[go: up one dir, main page]

WO2003091484A1 - Method for producing silicon single crystal and silicon single crystal wafer - Google Patents

Method for producing silicon single crystal and silicon single crystal wafer Download PDF

Info

Publication number
WO2003091484A1
WO2003091484A1 PCT/JP2003/005243 JP0305243W WO03091484A1 WO 2003091484 A1 WO2003091484 A1 WO 2003091484A1 JP 0305243 W JP0305243 W JP 0305243W WO 03091484 A1 WO03091484 A1 WO 03091484A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal
region
silicon single
silicon
Prior art date
Application number
PCT/JP2003/005243
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Sakurada
Tatsuo Mori
Izumi Fusegawa
Tomohiko Ohta
Original Assignee
Shin-Etsu Handotai Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co.,Ltd. filed Critical Shin-Etsu Handotai Co.,Ltd.
Publication of WO2003091484A1 publication Critical patent/WO2003091484A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/32Seed holders, e.g. chucks

Definitions

  • the present invention is directed to a defect-free area having no defects in any of the V area, the I area, and the OSF area as described later, and having no defects detected from the u deposition.
  • the present invention relates to a method for producing a silicon single crystal at high speed and in a stable manner. Background art
  • V vacancies
  • I interstitials-silicon
  • the V region is a region where there are many Vacancy, that is, recesses and holes generated due to lack of silicon atoms, and the I region. This is a region where dislocations and extra silicon atom lumps are generated due to the presence of extra silicon atoms.
  • Ma In addition, between the V region and the I region, there is a Neutran 1 (Neutra 1; hereafter, sometimes abbreviated as N) region with no (small) lack or excess of atoms. It will be.
  • the above-mentioned green-in defect (FPD, LSTD, COP, etc.) is the result of point defects agglomerating when V and I are over-saturated. It can be seen that point defects do not aggregate and do not exist as the above-mentioned glow-in defects, even if there is some deviation of atoms, even if there is a certain degree of saturation, if they are less than saturation. I came.
  • the concentration of these two point defects is determined by the relationship between the crystal pulling rate (growth rate) in the CZ method and the temperature gradient G near the solid-liquid interface in the crystal, and the boundary between the V region and the I region is determined.
  • OSF Oxidation Induced Stacking Fault
  • Defects Large Dislocations: LDSD, LSEPD, LFPD, etc. defects (Large Dislocation Clusters) which are considered to be caused by dislocation loops
  • the area where these are present at low density and these defects are present is called the I area (sometimes called the LZD area).
  • the OSF ring shrinks to the center of the wafer and disappears, and the entire surface becomes the I region (see the line in FIG. 6).
  • these N regions exist obliquely with respect to the growth axis direction when the growth rate is reduced, so that only a part of the N region exists in the aeah plane (see, for example, FIG. 6).
  • V.V.V oronkov For this N region, the Boronkov theory (V.V.V oronkov; Journal rystal G rowth, 59 (1992) 625-643) raises It is proposed that the VZG, a ratio of the velocity (V) and the temperature gradient (G) in the crystal-liquid interface axis direction, determines the total concentration of point defects. Considering this fact, since the pulling rate (growth rate) should be almost constant in the plane, G has a distribution in the plane. At the raising speed, a force was obtained that could only obtain a crystal whose center was in the V region, sandwiched the N region, and became the I region in the periphery.
  • the distribution of G in the plane was improved, and the N region, which existed only at an angle, was pulled up, for example, while gradually lowering the pulling rate (growth rate).
  • the pulling rate growth rate
  • the crystal in the entire N region in the length direction it can be achieved to some extent by pulling up while maintaining the pulling speed when the N region spreads laterally.
  • the pulling speed so that V / G remains constant, the growth direction will be more
  • the crystal in the entire N region can be expanded.
  • the entire surface is in the N region, and although it is a single crystal that does not generate an OSF ring when subjected to thermal oxidation and has no FPD or LZD on the entire surface. It was found that oxide film defects could occur significantly. This causes electrical characteristics such as oxide withstand voltage characteristics to deteriorate, and it is not sufficient to merely say that the entire surface of the conventional device is in the N region. Further improvement was desired.
  • the present invention provides a method for producing a silicon single crystal by the chiral scan method, in which a V region, an OSF region, and an interstitial silicon region of a vacancy rich are provided.
  • a V region, an OSF region, and an interstitial silicon region of a vacancy rich are provided.
  • the objective is to provide a defect-free silicon single crystal wafer with excellent electrical properties at a low cost.
  • the present invention it is housed in a crucible. After the seed crystal is brought into contact with the silicon melt, the seed crystal is pulled up from a rotating force S to grow a silicon single crystal by the Chiocular key method.
  • the crucible is rotated without rotating or in the same direction as the rotation direction of the seed crystal, and a ring shape is formed when the thermal oxidation treatment is performed.
  • the silicon is characterized by growing a crystal in an N region outside the OSF generated in the defect free region where there is no defect region detected by Cu deposition.
  • a method for producing a single crystal is provided.
  • the entire region includes defects such as FPDs in the V region and giant dislocation clusters in the I region (LSEPD, LFPD). ) And N region where OSF defects are not formed, and there are no defects and no defects (Cu deposition defects) detected by Cu deposition.
  • a silicon single crystal can be manufactured faster and more stably than before.
  • the seed crystal is pulled up while being rotated while rotating the silicon single crystal.
  • the crucible is rotated without being rotated or in the same direction as the rotation direction of the seed crystal.
  • the defect area detected by the Cu deposition remaining after the OSF ring disappears.
  • the crystal growth is controlled by controlling the growth rate between the boundary growth rate and the growth rate at the boundary where interstitial dislocation loops occur when the growth rate is further reduced.
  • a method for producing a silicon single crystal is also provided.
  • the rotation speed of the crucible is set in a range of 0 to 2 rpm.
  • a defect-free silicon single crystal wafer characterized by being sliced from silicon single crystal gas grown by the above method is provided. .
  • Such silicon wafers do not include V region defects such as FPDs, I region defects such as giant dislocation clusters, and OSF defects, and have a Cu deposition. It will be a defect-free silicon single crystal wafer with no defects, high breakdown voltage and excellent electrical characteristics, and will be inexpensive because it is grown at high speed.
  • FPD Flow Pattern Defect
  • a wafer is cut out from a silicon single crystal rod after growth, and the strained layer on the surface is etched with a mixed solution of hydrofluoric acid and nitric acid. After removal by etching, the surface is etched (Secco etching) with a mixture of K 2 Cr 2 O 7 , hydrofluoric acid and water. Cuts and ripples occur. This ripples The higher the FPD density in the wafer surface, the more the oxide film withstand pressure increases (see Japanese Patent Application Laid-Open No. 1991-92445).
  • SEPD Secco Etch Pit Defect
  • LSTD Laser Scatting Tomography Defect
  • a silicon monocrystal rod is cut out from a grown silicon single crystal rod, and the strained surface layer is mixed with hydrofluoric acid and nitric acid. After removal by etching with liquid, the wafer is cleaved. Infrared light is incident from this cleavage plane, and light emitted from the wafer surface is detected to detect scattered light due to defects existing in the wafer. And can be. Scatterers observed here have already been reported at academic meetings and are considered to be oxygen precipitates (Jpn. J. Appl. Phys. Vol. 32, P36). 79, 1993). Recent studies have also reported that it is an octahedral void.
  • COP Crystal Originated Particulate 1e
  • the diameter of this pit is less than 1 ⁇ m and is examined by the light scattering method.
  • L / D (Large D is 1 ocation) is an abbreviation of interstitial dislocation loop, which includes LSEPD and LFPD. These defects are thought to be caused by dislocation loops in which the aggregates aggregate.
  • LSEPD refers to those larger than 1 ⁇ among SEPDs.
  • LFPD refers to the above-mentioned FPDs whose tip pits have a size of 1 O / xm or more, and this is also considered to be caused by a dislocation loop.
  • the Cu deposition method accurately measures the position of defects in semiconductor wafers, improves the detection limit for defects in semiconductor wafers, and accurately measures even finer defects. It can be analyzed.
  • a specific method of evaluating wafers is to form an oxide film of a predetermined thickness on the wafer surface, and to destroy the oxide film on a defect site formed near the wafer surface to obtain a defect.
  • Electrode such as Cu is deposited (deposition) on the site.
  • a potential is applied to an oxide film formed on the wafer surface in a liquid in which Cu ions are dissolved, a current is supplied to a portion where the oxide film has deteriorated.
  • This is an evaluation method that utilizes the fact that the flow and Cu ions are precipitated as Cu. It is known that defects such as COP exist in portions where the oxide film is easily deteriorated.
  • the defect site of the wafer that has been Cu deposited can be analyzed under the condensing light or directly with the naked eye to evaluate its distribution and density.
  • a silicon single crystal in a defect-free region that does not include a V region, an OSF region, an I region, and a Cu deposition defect region is rapidly drawn. Can be raised. Therefore, silicon single crystals that can improve electrical characteristics such as oxide film breakdown voltage can be manufactured at high speed and in a stable manner, and defect-free silicon with high breakdown voltage and excellent electrical characteristics can be obtained. Can be provided at a low cost.
  • FIG. 1 shows an example of a silicon single crystal manufacturing apparatus that can be used in the present invention.
  • Figure 2 is a graph showing the defect-free region growth rate.
  • Figure 3 is a graph showing the relationship between the crucible rotation speed and the defect-free region growth rate.
  • Figure 4 is a graph showing the relationship between the crucible rotation and the temperature gradient in the direction of the crystal interface axis.
  • Figure 5 is a graph showing the relationship between crucible rotation speed and initial oxygen concentration.
  • FIG. 6 is an explanatory diagram showing a growth rate and a crystal defect distribution according to a conventional technique.
  • the present inventors have investigated in detail the vicinity of the boundary between the V region and the I region with respect to the silicon single crystal growth by the CZ method, and found that the OSF region is located between the V region and the I region. Outside the ring, a neutral N region was found in which the number of FPDs, LSTDs, and COPs was very small and L / D was absent.
  • the present inventors conducted a more detailed investigation on the N region by the Cu deposition method, and found that the N region outside the OSF region was used. Therefore, it is evident that some of the regions where oxygen precipitation is likely to occur after the precipitation heat treatment have regions where defects detected by the Cu deposition process are significantly generated. discovered. The inventors have also found that this causes deterioration of electrical characteristics such as oxide breakdown voltage characteristics.
  • a defect-free area growth rate By growing a single crystal at a rate between the above (hereinafter, sometimes referred to as a defect-free area growth rate), it is possible to eliminate the various types of green-in defects.
  • a defect-free silicon single-crystal silicon wafer capable of reliably improving the oxide film breakdown voltage characteristics and the like was obtained.
  • the growth rate of such a defect-free region needs to be lower than the conventional single crystal pulling rate, and the control range is narrow. Let's raise the cost of single crystal production. Therefore, it is necessary to improve the growth rate of the defect-free region.
  • the inventors of the present invention further investigated and found that there was a correlation between the number of rotations of the crucible and the growth rate of the defect-free region, and that the rotation of the crucible or seeding was not performed. It has been found that by rotating the crystal in the same direction as that of the crystal, the growth rate of the defect-free region can be increased.
  • the present invention has been completed on the basis of these findings, that is, without rotating the crucible or in the same direction as the rotation direction of the seed crystal.
  • the N region outside the OSF which is formed in a ring shape when subjected to thermal oxidation treatment when it is converted, and is detected by the Cu deposition.
  • the feature is to grow a crystal in a defect-free region where no defect region exists. It is a thing.
  • FIG. 1A shows an example of a single crystal pulling apparatus that can be used in the present invention.
  • the single crystal pulling apparatus 30 includes a pulling chamber 31, a crucible 32 provided in the pulling chamber 31, a heater 34 disposed around the crucible 32, and a crucible for rotating the crucible 32.
  • Holding shaft 33 and its rotating mechanism (not shown), seed chuck 6 for holding silicon seed crystal, wire 7 for pulling up seed chuck 6, and rotating or rotating wire 7 It has a winding mechanism (not shown) for winding.
  • a heat insulating material 35 is disposed around the outside of the heater 34.
  • the Norrebo 32 has a quartz crucible on the inner side for containing the silicon melt (hot water) 2 and a graphite crucible on the outer side. Further, a positive / negative rotation switching switch is provided so that the crucible holding shaft 33 can be rotated in either the left or right direction by a rotating mechanism. As shown in FIG. 1 (b), the crucible 32 is moved. The seed crystal can be rotated in the same direction as the rotation direction (upper axis rotation direction) or in the opposite direction.
  • An annular graphite cylinder (heat shield plate) 9 is provided in order to set the manufacturing conditions relating to the manufacturing method of the present invention, and an annular outer periphery is provided around the solid-liquid interface 4 of the crystal. Insulation 10 is provided.
  • the outer heat insulating material 10 is provided with an interval of 2 to 20 cm between its lower end and the molten metal surface 3 of the silicon melt 2. Further, a cylindrical cooling device for spraying a cooling gas or cooling a single crystal by blocking radiant heat may be provided.
  • the difference between the temperature gradient G c [° C / cm] at the center of the crystal and the temperature gradient G e at the periphery of the crystal becomes smaller.
  • the temperature gradient around the crystal is greater than the crystal center. It is also possible to control the furnace temperature to lower the temperature.
  • a superconducting magnet for applying a horizontal magnetic field (transverse magnetic field) to the silicon melt 2 in the crucible 3 2 is provided outside the pulling chamber 31 in the horizontal direction. 36 are provided.
  • the silicon single crystal can be pulled up by the so-called H-MCZ method, which suppresses the convection of the melt 2 and stably grows the single crystal.
  • the magnet 36 may be of a normal conduction type.
  • a high-purity polycrystalline silicon raw material is melted in a crucible 32 at a melting point (about 142 0 ° C) Heat to above and melt.
  • a melting point about 142 0 ° C
  • the tip of the seed crystal is brought into contact with or immersed substantially in the center of the surface of the melt 2.
  • the crucible holding shaft 33 is rotated, and the wire 7 is wound while being rotated.
  • the seed crystal is pulled while rotating, and the growth of the single crystal is started.
  • a substantially cylindrical single crystal rod 1 can be obtained. It can be.
  • the rotation direction of the seed crystal that is, the rotation direction of the crucible and the rotation direction of the crucible are conventionally set to be opposite to each other, but in the present invention, when growing the silicon single crystal as described above,
  • the N region outside the OSF which is generated in a ring when the thermal oxidation treatment is performed, is performed. Therefore, the crystal is grown in a defect-free region where no defect region is detected by the Cu deposition.
  • a 250-cm (600 mm) diameter quartz crucible was charged with 150 kg of polycrystalline silicon as a raw material, and an 8-inch (200 mm) diameter was used. ), A silicon single crystal of orientation ⁇ 100> was grown.
  • the growth rate was controlled so that the growth rate gradually decreased from 0.8 mm / min force to 0.4 mm / mi ⁇ from the straight body of 10 cm to the tail. did.
  • Such an experiment of gradually decreasing the crystal growth rate was performed by setting the crucible to various rotation speeds. Specifically, the crucible is kept stopped (0 rpm), or in the same direction as the seed crystal rotation direction (upper shaft rotation direction), 0.1 rpm, 0.3 rpm, 0.5 rpm. rpm, 1.0 rpm, 2.0 rpm, 3.0 rpm, and 0.1 rpm, 1.0 rpm, 2.0 rpm in the opposite direction to the seed crystal. Set to a number.
  • a horizontal magnetic field was applied by a superconducting method so that the magnetic field strength at the center of the single crystal was 400 G.
  • the magnetic field strength is not particularly limited. For example, it is appropriate to apply a horizontal magnetic field having a center magnetic field strength of about 500 to 500 G.
  • each block is further divided vertically in the crystal axis direction.
  • the sample was cut to a thickness of about 2 mm.
  • Oxide film 25 nm
  • the Cu deposition was applied to the N region outside the OSF, which was generated in a ring shape during thermal oxidation treatment. A defect-free area where no defective area was detected was confirmed.
  • Figure 2 shows the relationship between such a defect-free region and its growth rate. From this figure, when the growth rate of the silicon single crystal during growth is gradually reduced, the defect area detected by the Cu deposition remaining after the OSF ring disappears disappears.
  • the N region outside the OSF is between the boundary growth rate and the boundary growth rate at which the interstitial dislocation loop (giant dislocation cluster: I region) occurs when the growth rate is further reduced. Thus, it can be specified as a growth rate (a defect-free area growth rate) that is a defect-free area where no defect area detected by the Cu deposition exists.
  • the defect-free region growth rate was determined for each silicon single crystal as described above, and is shown in Table 1.
  • the relationship between the crucible rotation speed and the defect-free region growth rate is graphed.
  • the growth rate of the defect-free region shown in Table 1 and Fig. 3 is the same as that of the Cu deposition defect disappearance rate.
  • Intermediate value with the dislocation cluster (LSEPD, LFPD) generation speed is the same as that of the Cu deposition defect disappearance rate.
  • the growth rate of the defect-free region increases as the rotation speed decreases. In any case, it will be less than 0.57 mm / min.
  • the crystal growth rate is 0.57 mm / min or more. Depressed area growth rate has been achieved. Therefore, for example, by rotating the crucible without rotating or rotating the crucible in the same direction as the rotation direction of the seed crystal at a rotation speed in the range of 0 to 2 rpm, at least 0.
  • the defect-free silicon is obtained.
  • a single crystal can be grown at a higher speed. Therefore, by slicing a silicon single crystal rod grown by such a method, the entire surface is free from defects, that is, V region defects such as FPD, and giant dislocations.
  • V region defects such as FPD
  • giant dislocations High-quality silicon with high withstand voltage and excellent electrical characteristics that does not include I-region defects such as clusters, OSF defects, and no defects detected by Cu deposition. It is possible to obtain efficiently.
  • the crucible should be rotated more than when the crucible is rotated in the direction opposite to the rotation direction of the seed crystal (the direction of rotation of the upper shaft). Rotating in the same direction (upper shaft rotation direction) increases the temperature gradient G in the crystal-solid interface axial direction.
  • the present invention is not limited to the above embodiment.
  • the above The embodiment is an exemplification, and any of those having substantially the same configuration as the technical idea described in the claims of the present invention and having the same function and effect will be described. Even so, they are included in the technical scope of the present invention.
  • the apparatus used for producing a silicon single crystal according to the present invention is not limited to the apparatus as shown in FIG. 1, and the crucible is formed in the same direction as the seed crystal.
  • Any device that can produce a silicon single crystal in a defect region can be used without limitation.
  • crystal growth may be performed without applying a horizontal magnetic field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A method for producing a silicon single crystal by the Czochralski method wherein a seed crystal is contacted with a silicon melt (2) held in a crucible (32) and the seed crystal is pulled up while being rotated, to thereby grow a silicon single crystal (1), characterized in that the crucible is not rotated or is rotated in the same direction with that of the rotation of the seed crystal, and a crystal is grown in a no defect region which is an N region being present outside OSF generating in a ring form in a heat oxidation treatment and is free from the presence of a defect region detected by Cu deposition. It is preferred that a horizontal magnetic field is applied and the crucible is rotated with a rate in the range of 0 to 2 rpm. The method allows the production, with stability at a high production rate, of a silicon single crystal which does not belong to any of a V region being rich in lattice vacancy, an OSF region and an I region being rich in interstitial silicon, and secures the improvement of electric characteristics such as oxide film breakdown voltage, which results in the manufacture, at a low cost, of a silicon single crystal wafer having no defects and exhibiting a high breakdown voltage and excellent electrical characteristics.

Description

明 細 書 シ リ コ ン単結晶の製造方法及びシ リ コ ン単結晶 ゥ エ ーハ 技術分野  Description Silicon silicon single crystal manufacturing method and silicon single crystal
本発明は、 後述す る よ う な V領域、 I 領域、 及び O S F 領域の い ずれの欠陥 も 無 く 、 かつ じ u デポジ ッ シ ョ ン よ り 検出 さ れる欠陥 も存在 しない無欠陥領域の シ リ コ ン単結晶を高速かつ安定 して製造 する方法に関す る。 背景技術  The present invention is directed to a defect-free area having no defects in any of the V area, the I area, and the OSF area as described later, and having no defects detected from the u deposition. The present invention relates to a method for producing a silicon single crystal at high speed and in a stable manner. Background art
近年は、 半導体回路の高集積化に伴 う 素子の微細化に伴い、 そ の 基板 と な る チ ヨ ク ラ ルス キ ー法 ( C Z 法) で作製 されたシ リ コ ン単 結晶 に対す る 品質要求が高ま っ てき てい る。 特に、 F P D 、 L S T D 、 C O P 等の グロ ー ンイ ン ( G r o w n — i n ) 欠陥 と 呼ばれ る 酸化膜耐圧特性やデバ イ ス の特性を悪化 させ る、 単結晶成長起因 の 欠陥が存在 しその密度 と サ イ ズ の低減が重要視 されている。  In recent years, with the miniaturization of elements due to the high integration of semiconductor circuits, silicon single crystals manufactured by the Czochralski method (CZ method), which is the substrate, have been developed. Quality requirements are increasing. In particular, single crystal growth-induced defects, such as Grown-in defects such as FPDs, LSTDs, and COPs, that degrade oxide film breakdown voltage characteristics and device characteristics, are present and their density is high. And reduction of size are emphasized.
これ らの欠陥 を説明す る に当 たっ て、 先ず、 シ リ コ ン単結晶に取 り 込まれるベイ カ ン シ ィ ( V a c a n c y 以下 「 V」 と 略記す る こ と があ る ) と 呼ばれる空孔型の点欠陥 と 、 イ ン タ ース テ イ シアル — シ リ コ ン ( I n t e r s t i t i a 1 — S i 、. 以下 「 I 」 と 略記 する こ と が あ る ) と 呼ばれ る格子間型シ リ コ ン点欠陥のそれぞれの 取 り 込まれ る濃度を決定す る因子について、 一般的に知 られてい る こ と を説明する。  In describing these defects, first, they are called vacancies (hereinafter sometimes abbreviated as “V”) incorporated into silicon single crystals. Void-type point defects and interstitial type called interstitials-silicon (Interstitia 1-Si, hereinafter sometimes abbreviated as "I") We explain what is generally known about the factors that determine the incorporated concentration of each of the silicon point defects.
シ リ コ ン単結晶において、 V領域 と は、 V a c a n c y 、 つま り シ リ コ ン原子の不足か ら発生す る凹部、 穴の よ う な も のが多い領域 であ り 、 I 領域 と は、 シ リ コ ン原子が余分に存在する こ と に よ り 発 生する転位や余分な シ リ コ ン原子の塊が多い領域の こ と であ る。 ま た、 V領域 と I 領域の間に は、 原子の不足や余分が無い (少ない) ニ ュ ー ト ラノレ ( N e u t r a 1 、 以下 N と 略記す る こ と があ る) 領 域が存在 してい る こ と にな る。 そ して、 前記 グロ ー ン イ ン欠陥 ( F P D 、 L S T D 、 C O P等) と い う のは、 あ く ま で も Vや I が過飽 和な状態の時に点欠陥が凝集 し た結果 と して発生する も の であ り 、 多少の原子の偏 り があ っ て も 、 飽和以下であれば、 点欠陥は凝集せ ず、 前記グロ ー ンィ ン欠陥 と しては存在 しないこ と が判っ て き た。 In a silicon single crystal, the V region is a region where there are many Vacancy, that is, recesses and holes generated due to lack of silicon atoms, and the I region. This is a region where dislocations and extra silicon atom lumps are generated due to the presence of extra silicon atoms. Ma In addition, between the V region and the I region, there is a Neutran 1 (Neutra 1; hereafter, sometimes abbreviated as N) region with no (small) lack or excess of atoms. It will be. The above-mentioned green-in defect (FPD, LSTD, COP, etc.) is the result of point defects agglomerating when V and I are over-saturated. It can be seen that point defects do not aggregate and do not exist as the above-mentioned glow-in defects, even if there is some deviation of atoms, even if there is a certain degree of saturation, if they are less than saturation. I came.
こ の 両点欠陥の濃度は、 C Z 法におけ る結晶の引上げ速度 (成長 速度) と 結晶中の固液界面近傍の温度勾配 G と の関係か ら決ま り 、 V領域 と I 領域 と の境界近辺に は O S F (酸化誘起積層欠陥、 O x i d a t i o n I n d u c e d S t a c k i n g r a u 1 t ) と 呼ばれる欠陥が、 結晶成長軸に対す る垂直方向の断面で見た時 に、 リ ング状に分布 (以下、 O S F リ ング と い う こ と 力 S あ る ) し て レヽる こ と が確認 されている。  The concentration of these two point defects is determined by the relationship between the crystal pulling rate (growth rate) in the CZ method and the temperature gradient G near the solid-liquid interface in the crystal, and the boundary between the V region and the I region is determined. In the vicinity, a defect called OSF (Oxidation Induced Stacking Fault) is ring-shaped when viewed in a cross section perpendicular to the crystal growth axis. It has been confirmed that it is possible to use it for a long time.
これ ら結晶成長起因の欠陥は、 通常の結晶 中固液界面近傍の温度 勾配 G が大き い炉内構造 (ホ ッ ト ゾー ン : H Z ) を使用 した C Z 引 上げ機で結晶軸方向 に成長速度 を高速か ら低速に変化 さ せた場合、 図 6 に示 した よ う な欠陥分布図 と して得 られる。  These defects caused by crystal growth are caused by the growth rate in the crystal axis direction by a CZ pulling machine using an in-furnace structure (hot zone: HZ) with a large temperature gradient G near the solid-liquid interface in ordinary crystals. When the speed is changed from a high speed to a low speed, a defect distribution diagram as shown in Fig. 6 is obtained.
そ して こ れ ら結晶成長起因の欠陥 を分類す る と 、 例えば成長速度 が 0 . 6 m m / m i n 前後以上 と 比較的高速の場合には、 空孔型の 点欠陥が集合 したボイ ド起因 と されてい る F P D 、 L S T D 、 C O P等の グロ ー ンィ ン欠陥が結晶径方向全域に高密度に存在 し、 こ れ ら欠陥が存在する領域は V領域 と 呼ばれてい る (図 6 の ラ イ ン ( A ))。 ま た、 成長速度 が 0 . 6 m m Z m i n 以下の場合は、 成長速度 の低下に伴い、 O S F リ ングが結晶 の周辺カゝ ら発生 し、 こ の リ ング の外側に格子間 シ リ コ ン が集合 した転位ループ起因 と 考え られてい る L / D ( L a r g e D i s 1 o c a t i o n : 格子間転位ノレ 一 プの略号、 L S E P D 、 L F P D等) の欠陥 (巨大転位ク ラ ス タ ) が低密度に存在 し、 こ れ ら の欠陥が存在する領域は I 領域 ( L Z D 領域 と い う こ と があ る) と 呼ばれている 。 さ ら に、 成長速 を 0 · 4 m m / m i n 前後以下 と 低速にす る と 、 O S F リ ングが ゥ エーハ の中心に収縮 して消滅 し、 全面が I 領域 と な る (図 6 の ラ イ ン ( C ) )0 When these defects caused by crystal growth are classified, for example, when the growth rate is relatively high, for example, about 0.6 mm / min or more, voids formed by vacancy-type point defects are gathered. Glowin defects such as FPD, LSTD, and COP exist at high density throughout the crystal diameter direction, and the region where these defects exist is called the V region (see Fig. 6). (A)). When the growth rate is 0.6 mm Z min or less, the OSF ring is generated from the periphery of the crystal due to the decrease in the growth rate, and the interstitial silicon is formed outside the ring. Defects (Large Dislocations: LDSD, LSEPD, LFPD, etc.) defects (Large Dislocation Clusters) which are considered to be caused by dislocation loops The area where these are present at low density and these defects are present is called the I area (sometimes called the LZD area). Furthermore, when the growth rate is reduced to about 0.4 mm / min or less, the OSF ring shrinks to the center of the wafer and disappears, and the entire surface becomes the I region (see the line in FIG. 6). (C)) 0
ま た、 近年 V領域 と I 領域の 中間で O S F リ ン グの外側に、 N領 域と 呼ばれる 、 空孔起因の F P D 、 L S T D 、 C O P も 、 格子間 シ リ コ ン起因の L S E P D 、 L F P D も存在 し ない領域の存在が発見 されてい る。 こ の領域は O S F リ ングの外側 にあ り 、 そ して、 酸素 析出熱処理を施 し、 X — r a y 観察等で析出の コ ン ト ラ ス ト を確認 した場合に、 酸素析出がほ と ん どな く 、 かつ、 L S E P D 、 L F P D が形成 さ れる ほ ど リ ツチではない I 領域側であ る と 報告 されてい る (図 6 の ラ イ ン ( B ))。  In recent years, outside the OSF ring between the V region and I region, outside the OSF ring, there are also FPDs, LSTDs, and COPs caused by vacancies, called L regions, and LSEPDs and LFPDs caused by interstitial silicon. The existence of an area that does not exist has been discovered. This region is outside the OSF ring, and when oxygen precipitation heat treatment is performed and the contrast of deposition is confirmed by X-ray observation or the like, oxygen precipitation is almost eliminated. It has been reported that it is on the side of the I region that is not rich enough to form LSEPD and LFPD (line (B) in Fig. 6).
これ ら の N領域は、 通常の方法では、 成長速度 を下げた時に成長 軸方向 に対 して斜め に存在する ため、 ゥ エーハ面内では一部分に し か存在 しな かっ た (例えば、 図 6 の ライ ン ( B ) であれば、 O S F リ ングの外側であ る ゥ エーハ周辺部のみ)。  In the usual method, these N regions exist obliquely with respect to the growth axis direction when the growth rate is reduced, so that only a part of the N region exists in the aeah plane (see, for example, FIG. 6). Line (B), outside the OSF ring (only around the aeha).
こ の N領域につい て、 ボ ロ ン コ フ理論 ( V . V . V o r o n k o v ; J o u r n a l ο ι し r y s t a l G r o w t h , 5 9 ( 1 9 8 2 ) 6 2 5 〜 6 4 3 ) では、 引 上げ速度 ( V ) と 結晶固液 界面軸方向温度勾配 ( G ) の比であ る V Z G と い う ノ《ラ メ 一 タ が点 欠陥の ト ー タ ルな濃度を決定す る と 唱えてい る。 こ の こ と カゝ ら 考 え る と 、 面内で引上げ速度 (成長速度) はほぼ一定のはずであ る か ら 、 面内 で G が分布 を持った めに、 例 えば、 あ る 引 上げ速度では中 心 が V領域で N領域を挟んで周辺で I 領域 と な る よ う な結晶 しか得 ら れな力、つ た。  For this N region, the Boronkov theory (V.V.V oronkov; Journal rystal G rowth, 59 (1992) 625-643) raises It is proposed that the VZG, a ratio of the velocity (V) and the temperature gradient (G) in the crystal-liquid interface axis direction, determines the total concentration of point defects. Considering this fact, since the pulling rate (growth rate) should be almost constant in the plane, G has a distribution in the plane. At the raising speed, a force was obtained that could only obtain a crystal whose center was in the V region, sandwiched the N region, and became the I region in the periphery.
そこで最近、 面内の Gの分布を改良して、 この斜めでしか存在しなかつ た N領域を、 例えば、 引上げ速度 (成長速度) を徐々に下げながら引上げ た時に、 ある引上げ速度で N領域が横全面 (ゥエーハ全面) に広がった結 晶が製造でき るよ う になった。 また、 こ の全面 N領域の結晶を長さ方向へ 拡大するには、 この N領域が横に広がった時の引上げ速度を維持して引上 げればある程度達成できる。 また、 結晶が成長するに従って Gが変化する こ と を考慮し、 それを補正して、 あく までも V / Gが一定になるよ う に、 引上げ速度を調節すれば、 それな り に成長方向にも、 全面 N領域となる結 晶が拡大でき るよ う になつた。 Therefore, recently, the distribution of G in the plane was improved, and the N region, which existed only at an angle, was pulled up, for example, while gradually lowering the pulling rate (growth rate). At a certain pulling speed, it became possible to produce crystals in which the N region spread over the entire horizontal surface (the entire surface of the wafer). In addition, in order to enlarge the crystal in the entire N region in the length direction, it can be achieved to some extent by pulling up while maintaining the pulling speed when the N region spreads laterally. Also, taking into account that G changes as the crystal grows, and correcting for it, adjusting the pulling speed so that V / G remains constant, the growth direction will be more In addition, the crystal in the entire N region can be expanded.
と こ ろが、 上記の よ う に全面 N領域であ り 、 熱酸化処理 した際に O S F リ ングを発生せず、 かつ全面 に F P D 、 L Z D が存在 しない 単結晶であ る に も かかわ らず酸化膜欠陥が著 レ く 発生する場合が あ る こ と がわかっ た。 そ して、 こ れが酸化膜耐圧特性の よ う な電気特 性を劣化 させる原因 と なっ てお り 、 従来の全面が N領域であ る と い う だけでは不十分であ り 、 品質の さ ら な る改善が望まれていた。  However, as described above, the entire surface is in the N region, and although it is a single crystal that does not generate an OSF ring when subjected to thermal oxidation and has no FPD or LZD on the entire surface. It was found that oxide film defects could occur significantly. This causes electrical characteristics such as oxide withstand voltage characteristics to deteriorate, and it is not sufficient to merely say that the entire surface of the conventional device is in the N region. Further improvement was desired.
さ ら に、 上記の よ う な N領域の結晶を 引 き 上げ る に は、 ど う して も従来の結晶であ る V領域の結晶 よ り 引 き 上げ速度を低下 さ せる 必 要があ る と と も に、 その制御範囲 も 狭いため に著 し く 結晶の生産性 が低下する と い う 問題があ る。 近年 にお け る 半導体の需要の増大 と 低コ ス トイ匕に対応する ため には、 高 品質のシ リ コ ン単結晶 を高速か つ安定 して製造する必要も あ る。 発明の開示  Further, in order to pull up the crystal in the N region as described above, it is necessary to reduce the pulling speed lower than that of the conventional crystal in the V region. In addition, there is a problem that the productivity of the crystal is significantly reduced due to the narrow control range. In order to cope with the growing demand for semiconductors in recent years and low cost, it is also necessary to produce high-quality silicon single crystals at high speed and in a stable manner. Disclosure of the invention
そこ で本発明 は、 チ ヨ ク ラルス キ ー法に よ り シ リ コ ン単結晶 を製 造する際、 空孔 リ ッチの V領域、 O S F 領域、 そ して格子間 シ リ コ ン リ ツ チの I 領域のいずれに も 属 さ ず、 かつ確実に酸化膜耐圧等の 電気特性を向上 させる こ と がで き る シ リ コ ン単結晶 を高速かつ安定 して製造 し、 高耐圧で優れた電気特性を持つ無欠陥の シ リ コ ン単結 晶 ゥ エ ーハを低コ ス ト で提供す る こ と を 目 的 と する。  Accordingly, the present invention provides a method for producing a silicon single crystal by the chiral scan method, in which a V region, an OSF region, and an interstitial silicon region of a vacancy rich are provided. High-speed and stable production of silicon single crystals that do not belong to any of the I regions of the switch and that can reliably improve electrical characteristics such as oxide withstand voltage. The objective is to provide a defect-free silicon single crystal wafer with excellent electrical properties at a low cost.
上記 目 的を達成す る ため、 本発明 に よ れば、 ルツ ボ内 に収容 した シ リ コ ン融液に種結晶 を接触 させた後、 該種結晶 を回転させな 力 S ら 引 き 上げてシ リ コ ン単結晶 を育成す る チ ヨ ク ラ ル ス キー法に よ る シ リ コ ン単結晶の製造方法において、 前記ルツ ボを回転 させずに又は 前記種結晶の回転方向 と 同 じ方向に回転 させ る と と も に、 熱酸化処 理を した際に リ ング状に発生す る O S F の外側の N領域であ っ て、 C u デポジシ ョ ンに よ り 検出 される欠陥領域が存在 しない無欠陥領 域内で結晶 を育成す る こ と を特徴と する シ リ コ ン単結晶の製造方法 が提供 される。 To achieve the above objective, according to the present invention, it is housed in a crucible. After the seed crystal is brought into contact with the silicon melt, the seed crystal is pulled up from a rotating force S to grow a silicon single crystal by the Chiocular key method. In the method for producing a silicon single crystal, the crucible is rotated without rotating or in the same direction as the rotation direction of the seed crystal, and a ring shape is formed when the thermal oxidation treatment is performed. The silicon is characterized by growing a crystal in an N region outside the OSF generated in the defect free region where there is no defect region detected by Cu deposition. A method for producing a single crystal is provided.
こ の よ う な製造方法に よれば、 育成結晶 を ゥ ェ 一ハ と した と き に 全面にわたっ て、 V領域の F P D等の'欠陥、 I 領域の 巨大転位 ク ラ ス タ ( L S E P D 、 L F P D )、 及び O S F 欠陥が形成 さ れな い N 領域であ っ て、 し力 も C u デポジシ ョ ンに よ り 検出 される欠陥 ( C u デポジ ッ シ ョ ン欠陥) も 存在 しない無欠陥のシ リ コ ン単結晶 を従 来よ り 高速かつ安定 して製造する こ と ができ る。  According to such a manufacturing method, when the grown crystal is used as a wafer, the entire region includes defects such as FPDs in the V region and giant dislocation clusters in the I region (LSEPD, LFPD). ) And N region where OSF defects are not formed, and there are no defects and no defects (Cu deposition defects) detected by Cu deposition. A silicon single crystal can be manufactured faster and more stably than before.
また、 本発明 に よ れば、 ル ツボ内 に収容 し たシ リ コ ン融液に種結 晶を接触 させた後、 該種結晶を回転 させなが ら 引 き 上げて シ リ コ ン 単結晶 を育成す る チ ヨ ク ラ ルス キ ー法に よ る シ リ コ ン単結晶の製造 方法において、 前記ル ツボ を回転 さ せずに又は前記種結晶の回転方 向 と 同 じ方向に回転 させる と と も に、 育成中 のシ リ コ ン単結晶の成 長速度 を漸減 した場合、 O S F リ ン グ消滅後 に残存する C u デポ ジ シ ヨ ン に よ り 検出 される欠陥領域が消滅する 境界の成長速度 と 、 さ ら に成長速度を漸減 した場合に格子間転位ループが発生す る境界の 成長速度 と の間の成長速度 に制御 し て結晶 を育成する こ と を特徴 と する シ リ コ ン単結晶の製造方法も提供 さ れる。  Further, according to the present invention, after the seed crystal is brought into contact with the silicon melt accommodated in the crucible, the seed crystal is pulled up while being rotated while rotating the silicon single crystal. In a method for producing a silicon single crystal by a chiral key method for growing a crystal, the crucible is rotated without being rotated or in the same direction as the rotation direction of the seed crystal. In addition, when the growth rate of the silicon single crystal during growth is gradually reduced, the defect area detected by the Cu deposition remaining after the OSF ring disappears disappears. The crystal growth is controlled by controlling the growth rate between the boundary growth rate and the growth rate at the boundary where interstitial dislocation loops occur when the growth rate is further reduced. A method for producing a silicon single crystal is also provided.
こ の よ う な方法に よ っ て も 、 F P D等の V領域欠陥、 巨大転位 ク ラ ス タ 等の I 領域欠陥、 及び O S F 欠陥が形成 さ れず、 C u デポ ジ ッ シ ョ ン欠陥 も存在 しない無欠陥の シ リ コ ン単結晶 を従来 よ り 確実 に高速かつ安定 して製造す る こ と ができ る。 これ ら の方法に よ り シ リ コ ン単結晶の製造を行 う 場合、 シ リ コ ン 融液に水平磁場を印加 しなが ら シ リ コ ン単結晶を育成する こ と が好 ま しい。 Even by such a method, V region defects such as FPD, I region defects such as giant dislocation clusters, and OSF defects are not formed, and Cu deposition defects also exist. Thus, it is possible to more reliably and stably produce a defect-free silicon single crystal that has no defect. When a silicon single crystal is produced by these methods, it is preferable to grow a silicon single crystal while applying a horizontal magnetic field to the silicon melt. .
こ の よ う にシ リ コ ン融液に水平磁場を印力 [] しな が ら シ リ コ ン単結 晶の育成を行えば、 融液の対流を抑制し、 無欠陥の シ リ コ ン単結晶 を よ り安定して成長させるこ とができ る。  In this way, by growing a silicon single crystal while applying a horizontal magnetic field to the silicon melt [], the convection of the melt is suppressed and the defect-free silicon is grown. A single crystal can be grown more stably.
また、 ルツ ボの回転速度を 0 〜 2 r p mの範囲内 と する こ と が好 ま しい。  Further, it is preferable that the rotation speed of the crucible is set in a range of 0 to 2 rpm.
こ の よ う にルツ ボ を回転 さ せずに (回転速度 : O r p m )、 あ る いは 2 r p m以下の回転速度で種結晶の回転方.向 と 同 じ方向 に回転 させて シ リ コ ン単結晶 を育成すれば、 無欠陥のシ リ コ ン単結晶 を よ り 高速で育成する こ と ができ る。  In this way, without rotating the crucible (rotation speed: O rpm), or by rotating the crucible in the same direction as the rotation direction of the seed crystal at a rotation speed of 2 rpm or less, the silicon If a silicon single crystal is grown, a defect-free silicon single crystal can be grown at a higher speed.
前記方法に よ り 育成 したシ リ コ ン単結晶カゝ ら ス ラ イ スカ卩ェ した も のであ る こ と を特徴と する無欠陥の シ リ コ ン単結晶 ゥ エ ーハが提供 される。  A defect-free silicon single crystal wafer characterized by being sliced from silicon single crystal gas grown by the above method is provided. .
こ の よ う な シ リ コ ン ゥ ェ 一 ハであれば、 F P D等の V領域欠陥、 巨大転位ク ラ ス タ 等の I 領域欠陥、 及び O S F欠陥を含まず、 C u デポジ ッ シ ョ ン欠陥 も 無い、 高耐圧で優れた電気特性を持つ無欠陥 のシ リ コ ン単結晶 ゥェー ハ と な る と と も に、 高速で成長 さ せてい る の で安価な も の と な る。  Such silicon wafers do not include V region defects such as FPDs, I region defects such as giant dislocation clusters, and OSF defects, and have a Cu deposition. It will be a defect-free silicon single crystal wafer with no defects, high breakdown voltage and excellent electrical characteristics, and will be inexpensive because it is grown at high speed.
以下、 本発明 につき 詳細に説明す る が、 本発明 はこ れ ら に限定 さ れる も の ではない。 説明に先立 ち前出の各用語につき 予め解説 して お く 。  Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto. Prior to the explanation, it is necessary to explain each of the above terms in advance.
1 ) F P D ( F l o w P a t t e r n D e f e c t ) と は、 成 長後の シ リ コ ン単結晶棒か ら ゥ エ ーハを切 り 出 し 、 表面の歪み層 を 弗酸と 硝酸の混合液でエ ッチ ング して取 り 除いた後、 K 2 C r 2 O 7 と 弗酸 と 水の混合液で表面をエ ッ チ ング ( S e c c o エ ッ チ ン グ ) す る こ と に よ り ピ ッ トお よ び さ ざ波模様が生 じ る。 こ の さ ざ波模 様を F P D と 称 し、 ゥエ ーハ面内の F P D密度が高いほ ど酸化膜耐 圧の不良が増え る (特開平 4 一 1 9 2 3 4 5 号公報参照)。 1) FPD (Flow Pattern Defect) is a method in which a wafer is cut out from a silicon single crystal rod after growth, and the strained layer on the surface is etched with a mixed solution of hydrofluoric acid and nitric acid. After removal by etching, the surface is etched (Secco etching) with a mixture of K 2 Cr 2 O 7 , hydrofluoric acid and water. Cuts and ripples occur. This ripples The higher the FPD density in the wafer surface, the more the oxide film withstand pressure increases (see Japanese Patent Application Laid-Open No. 1991-92445).
2 ) S E P D ( S e c c o E t c h P i t D e f e c t ) と は、 F P D と 同一の S e c c o エ ッ チ ングを施 した時に、 流れ模様 ( f l o w p a t t e r n ) を伴 う も の を F P D と 呼び、 流れ模 様を伴わない も の を S E P D と 呼ぶ。 こ の中 で 1 0 x m以上の大き い S E P D ( L S E P D ) は転位ク ラ ス タ ー に起因す る と 考え られ 、 デバイ ス に転位ク ラ ス タ ーが存在する場合、 こ の転位を通 じて電 流力; リ ー ク し、 P — N ジ ャ ン ク シ ョ ン と しての機能を果た さ な く な る。 . 2) SEPD (Secco Etch Pit Defect) is a FPD that has a flow pattern when the same Secco etching as FPD is performed. The one without it is called SEPD. Among these, SEPD (LSEPD) with a size of 10 xm or more is considered to be caused by dislocation clusters.If a dislocation cluster exists in the device, the Leakage; leaks and no longer functions as a P-N junction. .
3 ) L S T D 、 L a s e r S c a t t e r i n g T o m o g r a p h y D e f e c t ) と は、 成長後のシ リ コ ン単結晶棒か ら ゥ ェ 一 ノ、 を切 り 出 し、 表面の歪み層 を弗酸 と 硝酸の混合液でエ ツ チ ン グ し て取 り 除いた後、 ゥエーハ を劈開す る。 こ の劈開面 よ り 赤外光 を入射 し、 ゥエ ーハ表面か ら 出た光 を検出す る こ と で ゥエ ーハ内 に 存在す る欠陥に よ る 散乱光 を検出す る こ と ができ る。 こ こ で観察 さ れる散乱体について は学会等ですでに報告が あ り 、 酸素析出物 と み な されてい る ( J p n . J . A p p l . P h y s . V o l . 3 2 , P 3 6 7 9 , 1 9 9 3 参照)。 ま た 、 最近の研究では、 八面体の ボイ ド (穴) であ る と い う 結果も報告 されている。  3) LSTD (Laser Scatting Tomography Defect) is a process in which a silicon monocrystal rod is cut out from a grown silicon single crystal rod, and the strained surface layer is mixed with hydrofluoric acid and nitric acid. After removal by etching with liquid, the wafer is cleaved. Infrared light is incident from this cleavage plane, and light emitted from the wafer surface is detected to detect scattered light due to defects existing in the wafer. And can be. Scatterers observed here have already been reported at academic meetings and are considered to be oxygen precipitates (Jpn. J. Appl. Phys. Vol. 32, P36). 79, 1993). Recent studies have also reported that it is an octahedral void.
4 ) C O P ( C r y s t a l O r i g i n a t e d P a r t i c 1 e ) と は、 ゥエ ーハの 中心部の酸化膜耐圧を劣化 させる原因 と な る欠陥で、 S e c c o エ ッ チでは F P D にな る欠陥が、 S C — 1 洗浄 ( N H 4 O H : H 2 O 2 : H 2 O = 1 : 1 : 1 0 の混合液 に よ る洗浄) では選択エ ッ チ ング液 と して働き 、 C O P にな る。 こ の ピ ッ ト の直径は 1 μ m以下で光散乱法で調べ る。 4) COP (Crystal Originated Particulate 1e) is a defect that causes the oxide film breakdown voltage at the center of the wafer to deteriorate, and the defect that causes FPD in the Secco etch is SC-1 washing (washing with a mixture of NH 4 OH: H 2 O 2 : H 2 O = 1: 1: 1: 10) works as a selective etching solution, and becomes COP. The diameter of this pit is less than 1 μm and is examined by the light scattering method.
5 ) L / D ( L a r g e D i s 1 o c a t i o n : 格子間転位ル ープの略号) には、 L S E P D 、 L F P D等があ り 、 格子間 シ リ コ ンが凝集 した転位ループ起因 と 考え られてい る欠陥であ る。 L S E P D は、 上記 した よ う に S E P Dの 中で も 1 Ο μ πι以上の大き い も のをい う 。 ま た、 L F P D は、 上記 した F P D の 中でも先端 ピ ッ ト の大き さ が 1 O /x m以上の大き いも の をいい、 こ ち ら も転位ルー プ 起因 と 考え られてい る。 5) L / D (Large D is 1 ocation) is an abbreviation of interstitial dislocation loop, which includes LSEPD and LFPD. These defects are thought to be caused by dislocation loops in which the aggregates aggregate. As mentioned above, LSEPD refers to those larger than 1 μππι among SEPDs. LFPD refers to the above-mentioned FPDs whose tip pits have a size of 1 O / xm or more, and this is also considered to be caused by a dislocation loop.
6 ) C u デポ ジ シ ョ ン法は、 半導体 ゥエーハの欠陥の位置を正確に 測定 し、 半導体 ゥ エーハの欠陥に対する検出限度 を向上 させ、 よ り 微細な欠陥に対 して も正確に測定 し、 分析でき る ゥエーハの評価法 であ る。  6) The Cu deposition method accurately measures the position of defects in semiconductor wafers, improves the detection limit for defects in semiconductor wafers, and accurately measures even finer defects. It can be analyzed.
具体的な ゥエーハの評価方法は、 ゥェ一ハ表面上に所定の厚 さの 酸化膜を形成 させ、 前記 ゥ エーハの表面近 く に形成 さ れた欠陥部位 上の酸化膜を破壊 して欠陥部位に C u 等の電解物質を析出 (デポジ シ ヨ ン) する も の で あ る 。 つま り 、 C u デポ ジ シ ョ ン法は、 C u ィ オンが溶存する液体の中で、 ゥエーハ表面に形成 した酸化膜に電位 を印加する と 、 酸化膜が劣化 してい る部位に電流が流れ、 C u ィ ォ ンが C u と な っ て析出する こ と を利用 した評価法であ る。 酸化膜が 劣化 し易い部分には C O P 等の欠陥が存在 し てい る こ と が知 られて いる。  A specific method of evaluating wafers is to form an oxide film of a predetermined thickness on the wafer surface, and to destroy the oxide film on a defect site formed near the wafer surface to obtain a defect. Electrode such as Cu is deposited (deposition) on the site. In other words, in the Cu deposition method, when a potential is applied to an oxide film formed on the wafer surface in a liquid in which Cu ions are dissolved, a current is supplied to a portion where the oxide film has deteriorated. This is an evaluation method that utilizes the fact that the flow and Cu ions are precipitated as Cu. It is known that defects such as COP exist in portions where the oxide film is easily deteriorated.
C u デポ ジシ ョ ン された ゥェ一ハ の欠陥部位は、 集光灯下や直接 的に肉眼で分析 してその分布や密度 を評価す る こ と ができ 、 さ ら に 顕微鏡観察、 透過電子顕微鏡 ( T E M ) ま た は走査電子顕微鏡 ( S The defect site of the wafer that has been Cu deposited can be analyzed under the condensing light or directly with the naked eye to evaluate its distribution and density. Electron microscope (TEM) or scanning electron microscope (S
E M ) 等で も確認す る こ と ができ る。 E M) can also be checked.
以上の よ う に 、 本発明 に よ れば、 V領域、 O S F領域、 I 領域、 及び C u デポジ ッ シ ョ ン欠陥領域を含ま ない無欠陥領域の シ リ コ ン 単結晶 を高速で引 き 上げる こ と ができ る。 従 っ て 、 酸化膜耐圧等の 電気特性を 向上 さ せる こ と ができ る シ リ コ ン単結晶を高速かつ安定 して製造 し、 高耐圧で優れた電気特性を持つ無欠陥の シ リ コ ン単結 晶 ゥ ヱーノ、 を低 コ ス ト で提供する こ と ができ る。 図面の簡単な説明 As described above, according to the present invention, a silicon single crystal in a defect-free region that does not include a V region, an OSF region, an I region, and a Cu deposition defect region is rapidly drawn. Can be raised. Therefore, silicon single crystals that can improve electrical characteristics such as oxide film breakdown voltage can be manufactured at high speed and in a stable manner, and defect-free silicon with high breakdown voltage and excellent electrical characteristics can be obtained. Can be provided at a low cost. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明 で使用す る こ と がで き る シ リ コ ン単結晶製造装置 の一例であ る。  FIG. 1 shows an example of a silicon single crystal manufacturing apparatus that can be used in the present invention.
( a ) 概略図  (a) Schematic diagram
( b ) 結晶 と ノレッ ボの回転方向  (b) Direction of rotation of crystal and knowledge
図 2 は、 無欠陥領域成長速度を示すグラ フ であ る。  Figure 2 is a graph showing the defect-free region growth rate.
図 3 は、 ル ツ ボ の 回転数 と 無欠陥領域成長速度 と の関係を示す グ ラ フである。  Figure 3 is a graph showing the relationship between the crucible rotation speed and the defect-free region growth rate.
図 4 は、 ルツ ボの回転 と 結晶界面軸方向の 温度勾配 と の関係を示 すグラ フである。  Figure 4 is a graph showing the relationship between the crucible rotation and the temperature gradient in the direction of the crystal interface axis.
図 5 は、 ルツ ボの 回転数 と 初期酸素濃度 と の関係を示すグ ラ フ で あ る。  Figure 5 is a graph showing the relationship between crucible rotation speed and initial oxygen concentration.
( a ) 結晶直胴長 さ に対するルツ ボ回転数  (a) Crucible rotation speed for crystal body length
( b ) 結晶直胴長 さ に対する初期酸素濃度  (b) Initial oxygen concentration with respect to crystal straight body length
図 6 は、 従来の技術によ る成長速度と結晶の欠陥分布を示す説明図で ある。 発明を実施するための最良の形態  FIG. 6 is an explanatory diagram showing a growth rate and a crystal defect distribution according to a conventional technique. BEST MODE FOR CARRYING OUT THE INVENTION
本発明者 ら は、 C Z 法に よ る シ リ コ ン単結晶成長に関 し、 V領域 と I 領域の境界近辺について詳細に調査 した と こ ろ、 V領域 と I 領 域の 中間で O S F リ ン グの外側に、 F P D 、 L S T D 、 C O P の数 が著 し く 少な く 、 L / D も 存在 しないニ ュ ー ト ラ ルな N領域を見出 した。  The present inventors have investigated in detail the vicinity of the boundary between the V region and the I region with respect to the silicon single crystal growth by the CZ method, and found that the OSF region is located between the V region and the I region. Outside the ring, a neutral N region was found in which the number of FPDs, LSTDs, and COPs was very small and L / D was absent.
と こ ろが、 上記グ ロ ー ンイ ン欠陥の無い N領域で結晶 を育成 し て も、 酸化膜耐圧特性が悪い も の があ り 、 その原因 が よ く 判っ ていな かっ た。 そ こ で本発明者等は、 C u デポジシ ョ ン法に よ り N領域に ついて さ ら に詳細に調査 した と こ ろ、 O S F 領域の外側の N領域で あ っ て 、 析 出熱処理後酸素析出 が発生 し易 い領域 の一部 に C u デ ポ ジ シ ョ ン処理で検 出 さ れ る 欠陥 が著 し く 発生す る 領域が あ る こ と を 発見 し た。 そ し て 、 こ れが 酸化膜耐圧特性の よ う な電気特性 を劣化 さ せ る 原因 と な っ て レ、 る こ と を つ き と め た。 However, even if the crystal was grown in the N region having no green-in defect, the oxide film withstand voltage characteristics were poor, and the cause was not well understood. Thus, the present inventors conducted a more detailed investigation on the N region by the Cu deposition method, and found that the N region outside the OSF region was used. Therefore, it is evident that some of the regions where oxygen precipitation is likely to occur after the precipitation heat treatment have regions where defects detected by the Cu deposition process are significantly generated. discovered. The inventors have also found that this causes deterioration of electrical characteristics such as oxide breakdown voltage characteristics.
そ こ で、 こ の O S F の外側 の N領域で あ っ て、 C u デポ ジ シ ョ ン に よ り 検出 さ れ る 欠陥領域 の な い領域を ゥ ェ 一ハ 全面 に広 げ る こ と が で き れ ば、 前記種々 の グ ロ ー ンイ ン欠 陥 が な い と と も に 、 確実 に 酸化膜耐圧特性等 を 向 上す る こ と が でき る ゥ エ ー ハが得 ら れ る こ と に な る 。  Therefore, it is possible to expand the N-region outside the OSF, which is free of defect regions detected by Cu deposition, over the entire area of the wafer. If possible, the above-mentioned various green defects are not present and the oxide film withstand voltage characteristics can be surely improved. And
そ—し て 、 O S F の外側の N領域であって、 C u デ ポ ジ ッ シ ヨ ン欠 陥 領域が消滅す る 成長速度 と 、 巨大転位 ク ラ ス タ が 出現す る I 領域 の 成長速度 と の 間 の 速度 (以 下、 無欠 陥領域成長速度 と い う 場合が あ る 。) で 単結晶 を 育成す る こ と で、 前記種 々 の グ ロ ー ン イ ン欠 陥 が な い と と も に 、 確実に 酸化膜耐圧特性等 を 向 上す る こ と が で き る 無 欠陥 の シ リ コ ン単結晶 ゥ エ ーハ が得 られ る こ と が分かっ た。  Then, the growth rate of the N region outside the OSF, where the Cu depossion defect region disappears, and the growth speed of the I region where the giant dislocation cluster appears. By growing a single crystal at a rate between the above (hereinafter, sometimes referred to as a defect-free area growth rate), it is possible to eliminate the various types of green-in defects. In addition, it was found that a defect-free silicon single-crystal silicon wafer capable of reliably improving the oxide film breakdown voltage characteristics and the like was obtained.
し か し 、 こ の よ う な 無欠 陥領域成長速度 は 、 従来の 単結晶 の 引 き 上げ速度 よ り 低下 さ せ る 必要が あ り 、 制御範囲 が狭い こ と も あ っ て 、 著 し く 単結晶製造 コ ス ト を上昇 さ せて し ま う 。 そ こ で 、 上記無欠 陥領域成長速度 を 向 上 さ せ る こ と が必要で あ る 。  However, the growth rate of such a defect-free region needs to be lower than the conventional single crystal pulling rate, and the control range is narrow. Let's raise the cost of single crystal production. Therefore, it is necessary to improve the growth rate of the defect-free region.
そ こ で、 本発 明者等 は さ ら に調査 し た と こ ろ 、 ルツ ボ回転数 と 無 欠陥領域成長速度 と に相 関 が あ り 、 ルツ ボ を 回転 さ せず に又 は種結 晶の 回転方向 と 同 じ方 向 に 回転 さ せ る こ と で無欠 陥領域成長速度 を 上昇 さ せ る こ と が で き る こ と を 見出 し た。  Thus, the inventors of the present invention further investigated and found that there was a correlation between the number of rotations of the crucible and the growth rate of the defect-free region, and that the rotation of the crucible or seeding was not performed. It has been found that by rotating the crystal in the same direction as that of the crystal, the growth rate of the defect-free region can be increased.
本発 明 は こ れ ら の知見 に基づい て 完成 さ れ た も の であ り 、 すな わ ち 、 ル ツ ボ を 回転 さ せずに又 は種結晶 の 回転方向 と 同 じ方 向 に 回 転 さ せ る と と も に 、 熱酸化処理 を し た際 に リ ン グ状 に発生す る O S F の外側 の N領域で あ っ て 、 C u デポ ジ シ ョ ン に よ り 検出 さ れ る 欠 陥 領域が存在 し な い無欠陥領域内 で結晶 を 育成す る こ と を 特徴 と す る も の で あ る 。 The present invention has been completed on the basis of these findings, that is, without rotating the crucible or in the same direction as the rotation direction of the seed crystal. The N region outside the OSF, which is formed in a ring shape when subjected to thermal oxidation treatment when it is converted, and is detected by the Cu deposition. The feature is to grow a crystal in a defect-free region where no defect region exists. It is a thing.
以下、 図面を参照 しな が ら さ ら に詳細に説明す る が、 本発明 は こ れに限定される も の ではない。  Hereinafter, the present invention will be described in more detail with reference to the drawings, but the present invention is not limited thereto.
図 1 ( a ) は、 本発明で使用するこ とができ る単結晶引上げ装置の一例 を示している。 この単結晶引上げ装置 3 0 は、 引上げ室 3 1 と、 引上げ室 3 1 中に設けられたルツボ 3 2 と、 ルツボ 3 2 の周囲に配置されたヒータ 3 4 と、 ルツボ 3 2 を回転させるルツボ保持軸 3 3及びその回転機構 (図 示せず) と、 シ リ コ ンの種結晶を保持するシー ドチャ ック 6 と、 シー ドチ ャ ッ ク 6 を引上げるワイヤ 7 と、 ワイヤ 7 を回転又は卷き取る卷取機構 ( 図示せず) を備えている。 また、 ヒータ 3 4の外側周囲には断熱材 3 5 が 配置されている。  FIG. 1A shows an example of a single crystal pulling apparatus that can be used in the present invention. The single crystal pulling apparatus 30 includes a pulling chamber 31, a crucible 32 provided in the pulling chamber 31, a heater 34 disposed around the crucible 32, and a crucible for rotating the crucible 32. Holding shaft 33 and its rotating mechanism (not shown), seed chuck 6 for holding silicon seed crystal, wire 7 for pulling up seed chuck 6, and rotating or rotating wire 7 It has a winding mechanism (not shown) for winding. Further, a heat insulating material 35 is disposed around the outside of the heater 34.
ノレッボ 3 2 は、 その内側のシ リ コ ン融液 (湯) 2 を収容する側には石英 ルツポが設けられ、 その外側には黒鉛ルツボが設けられている。 そして、 ルツボ保持軸 3 3 を回転機構によって左右いずれの方向にも回転でき る よ う に正負回転切り替えスィ ッチが設けられており 、 図 1 ( b ) に示すよ う に、 ルツボ 3 2 を種結晶の回転方向 (上軸回転方向) と 同 じ方向 に も逆の方向 に も 回転 させる こ と ができ る よ う にな っ てい る。  The Norrebo 32 has a quartz crucible on the inner side for containing the silicon melt (hot water) 2 and a graphite crucible on the outer side. Further, a positive / negative rotation switching switch is provided so that the crucible holding shaft 33 can be rotated in either the left or right direction by a rotating mechanism. As shown in FIG. 1 (b), the crucible 32 is moved. The seed crystal can be rotated in the same direction as the rotation direction (upper axis rotation direction) or in the opposite direction.
また、 本発明の製造方法に関わる製造条件を設定するために、 環状の黒 鉛筒 (遮熱板) 9が設けられており、 さ らに結晶の固液界面 4近傍の外周 に環状の外側断熱材 1 0 が設けられている。 この外側断熱材 1 0 は、 その 下端とシリ コン融液 2の湯面 3 との間に 2 〜 2 0 c mの間隔を設けて設置 されている。 さ らに、 冷却ガスを吹き付けたり 、 輻射熱を遮って単結晶を 冷却する筒状の冷却装置を設けてもよい。  An annular graphite cylinder (heat shield plate) 9 is provided in order to set the manufacturing conditions relating to the manufacturing method of the present invention, and an annular outer periphery is provided around the solid-liquid interface 4 of the crystal. Insulation 10 is provided. The outer heat insulating material 10 is provided with an interval of 2 to 20 cm between its lower end and the molten metal surface 3 of the silicon melt 2. Further, a cylindrical cooling device for spraying a cooling gas or cooling a single crystal by blocking radiant heat may be provided.
こ うすれば、 結晶中心部分の温度勾配 G c [ °C / c m ] と結晶周辺部分 の温度勾配 G e との差が小さ く な り 、 例えば結晶周辺の温度勾配の方が結 晶中心よ り低く なるよ う に炉内温度を制御するこ と もでき る。  By doing so, the difference between the temperature gradient G c [° C / cm] at the center of the crystal and the temperature gradient G e at the periphery of the crystal becomes smaller. For example, the temperature gradient around the crystal is greater than the crystal center. It is also possible to control the furnace temperature to lower the temperature.
さ らに、 引上げ室 3 1 の水平方向の外側には、 ルツボ 3 2 内のシ リ コ ン融液 2 に水平磁場 (横磁場) を印加する ための超電導方式の磁石 3 6 が設け られてい る。 こ れに よ り 、 融液 2 の対流を抑制し、 単結晶 の安定成長をはかる、 いわゆる H— M C Z法によ り シリ コ ン単結晶の引き 上げを行 う こ とができ る。 なお、 磁石 3 6 は、 常電導方式と して も よ い Furthermore, a superconducting magnet for applying a horizontal magnetic field (transverse magnetic field) to the silicon melt 2 in the crucible 3 2 is provided outside the pulling chamber 31 in the horizontal direction. 36 are provided. Thus, the silicon single crystal can be pulled up by the so-called H-MCZ method, which suppresses the convection of the melt 2 and stably grows the single crystal. The magnet 36 may be of a normal conduction type.
こ の よ う な単結晶引上げ装置 3 0 を用いてシリ コ ン単結晶を製造するに は、 まず、 ルツボ 3 2内でシ リ コ ンの高純度多結晶原料を融点 (約 1 4 2 0 ° C ) 以上に加熱して融解する。 次に、 ワイヤ 7 を巻き出すこ とによ り 融液 2 の表面略中心部に種結晶の先端を接触又は浸漬させる。 その後、 ル ッボ保持軸 3 3 を回転させる と と もに、 ワイヤ 7 を回転させながら卷き取 る。 これによ り種結晶も回転 しな が ら 引上げられ、 単結晶の育成が開始 され、 以後、 引上げ速度と温度を適切に調節するこ とによ り略円柱形状の 単結晶棒 1 を得るこ とができ る。  In order to produce a silicon single crystal using such a single crystal pulling apparatus 30, first, a high-purity polycrystalline silicon raw material is melted in a crucible 32 at a melting point (about 142 0 ° C) Heat to above and melt. Next, by unwinding the wire 7, the tip of the seed crystal is brought into contact with or immersed substantially in the center of the surface of the melt 2. Thereafter, the crucible holding shaft 33 is rotated, and the wire 7 is wound while being rotated. As a result, the seed crystal is pulled while rotating, and the growth of the single crystal is started. Thereafter, by adjusting the pulling speed and the temperature appropriately, a substantially cylindrical single crystal rod 1 can be obtained. It can be.
この とき、 従来、 種結晶、 すなわち育成単結晶棒の回転方向とルツボの 回転方向は逆方向と されるが、 本発明では、 上記のよ う にシ リ コ ン単結晶 の育成を行 う際、 ル ツ ボ を回転 さ せずに又 は種結晶 の回転方向 と 同 じ方向 に回転 させる と と も に、 熱酸化処理を した際に リ ング状に発 生す る O S F の外側の N領域であっ て、 C u デポ ジシ ョ ンに よ り 検 出 される欠陥領域が存在 し ない無欠陥領域内 で結晶 を育成する よ う にする。  At this time, the rotation direction of the seed crystal, that is, the rotation direction of the crucible and the rotation direction of the crucible are conventionally set to be opposite to each other, but in the present invention, when growing the silicon single crystal as described above, When the crucible is rotated without rotating or in the same direction as the rotation of the seed crystal, the N region outside the OSF, which is generated in a ring when the thermal oxidation treatment is performed, is performed. Therefore, the crystal is grown in a defect-free region where no defect region is detected by the Cu deposition.
(実験 1 ) : 無欠陥領域の結晶成長速度の確認 (Experiment 1): Confirmation of crystal growth rate in defect-free region
上記の よ う な 単結晶製造装置 3 0 を用 いて、 無欠陥の シ リ コ ン単 結晶 を成長 させる条件を確認す る た め、 以下の よ う に結晶成長速度 の漸減実験を行い、 得 られた単結晶につ い て F P D 、 L F P D 、 L S E P D 、 及び O S F の確認、 並びに酸化膜耐圧特性の評価を行つ た。  In order to confirm the conditions for growing a defect-free silicon single crystal using the single crystal manufacturing apparatus 30 as described above, an experiment was performed to gradually reduce the crystal growth rate as follows. The FPD, LFPD, LSEPD, and OSF of the obtained single crystal were confirmed, and the withstand voltage characteristics of the oxide film were evaluated.
まず、 2 4 イ ンチ ( 6 0 0 m m ) 径の石英ル ツ ボに原料 と な る 多 結晶 シ リ コ ンを 1 5 0 k g チ ャ ー ジ し、 直径 8 イ ンチ ( 2 0 0 m m )、 方位 < 1 0 0 > の シ リ コ ン単結晶 を育成 した。 こ こ では、 単結 晶 を育成す る際、 成長速度 を直胴部 1 0 c mか ら尾部にかけて 0 . 8 m m / m i n 力 ら 0 . 4 m m / m i ίι ま で漸減 させ る よ う に制御 した。 First, a 250-cm (600 mm) diameter quartz crucible was charged with 150 kg of polycrystalline silicon as a raw material, and an 8-inch (200 mm) diameter was used. ), A silicon single crystal of orientation <100> was grown. Here, when growing a single crystal, the growth rate was controlled so that the growth rate gradually decreased from 0.8 mm / min force to 0.4 mm / miίι from the straight body of 10 cm to the tail. did.
こ の よ う な結晶成長速度の漸減実験を 、 ル ツボ を様 々 な回転数に 設定 して行っ た。 具体的に は、 ルツ ボを、 停止 したま ま で ( 0 r p m )、 ま た は種結晶の回転方向 (上軸回転方向) と 同 じ方向 に 0 . l r p m、 0 . 3 r p m、 0 . 5 r p m 、 1 . O r p m、 2 . O r p m、 3 . O r p mの各回転数、 さ ら に、 種結晶 と 逆の方向 に 0 . l r p m、 1 . 0 r p m、 2.. O r p m の各回.転数に設定 した。 _ なお、 いずれの場合において も 、 単結晶の育成中、 単結晶中心部 におけ る磁場強度が 4 0 0 0 G と な る よ う に超電導方式に よ り 水平 磁場を印カ卩 した。 なお、 こ の磁場強度については特に限定 されな い が、 例 えば中心の磁場強度が 5 0 0 〜 5 0 0 0 G程度の水平磁場を 印加す る のが適当 である。  Such an experiment of gradually decreasing the crystal growth rate was performed by setting the crucible to various rotation speeds. Specifically, the crucible is kept stopped (0 rpm), or in the same direction as the seed crystal rotation direction (upper shaft rotation direction), 0.1 rpm, 0.3 rpm, 0.5 rpm. rpm, 1.0 rpm, 2.0 rpm, 3.0 rpm, and 0.1 rpm, 1.0 rpm, 2.0 rpm in the opposite direction to the seed crystal. Set to a number. In each case, during the growth of the single crystal, a horizontal magnetic field was applied by a superconducting method so that the magnetic field strength at the center of the single crystal was 400 G. The magnetic field strength is not particularly limited. For example, it is appropriate to apply a horizontal magnetic field having a center magnetic field strength of about 500 to 500 G.
上記の よ う に育成 した各シ リ コ ン単結晶に対 し、 以下の よ う な評 価を行っ た。 評価方法  Each silicon single crystal grown as described above was evaluated as follows. Evaluation method
( 1 ) 育成 し た各単結晶棒の直胴部を結晶軸方向 に 1 0 c m毎の 長 さ でプロ ッ ク に切断 した後、 各プ ロ ッ ク を さ ら に結晶軸方向 に縦 割 り 切断し、 約 2 m m厚のサンプルを作製 した。  (1) After cutting the straight body of each grown single crystal rod into blocks with a length of 10 cm in the crystal axis direction, each block is further divided vertically in the crystal axis direction. The sample was cut to a thickness of about 2 mm.
( 2 ) 上記サンプルについて F P D、 L F P D、 L S E P D、 及び O S Fの確認を行った。 具体的には、 各サンプルを平面研削した後、 ミ ラーェ ツチング、 セコヱツチング ( 3 0分間) を施し、 無攪拌のまま放置し、 所 定の処理後、 各欠陥の密度測定を行った。  (2) FPD, LFPD, LSEPD, and OSF of the above sample were confirmed. Specifically, after grinding each sample, it was subjected to milling and seco-etching (30 minutes), and was left unstirred. After the specified treatment, the density of each defect was measured.
なお、 O S F の評価に関 して は、 1 1 5 0 °C、 1 0 0 分間 ( ゥ ェ ッ ト 酸素雰囲気下) の熱処理後冷却 し ( 8 0 0 °Cで出 し入れ)、 薬 液で酸化膜を除去 した後、 O S F リ ングパタ ー ン の確認と 密度測定 を行っ た。 For the OSF evaluation, heat treatment was performed at 115 ° C for 100 minutes (under a wet oxygen atmosphere), and then the system was cooled (put in and out at 800 ° C). After removing the oxide film with the solution, the OSF ring pattern was checked and the density was measured.
( 3 ) さ ら に C u デポジ ッ シ ヨ ンに よ る欠陥評価も 行っ た。 処理 方法は結晶軸方向 に縦割 り 切断 したサンプルの う ち 1 枚は 6 ィ ンチ 径の ゥ エーハ形状に く り ぬき力 Dェ し、 ポ リ ッ シュ に よ り 鏡面状態に 仕上げ、 酸化膜形成後 C u デポ ジ ッ シ ヨ ン処理を行い、 酸化膜欠陥 の分布状況を確認 した。 その際、 評価条件は以下の通 り であ る。  (3) Defect evaluation was also performed using Cu deposition. The processing method was such that one of the samples cut vertically in the crystal axis direction was cut into a 6-inch diameter ゥ -a-shape with a punching force D, and was polished to a mirror-like surface by polish. After the formation, Cu deposition treatment was performed to check the distribution of oxide film defects. At that time, the evaluation conditions are as follows.
酸化膜 : 2 5 n m  Oxide film: 25 nm
電界強度 : S M V / c m  Electric field strength: SMV / cm
電 ffi印加時間 : 5 分間 . 評価結果  Electric ffi application time: 5 minutes. Evaluation result
上記の よ う な評価に よ り 、 各シ リ コ ン単結晶において、 熱酸化処 理を した際に リ ング状に発生す る O S F の外側の N領域に、 C u デ ポジシ ョ ンに よ り 検出 され る欠陥領域も 存在 しな い無欠陥領域が確 認でき た。 図 2 は、 こ の よ う な無欠陥領域 と その成長速度の関係 を 示 した も のであ る。 こ の図 力 ら 、 育成中 の シ リ コ ン単結晶の成長速 度を漸減 した場合、 O S F リ ン グ消滅後 に残存す る C u デポジシ ョ ンに よ り 検出 される欠陥領域が消滅する境界の成長速度 と 、 さ ら に 成長速度を漸減 した場合に格子間転位ループ (巨大転位 ク ラ ス タ : I 領域) が発生す る境界の成長速度 と の間が、 O S F 外側 の N領域 であ り 、 C u デポ ジ シ ョ ンに よ り 検出 される欠陥領域が存在 しな い 無欠陥領域 と な る成長速度 (無欠陥領域成長速度) と して特定す る こ と ができ る。  According to the above evaluation, in each silicon single crystal, the Cu deposition was applied to the N region outside the OSF, which was generated in a ring shape during thermal oxidation treatment. A defect-free area where no defective area was detected was confirmed. Figure 2 shows the relationship between such a defect-free region and its growth rate. From this figure, when the growth rate of the silicon single crystal during growth is gradually reduced, the defect area detected by the Cu deposition remaining after the OSF ring disappears disappears. The N region outside the OSF is between the boundary growth rate and the boundary growth rate at which the interstitial dislocation loop (giant dislocation cluster: I region) occurs when the growth rate is further reduced. Thus, it can be specified as a growth rate (a defect-free area growth rate) that is a defect-free area where no defect area detected by the Cu deposition exists.
各シ リ コ ン単結晶 について上記の よ う に して無欠陥領域成長速度 を割 り 出 し、 表 1 に示 した。 さ ら に、 図 3 でルツ ボの回転数 と 無欠 陥領域成長速度 と の関係を グラ フ化 した。 尚、 表 1 及び図 3 に示 し た無欠陥領域成長速度は、 C u デポジ ッ シ ョ ン欠陥消滅速度 と 巨大 転位ク ラ ス タ ( L S E P D 、 L F P D ) 発生速度 と の 中間値であ る The defect-free region growth rate was determined for each silicon single crystal as described above, and is shown in Table 1. In addition, in Fig. 3, the relationship between the crucible rotation speed and the defect-free region growth rate is graphed. The growth rate of the defect-free region shown in Table 1 and Fig. 3 is the same as that of the Cu deposition defect disappearance rate. Intermediate value with the dislocation cluster (LSEPD, LFPD) generation speed
<表 1 > ノレッボの回転 回転速度 ( rpm) 無欠陥領域成長速度 <Table 1> Rotation speed of Norrevo Rotation speed (rpm) Growth rate of defect-free region
( mm /m 1 n )  (mm / m 1 n)
2 . 0 0 . 5 3 5 2 .0 0 .5 3 5
Χ. 1~ [HI  Χ. 1 ~ [HI
-C TO IHJ ¾S Λ 丄 , リ o 丄  -C TO IHJ ¾S Λ リ, ri o 丄
0 . 1 0 . 5 6 6 ルッボ回転停止 0 . 0 0 . 6 0 2  0 .1 0 .5 6 6 Stop rotation of the crucible 0 .0 0 .6 0 2
0 . 1 0 . 6 0 5 0. 1 0 .6 0 5
0 . 3 0 . 6 0 0  0. 3 0 .6 0 0
上軸回 方向 0 . 5 0 . 5 9 4  Upper shaft rotation direction 0.5 0 .5 9 4
1 . 0 0 . 5 8 5  1 .0 0 .5 8 5
2 . 0 0 . 5 7 8  2.0 0 .5 7 8
3 . 0 0 . 5 7 0  3 .0 0 .5 7 0
1 及び図 3 力ゝ ら 明 ら カゝな よ つ に、 ノレッボ を種結晶 と 逆方向に回 転 させた場合、 回転数が小 さ いほ ど無欠陥領域成長速度が大き く な る が、 いずれあ 0 . 5 7 m m / m i n 未満 と な る。 一方、 ル ツボ を 停止 した状態、 あ る いはル ッボ を種結晶 と 同 じ方向 に回転 さ せて結 晶の成長 を行つ た場合、 いずれ も 0 . 5 7 m m / m i n 以上の無欠 陥領域成長速度が達成 されてい 。 従つ て、 例え ば、 ルツ ボ を回転 させずに、 又は種結晶の回転方向 と 同 じ方向 に 0 〜 2 r p mの範囲 内の回転速度で回転さ せる こ と で、 少な く と ち 0 . o 8 m m / m 1 n に近い無欠陥領域成長速度を達成する こ と ができ 、 特に、 0 〜 1 P mであれば、 0 . 5 8 5 m m / m 1 n 以上 と な る さ ら に高速の 無欠陥領域成長速度を達成する こ と ができ る。 As can be clearly seen from FIGS. 1 and 3, when the Norrebo is rotated in the opposite direction to the seed crystal, the growth rate of the defect-free region increases as the rotation speed decreases. In any case, it will be less than 0.57 mm / min. On the other hand, when the crucible is stopped, or when the crucible is rotated in the same direction as the seed crystal to grow the crystal, the crystal growth rate is 0.57 mm / min or more. Depressed area growth rate has been achieved. Therefore, for example, by rotating the crucible without rotating or rotating the crucible in the same direction as the rotation direction of the seed crystal at a rotation speed in the range of 0 to 2 rpm, at least 0. o It is possible to achieve a defect-free area growth rate close to 8 mm / m1n, especially if it is 0 to 1 Pm, it will be 0.585 mm / m1n or more. A high defect-free region growth rate can be achieved.
の よ う な実験か ら 、 図 1 の よ う な装置を用いてチ ヨ ク ラ ルス キ From an experiment like this, using a device like the one in Fig. 1
―法に よ る シ リ コ ン単結晶 の製造を行 う 場合、 ルッ ボを回転 させず に又は種結晶の回転方向 と 同 じ方向 に回転 させる と と も に、 熱酸化 処理を した際に リ ング状に発生する O S F の外側の N領域であ っ て 、 C u デポジシ ョ ンに よ り 検出 される欠陥領域が存在 しない無欠陥 領域内、 換言すれば、 育成中の シ リ コ ン単結晶の成長速度を漸減 し た場合、 O S F リ ング消滅後に残存する C u デポジシ ョ ンに よ り 検 出 さ れる欠陥領域が消滅す る境界の成長速度 と 、 さ ら に成長速度 を 漸減 した場合に格子間転位ルー プが発生する境界の成長速度 と の間 の成長速度に制御 して結晶 を育成す る こ と で、 結晶全体が無欠陥領 域と な る シ リ コ ン単結晶を 高速で育成す る こ と ができ る。 特に、 ル ッボは、 種結晶 と 同方向に 、 好ま し く は 0 〜 2 r p m、 よ り 好ま し く は、 0 〜 l r p mの範囲 の回転速度で回転 させれば、 無欠陥の シ リ コ ン単結晶を よ り 高速で育成する こ と ができ る。 . 従っ て、 こ の よ う な方法に よ り 育成 したシ リ コ ン単結晶棒をス ラ イ ス加工す る こ と で、 全面 が無欠陥、 すなわち、 F P D等の V領域 欠陥、 巨大転位ク ラ ス タ等の I 領域欠陥、 O S F 欠陥を含まず、 C u デポジ ッ シ ョ ンに よ り 検出 さ れる 欠陥 も な い、 高耐圧で優れた電 気特性を持つ高品質の シ リ コ ン ゥ 一 ハが効率的に得 ら れる こ と に な る。 -When producing silicon single crystals by the method, when the crucible is rotated without rotating or in the same direction as the seed crystal, and when the thermal oxidation treatment is performed. N-region outside the ring-shaped OSF In the defect-free region where there is no defect region detected by Cu deposition, in other words, when the growth rate of the growing silicon single crystal is gradually reduced, it remains after the OSF ring disappears. Between the growth rate of the boundary where the defect region detected by the Cu deposition disappears and the growth rate of the boundary where interstitial dislocation loops occur when the growth rate is gradually reduced. By growing the crystal at a controlled growth rate, it is possible to grow a silicon single crystal in which the entire crystal is a defect-free region at a high speed. In particular, when the crucible is rotated in the same direction as the seed crystal, preferably at a rotational speed in the range of 0 to 2 rpm, and more preferably in the range of 0 to l rpm, the defect-free silicon is obtained. A single crystal can be grown at a higher speed. Therefore, by slicing a silicon single crystal rod grown by such a method, the entire surface is free from defects, that is, V region defects such as FPD, and giant dislocations. High-quality silicon with high withstand voltage and excellent electrical characteristics that does not include I-region defects such as clusters, OSF defects, and no defects detected by Cu deposition. It is possible to obtain efficiently.
(実験 2 ) : ルツボの回転と 結晶固液界面温度勾配 と の関係 成長方向 に全面 N領域 と な る結晶 を育成す る に は、 前記 した よ う に、 あ く ま で も V / G が一定にな る よ う に引 上げ速度を調節すれば 良い。 従っ て、 G (固液界面上 の結晶温度曲線の接線 (微分値)) を大き く す る こ と ができれば、 引上げ速度 V も 上昇 し ( V / G は一 定)、 全面 N領域 と な る結晶を育成でき る こ と にな る。 (Experiment 2): Relationship between crucible rotation and crystal-solid interface temperature gradient In order to grow a crystal that becomes an entire N region in the growth direction, V / G must be at least as described above. Adjust the pulling speed so that it is constant. Therefore, if G (the tangent (differential value) of the crystal temperature curve on the solid-liquid interface) can be increased, the pulling speed V also increases (V / G is constant), and the entire surface becomes an N region. Crystal can be grown.
そ こ で、 実験 1 で得 られた結果を検証すべ く 、 ルツボの回転 と 結 晶固液界面軸方向温度勾配 ( G ) と の関係を、 総合伝熱解析 ソ フ ト 「 I H T C M J (詳 し く は、 T.A.Kinney, D.E.Bornside, R.A.Brown and K.M.Kim, Journal of Crystal G r o w t h, vo 1.126 , pp 413,( 1993 )及 ぴ T.A.Kinney and R.A.Brown, Journal of Crystal Growth, vol . 132,pp551,(1993)を参照) を用いて対流シ ミ ュ レー シ ョ ン計算 を行 い、 結晶固液界面におけ る軸方向の温度勾配 ( G ) を調べた。 その 結果を図 4 に示 した。 Therefore, in order to verify the results obtained in Experiment 1, the relationship between the rotation of the crucible and the temperature gradient (G) in the direction of the crystal-solid interface at the crystal solid-liquid interface (G) was investigated using the comprehensive heat transfer analysis software “IHTCMJ (detailed description). Are described in TAKinney, DEBornside, RABrown and KMKim, Journal of Crystal Growth, vo 1.126, pp 413, (1993) and TAKinney and RABrown, Journal of Crystal Growth, vol. 132, pp551, (1993)), a convective simulation calculation was performed, and the axial temperature gradient (G) at the crystal-solid interface was investigated. Figure 4 shows the results.
図 4 カゝ ら 明 ら かな よ う に、 ルツ ボ を種結晶 の回転方向 と は逆の方 向 (反上軸回転方向) に回転 さ せた場合 よ り 、 ル ツボ を回転 さ せな いか、 同 じ方向 (上軸回転方向) に回転 させた方が結晶固液界面軸 方向温度勾配 G が高 く な る こ と が分力ゝる。  Fig. 4 As is clear from FIG. 4, the crucible should be rotated more than when the crucible is rotated in the direction opposite to the rotation direction of the seed crystal (the direction of rotation of the upper shaft). Rotating in the same direction (upper shaft rotation direction) increases the temperature gradient G in the crystal-solid interface axial direction.
上記シ ミ ユ レ ー シ ヨ ン の結果か ら 、 ル ツボ を回転さ せずに又は種 結晶の回転方向 と 同 じ方向 に回転 さ せる こ と で G を大き く する こ と ができ 、 無欠陥の シ リ コ ン単結晶を育成する 際の無欠陥領域成長速 度 V も 高速化す る こ と がで き る も の と 考え られる 。 すなわち、 実験 1 で得 られた結果を裏付け る も のであっ た。  From the results of the simulation described above, G can be increased by rotating the crucible without rotating or rotating the crucible in the same direction as the rotation of the seed crystal. It is thought that the defect-free region growth rate V when growing a defective silicon single crystal can be increased. In other words, it supported the results obtained in Experiment 1.
(実験 3 ) : 結晶中の酸素濃度の制御 (Experiment 3): Control of oxygen concentration in crystal
ルツ ボの回転速度 を一定に して結晶 を引 き 上げ る と 、 直胴後半に 向 っ て単結晶 中 の酸素濃度が低下す る。 そ こ で、 ルツ ボを種結晶 と 同 じ方向に回転 させ、 ル ツ ボ回転数を漸増 さ せな が ら結晶直胴部の 育成を行い、 得 られたシ リ コ ン単結晶の直胴部におけ る初期酸素濃 度を 2 O c m ご と に測定を行っ た。 その結果を図 5 に示 し た。 こ の グラ フ カゝ ら明 ら かな よ う に 、 ルツボ をほ と ん ど回転 させずに育成 し た直胴部の最初の部分での酸素濃度 を下げ、 直胴後半の酸素濃度 を 上げる こ と ができ 、 単結晶棒全体の酸素濃度 をほぼ一定に保つ こ と ができ ている こ と が分力ゝる 。 ま た、 例え ば、 目 標酸素濃度が よ り 低 い場合は、 ルツ ボ を停止 し たま ま ( 0 r p m ) に近い条件で育成す れば、 無欠陥かつ低酸素濃度の シ リ コ ン単結晶 を育成する こ と がで さ る。 尚、 本発明は、 上記実施形態に限定 さ れる も の ではない。 上記実 施形態は、 例示であ り 、 本発明 の特許請求の範囲 に記載 さ れた技術 的思想 と 実質的に同一な構成を有 し、 同様な作用効果を奏する も の は、 いかな る も の であっ て も本発明の技術的範囲 に包含 される。 例え ば、 本発明に よ り シ リ コ ン単結晶 の製造を行 う 際に使用す る 装置は、 図 1 の よ う な装置に限定さ れず、 種結晶 と 同 じ方向にル ツ ボを回転 さ せる こ と ができ 、 熱酸化処理を した際 に リ ング状に発生 する O S F の外側の N領域であ っ て、 C u デポジ シ ョ ンに よ り 検出 される欠陥領域が存在 しない無欠陥領域内でシ リ コ ン単結晶 を製造 する こ と ができ る装置であれば、 限定無 く 使用す る こ と ができ る。 例えば、 水平磁場を印加せずに結晶成長を行っ て も よ い。 When the crystal is pulled up with the rotation speed of the crucible kept constant, the oxygen concentration in the single crystal decreases toward the latter half of the straight body. Thus, the crucible is rotated in the same direction as the seed crystal, and the crystal straight body is grown while gradually increasing the crucible rotation speed, and the straight body of the obtained silicon single crystal is obtained. The initial oxygen concentration was measured every 2 O cm. Figure 5 shows the results. As is evident from this graph, the oxygen concentration in the first part of the straight body grown with little rotation of the crucible was reduced, and the oxygen concentration in the latter half of the straight body was increased. As a result, the oxygen concentration in the entire single crystal rod can be kept almost constant. In addition, for example, when the target oxygen concentration is lower, if the crucible is stopped and grown under conditions close to (0 rpm), a defect-free and low oxygen concentration of silicon alone can be obtained. It can grow crystals. Note that the present invention is not limited to the above embodiment. The above The embodiment is an exemplification, and any of those having substantially the same configuration as the technical idea described in the claims of the present invention and having the same function and effect will be described. Even so, they are included in the technical scope of the present invention. For example, the apparatus used for producing a silicon single crystal according to the present invention is not limited to the apparatus as shown in FIG. 1, and the crucible is formed in the same direction as the seed crystal. It can be rotated, and it is a ring-shaped N region outside the OSF that occurs during thermal oxidation, and there is no defect region detected by Cu deposition. Any device that can produce a silicon single crystal in a defect region can be used without limitation. For example, crystal growth may be performed without applying a horizontal magnetic field.

Claims

請 求 の 範 囲 The scope of the claims
1 . ノレッ ボ内に収容 した シ リ コ ン融液に種結晶 を接触さ せた後、 該種結晶 を回転 さ せなが ら 引 き 上げてシ リ コ ン単結晶 を育成す る チ ョ ク ラ ルス キー法に よ る シ リ コ ン単結晶 の製造方法において、 前記 ルツボ を回転 させずに又は前記種結晶の回転方向 と 同 じ方向 に回転 させる と と も に、 熱酸化処理を した際に リ ング状に発生す る O S F の外側の N領域であっ て、 C u デポジシ ョ ンに よ り 検出 され る欠陥 領域が存在 しない無欠陥領域内 で結晶を育成する こ と を特徴 と す る シ リ コ ン単結晶の製造方法。 1. After the seed crystal is brought into contact with the silicon melt contained in the knollerbo, it is pulled up while rotating the seed crystal to grow a silicon single crystal. In the method for manufacturing a silicon single crystal by the Larsky method, when the crucible is rotated without rotating or in the same direction as the rotation direction of the seed crystal and the thermal oxidation treatment is performed. The crystal is grown in the N-region outside the ring-shaped OSF, which has no defect region detected by Cu deposition. A method for producing silicon single crystals.
2 . ルツボ内 に収容 した シ リ コ ン融液に種結晶 を接触 さ せた後 、 該種結晶 を回転 させな が ら 引 き 上げてシ リ コ ン単結晶 を育成する チ ョ ク ラルス キ ー法に よ る シ リ コ ン単結晶 の製造方法において、 前記 ルツ ボを回転 させずに又は前記種結晶の回転方向 と 同 じ方向 に回転 させる と と も に、 育成中の シ リ コ ン単結晶の成長速度を漸減 した場 合、 O S F リ ング消滅後に残存する C u デポジシ ョ ンに よ り 検出 さ れる欠陥領域が消滅す る境界の成長速度 と 、 さ ら に成長速度 を漸減 した場合に格子間転位ルー プが発生する境界の成長速度 と の間の成 長速度に制御 して結晶 を育成す る こ と を特徴 と す る シ リ コ ン単結晶 の製造方法。 2. After the seed crystal is brought into contact with the silicon melt contained in the crucible, it is pulled up while rotating the seed crystal to grow a silicon single crystal. In the method for producing a silicon single crystal according to the silicon method, the crucible is rotated without rotating or in the same direction as the rotation direction of the seed crystal. When the growth rate of the single crystal is gradually reduced, the growth rate at the boundary where the defect region detected by the Cu deposition remaining after the OSF ring disappears disappears, and when the growth rate is further reduced. A method for producing a silicon single crystal, characterized in that a crystal is grown by controlling a growth rate between a growth rate of a boundary where an interstitial dislocation loop is generated and a growth rate of a boundary.
3 . 前記シ リ コ ン融液に水平磁場を印力 II しなが ら 前記シ リ コ ン単 結晶 を育成する こ と を特徴 と す る請求項 1 又は請求項 2 に記載の シ リ コ ン単結晶の製造方法。 3. The silicon according to claim 1 or 2, wherein the silicon single crystal is grown while applying a horizontal magnetic field II to the silicon melt. Method for producing single crystal.
4 . 前記ルツボの回転速度を 0 ~ 2 r p mの範囲内 と する こ と を 特徴 と する請求項 1 ない し請求項 3 のいずれか一項に記載の シ リ コ ン単結晶の製造方法。 4. The silicon according to any one of claims 1 to 3, wherein the rotation speed of the crucible is in a range of 0 to 2 rpm. Method for producing single crystal.
5 . 前記請求項 1 ない し請求項 4 のいずれか一項に記載の方法に よ り 育成 したシ リ コ ン単結晶力 ら ス ラ イ ス加工 した も のであ る こ と を特徴 と す る無欠陥のシ リ コ ン単結晶 ゥ エ ー ハ。 5. It is characterized by being sliced from silicon single crystal force grown by the method according to any one of claims 1 to 4. Defect-free silicon single crystal ゥ wafer.
PCT/JP2003/005243 2002-04-25 2003-04-24 Method for producing silicon single crystal and silicon single crystal wafer WO2003091484A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-124900 2002-04-25
JP2002124900A JP2003321297A (en) 2002-04-25 2002-04-25 Method for producing silicon single crystal and silicon single crystal wafer

Publications (1)

Publication Number Publication Date
WO2003091484A1 true WO2003091484A1 (en) 2003-11-06

Family

ID=29267542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005243 WO2003091484A1 (en) 2002-04-25 2003-04-24 Method for producing silicon single crystal and silicon single crystal wafer

Country Status (2)

Country Link
JP (1) JP2003321297A (en)
WO (1) WO2003091484A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2226412A1 (en) * 2009-02-27 2010-09-08 SUMCO Corporation Method for growing silicon single crystal and method for producing silicon wafer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105475B1 (en) 2009-02-04 2012-01-13 주식회사 엘지실트론 Single Crystal Manufacturing Method with Minimized Process Variation
KR101729515B1 (en) 2015-04-14 2017-04-24 주식회사 엘지실트론 Method for growing silicon single crystal ingot
CN110129890B (en) * 2018-03-30 2021-02-02 杭州慧翔电液技术开发有限公司 Coil structure for magnetically controlled Czochralski single crystal and method for magnetically controlled Czochralski single crystal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045507A1 (en) * 1997-04-09 1998-10-15 Memc Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US5954873A (en) * 1995-05-31 1999-09-21 Sumitomo Sitix Corporation Manufacturing method for a silicon single crystal wafer
EP0964082A1 (en) * 1998-06-11 1999-12-15 Shin-Etsu Handotai Company Limited Silicon single crystal wafer and a method for producing it
US6048395A (en) * 1997-11-21 2000-04-11 Shin-Etsu Handotai Co., Ltd. Method for producing a silicon single crystal having few crystal defects
JP2001261495A (en) * 2000-03-23 2001-09-26 Komatsu Electronic Metals Co Ltd Method for producing defect-free crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954873A (en) * 1995-05-31 1999-09-21 Sumitomo Sitix Corporation Manufacturing method for a silicon single crystal wafer
WO1998045507A1 (en) * 1997-04-09 1998-10-15 Memc Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US6048395A (en) * 1997-11-21 2000-04-11 Shin-Etsu Handotai Co., Ltd. Method for producing a silicon single crystal having few crystal defects
EP0964082A1 (en) * 1998-06-11 1999-12-15 Shin-Etsu Handotai Company Limited Silicon single crystal wafer and a method for producing it
JP2001261495A (en) * 2000-03-23 2001-09-26 Komatsu Electronic Metals Co Ltd Method for producing defect-free crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2226412A1 (en) * 2009-02-27 2010-09-08 SUMCO Corporation Method for growing silicon single crystal and method for producing silicon wafer

Also Published As

Publication number Publication date
JP2003321297A (en) 2003-11-11

Similar Documents

Publication Publication Date Title
JP3994665B2 (en) Silicon single crystal wafer and method for producing silicon single crystal
US6190452B1 (en) Silicon single crystal wafer and method for producing it
JP4224966B2 (en) Manufacturing method of silicon single crystal wafer, manufacturing method of epitaxial wafer, evaluation method of silicon single crystal wafer
US6066306A (en) Silicon single crystal wafer having few crystal defects, and method RFO producing the same
WO2001036719A1 (en) Silicon single crystal wafer and production method thereof and soi wafer
WO2010119614A1 (en) Anneal wafer, method for manufacturing anneal wafer, and method for manufacturing device
JP5993550B2 (en) Manufacturing method of silicon single crystal wafer
US20030106484A1 (en) Silicon single crystal wafer and method for manufacturing the same
US10731271B2 (en) Silicon wafer with homogeneous radial oxygen variation
TWI471940B (en) Silicon substrate manufacturing method and silicon substrate
JP3975605B2 (en) Silicon single crystal wafer and method for producing silicon single crystal wafer
JP4092946B2 (en) Silicon single crystal wafer, epitaxial wafer, and method for producing silicon single crystal
JP2004134439A (en) Annealing wafer and its manufacturing method
JP2008066357A (en) Silicon single crystal wafer and method of manufacturing the same
JP5151628B2 (en) Silicon single crystal wafer, silicon single crystal manufacturing method, and semiconductor device
WO2000031324A1 (en) Single-crystal silicon wafer having few crystal defects and method for manufacturing the same
JP3614019B2 (en) Manufacturing method of silicon single crystal wafer and silicon single crystal wafer
JP2004043256A (en) Silicon wafer for epitaxial growth and epitaxial wafer, and method for manufacturing the same
JP2011222842A (en) Manufacturing method for epitaxial wafer, epitaxial wafer, and manufacturing method for imaging device
JP2004153081A (en) SOI wafer and method for manufacturing SOI wafer
JP2004153083A (en) Method of evaluating silicon wafer and method of manufacturing soi wafer
WO2003091484A1 (en) Method for producing silicon single crystal and silicon single crystal wafer
JP5282762B2 (en) Method for producing silicon single crystal
JP4380162B2 (en) SOI wafer and method for manufacturing the same
JP2013175742A (en) Epitaxial wafer manufacturing method, epitaxial wafer and imaging device manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase