WO2003092089A2 - Hochtemperatur-festelektrolyt- brennstoffzelle umfassend einen verbund aus nanoporösen dünnschichtelektroden und einem strukturiertem elektrolyt - Google Patents
Hochtemperatur-festelektrolyt- brennstoffzelle umfassend einen verbund aus nanoporösen dünnschichtelektroden und einem strukturiertem elektrolyt Download PDFInfo
- Publication number
- WO2003092089A2 WO2003092089A2 PCT/EP2003/003936 EP0303936W WO03092089A2 WO 2003092089 A2 WO2003092089 A2 WO 2003092089A2 EP 0303936 W EP0303936 W EP 0303936W WO 03092089 A2 WO03092089 A2 WO 03092089A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- electrolyte
- temperature solid
- layer
- solid electrolyte
- Prior art date
Links
- 239000003792 electrolyte Substances 0.000 title claims abstract description 57
- 239000000446 fuel Substances 0.000 title claims abstract description 34
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 17
- 239000010409 thin film Substances 0.000 title abstract description 7
- 239000002131 composite material Substances 0.000 title description 3
- 238000000034 method Methods 0.000 claims abstract description 19
- 238000007650 screen-printing Methods 0.000 claims abstract description 14
- 230000008569 process Effects 0.000 claims abstract description 12
- 239000002245 particle Substances 0.000 claims abstract description 8
- 238000005245 sintering Methods 0.000 claims abstract description 7
- 238000003980 solgel method Methods 0.000 claims abstract description 6
- 230000008021 deposition Effects 0.000 claims abstract description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 3
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 2
- 238000009826 distribution Methods 0.000 claims description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- BQENXCOZCUHKRE-UHFFFAOYSA-N [La+3].[La+3].[O-][Mn]([O-])=O.[O-][Mn]([O-])=O.[O-][Mn]([O-])=O Chemical compound [La+3].[La+3].[O-][Mn]([O-])=O.[O-][Mn]([O-])=O.[O-][Mn]([O-])=O BQENXCOZCUHKRE-UHFFFAOYSA-N 0.000 claims 1
- 229910052706 scandium Inorganic materials 0.000 claims 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 8
- 238000007669 thermal treatment Methods 0.000 abstract 1
- 229910002080 8 mol% Y2O3 fully stabilized ZrO2 Inorganic materials 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 230000010287 polarization Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 239000011195 cermet Substances 0.000 description 3
- 239000002001 electrolyte material Substances 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 235000019260 propionic acid Nutrition 0.000 description 3
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 230000032798 delamination Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 229910021526 gadolinium-doped ceria Inorganic materials 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- -1 oxygen ion Chemical class 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- HBAGRTDVSXKKDO-UHFFFAOYSA-N dioxido(dioxo)manganese lanthanum(3+) Chemical compound [La+3].[La+3].[O-][Mn]([O-])(=O)=O.[O-][Mn]([O-])(=O)=O.[O-][Mn]([O-])(=O)=O HBAGRTDVSXKKDO-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000003115 supporting electrolyte Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
- H01M4/9025—Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9033—Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- High-temperature solid electrolyte fuel cell comprising a composite of nanoporous thin-film electrodes and a structured electrolyte
- the invention relates to a new high-temperature solid electrolyte fuel cell (SOFC) comprising a composite of nanoporous thin-film electrodes and a structured electrolyte.
- SOFC solid electrolyte fuel cell
- chemical energy of a fuel with high efficiency and minimal emissions is converted directly into electrical energy.
- gaseous fuels e.g. hydrogen or natural gas
- air are continuously added.
- the basic principle is achieved by the spatial separation of the reactants using an ion-conductive electrolyte that is in contact with porous electrodes (anode and cathode) on both sides.
- an ion-conductive electrolyte that is in contact with porous electrodes (anode and cathode) on both sides.
- the exchange of electrons between the reaction partners takes place via an external circuit, so that ideally (loss-free cell) the free reaction enthalpy is converted directly into electrical energy.
- Efficiency and power density are coupled in real cells by the internal resistance, which is largely determined by the polarization resistances of the electrodes. By reducing internal resistance, power density and efficiency can be increased.
- the high-temperature fuel cell usually has an electrolyte made of zirconium dioxide (Zr0 2 ), which is stabilized with yttrium oxide (Y 2 0 3 ) (YSZ).
- Zr0 2 zirconium dioxide
- YSZ yttrium oxide
- a sufficient oxygen ion conductivity for efficient energy conversion is achieved for this ceramic material at technically feasible electrolyte thicknesses at a temperature between 600 and 1000 ° C.
- the partial electrochemical reactions take place on the reaction surfaces between the porous electrodes (cathode and anode) and the electrolyte.
- the main task of porous electrodes is to provide large reaction areas with minimal impairment of gas transport. The larger the reaction area referred to as the three-phase boundary (tbp) between the gas space, electrolyte and electrode, the more current can be transported across the interface with a given loss of polarization.
- a typical material for the cathode is strontium-doped lanthanum manganate ((La, Sr) n0 3 , LSM).
- a cermet (ceramic metal) made of nickel and YSZ serves as the anode.
- the advantages of the high-temperature fuel cell are that, due to the high operating temperatures, various fuels can be converted directly, the use of expensive precious metal catalysts can be dispensed with and the working temperature between 600 and 1000 ° C is suitable for technical use of the waste heat as process steam or in coupled gas and steam turbines ,
- IP applications e.g. DE 43 14 323,
- the invention has for its object to provide a high-temperature fuel cell with higher long-term stability, higher current density and lower polarization resistance.
- the invention relates to a high-temperature solid electrolyte fuel cell, comprising an electrolyte layer between two electrode layers, obtainable by a method comprising the steps: (i) applying electrolyte particles in a screen printing paste to an unsintered electrolyte substrate and sintering the structure thus produced (ii) depositing a nanoporous electrode thin layer via a sol-gel process or a MOD process on the structure obtained in step (i) and temperature treatment of the structure coated in this way.
- This temperature treatment can take place when the fuel cell is started up immediately.
- the necessary heating of the fuel cell leads to a sufficient electrical conductivity of the structure.
- This step prevents the formation of undesirable pyrochlore phases.
- a separate sintering process can thus be dispensed with in the production of the fuel cell according to the invention.
- the high-temperature solid electrolyte fuel cell according to the invention initially has an improved interface between the electrolyte and electrode layers compared to the fuel cells mentioned in the prior art.
- the effectively usable surface of the Electrolyte substrate enlarged by structuring to achieve an increase in the electrochemically active three-phase boundary.
- the structured surface is then coated with a nanoporous thin-film electrode that has a layer thickness of 50-500 nm. This layer can be applied by a sol-gel process or MOD process (Metal Organic Deposition) (FIG. 1).
- an electrolyte layer can additionally be applied to the structured screen-printed electrolyte layer using a MOD method.
- This layer can be applied to the cathode and anode side of the electrolyte.
- a MOD layer consisting of doped zirconium dioxide (yttrium- or scandium-doped) or doped cerium oxide (yttrium-, gadolinium- or samarium-doped)
- negative interactions between electrode and electrolyte can be prevented and the start-up process of the cell can be shortened or even skipped ,
- the components mentioned above are preferably used in highly pure form to produce this electrolyte boundary layer.
- the electrolyte boundary layer is preferably made very thin and its preferred thickness is 100 to 500 nm.
- the high-temperature solid electrolyte fuel cell according to the invention has the advantage that, by enlarging the electrochemically active interface between the electrode and the electrolyte by structuring the electrolyte surface, a lower area-specific resistance, a higher efficiency with the same area-specific performance and a lower electrical load in relation to the electrochemical active interface is achieved.
- the last-mentioned lower electrical load leads to a lower de- gradation of the cell and a performance increase by a factor of 2 to 3.
- single cells with modified cathode at 400 mA / cm 2 with 4 mV / 100 H show a significantly lower voltage degradation than standard cells with 35 mV / 1000 h. They have a significantly higher stability in long-term operation than cells with standard cathodes (Figure 3).
- the structuring of the electrolyte surface is carried out either directly when drawing the film or, in the case of a cell supported by one of the electrodes or by an electrochemically inactive substrate, by screen printing or spraying.
- a green film or a green (unsintered) electrolyte layer made of yttrium-doped zirconium oxide (from a suitable solid electrolyte) is expediently used as the electrolyte substrate or supported thin-layer electrolyte.
- a screen printing paste is applied to it.
- the paste has a solids content in the range of 10-30%.
- Higher solids contents in the screen printing paste lead to a reduction in the effective electrolyte surface and also to an increase in the mean electrolyte thickness. Both ultimately lead to a reduction in the electrical performance of a SOFC.
- Be set in the screen-printing paste from these 'sake has the solid content in the above range.
- the powder fraction of the paste has a particle size distribution in the range from 5 to a maximum of 20 ⁇ m.
- the structure on the interface is sintered together with the electrolyte.
- the advantages here are that only one sintering step is required and, due to the higher sintering activity of the powder constituents in the initial state, better structure adhesion is achieved.
- the structuring can take place on the cathode and anode side. Due to different doping in the grains or material combinations in the grains (e.g. other yttrium doping in zirconium dioxide, scandium-doped zirconium dioxide (SzSZ), gadolinium-doped cerium oxide (GCO) etc.) and in the substrate (yttrium-doped zirconium dioxide, doped Ce0 2 or scandium-doped zirconium dioxide (SzSZ) on tetragonal (TZP) zirconium dioxide) lower ohmic losses and an improvement in material stability are achieved and high-purity, cost-intensive electrolyte materials are limited to the interface.
- doping in the grains or material combinations in the grains e.g. other yttrium doping in zirconium dioxide, scandium-doped zirconium dioxide (SzSZ), gadolinium-doped cerium oxide (GCO) etc.
- the grain size of the particles applied as structuring can be adapted to the respective requirements.
- the structuring can be carried out with small or large, but also with small and large grains.
- a nanoporous electrode thin layer is deposited by means of a sol-gel method or MOD method on the structured electrolyte surface, as described above.
- the individual propionates of La, Sr, Co and Mn are first produced. These are solids by reacting La 2 (C0 3 ) 3 , elemental strontium, Co (0H) 2 or Mn (CH 3 C00H) 2 with excess propionic acid and in the presence of propionic acid. get reanhydride.
- this kit it is possible to set any chemical composition and any end stoichiometry of the cathode MOD layer.
- the individual components of the kit can be stored for years. It is also possible to replace some components with other carboxylates, e.g. As acetates, or by diketonate, for example in the form of acetylacetonates, to replace or supplement them and thus expand the construction kit by further elements.
- a coating solution of the composition La 0. 5 Sr 0, 2 3 oMn0 the precursors in the appropriate stoichiometric ratio are dissolved in propionic acid.
- the solids content is typically between 12 and 14% by mass, based on the oxide.
- the composition of the coating solutions can be checked using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy) and the solids content can be checked thermogravimetrically.
- the coating solutions can be stored at room temperature for several months.
- the layers are then applied by spinning (2000 up for 60 sec) or dipping from the liquid phase and aged for 15 min at 170, 700 and 900 ° C.
- the layer thickness of a simple coating is 80 to 100 nm. Higher layer thicknesses can be produced by repeating the coating procedure accordingly (FIG. 4).
- nanoporous electrode thin layers deposited by means of the sol-gel method or MOD method described above have the advantage that the continuous nanoporosity in the MOD layer enables a large number of three-phase boundaries.
- Material systems for the anode are, for example, Ni, Ni / YSZ, Ni / doped Ce0 2 and doped Ce0 2 .
- the stoichiometry and the chemistry of the metal oxides used, in particular the perovskites, can be changed.
- nanoporous MOD electrode thin films are their stability under the operating conditions of the fuel cell.
- the nanoporous MOD electrode thin layers can also be used as intermediate layers.
- an MOD thin-film electrolyte made of 10 mol% Y 2 0 3 or Sc 2 0 3 doped Zr0 2 IYSZ / IOSCSZ
- an electrolyte substrate made of standard materials 3 or 8 mol% Y 2 0 3 dot. Zr0 2
- This thin-layer electrolyte which has a higher purity and ionic conductivity, can be produced on the cathode and / or anode side.
- the MOD electrolyte layer as an intermediate layer enables the use of a high-purity but cost-intensive electrolyte material in the area of the electrode / electrolyte interface and thus leads to lower ohmic losses due to current constriction and to lower Polarization resistances due to the formation of second phases.
- FIG. 1 shows a schematic drawing of a standard cell (left) and a cell according to the invention (right) with a modified cathode / electrolyte interface.
- FIG. 2 shows the current / voltage (I / V) characteristic of individual cells with different cathodes at 950 ° C.
- FIG. 3 describes the current density as a function of the time during the long-term operation of a single cell with a modified ULSM-MOD cathode for 1800 hours at 950 ° C. (degradation rate: 4 mV / 1000 h).
- FIG. 4 shows an SEM image of a nanoporous ULSM-MOD layer on a non-structured 8YSZ electrolyte.
- Single cells with modified ULSM cathodes are manufactured as follows:
- 8YSZ particles are applied to 8YSZ green films (8YSZ: Tosoh TZ-8Y) using a screen printing process.
- the particle content in the screen printing paste is adjusted so that a surface enlargement of approx. 25% is achieved.
- This structured electrolyte is sintered at 1550 ° C for one hour.
- a 30 - 40 ⁇ m thick Ni / 8YSZ cermet is printed on the back as an anode and sintered at 1350 ° C for 5 hours.
- the electrolyte is then MOD layer cathode of the composition La 0. 5 Sr 0/2 oMn0 3 (ULSM) is applied by spinning a simple and sintered for 15 min each at 170, 700 and 900 ° C on the structured side.
- the layer thickness of this layer is approximately 80 nm.
- a 30-40 ⁇ m thick ULSM layer is printed on this MOD cathode by screen printing.
- Single cells with modified LSC cathodes are manufactured as follows:
- 8YSZ particles are applied to 8YSZ green foils (8YSZ: Tosoh TZ-8Y) using a screen printing process and sintered for one hour at 1550 ° C.
- a 30 - 40 ⁇ m thick Ni / 8YSZ cermet is printed on the back as anode and sintered for 5 hours at 1300 ° C.
- a simple cathode MOD layer with the composition La 0 , 5 ⁇ Sr 0 , 5 ⁇ Co0 3 (LSC) is applied to the structured side of the electrolyte by spinning and sintered for 15 minutes at 170, 700 and 900 ° C.
- the layer thickness of this layer is approximately 100 nm.
- a 30-40 ⁇ m thick ULSM layer is printed on this MOD cathode by screen printing.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004500345A JP2005531885A (ja) | 2002-04-23 | 2003-04-15 | ナノ多孔性薄層電極と構造化電解質との複合物を含んでなる高温固体電解質燃料電池 |
EP03722484A EP1497884A2 (de) | 2002-04-23 | 2003-04-15 | Hochtemperatur-festelektrolyt- brennstoffzelle umfassend einen verbund aus nanoporösen dünnschichtelektroden und einem strukturiertem elektrolyt |
CA002483815A CA2483815A1 (en) | 2002-04-23 | 2003-04-15 | High-temperature solid electrolyte fuel cell comprising a composite of nanoporous thin-film electrodes and a structured electrolyte |
US10/512,134 US20060057455A1 (en) | 2002-04-23 | 2003-04-15 | High-temperature solid electrolyte fuel cell comprising a composite of nanoporous thin-film electrodes and a structured electrolyte |
AU2003229677A AU2003229677B2 (en) | 2002-04-23 | 2003-04-15 | High-temperature solid electrolyte fuel cell comprising a composite of nanoporous thin-film electrodes and a structured electrolyte |
NO20045079A NO20045079L (no) | 2002-04-23 | 2004-11-22 | Brenselcelle for hoye temperaturer og bygget opp med nanoporose tynnfilmelektroder |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10218074A DE10218074A1 (de) | 2002-04-23 | 2002-04-23 | Hochtemperatur-Festelektrolyt-Brennstoffzelle umfassend einen Verbund aus nanoporösen Dünnschichtelektroden und einem strukturiertem Elektrolyt |
DE10218074.1 | 2002-04-23 | ||
DE10251263A DE10251263A1 (de) | 2002-11-04 | 2002-11-04 | Hochtemperatur-Festelektrolyt-Brennstoffzelle umfassend einen Verbund aus nanoporösen Dünnschichtelektroden und einem strukturiertem Elektrolyt |
DE10251263.9 | 2002-11-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003092089A2 true WO2003092089A2 (de) | 2003-11-06 |
WO2003092089A3 WO2003092089A3 (de) | 2004-10-21 |
Family
ID=29271564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2003/003936 WO2003092089A2 (de) | 2002-04-23 | 2003-04-15 | Hochtemperatur-festelektrolyt- brennstoffzelle umfassend einen verbund aus nanoporösen dünnschichtelektroden und einem strukturiertem elektrolyt |
Country Status (7)
Country | Link |
---|---|
US (1) | US20060057455A1 (de) |
EP (1) | EP1497884A2 (de) |
JP (1) | JP2005531885A (de) |
AU (1) | AU2003229677B2 (de) |
CA (1) | CA2483815A1 (de) |
NO (1) | NO20045079L (de) |
WO (1) | WO2003092089A2 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006278017A (ja) * | 2005-03-28 | 2006-10-12 | Tokyo Electric Power Co Inc:The | 固体酸化物形燃料電池用セル及びその製造方法並びに固体酸化物形燃料電池 |
WO2006027667A3 (en) * | 2004-09-08 | 2006-10-26 | Toyota Motor Co Ltd | Fuel cell production method and fuel cell |
US7691284B2 (en) * | 2006-08-29 | 2010-04-06 | The Boeing Company | Tunable variable emissivity materials and methods for controlling the temperature of spacecraft using tunable variable emissivity materials |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5107509B2 (ja) * | 2005-06-02 | 2012-12-26 | 日本電信電話株式会社 | 固体酸化物形燃料電池の製造方法 |
JP5252362B2 (ja) * | 2005-12-28 | 2013-07-31 | 独立行政法人産業技術総合研究所 | セラミック電極 |
JP5028063B2 (ja) * | 2006-10-16 | 2012-09-19 | 行政院原子能委員會核能研究所 | ナノチャネル複合薄膜を具えた陽極構造及びその大気プラズマ溶射法の製造方法 |
US20100119941A1 (en) * | 2007-04-02 | 2010-05-13 | Koninklijke Philips Electronics N.V. | Electrochemical energy source and electronic device provided with such an electrochemical energy source |
US20090297923A1 (en) * | 2008-05-28 | 2009-12-03 | Monika Backhaus-Ricoult | Sol-gel derived high performance catalyst thin films for sensors, oxygen separation devices, and solid oxide fuel cells |
KR101075422B1 (ko) * | 2008-10-14 | 2011-10-24 | 한국과학기술연구원 | 금속 산화물 박막 구조체를 제조하는 방법 및 이에 의해 제조된 금속 산화물 박막 구조체를 포함하는 고체산화물 연료전지 |
GB2521193A (en) * | 2013-12-12 | 2015-06-17 | Nokia Technologies Oy | Electronic apparatus and associated methods |
JP6366054B2 (ja) * | 2014-04-07 | 2018-08-01 | 一般財団法人電力中央研究所 | 複合層構造体の製造方法及び固体酸化物形燃料電池のカソード製造方法 |
JP6372742B2 (ja) * | 2014-06-06 | 2018-08-15 | 国立大学法人山梨大学 | 固体酸化物形セル及びその製造方法 |
KR101835956B1 (ko) | 2015-03-06 | 2018-03-08 | 주식회사 엘지화학 | 전극의 제조방법, 이로 제조된 전극, 상기 전극을 포함하는 전극 구조체, 상기 전극을 포함하는 연료 전지 또는 금속 공기 이차 전지, 상기 연료 전지 또는 금속 공기 이차 전지를 포함하는 전지 모듈, 및 전극 제조용 조성물 |
CN110508818A (zh) * | 2019-09-16 | 2019-11-29 | 东华大学 | 一种复杂形状硬质合金零件增材—减材综合制造方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3922673A1 (de) * | 1989-07-10 | 1991-01-24 | Siemens Ag | Hochtemperaturbrennstoffzelle |
JPH04190564A (ja) * | 1990-11-22 | 1992-07-08 | Tokyo Gas Co Ltd | 固体電解質型燃料電池の製造方法 |
JPH05190180A (ja) * | 1992-01-13 | 1993-07-30 | Ngk Insulators Ltd | 固体電解質型燃料電池の空気電極体、その製造方法及び固体電解質型燃料電池の製造方法 |
DE4314323C2 (de) * | 1993-04-30 | 1998-01-22 | Siemens Ag | Hochtemperaturbrennstoffzelle mit verbesserter Festelektrolyt/Elektroden-Grenzfläche und Verfahren zur Herstellung eines Mehrschichtaufbaus mit verbesserter Festelektrolyt/Elektroden-Grenzfläche |
JP3323029B2 (ja) * | 1995-03-31 | 2002-09-09 | 京セラ株式会社 | 燃料電池セル |
US5543239A (en) * | 1995-04-19 | 1996-08-06 | Electric Power Research Institute | Electrode design for solid state devices, fuel cells and sensors |
US5670270A (en) * | 1995-11-16 | 1997-09-23 | The Dow Chemical Company | Electrode structure for solid state electrochemical devices |
US5753385A (en) * | 1995-12-12 | 1998-05-19 | Regents Of The University Of California | Hybrid deposition of thin film solid oxide fuel cells and electrolyzers |
EP0788175B1 (de) * | 1996-02-02 | 2000-04-12 | Sulzer Hexis AG | Hochtemperatur-Brennstoffzelle mit einem Dünnfilm-Elektrolyten |
DE19908213B4 (de) * | 1998-07-27 | 2005-03-10 | Mitsubishi Heavy Ind Ltd | Basisrohr für eine Brennstoffzelle |
JP3230156B2 (ja) * | 1999-01-06 | 2001-11-19 | 三菱マテリアル株式会社 | 固体酸化物型燃料電池の電極とその製造方法 |
AU774828B2 (en) * | 1999-01-12 | 2004-07-08 | Ngimat Co. | Epitaxial thin films |
JP2001256986A (ja) * | 2000-03-10 | 2001-09-21 | Mitsuru Sano | 固体電解質型燃料電池 |
US6645656B1 (en) * | 2000-03-24 | 2003-11-11 | University Of Houston | Thin film solid oxide fuel cell and method for forming |
DE10026941A1 (de) * | 2000-05-30 | 2001-12-06 | Creavis Tech & Innovation Gmbh | Verfahren zur selektiven elektrochemischen Oxidation von organischen Verbindungen |
US6558831B1 (en) * | 2000-08-18 | 2003-05-06 | Hybrid Power Generation Systems, Llc | Integrated SOFC |
US6495279B1 (en) * | 2001-10-02 | 2002-12-17 | Ford Global Technologies, Inc. | Ultrahigh power density miniaturized solid-oxide fuel cell |
-
2003
- 2003-04-15 AU AU2003229677A patent/AU2003229677B2/en not_active Ceased
- 2003-04-15 US US10/512,134 patent/US20060057455A1/en not_active Abandoned
- 2003-04-15 WO PCT/EP2003/003936 patent/WO2003092089A2/de active Application Filing
- 2003-04-15 CA CA002483815A patent/CA2483815A1/en not_active Abandoned
- 2003-04-15 EP EP03722484A patent/EP1497884A2/de not_active Withdrawn
- 2003-04-15 JP JP2004500345A patent/JP2005531885A/ja active Pending
-
2004
- 2004-11-22 NO NO20045079A patent/NO20045079L/no not_active Application Discontinuation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006027667A3 (en) * | 2004-09-08 | 2006-10-26 | Toyota Motor Co Ltd | Fuel cell production method and fuel cell |
US7829235B2 (en) | 2004-09-08 | 2010-11-09 | Toyota Jidosha Kabushiki Kaisha | Fuel cell production method and fuel cell |
JP2006278017A (ja) * | 2005-03-28 | 2006-10-12 | Tokyo Electric Power Co Inc:The | 固体酸化物形燃料電池用セル及びその製造方法並びに固体酸化物形燃料電池 |
US7691284B2 (en) * | 2006-08-29 | 2010-04-06 | The Boeing Company | Tunable variable emissivity materials and methods for controlling the temperature of spacecraft using tunable variable emissivity materials |
US8679582B2 (en) | 2006-08-29 | 2014-03-25 | The Boeing Company | Tunable variable emissivity materials and methods for controlling the temperature of spacecraft using tunable variable emissivity materials |
Also Published As
Publication number | Publication date |
---|---|
EP1497884A2 (de) | 2005-01-19 |
AU2003229677A1 (en) | 2003-11-10 |
JP2005531885A (ja) | 2005-10-20 |
AU2003229677B2 (en) | 2008-10-09 |
US20060057455A1 (en) | 2006-03-16 |
WO2003092089A3 (de) | 2004-10-21 |
CA2483815A1 (en) | 2003-11-06 |
NO20045079L (no) | 2004-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6558831B1 (en) | Integrated SOFC | |
DE60103347T2 (de) | Festoxidbrennstoffzelle mit unterstütztem elektrolytischem Film | |
EP2036152B1 (de) | Keramische werkstoffkombination für eine anode für eine hochtemperatur-brennstoffzelle | |
US11936080B2 (en) | Alternative anode material for solid oxide fuel cells | |
DE60120227T2 (de) | Leitfähiges material mit mindestens zwei phasen | |
AU2001284851A1 (en) | Integrated sofc | |
KR20090023255A (ko) | 세리아 및 스테인리스 스틸 기재 전극 | |
CN101383417A (zh) | 基于二氧化铈和钛酸锶的电极 | |
JP2009110934A5 (de) | ||
WO2003092089A2 (de) | Hochtemperatur-festelektrolyt- brennstoffzelle umfassend einen verbund aus nanoporösen dünnschichtelektroden und einem strukturiertem elektrolyt | |
EP1271683A2 (de) | Brennstoffzelle | |
EP3309882A1 (de) | Kathodenzusammensetzung, kathode und brennstoffzelle damit | |
DE102013007637B4 (de) | Kathoden-Elektrolyt-Anodeneinheit von Hochtemperatur-Brennstoffzellen | |
DE69108160T2 (de) | Brennstoffelektroden für Festoxid-Brennstoffzellen und Verfahren zu ihrer Herstellung. | |
EP1893347A2 (de) | Verfahren zur elektrodenabscheidung für festoxidbrennstoffzellen | |
KR102261142B1 (ko) | 전기화학기법을 적용한 고체산화물연료전지 공기극 및 이의 제조방법 | |
US7468218B2 (en) | Composite solid oxide fuel cell anode based on ceria and strontium titanate | |
EP2669984B1 (de) | Anoden-Schichtsystem für elektrochemische Anwendungen sowie Verfahren zur Herstellung desselben | |
DE10218074A1 (de) | Hochtemperatur-Festelektrolyt-Brennstoffzelle umfassend einen Verbund aus nanoporösen Dünnschichtelektroden und einem strukturiertem Elektrolyt | |
DE10251263A1 (de) | Hochtemperatur-Festelektrolyt-Brennstoffzelle umfassend einen Verbund aus nanoporösen Dünnschichtelektroden und einem strukturiertem Elektrolyt | |
EP4510248A2 (de) | Festoxidzelle mit nickelfreier brennstoffelektrode | |
DE102023208892A1 (de) | Festoxidelektrolysezelle mit Kathode und Verfahren | |
KR20250059016A (ko) | 고체산화물 연료전지 및 그 제조방법 | |
JP5296516B2 (ja) | 固体酸化物形燃料電池 | |
HK1259842A1 (en) | Alternative anode material for solid oxide fuel cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AU CA JP NO US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003722484 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003229677 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2483815 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004500345 Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 2003722484 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2006057455 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10512134 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10512134 Country of ref document: US |