[go: up one dir, main page]

WO2003004870A1 - Eolienne offshore et son procede de construction - Google Patents

Eolienne offshore et son procede de construction Download PDF

Info

Publication number
WO2003004870A1
WO2003004870A1 PCT/FR2002/002361 FR0202361W WO03004870A1 WO 2003004870 A1 WO2003004870 A1 WO 2003004870A1 FR 0202361 W FR0202361 W FR 0202361W WO 03004870 A1 WO03004870 A1 WO 03004870A1
Authority
WO
WIPO (PCT)
Prior art keywords
pylon
support
wind turbine
base
turbine according
Prior art date
Application number
PCT/FR2002/002361
Other languages
English (en)
Inventor
Jacques Ruer
Edmond Coche
Jean-Paul Gregoire
Christophe Portenseigne
Xavier Rocher
Original Assignee
Saipem Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saipem Sa filed Critical Saipem Sa
Priority to US10/482,510 priority Critical patent/US20040169376A1/en
Priority to EP02760380A priority patent/EP1404969A1/fr
Publication of WO2003004870A1 publication Critical patent/WO2003004870A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • E02D27/425Foundations for poles, masts or chimneys specially adapted for wind motors masts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/22Foundations specially adapted for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0056Platforms with supporting legs
    • E02B2017/0073Details of sea bottom engaging footing
    • E02B2017/0086Large footings connecting several legs or serving as a reservoir for the storage of oil or gas
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0091Offshore structures for wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/60Assembly methods
    • F05B2230/61Assembly methods using auxiliary equipment for lifting or holding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/915Mounting on supporting structures or systems on a stationary structure which is vertically adjustable
    • F05B2240/9151Mounting on supporting structures or systems on a stationary structure which is vertically adjustable telescopically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/916Mounting on supporting structures or systems on a stationary structure with provision for hoisting onto the structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to wind turbines installed offshore, in particular at sea, to the support structures forming part of these wind turbines, and to the methods of manufacturing and installing these wind turbines.
  • the technical field of the invention is that of the manufacture, transport and installation of wind turbines for producing electrical energy, more particularly offshore turbines of very large capacity, intended to be installed at sea, more particularly off the coast and in large numbers, to form wind fields.
  • a modern wind turbine both terrestrial and marine, generally comprises a motor with several blades and with a horizontal axis, as well as an electric generator coupled to the motor, which are fixed to the upper end of a vertically elongated support such as a mast or pylon.
  • the increase in the power of a wind generator is accompanied in particular by an increase in its mass as well as the height of the structure supporting it.
  • the invention is particularly applicable, that is to say without limitation, to wind turbines comprising a generator whose power is situated in a range going from 100kw to 10 Mw; the mass of such a generator can reach or exceed 100 or 200 tonnes; the length of a pylon supporting this generator can be of the order of 50 to
  • the construction of onshore wind turbines is generally carried out using conventional lifting means of the crane type, the pylon being placed on a foundation, the generator then being installed at the top of the pylon.
  • the installation of high capacity onshore wind turbines requires cranes with very long booms, as well as considerable lifting capacity.
  • Such cranes are difficult to move and install, and require, to comply with road gauges, to be dismantled in several elements. For example, a 350-ton crane with a 90m boom requires 9 convoys, 4 of which are of exceptional size; moreover, the assembly of the crane requires several days and the disassembly requires as much.
  • An objective of the invention is to facilitate the installation of a wind turbine on its production site, in particular on a submerged site.
  • An objective of the invention is to provide a wind turbine that is easier to install at sea.
  • An object of the invention is to provide a generator and / or wind turbine motor support, a wind turbine, a method of transport and a method of installing wind turbines, which are improved and / or which remedy, in part at least, to the disadvantages of known wind turbines and installation method.
  • the elongated support making it possible to secure a wind turbine generator to a foundation or base, comprises two parts which, at least until installation of the wind turbine on a production site, are mounted mobile one with respect to the other, between at least a first position where said support has a picked up configuration and a first length (or first greater longitudinal dimension), and a second position where said support has a so-called deployed configuration and a second length (second largest dimension) whose value is greater than that of said first length.
  • Said support in the collected configuration thus facilitates manufacture, since the maximum height required for the lifting devices is considerably reduced.
  • the invention also facilitates transport of the wind turbine between a first site on which an assembly of its main constituents is carried out, which can in particular be a terrestrial site or a shallow submerged site, and a second site on which the wind turbine is installed definitive, which can in particular be a submerged site at a depth greater than that of the first site; the invention also facilitates the erection of the wind turbine on the second site - for energy production -, which is obtained by causing on this second site a relative movement of the mobile parts of the support so as to pass the support of the position picked up in the deployed position.
  • said deployable support comprises means for mutual guidance of said mobile parts, facilitating and guiding their movement from the picked up position to the deployed position.
  • each of said parts of the support is of elongated shape, and said parts are movable in translation, by mutual sliding, so that a deployable support is obtained which is simple to manufacture.
  • said support comprises (and / or essentially consists of) a telescopic pylon, the pylon comprising a lower part of elongated shape and an upper part of elongated shape, said lower and upper parts being sliding one relative to each other, and partly at least nested one inside the other.
  • said support or pylon further comprises means for erecting the support or pylon to cause, at least in part, the passage from the picked up position to the deployed position of the support, by mutual displacement of said parts of the support.
  • erection means may include traction means which may comprise at least one cable or equivalent deformable filiform link, means for securing one end of the link to a first of said parts of the support, and guide means, d 'support or winding of said link - such as a pulley or a winch - which are secured to a second of said two parts of the support.
  • the erection means may also include pushing means capable of contributing to the deployment of the support, in particular pushing means by hydraulic actuation.
  • said lower part of the support or pylon comprises a first sealed hollow tubular body closed off by a first sealed transverse wall, which is preferably located in the vicinity of the lower end of said lower part. ; in addition, this tubular body is of suitable shape and dimensions so that at least a lower portion of said part upper of the support or pylon can slide inside said body; said upper part of the support or pylon comprises a second tubular body, preferably hollow, also sealed and also closed by a second sealed wall; said first tubular body thus delimits an elongated cavity, preferably cylindrical or frustoconical; said first body is further provided with means for introducing a fluid or a paste into said cavity receiving said second sealed tubular body, and is disposed substantially vertically; said fluid can essentially consist of water taken from the installation site of the wind turbine; by filling said cavity with said fluid or paste, said second body is then subjected to an ascending vertical force resulting from the thrust (of Archimedes) exerted by
  • said thrust means may comprise means for introducing a working fluid (or motor paste) under pressure into said cavity, as well as sealing means making it possible to prevent or limit a leak of said working fluid by passing through the residual annular space existing between the internal face of the wall of said first body and the external face of the wall of said second body; this makes it possible to use said first body as a cylinder of a jack, and to use a part of said second body as a piston of said jack: the pressure exerted by said working fluid present in said cavity, on the walls of said second body, causes the second body to slide inside the first body, and thus makes it possible to deploy said support or pylon.
  • said support or pylon is essentially metallic, being obtained by end-to-end assembly of several cylindrical sections produced by rolling and welding of sheet steel.
  • the invention applies in particular to wind turbines comprising a foundation or base made from aggregates, in particular a hollow foundation or base, - sealed and compartmentalized, made at least in concrete.
  • the lower part of the support or pylon is anchored in the foundation in order to obtain a connection by embedding of these elements.
  • the invention resides in a method of constructing a wind turbine comprising a wind motor and a generator, a telescopic support or pylon supporting the motor and / or the generator, and a base supporting the support or pylon, which includes the following operations: - the base is constructed,
  • the support or pylon is deployed using erection means integral with and / or partly incorporated in the support or pylon, in particular those defined above.
  • the invention consists in using a fluid or pasty composition for deploying a wind turbine support, in particular a support defined above.
  • said composition is chosen from the group of compositions consisting of a composition comprising seawater, a composition comprising cement, a composition comprising baryte, and said composition is introduced under pressure into said support or pylon. wind turbine.
  • the displacement of the base secured to the support or pylon is carried out in part at least by sea, by pushing or pulling the base which is partly at least submerged; for this purpose, use is preferably made of floats integral with the base and / or the support or pylon, which contribute to the buoyancy of the assembly and which are at least partially separated from the wind turbine, once the latter in place.
  • Figures 2 ⁇ and 3 show, in side view, the wind turbine of Figure 1 installed on site, the telescopic pylon being respectively retracted and deployed in final configuration.
  • a work vessel receives the lifting equipment being dismantled.
  • Figure 4 shows, in side view section, the use of drum hoists and guide means of two mutually movable parts of the pylon.
  • FIG. 7 represents, in section seen from the side, sealing devices provided between the cylindrical body of a lower pylon part and the cylindrical body of an upper pylon part which is slidably mounted inside said part lower.
  • Figures 8, 9, and 10 illustrate successive stages of the partial lifting of the upper part of the pylon by the Archimedes thrust applying to a lower portion of the upper part of the pylon.
  • Maintaining the telescopic pylon 3a, 3b in the retracted position lowers the center of gravity of the wind turbine, because not only the dead weight of the upper part of the pylon 3b is closer to the base 2, but the load head, consisting of the wind turbine 4 itself, which weighs on the order of 100 to 200 tonnes, is lowered accordingly.
  • ballast 7 made up of heavy aggregates, such as iron ore, sand or any other product whose density is much higher than that of seawater.
  • the top 93 of the lower part 3a of the pylon is equipped with a working platform 8 on which are installed several winches 9 which allow the lifting of the upper part 3b of the pylon and of the wind turbine itself 4.
  • a for example, an assembly with sufficient stability for towing consists of:
  • the resulting p-a is 1.1 m, therefore greater than the limit, which makes the whole suitable for being towed at sea for installation.
  • FIGS 1 to 3 schematically represent the steps for installing the wind turbine and its base 2 at its final location in the following sequence:
  • ballast for example iron ore or sand taken near the site, - the additional floats 5a, 5b are detached from the base 2.
  • the base 2 is shown full of ballast, the float 5b is ballasted, while the float 5a (not shown), also filled with sea water, was removed and recovered for the installation of another wind turbine (not shown).
  • FIG. 3 represents the wind turbine installed at sea, in the final configuration after the telescopic (upper) part of the pylon has been deployed by means of the winches 9 associated with lifting cables not shown.
  • the two parts of the pylon were made integral by bolting or by welding, so as to create a continuity of the pylon by embedding.
  • the lifting winches 9 can be dismantled and lowered to a work vessel 11 by means of a sling 10 installed (ashore) on the lower part of the pylon.
  • FIGS 4 to 7 illustrate alternative embodiments of the means for deploying the telescopic pylon by hydraulic thrust and / or traction by cable, as well as tubular structures of the parts of the pylon and of their reciprocal guide means; in Figures 4, 5, 7, only an upper portion of a lower pylon section and a lower portion of an upper pylon section complementary to said lower section are shown.
  • Figure 4 is a partial sectional view of a lower part 3a of the pylon, associated with a side view of an upper part 3b of the pylon, during the lifting procedure of this last part which is equipped at its top (not shown) of the wind turbine engine and generator.
  • the upper half-pylon 3b is equipped at its lower part with a transverse plate 15 of high rigidity integral with a structure 16, tubular or not, having great rigidity -and comprising at its periphery, in the lower and upper part, friction pads 17a-17b guiding said structure 16 along the internal wall of the lower half-pylon 3a.
  • the length of said guide structure 16 is preferably greater than 1.5 times the average diameter of the lower half-pylon, so as to minimize the forces, at the level of the pads, generated by bending in the pylon.
  • Drum winches 9 were pre-installed on the ground during manufacture, on the platform 8 secured to the lower half-pylon 3a by means of structural reinforcements 8a. On each of the winches is wound a cable 19 guided by a deflection pulley 20, and one end of which is fixed by a connection 18 to the plate 15.
  • a rigid plate 21 in the form of a flange is welded at the head of the upper half-pylon 3b ; it has a central bore whose diameter is greater than the diameter of the upper half-pylon, and a series of orifices 22 distributed, uniformly or not, at its inner periphery.
  • the lifting cables 19 can pass freely through these holes, and when the plates 15 and 22 are in contact, at the end of the lifting phase of the upper part 3b, they are firmly secured to each other using bolts (not shown) installed through the holes drilled in the upper plate 21 and corresponding orifices, not shown, produced during manufacture in the lower plate 15.
  • the fastening members 18 advantageously play the role of centering rod during the final approach phase of the two said flanges by sliding along the axis 82, which has the effect of bringing the respective orifices of the two flanges 15 and 21 face to face, thus facilitating the final assembly locking in position the two parts of the pylon.
  • a radial annular space of the order of 10 to 20 cm is generally necessary; consequently, in the case of cylindrical half-pylons 3a, 3b of circular section, the lower half-pylon 3a will have an internal diameter greater by at least 20 to 40 cm, than the external diameter of the upper half-pylon 3b.
  • a complementary guidance system is installed above the platform 8, so as to avoid contact between the internal bore of the flange 21 and the external wall of the pylon 3b during the lifting phase; it consists of several pads 26 or integral rollers, by means of a highly rigid structure 25, of the platform 8 or directly of the half-pylon 3a.
  • Figures 5 and 6 illustrate, respectively in section in side view and in cross section, the case of a lower half-pylon 3a of conical shape.
  • the guidance for the mutual sliding of the parts 3a, 3b of the pylon is then ensured by pads 17a - 17b integral with the structure 16 and collaborating with rectilinear profiles 30 integral with the internal wall 86 of the half-pylon 3a; ' the profiles 30 extend parallel to the axis 82 thus reconstituting the equivalent of a cylindrical guide.
  • the four pads 17 are U-shaped so as to prevent the rotation of the upper half-pylon inside the lower half-pylon, and so as to always remain opposite the corresponding profiles 30.
  • the four sections 30 are advantageously replaced by a single tube whose axis coincides with the axis of the cone and extending from the bottom of the lower half-pylon, to the plate upper 21.
  • Said tube is integral with the half-pylon 3a, preferably at regular intervals, so as to give the assembly optimum geometry and rigidity.
  • step 9 made up of hydraulic cylinders with traversing axis.
  • Such jacks are supplied by a hydraulic unit (not shown) at the orifice 31 and are commonly used in the lifting of engineering structures, such as bridge decks. Being known to those skilled in the art, they will not be developed in more detail here.
  • Cable 19a, 19b crossing the linear winch 9 is stretched below said winch, the upper strand 19b being loose, is simply connected to the top of the upper half-pylon 3b, at the wind turbine (not shown).
  • the cylinders being extremely compact, their disassembly at the end of installation, as well as the recovery of the lifting cables are all the easier.
  • the wind turbine is shown in side view above the plane AA-BB, and is shown in section below said plane.
  • the hatched part 51-52 represents the wet volume causing Archimedes' push, the result of which is marked F.
  • seawater By replacing seawater with a denser product, for example a sludge consisting of barytes in suspension in water, we obtain a fluid compound whose density can reach 2.5 to 3 compared to seawater , the lift level reached will then be substantially in the same ratio.
  • a denser product for example a sludge consisting of barytes in suspension in water
  • FIG. 11 represents a variant of the gravity base, comprising reinforcements 60 in the lower part of the pylon.
  • An access ladder 61 connects the surface of the water to the assembly platform 8, at which the access door 62 is located.
  • the lower part of the pylon can be ballasted with heavy aggregates to increase stability from the whole ; alternatively when this volume is only filled with seawater, anticorrosive additives can be added so as to avoid any degradation in time of the structure, and this, throughout the lifetime of the wind turbine, which can reach and exceed 20 years.
  • FIG. 12 represents a side view of a wind turbine and in section view its gravity base provided with a provisional complementary buoyancy element consisting of a cofferdam 100 preinstalled during manufacture on the base 2, the connection between said cofferdam and said base being watertight at 101.
  • This additional buoyancy provides throughout the towing phase increased stability and allows the installation operation to be carried out on site by ballasting the base under the best possible safety conditions.
  • the upper part of the cofferdam is advantageously reinforced by beams 103 connecting the edge of said cofferdam to the barrel of the mast 3, at the level a reinforced area 104 of said mast.
  • similar reinforcement beams will advantageously be added at intermediate levels, for example at 5m and 10m from the base, in the case of a cofferdam with a total height of 15m.
  • Said cofferdam 100 is advantageously produced by assembling several circular sectors, for example six, eight or twelve sectors, so as to facilitate their dismantling after final installation of the wind turbine.
  • care will have been taken to assemble said sectors according to, their vertical generator in a perfectly sealed manner to avoid possible leaks and thus maintain the best buoyancy during the towing phases. and installation.
  • the present invention has been described mainly in the context of an offshore wind turbine, but the pylon made in two telescopic sections has a considerable advantage in the installation of conventional wind turbines on land, because the lifting equipment required will be much less powerful than the simple fact that the maximum working height will be appreciably divided by two and that the most important load to handle is generally the generator proper, associated with its hub and blades.
  • the present invention has been described on the basis of the production of electricity, but we remain in the spirit of the invention when we seek to convert wind energy into any type of energy, for example by compressing a gas or fluid for export or transform it on site, or by electrolyzing water to produce hydrogen and oxygen.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Wind Motors (AREA)

Abstract

La présente invention est relative aux éoliennes instalées au large des côtes, en particulier en mer, aux structures de support faisant partie de ces éoliennes, et au procédés de fabrication et d'installation de ces éoliennes. Le domaine technique de l'invention est celui de la fabrication, du transport et de l'installation d'éoliennes de production d'énergie électrique, plus particulièrement au large des côtes et en grand nombre, pour former des champs d'éoliennes. L'éolienne (1) selon l'invention comporte un moteur à vent (4b, 4c) et un support ou pylône déployable téléscopique supportant le moteur, et une embase (2) gravitaire supportant le support ou pylône.

Description

Eolienne offshore et son procédé de construction
La présente invention est relative aux éoliennes installées au large des côtes, en particulier en mer, aux structures de support faisant partie de ces éoliennes, et aux procédés de fabrication et d'installation de ces éoliennes.
Le domaine technique de l'invention est celui de la fabrication, du transport et de l'installation d'éoliennes de production d'énergie électrique, plus particulièrement d'éoliennes offshore de très grande capacité, destinées à être installées en mer, plus particulièrement au large des côtes et en grand nombre, pour former des champs d'éoliennes.
Alors que des moteurs à vent terrestres sont construits depuis plusieurs siècles, la construction d'éoliennes en mer est beaucoup plus récente.
Une eolienne moderne, tant terrestre que marine, comporte généralement un moteur à plusieurs pales et à axe horizontal, ainsi qu'un générateur électrique accouplé au moteur, qui sont fixés à l'extrémité supérieure d'un support allongé verticalement tel qu'un mât ou pylône.
Dans le but de diminuer le coût de l'énergie eolienne et d'augmenter le rendement des générateurs, on fabrique des générateurs de plus en plus puissants que l'on installe de façon groupée pour former un champ ou ferme éolien(ne).
L'augmentation de la puissance d'un générateur éolien s'accompagne notamment d'une augmentation de sa masse ainsi que de la hauteur de la structure le supportant.
L'invention s'applique particulièrement, c'est-à-dire non limitativement, aux éoliennes comportant un générateur dont la puissance est située dans une plage allant de 100kw à 10 Mw ; la masse d'un tel générateur peut atteindre ou dépasser 100 ou 200 tonnes ; la longueur d'un pylône supportant ce générateur peut être de l'ordre de 50 à
100 mètres, et la masse du pylône peut être située dans une plage allant de 100 à 500 tonnes ; on comprend donc que la construction de telles éoliennes présente des difficultés. La construction d'éoliennes à terre est en général effectuée à l'aide de moyens de levage conventionnels de type grue, le pylône étant mis en place sur une fondation, la génératrice étant installée ensuite au sommet du pylône. L'installation d'éoliennes terrestres de forte capacité nécessite des grues possédant des flèches de grande longueur, ainsi qu'une capacité de levage considérable. De telles grues sont difficiles à déplacer et à installer, et nécessitent, pour respecter les gabarits routiers, d'être démontées en plusieurs éléments. A titre d'exemple, une grue de 350 tonnes munie d'une flèche de 90m nécessite 9 convois dont 4 de format exceptionnel ; de plus, le montage de la grue nécessite plusieurs jours et le démontage en requiert autant.
L'installation d'une eolienne dont l'embase ou fondation est immergée à une profondeur faible - qui est inférieure à 10 mètres d'eau - présente des difficultés supplémentaires, surtout lorsque le site d'installation est distant d'un rivage de quelques kilomètres ; on peut alors utiliser des matériels de levage habituellement utilisés sur terre, que l'on transporte sur le site d'installation et que l'on dispose provisoirement sur des structures reposant au fond de l'eau.
L'installation d'une eolienne en mer plus profonde présente encore des difficultés supplémentaires, même si des pontons-grues présentant des capacités de charge considérables peuvent être utilisés pour l'installation. Cependant, lesdits pontons-grues doivent pouvoir opérer en mer ouverte, ce qui réduit considérablement le nombre d'équipements disponibles et nécessite en général de mobiliser un ponton-grue très loin du site d'installation, ce qui conduit à des coûts rédhibitoires pour la rentabilité des projets. De plus, de tels pontons-grues sont en général réservés de longue date pour les développements de champs pétroliers offshore, les phases critiques d'installation étant en général concentrées exclusivement en période de beau temps, donc en même temps que les périodes souhaitables pour les éoliennes offshore.
Un objectif de l'invention est de faciliter l'installation d'une eolienne sur son site de production, en particulier sur un site immergé.
Un objectif de l'invention est de proposer une eolienne plus simple à installer en mer.
Un objectif de l'invention est de proposer un support de générateur et/ou de moteur d'éolienne, une eolienne, un procédé de transport et un procédé d'installation d'éoliennes, qui soient améliorés et/ou qui remédient, en partie au moins, aux inconvénients des éoliennes et procédé d'installation connus.
Selon un premier aspect de l'invention, le support allongé permettant de solidariser un générateur d'éolienne à une fondation ou embase, comporte deux parties qui, au moins jusqu'à installation de l'éolienne sur un site de production, sont montées mobiles l'une par rapport à l'autre, entre au moins une première position où ledit support présente une configuration ramassée et une première longueur (ou première plus grande dimension longitudinale), et une deuxième position où ledit support présente une configuration dite déployée et une deuxième longueur (deuxième plus grande dimension) dont la valeur est supérieure à celle de ladite première longueur. Ledit support en configuration ramassée facilite ainsi la fabrication, car la hauteur maximale requise pour les engins de levage est considérablement réduite. Il facilite aussi le transport de l'éolienne entre un premier site sur lequel est effectué un assemblage de ses principaux constituants, qui peut en particulier être un site terrestre ou un site immergé à faible profondeur, et un deuxième site sur lequel l'éolienne est installée de façon définitive, qui peut en particulier être un site immergé à une profondeur supérieure à celle du premier site ; l'invention facilite également l'érection de l'éolienne sur le deuxième site - de production d'énergie -, qui est obtenue en provoquant sur ce deuxième site un mouvement relatif des parties mobiles du support de façon à faire passer le support de la position ramassée à la position déployée.
De préférence, ledit support déployable comporte des moyens de guidage mutuel desdites parties mobiles, facilitant et guidant leur mouvement de la position ramassée à la position déployée.
De préférence encore, chacune desdites parties du support est de forme allongée, et lesdites parties sont mobiles en translation, par coulissement mutuel, de sorte que l'on obtient un support déployable simple à fabriquer. Selon un mode encore préféré de réalisation, ledit support comporte (et/ou consiste essentiellement en) un pylône téléscopique, le pylône comportant une partie inférieure de forme allongée et une partie supérieure de forme allongée, lesdites parties inférieure et supérieure étant coulissantes l'une par rapport à l'autre, et en partie au moins emboîtées l'une dans l'autre. De préférence, ledit support ou pylône comporte en outre des moyens d'érection du support ou pylône pour provoquer, en partie au moins, le passage de la position ramassée à la position déployée du support, par déplacement mutuel desdites parties du support.
Ces moyens d'érection peuvent comporter des moyens de traction qui peuvent comporter au moins un câble ou un lien filiforme deformable équivalent, des moyens de solidarisation d'une extrémité du lien à une première desdites parties du support, et des moyens de guidage, d'appui ou d'enroulement dudit lien - tels qu'une poulie ou un treuil - qui sont solidarisés à une deuxième desdites deux parties du support.
Les moyens d'érection peuvent également comporter des moyens de poussée aptes à contribuer au déploiement du support, en particulier des moyens de poussée par actionnement hydraulique.
A cet effet, et selon un mode préféré de réalisation, ladite partie inférieure du support ou pylône comporte un premier corps tubulaire creux étanche obturé par une première paroi transversale étanche, qui est de préférence située au voisinage de l'extrémité inférieure de ladite partie inférieure ; en outre, ce corps tubulaire est de forme et dimensions adaptées pour qu'une portion inférieure au moins de ladite partie supérieure du support ou pylône puisse coulisser à l'intérieur dudit corps ; ladite partie supérieure du support ou pylône comporte un deuxième corps tubulaire, de préférence creux, également étanche et également obturé par une deuxième paroi étanche ; ledit premier corps tubulaire délimite ainsi une cavité allongée de préférence cylindrique ou tronconique ; ledit premier corps est en outre muni de moyen d'introduction d'un fluide ou d'une pâte dans ladite cavité recevant ledit deuxième corps tubulaire étanche, et est disposé sensiblement verticalement ; ledit fluide peut être essentiellement constitué par de l'eau prélevée sur le site d'installation de l'éolienne ; en remplissant ladite cavité dudit fluide ou pâte, ledit deuxième corps est alors soumis à une force verticale ascendante résultant de la poussée (d'Archimède) exercée par le fluide sur ses parois, qui peut contribuer à son déplacement par rapport au premier corps et par conséquent au déploiement du support ou pylône ; à cet effet, il est intéressant d'utiliser une pâte ou un fluide de masse volumique plus élevée que celle de l'eau, tel(le) que de la baryte, du coulis de ciment... Ledit deuxième corps tubulaire de ladite partie supérieure du support ou pylône est de préférence creux, car il comporte avantageusement un escalier interne d'accès à la plateforme supérieure de la génératrice, ainsi que l'essentiel des équipements électriques de contrôle de l'éolienne.
Alternativement ou en complément de ces moyens de poussée hydraulique passive (poussée d'Archimède), lesdits moyens de poussée peuvent comporter des moyens pour introduire un fluide moteur (ou pâte . motrice) sous pression dans ladite cavité, ainsi que des moyens d'étanchéité permettant d'empêcher ou limiter une fuite dudit fluide moteur par passage dans l'espace annulaire résiduel existant entre la face interne de la paroi dudit premier corps et la face externe de la paroi dudit deuxième corps ; ceci permet d'utiliser ledit premier corps comme un cylindre d'un vérin, et d'utiliser une partie dudit deuxième corps comme un piston dudit vérin : la pression exercée par ledit fluide moteur présent dans ladite cavité, sur des parois dudit deuxième corps, provoque le coulissement du deuxième corps à l'intérieur du premier corps, et permet ainsi de déployer ledit support ou pylône. De préférence, la hauteur (ou longueur) dudit premier corps tubulaire et le diamètre
(ou plus grande dimension transversale) du premier corps sont respectivement supérieurs à la hauteur et au diamètre du deuxième corps, de sorte qu'en position ramassée, ledit deuxième corps peut s'escamoter en grande partie à l'intérieur du premier corps.
De préférence, ledit support ou pylône est essentiellement métallique, étant obtenu par assemblage bout à bout de plusieurs tronçons cylindriques réalisés par roulage et soudage de tôle d'acier. L'invention s'applique en particulier aux éoliennes comportant une fondation ou embase réalisée à partir de granulats, en particulier une fondation ou embase creuse,- étanche et compartimentée, réalisée en partie au moins en béton.
Dans ce cas, la partie inférieure du support ou pylône est ancrée dans la fondation afin d'obtenir une liaison par encastrement de ces éléments.
Selon un autre aspect, l'invention réside en un procédé de construction d'une eolienne comportant un moteur à vent et un générateur, un support ou pylône téléscopique supportant le moteur et/ou le générateur, et une embase supportant le support ou pylône, qui comporte les opérations suivantes : - on construit l'embase,
- on solidarise une partie inférieure du support ou pylône à l'embase,
- on emboîte au moins une partie supérieure du support ou pylône supportant le moteur et/ou le générateur dans ladite partie inférieure de façon à ce que le support ou pylône présente une configuration ramassée, puis : - on déplace l'embase et le support ou pylône jusqu'à atteindre un site d'installation de l'éolienne, puis :
- on installe l'embase en position définitive,
- on déploie le support ou pylône en utilisant des moyens d'érection solidaires et/ou en partie incorporés au support ou pylône, en particulier ceux définis ci-avant. Selon un autre aspect, l'invention consiste à utiliser une composition fluide ou pâteuse pour déployer un support d'éolienne, en particulier un support défini ci-avant. •
De préférence ladite composition est choisie parmi le groupe de compositions consistant en une composition comportant de l'eau de mer, une composition comportant du ciment, une composition comportant de la baryte, et ladite composition est introduite sous pression dans ledit support ou pylône d'éolienne.
L'invention permet d'éviter l'usage, sur le site de production (d'installation de l'éolienne), de moyens de levage de grande capacité.
Selon un mode de mise en œuvre préférée, le déplacement de l'embase solidaire du support ou pylône s'effectue en partie au moins par voie maritime, par poussée ou traction de l'embase qui est en partie au moins immergée ; à cet effet, on utilise de préférence des flotteurs solidaires de l'embase et/ou du support ou pylône, qui contribuent à la flottabilité de l'ensemble et qui sont en partie au moins désolidarisés de l'éolienne, une fois celle-ci en place.
L'invention s'applique particulièrement à la construction d'éoliennes sur un site immergé où la profondeur d'eau est au moins égale à 10 mètres, et peut atteindre 50 ou
100 mètres ; dans ce cas notamment, lorsque l'embase solidaire du support ou pylône a été déplacée jusqu'à la verticale du site d'implantation de l'éolienne, on provoque une diminution de la flottabilité de l'ensemble de façon à immerger progressivement l'embase et une partie au moins de la partie inférieure du support ou pylône, et on déploie progressivement le support ou pylône ; durant ces opérations, certains desdits flotteurs sont de préférence utilisés pour diminuer la flottabilité et permettre l'immersion ; à cet effet, ils sont désolidarisés de l'embase et/ou du support ou pylône, ou bien ils sont progressivement neutralisés par remplissage d'eau par exemple ; certains autres desdits flotteurs sont de préférence utilisés pour guider et/ou contrôler l'immersion de la structure (embase et support ou pylône) ; à cet effet, on peut le cas échéant faire varier la longueur de la liaison qui les solidarise à cette structure.
Bien que l'embase puisse être maintenue immergée au-dessus du fond des eaux (embase « flottante »), l'invention s'applique particulièrement au cas où l'embase est immergée jusqu'à reposer sur le fond ; de préférence dans ce cas, elle est alors remplie d'un matériau dense de façon à former une embase gravitaire. D'autres avantages et caractéristiques de l'invention apparaissent dans la description suivante qui se réfère aux dessins annexés, et qui illustre sans aucun caractère limitatif des modes préférentiels de réalisation de l'invention.
La figure 1 représente, en vue de côté, une eolienne montée sur une embase gravitaire partiellement remplie de lest, en cours de remorquage vers son site d'installation, le mât téléscopique étant rétracté.
Les figures 2^et 3 représentent, en vue de côté, l'éolienne de la figure 1 installée sur site, le pylône téléscopique étant respectivement rétracté et déployé en configuration définitive. Sur la figure 3, un navire de travail reçoit les équipements de levage en cours de démontage. La figure 4 représente, en coupe vue de côté, l'utilisation de treuils de levage à tambour et de moyens de guidage de deux parties mutuellement déplaçables du pylône.
La figure 5 représente, en coupe vue de côté, l'utilisation de moyens de levage constitués de treuils linéaires pas à pas, installés sur une partie inférieure de pylône de forme conique (évasée vers le bas). La figure 6 est la vue en coupe transversale (selon VI-VI) de la figure 5, au niveau des organes de guidage mutuel.
La figure 7 représente, en coupe vue de côté, des dispositifs d'étanchéité prévus entre le corps cylindrique d'une partie inférieure de pylône et le corps cylindrique d'une partie supérieure de pylône qui est montée coulissante à l'intérieur de ladite partie inférieure.
Les figures 8, 9, et 10 illustrent des étapes successives du levage partiel de la partie supérieure du pylône par la poussée d'Archimède s'appliquant sur une portion inférieure de la partie supérieure du pylône.
La figure 1 1 représente une variante de réalisation de l'embase gravitaire, comportant des renforts dans la partie inférieure du pylône. Les figures 12 et 13 représentent une variante de réalisation de l'embase gravitaire comportant un élément flottant complémentaire provisoire sous la forme d'un batardeau, respectivement en phase de remorquage et en phase finale de ballastage sur site.
Les figures 1 à 4 représentent en vue de côté une eolienne offshore 1 en cours de mise en place, comportant une embase 2 et un pylône 3 constitué d'une partie inférieure 3a encastrée dans ladite embase, et d'une partie supérieure 3b de diamètre externe 80 inférieur au diamètre interne 81 (figure 4) de la partie inférieure 3a. Les deux parties tubulaires 3a et 3b du pylône peuvent coulisser selon leur axe longitudinal commun 82, sensiblement vertical, grâce à un système de guidage similaire à celui représenté figures 5 et 6 ; le pylône téléscopique est représenté en position rétractée figures 1 , 2 et 8. Au sommet de la partie supérieure 3b du pylône est installé la partie active 4 de l'éolienne comportant une génératrice de courant électrique 4a solidaire du moteur à vent constitué d'un arbre 4b rotatif selon un axe horizontal supportant trois pales 4c.
La stabilité de l'éolienne lors de son remorquage en mer et de sa mise en place sur le site de production, est le point le plus critique de toute la phase d'installation. En effet, pour éviter que l'ensemble ne chavire, il est impératif, selon les règles de l'art, de maintenir la position du centre de poussée d'Archimède au-dessus du centre de gravité de la structure globale, à une distance de celui-ci qui , selon la règle dite du'p-a, doit être supérieure à 1 m pour assurer une stabilité acceptable. La règle du p-a étant connue de l'homme de l'art dans le domaine de la construction navale ne sera pas développée plus en détails ici.
Le maintien du pylône téléscopique 3a, 3b en position rétractée permet d'abaisser le centre de gravité de l'éolienne, car non seulement le poids propre de la partie supérieure du pylône 3b se trouve plus près de l'embase 2, mais la charge de tête, constituée de l'éolienne 4 proprement dite, laquelle pèse de l'ordre de 100 à 200 tonnes, se trouve abaissée d'autant.
Bien que la stabilité verticale (avec une valeur convenable du p-a) puisse être obtenue sans recourir à un mât téléscopique, les dimensions de l'embase seraient alors considérablement augmentées, ce qui conduirait à un coût rédhibitoire et augmenterait considérablement les difficultés et les risques lors du remorquage de l'éolienne. La flottabilité propre de l'embase et la stabilité de l'ensemble est avantageusement augmentée par des flotteurs supplémentaires 5a-5b fixés de préférence dans la partie haute de l'embase 2, de manière à déplacer le centre de poussée d'Archimède vers le haut, lesdits flotteurs étant rendus solidaires de l'embase 2 au moyen d'attaches 6.
D'une manière similaire, on améliore la stabilité en abaissant le centre de gravité de l'ensemble en chargeant avantageusement la partie basse de l'embase 2 au moyen de lest 7 constitué de granulats pesants, tels du minerai de fer, du sable ou de tout autre produit dont la densité est largement supérieure à celle de l'eau de mer.
Le sommet 93 de la partie inférieure 3a du pylône est équipé d'une plateforme de travail 8 sur laquelle sont installés plusieurs treuils 9 qui permettent d'effectuer le levage de la partie supérieure 3b du pylône et de l'éolienne proprement dite 4. A titre d'exemple, un ensemble présentant une stabilité suffisante pour le remorquage est constitué de :
- un moteur générateur 4 de 100 tonnes,
- un demi-pylône supérieur 3b de 2.6m de diamètre, de 35 m de longueur en position déployée et pesant 80 tonnes, - un demi-pylône inférieur 3a de 3.6m de diamètre, encastré dans l'embase et la traversant intégralement, mesurant 65 m de longueur et pesant 150 tonnes,
- une embase 2 en béton de section transversale de forme circulaire de 22m de diamètre, et de 14m de hauteur, représentant une masse de béton de 2650 tonnes, et une poussée d'Archimède de 4600 tonnes, - un lest 7 de 1600 tonnes de sable ou minerai de fer,
- quatre flotteurs 5 de flottabilité unitaire 60 m3.-
Le p-a résultant est de 1.1 m, donc supérieur à la limite, ce qui rend l'ensemble propre à être remorqué en pleine mer en vue de son installation.
Les figures 1 à 3 représentent schématiquement les étapes d'une installation de l'éolienne et de son embase 2 à son emplacement définitif selon la séquence suivante :
- on remorque depuis un site 85 de préfabrication et d'assemblage en eaux peu profondes des principaux constituants de l'éolienne jusqu'à la verticale du point cible, à l'aide d'un navire (non représenté), le pylône étant en configuration ramassée, et l'embase étant immergée, - on remplit l'embase principale 2 à l'eau de mer 83, et l'éolienne est posée sur le fond 84,
- on remplit partiellement les flotteurs 5a, 5b à l'eau de mer,
- on remplit l'embase 2 à l'aide de lest, par exemple du minerai de fer ou du sable prélevé à proximité du site, - on détache les flotteurs additionnels 5a, 5b de l'embase 2.
Sur la figure 2, l'embase 2 est représentée pleine de lest, le flotteur 5b est ballasté, alors que le flotteur 5a (non représenté), lui aussi rempli d'eau de mer, a été décroché et récupéré pour l'installation d'une autre eolienne (non représentée).
La figure 3 représente l'éolienne installée en mer, en configuration finale après que la partie téléscopique (supérieure) du pylône ait été déployée au moyen des treuils 9 associés à des câbles de levage non représentés. Les deux parties du pylône ont été rendues solidaires par boulonnage ou par soudage, de manière à créer une continuité du pylône par encastrement. Après déploiement du pylône, les treuils de levage 9 peuvent être démontés et descendus vers un navire de travail 11 au moyen d'une bigue 10 installée (à terre) sur la partie basse du pylône. Les figures 4 à 7 illustrent des variantes de réalisation des moyens de déploiement du pylône téléscopique par poussée hydraulique et/ou traction par câble, ainsi que des structures tubulaires des parties du pylône et de leurs moyens de guidage réciproques ; sur les figures 4, 5, 7, seules sont représentées une portion supérieure d'un tronçon inférieur de pylône et une portion inférieure d'un tronçon supérieur de pylône complémentaire dudit tronçon inférieur.
La figure 4 est une vue en coupe partielle d'une partie inférieure 3a de pylône, associée à une vue de côté d'une partie supérieur 3b du pylône, pendant la procédure de relevage de cette dernière partie qui est équipée à son sommet (non représenté) du moteur et du générateur de l'éolienne. Le demi-pylône supérieur 3b est équipé à sa partie inférieure d'une platine 15 transversale de forte rigidité solidaire d'une structure 16, tubulaire ou non, présentant une grande rigidité -et comportant à sa périphérie, en partie basse et haute, des patins de frottement 17a-17b assurant le guidage de ladite structure 16 le long de la paroi interne du demi-pylône inférieur 3a. La longueur de ladite structure 16 de guidage est de préférence supérieure à 1.5 fois le diamètre moyen du demi-pylône inférieur, de manière à minimiser les efforts, au niveau des patins, engendrés par la flexion dans le pylône. Des treuils à tambour 9 ont été pré-installés à terre lors de la fabrication, sur la plateforme 8 solidarisée au demi-pylône inférieur 3a grâce à des renforts de structure 8a. Sur chacun des treuils est enroulé un câble 19 guidé par une poulie de renvoi 20, et dont une extrémité est fixée par une liaison 18 à la platine 15. Une platine rigide 21 en forme de bride est soudée en tête du demi-pylône supérieur 3b ; elle présente un alésage central dont le diamètre est supérieur au diamètre du demi-pylône supérieur, et une série d'orifices 22 répartis, uniformément ou non, à sa périphérie intérieure. Ainsi, les câbles de levage 19 peuvent passer librement à travers ces trous, et lorsque les platines 15 et 22 sont en contact, en fin de phase de relevage de la partie supérieure 3b, elles sont fermement solidarisées entre elles à l'aide de boulons (non représentés) installés à travers les orifices percés dans la platine supérieure 21 et d'orifices correspondants, non représentés, réalisés lors de la fabrication dans la platine inférieure 15. Les organes d'accrochage 18 jouent avantageusement le rôle de pige de centrage lors de la phase finale d'approche des deux dites brides par coulissement selon l'axe 82, ce qui a pour effet de mettre face à face les orifices respectifs des deux brides 15 et 21 , facilitant ainsi le montage final verrouillant en position les deux parties du pylône.
Pour autoriser le passage des câbles entre les demi-pylônes supérieur et inférieur et pour rendre possible la mise en place des boulons de fixation des brides 15 et 21 , un espace annulaire radial de l'ordre de 10 à 20cm est généralement nécessaire ; en conséquence, dans le cas de demi-pylônes 3a, 3b cylindriques de section circulaire, le demi-pylône inférieur 3a aura un diamètre interne supérieur de 20 à 40cm au moins, au diamètre externe du demi-pylône supérieur 3b.
Un système de guidage complémentaire est installé au-dessus de la plateforme 8, de manière à éviter le contact entre l'alésage interne de la bride 21 et la paroi externe du pylône 3b durant la phase de relevage ; il est constitué de plusieurs patins 26 ou rouleaux solidaires, par l'intermédiaire d'une structure à forte rigidité 25, de la plateforme 8 ou directement du demi-pylône 3a.
Les figures 5 et 6 illustrent , respectivement en coupe en vue de côté et en section transversale, le cas d'un demi-pylône inférieur 3a de forme conique. Le guidage pour le coulissement mutuel des parties 3a, 3b du pylône est alors assuré par des patins 17a - 17b solidaires de la structure 16 et collaborant avec des profilés rectilignes 30 solidaires de la paroi interne 86 du demi-pylône 3a ;'les profilés 30 s'étendent parallèlement à l'axe 82 reconstituant ainsi l'équivalent d'un guidage cylindrique. Sur la vue en coupe 6, les quatre patins 17 sont en forme de U de manière à empêcher la rotation du demi-pylône supérieur à l'intérieur du demi-pylône inférieur, et de manière à toujours rester en face des profilés correspondants 30.
Représentés au nombre de quatre sur la figure 6, les quatre profilés 30 sont avantageusement remplacés par un seul tube dont l'axe coïncide avec l'axe du cône et s'étendant depuis le bas du demi-pylône inférieur, jusqu'à la platine supérieure 21. Ledit tube est solidaire du demi-pylône 3a, de préférence à intervalles réguliers, de manière à donner à l'ensemble une géométrie et une rigidité optimales.
Sur la figure 5 le relevage est réalisé à l'aide de treuils linéaires pas à pas 9 constitués de vérins hydrauliques à axe traversant. De tels vérins sont alimentés par une centrale hydraulique (non représentée) au niveau de l'orifice 31 et sont utilisés de manière courante dans le levage d'ouvrages d'art, tels des tabliers de ponts. Etant connus de l'homme de l'art, ils ne seront pas développés plus en détail ici. Le câble 19a, 19b traversant le treuil linéaire 9 est tendu en dessous dudit treuil, le brin supérieur 19b étant lâche, est simplement relié au sommet du demi-pylône supérieur 3b, au niveau de l'éolienne (non représentée). Les vérins étant extrêmement compacts, leur démontage en fin d'installation, ainsi que la récupération des câbles de levage sont facilités d'autant. La figure 7 représente l'opération de levage réalisée en utilisant le demi-pylône inférieur 3a comme corps de vérin et la structure rigide de guidage 16 du demi-pylône supérieur 3b comme piston. Un joint 40 à lèvres larges assure l'étanchéité entre le piston 16 et la paroi interne 41 du demi-pylône inférieur 3a. En pompant de l'eau de mer depuis le bas de l'embase dans la cavité 87 délimitée par le pied du demi-pylône inférieur 3a, que l'on aura muni d'un fond parfaitement étanche, on relève aisément l'ensemble du demi-pylône supérieur 3b équipé de l'éolienne en tête. La pression nécessaire à ce relevage est faible, car la section des demi-pylônes est importante. Les pompes d'incendie existant à bord d'un navire d'intervention (tel que 11 figure 3) donnent une pression de 0.8 à 1 MPa, ce qui est suffisant pour effectuer l'opération complète de relevage du demi-pylône supérieur ; selon le débit refoulé par cette pompe, le déploiement peut ainsi être effectué en deux ou trois heures.
A titre d'exemple, dans la configuration d'éolienne décrite précédemment, l'ensemble mobile incluant le demi-pylône supérieur nécessite une pression de 0,25 MPa au niveau du piston pour effectuer le relevage. Les figures 8, 9 et 10 illustrent l'utilisation de la poussée d'Archimède pour effectuer de manière simplifiée une partie du relevage de la superstructure 3b, 4 de l'éolienne 1.
Dans les trois figures, l'éolienne est représentée en vue de côté au-dessus du plan AA-BB, et est représentée en coupe en dessous dudit plan.
Lors du transport et de l'installation, la cavité tubulaire délimitée par les parois du demi-pylône inférieur 3a est vide d'eau, et l'extrémité inférieure du demi-pylône supérieur 3b repose sur le fond étanche 88 du corps tubulaire du demi-pylône inférieur 3a. Le demi-pylône supérieur a été rendu étanche de manière à ce que l'eau ne pénètre pas à l'intérieur ; de la même manière, la structure de guidage est étanche. Aucun joint d'étanchéité, tel le joint 40 (figure 7), n'est installé en bas de ladite structure 16 de guidage et les patins de guidage 17a-17b laissent passer l'eau. Dès que l'on remplit d'eau de mer la cavité (telle que 87 figure 7) délimitée par le demi-pylône inférieur, la poussée d'Archimède s'applique sur la portion inférieure mouillée du demi-pylône supérieur et de la structure 16 de guidage, et a pour conséquence d'effectuer le relevage de la partie supérieure 3b, dès lors que la poussée verticale dirigée vers le haut, est supérieure au poids propre de l'ensemble mobile, auquel s'ajoutent les efforts de frottement dans la structure. A cet effet, comme illustré figure 8, on met en communication par un orifice 50 prévu dans la paroi délimitant la cavité tubulaire 87 du demi-pylône inférieur 3a, au moyen d'une vanne non représentée, la mer avec l'intérieur du demi-pylône inférieur
3a. La partie hachurée 51-52 représente le volume mouillé provoquant la poussée d'Archimède, dont la résultante est repérée F.
Lorsque la force F est supérieure à la force P dirigée vers le bas et correspondant à l'ensemble constitué du poids propre du demi-pylône supérieur, de l'éolienne 4 et des frottements, il en résulte un soulèvement général dudit ensemble, jusqu'à ce que la force F dirigée vers le haut s'équilibre avec la force P dirigée vers le bas, comme représenté sur la figure 9.
Si l'on continue à remplir le demi-pylône inférieur 3a à l'aide, par exemple, d'une pompe du réseau d'incendie du navire d'intervention 11 , connectée à l'orifice 50, jusqu'à atteindre le niveau de la plate-forme 8 au niveau du plan BB, l'ensemble s'équilibre comme représenté sur la figure 10. En utilisant ainsi la poussée d'Archimède, une grande partie de l'opération de relevage est effectuée de manière simple et rapide. La fin du relevage est alors, par exemple, effectuée au moyen des treuils à câble, linéaire ou à tambour, sur une distance très limitée.
En remplaçant l'eau de mer par un produit plus dense, par exemple une boue constituée par de la baryte en suspension dans l'eau, on obtient un composé fluide dont la densité peut atteindre 2.5 à 3 par rapport à l'eau de mer, le niveau de relevage atteint sera alors sensiblement dans le même rapport.
A titre d'exemple, dans la configuration d'éolienne décrite précédemment pour expliciter le p-a, l'ensemble mobile du demi-pylône supérieur 3b et de l'éolienne 4 remontent, sous l'effet de la poussée d'Archimède, de 5 m dans le cas de la figure 9 et de 30 m dans le cas de la figure 10.
Si le remplissage du demi-pylône inférieur est effectué avec un béton, un mortier ou du coulis de ciment, la résistance du mât à la houle est sensiblement améliorée après la prise du ciment. La figure 11 représente une variante de l'embase gravitaire, comportant des renforts 60 dans la partie inférieure du pylône. Une échelle d'accès 61 relie la surface de l'eau à la plateforme 8 d'assemblage, au niveau de laquelle se trouve la porte d'accès 62. La partie inférieure du pylône peut être ballastée avec des granulats lourds pour augmenter la stabilité de l'ensemble ; alternativement lorsque ce volume est seulement rempli d'eau de mer, on peut ajouter des additifs anticorrosion de manière à éviter toute dégradation dans le temps de la structure, et ce, pendant toute la durée de vie de l'éolienne, laquelle peut atteindre et dépasser 20 années.
La figure 12 représente en vue de côté une eolienne et en vue de coupe son embase gravitaire munie d'un élément de flottabilité complémentaire provisoire constitué d'un batardeau 100 préinstallé lors de la fabrication sur l'embase 2, la liaison entre ledit batardeau et ladite embase étant étanche en 101. Cette flottabilité complémentaire fournit pendant toute la phase de remorquage une stabilité accrue et permet d'effectuer l'opération d'installation sur site par ballastage de l'embase dans les meilleures conditions de sécurité.
La figure 13 représente ladite embase en fin d'installation, après ballastage complet de l'embase et remplissage partiel 102 dudit batardeau.
Pour assurer la stabilité du batardeau lorsqu'il est soumis à la houle et au courant lors du remorquage et lors du ballastage, la partie supérieure du batardeau est avantageusement renforcée par des poutres 103 reliant le bord dudit batardeau au fût du mât 3, au niveau d'une zone renforcée 104 dudit mât. Dans le cas de batardeaux de grande hauteur, on rajoutera avantageusement des poutres de renfort similaires à des niveaux intermédiaires, par exemple à 5m et à 10m de l'embase, dans le cas d'un batardeau de 15m de hauteur totale.
Ledit batardeau 100 est avantageusement réalisé par assemblage de plusieurs secteurs circulaires, par exemple six, huit ou douze secteurs, de manière à faciliter leur démontage après installation définitive de l'éolienne. Lors de la mise en place du batardeau sur l'emb'ase 2, on aura pris soin d'assembler lesdits secteurs selon, leur génératrice verticale de manière parfaitement étanche pour éviter les fuites éventuelles et ainsi conserver la meilleure flottabilité pendant les phases de remorquage et d'installation.
La présente invention a été décrite principalement dans le cadre d'une eolienne offshore, mais le pylône réalisé en deux tronçons telescopiques présente un avantage considérable dans l'installation des éoliennes conventionnelles à terre, car les engins de levage nécessaires seront beaucoup moins puissants du simple fait que la hauteur maximale de travail sera sensiblement divisée par deux et que la charge la plus importante à manutentionner est en général la génératrice proprement dite, associée à son moyeu et aux pales.
La présente invention a été décrite sur la base de deux tronçons de pylône téléscopique, mais dans certains cas, on considérera avantageusement trois tronçons ou plus, lesdits tronçons se télescopant l'un l'autre, de manière successive.
La présente invention a été décrite sur la base de la production d'électricité, mais on reste dans l'esprit de l'invention dès lors que l'on cherche à convertir l'énergie du vent en tout type d'énergie, par exemple en comprimant un gaz ou un fluide en vue de l'exporter ou de le transformer sur place, ou encore en electrolysant de l'eau pour produire de l'hydrogène et de l'oxygène.

Claims

REVENDICATIONS
I . Eolienne (1) comportant un moteur à vent (4b, 4c) et un support ou pylône déployable supportant le moteur, caractérisée en ce qu'elle comprend une embase (2) gravitaire supportant le support ou pylône.
2. Eolienne selon la revendication 1 , dans laquelle l'embase gravitaire est creuse, étanche et compartimentée, et en partie au moins réalisée en béton.
3. Eolienne selon la revendication 1 ou 2, dans laquelle l'embase comporte des moyens de liaison avec des moyens (5a, 5b, 100) de flottaison.
4. Eolienne selon la revendication 3, dans laquelle l'embase comporte des moyens de liaison étanche (101) avec un batardeau (100) surmontant l'embase.
5. Eolienne selon la revendication 4 dans laquelle le batardeau est relié au support ou pylône par des moyens (103) de liaison tels que des poutres.
6. Eolienne selon la revendication 4 ou 5 dans laquelle le batardeau comporte plusieurs parties ou secteurs assemblé(e)s entre eux (elles) de façon étanche.
7. Eolienne selon l'une quelconque des revendications 1 à 6 comportant en outre des moyens de verrouillage du support ou pylône en position déployée.
8. Eolienne selon l'une quelconque des revendications 1 à 7 dans laquelle l'embase (2) est immergée à une profondeur au moins égale à 10 mètres.
9. Eolienne selon l'une quelconque des revendications 1 à 8 comportant un moteur à vent associé à un générateur électrique (4a) dont la puissance est située dans une plage allant de 100 kW à 10 MW.
10. Eolienne selon l'une quelconque des revendications 1 à 9 comportant un moteur à vent dont l'axe est sensiblement horizontal.
I I . Eolienne selon l'une quelconque des revendications 1 à 10 dans laquelle l'embase (2) gravitaire contient un lest (7) et repose sur le fond (84) des eaux, et dont le sommet (93) de la partie inférieure du pylône est émergé.
12. Eolienne selon l'une quelconque des revendications 1 à 11 dans laquelle le support ou pylône déployable comporte au moins deux parties (3a, 3b) mobiles l'une par rapport à l'autre entre une configuration ramassée et une configuration déployée, de sorte qu'il est téléscopique.
13. Eolienne selon l'une quelconque des revendications 1 à 12 dans laquelle le support ou pylône comporte une partie inférieure (3a) de forme allongée et une partie supérieure (3b) de forme allongée, lesdites parties inférieures et supérieures étant montées coulissantes l'une par rapport à l'autre et en partie au moins emboîtées l'une dans l'autre, et qui comporte en outre des moyens d'érection du support ou pylône.
14. Eolienne selon la revendication 13, dans laquelle lesdits moyens d'érection comportent des moyens de traction comportant un lien (19) deformable tel qu'un câble, des moyens (18) de solidarisation d'une extrémité du lien à une première des parties mobiles du support ou pylône, ainsi que des moyens (9, 20) de guidage, d'appui, de traction et/ou d'enroulement dudit lien, qui sont solidaires d'une deuxième desdites parties mobiles du support ou pylône.
15. Eolienne selon la revendication 13 ou 14, dans laquelle lesdits moyens d'érection comportent des moyens de poussée ou de traction hydraulique.
16. Eolienne l'une quelconque des revendications 1 à 15, dans laquelle une partie inférieure (3a) du support ou pylône comporte un premier corps tubulaire étanche obturé par une première paroi (88) étanche à l'intérieur duquel peut coulisser une portion inférieure d'une partie supérieure (3b) du support ou pylône.
17. Eolienne selon la revendication 16, dans laquelle ladite partie supérieure
(3b) du support ou pylône comporte un deuxième corps tubulaire étanche obturé par une deuxième paroi étanche (15), et dans lequel ledit premier corps est muni de moyens (50) d'introduction d'un fluide ou d'une pâte dans une cavité (87) allongée délimitée par ce premier corps, et qui comporte en outre des moyens (40) d'étanchéité adaptés pour empêcher ou limiter une fuite d'un fluide moteur introduit dans ladite cavité par passage entre lesdits premier et deuxième corps.
18. Procédé de construction d'une eolienne (1) comportant un moteur à vent
(4b, 4c) et de préférence un générateur (4a), un support ou pylône déployable supportant le moteur et, le cas échéant, le générateur, et une embase (2) supportant le support ou pylône, qui comporte successivement les opérations suivantes :
- on construit l'embase,
- on solidarise une partie inférieure (3a) du support ou pylône à l'embase, - on emboîte au moins une partie supérieure (3b) du support ou pylône supportant le moteur et/ou le générateur dans ladite partie inférieure de façon à ce que le support ou pylône présente une configuration ramassée, puis :
- on déplace l'embase et le support ou pylône jusqu'à atteindre un site d'installation de l'éolienne, puis :
- on installe l'embase en position définitive,
- on déploie le support ou pylône en utilisant des moyens d'érection solidaires et/ou en partie au moins incorporés à l'éolienne et en particulier au support ou pylône.
19. Procédé selon la revendication 18, dans lequel le déplacement de l'embase solidaire du support ou pylône s'effectue en partie au moins par voie maritime, par poussée ou traction de l'embase qui est en partie au moins immergée.
20. Procédé selon la revendication 19 dans lequel on utilise des flotteurs (5a, 5b) ou batardeaux (100) solidaires de l'embase et/ou du support ou pylône, qui contribuent à la flottabilité de l'ensemble et qui sont en partie au moins désolidarisés de l'éolienne, une fois celle-ci en place.
21. Procédé selon l'une quelconque des revendications 18 à 20, dans lequel, lorsque l'embase solidaire du support ou pylône a été déplacée jusqu'à la verticale du site d'implantation de l'éolienne, on provoque une diminution de la flottabilité de l'ensemble de façon à immerger l'embase et une partie au moins de la partie inférieure du support ou pylône, et on déploie le support ou pylône en exerçant une traction et/ou une poussée entre lesdites parties inférieure et supérieure du support ou pylône.
22. Utilisation d'une composition fluide ou pâteuse pour déployer le support ou pylône déployable d'une eolienne, en particulier une eolienne selon l'une quelconque des revendications 1 à 17.
23. Utilisation selon la revendication 22 dans laquelle ladite composition est choisie parmi le groupe de compositions consistant en une composition comportant de l'eau de mer, une composition comportant du ciment, une composition comportant de la baryte, et dans laquelle ladite composition est introduite sous pression dans ledit support ou pylône d'éolienne.
PCT/FR2002/002361 2001-07-06 2002-07-05 Eolienne offshore et son procede de construction WO2003004870A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/482,510 US20040169376A1 (en) 2001-07-06 2002-07-05 Offshore wind turbine and method for making same
EP02760380A EP1404969A1 (fr) 2001-07-06 2002-07-05 Eolienne offshore et son procede de construction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0108977A FR2827015B1 (fr) 2001-07-06 2001-07-06 Eolienne offshore et son procede de construction
FR01/08977 2001-07-06

Publications (1)

Publication Number Publication Date
WO2003004870A1 true WO2003004870A1 (fr) 2003-01-16

Family

ID=8865190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/002361 WO2003004870A1 (fr) 2001-07-06 2002-07-05 Eolienne offshore et son procede de construction

Country Status (4)

Country Link
US (1) US20040169376A1 (fr)
EP (1) EP1404969A1 (fr)
FR (1) FR2827015B1 (fr)
WO (1) WO2003004870A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087494A3 (fr) * 2003-04-04 2004-12-16 Logima V Svend Erik Hansen Navire pour le transport d'eoliennes, procedes de deplacement d'eolienne et eolienne pour centrale eolienne en mer
EP1634998A1 (fr) * 2004-09-08 2006-03-15 Maierform Maritime Technology GmbH Transport et fondation d'unités fonctionelles, en particulier d'éoliennes marines.
US7234409B2 (en) 2003-04-04 2007-06-26 Logima V/Svend Erik Hansen Vessel for transporting wind turbines, methods of moving a wind turbine, and a wind turbine for an off-shore wind farm
WO2009010771A2 (fr) * 2007-07-18 2009-01-22 Chambers Peter Ronaldo Montages
US7508088B2 (en) 2005-06-30 2009-03-24 General Electric Company System and method for installing a wind turbine at an offshore location
ES2338746A1 (es) * 2010-03-22 2010-05-11 Fcc Construccion S.A. Equipo para autoelevacion/autodescenso de turbinas de aero-generacion.
WO2009154472A3 (fr) * 2008-06-20 2010-05-20 Seatower As Structure de support destinée à être utilisée dans l'industrie des parcs éoliens maritimes
WO2011006526A1 (fr) * 2009-07-13 2011-01-20 Vsl International Ag Ensemble tour télescopique et procédé associé
WO2011007065A1 (fr) 2009-07-15 2011-01-20 Saipem S.A. Eolienne maritime à pylône ajusté verticalement par calage.
WO2011007066A1 (fr) 2009-07-15 2011-01-20 Saipem S.A. Bateau de type catamaran utile pour l'assemblage, le transport et la dépose au fond de la mer d'éolienne maritime
CN102011714A (zh) * 2010-10-08 2011-04-13 中交第一航务工程局有限公司 海上风力发电机组整体安装施工方法及其设备
US8118538B2 (en) 2007-09-13 2012-02-21 Floating Windfarms Corporation Offshore vertical-axis wind turbine and associated systems and methods
NL2007257C2 (en) * 2011-08-11 2013-02-12 Bos & Kalis Baggermaatsch Method for installation of an off-shore mast or pile.
WO2016132059A1 (fr) 2015-02-18 2016-08-25 Saipem S.A. Structure de support et d'ancrage d'eolienne maritime du type embase gravitaire et procede de remorquage et depose en mer
WO2016132056A1 (fr) 2015-02-18 2016-08-25 Saipem S.A. Structure de support et d'ancrage d'eolienne maritime du type tour treillis et procede de remorquage et depose en mer
DE102017217511A1 (de) * 2017-09-29 2018-12-20 Thyssenkrupp Ag Höhenverstellbarer Turm mit einer mehrflanschigen Verbindungsanordnung
DE102017217513A1 (de) * 2017-09-29 2018-12-20 Thyssenkrupp Ag Höhenverstellbarer Turm mit einem Führungssystem
DE102017217516A1 (de) * 2017-09-29 2018-12-20 Thyssenkrupp Ag Turm zur Nutzung von Höhenwind
DE102017217510A1 (de) * 2017-09-29 2018-12-20 Thyssenkrupp Ag Turm zur vertikalen Höhenverstellung

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003252288A (ja) * 2002-02-27 2003-09-10 Hitachi Zosen Corp 洋上風力発電の浮体式基礎構造物
JP4098724B2 (ja) * 2002-03-08 2008-06-11 オーシャン・ウィンド・エナジー・システムズ・インコーポレイテッド 沖合風力タービン
CN1320273C (zh) * 2003-02-12 2007-06-06 艾劳埃斯·乌本 具有导电轨的风力设备
US7242107B1 (en) * 2003-03-17 2007-07-10 Harry Edward Dempster Water-based wind-driven power generation using a submerged platform
DE10321088A1 (de) * 2003-05-09 2004-11-25 Abb Patent Gmbh Vorrichtung für den Zugang zu baulichen Einrichtungen auf dem Meer
US7112010B1 (en) * 2003-12-10 2006-09-26 William Clyde Geiger Apparatus, systems and methods for erecting an offshore wind turbine assembly
US7100438B2 (en) * 2004-07-06 2006-09-05 General Electric Company Method and apparatus for determining a site for an offshore wind turbine
ITBA20040027U1 (it) * 2004-10-06 2005-01-06 Enertec Ag (metodo di) realizzazione di piattaforma sommergibile a spinta bloccata da utilizzarsi quale supporto per l'installazione di aerogeneratore , di elettrolizzatore per l'elettrolisi dell'acqua e di altri impianti e/o macchinari , combinata con attivita
US20060082160A1 (en) * 2004-10-14 2006-04-20 Lee Tommy L Wind powered generator platform
NO20052704L (no) * 2005-06-06 2006-12-07 Norsk Hydro As Flytende vindturbininstallasjon.
US7735290B2 (en) * 2005-10-13 2010-06-15 General Electric Company Wind turbine assembly tower
US7442009B2 (en) * 2006-01-06 2008-10-28 Hamilton Sundstrand Corporation Driving device for raising or lowering an airfoil
CA2640613A1 (fr) * 2006-02-27 2007-08-30 Ecotecnia Energias Renovables, S.L. Procede et systeme pour lever des pieces lourdes vers une turbine a vent
US20070243063A1 (en) * 2006-03-17 2007-10-18 Schellstede Herman J Offshore wind turbine structures and methods therefor
EP2013474A2 (fr) * 2006-04-28 2009-01-14 Swanturbines Limited Turbine
NO335851B1 (no) * 2006-08-22 2015-03-09 Hywind As Fremgangsmåte ved vindturbininstallasjon for demping av tårnsvingninger
US20080240864A1 (en) * 2007-04-02 2008-10-02 Ups Wind Management , Llc Assembly, transportation and installation of deepwater windpower plant
JP4885073B2 (ja) * 2007-06-20 2012-02-29 三菱重工業株式会社 風車回転翼の吊下げ装置、風車回転翼の取付け方法、および風力発電装置の建設方法
NO326937B1 (no) * 2007-06-29 2009-03-16 Seatower Anordning og fremgangsmate ved marin tarnstruktur
US9494131B2 (en) * 2007-08-29 2016-11-15 Vestas Wind Systems A/S Monopile foundation for offshore wind turbine
US20090206604A1 (en) * 2008-02-15 2009-08-20 Karl-Heinz Meiners Method of transporting bulky equipment of a wind power plant, preassembled equipment
DE102008018790A1 (de) * 2008-04-15 2009-10-22 Wobben, Aloys Windenergieanlage mit Stromschienen
GB0810431D0 (en) * 2008-06-07 2008-07-16 Concrete Marine Structures Ltd Apparatus and method
GB2462602B (en) * 2008-08-11 2012-09-19 Statoilhydro Asa Method and apparatus for towing offshore wind turbines
CA2734773A1 (fr) * 2008-08-22 2010-02-25 Natural Power Concepts, Inc. Turbine a couronne
US8598724B2 (en) * 2008-10-28 2013-12-03 Iakov Ulanovskiy Wind-driven power plant equipped with folding and lifting mechanism for raising and stowing the tower
US8146219B2 (en) * 2008-11-07 2012-04-03 Monostory Erik J Portable renewable energy box system
US8613569B2 (en) 2008-11-19 2013-12-24 Efficient Engineering, Llc Stationary positioned offshore windpower plant (OWP) and the methods and means for its assembling, transportation, installation and servicing
EP2189657A1 (fr) * 2008-11-24 2010-05-26 Vestas Wind Systems A/S Eolienne offshore et procédé pour ériger une tour d'une telle éolienne
EP2409020A2 (fr) 2009-03-19 2012-01-25 Technip France Système et procédé d'installation d'éoliennes offshore
JP5274329B2 (ja) * 2009-03-24 2013-08-28 戸田建設株式会社 洋上風力発電設備及びその施工方法
JP5330048B2 (ja) * 2009-03-24 2013-10-30 戸田建設株式会社 洋上風力発電設備の施工方法
WO2010138622A2 (fr) 2009-05-29 2010-12-02 Technip France Système d'installation pivotante et procédé pour une éolienne en mer
EP2708657A1 (fr) * 2009-06-03 2014-03-19 Keystone Engineering, Inc. Section de pile d'entraînement
NO331023B1 (no) * 2009-06-25 2011-09-12 Univ I Stavanger Vindmølle, samt fremgangsmåte for installasjon, intervensjon eller avvikling
US8727690B2 (en) * 2009-09-10 2014-05-20 National Oilwell Varco, L.P. Windmill handling system and method for using same
DE102009051215A1 (de) * 2009-10-29 2011-05-12 Li-Tec Battery Gmbh Windkraftanlage mit Batterieanordnung
CN102079368B (zh) * 2009-11-27 2013-06-19 三一电气有限责任公司 风机安装船及其重心调节装置
ES2386268B1 (es) * 2009-12-11 2013-03-25 Grupo De Ingeniería Oceánica, S.L. Sistema redundante de estanqueidad, flotabilidad y control de la inmersion para plataformas flotantes
ES2385509B1 (es) * 2009-12-11 2013-02-18 Grupo De Ingeniería Oceánica, S.L. Plataforma oceánica, polivalente y su procedimiento de fabricación e instalación.
WO2011084544A2 (fr) * 2009-12-16 2011-07-14 Clear Path Energy, Llc Machine électrique tournante à entrefer axial
US9270150B2 (en) 2009-12-16 2016-02-23 Clear Path Energy, Llc Axial gap rotating electrical machine
CN102812241A (zh) * 2010-02-10 2012-12-05 三菱重工业株式会社 风力发电装置的旋转体头部内设备升降方法
US8689721B2 (en) * 2010-03-04 2014-04-08 Jin Wang Vertically installed spar and construction methods
EP2545271A2 (fr) * 2010-03-10 2013-01-16 W3G Shipping Ltd Structures offshore et appareil et procedes associes
WO2011163585A1 (fr) * 2010-06-25 2011-12-29 Schmidt Phillip M Tour télescopique actionnée par fluide pour support de charges lourdes
EP2428443B1 (fr) * 2010-07-12 2015-01-14 Jlangsu Daoda Offshore Wind Construction Technology Co. Ltd Procédé d'installation et procédé de récupération pour éolienne en mer
US20120027523A1 (en) * 2010-07-29 2012-02-02 GeoSea N.V. Device and method for assembling a structure at sea
CN102162256B (zh) * 2010-08-06 2015-07-08 江苏道达海上风电工程科技有限公司 海上地基基础
EP2606228B1 (fr) * 2010-08-20 2016-05-18 Horton Wison Deepwater, Inc. Eolienne en mer et ses procédés d'installation
US8192160B2 (en) * 2010-09-01 2012-06-05 General Electric Company Wind turbine having variable height and method for operating the same
FR2966175B1 (fr) * 2010-10-18 2012-12-21 Doris Engineering Dispositif de support d'une eolienne de production d'energie electrique en mer, installation de production d'energie electrique en mer correspondante.
BR112013011146B1 (pt) * 2010-11-04 2021-01-12 University Of Maine System Board Of Trustees plataforma de turbina de vento semissubmersível capaz de flutuar em um corpo de água e suportar uma turbina de vento
US20110074155A1 (en) * 2010-12-03 2011-03-31 Scholte-Wassink Harmut Floating offshore wind farm, a floating offshore wind turbine and a method for positioning a floating offshore wind turbine
US8829705B2 (en) * 2011-01-06 2014-09-09 Samuel Roznitsky Hydrodynamic stabilization of a floating structure
NO332557B1 (no) * 2011-03-10 2012-10-22 Vici Ventus Technology As Offshorefundament for installasjon pa havbunnen samt fremgangsmate for installasjon av offshorefundamentet
CN102146890B (zh) * 2011-03-10 2012-11-28 上海交通大学 用于深海的系泊浮式风能波浪能联合发电平台
PL218742B1 (pl) 2011-06-07 2015-01-30 Vistal Wind Power Spółka Z Ograniczoną Odpowiedzialnością Morska elektrownia wiatrowa oraz sposób stawiania morskiej elektrowni wiatrowej
GB2493023B (en) * 2011-07-22 2014-01-29 Sway Turbine As Wind turbines and floating foundations
FI20115794L (fi) * 2011-08-12 2013-02-13 Rautaruukki Oyj Menetelmä ja järjestely tuulivoimalan pystyttämiseksi
ITGE20110108A1 (it) * 2011-09-29 2013-03-30 Casamonti Tommaso " piattaforma galleggiante di supporto per aerogeneratori "
NL2007504C2 (en) * 2011-09-29 2013-04-02 Seaway Heavy Lifting Engineering B V Wind turbine installation method and wind turbine assembly suitable for use in said method.
ES2369304B2 (es) * 2011-10-10 2012-05-28 Prefabricados Y Postes De Hormigón, S.A. Basamento de refuerzo para fustes de torres eólicas.
ES2415058B2 (es) * 2011-10-18 2015-10-06 Esteyco Energía S.L. Mejoras en el procedimiento de instalación de torre para uso aguas adentro.
EP2586933B1 (fr) * 2011-10-24 2015-09-09 Areva Wind GmbH Plateforme de travail pour installation d'éolienne en mer et son procédé de fabrication
WO2013076351A1 (fr) * 2011-11-23 2013-05-30 Vaasaball Wind Products Oy Socle pour groupe électrogène basé sur le transit de puissance, en particulier un socle pour un groupe électrogène éolien ou un groupe électrogène à énergie marémotrice
ES2407756B1 (es) * 2011-12-09 2014-06-10 Esteyco Energía S.L. Procedimiento de montaje de una torre telescópica
WO2013135291A1 (fr) 2012-03-15 2013-09-19 Ocean Electric Inc. Turbine d'éolienne flottante en mer pour la génération d'énergie électrique
US9476409B2 (en) * 2012-05-11 2016-10-25 Zachry Construction Corporation Offshore wind turbine
EP2728179A1 (fr) * 2012-10-30 2014-05-07 Alstom Wind, S.L.U. Parc éolien et son procédé de fonctionnement
EP2927489A4 (fr) * 2012-11-30 2016-09-07 Mhi Vestas Offshore Wind As Dispositif de production d'énergie éolienne de type corps flottant et procédé de transport de ses composants
NL2012573B1 (en) * 2014-04-07 2016-03-08 Koninklijke Bam Groep Nv Gravity based foundation for an offshore installation.
ES2555500B1 (es) * 2014-05-27 2016-12-13 Sea Wind Towers Sl Obra flotante y procedimiento de instalación de la misma
GB2527817B (en) * 2014-07-02 2016-06-22 Energy Tech Inst Llp Tidal energy converter system
JP6329461B2 (ja) * 2014-08-11 2018-05-23 鹿島建設株式会社 洋上風車の設置方法、洋上風車設置用フローティングドック
US9650840B2 (en) 2015-04-27 2017-05-16 National Oilwell Varco, L.P. Method and apparatus for erecting a drilling rig
FR3036371B1 (fr) * 2015-05-22 2021-06-18 Jean Pierre Compagnon Struture flottante permettant le remorquage d'eoliennes offshore sur leur site de fonctionnement en mer profonde, equipees de tout leur equipement, pret a fonctionner
US9845792B2 (en) * 2015-10-13 2017-12-19 Huseyin Ozcan Wind turbine system
RU2736227C2 (ru) * 2016-04-15 2020-11-12 Пур Винд Апс Прокладка для ветряной турбины, применение указанной прокладки и способы её монтажа и изготовления (варианты)
WO2018018104A1 (fr) * 2016-07-26 2018-02-01 Gaia Importação, Exportação E Serviços Ltda. Système et procédé d'éolienne flottante déployable en mer
CN106089597B (zh) * 2016-07-28 2018-11-23 太重(天津)滨海重型机械有限公司 海上风电机组用运输安装平台
ES2608504B1 (es) * 2017-02-15 2018-01-26 Berenguer Ingenieros S.L. Estructura flotante autoinstalable de tipo spar para soporte de aerogeneradores de gran potencia
US11885297B2 (en) 2017-05-10 2024-01-30 Gerald L. Barber Transitioning wind turbine
US10788016B2 (en) 2017-05-10 2020-09-29 Gerald L. Barber Transitioning wind turbine
DE102017217514A1 (de) * 2017-09-29 2018-12-20 Thyssenkrupp Ag Höhenverstellbarer Turm mit überlappenden Turmkomponenten
DE102017123935A1 (de) 2017-10-13 2019-04-18 Rosen Swiss Ag Dichtungsanordnung für eine Verbindung zweier Verbindungselemente eines Offshore-Bauwerks sowie Verfahren zur Herstellung derselben
CN107792307B (zh) * 2017-11-24 2023-08-22 惠生(南通)重工有限公司 一种便于安装的浮式风电塔
US12078146B2 (en) * 2018-04-27 2024-09-03 Horton Do Brasil Tecnologia Offshore, Ltda. Offshore wind turbines and methods for deploying and installing same
NO346203B1 (en) * 2018-09-24 2022-04-19 Nat Oilwell Varco Norway As A method for installing an offshore wind turbine and a substructure for an offshore wind turbine
EP3690241A1 (fr) * 2019-01-31 2020-08-05 Siemens Gamesa Renewable Energy A/S Procédé de fabrication d'une éolienne et éolienne
JP7551638B2 (ja) * 2019-03-05 2024-09-17 ブルー-ウインド アクティーゼルスカブ 浮体式風車設備
EP3943666A4 (fr) * 2019-03-18 2022-10-12 Beridi Maritime S.L. Méthode d'installation d'une structure maritime au large des côtes et structure maritime située au large des côtes
CN110425090A (zh) * 2019-07-11 2019-11-08 深圳市安思科电子科技有限公司 一种具有安全防护功能的海上风力发电设备
CN111472378A (zh) * 2020-04-30 2020-07-31 天津大学 一种利用沉垫-安装船的海上风电整体安装装置及方法
CN111472377A (zh) * 2020-04-30 2020-07-31 天津大学 一种利用沉垫-浮箱的海上风电整体安装装置及方法
EP4248018A4 (fr) * 2020-11-20 2024-08-28 Kevin Neprud Fondation flottante
CN113619742B (zh) * 2021-08-18 2022-07-19 北京谱海科技有限公司 一种混合型浮式海上风机平台及其复合材料边柱的设计构造方法
CN115030213B (zh) * 2022-05-26 2023-04-11 上海勘测设计研究院有限公司 一种适用于海上风电基桩的工装以及应用方法
DE102023116820B3 (de) * 2023-06-27 2024-07-25 Thyssenkrupp Steel Europe Ag Plattform und Verfahren zur ihrer Montage

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2177801A (en) * 1937-02-04 1939-10-31 Erren Rudolf Arnold Electric generator
DE736454C (de) * 1941-06-18 1943-06-17 Wilhelm Teubert Dr Ing Windkraftwerk
US3958376A (en) * 1974-02-15 1976-05-25 Zip Up, Inc. Extendible tower structure
FR2525266A1 (fr) * 1982-04-19 1983-10-21 Lerc Lab Etudes Rech Chim Mat telescopique
US4456402A (en) * 1979-09-07 1984-06-26 Gusto Engineering B.V. Method for increasing the stability of an artificial island by means of pre-loading
GB2225365A (en) * 1988-11-15 1990-05-30 Norwegian Contractors Building and installing offshore gravity platforms
US5333422A (en) * 1992-12-02 1994-08-02 The United States Of America As Represented By The United States Department Of Energy Lightweight extendable and retractable pole
GB2327449A (en) * 1997-04-02 1999-01-27 Kvaerner Oil & Gas Ltd Method of transporting and installing a substructure
JP2001020849A (ja) * 1999-07-09 2001-01-23 Hitachi Zosen Corp 水上風力発電装置
WO2001034977A1 (fr) * 1999-11-11 2001-05-17 Rinta Jouppi Yrjoe Procede et appareil permettant d'installer et de transporter une station d'energie eolienne en mer
GB2365905A (en) * 2000-08-19 2002-02-27 Ocean Technologies Ltd Offshore structure with a telescopically extendable column
FR2818327A1 (fr) * 2000-12-15 2002-06-21 Inst Francais Du Petrole Eolienne maritime embarquee sur une bouee ancree par un riser

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342539A (en) * 1979-02-13 1982-08-03 Potter James A Retractable wind machine
US4400659A (en) * 1980-05-30 1983-08-23 Benjamin Barron Methods and apparatus for maximizing and stabilizing electric power derived from wind driven source
US4530638A (en) * 1983-12-05 1985-07-23 Walter Andruszkiw Wind driven power generating apparatus
US6782667B2 (en) * 2000-12-05 2004-08-31 Z-Tek, Llc Tilt-up and telescopic support tower for large structures

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2177801A (en) * 1937-02-04 1939-10-31 Erren Rudolf Arnold Electric generator
DE736454C (de) * 1941-06-18 1943-06-17 Wilhelm Teubert Dr Ing Windkraftwerk
US3958376A (en) * 1974-02-15 1976-05-25 Zip Up, Inc. Extendible tower structure
US4456402A (en) * 1979-09-07 1984-06-26 Gusto Engineering B.V. Method for increasing the stability of an artificial island by means of pre-loading
FR2525266A1 (fr) * 1982-04-19 1983-10-21 Lerc Lab Etudes Rech Chim Mat telescopique
GB2225365A (en) * 1988-11-15 1990-05-30 Norwegian Contractors Building and installing offshore gravity platforms
US5333422A (en) * 1992-12-02 1994-08-02 The United States Of America As Represented By The United States Department Of Energy Lightweight extendable and retractable pole
GB2327449A (en) * 1997-04-02 1999-01-27 Kvaerner Oil & Gas Ltd Method of transporting and installing a substructure
JP2001020849A (ja) * 1999-07-09 2001-01-23 Hitachi Zosen Corp 水上風力発電装置
WO2001034977A1 (fr) * 1999-11-11 2001-05-17 Rinta Jouppi Yrjoe Procede et appareil permettant d'installer et de transporter une station d'energie eolienne en mer
GB2365905A (en) * 2000-08-19 2002-02-27 Ocean Technologies Ltd Offshore structure with a telescopically extendable column
FR2818327A1 (fr) * 2000-12-15 2002-06-21 Inst Francais Du Petrole Eolienne maritime embarquee sur une bouee ancree par un riser

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KERR D: "SUPPORT STRUCTURES FOR AN OFFSHORE ARRAY OF VERTICAL AXIS WIND TURBINES -A DESIGN STUDY", WIND ENGINEERING, BRENTWOOD, GB, vol. 10, no. 1, 1986, pages 47 - 61, XP001014352, ISSN: 0309-524X *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 16 8 May 2001 (2001-05-08) *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087494A3 (fr) * 2003-04-04 2004-12-16 Logima V Svend Erik Hansen Navire pour le transport d'eoliennes, procedes de deplacement d'eolienne et eolienne pour centrale eolienne en mer
US7234409B2 (en) 2003-04-04 2007-06-26 Logima V/Svend Erik Hansen Vessel for transporting wind turbines, methods of moving a wind turbine, and a wind turbine for an off-shore wind farm
EP2266871A1 (fr) * 2003-04-04 2010-12-29 Logima V/Svend Erik Hansen Turbine d'éolienne dotée d'une base de turbine d'éolienne et procédés pour le transfert ou le déplacement d'une turbine d'éolienne
EP1634998A1 (fr) * 2004-09-08 2006-03-15 Maierform Maritime Technology GmbH Transport et fondation d'unités fonctionelles, en particulier d'éoliennes marines.
US7508088B2 (en) 2005-06-30 2009-03-24 General Electric Company System and method for installing a wind turbine at an offshore location
WO2009010771A3 (fr) * 2007-07-18 2009-07-23 Peter Ronald Chambers Montages
WO2009010771A2 (fr) * 2007-07-18 2009-01-22 Chambers Peter Ronaldo Montages
US8118538B2 (en) 2007-09-13 2012-02-21 Floating Windfarms Corporation Offshore vertical-axis wind turbine and associated systems and methods
KR101399983B1 (ko) * 2008-06-20 2014-05-27 씨타워 에이에스 근해 풍력 기지 산업에 이용하기 위한 지지 구조물
WO2009154472A3 (fr) * 2008-06-20 2010-05-20 Seatower As Structure de support destinée à être utilisée dans l'industrie des parcs éoliens maritimes
CN102124214A (zh) * 2008-06-20 2011-07-13 海塔有限公司 供在离岸风力农场工业中使用的支撑结构
WO2011006526A1 (fr) * 2009-07-13 2011-01-20 Vsl International Ag Ensemble tour télescopique et procédé associé
US8919074B2 (en) 2009-07-13 2014-12-30 Vsl International Ag Telescopic tower assembly and method
CN102482892A (zh) * 2009-07-13 2012-05-30 Vsl国际股份公司 伸缩塔组件和方法
CN102482892B (zh) * 2009-07-13 2014-10-08 Vsl国际股份公司 伸缩塔组件和方法
WO2011007065A1 (fr) 2009-07-15 2011-01-20 Saipem S.A. Eolienne maritime à pylône ajusté verticalement par calage.
WO2011007066A1 (fr) 2009-07-15 2011-01-20 Saipem S.A. Bateau de type catamaran utile pour l'assemblage, le transport et la dépose au fond de la mer d'éolienne maritime
ES2338746A1 (es) * 2010-03-22 2010-05-11 Fcc Construccion S.A. Equipo para autoelevacion/autodescenso de turbinas de aero-generacion.
CN102011714A (zh) * 2010-10-08 2011-04-13 中交第一航务工程局有限公司 海上风力发电机组整体安装施工方法及其设备
WO2013022338A1 (fr) * 2011-08-11 2013-02-14 Baggermaatschappij Boskalis B.V. Procédé d'installation de mât ou de pile en haute mer
NL2007257C2 (en) * 2011-08-11 2013-02-12 Bos & Kalis Baggermaatsch Method for installation of an off-shore mast or pile.
WO2016132059A1 (fr) 2015-02-18 2016-08-25 Saipem S.A. Structure de support et d'ancrage d'eolienne maritime du type embase gravitaire et procede de remorquage et depose en mer
WO2016132056A1 (fr) 2015-02-18 2016-08-25 Saipem S.A. Structure de support et d'ancrage d'eolienne maritime du type tour treillis et procede de remorquage et depose en mer
DE102017217511A1 (de) * 2017-09-29 2018-12-20 Thyssenkrupp Ag Höhenverstellbarer Turm mit einer mehrflanschigen Verbindungsanordnung
DE102017217513A1 (de) * 2017-09-29 2018-12-20 Thyssenkrupp Ag Höhenverstellbarer Turm mit einem Führungssystem
DE102017217516A1 (de) * 2017-09-29 2018-12-20 Thyssenkrupp Ag Turm zur Nutzung von Höhenwind
DE102017217510A1 (de) * 2017-09-29 2018-12-20 Thyssenkrupp Ag Turm zur vertikalen Höhenverstellung

Also Published As

Publication number Publication date
US20040169376A1 (en) 2004-09-02
EP1404969A1 (fr) 2004-04-07
FR2827015A1 (fr) 2003-01-10
FR2827015B1 (fr) 2005-12-23

Similar Documents

Publication Publication Date Title
WO2003004870A1 (fr) Eolienne offshore et son procede de construction
CA2938975C (fr) Procede d'assemblage d'une plate-forme d'eolienne flottante
EP1581703B1 (fr) Procede d'installation en mer d'un eolienne
AU2014232004B2 (en) Floating offshore wind power generation facility
JP5274329B2 (ja) 洋上風力発電設備及びその施工方法
EP3924159B1 (fr) Procédé de fabrication d'ancres ventouses
EP2441893B1 (fr) Dispositif de support d'une éolienne de production d'énergie électrique en mer, installation de production d'énergie électrique en mer correspondante.
JP2017521296A5 (fr)
WO2011007066A1 (fr) Bateau de type catamaran utile pour l'assemblage, le transport et la dépose au fond de la mer d'éolienne maritime
JP2017521296A (ja) 浮体式構造物及び浮体式構造物の設置方法
CN103228909A (zh) 用于安装海上塔的方法
JP2017516945A (ja) 風力タービン用浮体式下部構造およびそれの設置方法
JP2010223113A (ja) 洋上風力発電設備及びその施工方法
WO1995016829A1 (fr) Procede de realisation d'une plate-forme offshore gravitaire, et plate-forme ainsi obtenue
EP3259404B1 (fr) Structure de support et d'ancrage d'éolienne maritime du type embase gravitaire et procédé de remorquage et dépose en mer
NL2028088B1 (en) Concrete connector body for an offshore wind turbine.
WO2019012223A1 (fr) Corps mort pour l'ancrage d'une structure flottante
EP3336345A1 (fr) Colonne flottante semi-submersible pour le support d'un equipement de recuperation et de transformation du potentiel energetique de la houle et procede de pilotage d'une telle colonne
KR20230162941A (ko) 해상 풍력 터빈용 기초
FR2990477A1 (fr) Ensemble d'eoliennes offshores flottantes reliees entre elles
WO2003060318A1 (fr) Dispositif pour l'exploitation de l'energie motrice de la houle
JP2024179238A (ja) スパー型洋上風力発電設備の建造方法
JP2025004632A (ja) スパー型洋上風力発電設備の建造方法
JP2024064177A (ja) スパー型浮体を備えた洋上風力発電設備の浮体建造方法
WO2016132056A1 (fr) Structure de support et d'ancrage d'eolienne maritime du type tour treillis et procede de remorquage et depose en mer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG US

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002760380

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10482510

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002760380

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2002760380

Country of ref document: EP