WO2002077598A1 - Semiconductor pressure sensor and regulation method therefor - Google Patents
Semiconductor pressure sensor and regulation method therefor Download PDFInfo
- Publication number
- WO2002077598A1 WO2002077598A1 PCT/JP2002/002855 JP0202855W WO02077598A1 WO 2002077598 A1 WO2002077598 A1 WO 2002077598A1 JP 0202855 W JP0202855 W JP 0202855W WO 02077598 A1 WO02077598 A1 WO 02077598A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin case
- semiconductor
- case
- pressure sensor
- chip
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 95
- 238000000034 method Methods 0.000 title claims abstract description 16
- 229920005989 resin Polymers 0.000 claims abstract description 69
- 239000011347 resin Substances 0.000 claims abstract description 69
- 238000007789 sealing Methods 0.000 claims abstract description 44
- 239000012779 reinforcing material Substances 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 3
- 230000003014 reinforcing effect Effects 0.000 claims description 31
- 239000000523 sample Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 3
- 239000003566 sealing material Substances 0.000 claims 3
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 27
- 238000001514 detection method Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000013464 silicone adhesive Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/0061—Electrical connection means
- G01L19/0069—Electrical connection means from the sensor to its support
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/14—Housings
- G01L19/147—Details about the mounting of the sensor to support or covering means
Definitions
- the present invention relates to a semiconductor pressure sensor and a method of adjusting the same, and more particularly, to a semiconductor pressure sensor having a case structure suitable for characteristic adjustment and a method of adjusting the same.
- a conventional semiconductor pressure sensor has, for example, the following configuration, as described in Japanese Patent Application Laid-Open No. 57-79419.
- a semiconductor chip having a pressure detection circuit and a glass base are joined to form a chip chip.
- this chip paste to the glass base, it is adhered to the lead terminal integrated resin case, the chip and the lead terminal are connected by wires, and the resin cover is adhered to the resin case to form a gauge case paste. I do.
- a resin case forming a gauge case is bonded to a resin base having a pressure introducing pipe, and a thick film hybrid circuit board having a characteristic adjustment circuit is bonded to the resin base. After connecting the lead terminals and the thick-film hybrid circuit board to the connector lead terminals with wires, apply pressure to the outer case to adjust the resistance of the thick-film hybrid circuit board to a predetermined value, and adjust the sensor characteristics.
- the present inventors have considered performing characteristic adjustment with the gauge case kumi alone, which is in a state before the outer case is attached, but holding the resin case of the gage case kumi with a jig from above and below and applying a holding force.
- the pressing force is applied directly to the periphery of the glass base, which causes cracks in the glass base and stress on the semiconductor chip for detecting pressure, resulting in accurate characteristics. It turned out that there was a problem that adjustment could not be performed.
- An object of the present invention is to provide a semiconductor pressure sensor capable of adjusting sensor characteristics in a state of a gauge case and a method of adjusting the semiconductor pressure sensor.
- the present invention provides a semiconductor chip for converting a change in pressure of a medium to be measured into an electric signal, a resin case for housing the semiconductor chip, and drawn out of the case from the resin case. And a connecting member for electrically connecting the semiconductor chip and the lead terminal, wherein the resin case is formed above and below the resin case.
- a semiconductor chip is provided on the reinforcing member.
- the present invention provides a semiconductor chip having a pressure conversion circuit and a characteristic compensation circuit, a resin case for housing the semiconductor chip, a resin case drawn out of the case from the resin case, and a resin case.
- a method of adjusting a characteristic of a semiconductor pressure sensor having a lead terminal integrally formed with a case and a connection member for electrically connecting the semiconductor chip and the lead terminal comprising: A planar sealing surface formed above and below the resin case; a reinforcing member disposed inside the sealing surface and integrally formed so as to partially expose the resin case; With a sealing surface and a groove provided between the reinforcing material, The resin case in the portion where the sealing surface is provided is fixed from above and below, and pressure is applied to the semiconductor chip to adjust the characteristics of the semiconductor chip.
- FIG. 1 is a cross-sectional view showing a configuration of a semiconductor relative pressure sensor according to an embodiment of the present invention in a gage case in a depressed state.
- FIG. 2 is a plan view of FIG.
- FIG. 3 is a cross-sectional view of a main part showing a configuration of a characteristic adjusting device using a gauge case comb of a semiconductor relative pressure sensor according to an embodiment of the present invention.
- FIG. 4 is a cross-sectional view showing another configuration of the semiconductor relative pressure sensor according to the embodiment of the present invention in a gauge case in a depressed state.
- FIG. 5 is a sectional view showing a configuration of a semiconductor relative pressure sensor according to one embodiment of the present invention.
- FIG. 6 is a cross-sectional view showing the configuration of the gauge absolute state of the semiconductor absolute pressure sensor according to the embodiment of the present invention.
- FIG. 7 is a sectional view showing a configuration of a semiconductor absolute pressure sensor according to one embodiment of the present invention.
- FIG. 8 is a perspective view showing another configuration of the semiconductor sensor according to one embodiment of the present invention.
- BEST MODE FOR CARRYING OUT THE INVENTION a configuration of a semiconductor pressure sensor according to an embodiment of the present invention will be described with reference to FIGS.
- FIG. 1 is a cross-sectional view showing a configuration of a semiconductor relative pressure sensor according to an embodiment of the present invention in a gauge case in a state of being in a cracked state.
- FIG. 2 is a plan view of FIG.
- the semiconductor chip 1 is made of silicon.
- the semiconductor chip 1 is formed in a concave shape by, for example, etching the lower surface of a central portion, and a thin diaphragm 2 is formed in the central portion.
- a pressure detection circuit (not shown) is formed integrally with the diaphragm 2 on the upper surface of the semiconductor chip 1 by a semiconductor process.
- the pressure detection circuit is composed of four diffusion resistors formed on the diaphragm 2, and is configured by wiring to a bridge with an aluminum conductor.
- a characteristic compensation circuit and a protection circuit are integrally formed on the upper surface of the semiconductor chip 1 in a peripheral portion other than the diaphragm by a semiconductor process cell.
- the characteristic compensation circuit is a digital-analog hybrid circuit that adjusts the relationship between pressure and output to a predetermined transfer function.
- the digital / analog hybrid circuit is mainly composed of a digital section having an EPR0M for storing and holding the characteristic adjustment signal, and an analog section for amplifying the signal.
- the characteristic adjustment signal is an adjustment value such as a coefficient value for adjusting each of these characteristics obtained during zero-span adjustment, sensitivity adjustment, and temperature characteristic adjustment.
- the protection circuit is a circuit that protects input / output signals provided at input / output stages connected to the outside.
- the pressure detection circuit, the characteristic adjustment circuit, and the protection circuit are each electrically connected with aluminum conductors.
- the semiconductor chip 1 is joined to the glass table 3 by aanodic bonding or the like.
- a semiconductor chip 1 and a glass table 3 constitute a chip chip.
- the glass stand 3 has a through hole 4 at the center.
- the through hole 4 serves as a pressure inlet for introducing pressure to the lower surface of the diaphragm 2 of the semiconductor chip 1.
- the linear expansion coefficient of the glass table 3 is substantially equal to the linear expansion coefficient of the semiconductor chip 1.
- the resin case 6 is formed by insert molding the lead terminal 7 and the reinforcing plate 8.
- the resin case 6 is made of a thermoplastic resin or a thermosetting resin.
- the lead terminal 7 is made of phosphor bronze.
- the reinforcing plate 8 has a circular shape and is made of 42 alloy.
- a through hole 9 is formed in the center of the reinforcing plate 8.
- the through hole 9 serves as a pressure inlet for introducing pressure to the lower surface of the diaphragm 2 of the semiconductor chip 1.
- a through hole 15 serving as a pressure introduction port for introducing pressure to the lower surface of the diaphragm 2 of the semiconductor chip 1 is formed.
- Insert molded to resin case 6 The upper center surface of the reinforcing plate 8 is exposed from the resin case 6.
- the lead terminal 7 is installed so as to surround the vicinity of the disposition portion of the chip 5 and is drawn out through a resin case.
- the chip chip composed of the semiconductor chip 1 and the glass base 3 is bonded and fixed to the reinforcing plate 8 exposed at the center of the resin case 6 using a silicone adhesive 16.
- the chip electrodes of the semiconductor chip 1 are connected to the lead terminals 7 by wire bonding with aluminum wires 17.
- Grooves 13 and 14 are formed in the resin case 6.
- the grooves 13 and 14 are ring-shaped as shown in FIG.
- the radii of the grooves 13 and 14 are equal to each other, and are provided at the same upper and lower positions with respect to the surface on which the lead terminals 7 are formed.
- the portion of the outer diameter of the resin case 6 where the lead terminal 7 is provided has a square planar shape as shown in FIG.
- the portion of the outer diameter of the resin case 6 where the groove 13 is provided has a circular planar shape as shown in FIG.
- the portion where the groove 14 is provided has a circular planar shape, like the portion corresponding to the groove 13.
- the resin case 6 has a rigid portion 6 A on the inner peripheral side of the grooves 13 and 14, a ring-shaped deformed portion 6 B 1 on the outer peripheral side of the groove 13, and a ring-shaped deformed portion on the outer peripheral side of the groove 14. 6 B2.
- the reinforcing plate 8 is embedded in the rigid portion 6A by insert molding, further increasing the rigidity of the rigid portion 6A.
- the upper surface of the ring-shaped deformed portion 6B1 is flat and serves as a ring-shaped convex hermetic sealing surface 6C1.
- the lower surface of the ring-shaped deformed portion 6B2 is flat and serves as a ring-shaped convex hermetic sealing surface 6C2.
- the convex hermetic sealing surface 6C1 and the convex hermetic sealing surface 6C2 are substantially vertically symmetric.
- the height from the convex hermetic sealing surface 6C2 to the bottom of the groove 14 is HI, and the height from the convex hermetic sealing surface 6C2 to the top surface of the reinforcing plate 8 (the mounting surface of the glass base 3). Is H 2, the depth of the groove 14 is set so that H 1 ⁇ H 2. From another perspective, the height from the convex hermetic sealing surface 6C1 to the bottom of the groove 14 is H3, and the height from the convex hermetic sealing surface 6C1 to the top surface of the reinforcing plate 8 (glass The height of the groove 14 is set so that the relationship of H4 ⁇ H3 is satisfied, where H4 is the height up to the mounting surface of the base 3).
- the reinforcing plate 8 provided on the rigid portion 6A is made of a metal which is stronger than the resin case 6, so that the force F l. The stress caused by 2 does not reach the glass table 3 and the semiconductor chip 1 mounted on the reinforcing plate 8.
- the upper surface of the chip comb composed of the semiconductor chip 1 and the glass base 3 mounted on the reinforcing plate 8 inside the resin case 6 is filled and cured with a fluorosilicone-based or fluorine-based coat gel 18.
- the coat gel 18 transmits pressure to the semiconductor chip 1 and prevents the corrosive liquid or gas from coming into contact with the semiconductor chip 1.
- the recesses 44 are recesses for snap-fit fixing (snap-fit fitting portions), and this point will be described later with reference to FIG.
- the gauge casing 10 is constituted by the chip casing composed of the semiconductor chip 1 and the glass base 3 and the resin case 6 in which the reinforcing plate 8 and the lead terminal 7 are integrally formed.
- FIG. 3 is a cross-sectional view of a main part showing a configuration of a characteristic adjusting device using a gauge case comb of a semiconductor relative pressure sensor according to an embodiment of the present invention.
- the characteristic adjustment jig 27 includes a fixed jig 22 and a movable jig 26.
- the fixing jig 22 includes a ring 20 and a pressure introducing hole 21 as main parts.
- the movable jig 26 is mainly composed of the O-ring 23, the pressure introducing hole 24, and the probe 25. .
- the gauge cage 10 is attached to the fixing jig 2 2, the lower hermetic sealing surface 1 2 and the O-ring 2
- the gauge case is mounted so that the O-ring 23 of the movable jig 26 and the upper hermetic sealing surface 11 match, and the lead terminal 7 and the probe 25 match respectively.
- Set as shown in Fig. 3 so that Kumi 10 is sandwiched between the fixed jig 22 and the movable jig 26.
- the adjustment device can be downsized even when the temperature characteristic of the sensor is measured by exposing it to a high or low temperature state.
- the adjustment device can be downsized even when the temperature characteristic of the sensor is measured by exposing it to a high or low temperature state.
- the height H5 of the glass base 3 can be made lower than that of the conventional case.
- the conventional glass table is used to reduce the external force transmitted to the chip (for example, external force and stress from a resin case, an adjustment jig, etc.). External force is reduced.
- the external force is absorbed by the structure of the resin case 6 (having the grooves 13 and 14 and using the reinforcing plate 8),
- the height of the glass table 3 can be reduced because it is not as large as the glass table 3.
- the size and cost of the semiconductor pressure sensor can be reduced.
- the height of the conventional glass table was about 2.5 mm, but can be reduced to 0.6 mm in the present embodiment.
- FIG. 4 is a cross-sectional view showing another configuration of the semiconductor relative pressure sensor according to the embodiment of the present invention in a gauge case in a depressed state.
- the same reference numerals as those in FIG. 1 indicate the same parts.
- the lower surface hermetic sealing surface 6 B 2 is disposed above the lower surface of the reinforcing plate 8. That is, the height H I ′ from the convex hermetic sealing surface 6 C 2 ′ to the bottom surface of the groove 14 ′ is smaller than that shown in FIG.
- the height H3 from the convex hermetic sealing surface 6C1 to the bottom surface of the groove 14 'and the upper surface of the reinforcing plate 8 from the convex hermetic sealing surface 6C1 (the The depth of the groove 14 'is set so that there is a relationship of H4 ⁇ H3 between the height H4 to the mounting surface).
- the groove 14 ′ is based on the opening side (the side of the convex hermetic sealing surface 6 C 2), its bottom surface is deeper than the upper surface of the reinforcing plate 8 (the mounting surface of the glass base 3). It is formed up to the position. Therefore, when a uniform force is applied from the upper surface of the ring-shaped convex hermetic sealing surface 6C1 and the lower surface of the ring-shaped convex hermetic sealing surface 6C2, grooves 13 and 14 'are formed. As a result, even if the deformed portions 6B1 and 6B2 'are deformed, the force does not act on the rigid portion 6A.
- the reinforcing plate 8 provided on the rigid portion 6A is made of a metal that is stronger than the resin case 6, so that the stress is reduced. It is less than the glass table 3 and the semiconductor chip 1 mounted on the top 8. As described above, by reducing the height of the deformed portion 6B2 ', the coast of the resin case 6 can be eliminated, and the gauge case can be made more compact.
- FIG. 5 is a sectional view showing a configuration of a semiconductor relative pressure sensor according to one embodiment of the present invention.
- the same reference numerals as those in FIG. 1 indicate the same parts.
- the relative pressure sensor 40 of this example is a stand-alone type. Place the relative pressure gauge case 10 'inside the outer case 32 and fix it.
- the exterior case is made of, for example, PBT.
- the gauge case 10 ' is mounted inside the outer case 32 with the upside down of the gauge case 10' shown in FIG.
- the convex hermetic sealing surface 11 of the relative pressure gauge case 10 ′ shown in FIG. 4 is fixed to the concave groove of the outer case 32 with an adhesive 33.
- Silicone gel 36 is filled so as to cover lead terminals 7 and connector terminals 34.
- a cover 38 having an air introduction hole 37 is attached to the outer case 32 with an adhesive 39.
- the measured pressure introduced from the pressure introducing pipe 31 of the outer case 3 2 is received on the upper surface of the chip of the semiconductor sensor, and the atmospheric pressure is received on the lower surface of the chip from the air introducing hole 37 of the cover 38. Atmospheric pressure-based relative pressure can be measured.
- the gauge case 10 ′ shown in FIG. 4 is used, but the same effect can be obtained by mounting the gauge case 10 shown in FIG. 1 in the same manner. Also, since the gauge case 10 shown in FIG. 1 has fitting grooves on the upper and lower surfaces, it is arranged upside down so that the measured pressure can be applied to the lower surface of the chip and the atmospheric pressure can be applied to the upper surface. Also has a good structure.
- FIG. 6 is a cross-sectional view showing the configuration of the gauge absolute state of the semiconductor absolute pressure sensor according to the embodiment of the present invention.
- FIG. 7 shows a semiconductor absolute pressure according to one embodiment of the present invention. It is sectional drawing which shows the structure of a sensor. The same reference numerals as those in FIGS. 1 and 5 indicate the same parts.
- the difference between the example shown in Fig. 1 and the example 1 shown in Fig. 1 is that the through hole 4 is not provided in the glass base 3A and the semiconductor This is a point that a vacuum chamber 30 is provided in a portion between the lower surface of the diaphragm 2 of the chip 1 and the upper surface of the glass base 3A.
- a gauge case smear 1 OA based on the absolute pressure is obtained.
- the cover 42 has no air introduction hole, and is attached to the mounting case 32.
- the measured pressure on the upper surface of the chip is received via the pressure introducing pipe 31 of the outer case 42, and the absolute pressure can be measured based on the vacuum chamber provided on the lower surface of the chip.
- FIG. 8 is a perspective view showing another configuration of the semiconductor sensor according to one embodiment of the present invention.
- the same reference numerals as those in FIGS. 1 and 2 indicate the same parts.
- the semiconductor sensor shown in FIG. 8 is an on-board type atmospheric pressure sensor 43.
- the recesses 44 are provided on two surfaces different from the two surfaces on which the lead terminals 7 are arranged, of the four side surfaces of the rigid body portion 6A having a square planar shape.
- the cover 47 is fitted into the recess 44 by using the snap-fitting pawl 45 formed on the cover 47.
- the cover 47 is provided with an air introduction hole 46.
- the plane shape of the rigid body 6A is not limited to a square, but may be a rectangle.
- the lead terminal 7 Insert into the board.
- the lead terminals 7 are pre-dipped with solder, and are joined to a printed circuit board using the solder.
- the size and cost of the gauge case can be reduced.
- the on-board gauge case stand for relative pressure and absolute pressure stand-alone can be shared, the production line for gauge case paste can be shared, and a mixed flow line can be constructed.
- the cost can be reduced and cost can be reduced.
- the basic concept is included in the contents set forth in the claims, and individual components other than these components (for example, the connection between the gauge case and the external case is welded) ) Is not limited at all.
- INDUSTRIAL APPLICABILITY According to the present invention, it is possible to adjust the sensor characteristics in the state of the gauge case.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
- Pressure Sensors (AREA)
Abstract
A semiconductor pressure sensor capable of regulating sensor characteristics while being built in a gauge case, and a regulation method therefor, the sensor comprising a semiconductor chip (1) having a pressure conversion circuit and a characteristic compensation circuit, a resin case (6) storing the chip (1), and a lead terminal (7) led to the outside from the resin case and formed integrally with the resin case. The resin case (6) comprises planar air-tight sealing surfaces (6C1, 6C2) formed on the upside and downside of the resin case, a reinforcing material (8) disposed inside of the sealing surfaces and formed integrally with the resin case so as to expose at part thereof from the case, and grooves (13, 14) provided between the sealing surfaces and the reinforcing material, the semiconductor chip (1) being disposed on the reinforcing material.
Description
明 細 書 半導体圧力センサ及びその調整方法 技術分野 本発明は、 半導体圧力センサ及びその調整方法に係り、 特に、 特性調整に適し たケース構造を有する半導体圧力センサ及びその調整方法に関する。 背景技術 従来の半導体圧力センサは、 例えば、 特開昭 5 7 - 7 9 4 1 9号公報に記載さ れているように、 次のような構成となっている。 圧力検出回路を有した半導体チ ップと、 ガラス台とを接合してチップクミを構成する。 次に、 このチップクミを ガラスベースに接着した後、 リード端子一体型樹脂ケースに接着して、 チップと リード端子をワイヤで接続し、 更に、 樹脂カバ一を樹脂ケースに接着してゲージ ケースクミを構成する。 さらに、 圧力導入管を有した榭脂ベースに、 ゲージケー スクミを構成する樹脂ケースを接着し、 更に、 特性調整回路を有した厚膜混成回 路基板を樹脂ベースに接着して、 ゲージケースクミのリード端子と厚膜混成回路 基板とコネクタリード端子を各々ワイヤで接続したのち、 外装ケースに圧力を印 加して厚膜混成回路基板の抵抗を所定の値に合わせることでセンサの特性調整 TECHNICAL FIELD The present invention relates to a semiconductor pressure sensor and a method of adjusting the same, and more particularly, to a semiconductor pressure sensor having a case structure suitable for characteristic adjustment and a method of adjusting the same. BACKGROUND ART A conventional semiconductor pressure sensor has, for example, the following configuration, as described in Japanese Patent Application Laid-Open No. 57-79419. A semiconductor chip having a pressure detection circuit and a glass base are joined to form a chip chip. Next, after bonding this chip paste to the glass base, it is adhered to the lead terminal integrated resin case, the chip and the lead terminal are connected by wires, and the resin cover is adhered to the resin case to form a gauge case paste. I do. Furthermore, a resin case forming a gauge case is bonded to a resin base having a pressure introducing pipe, and a thick film hybrid circuit board having a characteristic adjustment circuit is bonded to the resin base. After connecting the lead terminals and the thick-film hybrid circuit board to the connector lead terminals with wires, apply pressure to the outer case to adjust the resistance of the thick-film hybrid circuit board to a predetermined value, and adjust the sensor characteristics.
( 0—スパン調整, 感度調整, 温度特性調整等) を行っている。 特性調整後、 外 装ケースに樹脂カバ一を接着して半導体圧力センサを構成している。 発明の開示 しかしな力 Sら、 特開昭 5 7 - 7 9 4 1 9号公報に記載されている半導体圧力セ ンサでは、 ゲージケースクミを外装ケースに固定した状態で、 センサの特性調整 を行うものであり、 外装ケースが大きく熱容量が大きいため、 高温や低温状態に
'ザの温度特性を測定する際等に装置が大型化するという問題点があつ た。 また、 特性調整不良品が発生した場合、 外装ケースごと廃棄する必要があり、 経済的損失が大きいという問題点があった。 (0-span adjustment, sensitivity adjustment, temperature characteristic adjustment, etc.). After adjusting the characteristics, a resin cover is bonded to the external case to form a semiconductor pressure sensor. DISCLOSURE OF THE INVENTION However, in the semiconductor pressure sensor described in Japanese Unexamined Patent Publication No. 57-79419, the characteristic adjustment of the sensor is performed while the gauge case is fixed to the outer case. Because the outer case is large and the heat capacity is large, 'There was a problem that the apparatus became large when measuring the temperature characteristics of the laser. In addition, when a product with poor characteristic adjustment occurs, it is necessary to dispose the entire outer case, which has a problem of great economic loss.
そこで、 本発明者らは、 外装ケースを取り付ける前の状態であるゲージケース クミ単体で特性調整を行うことを検討したが、 ゲージケースクミの樹脂ケースを、 上下から冶具で挟み込み押え力を加えて圧力を印加して調整作業を行なおうとす ると、 ガラスベースの周辺部で直接押さえ力を受けるため、 ガラスベースの割れ や、 圧力を検出するための半導体チップに応力が加わり、 正確な特性調整が行え ないという問題が生じることが判明した。 Therefore, the present inventors have considered performing characteristic adjustment with the gauge case kumi alone, which is in a state before the outer case is attached, but holding the resin case of the gage case kumi with a jig from above and below and applying a holding force. When pressure is applied to perform the adjustment work, the pressing force is applied directly to the periphery of the glass base, which causes cracks in the glass base and stress on the semiconductor chip for detecting pressure, resulting in accurate characteristics. It turned out that there was a problem that adjustment could not be performed.
本発明の目的は、 ゲージケースクミの状態でセンサ特性調整を行える半導体圧 力センサ及びその調整方法を提供することにある。 An object of the present invention is to provide a semiconductor pressure sensor capable of adjusting sensor characteristics in a state of a gauge case and a method of adjusting the semiconductor pressure sensor.
上記目的を達成するために、 本発明は、 被測定媒体の圧力変化を電気信号に変 換する半導体チップと、 この半導体チップを収納する樹脂ケースと、 この樹脂ケ —スからケース外部に引き出されるとともに樹脂ケースと一体成形されたリード 端子と、 上記半導体チップと上記リード端子を電気的に接続する接続部材とを有 する半導体圧力センサにおいて、 上記樹脂ケースは、 この樹脂ケースの上下に形 成された平面状の封止面と、 この封止面の内側に配置されるとともに、 樹脂ケー スから一部が露出するように一体成形された補強材と、 上記封止面と上記補強材 の間に設けられた溝部とを備え、 上記補強材の上に半導体チップを配設するよう にしたものである。 かかる構成により、 ゲージケースクミの状態でセンサ特性調 整を行えるものとなる。 In order to achieve the above object, the present invention provides a semiconductor chip for converting a change in pressure of a medium to be measured into an electric signal, a resin case for housing the semiconductor chip, and drawn out of the case from the resin case. And a connecting member for electrically connecting the semiconductor chip and the lead terminal, wherein the resin case is formed above and below the resin case. A flat sealing surface, a reinforcing member disposed inside the sealing surface, and integrally formed so as to partially expose the resin case, between the sealing surface and the reinforcing member. And a semiconductor chip is provided on the reinforcing member. With this configuration, it is possible to adjust the sensor characteristics in the state of the gauge case crack.
また、 上記目的を達成するために、 本発明は、 圧力変換回路と特性補償回路を 有する半導体チップと、 この半導体チップを収納する樹脂ケースと、 この樹脂ケ —スからケース外部に引き出されるとともに樹脂ケースと一体成形されたリ一ド 端子と、 上記半導体チップと上記リード端子を電気的に接続する接続部材とを有 する半導体圧力センサの特性を調整する半導体圧力センサの調整方法において、 上記樹脂ケースは、 この樹脂ケースの上下に形成された平面状の封止面と、 この 封止面の内側に配置されるとともに、 樹脂ケースから一部が露出するように一体 成形された補強材と、 上記封止面と上記補強材の間に設けられた溝部とを備え、
上記封止面の設けられた部分の樹脂ケースを上下から固定し、 上記半導体チップ に圧力を印加して、 上記半導体チップの特性調整を行うようにしたものである。 かかる構成により、 ゲージケースクミの状態でセンサ特性調整を行えるものとな る。 図面の簡単な説明 図 1は、 本発明の一実施形態による半導体相対圧センサのゲージケースクミ状 態の構成を示す断面図である。 In order to achieve the above object, the present invention provides a semiconductor chip having a pressure conversion circuit and a characteristic compensation circuit, a resin case for housing the semiconductor chip, a resin case drawn out of the case from the resin case, and a resin case. A method of adjusting a characteristic of a semiconductor pressure sensor having a lead terminal integrally formed with a case and a connection member for electrically connecting the semiconductor chip and the lead terminal, the method comprising: A planar sealing surface formed above and below the resin case; a reinforcing member disposed inside the sealing surface and integrally formed so as to partially expose the resin case; With a sealing surface and a groove provided between the reinforcing material, The resin case in the portion where the sealing surface is provided is fixed from above and below, and pressure is applied to the semiconductor chip to adjust the characteristics of the semiconductor chip. With this configuration, the sensor characteristics can be adjusted in the state of the gauge case crack. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a configuration of a semiconductor relative pressure sensor according to an embodiment of the present invention in a gage case in a depressed state.
図 2は、 図 1の平面図である。 FIG. 2 is a plan view of FIG.
図 3は、 本発明の一実施形態による半導体相対圧センサのゲージケースクミを 用いた特性調整装置の構成を示す要部断面図である。 FIG. 3 is a cross-sectional view of a main part showing a configuration of a characteristic adjusting device using a gauge case comb of a semiconductor relative pressure sensor according to an embodiment of the present invention.
図 4は、 本発明の一実施形態による半導体相対圧センサのゲージケースクミ状 態の他の構成を示す断面図である。 FIG. 4 is a cross-sectional view showing another configuration of the semiconductor relative pressure sensor according to the embodiment of the present invention in a gauge case in a depressed state.
図 5は、 本発明の一実施形態による半導体相対圧センサの構成を示す断面図で ある。 FIG. 5 is a sectional view showing a configuration of a semiconductor relative pressure sensor according to one embodiment of the present invention.
図 6は、 本発明の一実施形態による半導体絶対圧センサのゲージケースクミ状 態の構成を示す断面図である。 FIG. 6 is a cross-sectional view showing the configuration of the gauge absolute state of the semiconductor absolute pressure sensor according to the embodiment of the present invention.
図 7は、 本発明の一実施形態による半導体絶対圧センサの構成を示す断面図で める。 FIG. 7 is a sectional view showing a configuration of a semiconductor absolute pressure sensor according to one embodiment of the present invention.
図 8は、 本発明の一実施形態による半導体センサの他の構成を示す斜視図であ る。 発明を実施するための最良の形態 以下、 図 1〜図 9を用いて、 本発明の一実施形態による半導体圧力センサの構 成について説明する。 FIG. 8 is a perspective view showing another configuration of the semiconductor sensor according to one embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a configuration of a semiconductor pressure sensor according to an embodiment of the present invention will be described with reference to FIGS.
最初に、 図 1及び図 2を用いて、 本発明の一実施形態による半導体相対圧セン ザのゲージケースクミの構成について説明する。
図 1は、 本発明の一実施形態による半導体相対圧センサのゲージケースクミ状 態の構成を示す断面図である。 図 2は、 図 1の平面図である。 First, a configuration of a gauge case connector of a semiconductor relative pressure sensor according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing a configuration of a semiconductor relative pressure sensor according to an embodiment of the present invention in a gauge case in a state of being in a cracked state. FIG. 2 is a plan view of FIG.
半導体チップ 1は、 シリコンから成る。 半導体チップ 1は、 中央部の下面をェ ツチング等により、 凹型形状に形成され、 中央部には、 薄肉のダイヤフラム 2が 形成されている。 半導体チップ 1の上面であって、 ダイヤフラム 2の部分には、 図示しない圧力検出回路が半導体プロセスにより一体的に形成されている。 圧力 検出回路は、 ダイアフラム 2上に形成された 4個の拡散抵抗から成り、 アルミ導 体でブリッジに配線して構成される。 また、 半導体チップ 1の上面で、 ダイヤフ ラム以外の周辺部には、 図示しない特性補償回路及び保護回路が半導体プロセル により一体的に形成されている。 特性補償回路は、 圧力と出力の関係を所定の伝 達関数に調整するデジ ·アナ混成回路である。 デジ ·アナ混成回路は、 特性調整 信号を記憶 ·保持する E P R 0 Mを有したデジタル部と、 信号増幅をするアナ口 グ部を主要部として構成される。 特性調整信号とは、 ゼロ—スパン調整, 感度調 整, 温度特性調整時に得られたこれらの各特性を調整するための係数値等の調整 値である。 保護回路は、 外部と接続される入出力段に設けられた入出力信号に対 する保護を行う回路である。 圧力検出回路, 特性調整回路及び保護回路は、 それ ぞれ、 アルミ導線等で電気的に接続されている。 The semiconductor chip 1 is made of silicon. The semiconductor chip 1 is formed in a concave shape by, for example, etching the lower surface of a central portion, and a thin diaphragm 2 is formed in the central portion. A pressure detection circuit (not shown) is formed integrally with the diaphragm 2 on the upper surface of the semiconductor chip 1 by a semiconductor process. The pressure detection circuit is composed of four diffusion resistors formed on the diaphragm 2, and is configured by wiring to a bridge with an aluminum conductor. A characteristic compensation circuit and a protection circuit (not shown) are integrally formed on the upper surface of the semiconductor chip 1 in a peripheral portion other than the diaphragm by a semiconductor process cell. The characteristic compensation circuit is a digital-analog hybrid circuit that adjusts the relationship between pressure and output to a predetermined transfer function. The digital / analog hybrid circuit is mainly composed of a digital section having an EPR0M for storing and holding the characteristic adjustment signal, and an analog section for amplifying the signal. The characteristic adjustment signal is an adjustment value such as a coefficient value for adjusting each of these characteristics obtained during zero-span adjustment, sensitivity adjustment, and temperature characteristic adjustment. The protection circuit is a circuit that protects input / output signals provided at input / output stages connected to the outside. The pressure detection circuit, the characteristic adjustment circuit, and the protection circuit are each electrically connected with aluminum conductors.
半導体チップ 1は、 ガラス台 3とァノ一ディックボンディング等で接合されて いる。 半導体チップ 1とガラス台 3により、 チップクミを構成する。 ガラス台 3 は、 その中央に貫通孔 4を有している。 貫通孔 4は、 半導体チップ 1のダイヤフ ラム 2の下面に圧力を導入する圧力導入口となる。 ガラス台 3の線膨張係数は、 半導体チップ 1の線膨張係数を、 略等しいものである。 The semiconductor chip 1 is joined to the glass table 3 by aanodic bonding or the like. A semiconductor chip 1 and a glass table 3 constitute a chip chip. The glass stand 3 has a through hole 4 at the center. The through hole 4 serves as a pressure inlet for introducing pressure to the lower surface of the diaphragm 2 of the semiconductor chip 1. The linear expansion coefficient of the glass table 3 is substantially equal to the linear expansion coefficient of the semiconductor chip 1.
樹脂ケース 6は、 リ一ド端子 7及び補強板 8をィンサートモールドして形成さ れる。 樹脂ケース 6は、 熱可塑性樹脂や熱硬化性樹脂からなる。 リード端子 7は、 リン青銅からなる。 補強板 8は、 円形形状であり、 4 2ァロイからなる。 補強板 8の中央には、 貫通孔 9が形成されている。 貫通孔 9は、 半導体チップ 1のダイ ャフラム 2の下面に圧力を導入する圧力導入口となる。 樹脂ケース 6の中央部に も、 半導体チップ 1のダイヤフラム 2の下面に圧力を導入する圧力導入口となる 貫通孔 1 5が形成されている。 樹脂ケース 6に対してインサートモールド成形さ
れた補強板 8の中央上面は、 樹脂ケース 6から露出している。 リード端子 7は、 図 2に示すように、 チップクミ 5の配設部近傍を取り囲むように設置され、 樹脂 ケースを介して外側に引き出されている。 The resin case 6 is formed by insert molding the lead terminal 7 and the reinforcing plate 8. The resin case 6 is made of a thermoplastic resin or a thermosetting resin. The lead terminal 7 is made of phosphor bronze. The reinforcing plate 8 has a circular shape and is made of 42 alloy. In the center of the reinforcing plate 8, a through hole 9 is formed. The through hole 9 serves as a pressure inlet for introducing pressure to the lower surface of the diaphragm 2 of the semiconductor chip 1. In the center of the resin case 6 as well, a through hole 15 serving as a pressure introduction port for introducing pressure to the lower surface of the diaphragm 2 of the semiconductor chip 1 is formed. Insert molded to resin case 6 The upper center surface of the reinforcing plate 8 is exposed from the resin case 6. As shown in FIG. 2, the lead terminal 7 is installed so as to surround the vicinity of the disposition portion of the chip 5 and is drawn out through a resin case.
半導体チップ 1とガラス台 3からなるチップクミは、 樹脂ケース 6の中央部に 露出した補強板 8に、 シリコーン接着剤 1 6を用いて、 接着 '固定されている。 半導体チップ 1のチップ電極は、 アルミワイヤ 1 7で、 リード端子 7をワイヤボ ンデイングで接続されている。 The chip chip composed of the semiconductor chip 1 and the glass base 3 is bonded and fixed to the reinforcing plate 8 exposed at the center of the resin case 6 using a silicone adhesive 16. The chip electrodes of the semiconductor chip 1 are connected to the lead terminals 7 by wire bonding with aluminum wires 17.
樹脂ケース 6には、 溝 1 3 , 1 4が形成されている。 溝 1 3 , 1 4は、 図 2に 示すように、 リング状である。 溝 1 3, 1 4の半径は、 共に等しく、 リード端子 7の形成されている面に対して、 上下の同じ位置に設けられている。 樹脂ケース 6の外径形状の内、 リ一ド端子 7が設けられる部分は、 図 2に示すように、 平面 形状が正方形状である。 樹脂ケース 6の外径形状の内、 溝 1 3が設けられる部分 は、 図 2に示すように、 平面形状が円形形状である。 樹脂ケース 6の外径形状の 内、 溝 1 4が設けられる部分は、 溝 1 3に対応する部分と同じように、 平面形状 が円形形状である。 樹脂ケース 6は、 溝 1 3、 1 4の内周側の剛体部分 6 Aと、 溝 1 3の外周側のリング状の変形部分 6 B 1と、 溝 1 4の外周のリング状の変形 部分 6 B 2とに分けることができる。 補強板 8は、 剛体部分 6 Aにインサートモ —ルドにより埋設されており、 剛体部分 6 Aの剛性をさらに高めている。 リング 状の変形部分 6 B 1の上面は、 平坦であり、 リング状の凸型気密封止面 6 C 1と なっている。 また、 リング状の変形部分 6 B 2の下面は、 平坦であり、 リング状 の凸型気密封止面 6 C 2となっている。 凸型気密封止面 6 C 1と、 凸型気密封止 面 6 C 2とは、 上下略対称となっている。 Grooves 13 and 14 are formed in the resin case 6. The grooves 13 and 14 are ring-shaped as shown in FIG. The radii of the grooves 13 and 14 are equal to each other, and are provided at the same upper and lower positions with respect to the surface on which the lead terminals 7 are formed. The portion of the outer diameter of the resin case 6 where the lead terminal 7 is provided has a square planar shape as shown in FIG. As shown in FIG. 2, the portion of the outer diameter of the resin case 6 where the groove 13 is provided has a circular planar shape as shown in FIG. Of the outer diameter of the resin case 6, the portion where the groove 14 is provided has a circular planar shape, like the portion corresponding to the groove 13. The resin case 6 has a rigid portion 6 A on the inner peripheral side of the grooves 13 and 14, a ring-shaped deformed portion 6 B 1 on the outer peripheral side of the groove 13, and a ring-shaped deformed portion on the outer peripheral side of the groove 14. 6 B2. The reinforcing plate 8 is embedded in the rigid portion 6A by insert molding, further increasing the rigidity of the rigid portion 6A. The upper surface of the ring-shaped deformed portion 6B1 is flat and serves as a ring-shaped convex hermetic sealing surface 6C1. Further, the lower surface of the ring-shaped deformed portion 6B2 is flat and serves as a ring-shaped convex hermetic sealing surface 6C2. The convex hermetic sealing surface 6C1 and the convex hermetic sealing surface 6C2 are substantially vertically symmetric.
凸型気密封止面 6 C 2から溝 1 4の底面までの高さを H Iとし、 凸型気密封止 面 6 C 2から補強板 8の上面 (ガラス台 3の取付面) までの高さを H 2とすると、 H 1≥H 2なる関係となるように、 溝 1 4の深さを設定している。 また、 別の見 方をすると、 凸型気密封止面 6 C 1から溝 1 4の底面までの高さを H 3とし、 凸 型気密封止面 6 C 1から補強板 8の上面 (ガラス台 3の取付面) までの高さを H 4とすると、 H 4≥H 3なる関係となるように、 溝 1 4の深さを設定している。 なお、 図示の例では、 H 1 =H 2, H 4 = H 3としているが、 H 1 >H 2とし、
H 4 >H 3としてもよいものである。 すなわち、 溝 1 4は、 開口部側 (凸型気密 封止面 6 C 2の側) を基準にしたとき、 その底面は、 補強板 8の上面 (ガラス台 3の取付面) よりも深い位置まで形成されている。 したがって、 リング状の凸型 気密封止面 6 C 1の上面から均一に力 F 1を加え、 また、 リング状の凸型気密封 止面 6 C 2の下面から均一に力 F 2を加えた場合、 溝 1 3, 1 4が形成されてい ることによって、 変形部分 6 B 1 , 6 B 2が変形したとしても、 力 F l , F 2は、 剛体部分 6 Aには作用しないものである。 また、 仮に多少の応力が剛体部分 6 A に作用したとしても、 剛体部分 6 Aに設けられている補強板 8は、 樹脂ケース 6 よりも強度の強い金属製であるため、 力 F l . F 2による応力が、 補強板 8の上 に取り付けられたガラス台 3及び半導体チップ 1には及ばないものである。 The height from the convex hermetic sealing surface 6C2 to the bottom of the groove 14 is HI, and the height from the convex hermetic sealing surface 6C2 to the top surface of the reinforcing plate 8 (the mounting surface of the glass base 3). Is H 2, the depth of the groove 14 is set so that H 1 ≥H 2. From another perspective, the height from the convex hermetic sealing surface 6C1 to the bottom of the groove 14 is H3, and the height from the convex hermetic sealing surface 6C1 to the top surface of the reinforcing plate 8 (glass The height of the groove 14 is set so that the relationship of H4≥H3 is satisfied, where H4 is the height up to the mounting surface of the base 3). In the example shown, H 1 = H 2 and H 4 = H 3, but H 1> H 2, H 4> H 3 may be satisfied. That is, when the groove 14 is based on the opening side (the side of the convex hermetic sealing surface 6C2), its bottom surface is located deeper than the upper surface of the reinforcing plate 8 (the mounting surface of the glass base 3). Is formed up to. Therefore, the force F1 was uniformly applied from the upper surface of the ring-shaped convex hermetic sealing surface 6C1, and the force F2 was uniformly applied from the lower surface of the ring-shaped convex hermetic sealing surface 6C2. In this case, even if the deformed portions 6 B 1 and 6 B 2 are deformed due to the formation of the grooves 13 and 14, the forces F l and F 2 do not act on the rigid portion 6 A . Also, even if some stress acts on the rigid portion 6A, the reinforcing plate 8 provided on the rigid portion 6A is made of a metal which is stronger than the resin case 6, so that the force F l. The stress caused by 2 does not reach the glass table 3 and the semiconductor chip 1 mounted on the reinforcing plate 8.
さらに、 樹脂ケース 6の内部の補強板 8の上に取り付けられた半導体チップ 1 とガラス台 3からなるチップクミの上面は、 フロロシリコーン系またはフッ素系 のコートゲル 1 8を充填 '硬化させている。 コートゲル 1 8は、 半導体チップ 1 に圧力を伝達するとともに、 半導体チップ 1に腐食性の液体や気体が接触するこ とを防止している。 Further, the upper surface of the chip comb composed of the semiconductor chip 1 and the glass base 3 mounted on the reinforcing plate 8 inside the resin case 6 is filled and cured with a fluorosilicone-based or fluorine-based coat gel 18. The coat gel 18 transmits pressure to the semiconductor chip 1 and prevents the corrosive liquid or gas from coming into contact with the semiconductor chip 1.
なお、 凹部 4 4は、 スナップフィット固定用の凹部 (スナップフィット勘合 部) であり、 この点については、 図 8を用いて後述する。 The recesses 44 are recesses for snap-fit fixing (snap-fit fitting portions), and this point will be described later with reference to FIG.
以上のようにして、 半導体チップ 1とガラス台 3からなるチップクミと、 補強 板 8及びリード端子 7を一体成形した樹脂ケース 6によって、 ゲージケ一スクミ 1 0が構成される。 As described above, the gauge casing 10 is constituted by the chip casing composed of the semiconductor chip 1 and the glass base 3 and the resin case 6 in which the reinforcing plate 8 and the lead terminal 7 are integrally formed.
次に、 図 3を用いて、 本実施形態による半導体相対圧センサのゲージケースク ミを用いた特性調整方法について説明する。 Next, a method of adjusting the characteristics of the semiconductor relative pressure sensor according to the present embodiment using the gauge casing will be described with reference to FIG.
図 3は、 本発明の一実施形態による半導体相対圧センサのゲージケースクミを 用いた特性調整装置の構成を示す要部断面図である。 FIG. 3 is a cross-sectional view of a main part showing a configuration of a characteristic adjusting device using a gauge case comb of a semiconductor relative pressure sensor according to an embodiment of the present invention.
特性調整冶具 2 7は、 固定冶具 2 2と、 可動冶具 2 6とから構成される。 固定 冶具 2 2は、 〇リング 2 0と、 圧力導入孔 2 1とを、 主要部として構成される。 可動冶具 2 6は、 0リング 2 3と、 圧力導入孔 2 4と、 プローブ 2 5とを、 主要 部として構成される。 . The characteristic adjustment jig 27 includes a fixed jig 22 and a movable jig 26. The fixing jig 22 includes a ring 20 and a pressure introducing hole 21 as main parts. The movable jig 26 is mainly composed of the O-ring 23, the pressure introducing hole 24, and the probe 25. .
ゲージケ一スクミ 1 0は、 固定冶具 2 2に、 下面気密封止面 1 2と Oリング 2
0が合致するよう搭載され、 次に、 可動冶具 2 6の Oリング 2 3と上部気密封止 面 1 1が合致し、 且つ、 リード端子 7とプローブ 2 5がそれぞれ合致するように、 ゲージケースクミ 1 0を固定冶具 2 2と可動冶具 2 6で挟み込むように、 図 3に 示した状態でセットする。 The gauge cage 10 is attached to the fixing jig 2 2, the lower hermetic sealing surface 1 2 and the O-ring 2 The gauge case is mounted so that the O-ring 23 of the movable jig 26 and the upper hermetic sealing surface 11 match, and the lead terminal 7 and the probe 25 match respectively. Set as shown in Fig. 3 so that Kumi 10 is sandwiched between the fixed jig 22 and the movable jig 26.
図 3に示した状態で、 例えば、 固定冶具 2 2側に大気圧 P Aを印加し、 可動冶具 2 6側に被測定圧力 PMを印加することで、 半導体チップ 1は大気圧を基準とした 相対圧 (PA— P M) が印加される。 相対圧力によって、 半導体チップ 1のダイヤ フラム 2が変形すると、 シリコンのピエゾ抵抗効果で拡散抵抗値が変化し、 圧力 検出回路のプリッジ電圧変化として、 出力信号に変換することができる。 In the state shown in FIG. 3, for example, by applying the atmospheric pressure PA to the fixed jig 22 side and applying the measured pressure PM to the movable jig 26 side, the semiconductor chip 1 is moved relative to the atmospheric pressure. Pressure (PA-PM) is applied. When the diaphragm 2 of the semiconductor chip 1 is deformed by the relative pressure, the diffusion resistance value changes due to the piezoresistance effect of silicon, which can be converted into an output signal as a change in the bridge voltage of the pressure detection circuit.
特性調整冶具 2 7とゲ一ジケースクミ 1 0に所定の温度と圧力を与えながら、 センサ出力が所定値となるように、 図示しない調整装置からプローブ 2 5を介し て、 チップ 1に内在する E P R OMに調整値に記憶 ·保持することで、 センサの 特性調整作業が行われる。 While applying a predetermined temperature and pressure to the characteristic adjustment jig 27 and the gauge case 10 so that the sensor output becomes a predetermined value, an EPR OM included in the chip 1 via a probe 25 from an adjustment device (not shown) via a probe 25. By storing and holding the adjustment value at the time, the characteristic adjustment work of the sensor is performed.
ここで、 ゲージケースクミ 1 0を固定冶具 2 2と可動冶具 2 6で挟み込んだ際、 樹脂ケース 6の上下気密封止面 1 1 , 1 2に応力が発生するが、 補強板 8と上下 気密封止面 1 1 , 1 2の間に配置された凹型溝 1 3 , 1 4により、 樹脂ケース 6 の変形部 6 B 1 , 6 B 2で変形を吸収し、 且つ金属の補強板 8の剛性によって、 補強板 8上に配設されたガラス台 3及びその上に固定された半導体チップ 1に歪 が伝達されることはなく、 安定した状態で調整作業が行える。 したがって、 ゲー ジケースクミ 1 0の状態で特性調整作業が行えるため、 高温や低温状態に曝して センサの温度特性を測定する際等でも、 調整装置を小型化することができる。 ま た、 不良品が発生した場合でも、 ゲージケースクミ 1 0を廃棄するだけですみ、 経済的損失を小さくすることができる。 Here, when the gauge case 10 is sandwiched between the fixed jig 22 and the movable jig 26, stress is generated on the upper and lower hermetic sealing surfaces 1 1 and 1 2 of the resin case 6, but the reinforcing plate 8 and the upper and lower air The concave grooves 13 and 14 arranged between the tightly sealed surfaces 1 1 and 1 2 absorb the deformation at the deformed portions 6 B 1 and 6 B 2 of the resin case 6 and the rigidity of the metal reinforcing plate 8. As a result, no distortion is transmitted to the glass table 3 disposed on the reinforcing plate 8 and the semiconductor chip 1 fixed thereon, and the adjustment operation can be performed in a stable state. Therefore, since the characteristic adjustment work can be performed in the state of the gage case 10, the adjustment device can be downsized even when the temperature characteristic of the sensor is measured by exposing it to a high or low temperature state. In addition, even if a defective product occurs, it is only necessary to discard the gauge case 10 and the economic loss can be reduced.
なお、 本実施形態による樹脂ケース構造を採用することで、 ガラス台 3の高さ H 5を従来のものよりも低くすることができる。 すなわち、 従来のガラス台は、 チップに伝達する外力 (例えば、 樹脂ケース、 調整冶具などからの外力 ·応力) を緩和する目的で用いているため、 ある程度の高さを有するものとして、 それに よって、 外力を緩和している。 それに対して、 本実施形態では、 外力は樹脂ケ一 ス 6の構造 (溝 1 3, 1 4を有することと、 補強板 8を用いること) で吸収され、
ガラス台 3には及ばないため、 ガラス台 3の高さを低くすることができる。 その 結果、 半導体圧力センサを、 小型 ·低コスト化することができる。 ちなみに、 従 来のガラス台の高さは、 2. 5 mm程度あったものを、 本実施形態では、 0. 6 mmまで低くすることができる。 In addition, by employing the resin case structure according to the present embodiment, the height H5 of the glass base 3 can be made lower than that of the conventional case. In other words, the conventional glass table is used to reduce the external force transmitted to the chip (for example, external force and stress from a resin case, an adjustment jig, etc.). External force is reduced. In contrast, in this embodiment, the external force is absorbed by the structure of the resin case 6 (having the grooves 13 and 14 and using the reinforcing plate 8), The height of the glass table 3 can be reduced because it is not as large as the glass table 3. As a result, the size and cost of the semiconductor pressure sensor can be reduced. Incidentally, the height of the conventional glass table was about 2.5 mm, but can be reduced to 0.6 mm in the present embodiment.
次に、 図 4を用いて、 本発明の一実施形態による半導体相対圧センサのゲージ ケースクミの他の構成について説明する。 Next, another configuration of the gauge case of the semiconductor relative pressure sensor according to the embodiment of the present invention will be described with reference to FIG.
図 4は、 本発明の一実施形態による半導体相対圧センサのゲージケースクミ状 態の他の構成を示す断面図である。 なお、 図 1と同一符号は、 同一部分を示して いる。 FIG. 4 is a cross-sectional view showing another configuration of the semiconductor relative pressure sensor according to the embodiment of the present invention in a gauge case in a depressed state. The same reference numerals as those in FIG. 1 indicate the same parts.
本例のゲージケースクミ 10' では、 下面気密封止面 6 B 2を、 補強板 8の下 面より上部に配置している。 すなわち、 凸型気密封止面 6 C 2' から溝 14' の 底面までの高さ H I ' は、 図 1に示したものよりも、 小さくなつている。 しかし ながら、 上述したように、 凸型気密封止面 6 C 1から溝 14' の底面までの高さ H3と、 凸型気密封止面 6 C 1から補強板 8の上面 (ガラス台 3の取付面) まで の高さ H4との間には、 H4≥H 3なる関係があるように、 溝 14' の深さを設 定している。 すなわち、 溝 14' は、 開口部側 (凸型気密封止面 6 C 2の側) を 基準にしたとき、 その底面は、 補強板 8の上面 (ガラス台 3の取付面) よりも深 い位置まで形成されている。 したがって、 リング状の凸型気密封止面 6 C 1の上 面と、 リング状の凸型気密封止面 6 C 2の下面から均一に力を加えた場合、 溝 1 3, 14' が形成されていることによって、 変形部分 6 B 1, 6 B 2 ' が変形し たとしても、 力は、 剛体部分 6 Aには作用しないものである。 また、 仮に多少の 応力が剛体部分 6 Aに作用したとしても、 剛体部分 6 Aに設けられている補強板 8は、 樹脂ケース 6よりも強度の強い金属製であるため、 応力が、 補強板 8の上 に取り付けられたガラス台 3及び半導体チップ 1には及ばないものである。 以上のようにして、 変形部分 6 B 2 ' の高さを低くすることにより、 樹脂ケ一 ス 6の惰肉が排除でき、 ゲージケースクミを、 更にコンパクトにすることができ る。 In the gauge case claw 10 ′ of this example, the lower surface hermetic sealing surface 6 B 2 is disposed above the lower surface of the reinforcing plate 8. That is, the height H I ′ from the convex hermetic sealing surface 6 C 2 ′ to the bottom surface of the groove 14 ′ is smaller than that shown in FIG. However, as described above, the height H3 from the convex hermetic sealing surface 6C1 to the bottom surface of the groove 14 'and the upper surface of the reinforcing plate 8 from the convex hermetic sealing surface 6C1 (the The depth of the groove 14 'is set so that there is a relationship of H4≥H3 between the height H4 to the mounting surface). That is, when the groove 14 ′ is based on the opening side (the side of the convex hermetic sealing surface 6 C 2), its bottom surface is deeper than the upper surface of the reinforcing plate 8 (the mounting surface of the glass base 3). It is formed up to the position. Therefore, when a uniform force is applied from the upper surface of the ring-shaped convex hermetic sealing surface 6C1 and the lower surface of the ring-shaped convex hermetic sealing surface 6C2, grooves 13 and 14 'are formed. As a result, even if the deformed portions 6B1 and 6B2 'are deformed, the force does not act on the rigid portion 6A. Also, even if some stress acts on the rigid portion 6A, the reinforcing plate 8 provided on the rigid portion 6A is made of a metal that is stronger than the resin case 6, so that the stress is reduced. It is less than the glass table 3 and the semiconductor chip 1 mounted on the top 8. As described above, by reducing the height of the deformed portion 6B2 ', the coast of the resin case 6 can be eliminated, and the gauge case can be made more compact.
次に、 図 5を用いて、 本発明の一実施形態による半導体相対圧センサの構成に ついて説明する。
図 5は、 本発明の一実施形態による半導体相対圧センサの構成を示す断面図で ある。 なお、 図 1と同一符号は、 同一部分を示している。 Next, the configuration of the semiconductor relative pressure sensor according to one embodiment of the present invention will be described with reference to FIG. FIG. 5 is a sectional view showing a configuration of a semiconductor relative pressure sensor according to one embodiment of the present invention. The same reference numerals as those in FIG. 1 indicate the same parts.
本例の相対圧センサクミ 4 0は、 スタンドアロン型のものである。 外装ケース 3 2の内部に、 相対圧用ゲージケースクミ 1 0 ' を設置し、 固定する。 外装ケー スは、 例えば、 P B Tからなる。 なお、 ゲージケースクミ 1 0 ' は、 図 4に示し たゲージケースクミ 1 0 ' の上下を逆して、 外装ケース 3 2内に取り付けている。 図 4に示した相対圧用ゲージケースクミ 1 0 ' の凸型気密封止面 1 1を、 外装 ケース 3 2の凹型溝に接着剤 3 3により固定する。 リード端子 7と、 コネクタ端 子 3 4をアルミワイヤ 3 5で接続する。 リ一ド端子 7やコネクタ端子 3 4を覆う ように、 シリコーンゲル 3 6を充填する。 大気導入孔 3 7を有したカバ一 3 8が、 外装ケース 3 2に、 接着剤 3 9により取り付けられる。 The relative pressure sensor 40 of this example is a stand-alone type. Place the relative pressure gauge case 10 'inside the outer case 32 and fix it. The exterior case is made of, for example, PBT. The gauge case 10 'is mounted inside the outer case 32 with the upside down of the gauge case 10' shown in FIG. The convex hermetic sealing surface 11 of the relative pressure gauge case 10 ′ shown in FIG. 4 is fixed to the concave groove of the outer case 32 with an adhesive 33. Connect lead terminal 7 and connector terminal 34 with aluminum wire 35. Silicone gel 36 is filled so as to cover lead terminals 7 and connector terminals 34. A cover 38 having an air introduction hole 37 is attached to the outer case 32 with an adhesive 39.
外装ケース 3 2の圧力導入管 3 1から導入された被測定圧力は、 半導体センサ のチップ上面に受圧し、 カバ一 3 8の大気導入孔 3 7からチップ下面に大気圧を 受圧することで、 大気圧基準の相対圧が測定できる。 The measured pressure introduced from the pressure introducing pipe 31 of the outer case 3 2 is received on the upper surface of the chip of the semiconductor sensor, and the atmospheric pressure is received on the lower surface of the chip from the air introducing hole 37 of the cover 38. Atmospheric pressure-based relative pressure can be measured.
外装ケース 3 2とゲージケースクミ 1 0の接合部には、 接着時に生じる残留歪 や、 両ケースが異なる材料で構成された場合に生じる熱歪が生じるが、 ゲージケ —スクミ 1 0の接着面 1 1と補強板 8の間に配置した凹型溝 1 3 , 1 4と補強板 8が上記歪みを吸収してチップクミ 5に影響を与えないため、 ゲージケースクミ 1 0の状態でセンサ特性を調整したのち、 センサクミ 4 0に組み込んでも、 特性 変化が生じないものである。 At the joint between the outer case 3 and the gauge case crack 10, residual strain occurs during bonding and thermal strain occurs when both cases are made of different materials. Sensor characteristics were adjusted in the condition of gauge case 10 because concave grooves 13 and 14 and reinforcing plate 8 arranged between 1 and reinforcing plate 8 absorb the above-mentioned distortion and do not affect chip 5. After that, even if it is incorporated into the sensor black 40, the characteristics do not change.
本例では、 図 4に示したゲージケースクミ 1 0 ' を用いているが、 図 1に示し たゲージケ一スクミ 1 0を同様に実装しても同様の効果が得られる。 また、 図 1 に示したゲージケースクミ 1 0は、 上下面に勘合溝を有しているので、 上下反転 させてチップ下面に被測定圧、 上面に大気圧を印加できるように配設しても良い 構造となっている。 In this example, the gauge case 10 ′ shown in FIG. 4 is used, but the same effect can be obtained by mounting the gauge case 10 shown in FIG. 1 in the same manner. Also, since the gauge case 10 shown in FIG. 1 has fitting grooves on the upper and lower surfaces, it is arranged upside down so that the measured pressure can be applied to the lower surface of the chip and the atmospheric pressure can be applied to the upper surface. Also has a good structure.
次に、 図 6及び図 7を用いて、 本発明の一実施形態による半導体絶対圧センサ の構成について説明する。 Next, the configuration of the semiconductor absolute pressure sensor according to one embodiment of the present invention will be described with reference to FIGS.
図 6は、 本発明の一実施形態による半導体絶対圧センサのゲージケースクミ状 態の構成を示す断面図である。 図 7は、 本発明の一実施形態による半導体絶対圧
センサの構成を示す断面図である。 なお、 図 1, 図 5と同一符号は、 同一部分を 示している。 FIG. 6 is a cross-sectional view showing the configuration of the gauge absolute state of the semiconductor absolute pressure sensor according to the embodiment of the present invention. FIG. 7 shows a semiconductor absolute pressure according to one embodiment of the present invention. It is sectional drawing which shows the structure of a sensor. The same reference numerals as those in FIGS. 1 and 5 indicate the same parts.
図 6に示すように、 本例による絶対圧測定用のゲージケースクミ 1 O Aにおい て、 図 1に示した例と相違する点は、 ガラス台 3 Aに貫通孔 4がない点及び、 半 導体チップ 1のダイヤフラム 2の下面とガラス台 3 Aの上面に挟まれた部分に真 空室 3 0を設けた点である。 これにより、 半導体チップ 1の上面から被測定圧力 P Mを印加することで、 絶対圧を基準としたゲージケースクミ 1 O Aが得られる。 次に、 図 7を用いて、 スタンドアロン型絶対圧センサクミ 4 1の構成について 説明する。 図 5に示した構成と同様に、 図 6に示す絶対圧用ゲージケースクミ 1 O Aを外装ケース 3 2に実装する。 カバ一 4 2には、 大気導入孔は設けられてお らず、 実装ケ一ス 3 2に取り付けられる。 外装ケース 4 2の圧力導入管 3 1を介 して、 チップ上面被測定圧力を受圧し、 チップ下面に配設した真空室を基準に絶 対圧の測定ができる。 As shown in Fig. 6, the difference between the example shown in Fig. 1 and the example 1 shown in Fig. 1 is that the through hole 4 is not provided in the glass base 3A and the semiconductor This is a point that a vacuum chamber 30 is provided in a portion between the lower surface of the diaphragm 2 of the chip 1 and the upper surface of the glass base 3A. Thus, by applying the pressure to be measured PM from the upper surface of the semiconductor chip 1, a gauge case smear 1 OA based on the absolute pressure is obtained. Next, the configuration of the stand-alone absolute pressure sensor kumi 41 will be described with reference to FIG. The absolute pressure gauge case 1OA shown in FIG. 6 is mounted on the outer case 32 similarly to the configuration shown in FIG. The cover 42 has no air introduction hole, and is attached to the mounting case 32. The measured pressure on the upper surface of the chip is received via the pressure introducing pipe 31 of the outer case 42, and the absolute pressure can be measured based on the vacuum chamber provided on the lower surface of the chip.
以上のように、 ガラス台 3, 3 Aを変えるのみで、 絶対圧用と相対圧用圧力セ ンサにおいて、 他の構成部品を共用化することができる。 As described above, other components can be shared between the absolute pressure sensor and the relative pressure sensor simply by changing the glass table 3, 3 A.
次に、 図 8を用いて、 本発明の一実施形態による半導体センサの他の構成につ いて説明する。 Next, another configuration of the semiconductor sensor according to the embodiment of the present invention will be described with reference to FIG.
図 8は、 本発明の一実施形態による半導体センサの他の構成を示す斜視図であ る。 なお、 図 1, 図 2と同一符号は、 同一部分を示している。 FIG. 8 is a perspective view showing another configuration of the semiconductor sensor according to one embodiment of the present invention. The same reference numerals as those in FIGS. 1 and 2 indicate the same parts.
図 8に示す半導体センサは、 オンボード型大気圧センサ 4 3である。 相対圧用 ゲージケースクミ 1 0の中央部の平面形状が正方形の部分 (剛体部 6 Aの外周 部) には、 スナップフィット固定用の凹部 (スナップフィット勘合部) 4 4が 4 箇所形成されている (図 2における凹部 4 4参照) 。 凹部 4 4は、 平面形状が正 方形の剛体部 6 Aの 4側面の内、 リード端子 7が配置されている 2面とは異なる 2面に設けられている。 凹部 4 4に対して、 カバ一 4 7に形成されたスナップフ イット用爪 4 5を用いて、 カバー 4 7を嵌合させる。 カバ一 4 7には、 大気導入 孔 4 6が設けられている。 なお、 剛体部 6 Aの平面形状は、 正方形に限らず、 長 方形でもよいものである。 The semiconductor sensor shown in FIG. 8 is an on-board type atmospheric pressure sensor 43. In the part where the plane shape of the center part of the gauge case for relative pressure 10 is square (the outer peripheral part of the rigid part 6A), four recesses (snap fit fitting parts) for fixing the snap fit are formed in four places. (See recesses 44 in FIG. 2). The recesses 44 are provided on two surfaces different from the two surfaces on which the lead terminals 7 are arranged, of the four side surfaces of the rigid body portion 6A having a square planar shape. The cover 47 is fitted into the recess 44 by using the snap-fitting pawl 45 formed on the cover 47. The cover 47 is provided with an air introduction hole 46. The plane shape of the rigid body 6A is not limited to a square, but may be a rectangle.
ゲージケースクミ 1 0にカバー 4 7を嵌合させた後、 リード端子 7をプリント
板に挿入する。 リード端子 7には、 予めはんだがディップされており、 このはん だを用いて、 プリント基板に接合する。 After fitting the cover 4 7 to the gauge case cover 10, print the lead terminal 7 Insert into the board. The lead terminals 7 are pre-dipped with solder, and are joined to a printed circuit board using the solder.
以上説明したように、 本実施形態によれば、 ゲージケースクミの特性調整時や、 外装ケース組み込み後に生じるケースの歪みを排除できるため、 高精度 ·高信頼 性な圧力センサを提供できる。 As described above, according to the present embodiment, it is possible to eliminate distortion of the case that occurs when adjusting the characteristics of the gauge case and after assembling the outer case, so that a highly accurate and highly reliable pressure sensor can be provided.
また、 チップを保持するガラス台の高さを低くできるため、 ゲージケースの小 型化 ·低コスト化が可能となる。 In addition, since the height of the glass table holding the chips can be reduced, the size and cost of the gauge case can be reduced.
さらに、 オンボード用、 相対圧と絶対圧のスタンドアロン用のゲージケースク ミを共用化できるため、 ゲージケースクミの製造ラインを共用化でき、 混流ライ ンを構築することができるため、 設備投資が削減でき、 低コスト化が図れる。 なお、 上述の各例において、 基本的考え方としては請求項に示した内容に包括 されており、 これらの構成要素以外で個別の構成要素 (例えばゲージケースと外 装ケースとの接続を溶接にするなど) については全く限定しないものである。 産業上の利用の可能性 本発明によれば、 ゲージケースクミの状態でセンサ特性調整を行えるものとな る。
In addition, since the on-board gauge case stand for relative pressure and absolute pressure stand-alone can be shared, the production line for gauge case paste can be shared, and a mixed flow line can be constructed. The cost can be reduced and cost can be reduced. In each of the above examples, the basic concept is included in the contents set forth in the claims, and individual components other than these components (for example, the connection between the gauge case and the external case is welded) ) Is not limited at all. INDUSTRIAL APPLICABILITY According to the present invention, it is possible to adjust the sensor characteristics in the state of the gauge case.
Claims
1 . 被測定媒体の圧力変化を電気信号に変換する半導体チップ(1)と、 この半導体 チップを収納する樹脂ケース(6)と、 この樹脂ケースからケース外部に引き出され るとともに樹脂ケースと一体成形されたリ一ド端子 (7)と、 上記半導体チップと上 記リード端子を電気的に接続する接続部材(17)とを有する半導体圧力センサにお いて、 1. A semiconductor chip (1) that converts the pressure change of the medium to be measured into an electric signal, a resin case (6) that houses the semiconductor chip, and is drawn out of the resin case and formed integrally with the resin case. A semiconductor pressure sensor having a lead terminal (7) provided and a connecting member (17) for electrically connecting the semiconductor chip and the lead terminal.
上記樹脂ケース(6)は、 The above resin case (6)
この樹脂ケースの上下に形成された平面状の封止面(6C1, 6C2)と、 Flat sealing surfaces (6C1, 6C2) formed above and below this resin case,
この封止面の内側に配置されるとともに、 榭脂ケースから一部が露出するよう に一体成形された補強材 (8)と、 A reinforcing member (8) which is arranged inside the sealing surface and is integrally formed so as to be partially exposed from the resin case,
上記封止面と上記補強材の間に設けられた溝部(13, 14)とを備え、 A groove (13, 14) provided between the sealing surface and the reinforcing material,
上記補強材の上に半導体チップを配設したことを特徴とする半導体圧力センサ。 A semiconductor pressure sensor, wherein a semiconductor chip is disposed on the reinforcing member.
2 . 請求項 1記載の半導体圧力センサにおいて、 2. The semiconductor pressure sensor according to claim 1,
上記樹脂ケースの封止面の端面がリング形で、 側面が円筒形状に形成され、 上記溝部は、 上記円筒形状部の内側にリング状に形成され、 An end surface of the sealing surface of the resin case has a ring shape, a side surface is formed in a cylindrical shape, and the groove portion is formed in a ring shape inside the cylindrical portion,
上記補強材が金属円盤から構成されることを特徴とする半導体圧力センサ。 A semiconductor pressure sensor, wherein the reinforcing member comprises a metal disk.
3 . 請求項 1記載の半導体圧力センサにおいて、 3. The semiconductor pressure sensor according to claim 1,
上記樹脂ケースの側面の平面部に設けられ、 樹脂ケースのチップが収納された 側の開口部を覆う蓋を固定するためのスナップフィット勘合部を備えたことを特 徴とする半導体圧力センサ。 A semiconductor pressure sensor comprising: a snap-fit engagement portion for fixing a lid provided on a flat surface on a side surface of the resin case and covering an opening on a side of the resin case where a chip is stored.
4 . 圧力変換回路と特性補償回路を有する半導体チップ(1)と、 この半導体チップ を収納する樹脂ケース(6)と、 この樹脂ケースからケース外部に引き出されるとと もに樹脂ケースと一体成形されたリ一ド端子(7)と、 上記半導体チップと上記リ一 ド端子を電気的に接続する接続部材(17)とを有する半導体圧力センサの特性を調 整する半導体圧力センサの調整方法において、
上記樹脂ケース(6)は、 4. A semiconductor chip (1) having a pressure conversion circuit and a characteristic compensation circuit, a resin case (6) for housing the semiconductor chip, and being pulled out of the case from the resin case and integrally formed with the resin case. A method of adjusting characteristics of a semiconductor pressure sensor having a lead terminal (7) and a connection member (17) for electrically connecting the semiconductor chip and the lead terminal. The above resin case (6)
この樹脂ケースの上下に形成された平面状の封止面(6C1,6C2)と、 Flat sealing surfaces (6C1, 6C2) formed above and below this resin case,
この封止面の内側に配置されるとともに、 樹脂ケースから一部が露出するよう に一体成形された補強材 (8)と、 A reinforcing member (8) which is arranged inside the sealing surface and is integrally formed so as to be partially exposed from the resin case;
上記封止面と上記補強材の間に設けられた溝部(13, 14)とを備え、 A groove portion (13, 14) provided between the sealing surface and the reinforcing material,
上記封止面の設けられた部分の樹脂ケースを上下から固定し、 上記半導体チッ プに圧力を印加して、 上記半導体チップの特性調整を行うことを特徴とする半導 体圧力センサの調整方法。 A method for adjusting a semiconductor pressure sensor, comprising: fixing a resin case in a portion provided with the sealing surface from above and below, and applying pressure to the semiconductor chip to adjust characteristics of the semiconductor chip. .
5 . 請求項 4記載の半導体圧力センサの調整方法において、 5. The method for adjusting a semiconductor pressure sensor according to claim 4,
上記樹脂ケースの上部の封止面をシール材を介して上から押えて気密封止する と共にチップ上面に所定の圧力を印加する可動冶具と、 A movable jig that presses the sealing surface on the upper portion of the resin case from above via a sealing material to hermetically seal and applies a predetermined pressure to the upper surface of the chip;
上記樹脂ケ一スの下部の封止面で上記押え力を受ける固定冶具と、 A fixing jig which receives the pressing force on the lower sealing surface of the resin case,
ケース側方のリード端子に電気信号を与える可動プローブとを備える調整装置 を用いて、 上記半導体センサに所定の圧力 ·温度を与え、 センサ特性を調整 '検 査することを特徴とする半導体圧力センサの調整方法。 A semiconductor pressure sensor characterized in that a predetermined pressure and temperature are applied to the semiconductor sensor to adjust the sensor characteristics using an adjustment device including a movable probe that applies an electric signal to a lead terminal on a side of the case. Adjustment method.
6 . 請求項 4記載の半導体圧力センサの調整方法において、 6. The method for adjusting a semiconductor pressure sensor according to claim 4,
上記樹脂ケースの上部の封止面をシール材を介して上から押えて気密封止する と共にチップ上面に所定の圧力を印加する可動冶具と、 A movable jig that presses the sealing surface on the upper portion of the resin case from above via a sealing material to hermetically seal and applies a predetermined pressure to the upper surface of the chip;
上記樹脂ケースの下部の封止面をシール材を介して下から押えて気密封止する と共にチップ下面に所定の圧力を印加する固定冶具と、 A fixing jig which presses a sealing surface at a lower portion of the resin case from below through a sealing material to hermetically seal the same and applies a predetermined pressure to a lower surface of the chip;
ケース側方のリード端子に電気信号を与える可動プローブとを備える調整装置 を用いて、 上記半導体センサに所定の圧力 ·温度を与え、 センサ特性を調整 '検 査することを特徴とする半導体圧力センサの調整方法。
A semiconductor pressure sensor characterized in that a predetermined pressure and temperature are applied to the semiconductor sensor to adjust the sensor characteristics using an adjustment device including a movable probe that applies an electric signal to a lead terminal on a side of the case. Adjustment method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001085852A JP4323107B2 (en) | 2001-03-23 | 2001-03-23 | Semiconductor pressure sensor and adjustment method thereof |
JP2001-85852 | 2001-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002077598A1 true WO2002077598A1 (en) | 2002-10-03 |
Family
ID=18941302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/002855 WO2002077598A1 (en) | 2001-03-23 | 2002-03-25 | Semiconductor pressure sensor and regulation method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4323107B2 (en) |
WO (1) | WO2002077598A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4774678B2 (en) * | 2003-08-29 | 2011-09-14 | 富士電機株式会社 | Pressure sensor device |
JP5278448B2 (en) * | 2003-08-29 | 2013-09-04 | 富士電機株式会社 | Pressure sensor device |
JP4564775B2 (en) * | 2004-04-26 | 2010-10-20 | 日立オートモティブシステムズ株式会社 | Pressure detector for liquid and gas |
JP5181648B2 (en) * | 2007-12-11 | 2013-04-10 | 富士電機株式会社 | Method and device for adjusting characteristics of semiconductor pressure sensor |
JP4940161B2 (en) * | 2008-02-01 | 2012-05-30 | 株式会社日立製作所 | Magnetic disk unit |
JP2010256186A (en) * | 2009-04-24 | 2010-11-11 | Panasonic Electric Works Co Ltd | Pressure sensor |
WO2012014830A1 (en) * | 2010-07-26 | 2012-02-02 | ナブテスコ株式会社 | Pressure-detecting device |
JP2016059079A (en) * | 2016-01-27 | 2016-04-21 | 富士通株式会社 | Electronic equipment and mounting parts unit |
JP6907585B2 (en) * | 2017-02-22 | 2021-07-21 | 富士電機株式会社 | Pressure sensor |
JP7107051B2 (en) * | 2017-09-08 | 2022-07-27 | 富士電機株式会社 | pressure sensor device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01109230A (en) * | 1987-10-21 | 1989-04-26 | Nippon Soken Inc | Pressure detector |
JPH0718233U (en) * | 1993-09-07 | 1995-03-31 | 株式会社長野計器製作所 | Differential pressure converter |
JPH10325774A (en) * | 1997-05-23 | 1998-12-08 | Denso Corp | Pressure sensor |
JPH10332519A (en) * | 1997-05-30 | 1998-12-18 | Matsushita Electric Works Ltd | Characteristic measuring instrument for pressure sensor |
JPH1172403A (en) * | 1997-08-29 | 1999-03-16 | Yazaki Corp | Pressure detector |
JP2000249612A (en) * | 1999-02-26 | 2000-09-14 | Matsushita Electric Works Ltd | Semiconductor pressure sensor |
JP2001296196A (en) * | 2000-04-17 | 2001-10-26 | Denso Corp | Pressure sensor |
-
2001
- 2001-03-23 JP JP2001085852A patent/JP4323107B2/en not_active Expired - Lifetime
-
2002
- 2002-03-25 WO PCT/JP2002/002855 patent/WO2002077598A1/en active Search and Examination
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01109230A (en) * | 1987-10-21 | 1989-04-26 | Nippon Soken Inc | Pressure detector |
JPH0718233U (en) * | 1993-09-07 | 1995-03-31 | 株式会社長野計器製作所 | Differential pressure converter |
JPH10325774A (en) * | 1997-05-23 | 1998-12-08 | Denso Corp | Pressure sensor |
JPH10332519A (en) * | 1997-05-30 | 1998-12-18 | Matsushita Electric Works Ltd | Characteristic measuring instrument for pressure sensor |
JPH1172403A (en) * | 1997-08-29 | 1999-03-16 | Yazaki Corp | Pressure detector |
JP2000249612A (en) * | 1999-02-26 | 2000-09-14 | Matsushita Electric Works Ltd | Semiconductor pressure sensor |
JP2001296196A (en) * | 2000-04-17 | 2001-10-26 | Denso Corp | Pressure sensor |
Also Published As
Publication number | Publication date |
---|---|
JP2002286566A (en) | 2002-10-03 |
JP4323107B2 (en) | 2009-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4550364B2 (en) | Semiconductor pressure sensor | |
US7726197B2 (en) | Force sensor package and method of forming same | |
KR101236678B1 (en) | Pressure sensor device | |
US7412894B2 (en) | Pressure sensing device incorporating pressure sensing chip in resin case | |
EP3128305B1 (en) | A hermetic pressure sensor | |
US6925885B2 (en) | Pressure sensor | |
US20060243054A1 (en) | Pressure detecting apparatus | |
US6550339B1 (en) | Pressure sensor for detecting differential pressure between two spaces | |
JP4323107B2 (en) | Semiconductor pressure sensor and adjustment method thereof | |
JP4127396B2 (en) | Sensor device | |
JPH11326088A (en) | Pressure sensor and its manufacture | |
JP5181648B2 (en) | Method and device for adjusting characteristics of semiconductor pressure sensor | |
JP5278448B2 (en) | Pressure sensor device | |
CN220104357U (en) | Pressure core | |
CN220602796U (en) | Pressure core body assembly, pressure sensing assembly and differential pressure sensor | |
JP4223273B2 (en) | Pressure sensor | |
CN220602795U (en) | Pressure core unit, pressure sensor, pressure core assembly and differential pressure sensor | |
JP3349489B2 (en) | Pressure sensor and method of manufacturing the same | |
CN215984997U (en) | Medium isolation type pressure sensor | |
CN215492216U (en) | Medium isolation type pressure sensor | |
CN119268912A (en) | A pressure measuring component and a manufacturing method thereof | |
JPH11118653A (en) | Pressure sensor | |
CN117213699A (en) | Pressure core body assembly, pressure sensing assembly and differential pressure sensor | |
CN117213698A (en) | Pressure core unit, pressure sensing assembly and pressure sensor | |
JPH10170379A (en) | Pressure sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): DE KR US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |