before being cooled by the evaporator 210 and the absolute humidity by being cooled by the evaporator 210 Is exchanged with the treated air A in which the temperature is reduced.
第 2の運転形態としての冷房運転の場合は、 ソレノィ ドバルブ 3 3 6 を閉から開として絞り 3 3 5に冷媒 Cが流れるようにし、 ソレノイ ドバ ルブ 2 5 3を閉から開として冷媒 Cが絞り 2 5 0の前後で圧力低下を 起こさないようにし、 第 1の運転形態としての除湿運転から、 第 2の運 転形態としての冷房運転に運転形態を切り替える。 ソレノィ ドパルプ 2 4 3を開にするのと対応して、 圧縮機 2 6 0の運転回転速度を上げて冷 媒おしのけ量を増やす。 蒸発器 2 1 0の蒸発圧力が適正となり、 蒸発器 を通過する冷媒流量としての冷媒質量流量も増える。 In the case of the cooling operation as the second mode of operation, the solenoid valve 33 is closed to open and the refrigerant C is allowed to flow through the throttle 35, and the solenoid valve 25 is closed and opened to restrict the refrigerant C. A pressure drop is prevented from occurring around 250, and the operation mode is switched from the dehumidification operation as the first operation mode to the cooling operation as the second operation mode. Corresponding to opening the solenoid pulp 243, the operating speed of the compressor 260 is increased to increase the amount of coolant dispensed. The evaporation pressure of the evaporator 210 becomes appropriate, and the refrigerant mass flow rate as the refrigerant flow rate passing through the evaporator also increases.
こうすることにより、 絞り 2 5 0前後の冷媒 Cの圧力低下をほぼゼロ とし、 配管圧損を除いた冷媒 Cの圧力低下を絞り 3 3 0と 3 3 5で発生
させることができ、 熱交換器 3 0 0の凝縮セクション 2 5 2と、 蒸発セ クシヨン 2 5 1における冷媒 Cの圧力が、 蒸発器 2 1 0における冷媒 C の圧力にほぼ等しくなり、 蒸発器 2 1 0に加えて凝縮セクション 2 5 2 と、蒸発セクション 2 5 1においても冷媒 Cの蒸発が発生する。 よって、 蒸発の伝熱面積が増えるので、 冷房能力すなわち顕熱処理能力を増加さ せることができる。 By doing so, the pressure drop of the refrigerant C around the throttle 250 is reduced to almost zero, and the pressure drop of the refrigerant C excluding the pipe pressure loss occurs at the throttles 330 and 335. The pressure of the refrigerant C in the condensing section 25 2 of the heat exchanger 300 and the evaporating section 25 1 becomes approximately equal to the pressure of the refrigerant C in the evaporator 210, and the evaporator 2 In addition to 10, refrigerant C also evaporates in the condensing section 25 2 and the evaporating section 25 1. Therefore, the heat transfer area of evaporation increases, so that the cooling capacity, that is, the sensible heat treatment capacity can be increased.
そして、 除湿運転モード時では、 熱交換器 3 0 0を蒸発器 2 1 0を通 過する前後の処理空気 Aのレヒート熱交換器として使うことによって、 冷却による結露水分量を冷房運転モード時より増やし、 冷房運転モード 時より除湿能力すなわち潜熱処理能力を増加させることができる。 これ によって、 除湿運転モード時では、 冷房運転モード時より速やかに湿度 を下げることができ、 いわゆる低顕熱比の湿度の高い室内空調負荷にも 対応できる。 In the dehumidifying operation mode, by using the heat exchanger 300 as a reheat heat exchanger for the processing air A before and after passing through the evaporator 210, the amount of water condensed by cooling can be reduced as compared with the cooling operation mode. It is possible to increase the dehumidifying capacity, that is, the latent heat treatment capacity, from the cooling operation mode. As a result, in the dehumidifying operation mode, the humidity can be reduced more quickly than in the cooling operation mode, and it is possible to cope with a so-called low sensible heat ratio and a high humidity indoor air-conditioning load.
またさらに、 除湿運転モード時には送風機 1 0 2による送風量を冷房 運転モード時よりも減らすことにより、 結露水分量を冷房運転モード時 より増やすようにしてもよい。 そのために、 送風機 1 0 2も不図示の可 変速モータにより駆動して、 回転速度の増減制御が可能に構成するとよ い。 Further, in the dehumidifying operation mode, the amount of dew condensation may be increased by reducing the amount of air blown by the blower 102 from that in the cooling operation mode. For this purpose, it is preferable that the blower 102 is also driven by a variable speed motor (not shown) to control the increase and decrease of the rotation speed.
本第 1の実施の形態の除湿空調装置を、 家庭用のエアコンに適用した 場合、 除湿運転を行うことによって、 梅雨時や夏期夜間の就寝時に室内 が冷えすぎることなく、 低湿度で快適な環境を作ることができる。 When the dehumidifying air conditioner of the first embodiment is applied to a home air conditioner, the dehumidifying operation can be performed to prevent the room from becoming too cold during the rainy season or sleeping at night in the summer, and provide a comfortable environment with low humidity. Can be made.
以上説明したように、 本実施の形態の除湿空調装置は、 空調負荷の顕 熱比が可変であり、 しかも除湿運転、 冷房運転いずれの運転形態におい ても省エネルギーな運転ができる。 As described above, the dehumidifying air conditioner of the present embodiment has a variable sensible heat ratio of the air conditioning load, and can perform energy-saving operation in both the dehumidifying operation and the cooling operation.
以上の説明では、 圧縮機駆動用電動機 5 0 5の回転速度制御により冷
媒流量を調節し、 冷房負荷、 除湿負荷に対応するものとしたが、 併せて 電動機ひいては圧縮機のオン 'オフにより、 回転速度制御を超えた調節 ができるようにして、 幅広い負荷変動に対応するように構成してもよい。 次に、 図 4のモリエ線図を参照して、 ヒートポンプ HP 1の除湿運転 モード時の作用を説明する。 なお、 機器等については適宜図 1を参照す る。 図 4は、 冷媒 HF C 1 34 aを用いた場合のモリエ線図である。 こ の線図では横軸がェンタルピ、 縦軸が圧力である。 この他に、 本発明の ヒートポンプ、 除湿空調装置に適した冷媒 Cとしては、 HF C 40 7 C や HF C 4 1 OAがある。 これらの冷媒 Cは、 HF C 1 34 aよりも作 動圧力領域が高圧側にシフ トする。 In the above description, the cooling speed is controlled by controlling the rotation speed of the compressor driving motor 505. The medium flow rate was adjusted to cope with the cooling load and dehumidification load.At the same time, turning on and off the electric motor and the compressor enabled adjustment beyond the rotational speed control to respond to a wide range of load fluctuations. It may be configured as follows. Next, the operation of the heat pump HP 1 in the dehumidifying operation mode will be described with reference to the Mollier diagram in FIG. For equipment, etc., refer to FIG. 1 as appropriate. FIG. 4 is a Mollier diagram when the refrigerant HF C134a is used. In this diagram, the horizontal axis is enthalpy and the vertical axis is pressure. In addition, examples of the refrigerant C suitable for the heat pump and the dehumidifying air conditioner of the present invention include HF C407C and HFC41OA. These refrigerants C have an operating pressure region shifted to a higher pressure side than HF C134a.
図中、 点 aは蒸発器 2 1 0の冷媒出口の状態であり、 冷媒 Cは飽和ガ スの状態にある。 圧力は 0. 34MP a、 温度は 5°C、 ェンタルピは 4 00. 9 k j/k gである。 このガスを圧縮機 26 0で吸込圧縮した状 態、圧縮機 2 6 0の吐出口での状態が点 bで示されている。 この状態は、 圧力が 0. 94MP aであり、 過熱ガスの状態にある。 In the figure, point a is the state of the refrigerant outlet of the evaporator 210, and the refrigerant C is in a saturated gas state. The pressure is 0.34MPa, the temperature is 5 ° C, and the enthalpy is 400.9 kj / kg. The state where this gas is sucked and compressed by the compressor 260 and the state at the discharge port of the compressor 260 are indicated by a point b. In this state, the pressure is 0.94 MPa, and the state is a superheated gas.
この冷媒ガス Cは、 凝縮器 2 20内で冷却され、 モリエ線図上の点 c に到る。 この点は飽和ガスの状態であり、 圧力は 0. 94MP a、 温度 は 3 8°Cである。 この圧力下でさらに冷却され凝縮して、 点 dに到る。 この点は飽和液の状態であり、 圧力と温度は点 c と同じであり、 ェンタ ルピは 2 5 0. 5 k jZk gである。 This refrigerant gas C is cooled in the condenser 220 and reaches a point c on the Mollier diagram. This point is a state of saturated gas, pressure is 0.94MPa, temperature is 38 ° C. Under this pressure, it is further cooled and condensed, reaching point d. This point is a saturated liquid state, the pressure and temperature are the same as point c, and the enthalpy is 250.5 kjZkg.
この冷媒液 Cは、 絞り 3 30で減圧され熱交換器 300の蒸発セクシ ヨン 2 5 1に流入する。 モリエ線図上では、 点 eで示されている。 圧力 は、 本発明の中間圧力であり、 本実施例では 0 · 34MP a と 0. 94 MP a との中間の値となる。 ここでは、 一部の液が蒸発して液とガスが 混合した状態にある。
蒸発セクション 2 5 1内で、 前記中間圧力下で冷媒液 Cは蒸発して、 同圧力で飽和液線と飽和ガス線の中間の点 f に到る。 ここでは液の一部 が蒸発しているが、 冷媒液 Cはある程度残っている。 The refrigerant liquid C is decompressed by the throttle 330 and flows into the evaporating section 251 of the heat exchanger 300. On the Mollier diagram, it is indicated by point e. The pressure is an intermediate pressure of the present invention, and in this embodiment, is a value intermediate between 0.34 MPa and 0.94 MPa. Here, a part of the liquid is evaporated and the liquid and the gas are mixed. In the evaporating section 251, the refrigerant liquid C evaporates under the intermediate pressure and reaches a point f between the saturated liquid line and the saturated gas line at the same pressure. Here, a part of the liquid has evaporated, but the refrigerant liquid C remains to some extent.
点 f で示される状態の冷媒 Cが、 凝縮セクション 2 5 2に流入する。 凝縮セクション 2 5 2では、 冷媒 Cは第 2の区画 3 20を流れる低温の 処理空気 Aにより熱を奪われ、 点 gに到る。 The refrigerant C in the state indicated by the point f flows into the condensing section 2 52. In the condensing section 2 52, the refrigerant C is deprived of heat by the low temperature process air A flowing through the second section 320, and reaches point g.
点 gはモリエ線図では飽和液線上にある。 温度は 1 8°C、 ェンタルピ は 2 2 3. 3 k jZk gである。 Point g is on the saturated liquid line in the Mollier diagram. The temperature is 18 ° C and the enthalpy is 223.3 kjZkg.
点 gの冷媒液 Cは、 絞り 250で、 温度 5°Cの飽和圧力である 0. 3 4MP aまで減圧され、 点〗 に到る。 この点 j の冷媒 Cは、 5°Cの冷媒 液 Cと冷媒ガス Cの混合物として蒸発器 2 1 0に到り、 ここで処理空気 Aから熱を奪い、 蒸発してモリェ線図上の点 aの状態の飽和ガスとなり、 再び圧縮機 26 0に吸入され、 以上のサイクルを繰り返す。 The refrigerant liquid C at the point g is reduced in pressure to 0.34 MPa, which is a saturation pressure at a temperature of 5 ° C., by the throttle 250, and reaches the point. The refrigerant C at this point j reaches the evaporator 210 as a mixture of the refrigerant liquid C and the refrigerant gas C at 5 ° C, where it removes heat from the treated air A, evaporates, and points on the Mollier diagram. It becomes saturated gas in the state of a and is sucked into the compressor 260 again, and the above cycle is repeated.
以上説明したように、 熱交換器 3 00内では、 冷媒 Cは蒸発セクショ ン 2 5 1では点 eから点 f までと蒸発の状態変化を、 凝縮セクション 2 5 2では点 ίから点 g 1までと凝縮の状態変化をしており、 蒸発伝熱と 凝縮伝熱であるため、 熱伝達率が非常に高くまた熱交換効率が高い。 As described above, in the heat exchanger 300, the refrigerant C changes the state of evaporation from the point e to the point f in the evaporating section 251, and changes from the point ί to the point g1 in the condensing section 2552. The heat transfer coefficient is very high and the heat exchange efficiency is high because of the heat transfer between evaporation and condensation.
さらに、 圧縮機 26 0、 凝縮器 2 20、 絞り 3 3 0、 2 50及び蒸発 器 2 1 0を含む圧縮ヒートポンプ HP 1 としては、 熱交換器 300を設 けない場合は、 凝縮器 220における点 dの状態の冷媒 Cを、 絞りを介 して蒸発器 2 1 0に戻すため、 蒸発器 2 1 0で利用できるェンタルピ差 は 400. 9 - 2 5 0. 5 = 1 5 0. 4 k j/k gしかないのに対して、 熱交換器 3 00を設けた本実施の形態で用いるヒートポンプ HP 1の 場合は、 400. 9 - 22 3. 3 = 1 77. 6 k j Zk gになり、 同一 冷却負荷に対して圧縮機26 0に循環するガス量を、 ひいては所要動力
を 1 5 %も小さくすることができる。 すなわち、 サブクールサイクルと 同様な作用を持たせることができる。 Further, as the compression heat pump HP 1 including the compressor 260, the condenser 220, the throttles 330, 250, and the evaporator 210, if the heat exchanger 300 is not provided, the point at the condenser 220 In order to return the refrigerant C in the state of d to the evaporator 210 via the throttle, the enthalpy difference available in the evaporator 210 is 400.9-250.0.5 = 150.04 kj / In the case of the heat pump HP 1 used in the present embodiment with the heat exchanger 300, it is 400.9-223.3 = 177.6 kj the amount of vapor that is circulated to the compressor 2 6 0 to the load, thus the power required Can be reduced by 15%. That is, the same operation as the subcool cycle can be provided.
次に、 ヒートポンプ H P 1の冷房運転モード時の作用を説明する。 図 中点 dまでは除湿運転モード時と同様であるので点 dまでの説明は省 略する。 凝縮器 2 2 0を出た、 冷媒 Cは絞り 3 3 0を通過する。 絞りを 通過すると圧力は 0 . 9 4 M P a力 ら 0 . 3 4 M P aまで減少し、 図中 点 dから点 j ' に移行する。 この点 j ' のェンタルピは、 2 5 0 . 5 k J / k gで、 温度は 5 °Cである。 そして冷媒は熱交換器 3 0 0、 蒸発器 2 1 0で蒸発し点 aに至る。 Next, the operation of the heat pump HP1 in the cooling operation mode will be described. The operation up to point d in the figure is the same as that in the dehumidification operation mode, and the description up to point d is omitted. After leaving the condenser 220, the refrigerant C passes through the throttle 330. After passing through the restrictor, the pressure decreases from 0.94 MPa force to 0.34 MPa, and moves from point d to point j 'in the figure. The enthalpy at this point j 'is 250.5 kJ / kg and the temperature is 5 ° C. The refrigerant evaporates in the heat exchanger 300 and the evaporator 210 to reach the point a.
図 5の棒グラフを参照して除湿負荷と冷房負荷につき説明する。 図示 のように、 特に日本のような温帯や亜熱帯地方における気候では、 空調 負荷のうち除湿負荷 (潜熱負荷) の最大値は盛夏でも雨季でもそれほど の差はない。 一方、 顕熱負荷は例えば 8月のような盛夏時には著しく増 加する。 そのため、 冷房と除湿を兼用する空調機の設計上の最大負荷と しては、 盛夏時の負荷を採用しなければならない。 The dehumidification load and the cooling load will be described with reference to the bar graph in FIG. As shown in the figure, especially in climates such as Japan in temperate and subtropical regions, the maximum value of the dehumidification load (latent heat load) of the air conditioning load is not so different between the midsummer and the rainy season. On the other hand, the sensible heat load increases remarkably in the middle of summer, for example, in August. Therefore, as the design maximum load of the air conditioner that combines cooling and dehumidification, the load at the time of midsummer must be adopted.
それに対して、 除湿運転モード時の最大負荷は、 冷房運転モードの最 大負荷の半分以下である。 一例を挙げれば、 図示のように、 盛夏時の総 負荷を 1 0 0とすると、 そのうち潜熱負荷は 3 0であり、 梅雨時のよう な雨季の総負荷は 4 0であり、 そのうち潜熱負荷は 2 5である。 On the other hand, the maximum load in the dehumidifying operation mode is less than half of the maximum load in the cooling operation mode. As an example, as shown in the figure, if the total load at midsummer is 100, the latent heat load is 30 and the total load in the rainy season such as the rainy season is 40, and the latent heat load is 2 5
したがって、 蒸発器で奪うべき熱量は、 冷房運転モード時の方が除湿 運転モード時に比べてはるかに多い。 顕熱負荷が大きい分だけ多くなる からである。 しかしながら、 潜熱負荷は雨季と盛夏時とであまり変わら ない。 Therefore, the amount of heat to be taken by the evaporator is much higher in the cooling operation mode than in the dehumidification operation mode. This is because the sensible heat load increases as the load increases. However, the latent heat load does not change much between rainy season and midsummer.
本発明の実施の形態によれば、 冷房運転モード時には蒸発器として使 用できる伝熱面積が蒸発器 2 1 0に加えて熱交換器 3 0 0の分が加わ
るので、 十分な伝熱が確保できる。 また除湿運転モー ド時には、 蒸発器 として使用できる伝熱面積は蒸発器 2 1 0の分であり、 除湿負荷に適し た伝熱面積とすることができる。 熱交換器 3 0 0は除湿した後のいわば 冷えすぎた処理空気の再熱に使用でき、 同時に処理空気の予冷に使用で きる。 According to the embodiment of the present invention, in the cooling operation mode, the heat transfer area that can be used as the evaporator is added to the heat exchanger 300 in addition to the evaporator 210. Therefore, sufficient heat transfer can be secured. In the dehumidifying operation mode, the heat transfer area that can be used as the evaporator corresponds to the evaporator 210, and can be a heat transfer area suitable for the dehumidification load. The heat exchanger 300 can be used for reheating the so-called excessively cooled process air after dehumidification, and at the same time, for pre-cooling the process air.
別の方向から見れば、 冷房専用の空調機に必要十分な伝熱面積を有す る蒸発器の伝熱面積を 3分割し、蒸発器 2 1 0、蒸発セクション 2 5 1、 凝縮セクション 2 5 2とすればよい。 即ち、 冷房専用の空調機の蒸発器 そのままの大きさをもって、 冷媒配管を調整するだけで、 冷房 · 除湿兼 用のコンパク トで効率的な空調機を構成することができる。 From another perspective, the heat transfer area of the evaporator, which has a sufficient heat transfer area for the air conditioner dedicated to cooling, is divided into three, and the evaporator 210, evaporator section 251, and condensing section 25 It should be 2. In other words, a compact and efficient air conditioner for both cooling and dehumidification can be constructed by adjusting the refrigerant piping with the same size as the evaporator of the air conditioner dedicated to cooling.
図 5のグラフに示すような負荷割合の気候に対しては、 熱交換器全体 の伝熱面積の約 4 0〜 6 0 %を蒸発器 2 1 0に配分し、 残り 6 0〜 4 0 %の伝熱面積を蒸発セクション 2 5 1 と凝縮セクション 2 5 2とに 伝熱量に応じて配分すればよい。 For a climate with a load ratio as shown in the graph of Fig. 5, about 40 to 60% of the heat transfer area of the entire heat exchanger is allocated to the evaporator 210, and the remaining 60 to 40% The heat transfer area may be allocated to the evaporating section 25 1 and the condensing section 25 2 according to the amount of heat transferred.
また、 除湿運転モードでは冷房運転モードよりも、 圧縮機 2 6 0の回 転速度を低く変更、 即ち冷媒流量 (おしのけ量) を減らすことができる ので、 除湿運転モードに合わせて小さく した蒸発器の伝熱面積でも着霜 等の問題を防止できる。 逆に言えば、 圧縮機 2 6 0の回転速度を変更で きない構成の場合は、 除湿運転モードであっても蒸発器の伝熱面積は大 きく しなければならない (ただし負荷が小さいので圧縮機のオン ·オフ 運転のオフの時間が長くなる) 力 、 本発明の実施の形態によればその必 要がない。 Also, in the dehumidifying operation mode, the rotation speed of the compressor 260 can be changed to be lower than that in the cooling operation mode, that is, the flow rate of the refrigerant (the amount of rejection) can be reduced. Problems such as frost formation can be prevented even in the heat transfer area. Conversely, if the rotation speed of the compressor 260 cannot be changed, the heat transfer area of the evaporator must be large even in the dehumidifying operation mode (however, the compression load is small because the load is small). According to the embodiment of the present invention, this is not necessary.
図 6に示す除湿空調装置 2 1の除湿運転モード時の湿り空気線図を 参照して、 また構成については適宜図 1を参照して、 ヒートポンプ H P 1を備えた除湿空調装置 2 1の除湿運転モード時の作用を説明する。 図
6中、 アルファベッ ト記号 K、 X、 L、 Mにより、 各部における空気の 状態を示す。 この記号は、 図 1のフロー図中で丸で囲んだアルファべッ トに対応する。 また、 湿り空気線図は、 後で説明する他の実施の形態で ある除湿空調装置についても、 図 6が適用できる。 Referring to the psychrometric chart in the dehumidifying operation mode of the dehumidifying air conditioner 21 shown in FIG. 6 and the configuration as appropriate with reference to FIG. 1, the dehumidifying operation of the dehumidifying air conditioner 21 equipped with the heat pump HP 1 The operation in the mode will be described. Figure In 6, the alphabetic symbols K, X, L, and M indicate the air condition in each part. This symbol corresponds to the letter circled in the flow diagram in Figure 1. FIG. 6 is applicable to the dehumidifying air conditioner according to another embodiment, which will be described later, as the psychrometric chart.
図中、 空調空間 1 0 1からの処理空気 A (状態 K ) は、 処理空気経路 1 0 7を通して、 熱交換器 3 0 0の第 1の区画 3 1 0に送り込まれ、 こ こで蒸発セクション 2 5 1で蒸発する冷媒 Cによりある程度まで冷却 される。 これは蒸発器 2 1 0で露点温度 (以下) まで冷却される前の予 備的冷却であるので予冷と呼ぶことができる。 この間、 蒸発セクション 2 5 1で予冷されながら、 ある程度は水分を除去され僅かながら絶対湿 度を低下させながら点 Xに到る。 点 Xは飽和線上にある。 あるいは予冷 段階では、 点 Kと点 Xとの中間点まで冷却するものであってもよい。 ま たは点 Xを越えて、 多少飽和線上を低湿度側に移行した点まで冷却され るものであってもよい。 In the figure, process air A (state K) from the air-conditioned space 101 is sent through the process air path 107 to the first section 310 of the heat exchanger 300, where it is evaporated. Cooled to some extent by refrigerant C evaporating in 25 1. Since this is preparatory cooling before the evaporator 210 cools to the dew point temperature (below), it can be called precooling. During this time, while being pre-cooled in the evaporating section 251, a certain amount of water is removed and the absolute humidity is slightly reduced to reach the point X. Point X is on the saturation line. Alternatively, in the pre-cooling stage, the cooling may be performed to an intermediate point between the point K and the point X. Alternatively, it may be cooled down beyond the point X to a point slightly shifted to a low humidity side on the saturation line.
予冷された処理空気 Aは、 経路 1 0 8を通して、 蒸発器 2 1 0に導入 される。 ここでは、 膨張弁 2 5 0によって減圧され、 低温で蒸発する冷 媒 Cにより、 処理空気 Aはその露点温度 (以下) に冷却され、 水分を奪 われながら、 絶対湿度を低下させつつ乾球温度を下げて、 点 Lに到る。 点 Xから点 Lまでの変化を示す太線は、 便宜上飽和線とはずらして描い てあるが、 実際は飽和線と重なっている。 The pre-cooled process air A is introduced into the evaporator 210 through the passage 108. Here, the processing air A is cooled down to its dew point temperature (below) by the refrigerant C, which is decompressed by the expansion valve 250 and evaporates at a low temperature. Down to point L. The bold line indicating the change from point X to point L is drawn off the saturation line for convenience, but actually overlaps the saturation line.
点 Lの状態の処理空気 Aは、 経路 1 0 9を通して熱交換器 3 0 0の第 2の区画 3 2 0に流入する。 ここでは凝縮セクション 2 5 2内で凝縮す る冷媒 Cにより、 絶対湿度一定のまま加熱され点 Mに到る。 点 Mは、 点 Kよりも絶対湿度は十分に低く、 乾球温度は低すぎない、 適度な相対湿 度の空気として、 送風機 1 0 2により吸い込まれ、 空調空間 1 0 1に戻
される。 The treated air A in the state of the point L flows into the second section 320 of the heat exchanger 300 through the path 109. Here, the refrigerant is condensed in the condensing section 252 and is heated to the point M while the absolute humidity is kept constant. At point M, the absolute humidity is sufficiently lower than point K, the dry-bulb temperature is not too low, and the air is sucked in by the blower 102 as air with an appropriate relative humidity and returned to the air-conditioned space 101. Is done.
熱交換器 3 0 0では、 蒸発セクション 2 5 1での冷媒 Cの蒸発により 処理空気 Aを予冷し、 凝縮セクション 2 5 2での冷媒 Cの凝縮により処 理空気 Aを再熱する。 そして蒸発セクション 2 5 1で蒸発した冷媒 Cは、 凝縮セクション 2 5 2で凝縮する。 このように同じ冷媒 Cの蒸発と凝縮 作用により、 蒸発器 2 1 0で冷却される前後の処理空気 A同士の熱交換 を間接的に行う。 In the heat exchanger 300, the processing air A is pre-cooled by evaporating the refrigerant C in the evaporating section 251, and the processing air A is reheated by condensing the refrigerant C in the condensing section 250. The refrigerant C evaporated in the evaporating section 25 1 is condensed in the condensing section 25 2. In this way, the heat exchange between the treated air A before and after being cooled by the evaporator 210 is indirectly performed by the same evaporation and condensation of the refrigerant C.
凝縮器 2 2 0には、 経路 1 2 4を通して外気 Bが導入される。 この外 気 Bは凝縮する冷媒 Cから熱を奪い、 加熱された外気 Bは経路 1 2 5を 経由して送風機 1 4 0に吸い込まれ、 経路 1 2 6を経由して屋外に排出 E Xとして排出される。 Outside air B is introduced into the condenser 222 through the path 124. This outside air B takes heat from the condensing refrigerant C, and the heated outside air B is sucked into the blower 140 via the route 125 and discharged outside via the route 126 to be discharged as EX. Is done.
ここで図 6の湿り空気線図上に示す空気側のサイクルでは、 第 1の区 画 3 1 0で処理空気 Aを予冷した熱量、 すなわち第 2の区画 3 2 0で処 理空気 Aを再熱した熱量 Δ Ηが熱回収分であり、 蒸発器 2 1 0で処理空 気 Aを冷却した熱量分が A Qである。 また空調空間 1 0 1を冷房する、 冷房効果が Δ iである。 Here, in the cycle on the air side shown in the psychrometric chart of Fig. 6, the heat quantity of pre-cooling the processing air A in the first section 310, that is, the processing air A is re-cooled in the second section 320. The amount of heat Δ Δ is the amount of heat recovered, and the amount of heat obtained by cooling the processing air A by the evaporator 210 is AQ. The cooling effect of cooling the air-conditioned space 101 is Δi.
本第 1の実施の形態の除湿空調装置 2 1は、 冷房運転モード時に空 気 *空気熱交換器としての熱交換器 3 0 0を蒸発器として使用すること により、 蒸発器の伝熱面積を增やして蒸発温度を上げて、 冷房処理能力 すなわち顕熱処理能力を増加させることができる。 これによつて、 速や かに室温を下げることができ、 いわゆる高顕熱比の、 乾燥し且つ高温の 室内空調負荷に対応できる。 The dehumidifying air conditioner 21 according to the first embodiment has a heat transfer area of the evaporator by using the heat exchanger 300 as an air * air heat exchanger as the evaporator in the cooling operation mode. (5) By elevating the evaporation temperature, the cooling capacity, that is, the sensible heat treatment capacity, can be increased. As a result, the room temperature can be quickly lowered, and it is possible to cope with a so-called high sensible heat ratio, a dry and high-temperature indoor air conditioning load.
すなわち、 冷房運転モード時においては、 図 6の湿り空気線図中、 空 調空間 1 0 1 (図 1 ) (状態 K ) を出た処理空気 Aは熱交換器の第 1の 区画 3 1 0 (図 1 ) 、 蒸発器 2 1 0 (図 1 ) 、 熱交換器の第 2の区画 3
2 0 (図 1 ) において冷却され、 熱交換器の第 2の区画 3 2 0を出た処 理空気 Aは図中の点 Xの近傍の点で表される状態にある。 また冷房運転 モード時には、 送風機 1 0 2の送風量を除湿運転モード時よりも多くす るように構成するのが好ましい。 このようにすると大量の顕熱を取りや すいからである。 That is, in the cooling operation mode, in the psychrometric chart of FIG. 6, the processing air A that has exited the air-conditioning space 101 (FIG. 1) (state K) is the first section 310 of the heat exchanger. (Figure 1), evaporator 210 (Figure 1), second section 3 of heat exchanger The treated air A cooled at 20 (FIG. 1) and exiting the second section 320 of the heat exchanger is in a state represented by a point near point X in the figure. In the cooling operation mode, it is preferable that the air flow rate of the blower 102 is set to be larger than that in the dehumidification operation mode. This is because a large amount of sensible heat can be easily obtained.
本実施の形態の除湿空調装置 2 1は、 除湿運転モード時に、 熱交換器 The dehumidifying air conditioner 21 of the present embodiment has a heat exchanger in the dehumidifying operation mode.
3 0 0を蒸発器 2 1 0を通過する前後の処理空気 Aのレヒート熱交換 器として使うことによって冷却による結露水分量を冷房運転モード時 より増やし、 除湿能力すなわち潜熱処理能力を増加させることができる。 これによつて、 除湿運転モード時では、 速やかに湿度を下げることがで き、 いわゆる低顕熱比の湿度の高い室内空調負荷にも対応できる。 By using 300 as a reheat heat exchanger for the treated air A before and after passing through the evaporator 210, the amount of water condensed by cooling can be increased from that in the cooling operation mode, and the dehumidification capacity, that is, the latent heat treatment capacity, can be increased. it can. As a result, in the dehumidifying operation mode, the humidity can be rapidly reduced, and it is possible to cope with a so-called low sensible heat ratio and a high humidity indoor air-conditioning load.
除湿空調装置 2 1は、 空調負荷の顕熱比が可変であり、 しかも除湿運 転、 冷房運転いずれの運転形態においても省エネルギーな運転ができる。 The dehumidifying air conditioner 21 has a variable sensible heat ratio of the air conditioning load, and can perform energy-saving operation in both the dehumidifying operation and the cooling operation.
図 7は、 本発明による第 2の実施の形態であるヒートポンプ H P 2と それを備える、 本発明の除湿空調装置の一例である除湿空調装置 2 2の フロー図である。 第 1の実施の形態の除湿空調装置との相違点は、 熱交 換器 3 0 0 ' が後で詳述するような第 1の区画 3 1 0 ' と第 2の区画 3 2 0, とからなることである。 この除湿空調装置 2 2は処理空気 Aをそ の露点温度 (以下) に冷却して除湿する除湿運転と、 冷房運転ができる 点は除湿空調装置 2 1と同様である。 ここでは熱交換器 3 0 0 ' と蒸発 器 2 1 0回りだけ示し、 第 1の実施の形態と共通な部分はほとんど図示 を省略してある。 FIG. 7 is a flowchart of a heat pump HP 2 according to a second embodiment of the present invention and a dehumidifying air conditioner 22 that is provided with the heat pump HP 2 and is an example of the dehumidifying air conditioner of the present invention. The difference from the dehumidifying air conditioner of the first embodiment is that the heat exchanger 300 ′ has a first section 310 ′ and a second section 320, which will be described in detail later. It consists of This dehumidifying air conditioner 22 is similar to the dehumidifying air conditioner 21 in that it can perform a dehumidifying operation in which the processing air A is cooled to its dew point temperature (hereinafter, dehumidifying) and a cooling operation. Here, only the heat exchanger 300 'and the evaporator 210 are shown, and the parts common to the first embodiment are omitted.
図 7を参照して、 第 2の実施の形態であるヒートポンプ及ぴそれを備 える除湿空調装置 2 2の構成のうち、 第 1の実施の形態と異なる部分を 中心にして説明する。
熱交換器 300 ' の第 1の区画 3 1 0 ' を流れる処理空気 Aを冷却す る蒸発セクション 2 5 1、 熱交換器 300 ' の第 2の区画 3 20 ' を流 れる処理空気 Aを加熱 (再熱) する凝縮セクション 25 2、 この蒸発セ クシヨン 2 5 1と凝縮セクション 2 5 2とを交互に通過した後、 経路 2 0 3、 絞り 250がこの順番で配列さ 、 そして再び蒸発器 2 1 0に戻 るようになっている。 With reference to FIG. 7, a description will be given focusing on parts different from the first embodiment in the configuration of the heat pump according to the second embodiment and the dehumidifying air conditioner 22 including the same. Evaporation section 2 51 that cools process air A flowing through first section 3 10 ′ of heat exchanger 300 ′, heats process air A flowing through second section 3 20 ′ of heat exchanger 300 ′ After alternately passing through the condensing section 25 2, the evaporating section 25 1 and the condensing section 25 2 (reheating), the path 203, the throttle 250 are arranged in this order, and again the evaporator 2. It returns to 10.
ここで、 熱交換器 3 00 ' の構成を説明する。 熱交換器 3 0 0 ' は、 蒸発器 2 1 0に流入する前後の処理空気 A同士の間で、 冷媒 Cを介して 間接的に熱交換をさせる熱交換器である。 熱交換器 300 ' は、 図中紙 面に直交し、 処理空気 Aの流れに直交する複数の互いに異なる平面 P A、 P B、 P C * · 内のそれぞれに、 冷媒流路としての熱交換チューブ (細 管) が複数本ほぼ平行に配列されている。 本図では、 図示の便宜上各平 面内に 1本ずつのチューブだけが示されている。 Here, the configuration of the heat exchanger 300 'will be described. The heat exchanger 300 ′ is a heat exchanger that indirectly exchanges heat between the treated air A before and after flowing into the evaporator 210 via the refrigerant C. The heat exchanger 300 ′ is provided with a heat exchange tube (fine) as a refrigerant flow path in each of a plurality of different planes PA, PB, and PC * orthogonal to the plane of the drawing and orthogonal to the flow of the processing air A. Pipes) are arranged substantially in parallel. In this figure, only one tube is shown in each plane for convenience of illustration.
この熱交換器 3 00 ' は、 蒸発器 2 1 0を通過する前の処理空気 Aを 流す第 1の区画 3 1 0, と、 蒸発器 2 1 0を通過した後の処理空気 Aを 流す第 2の区画 3 20 ' とが、 別々の直方体空間を構成している。 両区 画は、 隔壁 30 1 と隔壁 3 02が隣接して設けられており、 熱交換チュ ーブはこの 2つの隔壁を貫通して設けられている。 The heat exchanger 300 ′ has a first section 310, through which the processing air A before passing through the evaporator 210 flows, and a second section 310, through which the processing air A flows after passing through the evaporator 210. The second section 3 20 ′ constitutes a separate rectangular parallelepiped space. In both compartments, a partition 301 and a partition 302 are provided adjacent to each other, and a heat exchange tube is provided through the two partitions.
熟交換器 300, は、 別の形態として 1つの直方体の空間を 1つの隔 壁 3 0 1で分割して、 熱交換チューブがこの隔壁 3 0 1を貫通して、 第 1の区画 3 1 0 ' と第 2の区画 3 20 ' とを交互に貫通するように構成 してもよレ、。 As another form, the heat exchanger 300 divides one rectangular parallelepiped space by one partition wall 301, and a heat exchange tube passes through the partition wall 301 to form a first partition 310 'And the second section 3 20' may be alternately penetrated.
図中、 蒸発器 2 1 0に導入される前の処理空気 Aは、 右方から経路 1 0 7を通して、 第 1の区画 3 1 0, に供給され、 左方から経路 1 0 8を 通して出て行く。 また蒸発器 2 1 0を通して露点温度 (以下) に冷却さ
れ絶対湿度の低下した処理空気 Aは、 図中左方から経路 1 0 9を通して 第 2の区画 3 20, 供給され、 その右方から経路 1 1 0を通して出て行 く点は第 1の実施の形態と同様である。 In the figure, the treated air A before being introduced into the evaporator 210 is supplied from the right through the passage 107 to the first section 310, and from the left through the passage 108. get out. It is also cooled to the dew point temperature (below) through the evaporator 210. The treated air A, whose absolute humidity has decreased, is supplied from the left side of the figure through the route 109 to the second section 320, and from the right side through the route 110 is the point of the first implementation. This is the same as the embodiment.
図示のように、 前記複数の熱交換チューブは、 第 1の区画 3 1 0 ' と 第 2の区画 3 20, 及びそれら区画間を仕切る隔壁 30 1及び隔壁 3 0 2を貫通して設けられている。 例えば、 平面 P A内に配置された熱交換 チューブは、 第 1の区画 3 1 0 ' を貫通している部分を第 1の冷媒流路 としての蒸発セクション 25 1 A (以下複数の蒸発セクションを個別に 論じる必要がないときは単に蒸発セクション 2 5 1 という) と呼び、 第 2の区画 3 20 ' を貫通している部分を第 2の冷媒流路としての凝縮セ クシヨン 2 5 2A (以下複数の凝縮セクションを個別に論じる必要のな いときは単に凝縮セクション 2 5 2という) と呼ぶ。 ここで、 蒸発セク シヨン 25 1 Aと凝縮セクション 2 5 2 Aは、 一対の第 1の区画貫通部 と第 2の区画貫通部であり、 冷媒流路を構成している。 As shown in the figure, the plurality of heat exchange tubes are provided so as to penetrate the first section 310 ′ and the second section 320, and the partition 301 and the partition 302 that partition between the sections. I have. For example, in the heat exchange tube arranged in the plane PA, a portion penetrating the first section 310 ′ is an evaporation section 251A as a first refrigerant flow path (hereinafter, a plurality of evaporation sections are individually separated). When it is not necessary to discuss the above, it is simply referred to as an evaporation section 251, and the portion penetrating the second section 3 20 'is referred to as a condensation section 25 2A (hereinafter a plurality of sections) as a second refrigerant flow path. When the condensing sections do not need to be discussed individually, they are simply referred to as condensing sections. Here, the evaporating section 251 A and the condensing section 25 2 A are a pair of a first section penetrating section and a second section penetrating section, and constitute a refrigerant flow path.
さらに、 平面 P B内に配置された熱交換チューブは、 第 1の区画 3 1 0, を貫通している部分である蒸発セクションを 2 5 1 Bとする。 また、 第 2の区画 3 20, を貫通している部分である、 前記蒸発セクションと 一対の冷媒流路を形成している部分は、 第 2の冷媒流路としての凝縮セ クシヨン 2 5 2 Bとする。 以下、 平面 P C · · についても平面 P Bと同 様に冷媒流路が構成されている。 Further, in the heat exchange tube arranged in the plane PB, the evaporating section, which is a portion penetrating the first section 310, is designated as 251B. Further, a portion penetrating the second section 320, which forms a pair of refrigerant flow paths with the evaporating section, is a condensing section 255B as a second refrigerant flow path. And Hereinafter, the refrigerant flow path is configured for the planes P C ··· similarly to the plane P B.
図示のように、 蒸発セクション 2 5 1 Aと凝縮セクション 2 5 2 Aと は、 一対をなし、 1本のチューブで一体の流路として構成されている。 したがって、 第 1の区画 3 1 0, と第 2の区画 3 20 ' とが、 2枚の隔 壁 3 0 1 , 3 0 2を介して隣接して設けられていることと相まって、 熱 交換器 3 0 0, を全体として小型コンパク トに形成することができる。
本図の熱交換器 3 0 0, の形態では、 蒸発セクションは図中右から 2 5 1 A , 2 5 1 B , 2 5 1 C · · の順番で並んでおり、 凝縮セクシヨン も図中右から 2 5 2 A , 2 5 2 B , 2 5 2 C · ' の順番で並んでいる。 さらに図示のように、 凝縮セクション 2 5 2 Aの端部 (隔壁 3 0 2の 反対側の端部) と凝縮セクション 2 5 2 Bの端部 (隔壁 3 0 2の反対側 ' の端部) とは、 Uチューブ (ユーチューブ) で接続されている。 また、 蒸発セクション 2 5 1 B端部と蒸発セクション 2 5 1 Cの端部とは、 同 様に Uチューブで接続されている (図 8 B参照) 。 As shown in the figure, the evaporating section 25 1 A and the condensing section 25 52 A form a pair, and are configured as an integrated flow path by one tube. Therefore, in combination with the fact that the first section 3 10 and the second section 3 20 ′ are provided adjacent to each other via the two partition walls 3 0 1 and 3 0 2, the heat exchanger 300, can be formed as a small compact as a whole. In the form of heat exchanger 300 in this figure, the evaporating sections are arranged in the order of 25 1 A, 25 1 B, 25 1 C from the right in the figure, and the condensing section is also on the right in the figure. From 25 2 A, 25 2 B, 25 2 C · '. As further shown, the end of the condensing section 250 A (the end opposite the bulkhead 302) and the end of the condensing section 250B (the end opposite the bulkhead 302) And are connected by a U-tube (YouTube). In addition, the end of the evaporating section 25 1 B and the end of the evaporating section 25 1 C are similarly connected by a U-tube (see Fig. 8B).
したがって、 蒸発セクシヨン 2 5 1 Aから凝縮セクシヨン 2 5 2 Aを、 全体として一方向に流れる冷媒 Cは、 Uチューブにより凝縮セクション 2 5 2 Bに導かれ、 ここから蒸発セクシヨン 2 5 1 Bに流れ、 Uチュー ブにより蒸発セクション 2 5 1 Cに流れるように構成されている。 この ようにして、 蒸発セクションと凝縮セクションとを含んで構成される冷 媒流路は、 第 1の区画 3 1 0 ' と第 2の区画 3 2 0, とを交互に繰り返 し貫通する。 したがって、 中間圧力で行われる蒸発と凝縮は交互に繰り 返して行われるように、 熱交換手段 3 0 0は構成されている。 Therefore, the refrigerant C flowing in one direction as a whole from the evaporating section 25 A to the condensing section 25 A is guided to the condensing section 25 B by the U-tube, and flows therefrom to the evaporating section 25 B. The U-tube is configured to flow to the evaporating section 25 1 C. In this way, the coolant flow path including the evaporating section and the condensing section alternately repeats and penetrates the first section 310 ′ and the second section 320. Therefore, the heat exchange means 300 is configured such that the evaporation and the condensation performed at the intermediate pressure are performed alternately and repeatedly.
言い換えれば、 冷媒流路は蛇行する細管群を構成している。 細管群は 蛇行しながら第 1の区画 3 1 0 ' と第 2の区画 3 2 0, を通過し、 温度 の高い処理空気 Aと温度の低い処理空気 Aに交互に接触する。 In other words, the refrigerant flow path forms a meandering group of small tubes. The tubules pass through the first section 310 'and the second section 320 while meandering, and alternately contact the processing air A with high temperature and the processing air A with low temperature.
次に、 図 8の除湿空調装置の設置状態を示す模式的側面図と熱交換器 の斜視図を参照して、 蒸発器 2 1 0と熱交換器 3 0 0, の構成例を具体 的に説明する。 図 8 Bに示すように、 伝熱チューブ (細管) で構成され る蒸発セクション 2 5 1 と凝縮セクション 2 5 2は多数のプレートフ インを貫通して配置されている。 そして、 最も外側のフィンの外側で U チューブ (ユーチューブ) により互いに接続されている。
第 1の区画 3 1 0, と第 2の区画 3 2 0, は、 長方形のプレートフィ ンを図中水平方向に多数並行に並べることにより形成される直方体の 空間である。 2つの空間の間には隔壁 3 0 1, 3 0 2が (または隔壁 3 0 1が 1枚) ある。 蒸発セクション 2 5 1 と連続した伝熱チューブであ る凝縮セクション 2 5 2は、 図中鉛直方向に蛇行しながら、 第 1の区画 3 1 0, と第 2の区画 3 2 0, を貫通している。 Next, referring to a schematic side view showing the installation state of the dehumidifying air conditioner in FIG. 8 and a perspective view of the heat exchanger, a specific configuration example of the evaporator 210 and the heat exchanger 300 will be specifically described. explain. As shown in Fig. 8B, the evaporating section 251 and the condensing section 252, which are composed of heat transfer tubes (small tubes), are arranged through many plate fins. They are connected to each other by U-tubes outside the outermost fins. The first section 310 and the second section 320 are rectangular parallelepiped spaces formed by arranging a large number of rectangular plate fins in the horizontal direction in the figure. Between the two spaces, there are partitions 301 and 302 (or one partition 301). The condensing section 252, which is a heat transfer tube connected to the evaporating section 251, passes through the first section 310 and the second section 320 while meandering vertically in the figure. ing.
また、 そのプレートフインと細管群を収納する直方体空間の外面をプ レート製のハウジングで囲むようにするとよい。 ただし、 そのハウジン グの対向する 2つの面は開口しており、 該開口を処理空気が通過する。 図 8 Bには、 ハウジングなしのプレートフィンが露出している状態を示 してある。 Further, it is preferable that the outer surface of the rectangular parallelepiped space accommodating the plate fin and the thin tube group is surrounded by a plate housing. However, two opposite surfaces of the housing are open, and the processing air passes through the openings. FIG. 8B shows a state in which the plate fin without the housing is exposed.
以上説明したように、 冷媒流路である蒸発セクション 2 5 1と凝縮セ クシヨ ン 2 5 2は、 それぞれ蛇行する細管群を構成している。 このよう にして、 蒸発セクション 2 5 1から凝縮セクション 2 5 2を、 全体とし て一方向に流れる冷媒 Cは、 細管群中を蛇行して流れながら、 蒸発セク シヨン 2 5 1で蒸発し凝縮セクション 2 5 2で凝縮する間に、 第 1の区 画 3 1 0 ' を流れる温度の高い処理空気 Aからの熱を第 2の区画 3 2 0 ' を流れる温度の低い処理空気 Aに伝える。 As described above, the evaporating section 251, which is the refrigerant flow path, and the condensing section 255, respectively, constitute a group of meandering thin tubes. In this way, the refrigerant C flowing in one direction as a whole from the evaporating section 25 1 to the condensing section 25 2 evaporates in the evaporating section 25 1 while flowing in a meandering manner in the small tube group. While condensing in 252, heat from the warmer process air A flowing through the first compartment 310 'is transferred to the cooler process air A flowing through the second compartment 320'.
蒸発器 2 1 0も同様に、 伝熱チューブが図中垂直方向に配置された多 数の長方形のプレートフィンを貫通して構成されている。 伝熱チューブ は図中水平方向にフィンを蛇行しながら貫通している。 蒸発器 2 1 0は 第 1の実施の形態の場合と同じ構成である。 Similarly, the evaporator 210 also has a structure in which heat transfer tubes pass through a number of rectangular plate fins arranged vertically in the figure. The heat transfer tube penetrates the fins meandering in the horizontal direction in the figure. The evaporator 210 has the same configuration as that of the first embodiment.
また、 蒸発器 2 1 0は、 処理空気 Aの流れに関して言えば、 第 1の区 画 3 1 0 ' と第 2の区画 3 2 0, との間に配置されている。 実際には、 蒸発器 2 1 0は第 2の区画 3 2 0, と隣接して配置され、 第 1の区画 3
1 0, は第 2の区画 3 2 0, の鉛直方向上方に配置されている。 Further, the evaporator 210 is disposed between the first partition 310 ′ and the second partition 320 in terms of the flow of the processing air A. In practice, the evaporator 210 is located adjacent to the second compartment 320, 10, is disposed vertically above the second section 320.
変形例として、 蒸発器 2 1 0を第 1の区画 3 1 0 ' に隣接して配置し てもよい。 As a variant, the evaporator 210 may be arranged adjacent to the first section 310 '.
次に、 図 8 Aの模式的断面図を参照して、 以上説明した除湿空調装置 を空調空間 1 0 1の空調機として応用した例を説明する。 空調空間 1 0 1中即ち室内に設置される室内機中には、 第 1の区画 3 1 0 ' 、 蒸発器 2 1 0、 第 2の区画 3 2 0 ' がー体で形成された熱交換器組立と、 戻り 空気 R A、 供給空気 S Aを循環させる送風機 1 0 2が収納されている。 送風機 1 0 2は、 L (エル) 字型に配置された第 1の区画 3 1 0, と蒸 発器 2 1 0で挟まれた空間に配置されている。 このようにすると、 室内 機をコンパク トにまとめることができる。 Next, an example in which the above-described dehumidifying air conditioner is applied as an air conditioner in the air-conditioned space 101 will be described with reference to the schematic cross-sectional view of FIG. 8A. In the air-conditioned space 101, that is, in the indoor unit installed indoors, the first section 310 ', the evaporator 210, and the second section 320' are formed by heat exchange. A blower 102 for circulating the return air RA and the supply air SA is housed. The blower 102 is arranged in a space sandwiched between the first section 310 arranged in an L-shape and the evaporator 210. In this way, the indoor units can be compacted.
室外機等他の構成要素は第 1の実施の形態と同様であるので、 重複し た説明は省略する。 The other components such as the outdoor unit are the same as those of the first embodiment, and the description thereof will not be repeated.
次に、 まず図 7を参照して、 各機器間の冷媒 Cの流れを説明し、 続け て図 9を参照して、 ヒ一トポンプ H P 2の作用を説明する。 Next, the flow of the refrigerant C between the respective devices will be described first with reference to FIG. 7, and subsequently, the operation of the heat pump HP 2 will be described with reference to FIG.
凝縮器 2 2 0 (図 7には不図示) の冷媒出口は、 熱交換器 3 0 0 ' の 蒸発セクシヨ ン 2 5 1 Aの入り 口に冷媒経路 2 0 2により接続されて いる。 The refrigerant outlet of the condenser 220 (not shown in FIG. 7) is connected to the inlet of the evaporating section 25A of the heat exchanger 300 'via a refrigerant path 202.
凝縮器 2 2 0を出た液冷媒 Cは、 絞り 3 3 0 (図 7には不図示) で減 圧され、 膨張して一部の冷媒 Cが蒸発 (フラッシュ) する。 その液とガ スの混合した冷媒 Cは、 蒸発セクション 2 5 1 Aに到り、 ここで液冷媒 Cは蒸発セクション 2 5 1 Aのチューブの内壁を濡らすように流れ蒸 発して、 第 1の区画 3 1 0 ' を流れる、 蒸発器 2 1 0に流入する前の処 理空気 Aを冷却 (予冷) する。 The liquid refrigerant C that has exited the condenser 220 is depressurized by a throttle 330 (not shown in FIG. 7), expanded, and a part of the refrigerant C evaporates (flashes). The refrigerant C in which the liquid and gas are mixed reaches the evaporating section 25A, where the liquid refrigerant C flows so as to wet the inner wall of the tube of the evaporating section 25A, and evaporates. Cools (pre-cools) the process air A flowing through the section 310 ′ before flowing into the evaporator 210.
蒸発セクション 2 5 1 Aと凝縮セクション 2 5 2 Aとは一連のチュ
ープである。 すなわち、 一体の流路として構成されているので、 蒸発し た冷媒ガス C (及び蒸発しなかった冷媒液 C ) は、 凝縮セクション 2 5 2 Aに流入して、 第 2の区画 3 2 0 ' を流れる、 蒸発器 2 1 0で冷却除 湿され、 蒸発器 2 1 0に流入する前より温度が低くなった処理空気 Aを 加熱 (再熱) し、 自身は熱を奪われ凝縮する。 The evaporating section 25 1 A and the condensing section 25 2 A are a series of tubes. It is a loop. That is, since the refrigerant gas C (and the refrigerant liquid C that did not evaporate) flows into the condensing section 25A because it is configured as an integrated flow path, the second section 320 ' Heats (reheats) the treated air A, which has been cooled and dehumidified by the evaporator 210 and has a lower temperature than before flowing into the evaporator 210, and is itself deprived of heat and condensed.
このように、 熱交換器 3 0 0 ' は、 第 1の平面 P A内にある第 1の区 画 3 1 0, を貫通する冷媒流路である蒸発セクションと第 2の区画 3 2 0 ' を貫通する冷媒流路である凝縮セクション (少なく とも一対、 例え ば蒸発セクシヨン 2 5 1 Aと凝縮セクシヨン 2 5 2 A) を有し、 また第 2の平面 P B内にある第 2の区画 3 2 0を貫通する冷媒流路である凝 縮セクショ ンと第 1の区画 3 1 0, を貫通する冷媒流路である蒸発セク シヨン (少なく とも一対、 例えば凝縮セクシヨン 2 5 2 Bと蒸発セクシ ヨン 2 5 1 B ) を有する。 Thus, the heat exchanger 300 ′ connects the evaporating section, which is the refrigerant flow path passing through the first section 310, in the first plane PA, and the second section 320 ′. It has a condensing section (at least a pair, for example, an evaporating section 25 1 A and a condensing section 25 2 A), which is a refrigerant flow path penetrating therethrough, and a second section 3 20 in the second plane PB. The condensing section, which is a refrigerant flow path passing through the first section, and the evaporating section, which is a refrigerant flow path passing through the first section 310 (at least one pair, for example, the condensing section 25 2B and the evaporating section 25) 1 B).
熱交換器 3 0 0 ' の最後の凝縮セクション 2 5 2 Eの出口側は、 冷媒 液配管 2 0 3により蒸発器 2 1 0に接続され、 冷媒配管 2 0 3中には膨 張弁 2 5 0、 膨張弁 2 5 0をバイパスするソレノィ ドパルプ 2 5 3が設 置されている。 The outlet side of the last condensing section 2 52 2 E of the heat exchanger 300 ′ is connected to the evaporator 210 by a refrigerant liquid pipe 203, and an expansion valve 25 is provided in the refrigerant pipe 203. 0, Solenoid pulp 253 that bypasses the expansion valve 250 is installed.
図中、 熱交換器 3 0 0 ' の蒸発セクションと凝縮セクション内の冷媒 Cの挙動を説明する。 まず、 蒸発セクション 2 5 1 Aには液相及び気相 の冷媒 Cが流入する。 一部が気化した気相を僅かに含む冷媒液 Cであつ てもよい。 この冷媒 Cは、 蒸発セクション 2 5 1 Aを流れる間に、 処理 空気 Aを予冷し自身は加熱され気相を増やしながら凝縮セクション 2 5 2 Aに流入する。 凝縮セクシヨン 2 5 2 Aでは、 冷却除湿されること により蒸発セクション 2 5 1 Aの処理空気 Aよりも温度の低くなった 処理空気 Aを加熱し、 自身は熱を奪われ気相冷媒 Cを凝縮させながら、
次の凝縮セクション 2 5 2 Bに流入する。 冷媒 Cは、 凝縮セクション 2 5 2 Bを流れる間に、 低温の処理空気 Aでさらに熱を奪われ気相冷媒 C をさらに凝縮させる。そして、次の蒸発セクション 2 5 1 Bに流入する。 このように、 冷媒 Cは気相と液相の相変化をしながら冷媒流路を流れる。 このようにして、 蒸発器 2 1 0で冷却される前の処理空気 Aと、 蒸発器 2 1 0で冷却されて絶対湿度を低下させた処理空気 Aとの間で熱交換 させる。 In the figure, the behavior of the refrigerant C in the evaporating section and the condensing section of the heat exchanger 300 'will be described. First, the refrigerant C in the liquid phase and the gas phase flows into the evaporating section 251A. The refrigerant liquid C may include a small amount of a partially vaporized gas phase. While flowing through the evaporating section 25A, the refrigerant C pre-cools the processing air A and heats itself and flows into the condensing section 25A while increasing the gas phase. The condensing section 25 2 A heats the processing air A, which has a lower temperature than the processing air A in the evaporating section 25 1 A by cooling and dehumidification, and deprives itself of heat and condenses the gas-phase refrigerant C. While letting It enters the next condensing section 25 2 B. While flowing through the condensing section 25 2 B, the refrigerant C is further deprived of heat by the low-temperature process air A, and further condenses the gas-phase refrigerant C. Then, it flows into the next evaporation section 25 1 B. Thus, the refrigerant C flows through the refrigerant channel while changing the phase between the gas phase and the liquid phase. In this way, heat is exchanged between the processing air A before being cooled by the evaporator 210 and the processing air A cooled by the evaporator 210 to reduce the absolute humidity.
第 2の運転形態としての冷房運転の場合は、 ソレノィ ドバルブ 2 9 2 とソレノィ ドバルブ 3 3 6 (図 7には不図示) を開として、 第 1の運転 形態としての除湿運転から第 2の運転形態としての冷房運転に運転形 態を切り替える。 この点は第 1の実施の形態と同様である。 In the case of the cooling operation as the second operation mode, the solenoid valve 292 and the solenoid valve 336 (not shown in FIG. 7) are opened to switch from the dehumidification operation as the first operation mode to the second operation mode. The operation mode is switched to the cooling operation as the mode. This is the same as in the first embodiment.
次に、 図 9を参照して、 ヒートポンプ H P 2の除湿運転モード時の作 用を説明する。 なお、 機器等については適宜図 7を参照する。 図 9は、 冷媒 H F C 1 3 4 aを用いた場合のモリェ線図である。 Next, the operation of the heat pump HP 2 in the dehumidifying operation mode will be described with reference to FIG. In addition, refer to Fig. 7 as needed for equipment. FIG. 9 is a Mollier diagram when the refrigerant HFC134a is used.
図中、 点 a、 点 b、 点 c、 点 dは、 第 1の実施の形態の場合と同様で あるので説明を省略する。 In the figure, points a, b, c, and d are the same as those in the first embodiment, and a description thereof will be omitted.
点 dの冷媒液 Cは、 絞り 3 3 0で減圧され熱交換器 3 0 0, の蒸発セ クシヨン 2 5 1 Aに流入する。モリェ線図上では、点 eで示されている。 圧力は、 本発明の中間圧力であり、 本実施例では 0 . 3 4 M P a と 0 . 9 4 M P a との中間の値となる。 ここでは、 一部の液が蒸発して液とガ スが混合した状態にある。 The refrigerant liquid C at the point d is decompressed by the throttle 330 and flows into the evaporation section 25A of the heat exchanger 300. On the Mollier diagram, it is indicated by point e. The pressure is an intermediate pressure of the present invention, and in the present embodiment, is a value intermediate between 0.34 MPa and 0.94 MPa. Here, a part of the liquid is evaporated and the liquid and the gas are mixed.
蒸発セクション 2 5 1 A内で、 前記中間圧力下で冷媒液 Cは蒸発して、 同圧力で飽和液線と飽和ガス線の中間の点 f 1に到る。 ここでは液の一 部が蒸発しているが、 冷媒液 Cはかなり残っている。 In the evaporating section 25A, the refrigerant liquid C evaporates under the intermediate pressure and reaches a point f1 between the saturated liquid line and the saturated gas line at the same pressure. Here, a part of the liquid has evaporated, but a considerable amount of the refrigerant liquid C remains.
点 f 1で示される状態の冷媒 Cが、 凝縮セクション 2 5 2 Aに流入す
る。 凝縮セクション 2 5 2 Aでは、 冷媒 Cは第 2の区画 3 20 ' を流れ る低温の処理空気 Aにより熱を奪われ、 点 g lに到る。 The refrigerant C in the state indicated by the point f1 flows into the condensing section 25A. You. In the condensing section 25 2 A, the refrigerant C is deprived of heat by the cold process air A flowing through the second section 3 20 ′ and reaches the point gl.
点 g 1の状態の冷媒 Cは、 蒸発セクション 2 5 1 Bに流入し、 ここで 熱を奪われ液相を増やして点 f 2に到り、 凝縮セクション 2 5 2 Bに流 入する。 ここで液相を増やして点 g 2に到る。 同様に、 さらに蒸発セク シヨン、 凝縮セクションでの蒸発、 凝縮を繰り返すが、 図のモリエ線図 では、 面: P Cの蒸発、 凝縮セクション以下を省略して、 凝縮セクション 2 5 2 Bが膨張弁 2 5 0に接続してあるものとして示してある。 The coolant C in the state at the point g 1 flows into the evaporating section 2 5 1 B, where by increasing the heat is removed liquid phase lead to a point f 2, which inflows into the condensing section 2 5 2 B. Here, the liquid phase is increased to reach point g2. Similarly, evaporation and condensation in the evaporating section and the condensing section are repeated. However, in the Mollier diagram shown in the figure, the surface: PC evaporating and condensing sections are omitted, and the condensing section 25 2 B is connected to the expansion valve 2. It is shown as connected to 50.
点 g 2はモリエ線図では飽和液線上にある。 温度は 1 8°C、 ェンタル ピは 2 2 3. 3 k j/k gである。 Point g 2 is on the saturated liquid line in the Mollier diagram. The temperature is 18 ° C and the enthalpy is 23.3 kj / kg.
点 g 2の冷媒液 Cは、 絞り 2 50で温度 5°Cの飽和圧力である 0. 3 4MP aまで減圧され、 点 j に到る。 以下は、 第 1の実施の形態の場合 と同様であるので説明を省略する。 Refrigerant liquid C at point g 2 is reduced in pressure to 0.34 MPa, which is a saturation pressure at a temperature of 5 ° C., at throttle 250, and reaches point j. The following is the same as in the first embodiment, and a description thereof will not be repeated.
以上説明したように、 熱交換器 3 00 ' 内では、 冷媒 Cは蒸発セクシ ヨン 2 5 1では点 eから点 f 1、 あるいは g 1から f 2までといつたよ うに蒸発の状態変化を、凝縮セクション 2 5 2では、点 f 1から点 g 1、 あるいは点 f 2から g 2までといつたように凝縮の状態変化をしてお り、 蒸発伝熱と凝縮伝熱であるため、 熱伝達率が非常に高くまた熱交換 効率が高い。 As described above, in the heat exchanger 300 ′, the refrigerant C condenses the change in the state of evaporation from point e to point f 1 or from g 1 to f 2 in the evaporation section 25 1. In Section 2 52, the state of condensation changes from point f1 to point g1 or from point f2 to point g2. Very high efficiency and high heat exchange efficiency.
さらに、 熱交換器 300 ' を設けない場合と比べて、 同一冷却負荷に 対して圧縮機 2 6 0に循環するガス量を、 ひいては所要動力を著しく小 さくすることができる点も第 1の実施の形態と同様である。 Furthermore, compared with the case where the heat exchanger 300 ′ is not provided, the first embodiment has the advantage that the amount of gas circulating through the compressor 260 and, consequently, the required power can be significantly reduced for the same cooling load. This is the same as the embodiment.
第 2の実施の形態では、第 1の実施の形態と比べて、熱交換器 3 00 ' 内での空気 ·空気熱交換に冷媒を繰り返して用いることができるので、 蒸発セクション内で冷媒が完全に乾くことがなく、 また凝縮セクション
内で冷媒が完全に凝縮してしまうことなく、 伝熱媒体として利用できる 利点がある。 但し、 第 1の区画 3 1 0, と第 2の区画 3 2 0 ' との間を 冷媒が多数回往復するように伝熱チューブを配置しなければならない ので、 第 1の区画 3 1 0, と第 2の区画 3 2 0, の配置に制限がある。 なお、 図 1及び図 7にはドレンパン 4 5 0が示されているが、 これは 蒸発器 2 1 0の下方に限らず、 熱交換器 3 0 0, 3 0 0 ' の下方もカバ 一するように設けるのがよい。 特に第 1の区画 3 1 0, 3 1 0, の下方 に設けるのがよい。 熱交換器 3 0 0 , 3 0 0, の第 1の区画 3 1 0, 3 1 0, では、 処理空気 Aを主として予冷するが、 一部の水分はここで結 露することもあるからである。 In the second embodiment, as compared with the first embodiment, the refrigerant can be used repeatedly for the air-air heat exchange in the heat exchanger 300 ′, so that the refrigerant is completely contained in the evaporation section. Without drying out and also condensing section There is an advantage that the refrigerant can be used as a heat transfer medium without being completely condensed inside. However, since the heat transfer tubes must be arranged so that the refrigerant goes back and forth many times between the first section 310 and the second section 320 ′, the first section 310, There are restrictions on the placement of and the second compartment 320. Although the drain pan 450 is shown in FIGS. 1 and 7, this is not limited to the area below the evaporator 210 and also covers the area below the heat exchangers 300 and 300 ′. It is better to provide it as follows. In particular, it is preferable to provide it below the first section 310, 310,. In the first section 310, 310 of the heat exchangers 300, 300, the process air A is mainly precooled, but some moisture may condense here. is there.
以上の実施の形態では、 圧縮機 2 6 0の回転速度を加減することによ り蒸発器 2 1 0を通過する冷媒流量 (冷媒質量流量) を増減するものと して説明したが、 これに限らず、 蒸発器 2 1 0と圧縮機 2 6 0との間に 開口面積が可変の絞りを挿入配置してもよく、 圧縮機 2 6 0の吐出側か ら吸い込み側に冷媒ガスを戻す、 いわゆるホッ トガスバイパスを設けて もよく、 または凝縮器 2 2 0と第 2の絞り機構 2 9 1 との間に圧縮機 2 6 0の吐出ガスを入れるホッ トガスパイパスを設けてもよい。 In the above embodiment, it has been described that the flow rate (refrigerant mass flow rate) of the refrigerant passing through the evaporator 210 is increased or decreased by increasing or decreasing the rotation speed of the compressor 260. The present invention is not limited to this, and a throttle having a variable opening area may be inserted between the evaporator 210 and the compressor 260 to return the refrigerant gas from the discharge side of the compressor 260 to the suction side. A so-called hot gas bypass may be provided, or a hot gas bypass for introducing the discharge gas of the compressor 260 may be provided between the condenser 220 and the second throttle mechanism 291.
以上の第 1、第 2の実施の形態は、第 1の区画 3 1 0, 3 1 0, には、 空調空間 1 0 1からの戻り空気を導入するものとして説明したが、 空調 空間 1 0 1からの戻り空気を導入せずに外気を導入してもよい。 湿度と 温度の高い外気は、 蒸発器 2 1 0で冷却する前に予冷するのが好ましく、 このように構成することにより、 全量外気を必要とする病院やレストラ ンの空調を高い C O Pをもって行うことができる。 In the first and second embodiments, the return air from the air-conditioned space 101 is introduced into the first sections 310, 310, but the air-conditioned space 10 Outside air may be introduced without introducing return air from 1. It is preferable to pre-cool external air with high humidity and temperature before cooling it with the evaporator 210.This configuration allows air conditioning of hospitals and restaurants that require all external air with a high COP. Can be.
さらに、 例えば図 9のモリエ線図において、 冷媒 Cの蒸発と凝縮の繰 り返しは、 飽和液線を越えて過冷却領域に入り込んでもサイクルとして
は成立するが、 処理空気 A同士の熱交換であることを考慮すると、 冷媒 Cの相変化は湿り領域の中で行われるのが好ましい。 したがって、 図 9 に示す熱交換器では、 絞り 3 3 0 (図 1 ) に接続される最初の蒸発セク ションの伝熱面積を、 その後の蒸発セクションの伝熱面積よりも大きく 構成するのが好ましい。 また絞り 2 5 0 (図 1、 図 7 ) に流入する冷媒 Cは、 飽和かあるいは過冷却領域にあるのが好ましいので、 絞り 2 5 0 に接続される凝縮セクションの伝熱面積を、 その前の凝縮セクションの 伝熱面積よりも大きく構成するのが好ましい。 Furthermore, for example, in the Mollier diagram of FIG. 9, the repetition of evaporation and condensation of the refrigerant C occurs as a cycle even if the refrigerant enters the supercooling region beyond the saturated liquid line. Is satisfied, but considering the heat exchange between the processing airs A, it is preferable that the phase change of the refrigerant C is performed in the wet region. Therefore, in the heat exchanger shown in FIG. 9, it is preferable that the heat transfer area of the first evaporator section connected to the throttle 330 (FIG. 1) be larger than the heat transfer area of the subsequent evaporator section. . Also, since the refrigerant C flowing into the throttle 250 (FIGS. 1 and 7) is preferably in a saturated or supercooled region, the heat transfer area of the condensing section connected to the throttle 250 is reduced by It is preferable that the heat transfer area be larger than the heat transfer area of the condensing section.
以上説明した実施の形態では、 処理空気 Aを露点 (以下) に冷却する 蒸発器 2 1 0と、 処理空気 Aを予冷却する予冷却器としての熱交換器 3 0 0, 3 0 0, と、 再加熱を行う再加熱器としての熱交換器 3 0 0, 3 0 0 ' の熱伝達媒体を同じ冷媒を用いるようにしたので、 冷媒系が単一 に単純化され、 また蒸発器 2 1 0、 凝縮器 2 2 0間の圧力差を利用でき るため循環が能動的になり、 さらに予冷、 再加熱の熱交換に相変化を伴 う沸騰現象を応用できるようにしたので、 効率を高くすることができる。 以上の実施の形態では、 空調空間を空調する除湿空調装置として説明 したが、 本発明の除湿空調装置は、 必ずしも空調空間に限らず他の除湿 を必要とする空間に、 一般の除湿装置として応用することもでき、 本発 明の除湿空調装置とはそのような場合も含むものとする。 In the embodiment described above, the evaporator 210 for cooling the processing air A to the dew point (below), and the heat exchangers 300, 300 as pre-coolers for pre-cooling the processing air A Since the same refrigerant is used for the heat transfer medium of the heat exchangers 300 and 300 'as reheaters for performing reheating, the refrigerant system is simplified to a single unit, and the evaporator 21 0, the pressure difference between the condensers 220 can be used, the circulation becomes active, and the boiling phenomenon accompanied by the phase change can be applied to the heat exchange of pre-cooling and re-heating. can do. Although the above embodiment has been described as a dehumidifying air-conditioning apparatus for air-conditioning an air-conditioned space, the dehumidifying air-conditioning apparatus of the present invention is not limited to an air-conditioned space and is applied as a general dehumidifying apparatus to other spaces requiring dehumidification. The dehumidifying air conditioner of the present invention includes such a case.
以上のように、 本発明によれば、 第 1の絞り機構の絞り度の増減に対 応して蒸発器を通過する冷媒流量を増減する第 1のコントローラを備 えるので、 第 1の絞り機構の絞り度の増減に対応する運転形態に合致し た冷媒流量に調節することができるヒートポンプを提供することが可 能となる。
産業上の利用の可能性 As described above, according to the present invention, the first controller that increases or decreases the flow rate of the refrigerant passing through the evaporator in accordance with the increase or decrease of the degree of throttle of the first throttle mechanism is provided. Thus, it is possible to provide a heat pump that can adjust the refrigerant flow rate to match the operation mode corresponding to the increase or decrease of the throttle degree. Industrial applicability
本発明は、 絞り機構の絞り度を増減しても蒸発器の運転に問題が起こ らないヒートポンプと、 冷房運転と除湿運転の両方に容易に対応できる 除湿空調装置に好適に利用可能である。
INDUSTRIAL APPLICABILITY The present invention can be suitably used for a heat pump which does not cause a problem in the operation of the evaporator even if the degree of throttle of the throttle mechanism is increased or decreased, and a dehumidifying air conditioner which can easily cope with both the cooling operation and the dehumidifying operation.
Claims
1 . 冷媒を昇圧する昇圧機と ; 1. A booster that boosts the refrigerant;
前記冷媒を凝縮して高熱源流体を加熱する凝縮器と ; A condenser for condensing the refrigerant and heating a high heat source fluid;
前記冷媒を蒸発して低熱源流体を冷却する蒸発器と ; An evaporator for evaporating the refrigerant to cool a low heat source fluid;
前記凝縮器と前記蒸発器とを接続する冷媒経路中に設けられた、 前記 凝縮器の凝縮圧力と前記蒸発器の蒸発圧力との中間の圧力で冷媒の蒸 発と凝縮を行い、 前記中間圧力蒸発により前記低熱源流体を冷却し、 前 記中間圧力凝縮により前記低熱源流体を加熱する熱交換手段と ; Evaporating and condensing the refrigerant at a pressure intermediate between the condensation pressure of the condenser and the evaporation pressure of the evaporator, which is provided in a refrigerant path connecting the condenser and the evaporator, Heat exchange means for cooling the low heat source fluid by evaporation and heating the low heat source fluid by the intermediate pressure condensation;
前記熱交換手段と前記蒸発器との間の前記冷媒経路中に設けられた、 絞り度が増減可能な第 1の絞り機構と ; A first restricting mechanism provided in the refrigerant path between the heat exchange means and the evaporator, the restricting degree being able to be increased and decreased;
前記凝縮器と前記熱交換手段との間の前記冷媒経路中に設けられた 第 2の絞り機構と ; A second throttle mechanism provided in the refrigerant path between the condenser and the heat exchange means;
前記第 1の絞り機構の絞り度の増減に対応して前記蒸発器を通過す る冷媒流量を増減する第 1のコントローラを備え ; A first controller for increasing or decreasing the flow rate of the refrigerant passing through the evaporator in accordance with an increase or decrease in the degree of throttle of the first throttle mechanism;
前記低熱源流体は、 前記熱交換手段での冷却と前記蒸発器での冷却と 前記熱交換手段での加熱とをこの順番で受けるように構成された ; ヒ― The low heat source fluid is configured to receive cooling in the heat exchange means, cooling in the evaporator, and heating in the heat exchange means in this order;
2 . 前記第 1の絞り機構の絞り度は、 前記中間の圧力が前記蒸発器の蒸 発圧力とほぼ同じになるに十分な絞り度まで減少可能に構成されてい る、 請求項 1に記載のヒートポンプ。
2. The throttle according to claim 1, wherein the throttle of the first throttle mechanism is configured to be reduced to a degree of throttle sufficient to make the intermediate pressure substantially equal to the vaporization pressure of the evaporator. heat pump.
3 . 前記第 1のコントローラは、 前記冷媒流量を最大設定流量以下で調 節可能に構成され、 前記第 1の絞り機構が前記十分な絞り度である運転 の際の前記冷媒流量を第 1の設定最大流量以下で調整可能に、 また前記 第 1の絞り機構が前記十分な絞り度よりも絞られた運転の際の前記冷 媒流量を第 2の設定最大流量以下で調整可能に構成され、 前記第 2の設 定最大流量は前記第 1の設定最大流量よりも、 小さいように構成された、 請求項 2に記載のヒートポンプ。 3. The first controller is configured to be able to adjust the refrigerant flow rate at a maximum set flow rate or less, and to control the refrigerant flow rate during the operation in which the first throttle mechanism has the sufficient throttle degree to the first degree. The first throttle mechanism is configured to be adjustable below the maximum set flow rate, and the coolant flow rate during the operation in which the first throttle mechanism is throttled less than the sufficient throttle degree is adjusted to be equal to or less than the second set maximum flow rate; The heat pump according to claim 2, wherein the second set maximum flow rate is configured to be smaller than the first set maximum flow rate.
4 . 冷媒を昇圧する昇圧機と ; 4. a booster for boosting the refrigerant;
前記冷媒を凝縮して高熱源流体を加熱する凝縮器と ; A condenser for condensing the refrigerant and heating a high heat source fluid;
前記冷媒を蒸発して処理空気を露点温度まで冷却する蒸発器と ; 前記凝縮器と前記蒸発器とを接続する冷媒経路中に設けられた、 前記 凝縮器の凝縮圧力と前記蒸発器の蒸発圧力との中間の圧力で冷媒の蒸 発と凝縮を行い、 前記中間圧力蒸発により前記処理空気を冷却し、 前記 ' 中間圧力凝縮により前記処理空気を加熱する熱交換手段と ; An evaporator for evaporating the refrigerant to cool the processing air to a dew point temperature; and a condensing pressure of the condenser and an evaporating pressure of the evaporator provided in a refrigerant path connecting the condenser and the evaporator. Heat exchange means for evaporating and condensing the refrigerant at a pressure intermediate to the above, cooling the processing air by the intermediate pressure evaporation, and heating the processing air by the intermediate pressure condensation;
前記熱交換手段と前記蒸発器との間の前記冷媒経路中に設けられた、 絞り度が増減可能な第 1の絞り機構と ; A first restricting mechanism provided in the refrigerant path between the heat exchange means and the evaporator, the restricting degree being able to be increased and decreased;
前記凝縮器と前記熱交換手段との間の前記冷媒経路中に設けられた 第 2の絞り機構と ; A second throttle mechanism provided in the refrigerant path between the condenser and the heat exchange means;
前記第 1の絞り機構の絞り度の増減に対応して前記蒸発器を通過す る冷媒流量を増減する第 1のコントローラを備え ; A first controller for increasing or decreasing the flow rate of the refrigerant passing through the evaporator in accordance with an increase or decrease in the degree of throttle of the first throttle mechanism;
前記処理空気は、 前記熱交換手段での冷却と前記蒸発器での冷却と前 記熱交換手段での加熱とをこの順番で受けるように構成された ; The processing air is configured to receive cooling in the heat exchange means, cooling in the evaporator, and heating in the heat exchange means in this order;
除湿空調装置。
Dehumidifying air conditioner.
5 . 冷媒を昇圧する昇圧機と ; 5. A booster for boosting the refrigerant;
前記冷媒を凝縮して高熱源流体を加熱する凝縮器と ; A condenser for condensing the refrigerant and heating a high heat source fluid;
前記冷媒を蒸発して処理空気を露点温度まで冷却する蒸発器と ; 前記凝縮器と前記蒸発器とを接続する冷媒経路中に設けられた、 前記 凝縮器の凝縮圧力と前記蒸発器の蒸発圧力との中間の圧力で冷媒の蒸 発と凝縮を行い、 前記中間圧力蒸発により前記処理空気を前記蒸発器に 入る前に冷却し、 前記中間圧力凝縮により前記処理空気を前記蒸発器を 出た後に加熱する熱交換手段とを備え ; An evaporator for evaporating the refrigerant to cool the processing air to a dew point temperature; and a condensing pressure of the condenser and an evaporating pressure of the evaporator provided in a refrigerant path connecting the condenser and the evaporator. Vaporizes and condenses the refrigerant at a pressure intermediate to the above, cools the processing air by the intermediate pressure evaporation before entering the evaporator, and after the processing air leaves the evaporator by the intermediate pressure condensation Heat exchange means for heating;
前記熱交換手段によつて前記処理空気を冷却した後前記熱交換手段 によつて加熱する第 1の運転形態と、 前記熱交換手段を前記蒸発器とほ ぼ同じ圧力で冷媒を蒸発させるように切り替えることによつて前記処 理空気を冷却する第 2の運転形態とを切り替え可能に構成し ; A first operation mode in which the processing air is cooled by the heat exchanging means and then heated by the heat exchanging means, and the refrigerant is evaporated by the heat exchanging means at substantially the same pressure as the evaporator. A second operation mode in which the process air is cooled by switching the operation mode;
さらに、 前記運転形態の切り替えに対応して前記蒸発器を通過する冷 媒流量を増減する第 1 のコン ト ローラを備える ;
A first controller for increasing or decreasing the flow rate of the coolant passing through the evaporator in accordance with the switching of the operation mode;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003242172A AU2003242172A1 (en) | 2002-06-10 | 2003-06-10 | Heat pump and dehumidifying air conditioner |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002168594A JP3924205B2 (en) | 2002-06-10 | 2002-06-10 | Heat pump and dehumidifying air conditioner |
JP2002-168594 | 2002-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003104727A1 true WO2003104727A1 (en) | 2003-12-18 |
Family
ID=29727694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/007328 WO2003104727A1 (en) | 2002-06-10 | 2003-06-10 | Heat pump and dehumidifying air conditioner |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3924205B2 (en) |
AU (1) | AU2003242172A1 (en) |
WO (1) | WO2003104727A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101496208B1 (en) | 2014-11-04 | 2015-02-26 | 동화윈 (주) | Unified Freezing and Refrigerating System with Ventilating Structure |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4665712A (en) * | 1985-12-10 | 1987-05-19 | Dec International, Inc. | Heat pump water heater system |
US5031411A (en) * | 1990-04-26 | 1991-07-16 | Dec International, Inc. | Efficient dehumidification system |
JPH07294052A (en) * | 1994-04-28 | 1995-11-10 | Sanyo Electric Co Ltd | Air conditioner |
JP2002061991A (en) * | 2000-08-22 | 2002-02-28 | Matsushita Seiko Co Ltd | Air conditioner |
EP1231438A1 (en) * | 1999-11-19 | 2002-08-14 | Ebara Corporation | Heat pump and dehumidifying device |
JP2002340397A (en) * | 2001-05-21 | 2002-11-27 | Toshiaki Nishiwaki | Air conditioner |
WO2003006890A1 (en) * | 2001-07-13 | 2003-01-23 | Ebara Corporation | Dehumidifying air-conditioning apparatus |
-
2002
- 2002-06-10 JP JP2002168594A patent/JP3924205B2/en not_active Expired - Lifetime
-
2003
- 2003-06-10 AU AU2003242172A patent/AU2003242172A1/en not_active Abandoned
- 2003-06-10 WO PCT/JP2003/007328 patent/WO2003104727A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4665712A (en) * | 1985-12-10 | 1987-05-19 | Dec International, Inc. | Heat pump water heater system |
US5031411A (en) * | 1990-04-26 | 1991-07-16 | Dec International, Inc. | Efficient dehumidification system |
JPH07294052A (en) * | 1994-04-28 | 1995-11-10 | Sanyo Electric Co Ltd | Air conditioner |
EP1231438A1 (en) * | 1999-11-19 | 2002-08-14 | Ebara Corporation | Heat pump and dehumidifying device |
JP2002061991A (en) * | 2000-08-22 | 2002-02-28 | Matsushita Seiko Co Ltd | Air conditioner |
JP2002340397A (en) * | 2001-05-21 | 2002-11-27 | Toshiaki Nishiwaki | Air conditioner |
WO2003006890A1 (en) * | 2001-07-13 | 2003-01-23 | Ebara Corporation | Dehumidifying air-conditioning apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2004012069A (en) | 2004-01-15 |
AU2003242172A1 (en) | 2003-12-22 |
JP3924205B2 (en) | 2007-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2968231B2 (en) | Air conditioning system | |
JP3228731B2 (en) | Heat pump and dehumidifier | |
CN102844635A (en) | Refrigeration system and method with continuous expansion | |
US20070157660A1 (en) | Air conditioner capable of selectively dehumidifying separate areas | |
JP3765732B2 (en) | Heat pump and dehumidifying air conditioner | |
JP7241830B2 (en) | Cooling/heating/ventilation multi air conditioner | |
WO2003104719A1 (en) | Dehumidifier/air conditioner | |
JP4020705B2 (en) | Heat pump and dehumidifying air conditioner | |
JP2760500B2 (en) | Multi-room air conditioner | |
KR100675900B1 (en) | Refrigeration air conditioning system | |
JP3924205B2 (en) | Heat pump and dehumidifying air conditioner | |
JP3699623B2 (en) | Heat pump and dehumidifier | |
KR20100137050A (en) | Refrigeration air conditioning system | |
JP3944418B2 (en) | Dehumidifying air conditioner | |
KR102814642B1 (en) | Air Conditioner | |
KR100222993B1 (en) | Refrigerant control device of multi air conditioner | |
JP3874624B2 (en) | Heat pump and dehumidifying air conditioner | |
JP7308975B2 (en) | dehumidifier | |
JP3977161B2 (en) | Dehumidifying air conditioner | |
KR200234358Y1 (en) | The freezing dehumidifier using refrigeratory material and air-precooling method | |
JP2000337657A (en) | Dehumidifying device and dehumidifying method | |
JP2692856B2 (en) | Multi-room air conditioner | |
JP2000146315A (en) | Refrigerating device and air conditioner | |
JP2004036914A (en) | Dehumidifying air conditioner | |
JP2004012106A (en) | Dehumidifying air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |