WO2002063614A1 - Thin film magnetic head, magnetic head assembly, and composite thin film magnetic head - Google Patents
Thin film magnetic head, magnetic head assembly, and composite thin film magnetic head Download PDFInfo
- Publication number
- WO2002063614A1 WO2002063614A1 PCT/JP2001/000785 JP0100785W WO02063614A1 WO 2002063614 A1 WO2002063614 A1 WO 2002063614A1 JP 0100785 W JP0100785 W JP 0100785W WO 02063614 A1 WO02063614 A1 WO 02063614A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- magnetic head
- magnetic
- film magnetic
- thin
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3109—Details
- G11B5/313—Disposition of layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B33/00—Constructional parts, details or accessories not provided for in the other groups of this subclass
- G11B33/14—Reducing influence of physical parameters, e.g. temperature change, moisture, dust
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3109—Details
- G11B5/313—Disposition of layers
- G11B5/3133—Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
Definitions
- Thin film magnetic head and magnetic head assembly composite thin film magnetic head
- the present invention relates to a thin-film magnetic head used in a magnetic recording medium drive such as a magnetic disk drive and a magnetic tape drive.
- the lower magnetic pole layer generally also functions as a shield layer of the read head. Therefore, the lower pole layer must have a larger core width than the upper pole layer. In other words, the magnetic flux path is formed in the lower magnetic pole layer in a wider range than in the upper magnetic pole layer. It is not possible to sufficiently converge the magnetic flux at the tip facing the so-called medium facing surface. The magnetic flux flowing through the lower pole layer cannot make the maximum contribution to the formation of the recording magnetic field.
- the present invention has been made in view of the above circumstances, and has as its object to provide a composite thin-film magnetic head including a lower magnetic pole layer capable of efficiently concentrating magnetic flux at a tip facing a medium facing surface.
- another object of the present invention is to provide a thin-film magnetic head capable of efficiently dissipating heat from a coil pattern.
- a lower shield layer, an upper shield layer, and a magnetoresistive effect sandwiched between the lower shield layer and the upper shield layer and facing the medium facing surface are provided.
- a magnetic coupling is established between the lower magnetic pole layer at the center of the spiral coil pattern and the upper magnetic pole layer spreading along the surface of the insulating layer while narrowing the core width toward the tip facing the medium facing surface.
- a composite thin-film magnetic head characterized by comprising:
- the lower pole layer that extends along the surface of the base layer while reducing the core width toward the tip facing the medium facing surface
- the heat dissipation layer that extends around the lower pole layer along the surface of the base layer
- a non-magnetic layer extending along the surface of the base layer around the heat radiation layer.
- a magnetic field is generated in a spiral coil pattern based on a supplied current.
- the spiral coil pattern generates heat based on the supplied current.
- Such heat is dissipated from the spiral coil pattern through the lower pole layer.
- the heat radiation layer is arranged around the lower magnetic pole layer, the heat of the spiral coil pattern can be efficiently transmitted to the heat radiation layer even if the lower magnetic pole layer is narrowed.
- the heat dissipation layer can contribute to heat dissipation of the spiral coil pattern in addition to the lower pole layer. Heat dissipation from the spiral coil pattern can be facilitated. Excessive temperature rise of the spiral coil pattern can be avoided as much as possible.
- the spiral coil pattern may be formed in the insulating layer in the contour of the heat radiation layer, that is, in the region inside the outer edge. If the heat radiation layer spreads evenly over the area where the spiral coil pattern spreads, the heat of the spiral coil pattern will be It can be transmitted to the heat dissipation layer uniformly and efficiently. Therefore, the heat radiation of the spiral coil pattern can be surely promoted.
- the spread of the heat radiation layer may be narrower than the outer edge of the spiral coil pattern in accordance with the calorific value of the spiral coil pattern and the heat transfer characteristics of the heat radiation layer.
- the heat dissipation layer be made of a metal material.
- the heat radiation layer is made of a high heat conductive material having a higher thermal conductivity than the material forming the lower magnetic pole, the heat radiation of the spiral coil pattern can be more effectively promoted.
- a high thermal conductive material shows non-magnetism, generation of unnecessary magnetic flux in the heat dissipation layer can be avoided, and therefore, the inductance of the thin film magnetic head can be reduced. it can. According to such a reduction in inductance, the response speed of the magnetization reversal can be improved in the upper pole layer and the lower pole layer when the current supplied to the spiral coil pattern is reversed.
- the thin-film magnetic head as described above may further include a non-magnetic wall extending along the surface of the base layer and separating the lower pole layer and the heat dissipation layer. According to the function of the nonmagnetic wall, even when a magnetic material is used for the heat radiation layer, the magnetic coupling between the heat radiation layer and the lower magnetic pole layer can be surely inhibited. Even if the heat dissipation layer is arranged, the path of the magnetic flux is not expanded in the lower pole layer. It is desired that the non-magnetic wall has insulating properties.
- the thin film magnetic head as described above may be used by being incorporated in a so-called magnetic head assembly.
- the magnetic head assembly may include, for example, a head slider that exposes a thin magnetic head on the medium facing surface facing the magnetic recording medium, and an elastic suspension that supports the head slider in a cantilever manner.
- FIG. 1 is a plan view schematically showing the structure of a hard disk drive (HDD).
- HDD hard disk drive
- FIG. 2 is an enlarged perspective view schematically showing the structure of a flying head slider according to a specific example.
- FIG. 3 is a front view schematically showing a composite thin-film magnetic head observed on the flying surface of the flying head slider.
- FIG. 4 is a sectional view taken along line 4-4 in FIG.
- FIG. 5 is a plan view of the thin-film magnetic head showing the shape of the upper pole layer.
- FIG. 6 is a sectional view taken along the line 6-6 in FIG.
- FIG. 7 is a graph showing the magnetic field strength of the thin-film magnetic head.
- FIG. 8 is a graph showing the magnetic field characteristics of the thin-film magnetic head.
- FIG. 9 is a plan view schematically showing one manufacturing process of the thin-film magnetic head.
- FIG. 1 schematically shows a specific example of a magnetic recording medium drive, that is, an internal structure of a hard disk drive (HDD) 11.
- the HDD 11 includes, for example, a box-shaped housing main body 12 that partitions an internal space of a flat rectangular parallelepiped.
- One or more magnetic disks 13 as recording media are accommodated in the accommodation space.
- the magnetic disk 13 is mounted on the rotating shaft of the spindle motor 14.
- the spindle motor 14 is capable of rotating the magnetic disk 13 at a high speed such as, for example, 720 rpm or 1000 rpm.
- a lid or a cover (not shown) that seals the accommodation space between the housing body 12 and the housing body 12 is connected to the housing body 12.
- the accommodation space further accommodates a carriage 16 that swings around a vertically extending support shaft 15.
- the carriage 16 includes a rigid swing arm 17 extending horizontally from the support shaft 15, an elastic suspension 18 attached to the tip of the swing arm 17 and extending forward from the swing arm 17.
- the flying head slider 19 is cantilevered at the tip of the elastic suspension 18 by the action of a so-called gimbal spring (not shown).
- a pressing force acts on the flying head slider 19 from the flexible suspension 18 toward the surface of the magnetic disk 13.
- the buoyancy acts on the flying head slider 19 by the action of the airflow generated on the surface of the magnetic disk 13 based on the rotation of the magnetic disk 13.
- the suspension with a relatively high rigidity during the rotation of the magnetic disk 13 due to the balance between the pressing force of the flexible suspension 18 and the buoyancy.
- the top head slider 19 can keep flying.
- the flying head slider 19 can cross the surface of the magnetic disk 13 in the radial direction. Based on such movement, the flying head slider 19 is positioned at a desired recording track on the magnetic disk 13. At this time, the swing of the carriage 16 may be realized through the operation of the actuator 21 such as a voice coil motor (VCM).
- VCM voice coil motor
- the actuator 21 such as a voice coil motor (VCM)
- VCM voice coil motor
- a plurality of magnetic disks 13 are incorporated in the main body 12 of the housing, two elastic arms 17 are provided between adjacent magnetic disks 13 with respect to one swing arm 17. Suspension 18 is mounted.
- FIG. 2 shows a specific example of the flying head slider 19.
- the slider body 22 and the head element built-in film 24 define a medium facing surface facing the magnetic disk 13, that is, a flying surface 25.
- the airflow 26 generated based on the rotation of the magnetic disk 13 is received by the air bearing surface 25.
- ABS air bearing surface
- the composite thin-film magnetic head 23 includes a read head 42 that reads magnetic information from a magnetic disk 13 by using a magnetoresistive (MR) element 41, which will be described later.
- the magnetic disk 13 is provided with a magnetic induction writing head, that is, a thin film magnetic head 43, for recording magnetic information on the magnetic disk 13 using a magnetic field generated by the spiral coil pattern.
- the MR element 41 is sandwiched between a pair of upper and lower shield layers 44 and 45.
- the read gap is defined between the shield layers 44 and 45.
- the shield layers 44 and 45 are made of a magnetic material such as FeN or NiFe. It should be done.
- a giant magnetoresistance effect (GMR) element or a tunnel junction magnetoresistance effect (TMR) element can be used as the MR element 41.
- the thin-film magnetic head 43 includes a lower pole layer 47 extending along an arbitrary reference plane 46 on the shield layer 45.
- This reference plane 4 6 is defined by the surface of the A 1 2 0 3 such as the non-magnetic layer 4 8 which is laminated with a uniform thickness on the shield layer 4 5, for example.
- This nonmagnetic layer 48 cuts off magnetic coupling between the shield layer 45 and the lower pole layer 47.
- a heat radiation layer 49 is formed which also extends along the reference plane 46. The details of the lower magnetic pole layer 47 and the heat radiation layer 49 will be described later.
- a non-magnetic gap layer 51 is formed on the lower magnetic pole layer 47 and the heat dissipation layer 49.
- a spiral coil pattern 53 embedded in the insulating layer 52 is formed on the non-magnetic gap layer 51.
- An upper magnetic pole layer 54 is formed on the surface of the insulating layer 52.
- the rear end of the upper magnetic pole layer 54 is magnetically connected to the rear end of the lower magnetic pole layer 47 at the center of the spiral coil pattern 53.
- the upper magnetic pole layer 54 and the lower magnetic pole layer 47 form a magnetic core penetrating the center position of the spiral coil pattern 53.
- the spiral coil pattern 53 may be made of a conductive metal material such as Cu.
- a nonmagnetic gap layer 51 is sandwiched between the front end of the upper magnetic pole layer 54 facing the air bearing surface 25 and the front end of the lower magnetic pole layer 47 similarly facing the air bearing surface 25. Thus, a writing gap is formed.
- the magnetic flux flowing through the magnetic core leaks from the air bearing surface 25 at the front ends of the upper magnetic pole layer 54 and the lower magnetic pole layer 47.
- a gap magnetic field that is, a recording magnetic field is formed by the function of the magnetic flux leaking in this manner.
- FIGS. 3 and 4 between the lower magnetic pole layer 47 and the upper magnetic pole layer 54, there is a minute lower sub-pole protruding from the surface of the lower magnetic pole layer 47 toward the upper magnetic pole layer 54.
- a piece 55 and a small upper sub-pole piece 56 projecting from the surface of the upper pole layer 54 toward the lower pole layer 47 may also be arranged.
- a narrower write gap is defined as compared with the case where the lower pole layer 47 and the upper pole layer 54 simply face each other. be able to.
- Ui' may if non-magnetic material is embedded such A 1 2 ⁇ 3 In example embodiment between the surface and the non-magnetic Giyappu layer 5 1 of the lower magnetic pole layer 4 7.
- the upper magnetic pole layer 54 includes a main body core layer 57 extending with a substantially uniform core width from the center position of the spiral coil pattern 53 toward the air bearing surface 25, and a main body core layer 57. And a tip pole layer 58 connected to the front end of the tip 57 and extending while reducing the core width toward the tip exposed at the air bearing surface 25.
- the path of the magnetic flux flowing in the magnetic core can be narrowed as approaching the air bearing surface 25.
- the magnetic flux can be efficiently concentrated at the front end of the upper magnetic pole layer 54, that is, at the front end of the front magnetic pole layer 58.
- Such an upper pole layer 54 can greatly contribute to an increase in the recording magnetic field.
- the upper magnetic pole layer 54 may be made of a magnetic material such as FeN or NiFe.
- the lower magnetic pole layer 47 includes a main body core layer 61 extending from the center position of the spiral coil pattern 53 toward the air bearing surface 25 with a substantially uniform core width, similarly to the upper magnetic pole layer 54 described above.
- the core width of the main body core layer 61 may be set to be substantially the same as the back gap 62, which is the joint with the upper magnetic pole layer 54. That is, the spiral coil pattern 53 protrudes largely from the rear end and both sides of the main core layer 61. Thus, the extension of the lower pole layer 47 is limited. The path of the magnetic flux is relatively narrowed.
- a tip magnetic pole layer 63 extending while reducing the core width toward the tip exposed at the air bearing surface 25 is connected.
- the path of the magnetic flux flowing in the lower magnetic pole layer 47 can be narrowed as approaching the air bearing surface 25.
- the lower pole layer 47 is defined by a contour corresponding to the contour of the upper pole layer 54 described above.
- the magnetic flux can be efficiently concentrated at the front end of the lower magnetic pole layer 47, that is, at the front end of the front magnetic pole layer 63.
- the lower pole layer 54 may be made of a magnetic material such as FeN or NiFe.
- the inside of the heat dissipation layer 49 is defined by the contour of the lower pole layer 47.
- the outer edge of the heat radiation layer 49 is defined by a rectangle larger than the outer edge of the spiral coil pattern 53. That is, the area including the spiral coil pattern 53 is It is limited to the outline of the heat radiation layer 49, that is, the inside of the outer shell.
- the front end of the heat radiation layer 49 faces the air bearing surface 25.
- Radiating layer 4-9 for example it may be made of a metallic material having a higher thermal conductivity than A 1 2 0 3.
- the same material as the lower magnetic pole layer 47 is used for the heat radiation layer 49.
- Such a heat radiation layer 49 can efficiently absorb the heat of the spiral coil pattern 53.
- Around the heat radiating layer 4 9, along connection spread to the reference plane 4 6 A 1 2 0 3 such as the non-magnetic layer 6 4 is formed.
- a nonmagnetic wall 65 extends between the heat radiation layer 49 and the lower magnetic pole layer 47 along the above-described reference plane 46.
- the non-magnetic wall 65 separates the heat radiation layer 49 and the lower magnetic pole layer 47 from each other. According to the function of the nonmagnetic wall 65, even if a magnetic material is used for the heat radiation layer 49, the magnetic coupling between the heat radiation layer 49 and the lower magnetic pole layer 47 is hindered. Can be done.
- the direction of the current supplied to the spiral coil pattern 53 is inverted.
- the direction of the current is reversed, the magnetic flux flowing through the upper pole layer 54 and the lower pole layer 47 is reversed.
- the surface area of the lower magnetic pole layer 47 is reduced to the maximum as in the case of the upper magnetic pole layer 54, so that the generation of the eddy current on the surface of the lower magnetic pole layer 47 is suppressed.
- the magnetization can be instantaneously reversed in the lower pole layer 47.
- the response speed to the inversion of the binary information specified by the write command is increased.
- the thin-film magnetic head 43 can respond to a write command in a higher frequency range.
- the spiral coil pattern 53 When a current is supplied to the spiral coil pattern 53 as described above, the spiral coil pattern 53 generates heat.
- the heat of the spiral coil pattern 53 is efficiently transmitted to the heat dissipation layer 49 in addition to the lower pole layer 47 and the upper pole layer 54.
- Lower pole layer 4 7, upper The surfaces of the magnetic pole layer 54 and the heat radiation layer 49 can contribute to heat radiation of the spiral coil pattern 53.
- heat radiation from the spiral coil pattern 53 is promoted. Excessive temperature rise of the spiral coil pattern 53 is largely avoided.
- the present inventors have verified the magnetic field characteristics of the thin-film magnetic head 43 as described above. For this verification, numerical analysis was performed according to the three-dimensional finite element method. At this time, the magnetic field characteristics of the thin film magnetic head according to the comparative example were simultaneously analyzed. In this comparative example, the aforementioned nonmagnetic wall 65 was removed, and the aforementioned lower magnetic pole layer 47 and the heat dissipation layer 49 were completely integrated. That is, the lower magnetic pole layer was formed in a rectangular shape larger than the outer edge of the spiral coil pattern 53.
- the thin-film magnetic head 43 described above generates a larger recording magnetic field than the thin-film magnetic head according to the comparative example.
- the reversal of the magnetomotive force applied to the spiral coil pattern 53 that is, the reversal of binary information, responded more quickly than the thin film magnetic head according to the comparative example.
- the magnetomotive force is represented by the product of the magnitude [A] of the current supplied to the spiral coil pattern 53 and the number of turns [Turn] of the spiral coil pattern 53.
- a method of manufacturing the thin film magnetic head 43 will be briefly described.
- Me AlTiC made of wafer one (not shown) in the production, according to known methods, embedded in the shield layer 4 4, 4 5 and the shield layer 4 4, 4 while an example A 1 2 ⁇ 3 of 5
- the MR element 41 is built.
- a non-magnetic layer 48 is formed with a uniform thickness.
- a reference plane 46 is defined on the surface of the nonmagnetic layer 48.
- a photoresist film 71 imitating the contours of the lower magnetic pole layer 47 and the heat radiation layer 49 is formed.
- the photoresist film 71 creates a wall 71 a corresponding to the nonmagnetic wall 65 between the contour of the lower magnetic pole layer 47 and the inner edge of the heat radiation layer 49.
- plating is performed on the reference plane 46 with a magnetic material such as FeN or NiFe.
- a plating base film for energization may be formed on the surface of the nonmagnetic layer 48 in advance.
- the photoresist film 71 is removed.
- the non-magnetic material such on the reference plane 4 6, for example A 1 2 ⁇ 3 Ru are stacked.
- a nonmagnetic wall 65 is established between the lower magnetic pole layer 47 and the heat radiation layer 49.
- a non-magnetic layer 64 extending along the reference plane 46 is established around the heat radiation layer 49.
- a well-known forming method may be used for forming such a laminate.
- Head 4 3 to read thus formed to head 4 2 and thin film magnetic is eventually embedded into the A 1 2 ⁇ three layers.
- the head element built-in film 24 is formed. Thereafter, the individual flying head sliders 19 are cut out of the wafer.
- a non-magnetic material may be used for forming the heat dissipation layer 49 described above.
- generation of unnecessary magnetic flux in the heat dissipation layer 49 can be avoided.
- the properties of the thin-film magnetic head 43 can be further enhanced.
- the aforementioned non-magnetic wall 65 may be removed.
- a high thermal conductivity material having a higher thermal conductivity than the material of the lower magnetic pole layer 47 may be used in forming the heat radiation layer 49.
- a high thermal conductivity material such as Cu may be used for the heat radiation layer 49.
- the heat of the spiral coil pattern 53 can be more efficiently transmitted to the heat radiation layer 49. Therefore, an excessive rise in temperature of the spiral coil pattern 53 can be more effectively avoided as compared with the case where the same material as the lower magnetic pole layer 47 is used in forming the heat radiation layer 49.
- the spread of the heat radiation layer 49 may be adjusted based on the heat generation amount of the spiral coil pattern 53 and the heat transfer characteristics of the heat radiation layer 49. As long as sufficient heat radiation characteristics are obtained, the outer edge of the heat radiation layer 49 may be defined to be smaller than the outer edge of the spiral coil pattern 53.
- the thin film magnetic head 43 as described above can be used not only for the HDD 11 as described above, but also for other magnetic recording medium drives such as magnetic disk drives and magnetic tape drives. May be done.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Heads (AREA)
Abstract
A thin magnetic head wherein a lower pole layer (47) has a core width which decreases toward the front end facing the opposite surface (25) of a medium. The magnetic flux efficiently concentrates on the front end of the lower pole layer (47). The recording magnetic field increases. A radiating layer (49) is formed around the lower pole layer (47). The heat from a spiral coil pattern (53) is efficiently transmitted to the radiating layer (49). The radiating layer (49) can contribute to dissipation of heat from the spiral coil pattern (53) in addition to the lower pole layer (47). Even if the lower pole layer (47) is narrowed, an excessive rise in the temperature of the spiral coil pattern (53) can be avoided to the fullest extent.
Description
明細書 Specification
薄膜磁気へッド及ぴ磁気へッドアセンブリ、 複合薄膜磁気へッド Thin film magnetic head and magnetic head assembly, composite thin film magnetic head
技術分野 Technical field
本発明は、 例えば磁気ディスク駆動装置や磁気テープ駆動装置といった磁気記 録媒体駆動装置に用いられる薄膜磁気へッドに関する。 背景技術 The present invention relates to a thin-film magnetic head used in a magnetic recording medium drive such as a magnetic disk drive and a magnetic tape drive. Background art
例えば磁気抵抗効果 (M R) 素子といった読み出しヘッドと組み合わせられて 使用される複合薄膜磁気へッドは広く知られる。 こういった複合薄膜磁気へッド では、一般に、下部磁極層は読み出しへッドのシ一ルド層を兼ねる。したがって、 下部磁極層は上部磁極層よりも大きなコア幅を備えなければならない。すなわち、 下部磁極層では、 上部磁極層に比べて広い範囲で磁束の通り道は形成される。 い わゆる媒体対向面に臨む先端に磁束を十分に収束させることはできない。 下部磁 極層を流れる磁束は記録磁界の形成に最大限に寄与することはできない。 Composite thin-film magnetic heads used in combination with read heads such as magnetoresistive (MR) elements are widely known. In such a composite thin film magnetic head, the lower magnetic pole layer generally also functions as a shield layer of the read head. Therefore, the lower pole layer must have a larger core width than the upper pole layer. In other words, the magnetic flux path is formed in the lower magnetic pole layer in a wider range than in the upper magnetic pole layer. It is not possible to sufficiently converge the magnetic flux at the tip facing the so-called medium facing surface. The magnetic flux flowing through the lower pole layer cannot make the maximum contribution to the formation of the recording magnetic field.
その一方で、 磁気記録媒体の記録密度を高めるにあたって、 薄膜磁気ヘッドに 組み込まれるコイルパターンは一層微細化されることが予想される。 こうしてコ ィルパターンが微細化されると、 コイルパターンの発熱は増大する。 コイルパ夕 —ンの熱は効率的に放散されることが望まれる。 発明の開示 On the other hand, in order to increase the recording density of a magnetic recording medium, it is expected that a coil pattern incorporated in a thin-film magnetic head will be further miniaturized. When the coil pattern is miniaturized in this way, the heat generation of the coil pattern increases. It is desired that the heat of the coil panel be dissipated efficiently. Disclosure of the invention
本発明は、 上記実状に鑑みてなされたもので、 媒体対向面に臨む先端に効率的 に磁束を集中させることができる下部磁極層を備える複合薄膜磁気へッドを提供 することを目的とする。 加えて、 本発明は、 コイルパターンから効率的に熱を放 散させることができる薄膜磁気へッドを提供することを目的とする。 The present invention has been made in view of the above circumstances, and has as its object to provide a composite thin-film magnetic head including a lower magnetic pole layer capable of efficiently concentrating magnetic flux at a tip facing a medium facing surface. . In addition, another object of the present invention is to provide a thin-film magnetic head capable of efficiently dissipating heat from a coil pattern.
上記目的を達成するために、 第 1発明によれば、 下部シールド層と、 上部シー ルド層と、 下部シールド層および上部シ一ルド層の間に挟み込まれて、 媒体対向 面に臨む磁気抵抗効果素子と、 上部シールド層の表面に形成される非磁性層と、
媒体対向面に臨む先端に向かってコァ幅を狭めつつ非磁性層の表面に沿つて広が る下部磁極層と、 少なくとも部分的に下部磁極層上で絶縁層内に形成される渦巻 きコイルパターンと、 渦巻きコイルパターンの中心位置で下部磁極層との間に磁 気結合を確立し、 媒体対向面に臨む先端に向かってコア幅を狭めつつ絶縁層の表 面に沿つて広がる上部磁極層とを備えることを特徴とする複合薄膜磁気へッドが 提供される。 To achieve the above object, according to the first aspect, a lower shield layer, an upper shield layer, and a magnetoresistive effect sandwiched between the lower shield layer and the upper shield layer and facing the medium facing surface are provided. An element, a nonmagnetic layer formed on a surface of the upper shield layer, A lower magnetic pole layer that extends along the surface of the non-magnetic layer while decreasing the core width toward the front end facing the medium facing surface, and a spiral coil pattern formed in the insulating layer at least partially on the lower magnetic pole layer A magnetic coupling is established between the lower magnetic pole layer at the center of the spiral coil pattern and the upper magnetic pole layer spreading along the surface of the insulating layer while narrowing the core width toward the tip facing the medium facing surface. A composite thin-film magnetic head characterized by comprising:
かかる薄膜磁気へッドでは、 導電性の渦巻きコイルパターンに電流が供給され ると、 渦巻きコイルパターンで磁界は生起される。 生起された磁界に基づき上部 磁極層および下部磁極層に磁束は流通する。 このとき、 上部磁極層や下部磁極層 では、 磁束の通り道は媒体対向面に近づくにつれて狭められる。 その結果、 上部 磁極層や下部磁極層の前端には効率的に磁束は集中することができる。 特に、 従 来の薄膜磁気へッドに比べて下部磁極層で磁束の通り道は最大限に狭められるこ とから、 上部磁極層および下部磁極層の前端では効率的に磁界は生成される。 最 大限に強い磁界は確立されることができる。 In such a thin film magnetic head, when a current is supplied to the conductive spiral coil pattern, a magnetic field is generated in the spiral coil pattern. The magnetic flux flows through the upper magnetic pole layer and the lower magnetic pole layer based on the generated magnetic field. At this time, in the upper magnetic pole layer and the lower magnetic pole layer, the path of the magnetic flux is narrowed as approaching the medium facing surface. As a result, the magnetic flux can be efficiently concentrated at the front ends of the upper magnetic pole layer and the lower magnetic pole layer. In particular, since the path of magnetic flux in the lower pole layer is narrowed to the utmost as compared with the conventional thin-film magnetic head, a magnetic field is generated efficiently at the front end of the upper pole layer and the lower pole layer. A maximally strong magnetic field can be established.
第 2発明によれば、 媒体対向面に臨む先端に向かってコア幅を狭めつつ基礎層 の表面に沿つて広がる下部磁極層と、 下部磁極層の周囲で基礎層の表面に沿つて 広がる放熱層と、 放熱層の周囲で基礎層の表面に沿って広がる非磁性層とを備え ることを特徴とする薄膜磁気へッドが提供される。 According to the second invention, the lower pole layer that extends along the surface of the base layer while reducing the core width toward the tip facing the medium facing surface, and the heat dissipation layer that extends around the lower pole layer along the surface of the base layer And a non-magnetic layer extending along the surface of the base layer around the heat radiation layer.
一般に、 薄膜磁気ヘッドでは、 供給される電流に基づき渦巻きコイルパターン で磁界は生成される。 このとき、 渦巻きコイルパターンは、 供給される電流に基 づき発熱する。 こういつた熱は下部磁極層を伝つて渦巻きコィルパターンから放 散される。 下部磁極層の周囲に放熱層が配置されれば、 たとえ下部磁極層が狭小 化されても渦巻きコイルパターンの熱は放熱層に効率的に伝達されることができ る。 放熱層は、 下部磁極層に加えて渦巻きコイルパターンの放熱に寄与すること ができる。 渦巻きコイルパターンからの放熱は促進されることができる。 渦巻き コイルパターンの過度の温度上昇は最大限に回避されることができる。 Generally, in a thin film magnetic head, a magnetic field is generated in a spiral coil pattern based on a supplied current. At this time, the spiral coil pattern generates heat based on the supplied current. Such heat is dissipated from the spiral coil pattern through the lower pole layer. If the heat radiation layer is arranged around the lower magnetic pole layer, the heat of the spiral coil pattern can be efficiently transmitted to the heat radiation layer even if the lower magnetic pole layer is narrowed. The heat dissipation layer can contribute to heat dissipation of the spiral coil pattern in addition to the lower pole layer. Heat dissipation from the spiral coil pattern can be facilitated. Excessive temperature rise of the spiral coil pattern can be avoided as much as possible.
こういった薄膜磁気ヘッドでは、 渦巻きコイルパターンは、 放熱層の輪郭すな わち外縁の内側領域で絶縁層内に形成されればよい。 こうして渦巻きコイルパ夕 ーンが広がる領域に満遍なく放熱層が行き渡れば、 渦巻きコイルパターンの熱は
満遍なく効率的に放熱層に伝達されることができる。 したがって、 渦巻きコイル パターンの放熱は確実に促進されることができる。 ただし、 放熱層の広がりは、 渦巻きコィルパターンの発熱量や放熱層の熱伝達特性に応じて渦巻きコィルパ夕 ーンの外縁よりも狭められてもよい。 In such a thin-film magnetic head, the spiral coil pattern may be formed in the insulating layer in the contour of the heat radiation layer, that is, in the region inside the outer edge. If the heat radiation layer spreads evenly over the area where the spiral coil pattern spreads, the heat of the spiral coil pattern will be It can be transmitted to the heat dissipation layer uniformly and efficiently. Therefore, the heat radiation of the spiral coil pattern can be surely promoted. However, the spread of the heat radiation layer may be narrower than the outer edge of the spiral coil pattern in accordance with the calorific value of the spiral coil pattern and the heat transfer characteristics of the heat radiation layer.
渦巻きコイルパターンの放熱を促進するにあたって、 放熱層は金属材料から構 成されることが望まれる。 特に、 下部磁極を構成する材料よりも高い熱伝導率を 備える高熱伝導材料で放熱層が構成されれば、 渦巻きコイルパターンの放熱は一 層効果的に促進されることができる。 しかも、 そういった高熱伝導材料が非磁性 を示せば、 放熱層で不要な磁束が生成されることは回避されることができ、 した がって、 薄膜磁気ヘッドのインダク夕ンスは低減されることができる。 こういつ たインダクタンスの低減によれば、 上部磁極層や下部磁極層では、 渦巻きコイル パターンに供給される電流の反転時に磁化反転の応答速度は改善されることがで さる。 In order to promote heat dissipation of the spiral coil pattern, it is desirable that the heat dissipation layer be made of a metal material. In particular, if the heat radiation layer is made of a high heat conductive material having a higher thermal conductivity than the material forming the lower magnetic pole, the heat radiation of the spiral coil pattern can be more effectively promoted. Moreover, if such a high thermal conductive material shows non-magnetism, generation of unnecessary magnetic flux in the heat dissipation layer can be avoided, and therefore, the inductance of the thin film magnetic head can be reduced. it can. According to such a reduction in inductance, the response speed of the magnetization reversal can be improved in the upper pole layer and the lower pole layer when the current supplied to the spiral coil pattern is reversed.
以上のような薄膜磁気ヘッドは、 基礎層の表面に沿って延び、 下部磁極層と放 熱層とを隔てる非磁性壁をさらに備えてもよい。 こうした非磁性壁の働きによれ ば、 たとえ放熱層に磁性材料が用いられる場合でも、 放熱層と下部磁極層との磁 気的な結合は確実に阻害されることができる。 放熱層が配置されても、 下部磁極 層では磁束の通り道は拡大されることはない。 非磁性壁は絶縁性を備えることが 望まれる。 The thin-film magnetic head as described above may further include a non-magnetic wall extending along the surface of the base layer and separating the lower pole layer and the heat dissipation layer. According to the function of the nonmagnetic wall, even when a magnetic material is used for the heat radiation layer, the magnetic coupling between the heat radiation layer and the lower magnetic pole layer can be surely inhibited. Even if the heat dissipation layer is arranged, the path of the magnetic flux is not expanded in the lower pole layer. It is desired that the non-magnetic wall has insulating properties.
以上のような薄膜磁気へッドはいわゆる磁気へッドアセンブリに組み込まれて 使用されればよい。 磁気ヘッドアセンブリは、 例えば磁気記録媒体に向き合う媒 体対向面で薄莫磁気へッドを露出させるへッドスライダと、 このへッドスライダ を片持ち支持する弾性サスペンションとを備えればよい。 図面の簡単な説明 The thin film magnetic head as described above may be used by being incorporated in a so-called magnetic head assembly. The magnetic head assembly may include, for example, a head slider that exposes a thin magnetic head on the medium facing surface facing the magnetic recording medium, and an elastic suspension that supports the head slider in a cantilever manner. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ハードディスク駆動装置 (H D D) の構造を概略的に示す平面図であ る。 FIG. 1 is a plan view schematically showing the structure of a hard disk drive (HDD).
図 2は、 一具体例に係る浮上へッドスライダの構造を概略的に示す拡大斜視図 である。
図 3は、 浮上へッドスライダの浮上面で観察される複合薄膜磁気へッドを概略 的に示す正面図である。 FIG. 2 is an enlarged perspective view schematically showing the structure of a flying head slider according to a specific example. FIG. 3 is a front view schematically showing a composite thin-film magnetic head observed on the flying surface of the flying head slider.
図 4は、 図 3の 4— 4線に沿った断面図である。 FIG. 4 is a sectional view taken along line 4-4 in FIG.
図 5は、 上部磁極層の形状を示す薄膜磁気へッドの平面図である。 FIG. 5 is a plan view of the thin-film magnetic head showing the shape of the upper pole layer.
図 6は、 図 3の 6 _ 6線に沿った断面図である。 FIG. 6 is a sectional view taken along the line 6-6 in FIG.
図 7は、 薄膜磁気ヘッドの磁界強度を示すグラフである。 FIG. 7 is a graph showing the magnetic field strength of the thin-film magnetic head.
図 8は、 薄膜磁気ヘッドの磁界特性を示すグラフである。 FIG. 8 is a graph showing the magnetic field characteristics of the thin-film magnetic head.
図 9は、 薄膜磁気へッドの 1製造工程を概略的に示す平面図である。 発明を実施するための最良の形態 FIG. 9 is a plan view schematically showing one manufacturing process of the thin-film magnetic head. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照しつつ本発明の一実施形態を説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
図 1は磁気記録媒体駆動装置の一具体例すなわちハードディスク駆動装置 (H D D) 1 1の内部構造を概略的に示す。 この H D D 1 1は、 例えば平たい直方体 の内部空間を区画する箱形の筐体本体 1 2を備える。 収容空間には、 記録媒体と しての 1枚以上の磁気ディスク 1 3が収容される。 磁気ディスク 1 3はスピンド ルモ一夕 1 4の回転軸に装着される。 スピンドルモー夕 1 4は、 例えば 7 2 0 0 r p mや 1 0 0 0 0 r p mといった高速度で磁気ディスク 1 3を回転させること ができる。 筐体本体 1 2には、 筐体本体 1 2との間で収容空間を密閉する蓋体す なわちカバー (図示せず) が結合される。 FIG. 1 schematically shows a specific example of a magnetic recording medium drive, that is, an internal structure of a hard disk drive (HDD) 11. The HDD 11 includes, for example, a box-shaped housing main body 12 that partitions an internal space of a flat rectangular parallelepiped. One or more magnetic disks 13 as recording media are accommodated in the accommodation space. The magnetic disk 13 is mounted on the rotating shaft of the spindle motor 14. The spindle motor 14 is capable of rotating the magnetic disk 13 at a high speed such as, for example, 720 rpm or 1000 rpm. A lid or a cover (not shown) that seals the accommodation space between the housing body 12 and the housing body 12 is connected to the housing body 12.
収容空間には、 垂直方向に延びる支軸 1 5回りで揺動するキャリッジ 1 6がさ らに収容される。 このキャリッジ 1 6は、 支軸 1 5から水平方向に延びる剛体の 揺動アーム 1 7と、 この揺動アーム 1 7の先端に取り付けられて揺動アーム 1 7 から前方に延びる弾性サスペンション 1 8とを備える。 周知の通り、 弾性サスぺ ンシヨン 1 8の先端では、 いわゆるジンバルばね (図示せず) の働きで浮上へッ ドスライダ 1 9は片持ち支持される。 浮上へッドスライダ 1 9には、 磁気ディス ク 1 3の表面に向かって弹性サスペンション 1 8から押し付け力が作用する。 磁 気ディスク 1 3の回転に基づき磁気ディスク 1 3の表面で生成される気流の働き で浮上ヘッドスライダ 1 9には浮力が作用する。 弹性サスペンション 1 8の押し 付け力と浮力とのバランスで磁気ディスク 1 3の回転中に比較的に高い剛性で浮
上へッドスライダ 1 9は浮上し続けることができる。 The accommodation space further accommodates a carriage 16 that swings around a vertically extending support shaft 15. The carriage 16 includes a rigid swing arm 17 extending horizontally from the support shaft 15, an elastic suspension 18 attached to the tip of the swing arm 17 and extending forward from the swing arm 17. Is provided. As is well known, the flying head slider 19 is cantilevered at the tip of the elastic suspension 18 by the action of a so-called gimbal spring (not shown). A pressing force acts on the flying head slider 19 from the flexible suspension 18 toward the surface of the magnetic disk 13. The buoyancy acts on the flying head slider 19 by the action of the airflow generated on the surface of the magnetic disk 13 based on the rotation of the magnetic disk 13. The suspension with a relatively high rigidity during the rotation of the magnetic disk 13 due to the balance between the pressing force of the flexible suspension 18 and the buoyancy. The top head slider 19 can keep flying.
こうした浮上へッドスライダ 1 9の浮上中に、 キャリッジ 1 6が支軸 1 5回り で揺動すると、 浮上へッドスライダ 1 9は半径方向に磁気ディスク 1 3の表面を 横切ることができる。 こうした移動に基づき浮上ヘッドスライダ 1 9は磁気ディ スク 1 3上の所望の記録トラックに位置決めされる。 このとき、 キャリッジ 1 6 の揺動は例えばボイスコイルモー夕 (V C M) といったァクチユエ一夕 2 1の働 きを通じて実現されればよい。 周知の通り、 複数枚の磁気ディスク 1 3が筐体本 体 1 2内に組み込まれる場合には、 隣接する磁気ディスク 1 3同士の間で 1本の 揺動アーム 1 7に対して 2つの弾性サスペンション 1 8が搭載される。 If the carriage 16 swings around the support shaft 15 while the flying head slider 19 is flying, the flying head slider 19 can cross the surface of the magnetic disk 13 in the radial direction. Based on such movement, the flying head slider 19 is positioned at a desired recording track on the magnetic disk 13. At this time, the swing of the carriage 16 may be realized through the operation of the actuator 21 such as a voice coil motor (VCM). As is well known, when a plurality of magnetic disks 13 are incorporated in the main body 12 of the housing, two elastic arms 17 are provided between adjacent magnetic disks 13 with respect to one swing arm 17. Suspension 18 is mounted.
図 2は浮上ヘッドスライダ 1 9の一具体例を示す。 この浮上ヘッドスライダ 1 9は、 平たい直方体に形成される A 1 2 0 3 — T i C (アルチック) 製のスライ ダ本体 2 2と、 このスライダ本体 2 2の空気流出端に接合されて、 読み出し書き 込みへッドすなわち複合薄膜磁気へッド 2 3を内蔵する A 1 2 〇3 (アルミナ) 製のへッド素子内蔵膜 2 4とを備える。 スライダ本体 2 2およびへッ 素子内蔵 膜 2 4には、 磁気ディスク 1 3に対向する媒体対向面すなわち浮上面 2 5が規定 される。 磁気ディスク 1 3の回転に基づき生成される気流 2 6は浮上面 2 5に受 け止められる。 FIG. 2 shows a specific example of the flying head slider 19. The flying head slider 1 9, A 1 2 0 3 in the form of a flat parallelepiped - and T i C (AlTiC) made of slider body 2 2, is joined to the air outflow end of the slider body 2 2 reads head to lump write that and a a 1 2 〇 3 head device built-in film 2 4 to the steel (alumina) with a built-in head 2 3 composite thin film magnetic. The slider body 22 and the head element built-in film 24 define a medium facing surface facing the magnetic disk 13, that is, a flying surface 25. The airflow 26 generated based on the rotation of the magnetic disk 13 is received by the air bearing surface 25.
浮上面 2 5には、 空気流入端から空気流出端に向かって延びる 2筋のレール 2 7が形成される。 各レール 2 7の頂上面にはいわゆる A B S (空気軸受け面) 2 8が規定される。 A B S 2 8では気流 2 6の働きに応じて前述の浮力が生成され る。 へッド素子内蔵膜 2 4に埋め込まれた複合薄膜磁気へッド 2 3は A B S 2 8 で読み出しギャップや書き込みギャップを形成する。 On the floating surface 25, two rails 27 extending from the air inflow end to the air outflow end are formed. A so-called ABS (air bearing surface) 28 is defined on the top surface of each rail 27. In the ABS 28, the aforementioned buoyancy is generated in accordance with the function of the airflow 26. The composite thin-film magnetic head 23 embedded in the head element built-in film 24 forms a read gap or a write gap with ABS 28.
図 3に示されるように、 複合薄膜磁気ヘッド 2 3は、 磁気抵抗効果 (M R ) 素 子 4 1を利用して磁気ディスク 1 3から磁気情報を読み取る読み出しへッド 4 2 と、 後述されるように、 渦巻きコイルパターンで生起される磁界を利用して磁気 ディスク 1 3に磁気情報を記録する磁気誘導書き込みへッドすなわち薄膜磁気へ ッド 4 3とを備える。 周知の通り、 M R素子 4 1は上下 1対のシールド層 4 4、 4 5に挟み込まれる。 シールド層 4 4、 4 5の間で読み出しギャップは規定され る。 シールド層 4 4、 4 5は例えば F e Nや N i F eといった磁性材料から構成
されればよい。 M R素子 4 1には巨大磁気抵抗効果 (GM R) 素子やトンネル接 合磁気抵抗効果 (TM R ) 素子が用いられることができる。 As shown in FIG. 3, the composite thin-film magnetic head 23 includes a read head 42 that reads magnetic information from a magnetic disk 13 by using a magnetoresistive (MR) element 41, which will be described later. Thus, the magnetic disk 13 is provided with a magnetic induction writing head, that is, a thin film magnetic head 43, for recording magnetic information on the magnetic disk 13 using a magnetic field generated by the spiral coil pattern. As is well known, the MR element 41 is sandwiched between a pair of upper and lower shield layers 44 and 45. The read gap is defined between the shield layers 44 and 45. The shield layers 44 and 45 are made of a magnetic material such as FeN or NiFe. It should be done. As the MR element 41, a giant magnetoresistance effect (GMR) element or a tunnel junction magnetoresistance effect (TMR) element can be used.
図 4に示されるように、 薄膜磁気ヘッド 4 3は、 シールド層 4 5上で任意の基 準平面 4 6に沿って広がる下部磁極層 4 7を備える。 この基準平面 4 6は、 例え ばシールド層 4 5上に均一厚みで積層形成される A 1 2 0 3 といった非磁性層 4 8の表面で規定される。 この非磁性層 4 8はシールド層 4 5と下部磁極層 4 7 との間で磁気的な結合を断ち切る。 下部磁極層 4 7の周囲には、 同様に基準平面 4 6に沿って広がる放熱層 4 9が形成される。 下部磁極層 4 7や放熱層 4 9の詳 細は後述される。 As shown in FIG. 4, the thin-film magnetic head 43 includes a lower pole layer 47 extending along an arbitrary reference plane 46 on the shield layer 45. This reference plane 4 6 is defined by the surface of the A 1 2 0 3 such as the non-magnetic layer 4 8 which is laminated with a uniform thickness on the shield layer 4 5, for example. This nonmagnetic layer 48 cuts off magnetic coupling between the shield layer 45 and the lower pole layer 47. Around the lower magnetic pole layer 47, a heat radiation layer 49 is formed which also extends along the reference plane 46. The details of the lower magnetic pole layer 47 and the heat radiation layer 49 will be described later.
下部磁極層 4 7および放熱層 4 9上には非磁性ギャップ層 5 1が積層形成され る。 非磁性ギャップ層 5 1上には、 絶縁層 5 2に埋め込まれた渦巻きコイルパ夕 ーン 5 3が形成される。 絶縁層 5 2の表面には上部磁極層 5 4が形成される。 上 部磁極層 5 4の後端は渦巻きコイルパターン 5 3の中心位置で下部磁極層 4 7の 後端に磁気的に連結される。 こうして上部磁極層 5 4と下部磁極層 4 7とは、 渦 巻きコイルパターン 5 3の中心位置を貫通する磁性コアを形成する。 電流に供給 に応じて渦巻きコイルパターン 5 3に磁界が生起されると、 磁性コア内で磁束は 流通する。 渦巻きコイルパターン 5 3は例えば C uといった導電金属材料から構 成されればよい。 A non-magnetic gap layer 51 is formed on the lower magnetic pole layer 47 and the heat dissipation layer 49. On the non-magnetic gap layer 51, a spiral coil pattern 53 embedded in the insulating layer 52 is formed. An upper magnetic pole layer 54 is formed on the surface of the insulating layer 52. The rear end of the upper magnetic pole layer 54 is magnetically connected to the rear end of the lower magnetic pole layer 47 at the center of the spiral coil pattern 53. Thus, the upper magnetic pole layer 54 and the lower magnetic pole layer 47 form a magnetic core penetrating the center position of the spiral coil pattern 53. When a magnetic field is generated in the spiral coil pattern 53 according to the supply of the current, the magnetic flux flows in the magnetic core. The spiral coil pattern 53 may be made of a conductive metal material such as Cu.
浮上面 2 5に臨む上部磁極層 5 4の前端と、 同様に浮上面 2 5に臨む下部磁極 層 4 7の前端との間には非磁性ギャップ層 5 1が挟み込まれる。 こうして書き込 みギヤップは形成される。 非磁性ギヤップ層 5 1の働きで、 磁性コアを流通する 磁束は上部磁極層 5 4および下部磁極層 4 7の前端で浮上面 2 5から漏れ出る。 こうして漏れ出る磁束の働きでギャップ磁界すなわち記録磁界は形成される。 図 3および図 4から明らかなように、 下部磁極層 4 7および上部磁極層 5 4の間に は、 下部磁極層 4 7の表面から上部磁極層 5 4に向かって突出する微小な下部副 磁極片 5 5や、 同様に上部磁極層 5 4の表面から下部磁極層 4 7に向かって突出 する微小な上部副磁極片 5 6が配置されてもよい。 こういった下部副磁極片 5 5 や上部副磁極片 5 6の働きによれば、 単純に下部磁極層 4 7と上部磁極層 5 4と が向き合う場合に比べて狭小な書き込みギャップは規定されることができる。 こ
ういった場合には、 下部磁極層 4 7の表面と非磁性ギヤップ層 5 1との間には例 えば A 1 2 〇3 といった非磁性材料が埋め込まれればよい。 A nonmagnetic gap layer 51 is sandwiched between the front end of the upper magnetic pole layer 54 facing the air bearing surface 25 and the front end of the lower magnetic pole layer 47 similarly facing the air bearing surface 25. Thus, a writing gap is formed. By the action of the non-magnetic gap layer 51, the magnetic flux flowing through the magnetic core leaks from the air bearing surface 25 at the front ends of the upper magnetic pole layer 54 and the lower magnetic pole layer 47. A gap magnetic field, that is, a recording magnetic field is formed by the function of the magnetic flux leaking in this manner. As is clear from FIGS. 3 and 4, between the lower magnetic pole layer 47 and the upper magnetic pole layer 54, there is a minute lower sub-pole protruding from the surface of the lower magnetic pole layer 47 toward the upper magnetic pole layer 54. A piece 55 and a small upper sub-pole piece 56 projecting from the surface of the upper pole layer 54 toward the lower pole layer 47 may also be arranged. According to the function of the lower sub pole piece 55 and the upper sub pole piece 56, a narrower write gap is defined as compared with the case where the lower pole layer 47 and the upper pole layer 54 simply face each other. be able to. This If was Ui' may if non-magnetic material is embedded such A 1 2 〇 3 In example embodiment between the surface and the non-magnetic Giyappu layer 5 1 of the lower magnetic pole layer 4 7.
図 5に示されるように、 上部磁極層 5 4は、 渦巻きコイルパターン 5 3の中心 位置から浮上面 2 5に向かってほぼ均一なコア幅で延びる本体コア層 5 7と、 こ の本体コア層 5 7の前端に接続されて、 浮上面 2 5で露出する先端に向かってコ ァ幅を狭めつつ延びる先端磁極層 5 8とを備える。 こういった上部磁極層 5 4に よれば、 磁性コア内を流通する磁束の通り道は浮上面 2 5に近づくにつれて狭め られることができる。 その結果、 上部磁極層 5 4の前端すなわち先端磁極層 5 8 の先端には効率的に磁束は集中することができる。 こうした上部磁極層 5 4は記 録磁界の増大に大いに寄与することができる。 上部磁極層 5 4は例えば F e Nや N i F eといった磁性材料から構成されればよい。 As shown in FIG. 5, the upper magnetic pole layer 54 includes a main body core layer 57 extending with a substantially uniform core width from the center position of the spiral coil pattern 53 toward the air bearing surface 25, and a main body core layer 57. And a tip pole layer 58 connected to the front end of the tip 57 and extending while reducing the core width toward the tip exposed at the air bearing surface 25. According to such an upper magnetic pole layer 54, the path of the magnetic flux flowing in the magnetic core can be narrowed as approaching the air bearing surface 25. As a result, the magnetic flux can be efficiently concentrated at the front end of the upper magnetic pole layer 54, that is, at the front end of the front magnetic pole layer 58. Such an upper pole layer 54 can greatly contribute to an increase in the recording magnetic field. The upper magnetic pole layer 54 may be made of a magnetic material such as FeN or NiFe.
ここで、図 6を参照しつつ下部磁極層 4 7および放熱層 4 9を詳細に説明する。 下部磁極層 4 7は、 前述の上部磁極層 5 4と同様に、 渦巻きコイルパターン 5 3 の中心位置から浮上面 2 5に向かってほぼ均一なコア幅で延びる本体コア層 6 1 を備える。 本体コア層 6 1のコア幅は、 上部磁極層 5 4との結合部いわゆるバッ クギャップ 6 2とほぼ同一に設定されればよい。 すなわち、 渦巻きコイルパター ン 5 3は本体コア層 6 1の後端や両側から大きくはみ出す。 こうして下部磁極層 4 7の広がりは制限される。 磁束の通り道は比較的に狭められる。 Here, the lower magnetic pole layer 47 and the heat radiation layer 49 will be described in detail with reference to FIG. The lower magnetic pole layer 47 includes a main body core layer 61 extending from the center position of the spiral coil pattern 53 toward the air bearing surface 25 with a substantially uniform core width, similarly to the upper magnetic pole layer 54 described above. The core width of the main body core layer 61 may be set to be substantially the same as the back gap 62, which is the joint with the upper magnetic pole layer 54. That is, the spiral coil pattern 53 protrudes largely from the rear end and both sides of the main core layer 61. Thus, the extension of the lower pole layer 47 is limited. The path of the magnetic flux is relatively narrowed.
本体コア層 6 1の前端には、 浮上面 2 5で露出する先端に向かってコア幅を狭 めつつ延びる先端磁極層 6 3が接続される。こういった先端磁極層 6 3によれば、 下部磁極層 4 7内を流通する磁束の通り道は浮上面 2 5に近づくにつれて狭めら れることができる。 こうして下部磁極層 4 7は、 前述の上部磁極層 5 4の輪郭に 対応した輪郭で規定される。 その結果、 上部磁極層 5 4と同様に、 下部磁極層 4 7の前端すなわち先端磁極層 6 3の先端には効率的に磁束は集中することができ る。 下部磁極層 5 4は例えば F e Nや N i F eといつた磁性材料から構成されれ ばよい。 To the front end of the main body core layer 61, a tip magnetic pole layer 63 extending while reducing the core width toward the tip exposed at the air bearing surface 25 is connected. According to such a tip magnetic pole layer 63, the path of the magnetic flux flowing in the lower magnetic pole layer 47 can be narrowed as approaching the air bearing surface 25. Thus, the lower pole layer 47 is defined by a contour corresponding to the contour of the upper pole layer 54 described above. As a result, similarly to the upper magnetic pole layer 54, the magnetic flux can be efficiently concentrated at the front end of the lower magnetic pole layer 47, that is, at the front end of the front magnetic pole layer 63. The lower pole layer 54 may be made of a magnetic material such as FeN or NiFe.
図 6から明らかなように、 放熱層 4 9の内緣は下部磁極層 4 7の輪郭で規定さ れる。 その一方で、 放熱層 4 9の外縁は、 渦巻きコイルパターン 5 3の外縁より も大きい矩形で規定される。 すなわち、 渦巻きコイルパターン 5 3を含む領域は
放熱層 4 9の輪郭すなわち外郭の内側に制限される。 放熱層 4 9の前端は浮上面 2 5に臨む。 放熱層 4 9は、 例えば A 1 2 03 よりも高い熱伝導率を備える金属 材料から構成されればよい。 ここでは、 放熱層 4 9の材料には下部磁極層 4 7と 同一のものが用いられる。 こういった放熱層 4 9は渦卷きコイルパターン 5 3の 熱を効率的に吸収することができる。 放熱層 4 9の周囲には、 基準平面 4 6に沿 つて広がる A 1 2 0 3 といった非磁性層 6 4が形成される。 As is clear from FIG. 6, the inside of the heat dissipation layer 49 is defined by the contour of the lower pole layer 47. On the other hand, the outer edge of the heat radiation layer 49 is defined by a rectangle larger than the outer edge of the spiral coil pattern 53. That is, the area including the spiral coil pattern 53 is It is limited to the outline of the heat radiation layer 49, that is, the inside of the outer shell. The front end of the heat radiation layer 49 faces the air bearing surface 25. Radiating layer 4-9, for example it may be made of a metallic material having a higher thermal conductivity than A 1 2 0 3. Here, the same material as the lower magnetic pole layer 47 is used for the heat radiation layer 49. Such a heat radiation layer 49 can efficiently absorb the heat of the spiral coil pattern 53. Around the heat radiating layer 4 9, along connexion spread to the reference plane 4 6 A 1 2 0 3 such as the non-magnetic layer 6 4 is formed.
放熱層 4 9と下部磁極層 4 7との間では前述の基準平面 4 6に沿って非磁性壁 6 5が延びる。 この非磁性壁 6 5は放熱層 4 9と下部磁極層 4 7とを相互に隔て る。 こういつた非磁性壁 6 5の働きによれば、 たとえ放熱層 4 9に磁性材料が用 いられても、 放熱層 4 9と下部磁極層 4 7との磁気的な結合は阻害されることが できる。 A nonmagnetic wall 65 extends between the heat radiation layer 49 and the lower magnetic pole layer 47 along the above-described reference plane 46. The non-magnetic wall 65 separates the heat radiation layer 49 and the lower magnetic pole layer 47 from each other. According to the function of the nonmagnetic wall 65, even if a magnetic material is used for the heat radiation layer 49, the magnetic coupling between the heat radiation layer 49 and the lower magnetic pole layer 47 is hindered. Can be done.
いま、 薄膜磁気ヘッド 4 3に書き込み信号が供給される場面を想定する。 渦巻 きコイルパターン 5 3に電流が供給されると、 渦巻きコイルパターン 5 3で磁界 は生起される。 生起された磁界に基づき上部磁極層 5 4および下部磁極層 4 7に 磁束は流通する。 このとき、 下部磁極層 4 7では上部磁極層 5 4と同様に最大限 に磁束の通り道は狭められることから、 書き込みギャップでは効率的に記録磁界 は生成される。 最大限に強い記録磁界は確立される。 Now, assume that a write signal is supplied to the thin-film magnetic head 43. When a current is supplied to the spiral coil pattern 53, a magnetic field is generated in the spiral coil pattern 53. The magnetic flux flows through the upper magnetic pole layer 54 and the lower magnetic pole layer 47 based on the generated magnetic field. At this time, the path of the magnetic flux in the lower magnetic pole layer 47 is narrowed as much as in the upper magnetic pole layer 54, so that the recording magnetic field is efficiently generated in the write gap. A maximally strong recording magnetic field is established.
書き込み指令で特定される 2値情報が反転するたびに、 渦巻きコイルパターン 5 3に供給される電流の向きは反転する。 電流の向きが反転すると、 上部磁極層 5 4や下部磁極層 4 7に流通する磁束は反転する。 このとき、 下部磁極層 4 7の 表面積は上部磁極層 5 4と同様に最大限に縮小されることから、 下部磁極層 4 7 の表面で渦電流の発生は抑制される。 こうして渦電流の発生が抑制されると、 下 部磁極層 4 7内では瞬時に磁化は反転することができる。 その結果、 薄膜磁気へ ッド 4 3では、 書き込み指令で特定される 2値情報の反転に対する応答速度は高 められる。 薄膜磁気ヘッド 4 3は、 さらに高い周波数域の書き込み指令に対応す ることが可能となる。 Each time the binary information specified by the write command is inverted, the direction of the current supplied to the spiral coil pattern 53 is inverted. When the direction of the current is reversed, the magnetic flux flowing through the upper pole layer 54 and the lower pole layer 47 is reversed. At this time, the surface area of the lower magnetic pole layer 47 is reduced to the maximum as in the case of the upper magnetic pole layer 54, so that the generation of the eddy current on the surface of the lower magnetic pole layer 47 is suppressed. When the generation of the eddy current is suppressed in this way, the magnetization can be instantaneously reversed in the lower pole layer 47. As a result, in the thin-film magnetic head 43, the response speed to the inversion of the binary information specified by the write command is increased. The thin-film magnetic head 43 can respond to a write command in a higher frequency range.
以上のように渦巻きコイルパターン 5 3に電流が供給されると、 渦巻きコイル パターン 5 3は発熱する。 渦巻きコイルパターン 5 3の熱は、 下部磁極層 4 7や 上部磁極層 5 4に加えて放熱層 4 9に効率的に伝達される。 下部磁極層 4 7、 上
部磁極層 5 4および放熱層 4 9の表面は渦巻きコイルパターン 5 3の放熱に寄与 することができる。 その結果、 渦巻きコイルパターン 5 3からの放熱は促進され る。 渦巻きコイルパターン 5 3の過度の温度上昇は最大限に回避される。 When a current is supplied to the spiral coil pattern 53 as described above, the spiral coil pattern 53 generates heat. The heat of the spiral coil pattern 53 is efficiently transmitted to the heat dissipation layer 49 in addition to the lower pole layer 47 and the upper pole layer 54. Lower pole layer 4 7, upper The surfaces of the magnetic pole layer 54 and the heat radiation layer 49 can contribute to heat radiation of the spiral coil pattern 53. As a result, heat radiation from the spiral coil pattern 53 is promoted. Excessive temperature rise of the spiral coil pattern 53 is largely avoided.
本発明者は、 以上のような薄膜磁気ヘッド 4 3の磁界特性を検証した。 この検 証にあたって三次元有限要素法に従って数値解析が実施された。 このとき、 比較 例に係る薄膜磁気ヘッドの磁界特性が同時に解析された。 この比較例では、 前述 の非磁性壁 6 5が取り払われ、 前述の下部磁極層 4 7と放熱層 4 9とが完全に一 体化された。 すなわち、 下部磁極層は渦巻きコイルパターン 5 3の外縁よりも大 きい矩形に形成された。 The present inventors have verified the magnetic field characteristics of the thin-film magnetic head 43 as described above. For this verification, numerical analysis was performed according to the three-dimensional finite element method. At this time, the magnetic field characteristics of the thin film magnetic head according to the comparative example were simultaneously analyzed. In this comparative example, the aforementioned nonmagnetic wall 65 was removed, and the aforementioned lower magnetic pole layer 47 and the heat dissipation layer 49 were completely integrated. That is, the lower magnetic pole layer was formed in a rectangular shape larger than the outer edge of the spiral coil pattern 53.
検証の結果、 図 7に示されるように、 前述の薄膜磁気ヘッド 4 3は、 比較例に 係る薄膜磁気へッドに比べて大きな記録磁界を生成することが実証された。 しか も、 図 8から明らかなように、 渦巻きコイルパターン 5 3に与えられる起磁力の 反転すなわち 2値情報の反転に対して比較例に係る薄膜磁気へッドよりも素早く 反応することが実証された。 ここで、 起磁力は、 渦巻きコイルパターン 5 3に供 給される電流の大きさ [A] と渦巻きコイルパターン 5 3の巻き数 [T u r n ] との積で表現される。 As a result of the verification, as shown in FIG. 7, it was demonstrated that the thin-film magnetic head 43 described above generates a larger recording magnetic field than the thin-film magnetic head according to the comparative example. However, as is clear from FIG. 8, it was demonstrated that the reversal of the magnetomotive force applied to the spiral coil pattern 53, that is, the reversal of binary information, responded more quickly than the thin film magnetic head according to the comparative example. Was. Here, the magnetomotive force is represented by the product of the magnitude [A] of the current supplied to the spiral coil pattern 53 and the number of turns [Turn] of the spiral coil pattern 53.
次に薄膜磁気へッド 4 3の製造方法を簡単に説明する。 この製造にあたって予 めアルチック製のウェハ一 (図示せず) 上には、 周知の方法に従って、 シールド 層 4 4、 4 5やシールド層 4 4、 4 5の間で例えば A 1 2 〇3 に埋め込まれる M R素子 4 1が作り込まれる。 シールド層 4 5上には均一の厚みで非磁性層 4 8が 積層形成される。 こうして非磁性層 4 8の表面には基準平面 4 6が規定される。 続いて、 基準平面 4 6では、 例えば図 9に示されるように、 下部磁極層 4 7お よび放熱層 4 9の輪郭を象ったフォトレジスト膜 7 1が形成される。 このとき、 フォトレジスト膜 7 1は、 下部磁極層 4 7の輪郭と放熱層 4 9の内縁との間に非 磁性壁 6 5に対応する壁 7 1 aを作り出す。 その後、 基準平面 4 6では F e Nや N i F eといった磁性材料でめっき成膜が実施される。 周知の通り、 この電解め つき法が用いられる場合には、 非磁性層 4 8の表面には予め通電用のめっきべ一 ス膜が形成されればよい。 このめつき成膜を通じて下部磁極層 4 7や放熱層 4 9 は形成される。 形成後、 フォトレジスト膜 7 1は除去される。
続いて、基準平面 4 6上では例えば A 1 2 〇3 といった非磁性材料が積層され る。 その後、 下部磁極層 4 7や放熱層 4 9が露出するまで平坦化処理が施される と、下部磁極層 4 7と放熱層 4 9との間には非磁性壁 6 5が確立される。同時に、 放熱層 4 9の周囲では、基準平面 4 6に沿って広がる非磁性層 6 4が確立される。 こうして下部磁極層 4 7や放熱層 4 9、 非磁性壁 6 5 , 非磁性層 6 4が形成さ れた後に、 平坦化された露出面に、 下部副磁極片 5 5や非磁性ギャップ層 5 1 、 上部副磁極片 5 6、 絶縁層 5 2、 渦巻きコイルパターン 5 3、 上部磁極層 5 4は 順次に積層形成されていく。 こういった積層形成にあたっては周知の形成方法が 用いられればよい。 こうして形成された読み出しへッド 4 2や薄膜磁気へッド 4 3は最終的に A 1 2 〇3 層に埋め込まれる。へッド素子内蔵膜 2 4は形成される。 その後、 ウェハーから個々の浮上ヘッドスライダ 1 9は切り出される。 Next, a method of manufacturing the thin film magnetic head 43 will be briefly described. On this pre Me AlTiC made of wafer one (not shown) in the production, according to known methods, embedded in the shield layer 4 4, 4 5 and the shield layer 4 4, 4 while an example A 1 2 〇 3 of 5 The MR element 41 is built. On the shield layer 45, a non-magnetic layer 48 is formed with a uniform thickness. Thus, a reference plane 46 is defined on the surface of the nonmagnetic layer 48. Subsequently, on the reference plane 46, for example, as shown in FIG. 9, a photoresist film 71 imitating the contours of the lower magnetic pole layer 47 and the heat radiation layer 49 is formed. At this time, the photoresist film 71 creates a wall 71 a corresponding to the nonmagnetic wall 65 between the contour of the lower magnetic pole layer 47 and the inner edge of the heat radiation layer 49. Thereafter, plating is performed on the reference plane 46 with a magnetic material such as FeN or NiFe. As is well known, when this electrolytic plating method is used, a plating base film for energization may be formed on the surface of the nonmagnetic layer 48 in advance. Through this deposition, the lower magnetic pole layer 47 and the heat radiation layer 49 are formed. After the formation, the photoresist film 71 is removed. Subsequently, the non-magnetic material such on the reference plane 4 6, for example A 1 2 〇 3 Ru are stacked. Thereafter, when the lower magnetic pole layer 47 and the heat radiation layer 49 are subjected to a flattening process until they are exposed, a nonmagnetic wall 65 is established between the lower magnetic pole layer 47 and the heat radiation layer 49. At the same time, a non-magnetic layer 64 extending along the reference plane 46 is established around the heat radiation layer 49. After the lower magnetic pole layer 47, the heat dissipation layer 49, the nonmagnetic wall 65, and the nonmagnetic layer 64 are formed, the lower sub pole piece 55 and the nonmagnetic gap layer 5 are formed on the flattened exposed surface. 1, the upper sub pole piece 56, the insulating layer 52, the spiral coil pattern 53, and the upper pole layer 54 are sequentially laminated. A well-known forming method may be used for forming such a laminate. Head 4 3 to read thus formed to head 4 2 and thin film magnetic is eventually embedded into the A 1 2 〇 three layers. The head element built-in film 24 is formed. Thereafter, the individual flying head sliders 19 are cut out of the wafer.
なお、 以上のような薄膜磁気ヘッド 4 3では、 前述の放熱層 4 9の形成にあた つて非磁性材料が用いられてもよい。 こういった非磁性材料の採用によれば、 放 熱層 4 9で不要な磁束が生成されることは回避されることができる。 薄膜磁気へ ッド 4 3の特性は一層高められることができる。 この場合には、 前述の非磁性壁 6 5は取り払われてもよい。 このように放熱層 4 9の形成にあたって下部磁極層 4 7の材料と異なる材料が用いられる場合には、 下部磁極層 4 7と放熱層 4 9と は基準平面 4 6上で個別に積層形成されればよい。 In the thin-film magnetic head 43 described above, a non-magnetic material may be used for forming the heat dissipation layer 49 described above. By employing such a non-magnetic material, generation of unnecessary magnetic flux in the heat dissipation layer 49 can be avoided. The properties of the thin-film magnetic head 43 can be further enhanced. In this case, the aforementioned non-magnetic wall 65 may be removed. When a material different from the material of the lower magnetic pole layer 47 is used for forming the heat radiation layer 49, the lower magnetic pole layer 47 and the heat radiation layer 49 are separately laminated on the reference plane 46. Just do it.
また、 以上のような薄膜磁気ヘッド 4 3では、 前述の放熱層 4 9の形成にあた つて、 下部磁極層 4 7の材料よりも高い熱伝導率を備える高熱伝導率材料が用い られることが望まれる。 例えば前述のように下部磁極層 4 7に F e Nや N i F e が用いられる場合には、 放熱層 4 9には例えば C uといった高熱伝導率材料が用 いられればよい。 こういった材料の採用によれば、 放熱層 4 9に一層効率的に渦 巻きコイルパターン 5 3の熱は伝達されることができる。 したがって、 放熱層 4 9の形成にあたって下部磁極層 4 7と同一の材料が用いられる場合に比べて、 渦 巻きコイルパターン 5 3の過度の温度上昇は一層効果的に回避されることができ る。 In the above-described thin-film magnetic head 43, a high thermal conductivity material having a higher thermal conductivity than the material of the lower magnetic pole layer 47 may be used in forming the heat radiation layer 49. desired. For example, when FeN or NiFe is used for the lower magnetic pole layer 47 as described above, a high thermal conductivity material such as Cu may be used for the heat radiation layer 49. With the use of such a material, the heat of the spiral coil pattern 53 can be more efficiently transmitted to the heat radiation layer 49. Therefore, an excessive rise in temperature of the spiral coil pattern 53 can be more effectively avoided as compared with the case where the same material as the lower magnetic pole layer 47 is used in forming the heat radiation layer 49.
さらに、 以上のような薄膜磁気ヘッド 4 3では、 放熱層 4 9の広がりは渦巻き コイルパターン 5 3の発熱量や放熱層 4 9の伝熱特性に基づき調整されてもよい。
十分な放熱特性が得られる限り、 放熱層 4 9の外縁は渦巻きコイルパターン 5 3 の外縁よりも小さく規定されてもよい。 Further, in the above-described thin-film magnetic head 43, the spread of the heat radiation layer 49 may be adjusted based on the heat generation amount of the spiral coil pattern 53 and the heat transfer characteristics of the heat radiation layer 49. As long as sufficient heat radiation characteristics are obtained, the outer edge of the heat radiation layer 49 may be defined to be smaller than the outer edge of the spiral coil pattern 53.
以上のような薄膜磁気ヘッド 4 3は、 前述のような H D D 1 1に利用されるこ とができるだけでなく、 その他の磁気ディスク駆動装置や磁気テープ駆動装置と いつた磁気記録媒体駆動装置に利用されてもよい。
The thin film magnetic head 43 as described above can be used not only for the HDD 11 as described above, but also for other magnetic recording medium drives such as magnetic disk drives and magnetic tape drives. May be done.
Claims
1 . 媒体対向面に臨む先端に向かってコア幅を狭めつつ基礎層の表面に沿って広 がる下部磁極層と、 下部磁極層の周囲で基礎層の表面に沿って広がる放熱層と、 放熱層の周囲で基礎層の表面に沿つて広がる非磁性層とを備えることを特徴とす る薄膜磁気へッド。 1. A lower pole layer that extends along the surface of the base layer while reducing the core width toward the tip facing the medium facing surface, a heat dissipation layer that extends along the surface of the base layer around the lower pole layer, and heat dissipation A thin-film magnetic head, comprising: a non-magnetic layer extending along the surface of the base layer around the layer.
2 . 請求の範囲第 1項に記載の薄膜磁気ヘッドにおいて、 前記放熱層の輪郭の内 側で絶縁層内に形成される渦巻きコイルパターンと、 渦巻きコイルパターンの中 心位置で前記下部磁極層との間に磁気結合を確立し、 媒体対向面に臨む先端に向 かってコア幅を狭めつつ絶縁層の表面に沿つて広がる上部磁極層とをさらに備え ることを特徴とする薄膜磁気へッド。 2. The thin-film magnetic head according to claim 1, wherein the spiral coil pattern formed in the insulating layer inside the contour of the heat dissipation layer, and the lower magnetic pole layer at a center position of the spiral coil pattern. And a top pole layer that extends along the surface of the insulating layer while narrowing the core width toward the front end facing the medium facing surface.
3 . 請求の範囲第 2項に記載の薄膜磁気ヘッドにおいて、 前記放熱層は金属材料 から構成されることを特徴とする薄膜磁気 3. The thin film magnetic head according to claim 2, wherein the heat radiation layer is made of a metal material.
4 . 請求の範囲第 3項に記載の薄膜磁気ヘッドにおいて、 前記放熱層は、 前記下 部磁極を構成する材料よりも高い熱伝導率を備える高熱伝導材料で構成されるこ とを特徴とする薄膜磁気へッド。 4. The thin film magnetic head according to claim 3, wherein the heat radiation layer is made of a high heat conductive material having a higher heat conductivity than a material forming the lower magnetic pole. Thin film magnetic head.
5 . 請求の範囲第 3項に記載の薄膜磁気ヘッドにおいて、 前記放熱層は非磁性材 料から構成されることを特徴とする薄膜磁気へッド。 5. The thin-film magnetic head according to claim 3, wherein the heat dissipation layer is made of a non-magnetic material.
6 . 請求の範囲第 5項に記載の薄膜磁気ヘッドにおいて、 前記放熱層は、 前記下 部磁極を構成する材料よりも高い熱伝導率を備える高熱伝導材料で構成されるこ とを特徴とする薄膜磁気へッド。 6. The thin-film magnetic head according to claim 5, wherein the heat radiation layer is made of a high heat conductive material having a higher heat conductivity than a material forming the lower magnetic pole. Thin film magnetic head.
7 .請求の範囲第 3項に記載の薄膜磁気へッドにおいて、前記基礎層の表面には、 前記下部磁極層と放熱層とを隔てる非磁性壁が形成されることを特徴とする薄膜
磁気へッド。 7. The thin film magnetic head according to claim 3, wherein a nonmagnetic wall separating the lower pole layer and the heat dissipation layer is formed on a surface of the base layer. Magnetic head.
8 . 請求の範囲第 7項に記載の薄膜磁気ヘッドにおいて、 前記放熱層は、 前記下 部磁極を構成する材料よりも高い熱伝導率を備える高熱伝導材料で構成されるこ とを特徴とする薄膜磁気へッド。 8. The thin-film magnetic head according to claim 7, wherein the heat radiation layer is made of a high heat conductive material having a higher heat conductivity than a material forming the lower magnetic pole. Thin film magnetic head.
9 . 請求の範囲第 7項に記載の薄膜磁気ヘッドにおいて、 前記放熱層は非磁性材 料から構成されることを特徴とする薄膜磁気へッド。 9. The thin-film magnetic head according to claim 7, wherein the heat dissipation layer is made of a non-magnetic material.
1 0 . 請求の範囲第 9項に記載の薄膜磁気ヘッドにおいて、 前記放熱層は、 前記 下部磁極を構成する材料よりも高い熱伝導率を備える高熱伝導材料で構成される ことを特徴とする薄膜磁気へッド。 10. The thin film magnetic head according to claim 9, wherein the heat radiation layer is made of a high heat conductive material having a higher heat conductivity than a material forming the lower magnetic pole. Magnetic head.
1 1 . 請求の範囲第 7項に記載の薄膜磁気ヘッドにおいて、 前記非磁性壁は絶縁 性を備えることを特徴とする薄膜磁気へッド。 11. The thin-film magnetic head according to claim 7, wherein the non-magnetic wall has an insulating property.
1 2 . 請求の範囲第 1 1項に記載の薄膜磁気ヘッドにおいて、 前記放熱層は、 前 記下部磁極を構成する材料よりも高い熱伝導率を備える高熱伝導材料で構成され ることを特徴とする薄膜磁気へッド。 12. The thin-film magnetic head according to claim 11, wherein the heat radiation layer is made of a high heat conductive material having a higher heat conductivity than the material forming the lower magnetic pole. Thin film magnetic head.
1 3 . 請求の範囲第 1 1項に記載の薄膜磁気ヘッドにおいて、 前記放熱層は非磁 性材料から構成されることを特徴とする薄膜磁気へッド。 13. The thin-film magnetic head according to claim 11, wherein said heat radiation layer is made of a non-magnetic material.
1 4. 請求の範囲第 1 3項に記載の薄膜磁気ヘッドにおいて、 前記放熱層は、 前 記下部磁極を構成する材料よりも高い熱伝導率を備える高熱伝導材料で構成され ることを特徴とする薄膜磁気へッド。 14. The thin-film magnetic head according to claim 13, wherein the heat radiation layer is made of a high heat conductive material having a higher heat conductivity than the material forming the lower magnetic pole. Thin film magnetic head.
1 5 . 媒体対向面を規定するヘッドスライダと、 ヘッドスライダを片持ち支持す る弾性サスペンションと、 ヘッドスライダに形成されて、 媒体対向面に臨む先端
に向かってコア幅を狭めつつ基礎層の表面に沿って広がる下部磁極層と、 下部磁 極層の周囲で基礎層の表面に沿って広がる放熱層と、 放熱層の周囲で基礎層の表 面に沿って広がる非磁性層と、 放熱層の輪郭の内側で絶縁層内に形成される導電 コイルパターンと、 導電コィルパターンの中心位置で下部磁極層との間に磁気結 合を確立し、 媒体対向面に臨む先端に向かつてコァ幅を狭めつつ絶縁層の表面に 沿って広がる上部磁極層とを備えることを特徴とする磁気へッドァセンブリ。 15. A head slider that defines the medium facing surface, an elastic suspension that cantileverly supports the head slider, and a tip formed on the head slider that faces the medium facing surface A lower pole layer that extends along the surface of the base layer while decreasing the core width toward the bottom, a heat dissipation layer that extends along the surface of the base layer around the lower pole layer, and a surface of the base layer that surrounds the heat dissipation layer A magnetic coupling is established between the non-magnetic layer that extends along the gap, the conductive coil pattern formed in the insulating layer inside the contour of the heat dissipation layer, and the lower magnetic pole layer at the center of the conductive coil pattern. A magnetic head assembly comprising: an upper pole layer that extends along the surface of the insulating layer while narrowing the core width toward the front end facing the surface.
1 6 . 下部シールド層と、 上部シ一ルド層と、 下部シールド層および上部シール ド層の間に挟み込まれて、 媒体対向面に臨む磁気抵抗効果素子と、 上部シールド 層の表面に形成される非磁性層と、 媒体対向面に臨む先端に向かってコア幅を狭 めつつ非磁性層の表面に沿って広がる下部磁極層と、 少なくとも部分的に下部磁 極層上で絶縁層内に形成される渦巻きコィルパターンと、 渦巻きコィルバターン の中心位置で下部磁極層との間に磁気結合を確立し、 媒体対向面に臨む先端に向 かってコア幅を狭めつつ絶縁層の表面に沿って広がる上部磁極層とを備えること を特徴とする複合薄膜磁気へッド。
16. Lower shield layer, upper shield layer, sandwiched between lower shield layer and upper shield layer, formed on the magnetoresistive element facing the medium facing surface, and on the surface of upper shield layer A non-magnetic layer, a lower pole layer that extends along the surface of the non-magnetic layer while reducing a core width toward a front end facing the medium facing surface, and is formed at least partially in the insulating layer on the lower pole layer. The spiral coil pattern and the upper magnetic pole layer spread along the surface of the insulating layer while narrowing the core width toward the front end facing the medium, establishing magnetic coupling between the lower magnetic pole layer and the center of the spiral coil pattern. A composite thin-film magnetic head comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2001/000785 WO2002063614A1 (en) | 2001-02-05 | 2001-02-05 | Thin film magnetic head, magnetic head assembly, and composite thin film magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2001/000785 WO2002063614A1 (en) | 2001-02-05 | 2001-02-05 | Thin film magnetic head, magnetic head assembly, and composite thin film magnetic head |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002063614A1 true WO2002063614A1 (en) | 2002-08-15 |
Family
ID=11736992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/000785 WO2002063614A1 (en) | 2001-02-05 | 2001-02-05 | Thin film magnetic head, magnetic head assembly, and composite thin film magnetic head |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2002063614A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7173792B2 (en) | 2004-02-09 | 2007-02-06 | Headway Technologies, Inc. | Thin-film magnetic head having a cooling layer formed coplanar with a lower pole and from the same material as the lower pole |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05182145A (en) * | 1992-01-08 | 1993-07-23 | Hitachi Ltd | Recording / playback separation type magnetic head |
JPH0636234A (en) * | 1992-07-17 | 1994-02-10 | Tdk Corp | Composite thin-film magnetic head |
JPH06150253A (en) * | 1992-11-10 | 1994-05-31 | Riide Raito S M I Kk | Thin-film magnetic head and its manufacture |
JPH0684507U (en) * | 1993-04-20 | 1994-12-02 | シチズン時計株式会社 | Thin film magnetic head |
JPH0773419A (en) * | 1993-09-02 | 1995-03-17 | Matsushita Electric Ind Co Ltd | Magnetoresistive thin film magnetic head |
JPH07121826A (en) * | 1993-10-21 | 1995-05-12 | Alps Electric Co Ltd | Composite type thin-film magnetic head |
JPH07201021A (en) * | 1993-12-29 | 1995-08-04 | Sony Corp | Composite magnetic head |
-
2001
- 2001-02-05 WO PCT/JP2001/000785 patent/WO2002063614A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05182145A (en) * | 1992-01-08 | 1993-07-23 | Hitachi Ltd | Recording / playback separation type magnetic head |
JPH0636234A (en) * | 1992-07-17 | 1994-02-10 | Tdk Corp | Composite thin-film magnetic head |
JPH06150253A (en) * | 1992-11-10 | 1994-05-31 | Riide Raito S M I Kk | Thin-film magnetic head and its manufacture |
JPH0684507U (en) * | 1993-04-20 | 1994-12-02 | シチズン時計株式会社 | Thin film magnetic head |
JPH0773419A (en) * | 1993-09-02 | 1995-03-17 | Matsushita Electric Ind Co Ltd | Magnetoresistive thin film magnetic head |
JPH07121826A (en) * | 1993-10-21 | 1995-05-12 | Alps Electric Co Ltd | Composite type thin-film magnetic head |
JPH07201021A (en) * | 1993-12-29 | 1995-08-04 | Sony Corp | Composite magnetic head |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7173792B2 (en) | 2004-02-09 | 2007-02-06 | Headway Technologies, Inc. | Thin-film magnetic head having a cooling layer formed coplanar with a lower pole and from the same material as the lower pole |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9076463B2 (en) | Magnetic recording head and disk device with the same | |
CN114974318B (en) | Magnetic head and magnetic recording device | |
US20170309299A1 (en) | Microwave assisted magnetic recording head with spin torque oscillator corner angle relationship, head gimbal assembly, and magnetic recording device | |
US8614861B1 (en) | Magnetic recording head including a high-frequency oscillator and disk drive with the same | |
JP2014099234A (en) | Sto (spin torque oscillator) of high spin torque efficiency including double spin polarization layer | |
JP2008186555A (en) | Magnetic recording device | |
GB2535272A (en) | Low BS spin-polarizer spin torque oscillator | |
KR20050012142A (en) | Perpendicular magnetic head having thermally assisted recording element, and method of fabrication thereof | |
US7268974B2 (en) | Magnetic write head having a notched yoke structure with a trailing shield and method of making the same | |
JP5682472B2 (en) | Microwave assisted magnetic recording head | |
JP4011355B2 (en) | Soft magnetic film and thin film magnetic head | |
US8218263B2 (en) | Write head with different upper and lower yoke lengths and methods for making the same | |
JP2005050509A (en) | Magnetic recording head and magnetic recording apparatus | |
JP4176113B2 (en) | Method for recording magnetic information on patterned media and hard disk device | |
JP4051327B2 (en) | Perpendicular magnetic recording head, manufacturing method thereof, and magnetic recording apparatus | |
US9640205B1 (en) | Magnetic recording-reproducing head having different sections with different functions including an erase function | |
JP3367877B2 (en) | Thin film magnetic head and method of manufacturing the same | |
JP2007220180A (en) | Thin film magnetic head | |
US11264051B1 (en) | Capacitive one turn (C1T) perpendicular magnetic recording (PMR) writer designs | |
JPWO2002067261A1 (en) | Head slider and manufacturing method thereof | |
KR100627094B1 (en) | Thin film magnetic head | |
WO2002063614A1 (en) | Thin film magnetic head, magnetic head assembly, and composite thin film magnetic head | |
JP2005346906A (en) | Magnetic layer and its forming method, magnetic recording head and its manufacturing method, and electrolytic solution | |
JP2004288352A (en) | Lapping method of surface facing medium for thin film magnetic head | |
JP2006031774A (en) | Thin film magnetic head, head gimbal assembly, head arm assembly, magnetic recorder, and manufacturing method of thin film magnetic head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
NENP | Non-entry into the national phase |
Ref country code: JP |