WO2003055021A2 - Procede d'amelioration des caracteristiques optiques de composants optoelectroniques multicouches - Google Patents
Procede d'amelioration des caracteristiques optiques de composants optoelectroniques multicouches Download PDFInfo
- Publication number
- WO2003055021A2 WO2003055021A2 PCT/FR2002/004396 FR0204396W WO03055021A2 WO 2003055021 A2 WO2003055021 A2 WO 2003055021A2 FR 0204396 W FR0204396 W FR 0204396W WO 03055021 A2 WO03055021 A2 WO 03055021A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- implantation
- layer
- refractive index
- pattern
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/3401—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
- H01S5/3402—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers intersubband lasers, e.g. transitions within the conduction or valence bands
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
Definitions
- Optoelectronic components such as quantum cascade lasers (so-called “QCL”) or optical waveguides with vertical optical confinement, comprise highly doped surface layers and having a strong gradient of refractive index compared to the layers under -jacentes.
- QCL quantum cascade lasers
- optical waveguides with vertical optical confinement comprise highly doped surface layers and having a strong gradient of refractive index compared to the layers under -jacentes.
- multilayer optoelectronic components were used, the refractive index of which varied periodically or pseudo-periodically. Such components are increasingly used in modern optoelectronic devices to control the spatial and spectral coherence of the optical field.
- CAIBE chemical beam ion beam etching
- RIE reactive ion etching
- the subject of the present invention is a process for producing multilayer optoelectronic components with a refraction index varying widely locally, the components produced by this process having the best possible optical characteristics, being easily reproducible, being able to be provided with electrical contact layers if necessary. where appropriate, and which can be mounted so as to have good qualities of heat dissipation.
- the present invention also relates to optoelectronic components produced according to this method, and the cost price of which is as low as possible.
- the method according to the invention consists in implanting ions in discontinuous zones of a heavily doped layer, so as to locally modify the concentration of doping and therefore the refractive index of this layer.
- Figure 1 is a cross-sectional view of a prior art optical waveguide
- Figure 2 is a cross-sectional view, similar to that of Figure 1, but relating to an optical waveguide produced according to the method of the invention
- Figure 3 is a simplified perspective view of an optical waveguide produced according to the method of the invention.
- Figure 4 is a perspective view of a waveguide of the "Horizontal Arrow” type produced according to the method of the invention.
- Figure 5 is a simplified sectional view of the device of Figure 4.
- Figure 6 is a diagram showing the relative variations of the refractive index in the width direction of the laser of Figure 5;
- Figure 7 is a simplified sectional view of an ⁇ -DFB that is to say a waveguide with a zig-zag path, produced according to the method of the invention.
- Figure 8 is a simplified perspective view of a laser component with a two-dimensional network of ion implantation points, produced according to the method of the invention.
- the present invention is mainly characterized by ionic or proton implantation in optical waveguides with plasma effect layers in order to produce active band gap optoelectronic components.
- a waveguide with plasma effect layers takes advantage of the plasma resonance in heavily doped layers making it possible to obtain a strong gradient of refractive index necessary for efficient optical confinement.
- this solution is more viable than modifying the composition of the alloys of the layers whose band gap is located in the visible or near infrared, alloys such as Al x Ga ( i. X) As.
- alloys such as Al x Ga ( i. X) As.
- the technology for producing the band gap optoelectronic components according to the invention becomes all the more advantageous as the operating wavelength of these components increases, because that the dimensions of these components increase, and that they are therefore easier to manufacture, thus reducing the requirements in terms of surface roughness.
- distortions due to temperature have less impact in the far infrared, making it possible to produce interference components with photonic band gap.
- the invention can " produce on optoelectronic components patterns producing a strong modulation of the refractive index by corresponding modulation of the local doping of these components, the modification of the doping being obtained by implantation of ions or protons by following these patterns.
- these patterns are not necessarily formed on the surface, but can also be formed in depth if the energy of the implantation beams is increased.
- the invention provides for forming periodic patterns or pseudo-periodicals directly in the layers of the waveguides, thus making it possible to obtain an intense coupling of the optical field, necessary for the correct functioning of the photonic band gap components.
- FIG. 1 An optical waveguide 1 with heavily doped layers ("Plasmon enhanced") of the prior art.
- This waveguide 1 successively comprises, on a substrate 2, a first heavily doped layer 3, a first coating layer 4, a layer 5 forming the active area, and a second heavily doped layer 7.
- the typical values of the thicknesses of layers 3 to 7 are, respectively, 1 ⁇ m - 3.5 ⁇ m - 1, 7 ⁇ m - 3.5 ⁇ m and 1 ⁇ m.
- the evolution of the optical mode in the different layers of component 1 is shown at 8.
- the layers 3 and 7 are highly doped with respect to layers 4 and 6 (approximately 100 times more), so as to obtain with respect to the latter a strong index contrast of refraction necessary for confining the optical mode in the guide.
- the population of free carriers is large, which means that the “plasma frequency” of layers 3 and 7 is close to the frequency corresponding to the operating wavelength of component 1.
- the high contrast of refractive index of the layers 3 and 7 relative to that of layers 4 and 6 is used to produce an optical waveguide.
- Such optical waveguides have been used to produce quantum cascade lasers operating in medium infrared.
- ions or protons are implanted in the second heavily doped layer (corresponding to layer 7 in FIG. 1) in order to greatly reduce its doping in certain areas. These areas are arranged in a specific pattern which can be formed either using a mask or by controlling the deflection of an implantation beam.
- Such implantation results in the reduction of the effect of the free carriers of said layer (heavily doped before implantation) on the refractive index of the layer in the areas concerned by implantation. As a result, complex local variations in the refractive index of the layer concerned are thus obtained.
- the waveguide 9 shown in FIG. 2 has the same layers 2 to 6 as the component 1 in FIG. 1.
- the zones 11 are regularly spaced and occupy a large part of the thickness of the layer 10, but it is understood that for other embodiments, the implanted zones may have other characteristics, in particular as a function of the characteristics sought for the components treated, that is to say as a function of the profiles of the optical modes which it is desired to obtain.
- DFB Distributed Feedback
- FIGS. 4 and 5 show an optical waveguide of the ARROW (“Antiresonant Reflecting Optical Waveguide”) type which allows excellent optical confinement in thin layers having a refractive index lower than that of the substrate.
- This confinement can be of horizontal type in planar optical waveguides.
- the waveguide of Figures 4 and 5 is produced according to the invention as follows.
- This waveguide 13 is formed in the usual way of a substrate 14 on which are deposited, in order, a heavily doped layer 15, a coating layer 16, a layer 17 of active area, a coating layer 18 and a heavily doped layer 19.
- a pattern of “bars” 20 parallel to each other and parallel to the path of the laser beam 21 passing through the waveguide in operating mode is implanted in the layer 19 (it will be noted in this connection that in the embodiment of Figures 2 and 3, the "bars” 11 were perpendicular to the path of the laser beam in operation).
- FIGS. 4 and 5 several bars 20 have been installed and only the four central bars have been shown.
- FIG. 6 shows the variations in relative refractive index (in broken lines) and the variations in intensity of the optical field (in solid lines), along a transverse axis Ox (perpendicular to the direction of the laser beam 21).
- the intensity of the optical field is maximum (in M1) in the middle of the width of the guide, that is to say in the middle of the zone of width D1
- this intensity has points M2 and M3 (symmetrical relative to the location of M1), of lower amplitude than in M1, in the first following inter-bar zones, then of the peaks M4 and M5, of even lower amplitude, in the second following interbar zones, and so on to the lateral ends of the guide, where the intensity of the field is practically zero.
- the refractive index is minimum at the right of the inter-bar zones and maximum at the right of the bars, the maximum values are equal to each other, and the minimum values are equal to each other.
- optical waveguides of the “ARROW” type have significant advantages from the optical point of view compared to the conventional optical waveguide with confinement in a material with a high refractive index. First of all, they are the seat of only one transverse optical mode, whatever the size of the mode. In addition, it is easy to make couplings between waveguides and phase gratings for high-brightness semiconductor lasers. In addition, it is possible to immunize the waveguides to the phenomenon of spatial gain saturation (gain spatial hole burning).
- FIG. 7 a partial top view of laser type " ⁇ -DFB" ("Distributed Feedback") with oblique periodic structure.
- ⁇ -DFB distributed Feedback
- Such a laser can be a power laser formed in a wide band of waveguides, with an output at the diffraction limit.
- This periodic structure is in the form of an angular pattern, which forces the light to follow a “zig-zag” path in the waveguide. This results in a significant increase in the angular dependence of the optical reaction, thus only allowing the oscillation of the modes arriving with a normal incidence on the front face of the waveguide.
- the DFB type structure has the effect that the spectral width is small.
- FIG. 7 shows an optical waveguide 23 shaped as a “DFB” laser, in which a narrow “corridor” 24 is delimited by two bands 25, 26 with a high gradient of refractive index. These two bands are produced, in accordance with the invention, by ion implantation of patterns in the thickness of the guide, in planes parallel to the axis of the corridor 24.
- FIG. 8 shows a possible embodiment of a laser cavity 27 with a two-dimensional prohibited photonic band, in accordance with the invention.
- This cavity 27 is produced from an optical waveguide with an active area (similar to that of FIG. 1), the lateral faces of which are specularly treated.
- the configuration of this pattern depends on the desired effect.
- the micro-pavers have a substantially square upper face, and are arranged in rows and columns and regularly spaced in the rows and columns. Only one block is missing, for example in the center of the motif. Under the “empty” (or “fault”) location 29, the optical field is the most intense.
- the pattern implanted on the surface, or near the surface, of an optical waveguide can be periodic or aperiodic, and the shape of the implanted “blocks” can be different from that shown in FIG. 8.
- This pattern may have zero, one or more "faults”.
- it is possible to act finely on the optical mode prevailing in the component obtained, and to adjust it to the particular requirements of each application.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Nanotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Semiconductor Lasers (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/499,197 US7981707B2 (en) | 2001-12-20 | 2002-12-17 | Method for enhancing optical characteristics of multilayer optoelectronic components |
AU2002364846A AU2002364846A1 (en) | 2001-12-20 | 2002-12-17 | Method for enhancing optical characteristics of multilayer optoelectronic components |
EP02801141A EP1466393A2 (fr) | 2001-12-20 | 2002-12-17 | Procede d'amelioration des caracteristiques optiques de composants optoelectroniques multicouches |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR01/16556 | 2001-12-20 | ||
FR0116556A FR2834130B1 (fr) | 2001-12-20 | 2001-12-20 | Procede d'amelioration des caracteristiques optiques de composants optoelectroniques multicouches |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003055021A2 true WO2003055021A2 (fr) | 2003-07-03 |
WO2003055021A3 WO2003055021A3 (fr) | 2004-02-12 |
Family
ID=8870753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2002/004396 WO2003055021A2 (fr) | 2001-12-20 | 2002-12-17 | Procede d'amelioration des caracteristiques optiques de composants optoelectroniques multicouches |
Country Status (5)
Country | Link |
---|---|
US (1) | US7981707B2 (fr) |
EP (1) | EP1466393A2 (fr) |
AU (1) | AU2002364846A1 (fr) |
FR (1) | FR2834130B1 (fr) |
WO (1) | WO2003055021A2 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3047549A4 (fr) * | 2013-09-16 | 2017-05-31 | Intel Corporation | Appareils optiques hybrides comprenant des guides d'ondes optiques |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2855653B1 (fr) * | 2003-05-27 | 2005-10-21 | Thales Sa | Structure amorphe de couplage optique pour detecteur d'ondes electromagnetiques et detecteur associe |
FR2863774B1 (fr) * | 2003-12-16 | 2006-03-03 | Thales Sa | Photodetecteur a concentration de champ proche |
EP1630882B1 (fr) * | 2004-08-31 | 2012-05-02 | STMicroelectronics S.r.l. | Structure nanométrique et sa méthode de fabrication |
EP1630127B1 (fr) * | 2004-08-31 | 2008-09-10 | STMicroelectronics S.r.l. | Procédé de fabrication d'une structure pour héberger des élements d'une taille de quelques nanomètres |
EP1630881B1 (fr) * | 2004-08-31 | 2011-11-16 | STMicroelectronics Srl | Structure pour recevoir des éléments nanométriques et sa méthode de fabrication |
FR2893184B1 (fr) | 2005-11-10 | 2007-12-28 | Thales Sa | Structure optique de localisation d'un champ electro-magnetique et dispositif detecteurs ou emetteurs comprenant une telle structure |
FR2933781A1 (fr) * | 2008-07-11 | 2010-01-15 | Thales Sa | Extracteur de photons a cristaux photoniques pour micro-sources optiques a fort rendement |
FR2933786B1 (fr) * | 2008-07-11 | 2010-08-20 | Thales Sa | Dispositif optique comportant un cristal photonique a base de gainp sans absorption a deux photons |
WO2010151603A1 (fr) * | 2009-06-23 | 2010-12-29 | L&P Property Management Company | Système de détection de conducteur somnolent |
US8643942B2 (en) * | 2010-10-29 | 2014-02-04 | Raytheon Company | Compensation of thermally induced refractive index distortions in an optical gain medium or other optical element |
US9450053B2 (en) | 2012-07-26 | 2016-09-20 | Massachusetts Institute Of Technology | Photonic integrated circuits based on quantum cascade structures |
US9564550B2 (en) * | 2013-10-28 | 2017-02-07 | Infineon Technologies Dresden Gmbh | Optoelectronic component, a method for manufacturing an optoelectronic component, and a method for processing a carrier |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3918996A (en) * | 1970-11-02 | 1975-11-11 | Texas Instruments Inc | Formation of integrated circuits using proton enhanced diffusion |
US3936322A (en) * | 1974-07-29 | 1976-02-03 | International Business Machines Corporation | Method of making a double heterojunction diode laser |
US3912546A (en) * | 1974-12-06 | 1975-10-14 | Hughes Aircraft Co | Enhancement mode, Schottky-barrier gate gallium arsenide field effect transistor |
US4116717A (en) * | 1976-12-08 | 1978-09-26 | The United States Of America As Represented By The Secretary Of The Air Force | Ion implanted eutectic gallium arsenide solar cell |
US4452646A (en) * | 1981-09-28 | 1984-06-05 | Mcdonnell Douglas Corporation | Method of making planar III-V compound device by ion implantation |
US4840816A (en) * | 1987-03-24 | 1989-06-20 | The United States Of America As Represented By The United States Department Of Energy | Method of fabricating optical waveguides by ion implantation doping |
US5337328A (en) * | 1992-05-08 | 1994-08-09 | Sdl, Inc. | Semiconductor laser with broad-area intra-cavity angled grating |
US5539766A (en) * | 1993-08-19 | 1996-07-23 | Matsushita Electric Industrial Co., Ltd. | Distributed feedback semiconductor laser |
US5457709A (en) * | 1994-04-04 | 1995-10-10 | At&T Ipm Corp. | Unipolar semiconductor laser |
US5600483A (en) * | 1994-05-10 | 1997-02-04 | Massachusetts Institute Of Technology | Three-dimensional periodic dielectric structures having photonic bandgaps |
US5717707A (en) * | 1995-01-03 | 1998-02-10 | Xerox Corporation | Index guided semiconductor laser diode with reduced shunt leakage currents |
US5502787A (en) * | 1995-05-22 | 1996-03-26 | At&T Corp. | Article comprising a semiconductor waveguide structure |
US5703989A (en) * | 1995-12-29 | 1997-12-30 | Lucent Technologies Inc. | Single-mode waveguide structure for optoelectronic integrated circuits and method of making same |
JP2874668B2 (ja) * | 1996-10-30 | 1999-03-24 | 日本電気株式会社 | 固体撮像装置の製造方法 |
US5936989A (en) * | 1997-04-29 | 1999-08-10 | Lucent Technologies, Inc. | Quantum cascade laser |
US5963571A (en) * | 1997-06-30 | 1999-10-05 | Nec Research Institute, Inc. | Quantum-dot cascade laser |
US6072812A (en) * | 1997-08-01 | 2000-06-06 | Lucent Technologies Inc. | Distributed feedback laser with loss coupling |
US6122299A (en) * | 1997-12-31 | 2000-09-19 | Sdl, Inc. | Angled distributed reflector optical device with enhanced light confinement |
US5963799A (en) * | 1998-03-23 | 1999-10-05 | Texas Instruments - Acer Incorporated | Blanket well counter doping process for high speed/low power MOSFETs |
FR2784514B1 (fr) | 1998-10-13 | 2001-04-27 | Thomson Csf | Procede de controle d'un laser semiconducteur unipolaire |
US6597721B1 (en) * | 2000-09-21 | 2003-07-22 | Ut-Battelle, Llc | Micro-laser |
EP1481454B1 (fr) * | 2002-03-04 | 2010-06-30 | Danmarks Tekniske Universitet | Systeme de diode laser de grande puissance |
US20060215720A1 (en) * | 2005-03-24 | 2006-09-28 | Corzine Scott W | Quantum cascade laser with grating formed by a periodic variation in doping |
-
2001
- 2001-12-20 FR FR0116556A patent/FR2834130B1/fr not_active Expired - Lifetime
-
2002
- 2002-12-17 WO PCT/FR2002/004396 patent/WO2003055021A2/fr not_active Application Discontinuation
- 2002-12-17 EP EP02801141A patent/EP1466393A2/fr not_active Withdrawn
- 2002-12-17 AU AU2002364846A patent/AU2002364846A1/en not_active Abandoned
- 2002-12-17 US US10/499,197 patent/US7981707B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3047549A4 (fr) * | 2013-09-16 | 2017-05-31 | Intel Corporation | Appareils optiques hybrides comprenant des guides d'ondes optiques |
Also Published As
Publication number | Publication date |
---|---|
WO2003055021A3 (fr) | 2004-02-12 |
US20050249473A1 (en) | 2005-11-10 |
AU2002364846A1 (en) | 2003-07-09 |
AU2002364846A8 (en) | 2003-07-09 |
EP1466393A2 (fr) | 2004-10-13 |
FR2834130A1 (fr) | 2003-06-27 |
FR2834130B1 (fr) | 2005-02-18 |
US7981707B2 (en) | 2011-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0240400B1 (fr) | Guide d'onde optique en matériau semiconducteur, laser appliquant ce guide d'onde et procédé de réalisation | |
FR2727791A1 (fr) | Dispositif a semi-conducteur optique et procede de fabrication de celui-ci | |
WO2003055021A2 (fr) | Procede d'amelioration des caracteristiques optiques de composants optoelectroniques multicouches | |
FR2737942A1 (fr) | Composant d'emission laser accordable en longueur d'onde par variation d'absorption | |
FR2647276A1 (fr) | Laser a semiconducteurs | |
EP1073169A1 (fr) | Laser à semiconducteur à réaction distribuée avec coefficient de couplage à variation continue | |
FR2775355A1 (fr) | Reflecteur optique en semi-conducteur et procede de fabrication | |
EP0887668A1 (fr) | Réflecteur de bragg en semi-conducteur et procédé de fabrication | |
FR2715770A1 (fr) | Procédé pour la réalisation d'un composant électro-optique et/ou photonique. | |
FR2786939A1 (fr) | Laser a semi-conducteur et son procede de fabrication | |
FR3117269A1 (fr) | Procédé de réalisation d’un miroir de Bragg distribué | |
EP0664588B1 (fr) | Structure semiconductrice à réseau de diffraction virtuel | |
FR2673330A1 (fr) | Procede de realisation d'un laser a semiconducteur a ruban enterre, utilisant une gravure seche pour former ce ruban, et laser obtenu par ce procede. | |
EP1990877B1 (fr) | Lasers semi-conducteur monomodes à contre-réaction répartie | |
EP1159776B1 (fr) | Systeme optoelectronique comprenant plusieurs sections a fonctions respectives couplees par couplage evanescent et procede de realisation | |
WO2000022704A1 (fr) | Procede de controle d'un laser semiconducteur unipolaire | |
EP4016763B1 (fr) | Laser comprenant un miroir de bragg distribué et procédé de réalisation | |
EP4034922B1 (fr) | Miroir de bragg et procédé de réalisation d'un miroir de bragg | |
EP0434528A1 (fr) | Procédé de réalisation d'un dispositif optoélectronique amplificateur et applications à des dispositifs optoélectroniques divers | |
FR2677499A1 (fr) | Laser semiconducteur monomodal a retroaction distribuee et son procede de fabrication. | |
FR2777710A1 (fr) | Dispositif de laser a semi-conducteur capable de reduire la perte de couplage par rapport a une fibre optique | |
FR2854469A1 (fr) | Procede de fabrication d'un dispositif optique semi-conducteur comportant une region munie d'une couche active a epaisseur variable | |
WO2025008545A1 (fr) | Puce photonique à structure hétérogène de semi-conducteur iii-v sur un deuxième semi-conducteur | |
EP2856588A2 (fr) | Laser semiconducteur optimise | |
WO2017202815A1 (fr) | Reseau de lasers a cascade quantique a antiguidage enterre dans un materiau de type iv et a emission monolobe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002801141 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002801141 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10499197 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2002801141 Country of ref document: EP |