[go: up one dir, main page]

WO2003010519A1 - Time resolution transient absorption measuring device - Google Patents

Time resolution transient absorption measuring device Download PDF

Info

Publication number
WO2003010519A1
WO2003010519A1 PCT/JP2002/007394 JP0207394W WO03010519A1 WO 2003010519 A1 WO2003010519 A1 WO 2003010519A1 JP 0207394 W JP0207394 W JP 0207394W WO 03010519 A1 WO03010519 A1 WO 03010519A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sample
optical system
optical
optical path
Prior art date
Application number
PCT/JP2002/007394
Other languages
French (fr)
Japanese (ja)
Inventor
Haruhisa Saitoh
Motoyuki Watanabe
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO2003010519A1 publication Critical patent/WO2003010519A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/636Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties

Definitions

  • the present invention relates to a time-resolved transient absorption measuring device for measuring a temporal change of a transient absorption spectrum, and more particularly to a time-resolved transient absorption measuring device capable of measuring a femtosecond order transient absorption spectrum.
  • Time-resolved transient absorption measurement which measures transient absorption in a very short time range, is known as a method of tracking the irreversible reaction as well as the process of generating and annihilating reaction intermediates in photochemical reactions such as solutions, solids, and thin films.
  • a technique disclosed in Japanese Patent Publication No. 6-178686 is known.
  • This technique uses a probe light to irradiate a sample that has been photoexcited with pulsed light, and measures the temporal change in transmitted light intensity with a streak camera to measure the temporal change in the transient absorption spectrum.
  • the sample light and the reference light can be measured simultaneously by dividing the probe light and guiding one to the irradiation position of the pump light and the other to the other position.
  • the document states that the sample light and the reference light are emitted from the light source at the same time, so that the effects of the intensity of the probe light and the fluctuation of the spectrum can be eliminated. Disclosure of the invention
  • an object of the present invention is to provide a time-resolved transient absorption measuring device capable of measuring transient absorption with high accuracy and high time resolution in a time region from femtosecond to nanosecond.
  • a time-resolved transient absorption measuring apparatus comprises: a laser light source that emits pulse light including harmonics; and a white short pulse light generation that generates white short pulse light from an output pulse of the laser light source.
  • a first optical system that guides the harmonic component output from the laser light source to the sample and irradiates it as pump light, and a mirror, a shutter, a lens, and a half mirror.
  • the half-mirror splits the white short-pulse light output from the white short-pulse light generator into two optical paths with different optical path lengths, returns the same to the same optical path, combines the light with the half mirror, and guides the sample to the sample.
  • a second optical system that sequentially irradiates the sample before and after the pump light irradiation from a direction different from the light, and an extended light of the sample in the second optical system
  • a streaking camera that is disposed on the top and that spectrally outputs light transmitted through the sample and emitted from the sample, and a streak camera that records a temporal change in light intensity output from the spectral means.
  • the white single pulse is split into two by the second optical system, and the difference in the arrival time at the sample is generated according to the difference in the optical path length of the two split optical paths, and the white light is mixed with the pump light.
  • the light that has passed through the sample before irradiation with the pump light that is, the light that has passed through the sample after light excitation, ie, the light that has passed through the sample after light excitation, is measured as reference light. Since these two lights are obtained by dividing the same white single pulse, their components are the same, and the effect of the temporal fluctuation of the light source can be eliminated.
  • the first optical system and the second optical system each consist only of a mirror, a shutter, a lens, and a half mirror, and do not use an optical fiber.
  • the reference light and the data light are introduced on the same optical axis and can be detected by one detector, the effect of the fluctuation of the white light position can be avoided, and the measurement accuracy can be reduced. It is possible to improve the degree.
  • the influence of the non-uniformity due to the position of the sample can be eliminated.
  • the second optical system adjusts the difference in arrival time of light guided to the sample via both optical paths by changing the optical path length of at least one of the divided optical paths. This makes it possible to freely set the time interval between the reference light and the data light.
  • FIG. 1 is a configuration diagram showing a preferred embodiment of the time-resolved transient absorption measurement device according to the present invention.
  • FIG. 2 is a diagram for explaining the relationship among the sample arrival time of the reference light, the pump light, and the data light in the apparatus of FIG.
  • FIG. 3 is a flowchart showing a measurement procedure in the apparatus of FIG.
  • 4A and 4B are schematic diagrams each showing a streak image in the apparatus of FIG.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a time-resolved transient absorption measurement device according to the present invention.
  • the optical system is shown in a simplified state.
  • This apparatus 100 is a device for measuring the time-resolved transient absorption of the sample 40 placed on the sample stage 4, and includes a laser light source 1, white short pulse light generating means 15, first and second optical devices.
  • the system consists of systems 2, 3, a sample table 4, a spectroscope 5 as a detection device, a streak camera 6, a television camera 7, a control and analysis device 8, and a monitor 9 for displaying analysis results.
  • the laser light source 1 is, for example, a femtosecond mode-locked pulse laser light source, and includes an output terminal 12 for outputting a fundamental wave component, and a harmonic that is a pump light for exciting the sample 40. And an output terminal 11 for outputting a component.
  • the first optical system 2 is configured by arranging a first shutter 21, mirrors 22, 23, and a lens 24 in order from the output terminal 11 side of the harmonic component.
  • the sample 40 is arranged so as to be irradiated from a predetermined direction.
  • the optical path length of the first optical system 2 from the output end 11 to the sample 40 is represented by 1 ⁇ .
  • the second optical system 3 three mirrors 31a to 31c and a half mirror 32a are arranged in order from the output end 12 side of the fundamental wave component, and on one of the branched optical paths 3A, In this order, a motorized reflector reflector 33 and mirrors 34a and 34b, which are arranged so as to be movable in the direction of arrow X by combining mirrors, are arranged at a position intersecting the other optical path 3B.
  • the half mirror 32b is placed on the surface and synthesized.
  • a second shutter 35, a sample stage 4, a slit 36, and a lens 37 are arranged in this order on the combined optical path 3C, and a spectroscope 5 is arranged on the extension of the optical path.
  • the white short-pulse light generating means 15 is arranged between the mirrors 31b and 31c of the second optical system 3, and is irradiated between the lenses 15a and 15c by irradiation of the fundamental wave component of the laser light.
  • a white short-pulse light generating material 41 b such as a nonlinear optical element for generating short-pulse light is arranged, and a filter 41 d for removing unnecessary light components is arranged at a subsequent stage.
  • the combined optical path 3C and the optical path of the first optical system are arranged so as to intersect at a predetermined angle on the sample 40.
  • the spectroscope 5 is, for example, an astigmatism correction type spectroscope that wavelength-decomposes incident light in a predetermined axial direction and outputs the light as output light.
  • the streak camera 6 time-resolves incident light with a direction orthogonal to the wavelength resolution direction of the spectrometer as a time axis direction, and outputs an image.
  • the television camera 7 has a function of acquiring this output image and converting it into an electric signal.
  • the control analysis device 8 is, for example, a personal computer, the laser light source 1, 1st shutter 2 1st, 2nd shutter 35, electric retro-reflector 33, spectroscope 5, streak camera 6, TV camera 7 Has the function of performing analysis.
  • the monitor 9 is a display device for displaying the analysis result and the like.
  • FIG. 2 is a diagram showing a temporal relationship of light guided to the sample by each optical path.
  • the light guided to the second optical system via the optical path 3B (hereinafter referred to as reference light L Ref ), the pump light L pump entering the sample 40 via the first optical system 1, and the light passing through the optical path 3A.
  • FIG. 2 is a diagram illustrating the relationship between the light guided to an optical system (hereinafter, referred to as data light L data ) and the arrival time at a sample 40.
  • the light reaches the sample 40 in the order of the reference light L Ref , the pump light L pump , and the data light L data , and also reaches the data light L data .
  • the time can be adjusted by adjusting the position of the motorized retroreflector 33.
  • FIG. 3 is a flowchart illustrating the measurement procedure
  • FIGS. 4A and 4B are schematic diagrams illustrating an example of a streak image acquired in the measurement.
  • the electric retroreflector 33 is driven to drive the optical path length L. 2.
  • step S2 any light emitted from the laser light source 1 reaches the sample stage 4 part, so that the streak image in the state where the laser light is not irradiated into the optical systems 2 and 3 of the apparatus 100 (Hereinafter, referred to as a dark current image) can be obtained (step S3).
  • the streak image of the output of the spectroscope 5 by the streak camera 6 is taken into the control analysis device 8 by the television camera 7.
  • step S4 a fundamental wave component is emitted from the output terminal 12 of the laser beam 11.
  • This light is guided to white short pulse light generating means 15 via mirrors 31a and 31b, and is incident on white short pulse light generating substance 15b via lens 15a.
  • the white short-pulse light-generating substance 15b emits a white light pulse with a pulse width of about 100 fmt in accordance with the incidence of the light (step S5).
  • the emitted white light pulse is output from the white short pulse light generating means 15 via the lens 41c and the filter 41d, is split into two by the half mirror 32a via the mirror 31c,
  • the light (reference light Lref) having passed through the optical path 3 B having a short optical path length reaches the sample stage 4 first through the half mirror 32 b and the second shutter 35. Then, the light transmitted through the sample 4 is guided to the spectroscope 5 by the slit 36 and the lens 37, wavelength-resolved, and introduced into the streak camera 6.
  • the other light (data light L data ) branched by the half mirror 32a is guided to the long optical path 3A, and the motorized retroreflector 33, the mirrors 34a and 34b are after it enters the half mirror 3 2 b, reaching the sample stage 4 portions at a Reference light L ref reaches after a predetermined time difference through the second shutter 35. Then, the light transmitted through the sample 4 is guided to the spectroscope 5 by the slit 36 and the lens 37, wavelength-resolved, and introduced into the streak camera 6.
  • the streak camera 6 time-resolves the wavelength-resolved light corresponding to the introduced reference light L ref and data light L data to output a strike image as shown in FIG. 4A. .
  • the output image is sent by the television camera 7 to the control analysis device 8 (step S6).
  • the sensitivity correction data at each wavelength (or wave number) position is calculated from the streak image corresponding to the reference light Lref and the data light L data thus obtained and the previously obtained dark current image (step S7).
  • the sample 40 is placed on the sample stage 4 (step S8), and the first shutter 21 is opened (step S9). As a result, both shutters 21 and 35 are opened. In this state, by outputting the harmonic component and the fundamental component of the laser light from the output terminals 11 and 12 of the laser light source 1, respectively, the sample is irradiated with the harmonic component and the white light pulse one after another ( Step S10).
  • the reference light L Re f having passed through the optical path 3 B of the second optical system 3 shines first input, the first pump light Lp Ump passing through the optical system 2 is incident from a different direction thereafter, Finally, the data light L data having passed through the optical path 3 A of the second optical system 3 enters. Then, the light emitted from the sample 40 and the light transmitted through the sample 40 in the meantime are wavelength-resolved by the spectroscope 5 and time-resolved by the streak camera 6, as shown in FIG. 4B. The image is captured as a streak image by the television camera 6 and sent to the control analysis device 8 (step S11).
  • the control analyzer calculates the transient absorption change of the sample 40 based on the acquired streak image data (step S12), and displays the result on the monitor 9 (step S13).
  • the measurement result may be printed using a printer.
  • the streak camera 6 by using the streak camera 6, the time position can be confirmed in the obtained streak image data, so that the measurement can be performed with high accuracy.
  • measurements with good time resolution can be performed from the femtosecond to the nanosecond level.
  • the present apparatus 100 uses the same pulse as the reference light and the data light, and further provides a time difference at the same position on the sample 40. In this case, the influence of light position intensity fluctuations and position fluctuations can be eliminated, and more accurate measurement can be performed.
  • the measurement system (spectrometer 5, streak camera 6, TV camera 7) can be configured as a single unit, the adjustment is easy, and unlike the case where reference light and data light are measured by separate measurement devices, It is possible to completely eliminate fluctuations in measurement ability due to instruments. Measurement can be performed with high accuracy.
  • the second optical system 3 is configured by a mirror / half mirror without using an optical member such as an optical fiber which may be accompanied by pulse width deformation, and by providing an optical path length difference, the pulse of the reference light and the data light is provided.
  • the width can be maintained at an extremely short pulse width, preventing its deformation and enabling measurement with a high time resolution of femtosecond level. Further, by making one optical path length of the second optical system 3 variable, the time change of transient absorption can be efficiently measured by one device.
  • white short-pulse light is generated from a fundamental wave component of laser light.
  • white short-pulse light may be generated from a harmonic component.
  • the arrangement of the white short-pulse light generating means 15 is not limited to the arrangement shown in FIG. 1, and may be arranged at any position on the laser light source 1 side from the optical path branching position in the second optical system. .
  • the time-resolved transient absorption measurement device can measure the resolved transient absorption characteristics with high accuracy and high time resolution in a time range from femtosecond to nanosecond, and can be used for biological, scientific, physical, and physical properties. It can be widely applied as a measurement device in basic science fields such as.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

A first optical system (2) is connected to the harmonic component output terminal (11) of a laser light source (1) and a second optical system (3) (including a white short-pulse beam generating means (15)) to a basic wave component output terminal (12), the second optical system (3), having two optical paths (3A, 3B) branched by a half mirror (32a), applies a reference beam and a data beam in succession to a sample (40) approximately when a pump beam is applied via the first optical system to generate a streak image obtained by subjecting the fluorescent light and transmitted light of the sample (40) to wavelength resolution and time resolution by means of a spectroscope (5) and a streak camera (6), and the image is sent to a control analyzer (8) via a TV camera (7).

Description

¾ ¾糸田»  ¾ ¾Itoda »
時間分解過渡吸収測定装置  Time-resolved transient absorption measurement device
技術分野 Technical field
本発明は、 過渡吸収スぺク トルの時間変化を測定する時間分解過渡吸収測定装 置に関し、 特にフェムト秒オーダーの過渡吸収スペクトルを測定可能な時間分解 過渡吸収測定装置に関する。  The present invention relates to a time-resolved transient absorption measuring device for measuring a temporal change of a transient absorption spectrum, and more particularly to a time-resolved transient absorption measuring device capable of measuring a femtosecond order transient absorption spectrum.
背景技術 Background art
溶液、 固体、 薄膜などの光化学反応における反応中間体の生成消滅過程といつ た不可逆反応を追跡する手法として極短時間領域における過渡吸収を測定する時 間分解過渡吸収測定が知られており、 そうした時間分解過渡吸収測定を行う装置 として特公平 6— 1 7 8 6 6号公報に開示されている技術が知られている。  Time-resolved transient absorption measurement, which measures transient absorption in a very short time range, is known as a method of tracking the irreversible reaction as well as the process of generating and annihilating reaction intermediates in photochemical reactions such as solutions, solids, and thin films. As a device for performing time-resolved transient absorption measurement, a technique disclosed in Japanese Patent Publication No. 6-178686 is known.
この技術は、 パルス光を照射して光励起した試料に、 プローブ光を照射し、 透 過した光強度の時間的変化をストリークカメラにより測定することにより、 過渡 吸収スぺク トルの時間的変化を測定するものであって、 このプローブ光を分割し て一方をポンプ光の照射位置、 他方をそれ以外の位置に導くことでサンプル光と リファレンス光を同時に測定できるようにしたものである。 そして、 サンプル光 とリファレンス光とが光源から同時に発せられたものであるため、 プローブ光の 強度、スペクトルのゆらぎの影響を排除することが可能であると記載されている。 発明の開示  This technique uses a probe light to irradiate a sample that has been photoexcited with pulsed light, and measures the temporal change in transmitted light intensity with a streak camera to measure the temporal change in the transient absorption spectrum. The sample light and the reference light can be measured simultaneously by dividing the probe light and guiding one to the irradiation position of the pump light and the other to the other position. The document states that the sample light and the reference light are emitted from the light source at the same time, so that the effects of the intensity of the probe light and the fluctuation of the spectrum can be eliminated. Disclosure of the invention
しかしなが'ら、 この装置における時間分解能はス トリークカメラの時間分解能 によって決定され、 さらにポンプ光、 プローブ光とも光ファイバを用いて遅延さ せているため、 ファイバモード分散によってパルス幅が拡大してしまい、 時間分 解能が劣化してしまう。 また、 プローブ光については群速度分散によって短波長 成分が長波長成分より遅れて計測されることになり、 時間分解能が劣化してしま う。 このため、 ストリークカメラとして高時間分解能を有するカメラを用いた場 合であってもフエムト秒〜ピコ秒単位の測定を高精度で行うことは困難であった。 そこで本発明はフェムト秒〜ナノ秒までの時間領域で高精度、 かつ高時間分解 能で過渡吸収を測定可能な時間分解過渡吸収測定装置を提供することを課題とす る。 However, the time resolution of this device is determined by the time resolution of the streak camera, and both the pump light and the probe light are delayed using optical fibers, so the pulse width is expanded by fiber mode dispersion. And the time resolution is degraded. Also, for the probe light, the short wavelength component is measured later than the long wavelength component due to group velocity dispersion, and the time resolution is degraded. For this reason, even when a camera having a high time resolution is used as a streak camera, it has been difficult to perform measurement in units of femtoseconds to picoseconds with high accuracy. Therefore, an object of the present invention is to provide a time-resolved transient absorption measuring device capable of measuring transient absorption with high accuracy and high time resolution in a time region from femtosecond to nanosecond.
上記課題を解決するため本発明に係る時間分解過渡吸収測定装置は、 高調波を 含むパルス光を発するレーザ光源と、 このレーザ光源の出力パルスから白色短パ ルス光を発生させる白色短パルス光発生手段と、 ミラー、 シャッター、 レンズか ら構成され、 レーザ光源から出力される高調波成分を試料に導いてポンプ光とし て照射する第 1光学系と、 ミラー、 シャッター、 レンズ、 ハーフミラーから構成 され、 ハーフミラーにより白色短パルス光発生手段から出力される白色短パルス 光を光路長の異なる 2つの光路へ分割したうえで同一光路に戻してハーフミラー により合成した後に試料へと導くことにより、 ポンプ光と異なる方向からポンプ 光の照射前と照射後に試料に相次いで照射する第 2光学系と、 第 2光学系の試料 の延長光軸上に配置され、 試料を透過および試料から発せられる光を分光して出 力する分光手段と、 分光手段から出力された光強度の時間的変化を記録するスト リークカメラと、 を備えることを特徴とする。  In order to solve the above-mentioned problems, a time-resolved transient absorption measuring apparatus according to the present invention comprises: a laser light source that emits pulse light including harmonics; and a white short pulse light generation that generates white short pulse light from an output pulse of the laser light source. Means, a mirror, a shutter, and a lens. A first optical system that guides the harmonic component output from the laser light source to the sample and irradiates it as pump light, and a mirror, a shutter, a lens, and a half mirror. The half-mirror splits the white short-pulse light output from the white short-pulse light generator into two optical paths with different optical path lengths, returns the same to the same optical path, combines the light with the half mirror, and guides the sample to the sample. A second optical system that sequentially irradiates the sample before and after the pump light irradiation from a direction different from the light, and an extended light of the sample in the second optical system And a streaking camera that is disposed on the top and that spectrally outputs light transmitted through the sample and emitted from the sample, and a streak camera that records a temporal change in light intensity output from the spectral means. And
このように構成すると、 白色単パルスは第 2光学系により二つに分割され、 分 割された 2光路の光路長差に応じて試料への到達時間に差を生ぜしめて、 ポンプ 光に相前後して照射することができる。 ポンプ光照射前、 つまり光励起前の試料 を通過した光はリファレンス光として、 ポンプ光照射後、 つまり光励起後の試料 を通過した光をデータ光として測定される。 この 2つの光は同一の白色単パルス を分割したものであるため、 その成分は同一であり、 光源の時間的変動の影響を 排除できる。 また、 第 1光学系、 第 2光学系はいずれもミラー、 シャッター、 レ ンズ、 ハーフミラーのみから構成され、 光ファイバを用いていないので、 パノレス の広がりや波長成分による到達時間の違いという問題が起こることがない。 そし て、 リファレンス光とデータ光とが同一の光軸に導入され、 それらを一台の検出 器で検出することができるので、 白色光位置のゆらぎの影響が回避でき、 計測精 度を向上させるこ.とが可能である。 また、 試料の異なる位置にリファレンス光と データ光とを入射させる場合と比べて試料の位置による不均一性等の影響を排除 できる。 With this configuration, the white single pulse is split into two by the second optical system, and the difference in the arrival time at the sample is generated according to the difference in the optical path length of the two split optical paths, and the white light is mixed with the pump light. Can be irradiated. The light that has passed through the sample before irradiation with the pump light, that is, the light that has passed through the sample after light excitation, ie, the light that has passed through the sample after light excitation, is measured as reference light. Since these two lights are obtained by dividing the same white single pulse, their components are the same, and the effect of the temporal fluctuation of the light source can be eliminated. In addition, the first optical system and the second optical system each consist only of a mirror, a shutter, a lens, and a half mirror, and do not use an optical fiber. Never happen. Since the reference light and the data light are introduced on the same optical axis and can be detected by one detector, the effect of the fluctuation of the white light position can be avoided, and the measurement accuracy can be reduced. It is possible to improve the degree. In addition, as compared with the case where the reference light and the data light are incident on different positions of the sample, the influence of the non-uniformity due to the position of the sample can be eliminated.
第 2光学系は、 分割光路のうち少なくとも一方の光路の光路長を変更すること により両光路を介して試料へと導かれる光の到達時間差を調整することが好まし い。 これによりリファレンス光とデータ光との時間間隔を自在に設定することが 可能となる。  It is preferable that the second optical system adjusts the difference in arrival time of light guided to the sample via both optical paths by changing the optical path length of at least one of the divided optical paths. This makes it possible to freely set the time interval between the reference light and the data light.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る時間分解過渡吸収測定装置の好適な実施形態を示す構成 図である。  FIG. 1 is a configuration diagram showing a preferred embodiment of the time-resolved transient absorption measurement device according to the present invention.
図 2は、 図 1の装置におけるリファレンス光、 ポンプ光、 データ光の試料到達 時間の関係を説明する図である。  FIG. 2 is a diagram for explaining the relationship among the sample arrival time of the reference light, the pump light, and the data light in the apparatus of FIG.
図 3は、 図 1の装置における測定手順を示すフローチャートである。  FIG. 3 is a flowchart showing a measurement procedure in the apparatus of FIG.
図 4 A、 図 4 Bは、 それぞれ図 1の装置におけるス トリーク画像を示す模式図 である。  4A and 4B are schematic diagrams each showing a streak image in the apparatus of FIG.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、添付図面を参照して本発明の好適な実施の形態について詳細に説明する。 図 1は、本発明に係る時間分解過渡吸収測定装置の概略構成を示す構成図である。 説明の理解を容易にするため、 光学系は簡略化した状態で示している。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a configuration diagram showing a schematic configuration of a time-resolved transient absorption measurement device according to the present invention. For easy understanding of the explanation, the optical system is shown in a simplified state.
本装置 1 0 0は、 試料台 4上に配置した試料 4 0の時間分解過渡吸収を測定す る装置であって、 レーザ光源 1、 白色短パルス光発生手段 1 5、 第 1および第 2 光学系 2、 3、 試料台 4、 検出装置としての分光器 5、 ス トリークカメラ 6、 テ レビカメラ 7、 制御解析装置 8、 解析結果を表示するためのモニタ 9から構成さ れている。  This apparatus 100 is a device for measuring the time-resolved transient absorption of the sample 40 placed on the sample stage 4, and includes a laser light source 1, white short pulse light generating means 15, first and second optical devices. The system consists of systems 2, 3, a sample table 4, a spectroscope 5 as a detection device, a streak camera 6, a television camera 7, a control and analysis device 8, and a monitor 9 for displaying analysis results.
レーザ光源 1は、 例えばフェムト秒モードロックパルスレーザ光源であって、 基本波成分を出力する出力端 1 2と、 試料 4 0を励起するポンプ光となる高調波 成分を出力する出力端 1 1とを有している。 The laser light source 1 is, for example, a femtosecond mode-locked pulse laser light source, and includes an output terminal 12 for outputting a fundamental wave component, and a harmonic that is a pump light for exciting the sample 40. And an output terminal 11 for outputting a component.
第 1光学系 2は、 高調波成分の出力端 1 1側から順に、 第 1シャッター 2 1、 ミラー 2 2、 2 3、 レンズ 2 4を並べて構成されており、 このポンプ光を試料台 4上に配置される試料 4 0に所定の方向から照射されるよう配置される。 以下、 出力端 1 1から試料 4 0に至るまでの第 1光学系 2の光路長を 1^で表す。  The first optical system 2 is configured by arranging a first shutter 21, mirrors 22, 23, and a lens 24 in order from the output terminal 11 side of the harmonic component. The sample 40 is arranged so as to be irradiated from a predetermined direction. Hereinafter, the optical path length of the first optical system 2 from the output end 11 to the sample 40 is represented by 1 ^.
第 2光学系 3は、 基本波成分の出力端 1 2側から順に、 3つのミラー 3 1 a〜 3 1 c、 ハーフミラー 3 2 aが並べられ、 分岐された一方の光路 3 A上には、 順 に、 ミラーを組み合わせて矢印 X方向に移動可能に配置された電動式のレト口リ フレクタ 3 3、 ミラー 3 4 a、 3 4 bが配置され、 他方の光路 3 Bと交差する位 置にハーフミラー 3 2 bが配置され、 合成される。 この合成光路 3 C上には、 順 に第 2シャッター 3 5、試料台 4、スリ ット 3 6、レンズ 3 7が配置されており、 光路の延長上に分光器 5が配置されている。  In the second optical system 3, three mirrors 31a to 31c and a half mirror 32a are arranged in order from the output end 12 side of the fundamental wave component, and on one of the branched optical paths 3A, In this order, a motorized reflector reflector 33 and mirrors 34a and 34b, which are arranged so as to be movable in the direction of arrow X by combining mirrors, are arranged at a position intersecting the other optical path 3B. The half mirror 32b is placed on the surface and synthesized. A second shutter 35, a sample stage 4, a slit 36, and a lens 37 are arranged in this order on the combined optical path 3C, and a spectroscope 5 is arranged on the extension of the optical path.
白色短パルス光発生手段 1 5は、 第 2光学系 3のミラー 3 1 bと 3 1 cの間に 配置され、 レンズ 1 5 a、 1 5 cの間にレーザ光の基本波成分照射によって白色 短パルス光を発生させる非線形光学素子などの白色短パルス光発生物質 4 1 bを 配置し、 後段に不要な光成分を除去するフィルタ 4 1 dが配置されている。 ここで、 合成光路 3 Cと第 1光学系の光路とは試料 4 0上で所定の角度で交差 するように配置されている。 以下、 出力端 1 2から試料 4 0に至るまでの第 2光 学系 2の光路 3 A側を通る光路長を L 2 で、光路 3 B側を通る光路長を L 2 2で表 す。 The white short-pulse light generating means 15 is arranged between the mirrors 31b and 31c of the second optical system 3, and is irradiated between the lenses 15a and 15c by irradiation of the fundamental wave component of the laser light. A white short-pulse light generating material 41 b such as a nonlinear optical element for generating short-pulse light is arranged, and a filter 41 d for removing unnecessary light components is arranged at a subsequent stage. Here, the combined optical path 3C and the optical path of the first optical system are arranged so as to intersect at a predetermined angle on the sample 40. Hereinafter, the optical path length through the optical path 3 A side of the second optical science system 2 from the output terminal 1 2 up to the sample 4 0 L 2, to display the optical path length through the optical path 3 B side L 2 2.
分光器 5は、 例えば、 非点収差補正型の分光器であって、 入射光を所定の軸方 向に波長分解して出力光として出力するものである。 ストリークカメラ 6は、 分 光器の波長分解方向と直交する方向を時間軸方向として入射光を時間分解して画 像出力するものである。 そして、 テレビカメラ 7はこの出力画像を取得して電気 信号に変換する機能を有する。  The spectroscope 5 is, for example, an astigmatism correction type spectroscope that wavelength-decomposes incident light in a predetermined axial direction and outputs the light as output light. The streak camera 6 time-resolves incident light with a direction orthogonal to the wavelength resolution direction of the spectrometer as a time axis direction, and outputs an image. Then, the television camera 7 has a function of acquiring this output image and converting it into an electric signal.
制御解析装置 8は例えば、 パーソナルコンピュータであって、 レーザ光源 1、 第 1シャッター 2 1、 第 2シャッター 3 5、 電動式レトロリフレクタ 3 3、 分光 器 5、 ストリークカメラ 6、 テレビカメラ 7の作動を制御するとともに、 テレビ カメラで撮影した画像を取得して所定の画像解析を行う機能を有する。 モニタ 9 は、 その解析結果等を表示するための表示装置である。 The control analysis device 8 is, for example, a personal computer, the laser light source 1, 1st shutter 2 1st, 2nd shutter 35, electric retro-reflector 33, spectroscope 5, streak camera 6, TV camera 7 Has the function of performing analysis. The monitor 9 is a display device for displaying the analysis result and the like.
ここで、 各光路の光路長の関係は、 L 2 1 1^ > 2 2となるように設定されて おり、 さらに電動式レトロリフレクタ 3 3を矢印 X方向に動かすことで、 さらに 光路長を長く設定することが可能である。 Here, the relationship between the optical path length of each optical path, L 2 1 1 ^> 2 2 and is set to be, by further moving the motorized retroreflector 3 3 in the arrow X direction, a longer optical path length It is possible to set.
図 2は、 各光路により試料に導かれる光の時間的関係を示す図である。 光路 3 Bを経て第 2光学系に導かれる光 (以下、 リファレンス光 LRefと呼ぶ。) と、 第 1 光学系 1を経て試料 4 0に入射するポンプ光 Lpump、光路 3 Aを経て第 2光学系に 導かれる光 (以下、 データ光 Ldataと呼ぶ。) の試料 4 0への到達時間の関係を説 明する図である。 FIG. 2 is a diagram showing a temporal relationship of light guided to the sample by each optical path. The light guided to the second optical system via the optical path 3B (hereinafter referred to as reference light L Ref ), the pump light L pump entering the sample 40 via the first optical system 1, and the light passing through the optical path 3A. FIG. 2 is a diagram illustrating the relationship between the light guided to an optical system (hereinafter, referred to as data light L data ) and the arrival time at a sample 40.
図 2に示されるように、本装置 1 0 0では、試料 4 0には、リファレンス光 LRef、 ポンプ光 Lpump、 データ光 Ldataの順に光が到達 るとともに、 データ光 Ldataの到 達時間を電動式レトロリフレクタ 3 3の位置調整によって調整することができる。 以下、 本装置 1 0 0の動作、 すわなち、 本装置 1 0 0を利用した試料 4 0の時 間分解過渡吸収特性の測定について具体的に説明する。 図 3は、 その測定手順を 説明するフローチャートであり、 図 4 A、 図 4 Bは、 測定において取得したスト リーク画像の一例を示す模式図である。 As shown in FIG. 2, in the present apparatus 100, the light reaches the sample 40 in the order of the reference light L Ref , the pump light L pump , and the data light L data , and also reaches the data light L data . The time can be adjusted by adjusting the position of the motorized retroreflector 33. Hereinafter, the operation of the present apparatus 100, that is, the measurement of the time-resolved transient absorption characteristics of the sample 40 using the present apparatus 100 will be specifically described. FIG. 3 is a flowchart illustrating the measurement procedure, and FIGS. 4A and 4B are schematic diagrams illustrating an example of a streak image acquired in the measurement.
まず、 試料 4 0を試料台 4に設置しない状態で (試料 4 0が液体等の場合には 試料 4 0を入れる容器のみを配置する)、電動式レトロリフレクタ 3 3を駆動して 光路長 L 2 1を所定の光路長に設定する (ステップ S l )。 First, in a state where the sample 40 is not set on the sample stage 4 (if the sample 40 is a liquid or the like, only the container for holding the sample 40 is arranged), the electric retroreflector 33 is driven to drive the optical path length L. 2. Set 1 to a predetermined optical path length (step S l).
そして、 第 1シャッター 2 1、 第 2シャッター 3 5を閉じる (ステップ S 2 )。 この状態ではレーザ光源 1から発せられる光の試料台 4部分への到達はいずれも 遮られるので、 装置 1 0 0の光学系 2、 3内へのレーザ光照射がない状態におけ るス トリーク画像 (以下、 暗電流画像と呼ぶ。) が取得できる (ステップ S 3 )。 この状態での分光器 5の出力のストリークカメラ 6によるストリーク画像がテレ ビカメラ 7により制御解析装置 8へと取り込まれる。 Then, the first shutter 21 and the second shutter 35 are closed (step S2). In this state, any light emitted from the laser light source 1 reaches the sample stage 4 part, so that the streak image in the state where the laser light is not irradiated into the optical systems 2 and 3 of the apparatus 100 (Hereinafter, referred to as a dark current image) can be obtained (step S3). In this state, the streak image of the output of the spectroscope 5 by the streak camera 6 is taken into the control analysis device 8 by the television camera 7.
次に、 第 1シャッター 2 1を閉じたまま、 第 2シャッター 3 5を開ける (ステ ップ S 4 )。 この状態で、 レーザ光 ¾1 1の出力端 1 2から基本波成分を発する。 こ の光は、 ミラー 3 1 a、 3 1 bを経て白色短パルス光発生手段 1 5に導かれ、 レ ンズ 1 5 aを介して白色短パルス光発生物質 1 5 bに入射する。 白色短パルス光 発生物質 1 5 bはこの光入射に伴い、 パルス幅百フ ムト秒程度の白色光パルス を発する (ステップ S 5 )。発せられた白色光パルスは、 レンズ 4 1 c、 フィルタ 4 1 dを介して白色短パルス光発生手段 1 5から出力され、 ミラー 3 1 cを経て ハーフミラー 3 2 aで二つに分岐され、 光路長の短い光路 3 Bを経た光 (リファ レンス光 Lref) がハーフミラー 3 2 b、 第 2シャッター 3 5を介して先に試料台 4部分へと到達する。 そして、 試料 4を透過した光がスリット 3 6、 レンズ 3 7 により分光器 5へと導かれて波長分解され、ストリークカメラ 6へと導入される。 一方、 ハーフミラー 3 2 aで分岐された他方の光 (データ光 Ldata) は、 光路長 の長い光路 3 Aへと導かれ、 電動式レトロリフレクタ 3 3、 ミラー 3 4 a、 3 4 bを経てハーフミラー 3 2 bに入射して、 第 2シャッター 3 5を介してリファレ ンス光 Lref到達後所定の時間差をおいて試料台 4部分へと到達する。 そして、 試 料 4を透過した光がスリット 3 6、 レンズ 3 7により分光器 5へと導かれて波長 分解され、 ス トリークカメラ 6に導入される。 Next, with the first shutter 21 closed, the second shutter 35 is opened (step S4). In this state, a fundamental wave component is emitted from the output terminal 12 of the laser beam 11. This light is guided to white short pulse light generating means 15 via mirrors 31a and 31b, and is incident on white short pulse light generating substance 15b via lens 15a. The white short-pulse light-generating substance 15b emits a white light pulse with a pulse width of about 100 fmt in accordance with the incidence of the light (step S5). The emitted white light pulse is output from the white short pulse light generating means 15 via the lens 41c and the filter 41d, is split into two by the half mirror 32a via the mirror 31c, The light (reference light Lref) having passed through the optical path 3 B having a short optical path length reaches the sample stage 4 first through the half mirror 32 b and the second shutter 35. Then, the light transmitted through the sample 4 is guided to the spectroscope 5 by the slit 36 and the lens 37, wavelength-resolved, and introduced into the streak camera 6. On the other hand, the other light (data light L data ) branched by the half mirror 32a is guided to the long optical path 3A, and the motorized retroreflector 33, the mirrors 34a and 34b are after it enters the half mirror 3 2 b, reaching the sample stage 4 portions at a Reference light L ref reaches after a predetermined time difference through the second shutter 35. Then, the light transmitted through the sample 4 is guided to the spectroscope 5 by the slit 36 and the lens 37, wavelength-resolved, and introduced into the streak camera 6.
ス トリークカメラ 6は、 導入されたリファレンス光 Lref、 データ光 Ldataそれぞ れに対応する波長分解光を時間分解することで、 図 4 Aに示されるようなストリ ーク画像を出力する。 出力された画像はテレビカメラ 7により制御解析装置 8へ と送られる (ステップ S 6 )。 The streak camera 6 time-resolves the wavelength-resolved light corresponding to the introduced reference light L ref and data light L data to output a strike image as shown in FIG. 4A. . The output image is sent by the television camera 7 to the control analysis device 8 (step S6).
こうして取得したリファレンス光 Lrefとデータ光 Ldataに対応したス トリーク画 像と先に取得した暗電流画像から各波長 (あるいは波数) 位置における感度補正 データを算出する (ステップ S 7 )。 次に、試料台 4上に試料 4 0を配置し(ステップ S 8 )、第 1シャッター 2 1を 開く (ステップ S 9 )。 これにより、 両方のシャッター 2 1、 3 5が開かれた状態 になる。 この状態で、 レーザ光源 1の出力端 1 1、 1 2からそれぞれレーザ光の 高調波成分と基本波成分を出力することで、 高調波成分と白色光パルスを試料に 相前後して照射する (ステップ S 1 0 )。 The sensitivity correction data at each wavelength (or wave number) position is calculated from the streak image corresponding to the reference light Lref and the data light L data thus obtained and the previously obtained dark current image (step S7). Next, the sample 40 is placed on the sample stage 4 (step S8), and the first shutter 21 is opened (step S9). As a result, both shutters 21 and 35 are opened. In this state, by outputting the harmonic component and the fundamental component of the laser light from the output terminals 11 and 12 of the laser light source 1, respectively, the sample is irradiated with the harmonic component and the white light pulse one after another ( Step S10).
試料 4 0には、 第 2光学系 3の光路 3 Bを経たリファレンス光 LRefが最初に入 射し、その後で第 1光学系 2を経たポンプ光 LpUmpが別の方向から入射し、最後に 第 2光学系 3の光路 3 Aを経たデータ光 Ldataが入射することになる。 そして、 そ の間の試料 4 0から発せられた光と試料 4 0を透過した光が分光器 5によって波 長分解され、 ス トリークカメラ 6によって時間分解されて図 4 Bに示されるよう なストリーク画像としてテレビカメラ 6によつて撮像されて、 制御解析装置 8へ と送られる (ステップ S 1 1 )。 To Sample 4 0, the reference light L Re f having passed through the optical path 3 B of the second optical system 3 shines first input, the first pump light Lp Ump passing through the optical system 2 is incident from a different direction thereafter, Finally, the data light L data having passed through the optical path 3 A of the second optical system 3 enters. Then, the light emitted from the sample 40 and the light transmitted through the sample 40 in the meantime are wavelength-resolved by the spectroscope 5 and time-resolved by the streak camera 6, as shown in FIG. 4B. The image is captured as a streak image by the television camera 6 and sent to the control analysis device 8 (step S11).
制御解析装置は取得したストリーク画像データを基にして、 試料 4 0の過渡吸 収変化を算出し (ステップ S 1 2 )、結果をモニタ 9へと表示する (ステップ S 1 3 )。 測定結果はプリンタを用いて印刷してもよい。  The control analyzer calculates the transient absorption change of the sample 40 based on the acquired streak image data (step S12), and displays the result on the monitor 9 (step S13). The measurement result may be printed using a printer.
本装置 1 0 0では、 ストリークカメラ 6を用いることで、 取得したストリーク 画像データ中で時間位置を確認することができるため、 精度良く測定を行うこと ができる。 さらにフエムト秒からナノ秒レベルまで時間分解能の良好な測定を行 うことができる。  In the present apparatus 100, by using the streak camera 6, the time position can be confirmed in the obtained streak image data, so that the measurement can be performed with high accuracy. In addition, measurements with good time resolution can be performed from the femtosecond to the nanosecond level.
また、 レーザ光源 1は、 パルスごとにそのスペク トルや強度が変動しうるが、 本装置 1 0 0では、 同一パルスをリファレンス光、 データ光として用い、 さらに 試料 4 0の同一箇所に時間差を設けて入射させるので、 光位置強度変動や位置ゆ らぎの影響を排除することができ、 より高精度の測定が行える。  In addition, although the spectrum and intensity of the laser light source 1 can vary for each pulse, the present apparatus 100 uses the same pulse as the reference light and the data light, and further provides a time difference at the same position on the sample 40. In this case, the influence of light position intensity fluctuations and position fluctuations can be eliminated, and more accurate measurement can be performed.
さらに、 計測系 (分光計 5、 ストリークカメラ 6、 テレビカメラ 7 ) が単一構 成で済むので、 その調整が容易であり、 リファレンス光、 データ光を別々の計測 機器で測定する場合と異なり、 機器による測定能の変動を完全に排除することが できるので高精度の測定が行える。 Furthermore, since the measurement system (spectrometer 5, streak camera 6, TV camera 7) can be configured as a single unit, the adjustment is easy, and unlike the case where reference light and data light are measured by separate measurement devices, It is possible to completely eliminate fluctuations in measurement ability due to instruments. Measurement can be performed with high accuracy.
そして、 第 2光学系 3を、 光ファイバ等のパルス幅変形を伴うことのある光学 部材を用いず、 ミラーゃハ一フミラーによって構成して光路長差を設けることで リファレンス光、 データ光のパルス幅を極短パルス幅に維持することができ、 そ の変形を防止して、 フェムト秒レベルの高時間分解能の測定を可能としている。 さらに、 第 2光学系 3の一方の光路長を可変とすることで、 過渡吸収の時間変 化を一台の装置で効率よく測定することができる。  Then, the second optical system 3 is configured by a mirror / half mirror without using an optical member such as an optical fiber which may be accompanied by pulse width deformation, and by providing an optical path length difference, the pulse of the reference light and the data light is provided. The width can be maintained at an extremely short pulse width, preventing its deformation and enabling measurement with a high time resolution of femtosecond level. Further, by making one optical path length of the second optical system 3 variable, the time change of transient absorption can be efficiently measured by one device.
以上の説明では、 レーザ光の基本波成分から白色短パルス光を生成する例を説 明してきたが、 高調波成分から白色短パルス光を生成してもよい。 また、 白色短 パルス光発生手段 1 5の配置は図 1に示される配置に限られるものではなく、 第 2光学系における光路分岐位置よりレーザ光源 1側であればどの位置に配置して あよい。  In the above description, an example in which white short-pulse light is generated from a fundamental wave component of laser light has been described. However, white short-pulse light may be generated from a harmonic component. Further, the arrangement of the white short-pulse light generating means 15 is not limited to the arrangement shown in FIG. 1, and may be arranged at any position on the laser light source 1 side from the optical path branching position in the second optical system. .
産業上の利用可能性 Industrial applicability
本発明に係る時間分解過渡吸収測定装置は、 フェムト秒らナノ秒に至るまでの 時間域で分解過渡吸収特性を高精度かつ高時間分解能で測定することができ、 生 物、 科学、 物理、 物性等の基礎科学分野における測定装置として広く適用可能で ある。  The time-resolved transient absorption measurement device according to the present invention can measure the resolved transient absorption characteristics with high accuracy and high time resolution in a time range from femtosecond to nanosecond, and can be used for biological, scientific, physical, and physical properties. It can be widely applied as a measurement device in basic science fields such as.

Claims

請求の範囲 The scope of the claims
1 . 高調波を含むパルス光を発するレーザ光源と、  1. A laser light source that emits pulsed light including harmonics,
前記レーザ光源の出力パルスから白色短パルス光を発生させる白色短パルス光 発生手段と、  White short pulse light generating means for generating white short pulse light from an output pulse of the laser light source,
ミラー、 シャッター、 レンズから構成され、 前記レーザ光源から出力される高 調波成分を試料に導いてポンプ光として照射する第 1光学系と、  A first optical system that includes a mirror, a shutter, and a lens, guides a harmonic component output from the laser light source to the sample, and irradiates the sample with pump light;
ミラー、 シャッター、 レンズ、 ハーフミラーから構成され、 ハーフミラーによ り前記白色短パルス光発生手段から出力される白色短パルス光を光路長の異なる It is composed of a mirror, a shutter, a lens, and a half mirror. The white short pulse light output from the white short pulse light generating means has a different optical path length by the half mirror.
2つの光路へ分割したうえで同一光路に戻してハーフミラーにより合成した後に 前記試料へと導くことにより、 前記ポンプ光と異なる方向から前記ポンプ光の照 射前と照射後に前記試料に相次いで照射する第 2光学系と、 After splitting into two optical paths, returning to the same optical path, combining by a half mirror, and guiding to the sample, the sample is successively irradiated before and after irradiation of the pump light from a direction different from the pump light. A second optical system,
前記第 2光学系の前記試料の延長光軸上に配置され、 前記試料を透過および前 記試料から発せられる光を分光して出力する分光手段と、  Spectroscopic means disposed on an extended optical axis of the sample of the second optical system, for spectrally outputting light transmitted through the sample and emitted from the sample,
前記分光手段から出力された光強度の時間的変化を記録するストリークカメラ と、  A streak camera that records a temporal change in the light intensity output from the spectroscopic means,
を備える時間分解過渡吸収測定装置。  A time-resolved transient absorption measurement device comprising:
2 . 前記第 2光学系は、 分割光路のうち少なくとも一方の光路の光路長を変更 することにより両光路を介して前記試料へと導かれる光の到達時間差を調整する ことを特徴とする請求項 1記載の時間分解過渡吸収測定装置。 2. The second optical system adjusts a difference in arrival time of light guided to the sample via both optical paths by changing an optical path length of at least one of the divided optical paths. 1. The time-resolved transient absorption measurement device according to 1.
PCT/JP2002/007394 2001-07-24 2002-07-22 Time resolution transient absorption measuring device WO2003010519A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-223439 2001-07-24
JP2001223439A JP2003035665A (en) 2001-07-24 2001-07-24 Time-resolved transient absorption measuring apparatus

Publications (1)

Publication Number Publication Date
WO2003010519A1 true WO2003010519A1 (en) 2003-02-06

Family

ID=19056778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007394 WO2003010519A1 (en) 2001-07-24 2002-07-22 Time resolution transient absorption measuring device

Country Status (2)

Country Link
JP (1) JP2003035665A (en)
WO (1) WO2003010519A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460453B2 (en) 2003-07-07 2008-12-02 Lg Electronics Inc. Recording medium, method of recording and/or reproducing speed information on a recording medium, and apparatus thereof
US7468936B2 (en) 2003-08-14 2008-12-23 Lg Electronics Co., Ltd. Recording and/or reproducing methods and apparatuses
US7542395B2 (en) 2003-07-09 2009-06-02 Lg Electronics Inc. Method of recording data on a multi-layer recording medium, recording medium, and apparatus thereof
US7577074B2 (en) 2003-08-14 2009-08-18 Lg Electronics, Inc. Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof
US7599273B2 (en) 2003-07-07 2009-10-06 Lg Electronics Inc. Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof
US7630280B2 (en) 2003-08-14 2009-12-08 Lg Electronics Inc. Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof
US7650362B2 (en) 2003-08-14 2010-01-19 Lg Electronics Inc. Information recording medium, method of configuring version information thereof, recording and reproducing method using the same, and recording and reproducing apparatus thereof
US7706230B2 (en) 2004-05-13 2010-04-27 Lg Electronics, Inc. Recording medium, read/write method thereof and read/write apparatus thereof
US7817514B2 (en) 2003-07-07 2010-10-19 Lg Electronics, Inc. Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof
CN106644408A (en) * 2016-12-13 2017-05-10 中国科学院西安光学精密机械研究所 Device and method for measuring time resolution of synchronous scanning stripe camera
CN108195761A (en) * 2018-03-06 2018-06-22 南京信息工程大学 A kind of adjustable molecule collimation experimental system of multidimensional
CN112229804A (en) * 2020-09-17 2021-01-15 中国科学院上海光学精密机械研究所 Non-coaxial transmission type ultrafast transient absorption system with temperature field regulation and control function and measurement method
CN113686782A (en) * 2021-07-09 2021-11-23 北京大学 Visible transient absorption spectrum measuring system and method
US11193825B2 (en) 2017-05-24 2021-12-07 The Penn State Research Foundation Short pulsewidth high repetition rate nanosecond transient absorption spectrometer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5865946B2 (en) 2014-05-22 2016-02-17 株式会社ユニソク Transient absorption measurement method and transient absorption measurement device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290538A (en) * 1989-04-28 1990-11-30 Hitachi Chem Co Ltd Improved time resolved infrared spectrophotometer and improved time resolved infrared spectrophotometry
JPH049641A (en) * 1990-04-27 1992-01-14 Nippon Steel Corp Simultaneous measurement method for ultrafast phenomena and low-frequency heat waves in samples
JPH04143638A (en) * 1990-10-05 1992-05-18 Hamamatsu Photonics Kk Time resolving, absorbing and measuring apparatus
JPH06174640A (en) * 1992-12-04 1994-06-24 Res Dev Corp Of Japan Transient grating spectroscopy
JPH06242079A (en) * 1993-02-19 1994-09-02 Hitachi Ltd Photoacoustic signal detection method and device
WO1997008536A1 (en) * 1995-08-25 1997-03-06 Brown University Research Foundation Ultrafast optical technique for the characterization of altered materials
JPH11281632A (en) * 1998-03-30 1999-10-15 Nippon Steel Corp Method and apparatus for measuring plastic strain ratio by laser ultrasonic method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290538A (en) * 1989-04-28 1990-11-30 Hitachi Chem Co Ltd Improved time resolved infrared spectrophotometer and improved time resolved infrared spectrophotometry
JPH049641A (en) * 1990-04-27 1992-01-14 Nippon Steel Corp Simultaneous measurement method for ultrafast phenomena and low-frequency heat waves in samples
JPH04143638A (en) * 1990-10-05 1992-05-18 Hamamatsu Photonics Kk Time resolving, absorbing and measuring apparatus
JPH06174640A (en) * 1992-12-04 1994-06-24 Res Dev Corp Of Japan Transient grating spectroscopy
JPH06242079A (en) * 1993-02-19 1994-09-02 Hitachi Ltd Photoacoustic signal detection method and device
WO1997008536A1 (en) * 1995-08-25 1997-03-06 Brown University Research Foundation Ultrafast optical technique for the characterization of altered materials
JPH11281632A (en) * 1998-03-30 1999-10-15 Nippon Steel Corp Method and apparatus for measuring plastic strain ratio by laser ultrasonic method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HURLEY DAVID H.: "Detection of ultrafast phenomena by use of a modified Sagnac interferometer", OPTICS LETTERS, vol. 24, no. 18, 1999, pages 1305 - 1307, XP000873727 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7639584B2 (en) 2003-07-07 2009-12-29 Lg Electronics Inc. Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof
US8310907B2 (en) 2003-07-07 2012-11-13 Lg Electronics Inc. Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof
US7468937B2 (en) 2003-07-07 2008-12-23 Lg Electronics Inc. Method of recording control information on a recording medium, and apparatus thereof
US7872955B2 (en) 2003-07-07 2011-01-18 Lg Electronics Inc. Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof
US7817514B2 (en) 2003-07-07 2010-10-19 Lg Electronics, Inc. Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof
US7599273B2 (en) 2003-07-07 2009-10-06 Lg Electronics Inc. Recording medium, method of configuring control information thereof, recording and/or reproducing method using the same, and apparatus thereof
US7460453B2 (en) 2003-07-07 2008-12-02 Lg Electronics Inc. Recording medium, method of recording and/or reproducing speed information on a recording medium, and apparatus thereof
US7542395B2 (en) 2003-07-09 2009-06-02 Lg Electronics Inc. Method of recording data on a multi-layer recording medium, recording medium, and apparatus thereof
US7564760B2 (en) 2003-07-09 2009-07-21 Lg Electronics, Inc. Recording medium, method of configuring disc control information thereof, recording and reproducing method using the same, and apparatus thereof
US7596064B2 (en) 2003-07-09 2009-09-29 Lg Electronics Inc. Method of recording data on a multi-layer recording medium, recording medium, and apparatus thereof
US7701817B2 (en) 2003-08-14 2010-04-20 Lg Electronics, Inc. Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof
US7650362B2 (en) 2003-08-14 2010-01-19 Lg Electronics Inc. Information recording medium, method of configuring version information thereof, recording and reproducing method using the same, and recording and reproducing apparatus thereof
US7652960B2 (en) 2003-08-14 2010-01-26 Lg Electronics, Inc. Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof
US7684292B2 (en) 2003-08-14 2010-03-23 Lg Electronics, Inc. Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof
US7630280B2 (en) 2003-08-14 2009-12-08 Lg Electronics Inc. Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof
US7701819B2 (en) 2003-08-14 2010-04-20 Lg Electronics, Inc. Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof
US7468936B2 (en) 2003-08-14 2008-12-23 Lg Electronics Co., Ltd. Recording and/or reproducing methods and apparatuses
US7577074B2 (en) 2003-08-14 2009-08-18 Lg Electronics, Inc. Recording medium, method of configuring control information thereof, recording and reproducing method using the same, and apparatus thereof
US7542391B2 (en) 2003-08-14 2009-06-02 Lg Electronics Inc. Recording and/or reproducing methods and apparatuses
US8279734B2 (en) 2004-05-13 2012-10-02 Lg Electronics Inc. Recording medium, read/write method thereof and read/write apparatus thereof
US7706230B2 (en) 2004-05-13 2010-04-27 Lg Electronics, Inc. Recording medium, read/write method thereof and read/write apparatus thereof
CN106644408A (en) * 2016-12-13 2017-05-10 中国科学院西安光学精密机械研究所 Device and method for measuring time resolution of synchronous scanning stripe camera
CN106644408B (en) * 2016-12-13 2023-01-06 中国科学院西安光学精密机械研究所 Device and method for measuring time resolution of synchronous scanning stripe camera
US11193825B2 (en) 2017-05-24 2021-12-07 The Penn State Research Foundation Short pulsewidth high repetition rate nanosecond transient absorption spectrometer
CN108195761A (en) * 2018-03-06 2018-06-22 南京信息工程大学 A kind of adjustable molecule collimation experimental system of multidimensional
CN108195761B (en) * 2018-03-06 2023-08-11 南京信息工程大学 Multi-dimensional adjustable molecular collimation experimental system
CN112229804A (en) * 2020-09-17 2021-01-15 中国科学院上海光学精密机械研究所 Non-coaxial transmission type ultrafast transient absorption system with temperature field regulation and control function and measurement method
CN112229804B (en) * 2020-09-17 2021-07-06 中国科学院上海光学精密机械研究所 Non-coaxial transmission type ultrafast transient absorption system with temperature field regulation and control function and measurement method
CN113686782A (en) * 2021-07-09 2021-11-23 北京大学 Visible transient absorption spectrum measuring system and method

Also Published As

Publication number Publication date
JP2003035665A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
EP1784624B1 (en) Calibration for spectroscopic analysis
WO2003010519A1 (en) Time resolution transient absorption measuring device
US6944204B2 (en) Laser-induced breakdown spectroscopy with second harmonic guide light
WO2012029286A1 (en) Spectrometry device and spectrometry method
CN112823279B (en) Microspectroscopy device and microspectroscopy method
JPH0915156A (en) Spectroscopic measuring method and measuring device
CN109358036B (en) Laser-induced breakdown spectroscopy signal error correction system and method
US10048196B2 (en) Cavity enhanced spectroscopy using off-axis paths
EP3438730A1 (en) Pulse light generation device, light irradiation device, optical processing device, optical response measurement device, microscope device, and pulse light generation method
US7817270B2 (en) Nanosecond flash photolysis system
US10184835B2 (en) High dynamic range infrared imaging spectroscopy
CN107764764B (en) A Visible Excitation-Broadband Infrared Detection Ultrafast Spectroscopy Device
US6204926B1 (en) Methods and system for optically correlating ultrashort optical waveforms
US20190154505A1 (en) Spectrometric measuring device
JP3761734B2 (en) Optical measurement method and apparatus
CN107076666B (en) Atomic absorption photometer and atomic absorption measuring method
JPH0694605A (en) Spectral photographing device using pulse electromagnetic wave source and interferometer
JP2007218860A (en) Strain measuring apparatus and strain measuring method
Cook et al. Optical fiber-based single-shot picosecond transient absorption spectroscopy
WO2016210444A1 (en) Generation of high energy mid-infrared continuum laser pulses
JP2000055809A (en) Raman microspectroscope and method therefor
WO2002016913A1 (en) Instrument for measuring lifetime of fluorescence
JP2004340833A (en) Optical measuring device
WO2021038743A1 (en) Spectroscopic measurement device
JP2007101370A (en) Terahertz spectral device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase