WO2003058063A1 - Rotorblattheizung - Google Patents
Rotorblattheizung Download PDFInfo
- Publication number
- WO2003058063A1 WO2003058063A1 PCT/DE2003/000063 DE0300063W WO03058063A1 WO 2003058063 A1 WO2003058063 A1 WO 2003058063A1 DE 0300063 W DE0300063 W DE 0300063W WO 03058063 A1 WO03058063 A1 WO 03058063A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor blade
- heater according
- heating layer
- cavity
- heating
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 82
- 239000012811 non-conductive material Substances 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 6
- 229920003023 plastic Polymers 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000004744 fabric Substances 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims description 5
- 239000003365 glass fiber Substances 0.000 claims description 4
- 239000002390 adhesive tape Substances 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 239000000839 emulsion Substances 0.000 claims description 2
- 239000000835 fiber Substances 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 239000000853 adhesive Substances 0.000 claims 2
- 230000001070 adhesive effect Effects 0.000 claims 2
- 238000004804 winding Methods 0.000 claims 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 239000011230 binding agent Substances 0.000 claims 1
- 229910010293 ceramic material Inorganic materials 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 239000010949 copper Substances 0.000 claims 1
- 239000011810 insulating material Substances 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 229910044991 metal oxide Inorganic materials 0.000 claims 1
- 150000004706 metal oxides Chemical class 0.000 claims 1
- 239000000843 powder Substances 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 239000011347 resin Substances 0.000 claims 1
- 229920005989 resin Polymers 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 claims 1
- 229910052709 silver Inorganic materials 0.000 claims 1
- 239000004332 silver Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 52
- 229920000049 Carbon (fiber) Polymers 0.000 description 5
- 239000004917 carbon fiber Substances 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 206010061217 Infestation Diseases 0.000 description 4
- 230000008014 freezing Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 239000012876 carrier material Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/30—Lightning protection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/40—Ice detection; De-icing means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the invention relates to a rotor blade heater according to the preamble of claim 1.
- Rotor blades such as those used in particular in wind turbines, are generally hollow.
- the rotor blades are usually made of an electrically non-conductive material, for example to avoid lightning strikes and to enable weight-reduced production. Particularly at temperatures around freezing point and a high degree of air humidity, weather phenomena can occur, which are critical for the rotor blades in several respects.
- Thunderstorms can develop even at temperatures around freezing, whereby there is always a risk of severe damage or failure of the entire system due to a crash.
- One measure already mentioned to counteract such failures of a wind power plant is the manufacture of the rotor blades from electrically non-conductive materials.
- the invention is based on the object of providing a rotor blade heater which is simple in structure, has a high degree of efficiency and, if possible, can also be activated at least temporarily and / or at least in the critical areas of a rotor blade during operation of the wind turbine.
- the avoidance of the risk of lightning strikes should be taken into account.
- a rotor blade heater according to the invention has an electrically conductive heating layer which at least temporarily and / or at least in sections adapts to the geometry of the cavity in the cavity of each rotor blade.
- This rotor blade heating as it can be used not only for wind turbines, but also for all types of propellers, is very simple, can be manufactured inexpensively and enables flexible use depending on the weather conditions, without the system operated with it Must be brought to a standstill.
- the rotor blade heater serves the purpose of protecting the rotor blades equipped therewith against ice infestation or of freeing infected areas from ice without requiring complex mechanics.
- the heat energy generated generates measurable infrared radiation, so that an additional safety aspect can be guaranteed.
- the heat energy emitted can be recorded by infrared measuring devices, such as those found in aircraft. This means that these wind turbines are visible to aircraft with appropriate security technology, even if the weather conditions would not normally make this possible.
- a rotor blade heater according to the invention consequently emits far infrared radiation (FIR).
- FIR far infrared radiation
- the temporary use of the rotor blade heater according to the invention enables the removal of layers of ice only when it is really necessary. This measure also leads to energy savings, since the rotor blade heating only has to be operated when there is actually a risk of ice infestation or if there is already one.
- a sensible embodiment of a rotor blade heater according to the invention can be seen, for example, in the fact that the heating layer consists of a film, a fabric or a fleece which is loosely inserted into the cavity of the rotor blade or attached to the inner surface of the cavity or integrated into the inner surface.
- the materials for the heating layer are only mentioned here as examples:
- All designs can be designed as self-supporting, solidified or else as elastic, flexible, preferably band-shaped materials. Such band-shaped strips can be produced very economically, are easy to process and have a low volume and weight.
- the carbon or carbon fibers have an electrical conductivity with a resistance, so that this provides an effective heating element with high efficiency.
- these carbon fibers can be supported by polyester threads or can also be integrated into a film. This allows fabric or fabric-like structures to be produced which, after their use in the cavity of the rotor blade, are provided with electrodes for the power supply and can thus be used without major assembly work. It is particularly advantageous to design the rotor blade heater as a thin-layer, flexible material, it being possible for the heating layer to be accommodated within an elastic or also in a rigid film. It is important that the materials can be easily adapted to the geometry of the inner surface of the cavity of the rotor blade.
- connection of different materials with each other is within the scope of the inventive concept.
- a fabric made of mentioned materials can be provided in connection with a plastic fiber.
- the heating layer can consist of carbon fibers or carbon fiber composite materials or only have these materials, which in turn can be designed as a woven or non-woven fabric or as a graphite emulsion.
- the electrodes can also be used as a holder for the heating layer.
- one heating layer can be sufficient to enable an effective removal of ice or to prevent ice infestation.
- a plurality of heating layers one above the other which, for example, can also be switched on or off at different times.
- a perforated or slotted heating layer of this type can be applied to a carrier material and then made into an integral part of the rotor blade, for example by casting with a liquid plastic.
- the liquid plastic penetrates the heating layer in the sections of its perforation or slit and unites then with the carrier material so that the heating layer can be completely integrated into the material of the rotor blade.
- the insulating layer which should preferably be on the inside of the cavity, allows the heat generated by the heating layer to escape to the outer surface of the component equipped with it almost without loss and in the shortest possible time, so that a very rapid removal of ice is possible.
- the heating layer can be used not only in the area of the rotor blade, but also as a component of the rotor head and / or the rotor hub of a wind power plant or of a drive unit coupled to the wind power plant.
- the rotor head, the rotor hub and the drive unit are provided with an insulating layer towards the core and insulated in such a way that the heat emitted by the heating layer penetrates to the outside almost without loss and in the shortest possible time.
- the heating layer can be used not only to clear ice in the area of the critical zones of the rotor blades, but also in the area of the rotor head, the rotor hub and possibly other units on the wind turbine.
- Known plastics or other materials can be used as insulation materials.
- a heating layer that only temporarily adapts to the inner surface of the cavity of the rotor blade can also be realized by an embodiment in which the heating layer is loosely inserted into the cavity.
- a volume-expandable hose element that can be inserted into the cavity of the rotor blade enables a direct contact between the heating layer and the inner surface of the cavity of the rotor blade.
- the variant of loosely inserting the heating layer into the interior of the cavity is only one possible embodiment in which the expanded hose element presses the heating layer against the inner wall of the cavity.
- the hose element is provided with the heating layer at least on a part of its outer surface or is enveloped by it as a whole.
- the hose element inserted into the cavity of the rotor blade is inflated, for example, by means of compressed air and thus presses against the inner surface of the cavity of the rotor blade. After the corresponding heating layer has heated the rotor blade heating and the rotor blade has been freed of ice, the volume of the tube element can be reduced again and can be removed from the cavity.
- a rotor blade heater that adapts to the geometry of the cavity is also hereby guaranteed.
- a balloon or an inflatable tube can be used as the tube element.
- At least one traction means is used to introduce the hose element into the cavity of the rotor blade or for the opposite movement of the hose element.
- two traction means are preferably used which, for example, enable the hose element to be wound up and unwound by means of a drive unit.
- An electric motor can advantageously be used as the drive unit Bring use, the volume increase of the hose element can be made possible by means of a compressor.
- the entire rotor blade heater according to the invention can be operated by means of temperature sensors and thermometers and with the help of electronic controls and is therefore controllable or regulatable.
- electronic controls and is therefore controllable or regulatable.
- remote control in the sense of the invention, which is particularly useful in offshore wind turbines.
- Figure 1 sections of a first embodiment of a
- FIG. 2 a second embodiment of a rotor blade heater in a partially cut rotor blade
- FIG. 3 shows the section profile HI - in from FIG. 2
- FIG. 4 shows the section profile IV-IV from FIG. 2
- FIG. 5 shows a schematically greatly simplified illustration of a
- FIG. 6 Rotor blade heating with a hose element and FIG. 6: a section of a heating layer for the rotor hub of a wind turbine.
- FIG. 1 shows a section of a first variant of a rotor blade heater according to the invention.
- the end region of a rotor blade 2 is shown here, which overall consists of an electrically non-conductive material.
- the rotor blade 2 has a cavity 1, on the inner surface 4 of which one Heating layer 3 is attached.
- This heating layer 3 is supplied with an electrical voltage by means of two electrodes 5 and can thus be heated.
- the electrodes 5 are therefore attached to the heating layer 3 in such a way that they are predominantly located in the area of the hub of the wind power plant.
- the heating layer 3 is only applied in the critical areas of the rotor blade 2. These are especially the leading edges and the tips.
- the direction of rotation of the rotor blade 2 is illustrated by the arrow A in the right part of the figure in FIG.
- the activated heating layer 3 heats the outer surface 7 of the rotor blade in the shortest possible time and thus an infestation with an ice layer can be prevented or existing ice can be defrosted.
- the use of the rotor blade heater shown is also possible during the operation of the wind turbine. A shutdown is not necessary.
- FIG. 2 shows a further embodiment of a rotor blade heater according to the invention.
- the rotor blade 2 is also moved in the direction of arrow A in this variant. It has a cavity 1, in which a guide 10 is integrated.
- a hose element 9 that can be wound up or unwound is inserted between the inner surface 4 of the cavity 1 and the guide 10.
- This hose element 9 is coupled at its two ends to a traction means 11 and 13, respectively.
- the hose element 9 can be wound up or unwound by means of these traction means, wherein the guide 10 enables the movement of the hose element along the inner surface 4 of the cavity 1 of the rotor blade 2.
- the hose element 9 does not become effective over the entire inner surface of the cavity 1, but only the critical areas of the Rotor blade 2 is acted upon by the tubular element 9.
- a heating layer 3 is attached to the outer surface of the hose element 9. This is wound up or unwound with the hose element 9.
- the hose element 9 is in turn designed to be volume-expandable, so that it can be inflated, for example, by means of a compressed air compressor. After unrolling the tube element 9, it is initially loosely between the guide 10 and the inner surface 4 of the rotor blade. After the compressor has been activated and the tube element 9 has been expanded to its final volume, the heating layer 3 is in direct contact with the inner surface 4 of the cavity 1 of the rotor blade 2.
- the heating layer 3 is now activated, so that the heating of the outer surface 7 of the rotor blade 2 increases liberation from the ice layer that may be present there.
- the arrows D and E symbolically represent the possible directions of movement of the traction means 11 and 13, respectively.
- FIG. 3 shows a section through the tube element 9, which can be moved into or out of the cavity 1 of the rotor blade 2 above the guide 10. After the volume expansion of the tubular element 9 to its maximum size, this is due to the
- FIG. 4 shows the traction means 13, as can also be moved back and forth between the guide 10 and the inner surface 4 of the cavity 1 of the rotor blade 2.
- FIG. 5 shows, in a highly simplified manner, a possible variant of the operation of a rotor blade heater according to the invention.
- the hose element 9 is in the manner described above along a guide 10 in the cavity 1 of the Rotor blade 2 movably guided. It can be wound up or unwound because there is a coupling with the drive shaft of a drive unit 12 via the traction means 11.
- the drive shaft of the drive unit 12 is rotatable in both directions of movement. The possible directions of rotation are illustrated by arrow B in FIG. 5.
- the surface of the tubular element is provided with the heating layer 3. Its volume is expandable until it comes to rest on the inner surface 4 of the cavity 1 of the rotor blade 2.
- the volume expansion is made possible by a compressor 14 which can be coupled to the hose element 9 via a valve coupling 15.
- the direction of movement C in FIG. 5 illustrates the coupling movement between the hose element 9 and the compressor 14 in the region of the valve coupling 15.
- an insulation layer 8 can be provided below a heating layer 3 connected to the inner surface 4 of the cavity 1.
- This insulation layer 8 enables the heat generated in the heating layer 3 to escape in the shortest possible time. The heat can thus escape in the direction of the outer surface 7 with almost no loss.
- Such an insulation layer combination is also possible for the area of the rotor head or the rotor hub or a drive unit attached to the wind turbine.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
- Resistance Heating (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10390033T DE10390033D2 (de) | 2002-01-11 | 2003-01-10 | Rotorblattheizung |
AU2003205519A AU2003205519A1 (en) | 2002-01-11 | 2003-01-10 | Rotor blade heating system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10200799.3 | 2002-01-11 | ||
DE10200799A DE10200799A1 (de) | 2002-01-11 | 2002-01-11 | Rotorblattheizung für Windkraftanlagen |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003058063A1 true WO2003058063A1 (de) | 2003-07-17 |
Family
ID=7711891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2003/000063 WO2003058063A1 (de) | 2002-01-11 | 2003-01-10 | Rotorblattheizung |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2003205519A1 (de) |
DE (2) | DE10200799A1 (de) |
WO (1) | WO2003058063A1 (de) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004057979A1 (de) * | 2004-11-30 | 2006-06-01 | Repower Systems Ag | Rotorblatt |
WO2007121501A1 (de) * | 2006-04-24 | 2007-11-01 | Kummer, Ursula | Verfahren und vorrichtung zur beseitigung einer vereisung der rotorblattoberfläche einer windkraftanlage |
WO2012059466A1 (de) * | 2010-11-04 | 2012-05-10 | Wobben, Aloys | Rotorblatt mit heizvorrichtung für eine windenergieanlage |
KR20120060581A (ko) * | 2010-12-02 | 2012-06-12 | 대우조선해양 주식회사 | 풍력발전기의 블레이드 히팅 장치 |
CN102661250A (zh) * | 2012-05-08 | 2012-09-12 | 国电联合动力技术有限公司 | 一种抗冰冻风机叶片 |
AT13020U1 (de) * | 2011-03-02 | 2013-04-15 | Wilic Sarl | Windturbine mit einer Vereisungsschutzeinrichtung |
EP2602455A1 (de) * | 2011-12-07 | 2013-06-12 | Nordex Energy GmbH | Windenergieanlagenrotorblatt mit einem elektrischen Heizelement |
CN103437949A (zh) * | 2013-09-06 | 2013-12-11 | 北京金风科创风电设备有限公司 | 风力发电机叶片、风力发电机以及叶片除冰系统 |
CN103821665A (zh) * | 2013-10-18 | 2014-05-28 | 河海大学常州校区 | 一种水平轴风力机叶片除冰装置 |
CN104179634A (zh) * | 2013-05-21 | 2014-12-03 | 中航惠腾风电设备股份有限公司 | 一种具有防雷保护的电加热防冰除冰风轮叶片 |
ES2533230A1 (es) * | 2013-10-03 | 2015-04-08 | Gamesa Innovation & Technology, S.L. | Sistema de protección frente a rayos con sistema antihielo integrado para palas de aerogenerador |
DE102013222452A1 (de) * | 2013-11-05 | 2015-05-07 | Wobben Properties Gmbh | Verfahren zum Betreiben einer Windenergieanlage |
RU2591369C2 (ru) * | 2011-05-31 | 2016-07-20 | Висетек Ой | Лопатка ветровой турбины и способ изготовления такой лопатки |
CN108252878A (zh) * | 2016-12-28 | 2018-07-06 | 北京金风科创风电设备有限公司 | 用于风力发电机组的叶片除冰设备和方法 |
EP3447284A1 (de) | 2017-08-24 | 2019-02-27 | eno energy systems GmbH | Rotorblatt für eine windenergieanlage, verfahren zum kontaktieren einer elektrisch leitfähigen beschichtung auf ein rotorblatt einer windenergieanlage und windener-gieanlage |
CN109563806A (zh) * | 2016-06-30 | 2019-04-02 | 维斯塔斯风力系统集团公司 | 堆叠布置结构中的汇流条 |
CN109931233A (zh) * | 2019-04-12 | 2019-06-25 | 浙江运达风电股份有限公司 | 一种风力发电机组热鼓风除冰系统安全保护装置及方法 |
CN110198576A (zh) * | 2018-02-27 | 2019-09-03 | 吴金珠 | 电热芯片结构、安装方法、成型方法及风力发电机组 |
CN110206694A (zh) * | 2019-06-20 | 2019-09-06 | 天津爱思普信息技术有限公司 | 一种风力发电机组叶片防冰除冰系统的导电带制作方法 |
US10566799B2 (en) | 2016-03-29 | 2020-02-18 | Wobben Properties Gmbh | Method for feeding electrical power into an electricity supply network with a wind park and wind park with black start |
US10823152B2 (en) * | 2016-03-01 | 2020-11-03 | Borealis Wind Inc. | Wind turbine blade de-icing systems and methods |
US11088546B2 (en) | 2016-04-05 | 2021-08-10 | Wobben Properties Gmbh | Method and wind turbine for feeding electric power |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3218436A (en) * | 1963-03-12 | 1965-11-16 | Gen Motors Corp | Electrical aircraft heater |
DE1254264B (de) * | 1958-04-24 | 1967-11-16 | Goodrich Co B F | Verfahren und Vorrichtung zum Herstellen eines geschichteten elektrischen Heizkoerpers von plattenfoermiger Gestalt |
US4534886A (en) * | 1981-01-15 | 1985-08-13 | International Paper Company | Non-woven heating element |
US4926026A (en) * | 1989-01-26 | 1990-05-15 | Maintenance Concepts, Inc. | Electrical de-icer device |
WO1995015670A1 (en) * | 1993-11-30 | 1995-06-08 | Alliedsignal Inc. | An electrically conductive composite heater and method of manufacture |
US6145787A (en) * | 1997-05-20 | 2000-11-14 | Thermion Systems International | Device and method for heating and deicing wind energy turbine blades |
WO2000079128A1 (en) * | 1999-06-21 | 2000-12-28 | Lm Glasfiber A/S | Wind turbine blade with a system for deicing and lightning protection |
-
2002
- 2002-01-11 DE DE10200799A patent/DE10200799A1/de not_active Withdrawn
-
2003
- 2003-01-10 AU AU2003205519A patent/AU2003205519A1/en not_active Abandoned
- 2003-01-10 DE DE10390033T patent/DE10390033D2/de not_active Expired - Fee Related
- 2003-01-10 WO PCT/DE2003/000063 patent/WO2003058063A1/de not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1254264B (de) * | 1958-04-24 | 1967-11-16 | Goodrich Co B F | Verfahren und Vorrichtung zum Herstellen eines geschichteten elektrischen Heizkoerpers von plattenfoermiger Gestalt |
US3218436A (en) * | 1963-03-12 | 1965-11-16 | Gen Motors Corp | Electrical aircraft heater |
US4534886A (en) * | 1981-01-15 | 1985-08-13 | International Paper Company | Non-woven heating element |
US4926026A (en) * | 1989-01-26 | 1990-05-15 | Maintenance Concepts, Inc. | Electrical de-icer device |
WO1995015670A1 (en) * | 1993-11-30 | 1995-06-08 | Alliedsignal Inc. | An electrically conductive composite heater and method of manufacture |
US6145787A (en) * | 1997-05-20 | 2000-11-14 | Thermion Systems International | Device and method for heating and deicing wind energy turbine blades |
WO2000079128A1 (en) * | 1999-06-21 | 2000-12-28 | Lm Glasfiber A/S | Wind turbine blade with a system for deicing and lightning protection |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004057979A1 (de) * | 2004-11-30 | 2006-06-01 | Repower Systems Ag | Rotorblatt |
DE102004057979C5 (de) * | 2004-11-30 | 2019-09-26 | Senvion Gmbh | Rotorblatt |
DE102004057979B4 (de) * | 2004-11-30 | 2014-01-16 | Repower Systems Se | Rotorblatt |
WO2007121501A1 (de) * | 2006-04-24 | 2007-11-01 | Kummer, Ursula | Verfahren und vorrichtung zur beseitigung einer vereisung der rotorblattoberfläche einer windkraftanlage |
US20130309092A1 (en) * | 2010-11-04 | 2013-11-21 | Wobben Properties Gmbh | Rotor blade with heating device for a wind turbine |
WO2012059466A1 (de) * | 2010-11-04 | 2012-05-10 | Wobben, Aloys | Rotorblatt mit heizvorrichtung für eine windenergieanlage |
RU2567162C2 (ru) * | 2010-11-04 | 2015-11-10 | Воббен Пропертиз Гмбх | Лопасть ротора с устройством подогрева для ветровой энергетической установки |
CN103189644A (zh) * | 2010-11-04 | 2013-07-03 | 乌本产权有限公司 | 具有用于风能设备的加热装置的转子叶片 |
AU2011325254B2 (en) * | 2010-11-04 | 2016-07-07 | Wobben Properties Gmbh | Rotor blade with heating device for a wind turbine |
EP2635807B1 (de) | 2010-11-04 | 2015-05-13 | Wobben Properties GmbH | Rotorblatt mit heizvorrichtung für eine windenergieanlage |
JP2013545016A (ja) * | 2010-11-04 | 2013-12-19 | ヴォッベン プロパティーズ ゲーエムベーハー | 風力発電装置用の加熱装置を備えたロータブレード |
KR20120060581A (ko) * | 2010-12-02 | 2012-06-12 | 대우조선해양 주식회사 | 풍력발전기의 블레이드 히팅 장치 |
KR101684639B1 (ko) * | 2010-12-02 | 2016-12-08 | 대우조선해양 주식회사 | 풍력발전기의 블레이드 히팅 장치 |
AT13020U1 (de) * | 2011-03-02 | 2013-04-15 | Wilic Sarl | Windturbine mit einer Vereisungsschutzeinrichtung |
RU2591369C2 (ru) * | 2011-05-31 | 2016-07-20 | Висетек Ой | Лопатка ветровой турбины и способ изготовления такой лопатки |
US9482208B2 (en) | 2011-12-07 | 2016-11-01 | Nordex Energy Gmbh | Wind turbine rotor blade having an electrical heating arrangement and method of making the same |
EP2602455A1 (de) * | 2011-12-07 | 2013-06-12 | Nordex Energy GmbH | Windenergieanlagenrotorblatt mit einem elektrischen Heizelement |
CN102661250A (zh) * | 2012-05-08 | 2012-09-12 | 国电联合动力技术有限公司 | 一种抗冰冻风机叶片 |
CN104179634A (zh) * | 2013-05-21 | 2014-12-03 | 中航惠腾风电设备股份有限公司 | 一种具有防雷保护的电加热防冰除冰风轮叶片 |
CN103437949A (zh) * | 2013-09-06 | 2013-12-11 | 北京金风科创风电设备有限公司 | 风力发电机叶片、风力发电机以及叶片除冰系统 |
CN103437949B (zh) * | 2013-09-06 | 2016-05-11 | 北京金风科创风电设备有限公司 | 风力发电机叶片、风力发电机以及叶片除冰系统 |
CN104514691A (zh) * | 2013-10-03 | 2015-04-15 | 歌美飒创新技术公司 | 用于风轮机叶片的集成有防结冰系统的防雷保护系统 |
ES2533230A1 (es) * | 2013-10-03 | 2015-04-08 | Gamesa Innovation & Technology, S.L. | Sistema de protección frente a rayos con sistema antihielo integrado para palas de aerogenerador |
CN104514691B (zh) * | 2013-10-03 | 2019-06-21 | 歌美飒创新技术公司 | 用于风轮机叶片的集成有防结冰系统的防雷保护系统 |
CN103821665A (zh) * | 2013-10-18 | 2014-05-28 | 河海大学常州校区 | 一种水平轴风力机叶片除冰装置 |
DE102013222452A1 (de) * | 2013-11-05 | 2015-05-07 | Wobben Properties Gmbh | Verfahren zum Betreiben einer Windenergieanlage |
EP3066735A1 (de) * | 2013-11-05 | 2016-09-14 | Wobben Properties GmbH | Verfahren zum betreiben einer windenergieanlage |
US9957952B2 (en) | 2013-11-05 | 2018-05-01 | Wobben Properties Gmbh | Method for operating a wind turbine |
US10823152B2 (en) * | 2016-03-01 | 2020-11-03 | Borealis Wind Inc. | Wind turbine blade de-icing systems and methods |
US10566799B2 (en) | 2016-03-29 | 2020-02-18 | Wobben Properties Gmbh | Method for feeding electrical power into an electricity supply network with a wind park and wind park with black start |
US11088546B2 (en) | 2016-04-05 | 2021-08-10 | Wobben Properties Gmbh | Method and wind turbine for feeding electric power |
CN109563806A (zh) * | 2016-06-30 | 2019-04-02 | 维斯塔斯风力系统集团公司 | 堆叠布置结构中的汇流条 |
US11319934B2 (en) | 2016-06-30 | 2022-05-03 | Vestas Wind Systems A/S | Busbars in a stacking arrangement |
CN108252878A (zh) * | 2016-12-28 | 2018-07-06 | 北京金风科创风电设备有限公司 | 用于风力发电机组的叶片除冰设备和方法 |
EP3447284A1 (de) | 2017-08-24 | 2019-02-27 | eno energy systems GmbH | Rotorblatt für eine windenergieanlage, verfahren zum kontaktieren einer elektrisch leitfähigen beschichtung auf ein rotorblatt einer windenergieanlage und windener-gieanlage |
CN110198576A (zh) * | 2018-02-27 | 2019-09-03 | 吴金珠 | 电热芯片结构、安装方法、成型方法及风力发电机组 |
CN109931233A (zh) * | 2019-04-12 | 2019-06-25 | 浙江运达风电股份有限公司 | 一种风力发电机组热鼓风除冰系统安全保护装置及方法 |
CN110206694A (zh) * | 2019-06-20 | 2019-09-06 | 天津爱思普信息技术有限公司 | 一种风力发电机组叶片防冰除冰系统的导电带制作方法 |
Also Published As
Publication number | Publication date |
---|---|
DE10390033D2 (de) | 2005-03-03 |
AU2003205519A1 (en) | 2003-07-24 |
DE10200799A1 (de) | 2003-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2003058063A1 (de) | Rotorblattheizung | |
EP2602455B1 (de) | Windenergieanlagenrotorblatt mit einem elektrischen Heizelement | |
DE69818992T2 (de) | Einrichtung und verfahren zum heizen und enteisen von windturbinenblättern | |
EP2895747B1 (de) | Wandring eines lüfters mit heizelement | |
EP3011172B1 (de) | Rotorblatt einer windenergieanlage, enteisungssystem und verfahren | |
EP2984338B1 (de) | Rotorblatt einer windenergieanlage | |
EP1268274B1 (de) | Kompaktes mikrowellentechnisches system zum enteisen und/oder vorbeugen einer vereisung der äusseren oberfläche von meteorologischen einflüssen ausgesetzten hohlraum- oder schalenstrukturen | |
DE19621485A1 (de) | Rotorblattheizung für Windkraftanlagen | |
DE102017207274B3 (de) | Fahrzeug sowie Bremswiderstand für ein Fahrzeug | |
WO2011017727A2 (de) | Verfahren zur herstellung eines - als sandwichkonstruktion ausgebildeten - hohlkörpers | |
DE20014238U1 (de) | Heizsystem zur Enteisung von Rotorblättern von Windkraftanlagen | |
DE112020005580T5 (de) | Antriebssystem, enteisungs-verfahren für einen rotor sowie flugzeug | |
EP2625036A1 (de) | Verbundglas sowie verfahren zu seiner herstellung | |
EP2635807B1 (de) | Rotorblatt mit heizvorrichtung für eine windenergieanlage | |
EP2388426A2 (de) | Tor zum Verschließen einer Öffnung in einer Wandung | |
EP0038922B1 (de) | Anordnung zur Beheizung grossflächiger Laminatformkörper | |
EP2462023B1 (de) | Vorrichtung zur enteisung von fahrzeugen, insbesondere flugzeugen | |
WO2017028843A1 (de) | Eisfreihalte - und -enteisungsanordnung für ein windenergieanlagen-rotorblatt | |
DE102015107275B4 (de) | Vorrichtung zum Enteisen einer Oberfläche eines aerodynamischen Körpers und Flügel mit dieser Vorrichtung | |
EP3032058B1 (de) | Leitung für eine wässrige Lösung sowie deren Herstellung | |
WO2019144981A1 (de) | Windenergieanlagenrotorblatteisfreihalte- und -enteisungssystem | |
DE2321703B2 (de) | Verfahren zum Herstellen eines trägheitsarmen Ankers für rotierende elektrische Maschinen | |
DE102015002015A1 (de) | Rotorblattenteisungsvorrichtung und Verfahren zum Enteisen eines Rotorblatts | |
EP3875778B1 (de) | Verbesserte anlage zur luftbehandlung und lüftereinheit dazu | |
DE202012101705U1 (de) | Rotorblatt mit einer Anwärmvorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REF | Corresponds to |
Ref document number: 10390033 Country of ref document: DE Date of ref document: 20050303 Kind code of ref document: P |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10390033 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: JP |