WO2002074039A2 - Electrically active films - Google Patents
Electrically active films Download PDFInfo
- Publication number
- WO2002074039A2 WO2002074039A2 PCT/EP2002/002890 EP0202890W WO02074039A2 WO 2002074039 A2 WO2002074039 A2 WO 2002074039A2 EP 0202890 W EP0202890 W EP 0202890W WO 02074039 A2 WO02074039 A2 WO 02074039A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrically active
- transition metal
- binder
- electrically
- films according
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/02—Reservations, e.g. for tickets, services or events
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/02—Reservations, e.g. for tickets, services or events
- G06Q10/025—Coordination of plural reservations, e.g. plural trip segments, transportation combined with accommodation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12556—Organic component
- Y10T428/12569—Synthetic resin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12611—Oxide-containing component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/256—Heavy metal or aluminum or compound thereof
- Y10T428/257—Iron oxide or aluminum oxide
Definitions
- the present invention relates to electrically active films which contain nanocrystalline, nanoporous transition metal oxides or transition metal chalcogenides together with a binder, and to a process for their production at low temperatures.
- Electrically active films containing nanocrystalline, nanoporous transition metal oxides or transition metal chalcogenides or their lithium inclusion compounds are used as electrodes in primary or secondary electrochemical generators, as are described, for example, in patent application WO 99/59 * 218.
- Other areas of application for such electrically active films are photovoltaic cells or electrochromic displays.
- Patent application EP 0709 * 906 describes a positive electrode which consists of a sintered mass of particles of oxygen-containing lithium compounds with a size of 33 ⁇ m. These particles are heated under pressure to a temperature between 350 ° C and 1000 ° C to achieve the necessary electrical activity.
- US Pat. No. 5,604,057 describes a cathode which consists of amorphous, nanoporous, lithium ion-containing manganese oxide particles in the submicron range and whose inner surface is greater than 100 m 2 / g.
- a conductive carrier for example an aluminum foil
- a preferably conductive binder or binder mixture can be applied by spraying, centrifugal casting, knife casting or brushing.
- the coated carrier must then be heated, but not above 400 ° C, to prevent the manganese dioxide from crystallizing out.
- Patents US 5,211,933 and US 5,674,644 describe a production process for LiMn2 ⁇ 4 in spinel form and LiCo ⁇ 2 with a layer structure in which the substances are produced from acetate precursors.
- the LiMn2 ⁇ 4 powder produced in this way consists of particles between 0.3 ⁇ m and 1.0 ⁇ m in size. Tablets pressed from this powder with the addition of about 10% fine graphite particles are used as positive electrodes in lithium ion batteries. The conductivity between the individual tablets is brought about by the addition of graphite.
- LiMn2 ⁇ 4 and LiCo ⁇ 2 can also be applied to the carrier together with a binder, the coated carrier then is heated to a temperature of 600 ° C for 16 hours. In this process, the organic binder is completely removed.
- Patent application EP 0'814'524 describes lithium manganese oxides in spinel form as an active cathode material for secondary lithium ion batteries.
- the average particle size is between 1 ⁇ m and 5 ⁇ m and the specific surface area is between 2 m 2 / g and 10 m 2 / g.
- these products are unsuitable as a material for active, quickly discharged electrodes.
- the patent application WO 99/59,218 describes the production of TiO 2 and LiMn 2 O 4 electrodes with the aid of a casting or printing process in which an aqueous slurry of a manganate precursor compound is applied to a substrate.
- this coating process usually has to be carried out several times.
- the coated substrate must then be heated in air to a temperature between 400 ° C and 750 ° C for a few minutes in order to achieve the necessary conductivity.
- the sintering process at the higher temperatures results in layers with higher electrical activity than the sintering process at the lower temperatures.
- the aim of the invention is to provide binder-containing, electrically active films with good mechanical stability by means of cost-effective manufacturing processes at low temperatures, which have high electrical activity even without removal of the binder in a sintering process at higher temperatures.
- a further object of the invention is to provide such electrically active films with good mechanical stability with the aid of inexpensive coating processes at low temperatures, in which slurries containing binder are applied to inexpensive organic plastic supports and then dried, which also without removal of the binder have a high electrical activity in a sintering process at higher temperatures.
- Such electrically active films consist of a carrier and at least one binder-containing electrically active layer applied thereon and optionally one or more electrically inactive layers.
- binder-containing films with high electrical activity can be produced in a cost-effective manner over a large area by using liquid slurries or colloidal dispersions of nanocrystalline, nanoporous transition metal oxides or transition metal chalcogenides or their lithium inclusion compounds at temperatures between 5 ° C. and 95 ° C. together with a binder or binder mixture, if appropriate together with electrically inactive layers, applied to commercially available plastic or paper supports and then dried at temperatures below the boiling point (at normal pressure) of the slurry liquid.
- the temperature of the coated carrier or of the drying medium does not exceed the boiling point (at normal pressure) of the slurry liquid in any phase of the drying process and the binder or mixture of binders remains together with the nanocrystalline, nanoporous transition metal oxides or transition metal chalcogenides or their lithium inclusion compounds in the electrically active film.
- aqueous colloidal dispersions of such nanocrystalline, nanoporous transition metal oxides or transition metal chalcogenides or their lithium inclusion compounds at temperatures between 20 ° C. and 55 ° C. together with one or more non-conductive, film-forming binders, optionally together with electrically non-active layers, applied to plastic carriers or metallized plastic carriers and dried with a gas mixture, preferably air, at temperatures below 100 ° C., preferably below 60 ° C.
- Preferred nanocrystalline, nanoporous transition metal oxides are titanium dioxide, in particular in the anatase form, and LiMn2 ⁇ 4 as the lithium inclusion compound.
- the invention describes a process for the large-area production of binder-containing films with high electrical activity, in which liquid slurries or colloidal dispersions of nanocrystalline, nanoporous transition metal oxides or transition metal chalcogenides or their lithium inclusion compounds at temperatures between 5 ° C. and 60 ° C. together with a Binder or binder mixture, optionally together with electrically inactive layers, is applied to commercially available plastic or paper supports and then dried at temperatures below the boiling point (at normal pressure) of the slurry liquid.
- the temperature of the coated carrier or of the drying medium does not exceed the boiling point (at normal pressure) of the slurry liquid in any phase of the drying process and thus the binder or binder mixture remains together with the nanocrystalline, nanoporous transition metal oxides or transition metal chalcogenides or their lithium inclusion compounds after the end of the production process in the electrically active layer of the electrically active film.
- aqueous colloidal dispersions of such nanocrystalline, nanoporous transition metal oxides or transition metal chalcogenides or their lithium inclusion compounds at temperatures between 20 ° C. and 55 ° C. together with one or more non-conductive, film-forming binders, optionally together with electrically non-active layers, applied to a plastic carrier and dried with a gas mixture, preferably air, at temperatures below 100 ° C., preferably below 60 ° C. Drying can also be carried out by infrared radiation or combined drying with a gas mixture and simultaneous use of infrared radiation can be used.
- Suitable nanocrystalline, nanoporous transition metal oxides and transition metal chalcogenides include, in particular, oxides or chalcogenides of the transition metals such as Ti ⁇ 2, ⁇ 03, Nb2 ⁇ 5, WO3, V2O5, M0O3, Mn ⁇ 2, Hf ⁇ 2, TiS2, WS2, TiSe2, Fe2 ⁇ 3, M02S2, Fe2O2, Fe2Ü2 lr ⁇ 2, Ce ⁇ 2, ln ⁇ 2, Ta ⁇ 2, ZnO, Sn ⁇ 2, BaTi ⁇ 3, SrTi ⁇ 3 or indium tin oxide with specific surfaces between 10 m 2 / g and 400 m 2 / g.
- Lithium inclusion compounds such as LiMn2 ⁇ 4, LiNi ⁇ 2, UC0O2 or Li (NiCo) ⁇ 2 can also be used.
- Nanocrystalline, nanoporous transition metal oxides and lithium inclusion compounds of nanocrystalline, nanoporous transition metal oxides are preferred. Titanium dioxide in its anatase form and LiMn2Ü4 are particularly preferred.
- the size of these nanocrystalline, nanoporous primary particles is preferably between 10 nm and 500 nm, particularly preferably between 10 nm and 100 nm.
- the primary particles preferably have a size between 10 nm and 50 nm with a maximum of the size distribution at 25 nm.
- the primary particles preferably have a size below 100 nm.
- the electrically active films contain these nanocrystalline, nanoporous metal oxides, metal chalcogenides or lithium inclusion compounds in an amount of 1 g / m 2 to 100 g / m 2 , preferably in an amount of 3 g / m 2 to 50 g / m 2 . These amounts correspond to film thicknesses between 1 ⁇ m and 100 ⁇ m or 3 ⁇ m and 50 ⁇ m.
- electrically active films which have an electrically active layer on a carrier and an electrically inactive layer thereon.
- the electrically inactive layer advantageously contains a film-forming binder and an electrically inactive pigment.
- the electrically inactive layer contains Y-Al2O3 as a pigment and polyvinyl alcohol as a binder, the weight ratio between the binder and the pigment being 1: 5 and 1:40, in particular 1:10 and 1:30, and the electric inactive layer has a thickness between 2 ⁇ m and 20 ⁇ m, preferably between 4 ⁇ m and 15 ⁇ m.
- the binders are generally water-soluble, non-conductive polymers. Film-forming, non-conductive polymers are particularly preferred.
- the water-soluble, non-conductive polymers include, for example, natural or modified compounds such as albumin, gelatin, casein, starch, gum arabic, sodium or potassium alginate, hydroxyethyl cellulose, carboxymethyl cellulose, ⁇ -, ⁇ - or ⁇ -cyclodextrin, etc. If one of the is water-soluble polymer gelatin, all known types of gelatin can be used, such as acidic pig skin gelatin or alkaline bone gelatin, acid or base hydrolyzed gelatins.
- a preferred natural, non-conductive, film-forming binder is gelatin.
- Synthetic, non-conductive binders can also be used and include, for example, polyvinyl alcohol, polyvinyl pyrrolidone, fully or partially saponified compounds of copolymers of vinyl acetate and other monomers; Homopolymers or copolymers of unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, crotonic acid, etc.
- Preferred synthetic non-conductive, film-forming binders are polyvinyl alcohol, polyvinylidene fluoride, polyethylene oxides, polyethylene glycols and polyacrylonitriles or their mixtures.
- Fine particles of graphite or carbon tubes in the nanometer range can also be added to the non-conductive polymers.
- Polythiophenes, polyanilines, polyacetylenes, poly (3,4-ethylene) dioxythiophene and polyphenylene vinylenes can be used as conductive, film-forming polymers, poly (3,4-ethylene) dioxythiophene being preferred.
- the polymers can be mixed with water-insoluble natural or synthetic high-molecular compounds, in particular with acrylic latexes or styrene acrylic latexes.
- water-insoluble, conductive or non-conductive, film-forming binders are not explicitly claimed, water-insoluble, conductive or non-conductive, film-forming polymers should nevertheless be regarded as a system component.
- the amount of film-forming polymer should be as small as possible, but still sufficient to achieve stable coatings which adhere well to the support. Suitable amounts are 0.5% to 20% film-forming binder based on the total amount of the nanocrystalline, nanoporous transition metal oxides, transition metal chalcogenides or lithium inclusion compound. Quantities between 1% and 10%, in particular between 2% and 5%, are preferred.
- the above-mentioned polymers with crosslinkable groups can be converted into practically water-insoluble layers with the aid of a crosslinker or hardener.
- Such crosslinks can be covalent or ionic.
- the crosslinking or hardening of the layers allows a change in the physical layer properties, such as, for example, the absorption of liquid, or the resistance to layer injuries.
- crosslinkers and hardeners are selected on the basis of the water-soluble polymers to be crosslinked.
- Organic crosslinkers and hardeners include e.g. B. aldehydes (such as formaldehyde, glyoxal or glutaraldehyde); N-methylol compounds (such as dimethylol urea or methylol dimethyl hydantoin); Dioxanes (such as 2,3-dihydroxydioxane); reactive vinyl compounds (such as 1,3,5-trisacryloyl-hexahydro-s-triazine or bis- (vinylsulfonyl) methyl ether), reactive halogen compounds (such as 2,4-dichloro-6-hydroxy-s-triazine); epoxides; aziridines; Carbamoylpyridine compounds or mixtures of two or more of these crosslinkers mentioned.
- aldehydes such as formaldehyde, glyoxal or glutaraldehyde
- N-methylol compounds such as dimethylol urea or methylo
- the layers can also contain reactive substances which crosslink the layers under the action of UV light, electron beams, X-rays or heat.
- Electrically active films which have an electrically active layer on a carrier and an electrically inactive layer thereon are advantageously additionally cured with a crosslinking agent which is matched to the binder of the electrically inactive layer in order to achieve excellent mechanical strength.
- a crosslinking agent which is matched to the binder of the electrically inactive layer in order to achieve excellent mechanical strength.
- boric acid or borates are advantageously used as crosslinking agents.
- supports A large variety of supports is known and is used, among other things, in the photographic industry. All supports that are used in the production of photographic materials can be used to produce electrically active films, for example transparent supports made from cellulose esters such as cellulose triacetate, cellulose acetate, cellulose propionate, or cellulose acetate / butyrate, polyesters such as polyethylene terephthalate or polyethylene naphtha- , lat, polyamides, polycarbonates, polyimides, polyolefins, polyvinyl acetals, polyethers, Polyvinyl chloride and polyvinyl sulfones. Polyesters, in particular polyethylene terephthalate or polyethylene naphthalate, are preferred because of their excellent dimensional stability.
- opaque supports used in the photographic industry, for example, baryta paper, papers coated with polyolefins, white opaque polyesters such as, for. B. Melinex® from DuPont can be used. Polyolefin-coated papers or white-opaque polyester are particularly preferred. All of these carriers can also be provided with a conductive metal layer.
- Uncoated papers of different types can also be used as supports, which can have great differences in their composition and properties.
- Pigmented papers and glossy papers can also be used.
- Metal foils for example made of aluminum, or plastic carriers equipped with a highly conductive layer are also suitable as carriers of electrically active films.
- Metallized or indium tin oxide coated plastic carriers are preferred.
- the electrically active layers according to the invention are generally cast from aqueous solutions or dispersions which contain all the necessary components. In many cases, wetting agents are added as sprue aids to improve the casting behavior and the layer uniformity. Although such surface-active compounds are not claimed in the invention, they nevertheless form an essential part of the invention.
- the casting solutions can be applied to the carrier in various ways.
- the casting processes include, for example, extrusion casting, air knife casting, slot casting, cascade casting and curtain casting.
- the casting solutions can also be applied using a spray or printing process such as gravure printing or offset printing.
- the electrically active layers can be applied in several passes. However, it is preferred to pour in one pass.
- a carrier can also be coated with electrically active layers on both sides. The chosen casting process does not limit the invention in any way.
- the casting speed depends on the casting process used and can be changed within wide limits. Curtain casting at speeds between 30 m / min and 300 m / min is preferred as the casting process.
- the supports with the electrically active layers applied thereon, optionally together with electrically inactive layers, are dried immediately after the casting, the temperature of the support or of the drying medium not exceeding the boiling point (at normal pressure) of the slurry liquid in any phase of the production process.
- the temperature of the coating liquid is between 20 ° C. and 60 ° C. and the temperature of the drying medium, in particular air, is at most 100 ° C. , preferably at most 60 ° C.
- a sintered layer of nanocrystalline, nanoporous, sintered TiO 2 which was produced according to the method described in "Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications", Journal of the American Ceramic Society 80, 3157-3171 (1997), was used as a comparison material.
- TiO 2 is mixed with polyethylene glycol (molecular weight 250,000) and water.
- the resulting paste is applied to a glass plate coated with conductive tin oxide and heated in air at a temperature of 400 ° C. for 20 minutes, during which the organic binder is decomposed and escapes from the layer applied to the carrier.
- Coating 24 g / m 2 of this coating solution were applied at 40 ° C. with the aid of a rod caster to a thin, transparent polyethylene terephthalate support which had a thin evaporated layer of indium tin oxide on its surface.
- the cast support was then dried at 30 ° C. for 60 minutes.
- 1 m 2 of the coated carrier contains 4.8 g LiMn2 ⁇ 4 and 0.2 g polyethylene glycol.
- a sintered layer of nanocrystalline, nanoporous, sintered LiMn2 ⁇ 4 was used as comparison material, which was produced by the method described in the "Journal of the American Ceramic Society” 80, 3157-3171 (1997).
- LiMn2 ⁇ 4 is mixed with polyethylene glycol (molecular weight 250,000) and water.
- the resulting paste is applied to a glass plate coated with conductive tin oxide and selected at a temperature of 400 ° C. rend 20 heated in air, wherein the organic binder is decomposed and escapes from the layer applied to the carrier.
- Example 2 45 g / m 2 of the coating solution from Example 1 were applied at 40 ° C. using a rod coater to a thin, transparent polyethylene terephthalate support, on the surface of which a thin copper foil was glued. The coated support was then dried at 30 ° C. for 60 minutes. 1 m 2 of the coated carrier contains 4.5 g of TiO 2 and 0.18 g of polyethylene glycol.
- Cyclic voltamethe was used to determine the electrical activity of the electrically active films described here.
- Example 1 The cyclic voltagram of the support coated with TiO 2 (Example 1) according to our invention is recorded in FIG. 1; that of a sintered, TiO 2 -containing, according to the prior art produced electrically active film (Comparative Example C-1) in Figure 2. It can be seen immediately from these two figures that the electrical activity of the electrically active film produced by the process according to the invention (Example 1 without treatment at high Temperatures) is as good as that of a film which was produced using a method of the prior art (comparative example C-1, with treatment at high temperatures).
- Example 2 The cyclic voltagram of the carrier coated with LiMn2Ü4 according to our invention (example 2) is recorded in FIG. 3; that of a sintered, LiMn2 ⁇ 4 containing, according to the state of the art manufactured electrically active film (comparative example C - 2) in Figure 4. It can be seen immediately from these two figures that the electrical activity of the electrically active film produced according to the inventive method ( Example 2, without treatment at high temperatures) is as good as that of a film which was produced by a method of the prior art (comparative example C-2, with treatment at high temperatures).
- the thickness-normalized maximum current density of the test material according to our invention from Example 3 was 0.6 mA / cm 2 / ⁇ m at a scanning speed of 20 mV / sec.
- the thickness-normalized maximum current density of the test material from example 4 produced according to our invention was 1.1 mA / cm 2 / ⁇ m under the same measurement conditions at a scanning speed of 20 mV / sec.
- the electrically active film which additionally contains an electrically inactive layer above the electrically active layer (example 4), therefore shows a higher electrical activity than the film, which only contains the electrically active layer.
- the mechanical stability of the electrically active film of Example 4 is excellent.
Landscapes
- Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Economics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Development Economics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
Elektrisch aktive Filme Electrically active films
Technisches GebietTechnical field
Die vorliegende Erfindung bezieht sich auf elektrisch aktive Filme, die nanokristal- line, nanoporöse Ubergangsmetalloxide oder Ubergangsmetallchalkogenide zusammen mit einem Bindemittel enthalten sowie auf ein Verfahren zu ihrer Herstellung bei tiefen Temperaturen.The present invention relates to electrically active films which contain nanocrystalline, nanoporous transition metal oxides or transition metal chalcogenides together with a binder, and to a process for their production at low temperatures.
Stand der TechnikState of the art
Elektrisch aktive Filme, die nanokristalline, nanoporöse Ubergangsmetalloxide oder Ubergangsmetallchalkogenide oder deren Lithium-Einschlussverbindungen enthalten, werden als Elektroden in primären oder sekundären elektrochemischen Generatoren verwendet, so wie sie beispielsweise in der Patentanmeldung WO 99/59*218 beschrieben werden. Weitere Einsatzgebiete solcher elektrisch aktiver Filme sind photovoltaische Zellen oder elektrochrome Anzeigen.Electrically active films containing nanocrystalline, nanoporous transition metal oxides or transition metal chalcogenides or their lithium inclusion compounds are used as electrodes in primary or secondary electrochemical generators, as are described, for example, in patent application WO 99/59 * 218. Other areas of application for such electrically active films are photovoltaic cells or electrochromic displays.
In der Patentanmeldung EP 0709*906 wird eine positive Elektrode beschrieben, die aus einer gesinterten Masse von Teilchen sauerstoffhaltiger Lithiumverbindungen der Grosse 33 μm besteht. Diese Teilchen werden unter Druck auf eine Temperatur zwischen 350° C und 1000° C erwärmt, um die nötige elektrische Aktivität zu erreichen.Patent application EP 0709 * 906 describes a positive electrode which consists of a sintered mass of particles of oxygen-containing lithium compounds with a size of 33 μm. These particles are heated under pressure to a temperature between 350 ° C and 1000 ° C to achieve the necessary electrical activity.
Im Patent US 5'604'057 wird eine Kathode beschrieben, die aus amorphem, nanoporösen, Lithiumionen einschliessenden Manganoxidteilchen im Submikro- meterbereich besteht und deren innere Oberfläche grösser als 100 m^/g ist. Diese Elektroden werden hergestellt, indem das Manganoxid zusammen mit einem vorzugsweise leitenden Bindemittel oder Bindemittelgemisch auf einen leitfähigen Träger (beispielsweise eine Aluminiumfolie) aufgebracht wird. Das Aufbringen kann durch Aufsprühen, Schleuderguss, Rakelguss oder Aufpinseln erfolgen. An- schliessend muss der beschichtete Träger erhitzt werden, aber nicht über 400° C, um eine Auskristallisation des Mangandioxids zu verhindern.US Pat. No. 5,604,057 describes a cathode which consists of amorphous, nanoporous, lithium ion-containing manganese oxide particles in the submicron range and whose inner surface is greater than 100 m 2 / g. These electrodes are produced by applying the manganese oxide to a conductive carrier (for example an aluminum foil) together with a preferably conductive binder or binder mixture. It can be applied by spraying, centrifugal casting, knife casting or brushing. The coated carrier must then be heated, but not above 400 ° C, to prevent the manganese dioxide from crystallizing out.
In den Patenten US 5'211'933 und US 5'674'644 wird ein Herstellungsverfahren für LiMn2θ4 in Spinellform und LiCoθ2 mit Schichtstruktur beschrieben, in dem die Substanzen aus Acetatvorläufern erzeugt werden. Das solchermassen hergestellte LiMn2θ4-Pulver besteht aus Teilchen der Grosse zwischen 0.3 μm und 1.0 μm. Aus diesem Pulver unter Zusatz von etwa 10 % feinen Graphitteilchen ge- presste Tabletten werden als positive Elektrode in Lithiumionenbatterien verwendet. Die Leitfähigkeit zwischen den einzelnen Tabletten wird durch den Graphitzusatz bewirkt. LiMn2θ4 und LiCoθ2 können auch zusammen mit einem Bindemittel auf Träger aufgebracht werden, wobei der beschichtete Träger anschliessend während 16 Stunden auf eine Temperatur von 600° C erwärmt wird. Bei diesem Vorgang wird das organische Bindemittel vollständig entfernt. Der schlussendlich erhaltene elektrisch aktive Film enthält deshalb kein organisches Bindemittel mehr. Im Patent US 5'700'442 werden Einschlussverbindungen von Mangandioxid beschrieben, die als positive Elektrode in Lithiumbatterien verwendet werden. Diese Einschlussverbindungen werden durch Erhitzen von ß-Mnθ2-Pulver mit einer Lithiumverbindung während genügend langer Zeit bei einer Temperatur zwischen 150° C und 500° C hergestellt. Die solchermassen hergestellten, relativ grossen Teilchen mit einer spezifischen Oberfläche unter 7 m^/g sind aber ungeeignet als Material für aktive, schnell entladbare Elektroden.Patents US 5,211,933 and US 5,674,644 describe a production process for LiMn2θ4 in spinel form and LiCoθ2 with a layer structure in which the substances are produced from acetate precursors. The LiMn2θ4 powder produced in this way consists of particles between 0.3 μm and 1.0 μm in size. Tablets pressed from this powder with the addition of about 10% fine graphite particles are used as positive electrodes in lithium ion batteries. The conductivity between the individual tablets is brought about by the addition of graphite. LiMn2θ4 and LiCoθ2 can also be applied to the carrier together with a binder, the coated carrier then is heated to a temperature of 600 ° C for 16 hours. In this process, the organic binder is completely removed. The electrically active film ultimately obtained therefore no longer contains any organic binder. US Pat. No. 5,700,442 describes inclusion compounds of manganese dioxide which are used as positive electrodes in lithium batteries. These inclusion compounds are made by heating β-MnO 2 powder with a lithium compound for a sufficiently long time at a temperature between 150 ° C and 500 ° C. The relatively large particles produced in this way, with a specific surface area below 7 m 2 / g, are unsuitable as a material for active, quickly dischargable electrodes.
In der Patentanmeldung EP 0'814'524 werden Lithium-Mangan-Oxide in Spinellform als aktives Kathodenmaterial für sekundäre Lithiumionenbatterien beschrieben. Die mittlere Teilchengrösse liegt zwischen 1 μm und 5 μm und die spezifi- sehe Oberfläche zwischen 2 m2/g und 10 m2/g. Wegen der grossen Teilchen und der tiefen inneren Oberfläche sind diese Produkte aber ungeeignet als Material für aktive, schnell entladbare Elektroden.Patent application EP 0'814'524 describes lithium manganese oxides in spinel form as an active cathode material for secondary lithium ion batteries. The average particle size is between 1 μm and 5 μm and the specific surface area is between 2 m 2 / g and 10 m 2 / g. However, due to the large particles and the deep inner surface, these products are unsuitable as a material for active, quickly discharged electrodes.
In der Patentanmeldung WO 99/59'218 wird die Herstellung von Tiθ2- und LiMn2θ4-Elektroden mit Hilfe eines Giess- oder Druckverfahrens beschrieben, bei dem eine wässrige Aufschlämmung einer Manganatvorläuferverbindung auf ein Substrat aufgebracht wird. Um die nötige Schichtdicke zu erreichen, muss dieser Beschichtungsvorgang in der Regel mehrfach ausgeführt werden. Anschliessend muss das beschichtete Substrat in Luft während einiger Minuten auf eine Temperatur zwischen 400° C und 750° C erhitzt werden, um die nötige Leitfähigkeit zu erreichen. Der Sinterprozess bei den höheren Temperaturen ergibt Schichten mit höherer elektrischer Aktivität als der Sinterprozess bei den tieferen Temperaturen.The patent application WO 99/59,218 describes the production of TiO 2 and LiMn 2 O 4 electrodes with the aid of a casting or printing process in which an aqueous slurry of a manganate precursor compound is applied to a substrate. In order to achieve the necessary layer thickness, this coating process usually has to be carried out several times. The coated substrate must then be heated in air to a temperature between 400 ° C and 750 ° C for a few minutes in order to achieve the necessary conductivity. The sintering process at the higher temperatures results in layers with higher electrical activity than the sintering process at the lower temperatures.
Die Herstellung dünner Filmelektroden durch das Aufbringen wässriger Auf- schlämmungen von Manganatpulvern bei Raumtemperatur zusammen mit 3 % Polyvinylalkohol und 10 % Graphit auf leitfähige Träger wird in "Influence of the Particie Size of Electrode Materials on Intercalation Rate and Capacity of New Electrodes", Journal of Power Sources 81 - 82, 621 - 626 (1999) erwähnt. Die Schichten werden anschliessend während 15 Minuten auf mindestens 200° C erwärmt.The production of thin film electrodes by applying aqueous slurries of manganate powders at room temperature together with 3% polyvinyl alcohol and 10% graphite on conductive supports is described in "Influence of the Particie Size of Electrode Materials on Intercalation Rate and Capacity of New Electrodes", Journal of Power Sources 81-82, 621-626 (1999). The layers are then heated to at least 200 ° C. for 15 minutes.
In Tabelle 1 in "Criteria for Choosing Transparent Conductors", MRS Bulletin 25, 52 (2000) werden die bekannten Herstellungsverfahren für durchsichtige Leiter zusammengestellt. Fast alle aufgeführten Herstellungsverfahren erfordern hohe Temperaturen bis zu 1000° C.Table 1 in "Criteria for Choosing Transparent Conductors", MRS Bulletin 25, 52 (2000) lists the known manufacturing processes for transparent conductors. Almost all of the manufacturing processes listed require high temperatures of up to 1000 ° C.
Alle diese Herstellverfahren erlauben wegen der erforderlichen hohen Temperatu- ren und der langen Verfahrensdauern keine kostengünstige Herstellung solcher elektrisch aktiver Filme. Insbesondere können keine leicht erhältlichen, billigen durchsichtigen, filmförmigen Trägermaterialien eingesetzt werden, wie sie beispielsweise in der photographischen Industrie verwendet werden, da diese bei den notwendigen hohen Temperaturen zerstört würden. Ein weiterer Nachteil der erforderlichen hohen Temperaturen ist die Unmöglichkeit des Zusatzes hitzeempfindlicher, insbesondere organischer, Verbindungen, wie beispielsweise spektraler Sensibilisatoren, zu den elektrisch aktiven Filmen. Des weiteren ist die mechanische Festigkeit solcher elektrisch aktiver Filme ungenügend, wie auch deren Haftung auf dem Substrat.Because of the high temperatures required and the long process times, all of these production processes do not allow such production to be carried out inexpensively electrically active films. In particular, it is not possible to use readily available, inexpensive transparent, film-shaped support materials, such as are used, for example, in the photographic industry, since these would be destroyed at the necessary high temperatures. Another disadvantage of the high temperatures required is the impossibility of adding heat-sensitive, in particular organic, compounds, such as spectral sensitizers, to the electrically active films. Furthermore, the mechanical strength of such electrically active films is inadequate, as is their adhesion to the substrate.
Zusammenfassung der ErfindungSummary of the invention
Ziel der Erfindung ist die Bereitstellung bindemittelhaltiger elektrisch aktiver Filme mit guter mechanischer Stabilität mittels kostengünstiger Herstellungsverfahren bei tiefen Temperaturen, die auch ohne Entfernung des Bindemittels in einem Sinterprozess bei höheren Temperaturen eine hohe elektrische Aktivität aufweisen.The aim of the invention is to provide binder-containing, electrically active films with good mechanical stability by means of cost-effective manufacturing processes at low temperatures, which have high electrical activity even without removal of the binder in a sintering process at higher temperatures.
Ein weiteres Ziel der Erfindung ist die Bereitstellung solcher elektrisch aktiver Filme mit guter mechanischer Stabilität mit Hilfe von kostengünstigen Beschich- tungsverfahren bei tiefen Temperaturen, bei denen bindemittelhaltige Aufschläm- mungen auf kostengünstige organische Kunststoffträger aufgetragen und anschliessend getrocknet werden, die auch ohne Entfernung des Bindemittels in einem Sinterprozess bei höheren Temperaturen eine hohe elektrische Aktivität aufweisen. Solche elektrisch aktiven Filme bestehen aus einem Träger und mindestens einer darauf aufgetragenen bindemittelhaltigen elektrisch aktiven Schicht sowie gegebenenfalls einer oder mehrerer elektrisch nicht aktiver Schichten.A further object of the invention is to provide such electrically active films with good mechanical stability with the aid of inexpensive coating processes at low temperatures, in which slurries containing binder are applied to inexpensive organic plastic supports and then dried, which also without removal of the binder have a high electrical activity in a sintering process at higher temperatures. Such electrically active films consist of a carrier and at least one binder-containing electrically active layer applied thereon and optionally one or more electrically inactive layers.
Es wurde nun überraschenderweise gefunden, dass solche bindemittelhaltigen Filme mit hoher elektrischer Aktivität grossflächig auf kostengünstige Art dadurch hergestellt werden können, dass flüssige Aufschlämmungen oder kolloidale Dispersionen nanokristalliner, nanoporöser Ubergangsmetalloxide oder Ubergangsmetallchalkogenide oder deren Lithium-Einschlussverbindungen bei Temperaturen zwischen 5° C und 95° C zusammen mit einem Bindemittel oder Bindemittelgemisch, gegebenenfalls zusammen mit elektrisch nicht aktiven Schichten, auf handelsübliche Kunststoff- oder Papierträger aufgebracht und anschliessend bei Temperaturen unterhalb des Siedepunktes (bei Normaldruck) der Aufschlämmflüssigkeit getrocknet werden. Die Temperatur des beschichteten Trägers oder des Trocknungsmediums übersteigt in keiner Phase des Trocknungsprozesses den Siedepunkt (bei Normaldruck) der Aufschlämmflüssigkeit und damit verblei- ben das Bindemittel oder Bindemittelgemisch zusammen mit den nanokristallinen, nanoporösen Übergangsmetalloxiden oder Übergangsmetallchalkogeniden oder deren Lithium-Einschlussverbindungen im elektrisch aktiven Film.It has now surprisingly been found that such binder-containing films with high electrical activity can be produced in a cost-effective manner over a large area by using liquid slurries or colloidal dispersions of nanocrystalline, nanoporous transition metal oxides or transition metal chalcogenides or their lithium inclusion compounds at temperatures between 5 ° C. and 95 ° C. together with a binder or binder mixture, if appropriate together with electrically inactive layers, applied to commercially available plastic or paper supports and then dried at temperatures below the boiling point (at normal pressure) of the slurry liquid. The temperature of the coated carrier or of the drying medium does not exceed the boiling point (at normal pressure) of the slurry liquid in any phase of the drying process and the binder or mixture of binders remains together with the nanocrystalline, nanoporous transition metal oxides or transition metal chalcogenides or their lithium inclusion compounds in the electrically active film.
In einer bevorzugten Ausführungsart der Erfindung werden wässrige kolloidale Dispersionen solcher nanokristalliner, nanoporöser Ubergangsmetalloxide oder Ubergangsmetallchalkogenide oder deren Lithium-Einschlussverbindungen bei Temperaturen zwischen 20° C und 55° C zusammen mit einem oder mehreren nichtleitenden, filmbildenden Bindemitteln, gegebenenfalls zusammen mit elektrisch nicht aktiven Schichten, auf Kunststoffträger oder metallisierte Kunststoff- träger aufgebracht und mit einem Gasgemisch, vorzugsweise Luft, bei Temperatu- ren unter 100° C, vorzugsweise unter 60° C getrocknet.In a preferred embodiment of the invention, aqueous colloidal dispersions of such nanocrystalline, nanoporous transition metal oxides or transition metal chalcogenides or their lithium inclusion compounds at temperatures between 20 ° C. and 55 ° C. together with one or more non-conductive, film-forming binders, optionally together with electrically non-active layers, applied to plastic carriers or metallized plastic carriers and dried with a gas mixture, preferably air, at temperatures below 100 ° C., preferably below 60 ° C.
Bevorzugte nanokristalline, nanoporöse Ubergangsmetalloxide sind Titandioxid, insbesondere in der Anatas-Form, und LiMn2θ4 als Lithium-Einschlussverbindung.Preferred nanocrystalline, nanoporous transition metal oxides are titanium dioxide, in particular in the anatase form, and LiMn2θ4 as the lithium inclusion compound.
Ausführliche Beschreibung der ErfindungDetailed description of the invention
Die Erfindung beschreibt ein Verfahren zur grossflächigen Herstellung bindemittelhaltigen Filme mit hoher elektrischer Aktivität, in dem flüssige Aufschlämmun- gen oder kolloidale Dispersionen nanokristalliner, nanoporöser Übergangsmetal- loxide oder Ubergangsmetallchalkogenide oder deren Lithium-Einschlussverbindungen bei Temperaturen zwischen 5° C und 60° C zusammen mit einem Bindemittel oder Bindemittelgemisch, gegebenenfalls zusammen mit elektrisch nicht aktiven Schichten, auf handelsübliche Kunststoff- oder Papierträger aufgebracht und anschliessend bei Temperaturen unterhalb des Siedepunktes (bei Normaldruck) der Aufschlämmflüssigkeit getrocknet werden. Die Temperatur des beschichteten Trägers oder des Trocknungsmediums übersteigt in keiner Phase des Trocknungsprozesses den Siedepunkt (bei Normaldruck) der Aufschlämmflüssigkeit und damit verbleiben das Bindemittel oder Bindemittelgemisch zusammen mit den nanokristallinen, nanoporösen Übergangsmetalloxiden oder Über- gangsmetallchalkogeniden oder deren Lithium-Einschlussverbindungen nach dem Ende des Herstellungsprozesses in der elektrisch aktiven Schicht des elektrisch aktiven Film.The invention describes a process for the large-area production of binder-containing films with high electrical activity, in which liquid slurries or colloidal dispersions of nanocrystalline, nanoporous transition metal oxides or transition metal chalcogenides or their lithium inclusion compounds at temperatures between 5 ° C. and 60 ° C. together with a Binder or binder mixture, optionally together with electrically inactive layers, is applied to commercially available plastic or paper supports and then dried at temperatures below the boiling point (at normal pressure) of the slurry liquid. The temperature of the coated carrier or of the drying medium does not exceed the boiling point (at normal pressure) of the slurry liquid in any phase of the drying process and thus the binder or binder mixture remains together with the nanocrystalline, nanoporous transition metal oxides or transition metal chalcogenides or their lithium inclusion compounds after the end of the production process in the electrically active layer of the electrically active film.
In einer bevorzugten Ausführungsart der Erfindung werden wässrige kolloidale Dispersionen solcher nanokristalliner, nanoporöser Ubergangsmetalloxide oder Ubergangsmetallchalkogenide oder deren Lithium-Einschlussverbindungen bei Temperaturen zwischen 20° C und 55° C zusammen mit einem oder mehreren nichtleitenden, filmbildenden Bindemitteln, gegebenenfalls zusammen mit elektrisch nicht aktiven Schichten, auf Kunststoffträger aufgebracht und mit einem Gasgemisch, vorzugsweise Luft, bei Temperaturen unter 100° C, vorzugsweise unter 60° C getrocknet. Die Trocknung kann auch durch Infrarotstrahlung erfolgen oder es kann eine kombinierte Trocknung mit einem Gasgemisch und gleichzeitige Anwendung von Infrarotstrahlung zum Einsatz kommen.In a preferred embodiment of the invention, aqueous colloidal dispersions of such nanocrystalline, nanoporous transition metal oxides or transition metal chalcogenides or their lithium inclusion compounds at temperatures between 20 ° C. and 55 ° C. together with one or more non-conductive, film-forming binders, optionally together with electrically non-active layers, applied to a plastic carrier and dried with a gas mixture, preferably air, at temperatures below 100 ° C., preferably below 60 ° C. Drying can also be carried out by infrared radiation or combined drying with a gas mixture and simultaneous use of infrared radiation can be used.
Geeignete nanokristalline, nanoporöse Ubergangsmetalloxide und Ubergangsmetallchalkogenide umfassen insbesondere Oxide oder Chalkogenide der Übergangsmetalle wie Tiθ2, ^03, Nb2θ5, WO3, V2O5, M0O3, Mnθ2, Hfθ2, TiS2, WS2, TiSe2, Fe2θ3, Fe3Ü4, Ruθ2, RuS2, M0S2, WS2, lrθ2, Ceθ2, lnθ2, Taθ2, ZnO, Snθ2, BaTiθ3, SrTiθ3 oder Indium-Zinn-Oxid mit spezifischen Ober- flächen zwischen 10 m2/g und 400 m2/g. Es können auch Lithium- Einschlussverbindungen verwendet werden wie beispielsweise LiMn2θ4, LiNiθ2, UC0O2 oder Li(NiCo)θ2.Suitable nanocrystalline, nanoporous transition metal oxides and transition metal chalcogenides include, in particular, oxides or chalcogenides of the transition metals such as Tiθ2, ^ 03, Nb2θ5, WO3, V2O5, M0O3, Mnθ2, Hfθ2, TiS2, WS2, TiSe2, Fe2θ3, M02S2, Fe2O2, Fe2Ü2 lrθ2, Ceθ2, lnθ2, Taθ2, ZnO, Snθ2, BaTiθ3, SrTiθ3 or indium tin oxide with specific surfaces between 10 m 2 / g and 400 m 2 / g. Lithium inclusion compounds such as LiMn2θ4, LiNiθ2, UC0O2 or Li (NiCo) θ2 can also be used.
Nanokristalline, nanoporöse Ubergangsmetalloxide und Lithium-Einschlussverbindungen nanokristalliner, nanoporöser Ubergangsmetalloxide werden bevorzugt. Besonders bevorzugt sind Titandioxid in seiner Anatas-Form und LiMn2Ü4.Nanocrystalline, nanoporous transition metal oxides and lithium inclusion compounds of nanocrystalline, nanoporous transition metal oxides are preferred. Titanium dioxide in its anatase form and LiMn2Ü4 are particularly preferred.
Die Grosse dieser nanokristallinen, nanoporösen Primärteilchen liegt vorzugsweise zwischen 10 nm und 500 nm, besonders bevorzugt zwischen 10 nm und 100 nm.The size of these nanocrystalline, nanoporous primary particles is preferably between 10 nm and 500 nm, particularly preferably between 10 nm and 100 nm.
Im Falle von Tiθ2 haben die Primärteilchen vorzugsweise eine Grosse zwischen 10 nm und 50 nm mit einem Maximum der Grössenverteilung bei 25 nm.In the case of TiO 2, the primary particles preferably have a size between 10 nm and 50 nm with a maximum of the size distribution at 25 nm.
Im Falle von LiMn2θ4 haben die Primärteilchen vorzugsweise eine Grosse unter 100 nm.In the case of LiMn2θ4, the primary particles preferably have a size below 100 nm.
Die elektrisch aktiven Filme enthalten diese nanokristallinen, nanoporösen Metalloxide, Metallchalkogenide oder Lithium-Einschlussverbindungen in einer Menge von 1 g/m2 bis 100 g/m2, vorzugsweise in einer Menge von 3 g/m2 bis 50 g/m2. Diese Mengen entsprechen Filmdicken zwischen 1 μm und 100 μm beziehungsweise 3 μm und 50 μm.The electrically active films contain these nanocrystalline, nanoporous metal oxides, metal chalcogenides or lithium inclusion compounds in an amount of 1 g / m 2 to 100 g / m 2 , preferably in an amount of 3 g / m 2 to 50 g / m 2 . These amounts correspond to film thicknesses between 1 μm and 100 μm or 3 μm and 50 μm.
Bevorzugt sind des weiteren elektrisch aktive Filme, die auf einem Träger eine elektrisch aktive Schicht und darauf eine elektrisch inaktive Schicht aufweisen. Vorteilhafterweise enthält die elektrisch inaktive Schicht ein filmbildendes Bindemittel und ein elektrisch inaktives Pigment.Also preferred are electrically active films which have an electrically active layer on a carrier and an electrically inactive layer thereon. The electrically inactive layer advantageously contains a film-forming binder and an electrically inactive pigment.
In einer besonders bevorzugten Ausführungsart enthält dabei die elektrisch inaktive Schicht Y-AI2O3 als Pigment und Polyvinylalkohol als Bindemittel, wobei das Gewichtsverhältnis zwischen dem Bindemittel und dem Pigment 1 : 5 und 1 : 40, insbesondere 1 : 10 und 1 : 30 ist und die elektrisch inaktive Schicht eine Dicke zwischen 2 μm und 20 μm, vorzugsweise zwischen 4 μm und 15 μm aufweist.In a particularly preferred embodiment, the electrically inactive layer contains Y-Al2O3 as a pigment and polyvinyl alcohol as a binder, the weight ratio between the binder and the pigment being 1: 5 and 1:40, in particular 1:10 and 1:30, and the electric inactive layer has a thickness between 2 μm and 20 μm, preferably between 4 μm and 15 μm.
Die Bindemittel sind im allgemeinen wasserlösliche, nichtleitende Polymere. Besonders bevorzugt sind filmbildende, nichtleitende Polymere. Die wasserlöslichen, nichtleitenden Polymere umfassen beispielsweise natürliche oder daraus hergestellte modifizierte Verbindungen wie Albumin, Gelatine, Kasein, Stärke, Gummi arabicum, Natrium- oder Kaliumalginat, Hydroxyethylcellulo- se, Carboxymethylcellulose, α-, ß- oder γ-Cyclodextrin usw. Wenn eines der was- serlöslichen Polymere Gelatine ist, so können alle bekannten Gelatinetypen verwendet werden, wie saure Schweinehautgelatine oder alkalische Knochengelatine, sauer oder basisch hydrolysierte Gelatinen.The binders are generally water-soluble, non-conductive polymers. Film-forming, non-conductive polymers are particularly preferred. The water-soluble, non-conductive polymers include, for example, natural or modified compounds such as albumin, gelatin, casein, starch, gum arabic, sodium or potassium alginate, hydroxyethyl cellulose, carboxymethyl cellulose, α-, β- or γ-cyclodextrin, etc. If one of the is water-soluble polymer gelatin, all known types of gelatin can be used, such as acidic pig skin gelatin or alkaline bone gelatin, acid or base hydrolyzed gelatins.
Ein bevorzugtes natürliches, nichtleitendes, filmbildendes Bindemittel ist Gelatine.A preferred natural, non-conductive, film-forming binder is gelatin.
Synthetische, nichtleitende Bindemittel können ebenfalls verwendet werden und umfassen beispielsweise Polyvinylalkohol, Polyvinylpyrrolidon, vollständig oder teilweise verseifte Verbindungen von Copolymeren aus Vinylacetat und anderen Monomeren; Homopolymere oder Copolymere von ungesättigten Carbonsäuren wie (Meth)acrylsäure, Maleinsäure, Crotonsäure usw. Homopolymere oder Copolymere aus Vinylmonomeren von (Meth)acrylamid; Homopolymere oder Copoly- mere anderer Monomerer mit Ethylenoxid; Polyurethane; Polyacrylamide können ebenfalls verwendet werden wie auch wasserlösliche Nylonpolymere; Polyester; Polyvinyllactame; Acrylamidpolymere; substituierter Polyvinylalkohol; Polyvinyla- cetale; Polymere aus Alkyl- und Sulfoalkylacrylaten und -methacrylaten; hydrolysierte Polyvinylacetate; Polyamide; Polyvinylpyridine; Polyacrylsäure; Polyacrylni- trile; Copolymere mit Maleinsäureanhydrid; Polyalkylenoxide; Polyethylenglykole; Copolymere mit Methacrylamid und Copolymere mit Maleinsäure oder fluorierte Polymere wie Polyvinylidenfluorid. Alle diese Polymere können auch als Mischungen verwendet werden.Synthetic, non-conductive binders can also be used and include, for example, polyvinyl alcohol, polyvinyl pyrrolidone, fully or partially saponified compounds of copolymers of vinyl acetate and other monomers; Homopolymers or copolymers of unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, crotonic acid, etc. homopolymers or copolymers of vinyl monomers of (meth) acrylamide; Homopolymers or copolymers of other monomers with ethylene oxide; polyurethanes; Polyacrylamides can also be used, as can water-soluble nylon polymers; Polyester; polyvinyl lactams; Acrylamide polymers; substituted polyvinyl alcohol; Polyvinyl acetals; Polymers of alkyl and sulfoalkyl acrylates and methacrylates; hydrolyzed polyvinyl acetates; polyamides; polyvinylpyridines; polyacrylic acid; Polyacrylonitriles; Copolymers with maleic anhydride; polyalkylene oxides; Polyethylene glycols; Copolymers with methacrylamide and copolymers with maleic acid or fluorinated polymers such as polyvinylidene fluoride. All of these polymers can also be used as mixtures.
Bevorzugte synthetische nichtleitende, filmbildende Bindemittel sind Polyvinylalko- hol, Polyvinylidenfluorid, Polyethylenoxide, Polyethylenglykole und Polyacrylnitrile oder ihre Mischungen.Preferred synthetic non-conductive, film-forming binders are polyvinyl alcohol, polyvinylidene fluoride, polyethylene oxides, polyethylene glycols and polyacrylonitriles or their mixtures.
Zu den nichtleitenden Polymeren können zusätzlich nochfeinteiliger Graphit oder Kohlenstoff-Röhrchen im Nanometerbereich zugemischt werden.Fine particles of graphite or carbon tubes in the nanometer range can also be added to the non-conductive polymers.
Als leitende, filmbildende Polymere können Polythiophene, Polyaniline, Polyace- tylene, Poly(3,4-ethylen)dioxythiophen und Polyphenylenvinylene verwendet werden, wobei Poly(3,4-ethylen)dioxythiophen bevorzugt wird.Polythiophenes, polyanilines, polyacetylenes, poly (3,4-ethylene) dioxythiophene and polyphenylene vinylenes can be used as conductive, film-forming polymers, poly (3,4-ethylene) dioxythiophene being preferred.
Die Polymere können mit wasserunlöslichen natürlichen oder synthetischen hochmolekularen Verbindungen gemischt werden, insbesondere mit Acryllatices oder Styrolacryllatices. Obwohl wasserunlösliche, leitende oder nichtleitende, filmbildende Bindemittel nicht explizit beansprucht werden, so sollen wasserunlösliche, leitende oder nichtleitende, filmbildende Polymere trotzdem als Systembestandteil angesehen werden.The polymers can be mixed with water-insoluble natural or synthetic high-molecular compounds, in particular with acrylic latexes or styrene acrylic latexes. Although water-insoluble, conductive or non-conductive, film-forming binders are not explicitly claimed, water-insoluble, conductive or non-conductive, film-forming polymers should nevertheless be regarded as a system component.
Die Menge des filmbildenden Polymers soll möglichst gering sein, aber noch aus- reichend, um stabile, gut auf dem Träger haftende Beschichtungen zu erzielen. Geeignete Mengen sind 0.5 % bis 20 % filmbildendes Bindemittel bezogen auf die Gesamtmenge der nanokristallinen, nanoporösen Ubergangsmetalloxide, Ubergangsmetallchalkogenide oder Lithium-Einschlussverbindung. Bevorzugt sind Mengen zwischen 1 % und 10 %, insbesondere zwischen 2 % und 5 %.The amount of film-forming polymer should be as small as possible, but still sufficient to achieve stable coatings which adhere well to the support. Suitable amounts are 0.5% to 20% film-forming binder based on the total amount of the nanocrystalline, nanoporous transition metal oxides, transition metal chalcogenides or lithium inclusion compound. Quantities between 1% and 10%, in particular between 2% and 5%, are preferred.
Die oben erwähnten Polymere mit vernetzbaren Gruppen können mit Hilfe eines Vernetzers oder Härters zu praktisch wasserunlöslichen Schichten umgesetzt werden. Solche Vernetzungen können kovalent oder ionisch sein. Die Vernetzung oder Härtung der Schichten erlaubt eine Veränderung der physikalischen Schich- teigenschaften, wie beispielsweise der Flüssigkeitsaufnahme, oder der Widerstandsfähigkeit gegen Schichtverletzungen.The above-mentioned polymers with crosslinkable groups can be converted into practically water-insoluble layers with the aid of a crosslinker or hardener. Such crosslinks can be covalent or ionic. The crosslinking or hardening of the layers allows a change in the physical layer properties, such as, for example, the absorption of liquid, or the resistance to layer injuries.
Die Vernetzer und Härter werden auf Grund der zu vernetzenden wasserlöslichen Polymere ausgesucht.The crosslinkers and hardeners are selected on the basis of the water-soluble polymers to be crosslinked.
Organische Vernetzer und Härter umfassen z. B. Aldehyde (wie Formaldehyd, Glyoxal oder Glutaraldehyd); N-Methylolverbindungen (wie Dimethylolharnstoff oder Methylol-Dimethylhydantoin); Dioxane (wie 2,3-Dihydroxydioxan); reaktive Vi- nylverbindungen (wie 1 ,3,5-Trisacryloyl-Hexahydro-s-Triazin oder Bis-(Vinylsulfo- nyl)methylether), reaktive Halogenverbindungen (wie 2,4-Dichloro-6-Hydroxy-s- Triazin); Epoxide; Aziridine; Carbamoylpyridinverbindungen oder Mischungen zweier oder mehrere dieser erwähnten Vernetzer.Organic crosslinkers and hardeners include e.g. B. aldehydes (such as formaldehyde, glyoxal or glutaraldehyde); N-methylol compounds (such as dimethylol urea or methylol dimethyl hydantoin); Dioxanes (such as 2,3-dihydroxydioxane); reactive vinyl compounds (such as 1,3,5-trisacryloyl-hexahydro-s-triazine or bis- (vinylsulfonyl) methyl ether), reactive halogen compounds (such as 2,4-dichloro-6-hydroxy-s-triazine); epoxides; aziridines; Carbamoylpyridine compounds or mixtures of two or more of these crosslinkers mentioned.
Anorganische Vernetzer und Härter umfassen beispielsweise Chromalaun, Aluminiumalaun, Borsäure, Zirkoniumverbindungen oder Titanocene.Inorganic crosslinkers and hardeners include, for example, chrome alum, aluminum alum, boric acid, zirconium compounds or titanocenes.
Die Schichten können auch reaktive Substanzen enthalten, die unter Einwirkung von UV-Licht, Elektronenstrahlen, Röntgenstrahlen oder Wärme die Schichten vernetzen.The layers can also contain reactive substances which crosslink the layers under the action of UV light, electron beams, X-rays or heat.
Elektrisch aktive Filme, die auf einem Träger eine elektrisch aktive Schicht und darauf eine elektrisch inaktive Schicht aufweisen, werden vorteilhafterweise zusätzlich mit einem an das Bindemittel der elektrisch inaktiven Schicht angepassten Vernetzer gehärtet, um eine ausgezeichnete mechanische Festigkeit zu erzielen. Bei Verwendung von Polyvinylalkohol in der elektrisch inaktiven Schicht werden vorteilhafterweise Borsäure oder Borate als Vernetzer verwendet.Electrically active films which have an electrically active layer on a carrier and an electrically inactive layer thereon are advantageously additionally cured with a crosslinking agent which is matched to the binder of the electrically inactive layer in order to achieve excellent mechanical strength. When using polyvinyl alcohol in the electrically inactive layer, boric acid or borates are advantageously used as crosslinking agents.
Eine grosse Vielfalt an Trägem ist bekannt und wird unter anderem in der photographischen Industrie eingesetzt. Zur Herstellung elektrisch aktiver Filme können alle Träger, die bei der Herstellung von photographischen Materialien verwendet werden, eingesetzt werden, so beispielsweise transparente Träger aus Cellulo- seestern wie Cellulosetriacetat, Celluloseacetat, Cellulosepropionat, oder Cellulo- seacetat/butyrat, Polyester wie Polyethylenterephthalat oder Polyethylennaphtha- , lat, Polyamide, Polycarbonate, Polyimide, Polyolefine, Polyvinylacetale, Polyether, Polyvinylchlorid und Polyvinylsulfone. Bevorzugt werden Polyester, insbesondere Polyethylenterephthalat oder Polyethylennaphthalat wegen ihrer ausgezeichneten Dimensionsstabilität. Bei den in der photographischen Industrie eingesetzten opaken Trägern können beispielsweise Barytpapier, mit Polyolefinen beschichtete Papiere, weissopake Polyester wie z. B. Melinex® der Firma DuPont eingesetzt werden. Besonders bevorzugt sind polyolefinbeschichtete Papiere oder weissopa- ker Polyester. Alle diese Träger können auch mit einer leitenden Metallschicht versehen sein.A large variety of supports is known and is used, among other things, in the photographic industry. All supports that are used in the production of photographic materials can be used to produce electrically active films, for example transparent supports made from cellulose esters such as cellulose triacetate, cellulose acetate, cellulose propionate, or cellulose acetate / butyrate, polyesters such as polyethylene terephthalate or polyethylene naphtha- , lat, polyamides, polycarbonates, polyimides, polyolefins, polyvinyl acetals, polyethers, Polyvinyl chloride and polyvinyl sulfones. Polyesters, in particular polyethylene terephthalate or polyethylene naphthalate, are preferred because of their excellent dimensional stability. In the opaque supports used in the photographic industry, for example, baryta paper, papers coated with polyolefins, white opaque polyesters such as, for. B. Melinex® from DuPont can be used. Polyolefin-coated papers or white-opaque polyester are particularly preferred. All of these carriers can also be provided with a conductive metal layer.
Ebenfalls als Träger können un beschichtete Papiere verschiedener Typen ver- wendet werden, die in ihrer Zusammensetzung und in ihren Eigenschaften grosse Unterschiede aufweisen können. Pigmentierte Papiere und Hochglanzpapiere können ebenfalls verwendet werden.Uncoated papers of different types can also be used as supports, which can have great differences in their composition and properties. Pigmented papers and glossy papers can also be used.
Auch Metallfolien, beispielsweise aus Aluminium, oder mit einer hoch leitfähigen Schicht ausgerüstete Kunststoffträger sind als Träger elektrisch aktiver Filme ge- eignet. Bevorzugt werden metallisierte oder mit Indiumzinnoxid beschichtete Kunststoffträger.Metal foils, for example made of aluminum, or plastic carriers equipped with a highly conductive layer are also suitable as carriers of electrically active films. Metallized or indium tin oxide coated plastic carriers are preferred.
Die erfindungsgemässen elektrisch aktiven Schichten werden im allgemeinen aus wässrigen Lösungen oder Dispersionen, die alle nötigen Komponenten enthalten, gegossen. In vielen Fällen werden Netzmittel als Begusshilfsmittel zugesetzt, um das Giessverhalten und die Schichtgleichmässigkeit zu verbessern. Obwohl solche oberflächenaktiven Verbindungen in der Erfindung nicht beansprucht werden, bilden sie trotzdem einen wesentlichen Bestandteil der Erfindung.The electrically active layers according to the invention are generally cast from aqueous solutions or dispersions which contain all the necessary components. In many cases, wetting agents are added as sprue aids to improve the casting behavior and the layer uniformity. Although such surface-active compounds are not claimed in the invention, they nevertheless form an essential part of the invention.
Die Giesslösungen können auf verschiedene Arten auf den Träger aufgebracht werden. Die Giessverfahren schliessen beispielsweise den Extrusionsguss, den Luftmesserguss, den Schlitzguss, den Kaskadenguss und den Vorhangguss ein. Die Giesslösungen können auch mit einem Sprüh- oder einem Druckverfahren wie Tiefdruck oder Offsetdruck aufgebracht werden. Die elektrisch aktiven Schichten können in mehreren Durchgängen aufgebracht werden. Bevorzugt wird aber der Beguss in einem Durchgang. Ein Träger kann auch beidseitig mit elektrisch aktiven Schichten begossen werden. Das gewählte Giessverfahren schränkt die Erfindung aber in keiner Art und Weise ein.The casting solutions can be applied to the carrier in various ways. The casting processes include, for example, extrusion casting, air knife casting, slot casting, cascade casting and curtain casting. The casting solutions can also be applied using a spray or printing process such as gravure printing or offset printing. The electrically active layers can be applied in several passes. However, it is preferred to pour in one pass. A carrier can also be coated with electrically active layers on both sides. The chosen casting process does not limit the invention in any way.
Die Giessgeschwindigkeit hängt vom verwendeten Giessverfahren ab und kann innerhalb weiter Grenzen verändert werden. Bevorzugt als Giessverfahren wird der Vorhangguss bei Geschwindigkeiten zwischen 30 m/min und 300 m/min.The casting speed depends on the casting process used and can be changed within wide limits. Curtain casting at speeds between 30 m / min and 300 m / min is preferred as the casting process.
Die Träger mit den darauf aufgebrachten elektrisch aktiven Schichten, gegebenenfalls zusammen mit elektrisch nicht aktiven Schichten, werden unmittelbar nach dem Beguss getrocknet, wobei die Temperatur des Trägers oder des Trocknungsmediums in keiner Phase des Herstellprozesses den Siedepunkt (bei Normaldruck) der Aufschlämmflüssigkeit überschreitet. Beim Beschichtungsvorgang wässriger, kolloidaler Dispersionen solcher nanokristalliner, nanoporöser Metalloxide oder Metallchalkogenide oder deren Lithium- Einschlussverbindungen zusammen mit dem Bindemittel oder Bindemittelgemisch beträgt die Temperatur der Beschichtungsflüssigkeit zwischen 20° C und 60° C und die Temperatur des Trocknungsmediums, insbesondere Luft, höchstens 100° C, vorzugsweise höchstens 60° C.The supports with the electrically active layers applied thereon, optionally together with electrically inactive layers, are dried immediately after the casting, the temperature of the support or of the drying medium not exceeding the boiling point (at normal pressure) of the slurry liquid in any phase of the production process. When coating aqueous, colloidal dispersions of such nanocrystalline, nanoporous metal oxides or metal chalcogenides or their lithium inclusion compounds together with the binder or binder mixture, the temperature of the coating liquid is between 20 ° C. and 60 ° C. and the temperature of the drying medium, in particular air, is at most 100 ° C. , preferably at most 60 ° C.
Die vorliegende Erfindung wird durch die folgenden Beispiele näher beschrieben, ohne dass sie dadurch in irgendeiner Weise eingeschränkt würde.The present invention is described in more detail by the following examples, without being restricted in any way thereby.
BeispieleExamples
Beispiel 1example 1
Herstellung einer wässrigen Dispersion von Titandioxid 24.6 g nanokristallines, nanoporöses Tiθ2 (P25 (Anatas-Modifikation), erhältlich bei Degussa-Hüls AG, Frankfurt am Main, Deutschland) wurden bei einer Temperatur von 40° C in 170 g deionisiertem Wasser unter Einwirkung von Ultraschall während einiger Minuten dispergiert. Anschliessend wurde der pH-Wert der Dispersion durch Zugabe von wässriger Kalilauge (1 %) auf 4.50 eingestellt. Nach einer weiteren Ultraschallbehandlung wurde das Endgewicht mit deionisiertem Wasser auf 200 g eingestellt. Die dermassen hergestellte Dispersion von P25 enthielt 12.3 Gewichtsprozent Tiθ2-Preparation of an aqueous dispersion of titanium dioxide 24.6 g of nanocrystalline, nanoporous TiO 2 (P25 (anatase modification), available from Degussa-Huls AG, Frankfurt am Main, Germany) were at a temperature of 40 ° C in 170 g of deionized water under the influence of ultrasound dispersed for a few minutes. The pH of the dispersion was then adjusted to 4.50 by adding aqueous potassium hydroxide solution (1%). After a further ultrasound treatment, the final weight was adjusted to 200 g with deionized water. The dispersion of P25 produced in this way contained 12.3% by weight of TiO 2
Herstellung der BeschichtunqslösunqPreparation of the coating solution
65.04 g dieser Dispersion wurden bei einer Temperatur von 40° C mit 7.2 g deio- nisiertem Wasser vermischt. Anschliessend wurden 4.27 g einer wässrigen Lösung von Polyethylenglykol (7.5 %, Molekulargewicht 100O00, erhältlich bei Fluka Chemie AG, Buchs, Schweiz) zugegeben, die Mischung mit deionisiertem Wasser auf ein Endgewicht von 80 g eingestellt und einige Minuten mit Ultraschall behandelt. Beschichtunq65.04 g of this dispersion were mixed with 7.2 g deionized water at a temperature of 40 ° C. Then 4.27 g of an aqueous solution of polyethylene glycol (7.5%, molecular weight 100,000, available from Fluka Chemie AG, Buchs, Switzerland) were added, the mixture was adjusted to a final weight of 80 g with deionized water and treated with ultrasound for a few minutes. Beschichtunq
100 g/m2 dieser Beschichtungslösung wurden bei 40° C mit Hilfe eines Stabgie- ssers auf einen dünnen, durchsichtigen Polyethylenterephthalatträger aufgebracht, auf dessen Oberfläche eine dünne Kupferfolie aufgeklebt war. Anschliessend wurde der beschichtete Träger 60 Minuten bei 30° C getrocknet. 1 m2 des beschichteten Trägers enthält 10 g Tiθ2 und 0.4 g Polyethylenglykol. Vergleichsbeispiel C - 1100 g / m 2 of this coating solution were applied at 40 ° C. with the aid of a rod caster to a thin, transparent polyethylene terephthalate support, on the surface of which a thin copper foil was glued. The coated support was then dried at 30 ° C. for 60 minutes. 1 m 2 of the coated carrier contains 10 g of TiO 2 and 0.4 g of polyethylene glycol. Comparative Example C-1
Als Vergleichsmaterial wurde ein gesinterte Schicht von nanokristallinem, nanopo- rösem, gesintertem Tiθ2 verwendet, die nach der in "Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications", Journal of the American Ceramic Society 80, 3157 - 3171 (1997) beschriebenen Methode hergestellt wurde. Dabei wird Tiθ2 mit Polyethylenglykol (Molekulargewicht 25O00) und Wasser vermischt. Die resultierende Paste wird auf eine mit leitfähigem Zinnoxid beschichtete Glasplatte aufgebracht und bei einer Temperatur von 400° C während 20 Minuten in Luft erhitzt, wobei das organische Bindemittel zersetzt wird und aus der auf dem Träger aufgebrachten Schicht entweicht.A sintered layer of nanocrystalline, nanoporous, sintered TiO 2, which was produced according to the method described in "Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications", Journal of the American Ceramic Society 80, 3157-3171 (1997), was used as a comparison material. TiO 2 is mixed with polyethylene glycol (molecular weight 250,000) and water. The resulting paste is applied to a glass plate coated with conductive tin oxide and heated in air at a temperature of 400 ° C. for 20 minutes, during which the organic binder is decomposed and escapes from the layer applied to the carrier.
Beispiel 2Example 2
Herstellung einer wässrigen Dispersion von LithiummanqanatPreparation of an aqueous dispersion of lithium manqanate
100.0 g Kathodenpulver SP 30 (erhältlich bei Merck, Darmstadt, Deutschland) wurden in Ethanol dispergiert und anschliessend während 3 Stunden in einer Kugelmühle gemahlen. Nach Trocknung bei einer Temperatur von 40° C wurden 20.0 g dieses nanokristallinen, nanoporösen LiMn2θ4 in 65.8 g deionisiertem Wasser unter Einwirkung von Ultraschall während einiger Minuten dispergiert.100.0 g of cathode powder SP 30 (available from Merck, Darmstadt, Germany) were dispersed in ethanol and then ground in a ball mill for 3 hours. After drying at a temperature of 40 ° C., 20.0 g of this nanocrystalline, nanoporous LiMn2θ4 were dispersed in 65.8 g deionized water under the influence of ultrasound for a few minutes.
Herstellung der Beschichtungslösung Zu 65.8 g dieser Dispersion wurden bei einer Temperatur von 40° C 10.67 g einer wässrigen Lösung von Polyethylenglykol (7.5 %, Molekulargewicht 100O00) zugegeben, die Mischung mit deionisiertem Wasser auf ein Endgewicht von 100 g eingestellt und einige Minuten mit Ultraschall behandelt.Preparation of the coating solution To 65.8 g of this dispersion, 10.67 g of an aqueous solution of polyethylene glycol (7.5%, molecular weight 100,000) were added at a temperature of 40 ° C., the mixture was adjusted to a final weight of 100 g with deionized water and treated with ultrasound for a few minutes ,
Beschichtung 24 g/m2 dieser Beschichtungslösung wurden bei 40° C mit Hilfe eines Stabgie- ssers auf einen dünnen, durchsichtigen Polyethylenterephthalatträger aufgebracht, der auf seiner Oberfläche eine dünne aufgedampfte Schicht aus Indiumzinnoxid aufwies. Anschliessend wurde der begossene Träger 60 Minuten bei 30° C getrocknet. 1 m2 des beschichteten Trägers enthält 4.8 g LiMn2θ4 und 0.2 g Polyethylenglykol.Coating 24 g / m 2 of this coating solution were applied at 40 ° C. with the aid of a rod caster to a thin, transparent polyethylene terephthalate support which had a thin evaporated layer of indium tin oxide on its surface. The cast support was then dried at 30 ° C. for 60 minutes. 1 m 2 of the coated carrier contains 4.8 g LiMn2θ4 and 0.2 g polyethylene glycol.
Vergleichsbeispiel C - 2Comparative Example C-2
Als Vergleichsmaterial wurde ein gesinterte Schicht von nanokristallinem, nanopo- rösem, gesintertem LiMn2θ4 verwendet, die nach der im "Journal of the American Ceramic Society" 80, 3157 - 3171 (1997) beschriebenen Methode hergestellt wurde. Dabei wird LiMn2θ4 mit Polyethylenglykol (Molekulargewicht 25O00) und Wasser vermischt. Die resultierende Paste wird auf eine mit leitfähigem Zinnoxid beschichtete Glasplatte aufgebracht und bei einer Temperatur von 400° C wäh- rend 20 in Luft erhitzt, wobei das organische Bindemittel zersetzt wird und aus der auf dem Träger aufgebrachten Schicht entweicht.A sintered layer of nanocrystalline, nanoporous, sintered LiMn2θ4 was used as comparison material, which was produced by the method described in the "Journal of the American Ceramic Society" 80, 3157-3171 (1997). LiMn2θ4 is mixed with polyethylene glycol (molecular weight 250,000) and water. The resulting paste is applied to a glass plate coated with conductive tin oxide and selected at a temperature of 400 ° C. rend 20 heated in air, wherein the organic binder is decomposed and escapes from the layer applied to the carrier.
Beispiel 3 BeschichtungExample 3 Coating
45 g/m2 der Beschichtungslösung aus Beispiel 1 wurden bei 40° C mit Hilfe eines Stabgiessers auf einen dünnen, durchsichtigen Polyethylenterephthalatträger aufgebracht, auf dessen Oberfläche eine dünne Kupferfolie aufgeklebt war. Anschliessend wurde der beschichtete Träger 60 Minuten bei 30° C getrocknet. 1 m2 des beschichteten Trägers enthält 4.5 g Tiθ2 und 0.18 g Polyethylenglykol.45 g / m 2 of the coating solution from Example 1 were applied at 40 ° C. using a rod coater to a thin, transparent polyethylene terephthalate support, on the surface of which a thin copper foil was glued. The coated support was then dried at 30 ° C. for 60 minutes. 1 m 2 of the coated carrier contains 4.5 g of TiO 2 and 0.18 g of polyethylene glycol.
Beispiel 4 (Doppelschichtsystem)Example 4 (double layer system)
Herstellung der Beschichtungslösung für die obere SchichtPreparation of the coating solution for the upper layer
14.5 g Aluminiumoxid C (Gehalt 96.6 % an AI2O3, erhältlich bei Degussa-Hüls AG, Frankfurt am Main, Deutschland) wurden bei einer Temperatur von 25° C unter guter mechanischer Rührung in 62.9 g deionisiertem Wasser und 0.2 g wässriger Milchsäure (90 %) dispergiert. Nach 60 Minuten Rühren wurden 15.47 g einer wässrigen Lösung von Polyvinylalkohol (7.5 %, Hydrolysegrad 98 - 99 %, Molekulargewicht 85O00 bis 146O00, erhältlich bei ALDRICH Chemie, Buchs, Schweiz) zugegeben, die Beschichtungslösung mit Ultraschall behandelt und das Endgewicht mit deionisiertem Wasser auf 100 g eingestellt.14.5 g of aluminum oxide C (content 96.6% of AI2O3, available from Degussa-Hüls AG, Frankfurt am Main, Germany) were at a temperature of 25 ° C with good mechanical stirring in 62.9 g of deionized water and 0.2 g of aqueous lactic acid (90%) dispersed. After stirring for 60 minutes, 15.47 g of an aqueous solution of polyvinyl alcohol (7.5%, degree of hydrolysis 98-99%, molecular weight 85,000 to 146,000, available from ALDRICH Chemie, Buchs, Switzerland) were added, the coating solution was treated with ultrasound and the final weight was treated with deionized water 100 g set.
Beschichtung (obere Schicht)Coating (upper layer)
40 g/m2 dieser Beschichtungslösung wurden nach Zugabe von Borsäure als Härter bei 40° C mit Hilfe eines Stabgiessers auf den begossenen Träger aus Beispiel 3 aufgebracht und anschliessend wurde der Träger mit den beiden Schichten 60 Minuten bei 30° C getrocknet. 1 m2 des begossenen Trägers enthält neben den anderen Giesszusätzen 4.5 g Tiθ2, 0.18 g Polyethylenglykol, 6.04 g AI2O3 und 0.76 g Polyvinylalkohol.40 g / m 2 of this coating solution were added after the addition of boric acid as a hardener at 40 ° C with the aid of a rod coater on the cast carrier from Example 3 and then the carrier with the two layers was dried at 30 ° C for 60 minutes. 1 m 2 of the cast carrier contains 4.5 g of TiO 2, 0.18 g of polyethylene glycol, 6.04 g of Al2O3 and 0.76 g of polyvinyl alcohol in addition to the other casting additives.
Cyclische Voltamethe wurde zur Bestimmung der elektrischen Aktivität der hier beschriebenen elektrisch aktiven Filme verwendet.Cyclic voltamethe was used to determine the electrical activity of the electrically active films described here.
Das cyclische Voltagramm des gemäss unserer Erfindung mit Tiθ2 beschichteten Trägers (Beispiel 1 ) ist in Figur 1 aufgezeichnet; dasjenige eines gesinterten, Tiθ2 enthaltenden, nach dem Stand der Technik hergestellten elektrisch aktiven Films (Vergleichsbeispiel C - 1 ) in Figur 2. Diesen beiden Figuren ist sofort zu entnehmen, dass die elektrische Aktivität des nach dem erfindungsgemässen Verfahren hergestellten elektrisch aktiven Films (Beispiel 1 , ohne Behandlung bei hohen Temperaturen) gleich gut ist wie diejenige eines Films, der mit einem Verfahren des Standes der Technik (Vergleichsbeispiel C - 1 , mit Behandlung bei hohen Temperaturen) hergestellt wurde.The cyclic voltagram of the support coated with TiO 2 (Example 1) according to our invention is recorded in FIG. 1; that of a sintered, TiO 2 -containing, according to the prior art produced electrically active film (Comparative Example C-1) in Figure 2. It can be seen immediately from these two figures that the electrical activity of the electrically active film produced by the process according to the invention (Example 1 without treatment at high Temperatures) is as good as that of a film which was produced using a method of the prior art (comparative example C-1, with treatment at high temperatures).
Das cyclische Voltagramm des gemäss unserer Erfindung mit LiMn2Ü4 beschichteten Trägers (Beispiel 2) ist in Figur 3 aufgezeichnet; dasjenige eines gesinterten, LiMn2θ4 enthaltenden, nach dem Stand der Technik hergestellten elektrisch aktiven Films (Vergleichsbeispiel C - 2) in Figur 4. Diesen beiden Figuren ist sofort zu entnehmen, dass die elektrische Aktivität des nach dem erfin- dungsgemässen Verfahren hergestellten elektrisch aktiven Films (Beispiel 2, ohne Behandlung bei hohen Temperaturen) gleich gut ist wie diejenige eines Films, der mit einem Verfahren des Standes der Technik (Vergleichsbeispiel C - 2, mit Behandlung bei hohen Temperaturen) hergestellt wurde.The cyclic voltagram of the carrier coated with LiMn2Ü4 according to our invention (example 2) is recorded in FIG. 3; that of a sintered, LiMn2θ4 containing, according to the state of the art manufactured electrically active film (comparative example C - 2) in Figure 4. It can be seen immediately from these two figures that the electrical activity of the electrically active film produced according to the inventive method ( Example 2, without treatment at high temperatures) is as good as that of a film which was produced by a method of the prior art (comparative example C-2, with treatment at high temperatures).
Die dickennormierte maximale Stromdichte des gemäss unserer Erfindung hergestellten Versuchsmaterials aus Beispiel 3 (mittels cyclischer Voltametrie im Spannungsbereich zwischen 1.2 V und 3 V gegen Lithium bestimmt) betrug 0.6 mA / cm2 / μm bei einer Abtastgeschwindigkeit von 20 mV / sec.The thickness-normalized maximum current density of the test material according to our invention from Example 3 (determined by means of cyclic voltammetry in the voltage range between 1.2 V and 3 V against lithium) was 0.6 mA / cm 2 / μm at a scanning speed of 20 mV / sec.
Die dickennormierte maximale Stromdichte des gemäss unserer Erfindung herge- stellten Versuchsmaterials aus Beispiel 4 betrug unter den gleichen Messbedingungen 1.1 mA / cm2 / μm bei einer Abtastgeschwindigkeit von 20 mV / sec.The thickness-normalized maximum current density of the test material from example 4 produced according to our invention was 1.1 mA / cm 2 / μm under the same measurement conditions at a scanning speed of 20 mV / sec.
Der elektrisch aktive Film, der über der elektrisch aktiven Schicht zusätzlich noch eine elektrisch inaktive Schicht enthält (Beispiel 4) zeigt somit eine höhere elektrische Aktivität als der Film, der nur die elektrisch aktive Schicht enthält. Zusätzlich ist die mechanische Stabilität des elektrisch aktiven Films von Beispiel 4 hervorragend. The electrically active film, which additionally contains an electrically inactive layer above the electrically active layer (example 4), therefore shows a higher electrical activity than the film, which only contains the electrically active layer. In addition, the mechanical stability of the electrically active film of Example 4 is excellent.
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2002237331A AU2002237331A1 (en) | 2001-03-20 | 2002-03-15 | Electrically active films |
JP2002572767A JP4480940B2 (en) | 2001-03-20 | 2002-03-15 | Electrically active film |
US10/472,782 US7560173B2 (en) | 2001-03-20 | 2002-03-15 | Electrically active films |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01810275.6 | 2001-03-20 | ||
EP01810275A EP1244114A1 (en) | 2001-03-20 | 2001-03-20 | Electrically active films |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002074039A2 true WO2002074039A2 (en) | 2002-09-26 |
WO2002074039A3 WO2002074039A3 (en) | 2003-08-28 |
Family
ID=8183800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2002/002890 WO2002074039A2 (en) | 2001-03-20 | 2002-03-15 | Electrically active films |
Country Status (5)
Country | Link |
---|---|
US (1) | US7560173B2 (en) |
EP (1) | EP1244114A1 (en) |
JP (1) | JP4480940B2 (en) |
AU (1) | AU2002237331A1 (en) |
WO (1) | WO2002074039A2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE50201681D1 (en) * | 2002-07-01 | 2005-01-05 | Ilford Imaging Ch Gmbh | Process for coating a moving support |
US20040019509A1 (en) * | 2002-07-23 | 2004-01-29 | Bekkers Ivan H. | System and method for managing flight information |
US8117073B1 (en) | 2004-09-17 | 2012-02-14 | Rearden Commerce, Inc. | Method and system for delegation of travel arrangements by a temporary agent |
JP2007018883A (en) * | 2005-07-07 | 2007-01-25 | Toshiba Corp | Negative electrode active material, non-aqueous electrolyte battery and battery pack |
US7996282B1 (en) * | 2006-09-29 | 2011-08-09 | Amazon Technologies, Inc. | Method and system for selecting and displaying items |
ATE477305T1 (en) | 2007-08-23 | 2010-08-15 | Suisse Electronique Microtech | COMPOSITION COMPRISING J-AGGREGATES |
US20090248457A1 (en) * | 2008-03-31 | 2009-10-01 | Rearden Commerce, Inc. | System and Method for Providing Travel Schedule of Contacts |
JP2011517787A (en) * | 2008-04-09 | 2011-06-16 | ビーエーエスエフ ソシエタス・ヨーロピア | Electrochromic device and polymer composition |
US20100156353A1 (en) * | 2008-12-18 | 2010-06-24 | Quantumsphere, Inc. | Lithium nanoparticle compositions for use in electrochemical applications |
US20100211419A1 (en) * | 2009-02-13 | 2010-08-19 | Rearden Commerce, Inc. | Systems and Methods to Present Travel Options |
EP2237346B1 (en) | 2009-04-01 | 2017-08-09 | The Swatch Group Research and Development Ltd. | Electrically conductive nanocomposite material comprising sacrificial nanoparticles and open porous nanocomposites produced thereof |
EP2228855B1 (en) | 2009-03-12 | 2014-02-26 | Belenos Clean Power Holding AG | Open porous electrically conductive nanocomposite material |
US8432601B2 (en) * | 2009-05-01 | 2013-04-30 | Gemalto, S.A. | Electrochromic display module and composition with improved performance |
US9449288B2 (en) | 2011-05-20 | 2016-09-20 | Deem, Inc. | Travel services search |
US9692039B2 (en) | 2012-07-24 | 2017-06-27 | Quantumscape Corporation | Nanostructured materials for electrochemical conversion reactions |
US9017777B2 (en) * | 2013-02-26 | 2015-04-28 | Quantumscape Corporation | Inorganic films using a cascaded source for battery devices |
KR102384822B1 (en) | 2014-02-25 | 2022-04-08 | 퀀텀스케이프 배터리, 인코포레이티드 | Hybrid electrodes with both intercalation and conversion materials |
WO2016025866A1 (en) | 2014-08-15 | 2016-02-18 | Quantumscape Corporation | Doped conversion materials for secondary battery cathodes |
CN113363445A (en) * | 2021-06-15 | 2021-09-07 | 广东凯金新能源科技股份有限公司 | Reticular gamma-alumina coated modified graphite negative electrode material, and preparation method and application thereof |
US11804605B1 (en) * | 2023-02-20 | 2023-10-31 | King Faisal University | Metal oxide nanocomposites for electrochemical oxidation of urea |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56143443A (en) * | 1980-04-11 | 1981-11-09 | Fuji Photo Film Co Ltd | Electrically conductive support for electrophotographic material |
JPS61245057A (en) * | 1985-04-23 | 1986-10-31 | Fuji Photo Film Co Ltd | Integral type multi-layered analyzing element |
US5211933A (en) * | 1991-04-23 | 1993-05-18 | Bell Communications Research, Inc. | Method for preparation of LiCoO2 intercalation compound for use in secondary lithium batteries |
US5409786A (en) * | 1993-02-05 | 1995-04-25 | Eveready Battery Company, Inc. | Inactive electrochemical cell having an ionically nonconductive polymeric composition activated by electrolyte salt solution |
JPH06250329A (en) * | 1993-03-01 | 1994-09-09 | Konica Corp | Silver halide photographic sensitive material having good carrying property and magnetic recording property |
FR2715508B1 (en) * | 1994-01-21 | 1996-03-29 | Renata Ag | Primary or secondary electrochemical generator with nanoparticulate electrode. |
FR2721308B1 (en) * | 1994-06-21 | 1996-10-11 | Commissariat Energie Atomique | Manganese oxide insertion compounds, usable as a positive electrode in a lithium battery. |
JP3427570B2 (en) | 1994-10-26 | 2003-07-22 | ソニー株式会社 | Non-aqueous electrolyte secondary battery |
AU7209496A (en) * | 1995-10-24 | 1997-05-15 | Isa Ag Arch | Method for making an electrochemical cell, and resulting electrochemical cell |
US5604057A (en) * | 1995-11-27 | 1997-02-18 | General Motors Corporation | Secondary cell having a lithium intercolating manganese oxide |
JP3221352B2 (en) | 1996-06-17 | 2001-10-22 | 株式会社村田製作所 | Method for producing spinel-type lithium manganese composite oxide |
JPH10302794A (en) * | 1997-04-30 | 1998-11-13 | Matsushita Electric Ind Co Ltd | Lithium secondary battery |
WO1999059218A1 (en) | 1998-05-12 | 1999-11-18 | Ecole Polytechnique Federale De Lausanne (Epfl) Sri | Primary or secondary electrochemical generator |
DE69942453D1 (en) * | 1998-05-29 | 2010-07-15 | Jgc Catalysts & Chemicals Ltd | PROCESS FOR PRODUCING PHOTOELECTRIC CELLS |
US6416818B1 (en) * | 1998-08-17 | 2002-07-09 | Nanophase Technologies Corporation | Compositions for forming transparent conductive nanoparticle coatings and process of preparation therefor |
JP4011766B2 (en) * | 1998-10-20 | 2007-11-21 | 富士フイルム株式会社 | Anti-reflection coating |
US6849327B1 (en) * | 1999-06-17 | 2005-02-01 | Fuji Photo Film Co., Ltd. | Optical filter |
JP2001172545A (en) * | 1999-10-04 | 2001-06-26 | Shigeki Iida | Coating composition |
-
2001
- 2001-03-20 EP EP01810275A patent/EP1244114A1/en not_active Withdrawn
-
2002
- 2002-03-15 JP JP2002572767A patent/JP4480940B2/en not_active Expired - Fee Related
- 2002-03-15 WO PCT/EP2002/002890 patent/WO2002074039A2/en active Application Filing
- 2002-03-15 US US10/472,782 patent/US7560173B2/en not_active Expired - Fee Related
- 2002-03-15 AU AU2002237331A patent/AU2002237331A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20050075913A1 (en) | 2005-04-07 |
JP4480940B2 (en) | 2010-06-16 |
AU2002237331A1 (en) | 2002-10-03 |
EP1244114A1 (en) | 2002-09-25 |
JP2004532138A (en) | 2004-10-21 |
US20060036474A9 (en) | 2006-02-16 |
WO2002074039A3 (en) | 2003-08-28 |
US7560173B2 (en) | 2009-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002074039A2 (en) | Electrically active films | |
DE112007000395B4 (en) | Method for producing an electrode with an organic / inorganic composite coating layer | |
DE69810956T2 (en) | DOUBLE-LAYER CAPACITOR AND THEIR PRODUCTION METHOD | |
DE60036262T2 (en) | Process for the preparation of polymer particles composite | |
DE60314138T2 (en) | ELECTROPROOF COLORS AND COAT FIBRILLO BASE COATINGS | |
DE112008001340B4 (en) | Microporous nonwoven reinforced polymer membrane, manufacturing method and use thereof | |
DE19839217C2 (en) | Pasty masses, layers and layer structures, cells and processes for their production | |
DE69701550T2 (en) | Solid proton-conducting polymer electrolytes for electrochemical systems that work at room temperature | |
EP2490284B1 (en) | Electrodes for batteries, in particular lithium-ion batteries, and their production | |
EP1236239B1 (en) | Films for electrochemical components and a method for production thereof | |
DE2111796A1 (en) | Flexible, porous material for separators | |
JP2003500857A (en) | Manufacturing method of nanostructured thin film electrode | |
WO1994014203A1 (en) | Electrode membrane | |
DE102007011361A9 (en) | Wet electrolytic capacitor with a cathode coating | |
DE19616200A1 (en) | Solid state electrolytic capacitor with low leakage current even after heating | |
DE102011113164A1 (en) | Cathode from a blasted conductive polymer for use in a liquid electrolytic capacitor | |
DE3000189A1 (en) | METHOD FOR PRODUCING A POSITIVE ELECTRODE FOR NON-AQUEOUS ELECTROLYTIC CELLS | |
EP1194963B1 (en) | Pasty materials with nanocrystalline materials for electrochemical components and layers and electrochemical components produced with said materials | |
DE102009043368A1 (en) | Electrochemical capacitor containing ruthenium oxide electrodes | |
DE102007038893A1 (en) | Polyaniline / porous carbon composite and electric double layer capacitor using the same | |
CN115692027A (en) | Preparation method of sintered anode foil added with nano high-dielectric fibers | |
DE69737335T2 (en) | Solid electrolytic capacitor and its production method | |
DE102010015744A1 (en) | A method of coating a surface of a fuel cell plate | |
US7939600B2 (en) | Binder for electric double layer capacitor electrode | |
DE2935140A1 (en) | ELECTROSTATIC RECORD CARRIER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002572767 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2006036474 Country of ref document: US Kind code of ref document: A9 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10472782 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
WWP | Wipo information: published in national office |
Ref document number: 10472782 Country of ref document: US |