WO2002090242A2 - Electroacoustic transducer for generating or detecting ultrasound, transducer array and method for the production of the transducer or the transducer array - Google Patents
Electroacoustic transducer for generating or detecting ultrasound, transducer array and method for the production of the transducer or the transducer array Download PDFInfo
- Publication number
- WO2002090242A2 WO2002090242A2 PCT/EP2002/004869 EP0204869W WO02090242A2 WO 2002090242 A2 WO2002090242 A2 WO 2002090242A2 EP 0204869 W EP0204869 W EP 0204869W WO 02090242 A2 WO02090242 A2 WO 02090242A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- different
- substrate
- zones
- transducer
- Prior art date
Links
- 238000002604 ultrasonography Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000012528 membrane Substances 0.000 claims abstract description 140
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 239000000463 material Substances 0.000 claims abstract description 24
- 239000004065 semiconductor Substances 0.000 claims abstract description 24
- 238000010079 rubber tapping Methods 0.000 claims abstract description 3
- 239000000126 substance Substances 0.000 claims description 40
- 239000002019 doping agent Substances 0.000 claims description 13
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 239000000370 acceptor Substances 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 4
- 238000005240 physical vapour deposition Methods 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 2
- 238000001771 vacuum deposition Methods 0.000 claims 1
- 239000007787 solid Substances 0.000 abstract description 3
- 238000003491 array Methods 0.000 description 6
- 239000012071 phase Substances 0.000 description 4
- 230000000284 resting effect Effects 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000005234 chemical deposition Methods 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005289 physical deposition Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
- B81B3/0035—Constitution or structural means for controlling the movement of the flexible or deformable elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/0292—Electrostatic transducers, e.g. electret-type
Definitions
- Electroacoustic transducer for generating or detecting ultrasound, transducer array and method for producing the transducer or transducer array
- the invention relates to an electroacoustic transducer for generating or detecting ultrasound, with a solid, rigid substrate, a flexible membrane made of a semiconductor material, the edge of which is attached to the substrate, a cavity between the membrane and the substrate, and electrodes for applying or tapping a voltage between the membrane and the substrate, the membrane being doped with solids.
- the invention further relates to an array constructed from such transducers and a method for producing such transducers or transducer arrays.
- Such electroacoustic transducers are known and come in a number of commercial applications, for example in the non-destructive material testing or medical diagnostics. With the aid of such transducers, systems for distance measurement or for flow measurement can be implemented, or shape features can be recorded in acoustically transparent bodies, for example the human body, by means of imaging methods.
- the flexible membrane is deflected by means of an electrical alternating voltage to generate ultrasound, at a frequency which corresponds to the mechanical resonance frequency of the system.
- the usable ultrasound is generated by the mechanical periodic deflection of the membrane and the alternating compression and dilution of the gas or liquid environment in the form of pressure gradients on the front of the membrane.
- the mechanical resonance of the membrane is determined in particular by the mechanical rigidity of the membrane and its clamping and the nature of the cavity located below the membrane.
- the mechanical rigidity is in turn determined on the one hand by the geometric dimensions of the flexible membrane and on the other hand by its mechanical residual stress and other material parameters.
- the known electroacoustic transducers which work as membrane vibrators, can only be operated in a relatively low frequency range due to their design, which is determined by the width of the resonance increase of the transducer, that is to say by its usable bandwidth.
- converters with a low active bandwidth are disadvantageous for use as an image converter in imaging ultrasound diagnostic methods, since pulse-shaped signals and their different transit times have to be detected by different substances, for example body tissue, during image processing.
- the flexible membrane is made of insulator material, and the electrode connected to the membrane is applied to the membrane as a metal layer, so that in addition to the cavity, the membrane thickness is also present between the first substrate-fixed electrode and the second electrode is, whereby the resting capacity around which the change in capacity due to a membrane deflection takes place is correspondingly smaller, the detection of the change in capacity and thus of the ultrasound is less sensitive.
- transducers of the type mentioned are known, in which the flexible membrane consists of a uniformly doped polycrystalline silicon material. Due to a relatively high doping with dopants, the membrane has good conductivity and can therefore be used as a counter electrode to the base electrode fixed to the substrate. As a result, the ratio of change in capacity and resting capacity when the membrane is deflected during ultrasound generation / exposure is greater, and the sensitivity with which ultrasound can be detected is correspondingly greater.
- the object of the invention is to develop a converter or a converter array of the type mentioned at the outset in such a way that the usable bandwidth of the converter or of the array is increased. It is also an object to specify a method for producing the converter or the converter array.
- the advantages of the invention are, in particular, that the different doping of different local zones or areas of the membrane with foreign substances and / or the different masses of these zones, the material-specific or manufacturing-specific properties, such as the modulus of elasticity, the membrane density or the Poisson number Semiconductor material or the membrane thickness and the membrane internal stress changed so that zones of different mechanical material properties arise with the result that the different zones of the membrane have different discrete resonance frequencies, whereby the usable bandwidth of the transducer - with superposition of the individual resonances - is broadened.
- the material-specific or manufacturing-specific properties such as the modulus of elasticity, the membrane density or the Poisson number Semiconductor material or the membrane thickness and the membrane internal stress changed so that zones of different mechanical material properties arise with the result that the different zones of the membrane have different discrete resonance frequencies, whereby the usable bandwidth of the transducer - with superposition of the individual resonances - is broadened.
- a first electrode also referred to as a base electrode
- the substrate preferably consists of semiconductor material.
- the substrate can also be implemented as a base body made of insulator material with an upper semiconductor layer.
- the first electrode or base electrode is preferably realized by a highly doped conductive zone in the substrate.
- dopants that is to say donors or acceptors, as foreign substances for doping the various membrane zones which, in addition to changing the mechanical properties of the semiconductor material, also change the electrical properties.
- a central zone of the membrane is preferably particularly heavily doped with donors or acceptors and thus has a high conductivity, on the basis of which the membrane itself can be switched as a second electrode and forms the counter electrode to the base electrode.
- the two electrodes which are used to apply the generator voltage or to tap the voltage changes / capacitance changes generated, are located directly at the boundary layer with the cavity, and are therefore at a particularly small distance from one another, as a result of which the corresponding resting capacity or the capacitance changes are particularly large are.
- the transducer therefore has a greater sensitivity than in embodiments in which the electrodes are at a greater distance from one another. Due to the high dopant concentration N of individual local zones, i.e.
- the corresponding zones become electrical conductors or electrodes.
- the capacitance present between the base electrode and the counter electrode is influenced, undesired capacitance components are reduced, which otherwise form in particular at the edge region of the membrane and reduce the signal-to-noise ratio.
- the membrane is preferably attached or clamped to the substrate with its periphery all around an insulating intermediate layer.
- the local doping of a defined, locally restricted zone of the membrane is carried out using the known methods for structured material introduction.
- N becomes influences the mechanical properties of these zones differently.
- the modulus of elasticity and / or the Poisson number and / or the membrane density and the mechanical residual stress of the membrane clamped circumferentially on the edge of the substrate are changed locally accordingly, and in this particular embodiment is reduced with increasing foreign substance concentration.
- the residual stress is a measure of the rigidity of the membrane zone in question. Due to the changed stiffness, the highly doped zone in question has a different mechanical resonance than the entire membrane, including the highly doped zone. Overall, a resulting residual stress occurs in the membrane, which differs from the residual stress of the membrane, which is homogeneous over the entire surface.
- either the membrane on its underside or the substrate on its top carries an insulating layer. This prevents the membrane and substrate from touching each other and forming electrical contact that could damage the transducer.
- a circumferential third zone can be provided between the heavily doped central zone and the weakly doped or undoped edge zone, which circulates concentrically around the central zone and whose foreign substance concentration N is different from that of the other two zones.
- An intermediate zone can also be arranged between the concentrically rotating third zone and the central first zone, which has its own foreign substance concentration N which differs from the other foreign substance concentrations, but which, like the peripheral zone, is preferably undoped or weakly doped.
- the differently doped zones can also be arranged arbitrarily, for example next to one another or as islands within other zones.
- the shape of the membrane is preferably round or square or hexagonal or polygonal.
- monocrystalline silicon is used as the material for the substrate, the surface of which adjoins the cavity has a heavily doped and thus highly conductive zone, which represents the base electrode.
- the base electrode can itself be electrically contacted via a highly doped semiconductor structure introduced into the substrate.
- the membrane consists of polycrystalline silicon, which is weakly or not doped at the edge and also has a high doping concentration N in the central zone.
- N means the impurity concentration when the membrane is doped with any suitable impurity atoms, but in particular also when doping with dopants, ie donors or acceptors. In the latter case, N is also referred to as the doping concentration or dopant concentration.
- the invention also relates to an array of a plurality of capacitive membrane oscillators, all of which are arranged on a common, rigid, rigid substrate and have a structure according to one of Claims 1 to 16.
- the membranes in such an array of ultrasonic transducers are all of the same size.
- the membranes have different sizes and / or different thicknesses in order to design the resonance frequencies of the individual transducers differently.
- the membranes of the individual transducers can also be doped to different extents with foreign substances and / or be provided with different mass assignments, in order in this way to differentiate the mechanical residual stress ranges of the individual transducers even more strongly.
- the membranes and the transducers all have the same structure and the same size.
- neighboring membranes however, local zones of comparatively different sizes are provided with a high concentration of foreign matter and / or different masses, which can also be of different heights in neighboring membranes, as a result of which the mechanical residual stresses of the adjacent transducers differ from one another.
- the invention also relates to a method for producing a converter or a converter array, the construction of which is designed according to one of Claims 1 to 24. In the process, a flexible membrane made of semiconductor material is attached all around at its edge to a rigid and rigid substrate.
- the dopants known in semiconductor technology are preferably used as foreign substances, which change their electrical properties in addition to the mechanical properties of the membrane when they are introduced.
- the thickness of the membrane is set differently by material application or material removal, and thus the mass assignment of the membrane.
- the thickness of the membrane is either removed locally by chemical or physical etching, or material is applied locally by chemical or physical deposition from the vapor phase.
- FIG. 1 shows a diagram which shows the mechanical residual stress of a membrane and the specific surface resistance as a function of time and type of treatment, which are present in a membrane during a recrystallization phase and a subsequent doping phase;
- FIG. 3 shows a perspective view of a transducer array comprising a plurality of transducers with rectangular membranes arranged in rows and columns;
- the membrane shows the mechanical residual stress, measured in MPa, and the specific surface resistance, measured in ohm / sq, as is typically present in the case of crystallization or recrystallization of a membrane and in a subsequent doping step.
- the membrane consists of a thin semiconductor layer of approximately 0.5 to 2 ⁇ m. It is remarkable that during a recrystallization phase the mechanical internal stress of the membrane, i.e. the voltage in the membrane plane can be negative at first and increases sharply with increasing crystallization time, so that the membrane becomes more and more tense with increasing crystallization and therefore always stiffer. If the membrane is subsequently doped, the mechanical residual stress as a function of the doping time and concentration decreases again sharply. In addition, the specific resistance decreases.
- Fig. 1 The physical effect shown in Fig. 1 can be used according to the invention to determine the mechanical properties of the membrane of a capacitive electroacoustic transducer manufactured on a semiconductor basis, i.e. to be set differently in different subareas or zones.
- N With a low doping concentration N, there is a comparatively high mechanical residual stress; with increasing doping concentration, this residual stress is reduced.
- FIG. 2a to 2c show a cross section through a capacitive electroacoustic transducer at different times during its manufacture.
- 2d shows an alternative embodiment to the representation according to FIG. 2c.
- a semiconductor substrate 2 is provided on its surface with a highly doped zone 4, which serves as the first electrode or base electrode of the converter and is led to the outside with a connecting line.
- One or more sacrificial layers are arranged above the first electrode 4, an insulating layer 12 is arranged outside the base electrode 4 and outside the sacrificial layer.
- a thin semiconductor layer 7 is applied over the sacrificial layer 5, which can consist of several material layers, which in the example shown is undoped or has only a weak doping concentration N.
- the semiconductor layer 7 is then in the outer, the sacrificial layers 5 partially overlapping zones, for example by means of a Photoresists 30 covered.
- the photoresist-free central zone of the semiconductor layer 7, which is located above the base electrode 4 and the sacrificial layers 5 above, is then subjected to a doping step and thereby receives a high doping concentration of dopants, for example donors or acceptors.
- the photoresist 30 is then removed.
- the membrane layer is then structured and thereby receives its final lateral dimensions, for example a round or square, hexagonal or polygonal shape. Then the sacrificial layers 5 are removed, in this way the cavity 6 is created.
- the membrane 8 is connected circumferentially to the substrate at its edge by means of already existing or still to be applied insulating layers 12 and thus completely clamped in at the edge.
- a metallic connecting line 20 is applied, which is connected either via a highly conductive web at the edge of the membrane to the central, highly doped and thus highly electrically conductive zone Z ⁇ cf. 2c and 4b or directly to the central zone Zj and contacted with this, cf. Fig. 2d.
- the substrate 2c shows the typical structure of a capacitive electroacoustic ultrasound transducer based on semiconductor material in cross section.
- the substrate 2 contains a first electrode 4, the base electrode, which is implemented as a highly doped zone in the substrate 2.
- a cavity 6 is located above it, and above the cavity is the thin, flexible membrane 8, which likewise consists of semiconductor material and is clamped against the substrate 2 at its edge by means of suitable insulating layers 12.
- the membrane 8 according to FIG. 2 c has differently doped zones Z which have a different doping concentration N either from acceptors A or donors D.
- the central zone Z 1 is provided with a high doping concentration Ni.
- This zone Zi therefore has - according to the diagram in FIG. 1 - a low mechanical residual stress.
- the edge zone Z 2 is not or only weakly doped, it has the doping concentration N 2 .
- This edge zone Z 2 therefore has a comparatively high mechanical internal stress and therefore rigidity, cf. Fig. 1.
- the highly conductive central zone Zi is used as the second electrode - also called the membrane electrode - because of the highly conductive properties of this central area can be dispensed with the otherwise usual additional application of a metal electrode to the membrane 8.
- the two electrodes 4, Zi are aligned one above the other, they end laterally at a predetermined distance in front of the clamped and thus immovable edge of the membrane 8. This ensures that the capacitance between the electrodes 4 and only in that area of the membrane 8 that is defined takes part in the movement of the membrane 8, caused by an applied voltage or by incident ultrasound. Unused portions of the quiescent capacitance and also parasitic capacitances of supply lines are not detected via the two electrodes 4, Z ⁇ , and therefore do not reduce the sensitivity.
- FIG. 2c shows the embodiment of the converter in which the highly doped central zone Z contains a narrow, web-shaped section which extends to the edge of the membrane 8 and is contacted there directly by an electrical connecting line 20.
- Such a configuration of the membrane is, for example, also shown in a top view in FIG. 4b.
- FIG. 2d shows an embodiment of the converter in which the highly doped central zone is completely surrounded by the weak or undoped edge zone Z 2 .
- the edge zone Z 2 is covered at one point - on the left in the cross section shown - by an insulating layer 12, and the electrical connection line 20 is guided via this insulating layer 12 into the central zone Zi in order to contact the central zone Zi there ,
- FIG. 3 shows an array of several transducers, which is arranged on a semiconductor substrate 2 and each has a first electrode 4 and a rectangular membrane 8 above it. Electrical connection lines 22 run between the membranes in order to contact the electrodes 4, Zi.
- FIG. 4 shows plan views of various membranes 8, all of which have a quadratic basic shape and various, differently doped zones Zi, Z 2, Z 3 and Z. ... each with the associated different foreign substance concentrations Ni, N 2 , N 3 and N 4 ..., whereby in principle all chemical elements can be used as foreign substances.
- Fig. 5 also shows top views of different membranes in different zones Z 2 ... are provided with different concentrations of foreign substances N 1 ⁇ N 2 ... While the membranes according to FIG. 4 have a square total area, the membranes 8 according to FIG. 5 are either round, hexagonal or square.
- two separate zones Z 3 , Z 4 are provided with a high concentration of dopants N 3 , N 4 , the remaining areas of the membranes, also called base zone Z G , enclose the edge zone Z 2 and have the weak doping concentration N. 2 or are not endowed.
- At least one highly doped zone for example the central zone Z ⁇ with the doping concentration, is introduced at the base zone Z G , which also contains the edge zone Z 2 with the weak doping concentration N 2 .
- further circumferential zones Z 3 with the high concentration N 3 and zone Z 4 with the high concentration N 4 are at a short distance from the central zone Z ⁇ arranged from the adjacent zones, the doping of the highly doped zones having an identical concentration or different concentrations N of foreign substances.
- FIG. 6 shows the schematic top view of several transducers within different transducer arrays.
- the array A is designed in accordance with the prior art, in which all transducers have an identical membrane which is identical in terms of size, shape and doping. All individual converters therefore have a sharp resonance frequency at which the membrane can be set in mechanical vibrations, ie the bandwidth B of the transducer array is small, cf.
- Figure 6b shows the schematic top view of several transducers within different transducer arrays.
- the array A is designed in accordance with the prior art, in which all transducers have an identical membrane which is identical in terms of size, shape and doping. All individual converters therefore have a sharp resonance frequency at which the membrane can be set in mechanical vibrations, ie the bandwidth B of the transducer array is small, cf.
- Figure 6b shows the schematic top view of several transducers within different transducer arrays.
- each transducer thus has two different resonance frequencies, first the entire membrane, ie the edge zone together with the central zone, resonates, with a different frequency the less rigid central zone Zi then resonates alone.
- the overlaying of two resonances results in a broadening of the active bandwidth of the array, cf. Fig. 6d.
- 6e shows a transducer array in which the central zones Zi, Z 3 are again heavily doped with the concentration N, while the edge zones Z 2 have a weak doping.
- the highly doped zones Z have different sizes in different converters. This constellation results in at least two and up to four discrete mechanical resonances, the total usable bandwidth resulting from a superimposition of these resonances is increased, cf. 6f.
- FIG. 6g shows a transducer array in which the membranes all have the same area and in which the central, highly doped zones Zi also all have the same size.
- some transducers have a high doping concentration Nu
- other transducers have a different high doping concentration N 2 .
- the transducer field shown has at least two and up to four discrete mechanical resonance frequencies. The usable total bandwidth resulting from superimposition is correspondingly large, cf. Fig. 6h.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Pressure Sensors (AREA)
Abstract
Description
Elektroakustischer Wandler zur Erzeugung oder Erfassung von Ultraschall, Wandler-Array und Verfahren zur Herstellung der Wandler bzw. der Wandler- ArraysElectroacoustic transducer for generating or detecting ultrasound, transducer array and method for producing the transducer or transducer array
Die Erfindung betrifft einen elektroakustischen Wandler zur Erzeugung oder Erfassung von Ultraschall, mit einem festen, biegesteifen Substrat, einer flexiblen Membran aus einem Halbleitermaterial, deren Rand an dem Substrat befestigt ist, einem Hohlraum zwischen Membran und Substrat, und Elektroden zum Anlegen oder Abgreifen einer Spannung zwischen der Membran und dem Substrat, wobei die Membran mit Feststoffen dotiert ist. Die Erfindung betrifft femer ein aus derartigen Wandlern aufgebautes Array und ein Verfahren zur Herstellung derartiger Wandler bzw. Wandler-Arrays.The invention relates to an electroacoustic transducer for generating or detecting ultrasound, with a solid, rigid substrate, a flexible membrane made of a semiconductor material, the edge of which is attached to the substrate, a cavity between the membrane and the substrate, and electrodes for applying or tapping a voltage between the membrane and the substrate, the membrane being doped with solids. The invention further relates to an array constructed from such transducers and a method for producing such transducers or transducer arrays.
Derartige elektroakustische Wandler sind bekannt und kommen in einer Reihe kommerzieller Anwendungen, beispielsweise bei der zerstörungsfreien Werkstoff- prüfung oder der medizinischen Diagnostik zum Einsatz. Mit Hilfe derartiger Wandler können Systeme zur Abstandsmessung oder zur Durchflußmessung realisiert oder aber Gestaltmerkmale mittels bildgebender Verfahren in akustisch transparenten Körpern, beispielsweise dem menschlichen Körper, aufgenommen werden. Zur Erzeugung von Ultraschall wird bei derartigen Wandlern die flexible Membran mittels einer elektrischen Wechselspannung ausgelenkt, mit einer Frequenz, die der mechanischen Resonanzfrequenz des Systems entspricht. Der nutzbare Ultraschall wird durch die mechanische periodische Auslenkung der Membran und der damit abwechselnden Kompression und Verdünnung der Gas- oder Flüssigkeitsumgebung in Form von Druckgradienten auf der Vorderseite der Membran erzeugt. Der resultierende Ultraschall breitet sich von dieser Membran ausgehend in dem umgebenden Gas oder in Flüssigkeit aus. Neben der anregenden Wechselspannung wird zwischen den beiden Elektroden zudem eine vom Betrag größere Ruhespannung angelegt, damit die Membran eine Schwingung in der Frequenz der anregenden Wechselspannung ausführt. Tritt umgekehrt Ultraschall von außen auf die Membran auf und erregt diese in ihrer mechanischen Resonanz, so führt dies zur Auslenkung der Membran, und hierdurch wird der Abstand zwischen den beiden Elektroden, d.h. der Membran und des Substrats, verändert. Durch eine geeignete Auswerteschaltung können diese Abstandsänderungen als Kapazitätsänderungen gemessen werden, die dem auftreffenden Ultraschall proportional sind.Such electroacoustic transducers are known and come in a number of commercial applications, for example in the non-destructive material testing or medical diagnostics. With the aid of such transducers, systems for distance measurement or for flow measurement can be implemented, or shape features can be recorded in acoustically transparent bodies, for example the human body, by means of imaging methods. In the case of such transducers, the flexible membrane is deflected by means of an electrical alternating voltage to generate ultrasound, at a frequency which corresponds to the mechanical resonance frequency of the system. The usable ultrasound is generated by the mechanical periodic deflection of the membrane and the alternating compression and dilution of the gas or liquid environment in the form of pressure gradients on the front of the membrane. The resulting ultrasound spreads from this membrane into the surrounding gas or liquid. In addition to the exciting AC voltage, a larger rest voltage is also applied between the two electrodes so that the membrane oscillates in the frequency of the exciting AC voltage. Conversely, if ultrasound occurs on the membrane from the outside and excites it in its mechanical resonance, this leads to the deflection of the membrane, and the distance between the two electrodes, ie the membrane and the substrate, is thereby changed. Using a suitable evaluation circuit, these changes in distance can be measured as changes in capacitance that are proportional to the incident ultrasound.
Die mechanische Resonanz der Membran wird insbesondere von der mechanischen Steifigkeit der Membran und von deren Einspannung sowie der Beschaffenheit des unterhalb der Membran befindlichen Hohlraums bestimmt. Die mechanische Steifigkeit wiederum ist einerseits von den geometrischen Abmessungen der flexiblen Membran und andererseits von ihrer mechanischen Eigenspannung und weiterer Materialparameter bestimmt. Dabei ist es nachteilig, dass die bekannten elektroakustischen Wandler, die als Membranschwinger arbeiten, aufgrund ihres Aufbaus nur in einem relativ geringen Frequenzbereich betrieben werden können, der durch die Breite der Resonanzüberhöhung des Wandlers, also durch seine nutzbare Bandbreite, bestimmt ist. Für den Einsatz als Bildwandler bei bildgebenden Ultraschall-Diagnoseverfahren sind jedoch Wandler mit geringer aktiver Bandbreite nachteilig, da bei der Bildverarbeitung impulsförmige Signale und deren unterschiedliche Laufzeiten durch verschiedene Substanzen, beispielsweise Körpergewebe, detektiert werden müssen. Die Verarbeitung von impulsförmigen Signalen ist jedoch auf Wandler angewiesen, die eine große nutzbare Bandbreite besitzen. Aus der US 5,870,351 ist ein elektroakustischer Wandler der eingangs genannten Art sowie ein Wandlerarray bekannt, welches eine Vielzahl derartiger Wandler mit unterschiedlich großen Membranen umfasst. Die Größe der Membranfläche legt die mechanische Resonanzfrequenz des betreffenden Wandlers fest, und die Größen in dem bekannten Wandler-Array werden so aufeinander abgestimmt, dass die Resonanzfrequenzen der verschiedenen Wandler einen vorgegebenen Abstand voneinander aufweisen, dass also Wandler mit ganz unterschiedlichen Resonanzfrequenzen in dem Wandler-Array vorhanden sind, so dass sich die gesamte Bandbreite des Wandler-Arrays aus einer Überlagerung der einzelnen - beabstande- ten - Resonanzkurven der einzelnen Wandler ergeben. Die Herstellung derartiger bekannter Arrays mit unterschiedlich großen Membranen ist nicht flächenoptimal. Um die Vergrößerung der nutzbaren Bandbreite zu verwirklichen, werden in dem Array - pro Flächeneinheit - nur jeweils relativ wenige Wandler mit gleich großer Membran angeordnet sein, d.h. die lokale Dichte der jeweiligen Membran-Größen ist vergleichsweise gering, die lokale Auflösung ist daher unbefriedigend, wenn derartige Wandler-Arrays beispielsweise für die Bildbearbeitung eingesetzt werden. Außerdem besteht bei der Wandlerstruktur gemäß US 5,870,351 die flexible Membran aus Isolatormaterial, und die mit der Membran verbundene Elektrode ist als Metallschicht auf die Membran aufgebracht, so dass zwischen der ersten, substratfesten Elektrode und der zweiten Elektrode zusätzlich zu dem Hohlraum auch noch die Membrandicke vorhanden ist, wodurch die Ruhekapazität, um die herum die Kapazitätsänderung infolge einer Membranauslenkung erfolgt, entsprechend kleiner, die Detektion der Kapazitätsänderung und damit des Ultraschalls weniger empfindlich ist.The mechanical resonance of the membrane is determined in particular by the mechanical rigidity of the membrane and its clamping and the nature of the cavity located below the membrane. The mechanical rigidity is in turn determined on the one hand by the geometric dimensions of the flexible membrane and on the other hand by its mechanical residual stress and other material parameters. It is disadvantageous that the known electroacoustic transducers, which work as membrane vibrators, can only be operated in a relatively low frequency range due to their design, which is determined by the width of the resonance increase of the transducer, that is to say by its usable bandwidth. However, converters with a low active bandwidth are disadvantageous for use as an image converter in imaging ultrasound diagnostic methods, since pulse-shaped signals and their different transit times have to be detected by different substances, for example body tissue, during image processing. The processing of pulse-shaped signals, however, relies on converters that have a large usable bandwidth. From US 5,870,351 an electroacoustic transducer of the type mentioned at the outset and a transducer array are known which comprise a large number of transducers of this type with membranes of different sizes. The size of the membrane area determines the mechanical resonance frequency of the transducer in question, and the sizes in the known transducer array are matched to one another in such a way that the resonance frequencies of the various transducers are at a predetermined distance from one another, that is to say transducers with very different resonance frequencies in the transducer. Arrays are present, so that the entire bandwidth of the transducer array results from a superposition of the individual - spaced - resonance curves of the individual transducers. The production of such known arrays with membranes of different sizes is not optimal in terms of area. In order to increase the usable bandwidth, only a few transducers with the same size membrane are arranged in the array - per unit area - that is, the local density of the respective membrane sizes is comparatively low, the local resolution is therefore unsatisfactory if converter arrays of this type are used, for example, for image processing. In addition, in the converter structure according to US Pat. No. 5,870,351, the flexible membrane is made of insulator material, and the electrode connected to the membrane is applied to the membrane as a metal layer, so that in addition to the cavity, the membrane thickness is also present between the first substrate-fixed electrode and the second electrode is, whereby the resting capacity around which the change in capacity due to a membrane deflection takes place is correspondingly smaller, the detection of the change in capacity and thus of the ultrasound is less sensitive.
Aus der Vortragsveröffentlichung "A new class of capacitive micromachined ultrasonic transducers" von Ahrens et al„ gehalten auf "Ultrasonic Symposium 2000", Puerto Rico, Oct. 2000, sind Wandler der eingangs genannten Art bekannt, bei denen die flexible Membran aus einem uniform dotierten polykristallinen Siliziummaterial besteht. Aufgrund einer relativ hohen Dotierung mit Dotierstoffen besitzt die Membran eine gute Leitfähigkeit und lässt sich dadurch als Gegenelektrode zu der substratfesten Basiselektrode einsetzen. Dadurch ist das Verhältnis aus Kapazitätsänderung und Ruhekapazität bei einer Auslenkung der Membran bei Ultraschallerzeugung/Beaufschiagung erfolgt, größer, und die Empfindlichkeit, mit der Ultraschall detektiert werden kann, ist entsprechend größer. Nachteilig ist dabei, dass durch diejenigen Randbereiche der Membran, die wegen ihrer Nähe zu dem eingespannten Rand keine oder nahezu keine Auslenkung erfahren, gleichwohl nicht nutzbare Kapazitätsanteile zur Ruhekapazität beisteuern. Zur Vergrößerung der aktiven Bandbreite sind wiederum - entsprechend der Lehre der US 5,870,351 - diese bekannten Wandler mit unterschiedlicher Membrangröße nebeneinander auf der Fläche zu verteilen.From the lecture publication "A new class of capacitive micromachined ultrasonic transducers" by Ahrens et al "held at" Ultrasonic Symposium 2000 ", Puerto Rico, Oct. 2000, transducers of the type mentioned are known, in which the flexible membrane consists of a uniformly doped polycrystalline silicon material. Due to a relatively high doping with dopants, the membrane has good conductivity and can therefore be used as a counter electrode to the base electrode fixed to the substrate. As a result, the ratio of change in capacity and resting capacity when the membrane is deflected during ultrasound generation / exposure is greater, and the sensitivity with which ultrasound can be detected is correspondingly greater. The disadvantage here is that due to those edge areas of the membrane that because of their proximity to the the clamped edge experiences no or almost no deflection, but non-usable capacity shares contribute to the resting capacity. In order to increase the active bandwidth, these known transducers with different diaphragm sizes must again be distributed next to one another on the surface, in accordance with the teaching of US Pat. No. 5,870,351.
Aufgabe der Erfindung ist es, einen Wandler oder ein Wandler-Array der eingangs genannten Art derart weiterzubilden, dass die nutzbare Bandbreite des Wandlers bzw. des Arrays vergrößert ist. Aufgabe ist es ferner, ein Verfahren zur Herstellung des Wandlers bzw. des Wandler-Arrays anzugeben.The object of the invention is to develop a converter or a converter array of the type mentioned at the outset in such a way that the usable bandwidth of the converter or of the array is increased. It is also an object to specify a method for producing the converter or the converter array.
Diese Aufgabe wird bei dem Wandler der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass mindestens zwei verschiedene lokale Zonen Z-ι, Z2, der Membran eine verschieden hohe Fremdstoffkonzentration N-j, N2, und/oder Massebelegung Mu M2 aufweisen.This object is achieved according to the invention in the converter of the type mentioned in the introduction in that at least two different local zones Z-ι, Z 2 , the membrane have a different concentration of foreign substances Nj, N 2 , and / or masses M u M 2 .
Die Vorteile der Erfindung liegen insbesondere darin, dass die unterschiedlich starke Dotierung verschiedener lokaler Zonen oder Flächen der Membran mit Fremdstoffen und/oder die unterschiedlichen Massenbelegungen dieser Zonen, die materialspezifischen oder herstellungsspezifischen Eigenschaften, wie beispielsweise den E- Modul, die Membrandichte oder die Poissonzahl des Halbleitermaterials bzw. die Membrandicke und die Membraneigenspannung verändert, so dass Zonen unterschiedlicher mechanischer Materialeigenschaften entstehen mit der Folge, dass die verschiedenen Zonen der Membran verschiedene diskrete Resonanzfrequenzen aufweisen, wodurch die nutzbare Bandbreite des Wandlers - bei Überlagerung der Einzelresonanzen - verbreitert wird. Erfindungsgemäß ist es also möglich, durch Dotierungsprozesse bzw. durch chemische oder physikalische Ätzprozesse oder durch chemische oder physikalische Materialabscheidung (chemical vapor deposition CVD bzw. physical vapor deposition PVD), die in der Halbleitertechnologie außerordentlich präzise beherrscht werden, dem einzelnen Wandler und dem aus diesen Wandlern aufgebauten Wandler-Array eine vergrößerte nutzbare Bandbreite und damit verbesserte Eigenschaften zu verleihen.The advantages of the invention are, in particular, that the different doping of different local zones or areas of the membrane with foreign substances and / or the different masses of these zones, the material-specific or manufacturing-specific properties, such as the modulus of elasticity, the membrane density or the Poisson number Semiconductor material or the membrane thickness and the membrane internal stress changed so that zones of different mechanical material properties arise with the result that the different zones of the membrane have different discrete resonance frequencies, whereby the usable bandwidth of the transducer - with superposition of the individual resonances - is broadened. According to the invention, it is therefore possible, by means of doping processes or by chemical or physical etching processes or by chemical or physical material deposition (chemical vapor deposition CVD or physical vapor deposition PVD), which are mastered extremely precisely in semiconductor technology, the individual transducer and the latter Converters built transducers to give an increased usable bandwidth and thus improved properties.
Gemäß einer besonders bevorzugten Ausführungsform der Erfindung ist eine erste Elektrode, auch als Basiselektrode bezeichnet, an der Oberfläche des Substrats angeordnet, welche der Membran benachbart ist, also an den Hohlraum angrenzt. Bevorzugt besteht das Substrat aus Halbleitermaterial. Alternativ ist das Substrat auch als ein Grundkörper aus Isolatormaterial mit einer oberen Halbleiterschicht realisierbar. Auf der dem Hohlraum zugewandten Seite ist bevorzugt die erste Elektrode oder Basiselektrode durch eine hochdotierte leitende Zone in dem Substrat verwirklicht.According to a particularly preferred embodiment of the invention, a first electrode, also referred to as a base electrode, is arranged on the surface of the substrate which is adjacent to the membrane, that is to say adjoins the cavity. The substrate preferably consists of semiconductor material. Alternatively, the substrate can also be implemented as a base body made of insulator material with an upper semiconductor layer. On the side facing the cavity, the first electrode or base electrode is preferably realized by a highly doped conductive zone in the substrate.
Besonders bevorzugt werden als Fremdstoffe zum Dotieren der verschiedenen Membranzonen Dotierstoffe, also Donatoren oder Akzeptoren, eingesetzt, welche neben den mechanischen Eigenschaften des Halbleitermaterials auch die elektrischen Eigenschaften verändern.Particular preference is given to using dopants, that is to say donors or acceptors, as foreign substances for doping the various membrane zones which, in addition to changing the mechanical properties of the semiconductor material, also change the electrical properties.
Bevorzugt wird eine zentrale Zone der Membran mit Donatoren oder Akzeptoren besonders stark dotiert und weist dadurch eine hohe Leitfähigkeit aus, aufgrund derer die Membran selbst als zweite Elektrode geschaltet werden kann und die Gegenelektrode zu der Basiselektrode bildet. Bei dieser Ausführungsform liegen die beiden Elektroden, welche zum Anlegen der Erzeugerspannung bzw. zum Abgreifen der erzeugten Spannungsänderungen/Kapazitätsänderungen dienen, unmittelbar an der Grenzschicht zu dem Hohlraum, besitzen also einen besonders geringen Abstand zueinander, wodurch die entsprechende Ruhekapazität bzw. die Kapazitätsänderungen besonders groß sind. Der Wandler besitzt daher eine größere Empfindlichkeit als bei Ausführungsformen, bei denen die Elektroden einen größeren Abstand voneinander besitzen. Durch die hohe Dotierstoffkonzentration N einzelner örtlicher Zonen, d.h. durch die definierte örtlich eingegrenzte Einbringung von Dotierstoffen, Donatoren oder Akzeptoren, werden die entsprechenden Zonen gezielt zu elektrischen Leitern bzw. Elektroden. Hierdurch wird die zwischen der Basiselektrode und der Gegenelektrode vorhandene Kapazität beeinflusst, unerwünschte Kapazitätsanteile werden reduziert, die sich ansonsten insbesondere am Randbereich der Membran ausbilden und das Signal-Rausch-Verhältnis reduzieren.A central zone of the membrane is preferably particularly heavily doped with donors or acceptors and thus has a high conductivity, on the basis of which the membrane itself can be switched as a second electrode and forms the counter electrode to the base electrode. In this embodiment, the two electrodes, which are used to apply the generator voltage or to tap the voltage changes / capacitance changes generated, are located directly at the boundary layer with the cavity, and are therefore at a particularly small distance from one another, as a result of which the corresponding resting capacity or the capacitance changes are particularly large are. The transducer therefore has a greater sensitivity than in embodiments in which the electrodes are at a greater distance from one another. Due to the high dopant concentration N of individual local zones, i.e. Due to the defined, localized introduction of dopants, donors or acceptors, the corresponding zones become electrical conductors or electrodes. As a result, the capacitance present between the base electrode and the counter electrode is influenced, undesired capacitance components are reduced, which otherwise form in particular at the edge region of the membrane and reduce the signal-to-noise ratio.
Bevorzugt ist die Membran über eine isolierende Zwischenschicht mit ihrem Rand umlaufend an dem Substrat befestigt oder eingespannt.The membrane is preferably attached or clamped to the substrate with its periphery all around an insulating intermediate layer.
Die lokale Dotierung einer definierten, örtlich eingegrenzten Zone der Membran erfolgt mit den bekannten Verfahren zur strukturierten Stoffeinbringung. Durch die Dotierung einzelner Zonen mit Fremdstoffatomen in unterschiedlicher Konzentration N werden die mechanischen Eigenschaften dieser Zonen unterschiedlich beeinflusst. Insbesondere wird der E-Modul und/oder die Poissonzahl und/oder die Membrandichte und die mechanische Eigenspannung der an dem Substrat randseitig umlaufend eingespannten Membran lokal entsprechend verändert, und zwar in dieser besonderen Ausführungsform mit zunehmender Fremdstoffkonzentration reduziert. Die Eigenspannung ist ein Maß für die Steifigkeit der betreffenden Membran-Zone. Aufgrund der veränderten Steifigkeit besitzt die betreffende hochdotierte Zone eine andere mechanische Resonanz als die gesamte Membran einschließlich der hochdotierten Zone. Insgesamt stellt sich in der Membran eine resultierende Eigenspannung ein, die sich gegenüber der Eigenspannung der ganzflächig homogenen Membran unterscheidet.The local doping of a defined, locally restricted zone of the membrane is carried out using the known methods for structured material introduction. By doping individual zones with impurity atoms in different concentrations, N becomes influences the mechanical properties of these zones differently. In particular, the modulus of elasticity and / or the Poisson number and / or the membrane density and the mechanical residual stress of the membrane clamped circumferentially on the edge of the substrate are changed locally accordingly, and in this particular embodiment is reduced with increasing foreign substance concentration. The residual stress is a measure of the rigidity of the membrane zone in question. Due to the changed stiffness, the highly doped zone in question has a different mechanical resonance than the entire membrane, including the highly doped zone. Overall, a resulting residual stress occurs in the membrane, which differs from the residual stress of the membrane, which is homogeneous over the entire surface.
Gemäß einer weiteren besonders bevorzugten Ausführungsform der Erfindung trägt entweder die Membran auf ihrer Unterseite bzw. das Substrat auf seiner Oberseite eine Isolierschicht. Dadurch wird verhindert, dass Membran und Substrat einander berühren und elektrischen Kontakt bilden, der den Wandler beschädigen könnte.According to a further particularly preferred embodiment of the invention, either the membrane on its underside or the substrate on its top carries an insulating layer. This prevents the membrane and substrate from touching each other and forming electrical contact that could damage the transducer.
Zwischen der hochdotierten zentralen Zone und der schwach dotierten bzw. undotierten Randzone lässt sich erfindungsgemäß noch eine umlaufende dritte Zone vorsehen, die konzentrisch um die zentrale Zone umläuft und deren Fremdstoffkonzentration N von derjenigen der beiden anderen Zonen verschieden ist. Zwischen der konzentrisch umlaufenden dritten Zone und der zentralen ersten Zone kann noch eine Zwischenzone angeordnet sein, die eine eigene, von den anderen Fremdstoffkonzentrationen abweichende Fremdstoffkonzentration N besitzt, die jedoch bevorzugt wie die Randzone undotiert oder schwach dotiert ist. Statt konzentrisch angeordneter Zonen lassen sich die verschieden dotierten Zonen auch beliebig, also beispielsweise nebeneinander oder als Inseln innerhalb anderer Zonen anordnen. Die Form der Membran ist bevorzugt rund oder quadratisch oder hexagonal oder polygonal.According to the invention, a circumferential third zone can be provided between the heavily doped central zone and the weakly doped or undoped edge zone, which circulates concentrically around the central zone and whose foreign substance concentration N is different from that of the other two zones. An intermediate zone can also be arranged between the concentrically rotating third zone and the central first zone, which has its own foreign substance concentration N which differs from the other foreign substance concentrations, but which, like the peripheral zone, is preferably undoped or weakly doped. Instead of concentrically arranged zones, the differently doped zones can also be arranged arbitrarily, for example next to one another or as islands within other zones. The shape of the membrane is preferably round or square or hexagonal or polygonal.
Als Material für das Substrat wird in einer bevorzugten Ausführungsform monokristallines Silizium verwendet, dessen an den Hohlraum angrenzende Oberfläche eine stark dotierte und damit gut leitende Zone besitzt, welche die Basiselektrode darstellt. Die Basiselektrode ist bei dieser Ausführungsform der Erfindung ihrerseits über eine in das Substrat eingebrachte hochdotierte Halbleiterstruktur elektrisch kontaktierbar. Die Membran besteht in dieser Ausführungsform aus polykristallinem Silizium, welches am Rand schwach oder nicht dotiert ist und in der zentralen Zone ebenfalls eine hohe Dotierungskonzentration N aufweist.In a preferred embodiment, monocrystalline silicon is used as the material for the substrate, the surface of which adjoins the cavity has a heavily doped and thus highly conductive zone, which represents the base electrode. In this embodiment of the invention, the base electrode can itself be electrically contacted via a highly doped semiconductor structure introduced into the substrate. In this embodiment, the membrane consists of polycrystalline silicon, which is weakly or not doped at the edge and also has a high doping concentration N in the central zone.
In der vorliegenden Patentanmeldung bedeutet N die Fremstoffkonzentration bei einer Dotierung der Membran mit beliebigen geeigneten Fremdstoff-Atomen, insbesondere jedoch auch bei einer Dotierung mit Dotierstoffen, also Donatoren oder Akzeptoren. Im letzteren Fall wird N auch als Dotierungskonzentration oder Dotierstoffkonzentration bezeichnet. Nj, mit i=2, 3 ... bedeutet die Fremdstoffkonzentration in der lokalenIn the present patent application, N means the impurity concentration when the membrane is doped with any suitable impurity atoms, but in particular also when doping with dopants, ie donors or acceptors. In the latter case, N is also referred to as the doping concentration or dopant concentration. Nj, with i = 2, 3 ... means the foreign substance concentration in the local
M|, mit i=2, 3 ... bedeutet die Massebelegung der Membran, die als Masse/ Flächeneinheit definiert ist, jeweils in der lokalen Zone Zj.M |, with i = 2, 3 ... means the mass assignment of the membrane, which is defined as mass / area unit, in each case in the local zone Zj.
Die Erfindung betrifft außerdem ein Array aus mehreren kapazitiven Membranschwingern, die alle auf einem gemeinsamen festen, biegesteifen Substrat angeordnet sind und einen Aufbau nach einem der Ansprüche 1 bis 16 aufweisen.The invention also relates to an array of a plurality of capacitive membrane oscillators, all of which are arranged on a common, rigid, rigid substrate and have a structure according to one of Claims 1 to 16.
Gemäß einer Ausführungsform der Erfindung besitzen die Membranen in einem derartigen Array von Ultraschallwandlern alle dieselbe Größe. Alternativ besitzen die Membranen verschiedene Größen und/oder verschiedene Dicken, um die Resonanzfrequenzen der einzelnen Wandler unterschiedlich auszulegen. Zusätzlich - oder bei gleich großen Membranen alternativ - lassen sich die Membranen der einzelnen Wandler auch unterschiedlich stark mit Fremdstoffen dotieren, und/oder mit verschiedenen Massebelegungen versehen, um auf diese Weise die mechanischen Eigenspannungsbereiche der einzelnen Wandler noch stärker voneinander zu unterscheiden.According to one embodiment of the invention, the membranes in such an array of ultrasonic transducers are all of the same size. Alternatively, the membranes have different sizes and / or different thicknesses in order to design the resonance frequencies of the individual transducers differently. In addition - or alternatively in the case of membranes of the same size - the membranes of the individual transducers can also be doped to different extents with foreign substances and / or be provided with different mass assignments, in order in this way to differentiate the mechanical residual stress ranges of the individual transducers even more strongly.
In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Wandler- Arrays besitzen die Membranen und die Wandler alle denselben Aufbau und dieselbe Größe. In benachbarten Membranen werden jedoch vergleichsweise unterschiedlich große lokale Zonen mit einer hohen Fremdstoffkonzentration und/oder verschiedener Massenbelegung vorgesehen, die in benachbarten Membranen auch noch verschieden hoch sein kann, wodurch sich die mechanischen Eigenspannungen der benachbarten Wandler voneinander unterscheiden. Dadurch wird die gesamte aktive Bandbreite des Wandlerarrays aufgespreizt und vergrößert. Die Erfindung betrifft auch ein Verfahren zum Herstellen eines Wandlers oder eines Wandler-Arrays, deren Aufbau gemäß einem der Ansprüche 1 bis 24 ausgebildet ist. Bei dem Verfahren wird eine flexible Membran aus Halbleitermaterial umlaufend an ihrem Rand auf einem biegesteifen und festen Substrat befestigt. Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, dass mindestens zwei verschiedene lokale Zonen Zj, i=2, 3 ... der Membran mit Fremdstoffen unterschiedlich stark dotiert werden. Als Fremdstoffe werden bevorzugt die in der Halbleitertechnologie bekannten Dotierstoffe verwendet, welche bei ihrem Einbringen neben den mechanischen Eigenschaften der Membran auch ihre elektrische Eigenschaften verändern.In a particularly preferred embodiment of the transducer array according to the invention, the membranes and the transducers all have the same structure and the same size. In neighboring membranes, however, local zones of comparatively different sizes are provided with a high concentration of foreign matter and / or different masses, which can also be of different heights in neighboring membranes, as a result of which the mechanical residual stresses of the adjacent transducers differ from one another. As a result, the entire active bandwidth of the converter array is spread out and enlarged. The invention also relates to a method for producing a converter or a converter array, the construction of which is designed according to one of Claims 1 to 24. In the process, a flexible membrane made of semiconductor material is attached all around at its edge to a rigid and rigid substrate. The method according to the invention is characterized in that at least two different local zones Zj, i = 2, 3 ... of the membrane are doped to different extents with foreign substances. The dopants known in semiconductor technology are preferably used as foreign substances, which change their electrical properties in addition to the mechanical properties of the membrane when they are introduced.
Eine Ausführungsform des erfindungsgemäßen Verfahrens ist ferner dadurch gekennzeichnet, dass in verschiedenen Zonen Zj, i=2, 3 ... der Membran die Dicke der Membran durch Materialauftrag oder Materialabtrag, und damit die Massebelegung der Membran unterschiedlich eingestellt wird. Zu diesem Zweck wird die Dicke der Membran entweder durch chemisches oder physikalisches Ätzen lokal abgetragen oder es wird Material lokal durch chemisches oder physikalisches Abscheiden aus der Dampfphase aufgetragen.An embodiment of the method according to the invention is further characterized in that in different zones Zj, i = 2, 3... Of the membrane, the thickness of the membrane is set differently by material application or material removal, and thus the mass assignment of the membrane. For this purpose, the thickness of the membrane is either removed locally by chemical or physical etching, or material is applied locally by chemical or physical deposition from the vapor phase.
Vorteilhafte Weiterbildungen der Erfindung sind durch die Merkmale der Unteransprüche gekennzeichnet.Advantageous developments of the invention are characterized by the features of the subclaims.
Im folgenden werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert. Es zeigen:Exemplary embodiments of the invention are explained in more detail below with reference to the drawing. Show it:
Fig. 1 ein Diagramm, welches als Funktion der Zeit und Behandlungsart die mechanische Eigenspannung einer Membran und den spezifischen Flächenwiderstand angibt, die während einer Rekristallisationsphase und einer anschließenden Dotierungsphase in einer Membran vorlegen;1 shows a diagram which shows the mechanical residual stress of a membrane and the specific surface resistance as a function of time and type of treatment, which are present in a membrane during a recrystallization phase and a subsequent doping phase;
Fig. 2a bis 2d einen Querschnitt eines elektroakustischen Wandlers in verschiedenen Phasen seiner Herstellung;2a to 2d show a cross section of an electroacoustic transducer in different phases of its manufacture;
Fig. 3 eine perspektivische Ansicht eines Wandler-Arrays aus mehreren in Zeilen und Spalten angeordneten Wandlern mit rechteckförmigen Membranen;3 shows a perspective view of a transducer array comprising a plurality of transducers with rectangular membranes arranged in rows and columns;
Fig. 4 die Membran eines elektroakustischen Wandlers jeweils in Aufsicht und mit verschieden dotierten Zonen; Fig. 5 die Membran eines elektroakustischen Wandlers in Aufsicht, dargestellt sind verschiedene Wandlerformen und verschiedene Zonen unterschiedlicher Dotierung; und4 the membrane of an electroacoustic transducer, in each case in supervision and with differently doped zones; 5 shows the membrane of an electroacoustic transducer in supervision, different transducer shapes and different zones with different doping are shown; and
Fig. 6 verschiedene Wandler-Arrays mit jeweils zugeordneter schematisch dargestellter resultierender Bandbreite.Fig. 6 different transducer arrays, each with associated schematically shown resulting bandwidth.
Fig. 1 zeigt die mechanische Eigenspannung, gemessen in MPa sowie den spezifischen Flächenwiderstand, gemessen in Ohm/sq, wie er typischerweise bei einer Kristallisation oder Rekristallisation einer Membran und bei einem anschließenden Dotierungsschritt vorliegt. Die Membran besteht in dem gemessenen Ausführungsbeispiel aus einer dünnen Halbleiterschicht von etwa 0,5 bis 2 μm. Beachtlich ist dabei, dass während einer Rekristallisationsphase die mechanische Eigenspannung der Membran, d.h. die Spannung in der Membranebene zuerst negativ sein kann und mit zunehmender Kristallisationszeit stark ansteigt, so dass die Membran mit der wachsenden Kristallisation immer gespannter und damit immer steifer wird. Wird anschließend die Membran dotiert, so nimmt die mechanische Eigenspannung als Funktion der Dotierungszeit und -konzentration wieder stark ab. Zudem stellt sich die Abnahme des spezifischen Widerstandes ein. Der in Fig. 1 dargestellte physikalische Effekt lässt sich erfindungsgemäß heranziehen, um die mechanischen Eigenschaften der Membran eines auf Halbleiterbasis hergestellten kapazitiven elektroakustischen Wandlers bereichsweise, d.h. in verschiedenen Teilflächen oder Zonen unterschiedlich einzustellen. Bei einer geringen Dotierungskonzentration N liegt eine vergleichsweise große mechanische Eigenspannung vor, mit zunehmender Dotierungskonzentration wird diese Eigenspannung reduziert.1 shows the mechanical residual stress, measured in MPa, and the specific surface resistance, measured in ohm / sq, as is typically present in the case of crystallization or recrystallization of a membrane and in a subsequent doping step. In the measured exemplary embodiment, the membrane consists of a thin semiconductor layer of approximately 0.5 to 2 μm. It is remarkable that during a recrystallization phase the mechanical internal stress of the membrane, i.e. the voltage in the membrane plane can be negative at first and increases sharply with increasing crystallization time, so that the membrane becomes more and more tense with increasing crystallization and therefore always stiffer. If the membrane is subsequently doped, the mechanical residual stress as a function of the doping time and concentration decreases again sharply. In addition, the specific resistance decreases. The physical effect shown in Fig. 1 can be used according to the invention to determine the mechanical properties of the membrane of a capacitive electroacoustic transducer manufactured on a semiconductor basis, i.e. to be set differently in different subareas or zones. With a low doping concentration N, there is a comparatively high mechanical residual stress; with increasing doping concentration, this residual stress is reduced.
Die Fig. 2a bis 2c zeigen einen Querschnitt durch einen kapazitiven elektroakustischen Wandler in verschiedenen Zeitpunkten seiner Herstellung. Fig. 2d zeigt eine zur Darstellung gemäß Figur 2c alternative Ausführungsform. Ein Halbleitersubstrat 2 wird an seiner Oberfläche mit einer hoch dotierten Zone 4 versehen, die als erste Elektrode oder Basiselektrode des Wandlers dient und mit einer Anschlussleitung nach außen geführt ist. Über der ersten Elektrode 4 werden eine oder mehrere Opferschichten, außerhalb der Basiselektrode 4 und außerhalb der Opferschicht wird eine Isolierschicht 12 angeordnet. Über die Opferschicht 5, die aus mehreren Materialschichten bestehen kann, wird eine dünne Halbleiterschicht 7 aufgebracht, welche im dargestellten Beispiel undotiert oder nur eine schwache Dotierungskonzentration N aufweist. Die Halbleiterschicht 7 wird anschließend in den äußeren, die Opferschichten 5 teilweise noch überlappenden Zonen, beispielsweise mittels eines Fotolacks 30 abgedeckt. Die fotolackfreie zentrale Zone der Halbleiterschicht 7, die sich über der Basiselektrode 4 und den darüber liegenden Opferschichten 5 befindet, wird anschließend einem Dotierungsschritt unterworfen und erhält dadurch eine hohe Dotierungskonzentration an Dotierstoffen, beispielsweise an Donatoren oder an Akzeptoren. Anschließend wird der Fotolack 30 entfernt. Anschließend wird die Membranschicht strukturiert und erhält dadurch ihre endgültigen lateralen Abmessungen, also beispielsweise eine runde oder quadratische, hexagonale oder polygonale Form. Dann werden die Opferschichten 5 entfernt, auf diese Weise wird der Hohlraum 6 erzeugt. Schließlich wird die Membran 8 mittels schon vorhandener oder noch aufzubringender Isolierschichten 12 an ihrem Rand umlaufend mit dem Substrat verbunden und damit randseitig vollständig eingespannt. Abschließend wird eine metallische Anschlussleitung 20 aufgebracht, welche entweder über einen hochleitenden Steg am Rand der Membran bis zu der zentralen, hoch dotierten und damit gut elektrisch leitenden Zone Z^ verbunden vgl. Fig. 2c und 4b oder direkt bis zur zentralen Zone Z-j geführt und mit dieser kontaktiert wird, vgl. Fig. 2d.2a to 2c show a cross section through a capacitive electroacoustic transducer at different times during its manufacture. 2d shows an alternative embodiment to the representation according to FIG. 2c. A semiconductor substrate 2 is provided on its surface with a highly doped zone 4, which serves as the first electrode or base electrode of the converter and is led to the outside with a connecting line. One or more sacrificial layers are arranged above the first electrode 4, an insulating layer 12 is arranged outside the base electrode 4 and outside the sacrificial layer. A thin semiconductor layer 7 is applied over the sacrificial layer 5, which can consist of several material layers, which in the example shown is undoped or has only a weak doping concentration N. The semiconductor layer 7 is then in the outer, the sacrificial layers 5 partially overlapping zones, for example by means of a Photoresists 30 covered. The photoresist-free central zone of the semiconductor layer 7, which is located above the base electrode 4 and the sacrificial layers 5 above, is then subjected to a doping step and thereby receives a high doping concentration of dopants, for example donors or acceptors. The photoresist 30 is then removed. The membrane layer is then structured and thereby receives its final lateral dimensions, for example a round or square, hexagonal or polygonal shape. Then the sacrificial layers 5 are removed, in this way the cavity 6 is created. Finally, the membrane 8 is connected circumferentially to the substrate at its edge by means of already existing or still to be applied insulating layers 12 and thus completely clamped in at the edge. Finally, a metallic connecting line 20 is applied, which is connected either via a highly conductive web at the edge of the membrane to the central, highly doped and thus highly electrically conductive zone Z ^ cf. 2c and 4b or directly to the central zone Zj and contacted with this, cf. Fig. 2d.
In Fig. 2c ist der typische Aufbau eines kapazitiven elektroakustischen Ultraschallwandlers auf Halbleitermaterial-Basis im Querschnitt dargestellt. Das Substrat 2 enthält eine erste Elektrode 4, die Basiselektrode, die als hoch dotierte Zone im Substrat 2 implementiert ist. Darüber befindet sich ein Hohlraum 6, über dem Hohlraum liegt die dünne, flexible Membran 8, die ebenfalls aus Halbleitermaterial besteht und an ihrem Rand mittels geeigneter Isolierschichten 12 isoliert gegen das Substrat 2 eingespannt ist.2c shows the typical structure of a capacitive electroacoustic ultrasound transducer based on semiconductor material in cross section. The substrate 2 contains a first electrode 4, the base electrode, which is implemented as a highly doped zone in the substrate 2. A cavity 6 is located above it, and above the cavity is the thin, flexible membrane 8, which likewise consists of semiconductor material and is clamped against the substrate 2 at its edge by means of suitable insulating layers 12.
Die Membran 8 gemäß Fig. 2c besitzt erfindungsgemäß unterschiedlich dotierte Zonen Z, die eine unterschiedliche Dotierungskonzentration N entweder aus Akzeptoren A oder Donatoren D aufweisen. In dem in Fig. 2c dargestellten Ausführungsbeispiel ist die zentrale Zone Z1 mit einer hohen Dotierungskonzentration Ni versehen. Diese Zone Zi besitzt daher - gemäß dem Diagramm nach Fig. 1 - eine geringe mechanische Eigenspannung. Die Randzone Z2 ist dagegen nicht oder nur schwach dotiert, sie weist die Dotierungskonzentration N2 auf. Diese Randzone Z2 besitzt daher eine vergleichsweise hohe mechanische Eigenspannung und somit Steifigkeit, vgl. Fig. 1.According to the invention, the membrane 8 according to FIG. 2 c has differently doped zones Z which have a different doping concentration N either from acceptors A or donors D. In the exemplary embodiment shown in FIG. 2c, the central zone Z 1 is provided with a high doping concentration Ni. This zone Zi therefore has - according to the diagram in FIG. 1 - a low mechanical residual stress. The edge zone Z 2 , on the other hand, is not or only weakly doped, it has the doping concentration N 2 . This edge zone Z 2 therefore has a comparatively high mechanical internal stress and therefore rigidity, cf. Fig. 1.
In der in Fig. 2c dargestellten Ausführungsform wird die hoch leitende zentrale Zone Zi als zweite Elektrode - auch Membranelektrode genannt - verwendet, wegen der hoch leitenden Eigenschaften dieses zentralen Bereiches kann auf die ansonsten übliche zusätzliche Aufbringung einer Metallelektrode auf die Membran 8 verzichtet werden. Die beiden Elektroden 4, Z-i fluchten übereinander, sie enden seitlich einen vorgegebenen Abstand vor dem eingespannten, und damit unbeweglichen Rand der Membran 8. Dadurch ist sichergestellt, dass die Kapazität zwischen den Elektroden 4 und nur in demjenigen Bereich der Membran 8 definiert ist, welcher an der Bewegung der Membran 8, hervorgerufen durch eine angelegte Spannung oder durch auftreffenden Ultraschall, teilnimmt. Ungenützte Anteile der Ruhekapazität und im weiteren auch parasitäre Kapazitäten von Zuleitungen werden über die beiden Elektroden 4, Zλ nicht erfasst, sie reduzieren daher nicht die Messempfindlichkeit.In the embodiment shown in FIG. 2c, the highly conductive central zone Zi is used as the second electrode - also called the membrane electrode - because of the highly conductive properties of this central area can be dispensed with the otherwise usual additional application of a metal electrode to the membrane 8. The two electrodes 4, Zi are aligned one above the other, they end laterally at a predetermined distance in front of the clamped and thus immovable edge of the membrane 8. This ensures that the capacitance between the electrodes 4 and only in that area of the membrane 8 that is defined takes part in the movement of the membrane 8, caused by an applied voltage or by incident ultrasound. Unused portions of the quiescent capacitance and also parasitic capacitances of supply lines are not detected via the two electrodes 4, Z λ , and therefore do not reduce the sensitivity.
In Fig. 2c ist diejenige Ausführungsform des Wandlers dargestellt, bei dem die hoch dotierte zentrale Zone Z einen schmalen, stegförmigen Abschnitt enthält, der sich bis zu dem Rand der Membran 8 hin erstreckt und dort direkt von einer elektrischen Anschlussleitung 20 kontaktiert ist. Eine derartige Konfiguration der Membran ist beispielsweise auch in Fig. 4b in Aufsicht dargestellt.2c shows the embodiment of the converter in which the highly doped central zone Z contains a narrow, web-shaped section which extends to the edge of the membrane 8 and is contacted there directly by an electrical connecting line 20. Such a configuration of the membrane is, for example, also shown in a top view in FIG. 4b.
Fig. 2d zeigt demgegenüber eine Ausführungsform des Wandlers, bei der die hoch dotierte zentrale Zone vollständig von der schwach bzw. nicht dotierten Randzone Z2 umgeben ist. Bei dieser Ausführungsform ist die Randzone Z2 an einer Stelle - in dem dargestellten Querschnitt links - von einer Isolierschicht 12 abgedeckt, und über diese Isolierschicht 12 ist die elektrische Anschlussleitung 20 bis in die zentrale Zone Zi geführt, um die zentrale Zone Z-i dort zu kontaktieren.In contrast, FIG. 2d shows an embodiment of the converter in which the highly doped central zone is completely surrounded by the weak or undoped edge zone Z 2 . In this embodiment, the edge zone Z 2 is covered at one point - on the left in the cross section shown - by an insulating layer 12, and the electrical connection line 20 is guided via this insulating layer 12 into the central zone Zi in order to contact the central zone Zi there ,
Fig. 3 zeigt ein Array aus mehreren Wandlern, das auf einem Halbleitersubstrat 2 angeordnet ist und jeweils eine erste Elektrode 4 und darüber eine rechteckförmige Membran 8 aufweist. Zwischen den Membranen verlaufen elektrische Anschlussleitungen 22, um die Elektroden 4, Zi zu kontaktieren.3 shows an array of several transducers, which is arranged on a semiconductor substrate 2 and each has a first electrode 4 and a rectangular membrane 8 above it. Electrical connection lines 22 run between the membranes in order to contact the electrodes 4, Zi.
Die Fig. 4 zeigt Aufsichten auf verschiedene Membranen 8, die alle eine quadratische Grundform aufweisen und verschiedene, unterschiedlich dotierte Zonen Zi, Z2, Z3 und Z. ... mit jeweils dem zugehörigen unterschiedlichen Fremdstoffkonzentrationen Ni, N2, N3 und N4... zeigen, wobei als Fremdstoffe prinzipiell alle chemischen Elemente verwendet werden können. Fig. 5 zeigt ebenfalls Aufsichten auf verschiedene Membranen, die in unterschiedlichen Zonen Z2 ... mit unterschiedlichen Fremdstoffkonzentrationen N1τ N2 ... versehen sind. Während die Membranen gemäß Fig. 4 eine quadratische Gesamtfläche besitzen, sind die Membranen 8 gemäß Fig. 5 entweder rund, hexagonal oder quadratisch ausgebildet.FIG. 4 shows plan views of various membranes 8, all of which have a quadratic basic shape and various, differently doped zones Zi, Z 2, Z 3 and Z. ... each with the associated different foreign substance concentrations Ni, N 2 , N 3 and N 4 ..., whereby in principle all chemical elements can be used as foreign substances. Fig. 5 also shows top views of different membranes in different zones Z 2 ... are provided with different concentrations of foreign substances N 1τ N 2 ... While the membranes according to FIG. 4 have a square total area, the membranes 8 according to FIG. 5 are either round, hexagonal or square.
In den Fig. 4 und 5 sind hoch dotierte Zonen Z mit verschiedener Schraffur dargestellt, schwach oder undotierte Zonen sind nicht schraffiert. Allen Membranen gemäß Fig. 4 und 5 ist gemeinsam, dass die Randzone Z2 undotiert ist oder eine schwache Dotierung N2 besitzt. In bestimmten Fällen kann die Erniedrigung der mechanischen Eigenspannung in der Randzone durch eine Dotierung mit Fremdstoffen angestrebt werden. Demgegenüber ist bei nahezu allen dargestellten Ausführungsformen eine zentrale Zone Zπ vorgesehen, die eine hohe Fremdstoffkonzentration NT besitzt und die beispielsweise in Fig. 4b sogar mit einem Steg bis zum Rand der Membran herausgeführt ist, an welchem dann eine metallische Anschlussleitung die zentrale Zone Z^ kontaktiert.4 and 5, highly doped zones Z are shown with different hatching, weak or undoped zones are not hatched. It is common to all membranes according to FIGS. 4 and 5 that the edge zone Z 2 is undoped or has a weak doping N 2 . In certain cases, the lowering of the mechanical residual stress in the peripheral zone can be aimed at by doping with foreign substances. In contrast, in almost all of the illustrated embodiments, a central zone Z π is provided, which has a high concentration of foreign substances N T and which, for example in FIG. 4b, is even led out with a web to the edge of the membrane, on which a metallic connecting line the central zone Z ^ contacted.
In Fig. 4c sind zwei separate Zonen Z3, Z4 mit einer hohen Konzentration an Dotierstoffen N3, N4 versehen, die übrigen Bereiche der Membranen, auch Grundzone ZG genannt, schließen die Randzone Z2 ein und besitzen die schwache Dotierungskonzentration N2 bzw. sind nicht dotiert.4c, two separate zones Z 3 , Z 4 are provided with a high concentration of dopants N 3 , N 4 , the remaining areas of the membranes, also called base zone Z G , enclose the edge zone Z 2 and have the weak doping concentration N. 2 or are not endowed.
In allen Ausführungsbeispielen gemäß Fig. 4 und 5 sind an der Grundzone ZG, die auch die Randzone Z2 mit der schwachen Dotierungskonzentration N2 enthält, mindestens eine hoch dotierte Zone, beispielsweise die zentrale Zone Z^ mit der Dotierungskonzentration eingebracht. In den Beispielen gemäß Fig. 4d, Fig. 4e und Fig. 4f sind in geringem Abstand von der zentralen Zone Z^ weitere umlaufende Zonen Z3 mit der hohen Konzentration N3 und die Zone Z4 mit der hohen Konzentration N4 in geringem Abstand von den benachbarten Zonen angeordnet, wobei die Dotierung der hoch dotierten Zonen eine identische Konzentration oder unterschiedliche Konzentrationen N an Fremdstoffen aufweisen können.4 and 5, at least one highly doped zone, for example the central zone Z ^ with the doping concentration, is introduced at the base zone Z G , which also contains the edge zone Z 2 with the weak doping concentration N 2 . In the examples according to FIGS. 4d, 4e and 4f, further circumferential zones Z 3 with the high concentration N 3 and zone Z 4 with the high concentration N 4 are at a short distance from the central zone Z ^ arranged from the adjacent zones, the doping of the highly doped zones having an identical concentration or different concentrations N of foreign substances.
Fig. 6 zeigt die schematische Aufsicht auf mehrere Wandler innerhalb verschiedener Wandler-Arrays. Das Array A ist gemäß dem Stand der Technik ausgebildet, bei dem alle Wandler eine identische Membran aufweisen, die sowohl hinsichtlich Größe als auch Gestalt als auch Dotierung identisch ist. Alle einzelnen Wandler besitzen daher eine scharfe Resonanzfrequenz, bei der die Membran in mechanische Schwingungen versetzt werden kann, d.h. die Bandbreite B des Wandler-Arrays ist gering, vgl. Figur 6b.6 shows the schematic top view of several transducers within different transducer arrays. The array A is designed in accordance with the prior art, in which all transducers have an identical membrane which is identical in terms of size, shape and doping. All individual converters therefore have a sharp resonance frequency at which the membrane can be set in mechanical vibrations, ie the bandwidth B of the transducer array is small, cf. Figure 6b.
Fig. 6b zeigt ein Wandler-Array, bei dem viele erfindungsgemäße Wandler auf ein Substrat angebracht sind, wobei die einzelnen Membranen hoch dotierte zentrale Zonen Zi mit der Fremdstoffkonzentration Ni und schwach dotierte Randzonen Z2 mit der niedrigen Fremdstoffkonzentration N2 aufweisen. Gemäß der Darstellung nach Fig. 6d besitzt somit jeder Wandler zwei verschiedene Resonanzfrequenzen, einmal gerät die gesamte Membran, d.h. die Randzone gemeinsam mit der zentralen Zone, in Resonanz, mit einer anderen Frequenz gerät dann die weniger steife zentrale Zone Zi allein in Resonanz. Durch die Überlagerung zweier Resonanzen ergibt sich eine Verbreiterung der aktiven Bandbreite des Arrays, vgl. Fig. 6d.6b shows a transducer array in which many transducers according to the invention are attached to a substrate, the individual membranes having highly doped central zones Zi with the foreign substance concentration Ni and lightly doped edge zones Z 2 with the low foreign substance concentration N 2 . According to the representation according to FIG. 6d, each transducer thus has two different resonance frequencies, first the entire membrane, ie the edge zone together with the central zone, resonates, with a different frequency the less rigid central zone Zi then resonates alone. The overlaying of two resonances results in a broadening of the active bandwidth of the array, cf. Fig. 6d.
Fig. 6e zeigt ein Wandler-Array, bei dem die zentralen Zonen Zi, Z3 wiederum mit der Konzentration N hoch dotiert sind, während die Randzonen Z2 eine schwache Dotierung besitzen. Außerdem sind die hoch dotierten Zonen Z bei unterschiedlichen Wandlern verschieden groß. Aufgrund dieser Konstellation ergeben sich wenigstens zwei und bis zu vier diskrete mechanische Resonanzen, die aus einer Überlagerung dieser Resonanzen entstehende gesamte nutzbare Bandbreite wird vergrößert, vgl. Fig. 6f.6e shows a transducer array in which the central zones Zi, Z 3 are again heavily doped with the concentration N, while the edge zones Z 2 have a weak doping. In addition, the highly doped zones Z have different sizes in different converters. This constellation results in at least two and up to four discrete mechanical resonances, the total usable bandwidth resulting from a superimposition of these resonances is increased, cf. 6f.
Fig. 6g zeigt ein Wandler-Array, bei dem die Membranen alle dieselbe Fläche besitzen, und bei denen die zentralen hoch dotierten Zonen Zi ebenfalls alle dieselbe Größe besitzen. Während jedoch einige Wandler eine hohe Dotierungskonzentration Nu aufweisen, besitzen andere Wandler eine hiervon abweichende hohe Dotierungskonzentration Nι2. Aus diesem Grund hat das dargestellte Wandlerfeld mindestens zwei und bis zu vier diskrete mechanische Resonanzfrequenzen. Die aus Überlagerung entstehende nutzbare gesamte Bandbreite ist entsprechend groß, vgl. Fig. 6h. FIG. 6g shows a transducer array in which the membranes all have the same area and in which the central, highly doped zones Zi also all have the same size. However, while some transducers have a high doping concentration Nu, other transducers have a different high doping concentration N 2 . For this reason, the transducer field shown has at least two and up to four discrete mechanical resonance frequencies. The usable total bandwidth resulting from superimposition is correspondingly large, cf. Fig. 6h.
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2002310796A AU2002310796A1 (en) | 2001-05-10 | 2002-05-03 | Electroacoustic transducer for generating or detecting ultrasound, transducer array and method for the production of the transducer or the transducer array |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2001122765 DE10122765A1 (en) | 2001-05-10 | 2001-05-10 | Electroacoustic transducer for generating or detecting ultrasound, transducer array and method for manufacturing the transducer or transducer array |
DE10122765.5 | 2001-05-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002090242A2 true WO2002090242A2 (en) | 2002-11-14 |
WO2002090242A3 WO2002090242A3 (en) | 2004-01-08 |
Family
ID=7684315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2002/004869 WO2002090242A2 (en) | 2001-05-10 | 2002-05-03 | Electroacoustic transducer for generating or detecting ultrasound, transducer array and method for the production of the transducer or the transducer array |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2002310796A1 (en) |
DE (1) | DE10122765A1 (en) |
WO (1) | WO2002090242A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1764162A1 (en) * | 2005-09-14 | 2007-03-21 | Esaote S.p.A. | Microfabricated capacitive ultrasonic transducer for high frequency applications |
FR2952626A1 (en) * | 2009-11-19 | 2011-05-20 | St Microelectronics Tours Sas | Capacitive micro-transducer for ultrasonic instrumentation system, has intermediate crown made of first material and surrounded by peripheral crown in second material, where first material is rigid than that of second and third materials |
WO2017216139A1 (en) * | 2016-06-13 | 2017-12-21 | Koninklijke Philips N.V. | Broadband ultrasound transducer |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005004878B4 (en) * | 2005-02-03 | 2015-01-08 | Robert Bosch Gmbh | Micromechanical capacitive pressure sensor and corresponding manufacturing method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4309917A1 (en) * | 1992-03-30 | 1993-10-07 | Awa Microelectronics | Process for the production of silicon microstructures and silicon microstructure |
EP0681691B1 (en) * | 1993-01-19 | 1996-07-31 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Pressure sensor |
DE4318466B4 (en) * | 1993-06-03 | 2004-12-09 | Robert Bosch Gmbh | Method for producing a micromechanical sensor |
US5619476A (en) * | 1994-10-21 | 1997-04-08 | The Board Of Trustees Of The Leland Stanford Jr. Univ. | Electrostatic ultrasonic transducer |
DE19643893A1 (en) * | 1996-10-30 | 1998-05-07 | Siemens Ag | Ultrasonic transducers in surface micromechanics |
DE19922967C2 (en) * | 1999-05-19 | 2001-05-03 | Siemens Ag | Micromechanical capacitive ultrasonic transducer and method for its production |
-
2001
- 2001-05-10 DE DE2001122765 patent/DE10122765A1/en not_active Ceased
-
2002
- 2002-05-03 WO PCT/EP2002/004869 patent/WO2002090242A2/en not_active Application Discontinuation
- 2002-05-03 AU AU2002310796A patent/AU2002310796A1/en not_active Abandoned
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1764162A1 (en) * | 2005-09-14 | 2007-03-21 | Esaote S.p.A. | Microfabricated capacitive ultrasonic transducer for high frequency applications |
US7477572B2 (en) | 2005-09-14 | 2009-01-13 | Esaote, S.P.A. | Microfabricated capacitive ultrasonic transducer for high frequency applications |
FR2952626A1 (en) * | 2009-11-19 | 2011-05-20 | St Microelectronics Tours Sas | Capacitive micro-transducer for ultrasonic instrumentation system, has intermediate crown made of first material and surrounded by peripheral crown in second material, where first material is rigid than that of second and third materials |
WO2017216139A1 (en) * | 2016-06-13 | 2017-12-21 | Koninklijke Philips N.V. | Broadband ultrasound transducer |
CN109311055A (en) * | 2016-06-13 | 2019-02-05 | 皇家飞利浦有限公司 | Wide band ultrasonic transducer |
US11400487B2 (en) | 2016-06-13 | 2022-08-02 | Koninklijke Philips N.V. | Broadband ultrasound transducer |
Also Published As
Publication number | Publication date |
---|---|
DE10122765A1 (en) | 2002-12-05 |
AU2002310796A1 (en) | 2002-11-18 |
WO2002090242A3 (en) | 2004-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE602005006419T2 (en) | Electroacoustic transducer for high frequency applications | |
EP2362686B1 (en) | Sound converter for installation in an ear | |
EP1444864B1 (en) | Micro-mechanical sensors and method for production thereof | |
DE112007002645T5 (en) | ultrasound probe | |
EP2542149B1 (en) | Implantable device for detecting a vessel wall expansion | |
DE3741568C2 (en) | ||
DE102004011144B4 (en) | Pressure sensor and method for operating a pressure sensor | |
DE102004011193A1 (en) | Mosaic array arrangement that uses micromachined ultrasound transducers | |
DE102010029645A1 (en) | Micromechanical component having a test structure for determining the layer thickness of a spacer layer and method for producing such a test structure | |
DE3733776A1 (en) | ULTRASONIC PROBE | |
DE102005051604A1 (en) | Method for producing an ultrasonic transducer | |
DE102014213390A1 (en) | Device and method for producing a device with microstructures or nanostructures | |
DE102014224170A1 (en) | MICROPHONE AND METHOD FOR MANUFACTURING THE SAME | |
DE102013209479B4 (en) | A method of processing a wafer at unmasked areas and previously masked areas to reduce a wafer thickness | |
DE10139160B4 (en) | Sensor array and transceiver | |
EP2288912B1 (en) | Arrangement of a piezoacoustic resonator on an acoustic mirror of a substrate, method for the manufacture of the arrangement and use of the arrangement | |
DE102016123130B4 (en) | MEMS device and method of making a MEMS device | |
DE102012003495A1 (en) | Ultrasonic transducer for excitation and / or detection of ultrasound of different frequencies | |
WO2008135004A1 (en) | Ultrasound converter array for applications in gaseous media | |
WO2002090242A2 (en) | Electroacoustic transducer for generating or detecting ultrasound, transducer array and method for the production of the transducer or the transducer array | |
DE102014210122A1 (en) | An apparatus for determining a value of a property of a fluid to be measured, a method for operating a device for determining a value of a property of a fluid to be measured, and a method for producing a device for determining a value of a property of a fluid to be measured | |
DE3215242A1 (en) | ULTRASONIC HEAD | |
DE102019132086A1 (en) | ULTRASONIC TRANSDUCER, METHOD FOR THE PRODUCTION THEREOF, AND ULTRASONIC IMAGING DEVICE | |
DE102020117519A1 (en) | DEVICE FOR GENERATING AN IMAGE CHARGE / CURRENT SIGNAL | |
DE102007034072B3 (en) | Apparatus and method for charge transfer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |