WO2002061931A1 - Boosting power circuit, liquid crystal display device, and portable electronic equipment - Google Patents
Boosting power circuit, liquid crystal display device, and portable electronic equipment Download PDFInfo
- Publication number
- WO2002061931A1 WO2002061931A1 PCT/JP2001/011233 JP0111233W WO02061931A1 WO 2002061931 A1 WO2002061931 A1 WO 2002061931A1 JP 0111233 W JP0111233 W JP 0111233W WO 02061931 A1 WO02061931 A1 WO 02061931A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- circuit
- liquid crystal
- power supply
- terminal
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/06—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
Definitions
- the present invention relates to a technology that is effective when applied to a boosting type power supply circuit that generates a voltage obtained by boosting a power supply voltage.
- the present invention relates to a liquid crystal driving voltage generating circuit that generates a voltage for driving a liquid crystal display device, and a liquid crystal incorporating the same.
- the present invention relates to a display control device and a technique effective for use in a portable electronic device equipped with the display control device. '' Background technology
- a display device of a portable electronic device such as a mobile phone or a pager
- a dot matrix type liquid crystal panel in which a plurality of display pixels are two-dimensionally arranged in a matrix for example.
- the semiconductor device is provided with a semiconductor integrated circuit-based display control device for controlling the display of the liquid crystal panel, a driver for driving the liquid crystal panel, or a display control device incorporating such a driver.
- a display control device integrated into a semiconductor integrated circuit can operate at a voltage of 5 V or less, whereas a display drive of a liquid crystal panel requires a drive voltage of 5 to 40 V.
- the display control device has a built-in liquid crystal drive voltage generation circuit that generates a voltage for driving the liquid crystal panel by boosting the power supply voltage.
- the present inventors have studied a circuit as shown in FIGS. 11 and 12 as a liquid crystal drive voltage generation circuit built in such a liquid crystal display control device.
- the circuit in FIG. 11 includes a reference voltage generation circuit including a differential amplifier AMP and a charge pump CPM that boosts the reference voltage Va generated by the reference voltage generation circuit.
- the circuit is composed of a charge pump CPM that boosts the power supply voltage VDD, a reference voltage generation circuit 10 that operates using the voltage Vp boosted by the charge pump as a power supply, and a liquid crystal drive voltage, and a voltage follower 11. It is a thing.
- Fig. 11 and Fig. 12 show the charge pump CPM as an example. Although a circuit that boosts the voltage Va or VDD three times is shown, a charge pump such as a four-fold boost type or a five-fold boost type is used depending on the required voltage.
- the booster-type liquid crystal drive voltage generation circuit as shown in Fig. 11 drives the liquid crystal panel directly with the voltage boosted by the charge pump CPM, so current efficiency is good, but the charge pump has a current supply capacity. It was found that the level of the output Vout of the charge pump CPM was reduced as shown in Fig. 13 due to the load of the panel being connected to the charge pump when the display on the liquid crystal panel was started. Since the amount of the voltage drop depends on the size of the load, that is, the size of the panel and the characteristics of the panel, the accuracy of the output voltage is poor and a DC voltage may be applied to the liquid crystal, which may cause deterioration of the liquid crystal. It was also found that there was a problem in that good image quality could not be obtained with the liquid crystal display panel, such as a shift in display color.
- the voltage-follower type liquid crystal drive voltage generation circuit as shown in Fig. 12, even when the load on the panel is connected to the voltage follower 11 when the LCD panel starts displaying, the voltage follower will have a current Since the supply capacity is high, a voltage is output that immediately drives the load sufficiently. As a result, as shown in Fig. 14, the liquid crystal drive voltage Vout output has high accuracy and good image quality can be obtained.However, a voltage Vp higher than the liquid crystal drive output voltage Vout boosted by the charge pump CPM is set to the reference voltage. Since it is used as an operating power supply for the generator circuit 10 and the voltage follower 11, it has been found that the power consumption is large, that is, the current loss is large.
- the reference voltage generation circuit 10 and the voltage follower 11 operate using the voltage boosted by the charge pump CPM as a power supply, it is necessary to configure the circuit using a high withstand voltage element, and the circuit area is correspondingly reduced. It was found that there was a problem that the size and the process became complicated.
- the present invention has been made in view of the above problems, and has as its object to provide a step-up power supply circuit capable of generating a highly accurate boosted voltage with a small current loss.
- Another object of the present invention is to provide a liquid crystal display control device capable of generating a liquid crystal drive voltage with low power consumption and high accuracy and requiring a small circuit occupation area.
- the external power supply voltage (VDD) is used as the reference voltage for charging the booster circuit composed of the charge pump (20), and the voltage is generated by the reference voltage generator circuit (10) composed of a differential amplifier during boosting.
- V a the reference voltage
- the voltage boosted by the charge pump is output as the liquid crystal drive voltage
- the voltage obtained by dividing the output voltage of the charge pump by resistance is used as the differential voltage of the reference voltage generation circuit (10). It is configured to feed back to the input terminal of the amplifier.
- a reference voltage generating circuit having a differential amplifier that operates on an external power supply voltage, a plurality of capacitors, a switch for charging each of the capacitors, and a voltage connected by connecting the capacitors in series, and A booster circuit having a switch for addition, feedback means for feeding back a voltage corresponding to an output voltage of the booster circuit to an input terminal of the differential amplifier, and a smoothing capacitor connected to an output terminal of the booster circuit.
- the booster circuit charges the capacitor based on the power supply voltage of the differential amplifier during a charging operation, and the plurality of capacitors are connected in series.
- the feedback means includes: a resistance dividing means including a plurality of resistance elements connected in series between an output terminal of the booster circuit and a power supply voltage terminal; Selecting means for selecting the potential of the node and transmitting the selected potential to the input terminal of the differential amplifier.
- a register is provided for designating a voltage to be fed back to the input terminal of the differential amplifier by the selection means.
- the output boost voltage can be adjusted by changing the set value of the register, and a boost power supply circuit with high adaptability to the system to be used can be obtained.
- a liquid crystal drive voltage generation circuit includes a reference voltage generation circuit having a differential amplifier operated by an external power supply voltage, a plurality of capacitors, a switch for charging each of the capacitors, and the capacitors in series.
- a booster circuit having a switch for adding the charged voltage connected thereto; feedback means for feeding back a voltage corresponding to an output voltage of the booster circuit to an input terminal of the differential amplifier;
- a first boosting power supply circuit configured to generate a voltage to be applied to the segment electrodes of the liquid crystal panel, the first boosting power supply circuit including a smoothing capacitor connected to the output terminal of
- a second step-up power supply circuit that generates a voltage applied to a common electrode of the liquid crystal panel based on a voltage; and wherein the second step-up power supply circuit includes a plurality of capacitors and the capacitors.
- the booster circuit has a switch for charging and a switch for adding the charged voltage by connecting the capacitors in series, and a smoothing capacitor connected to an output terminal of the booster circuit. .
- a reference voltage generating circuit having a differential amplifier operated by an external power supply voltage, a plurality of capacitors, a switch for charging each of the capacitors, and the capacitor are connected in series.
- a booster circuit having a switch for adding the charged voltage, a feedback circuit for feeding back a voltage corresponding to an output voltage of the booster circuit to an input terminal of the differential amplifier, and an output terminal of the booster circuit.
- a first boosted power supply circuit configured to generate a voltage applied to the segment electrodes of the liquid crystal panel, the first boosted power supply circuit being configured from a connected smoothing capacitor, and a voltage generated by the first boosted power supply circuit.
- a second step-up power supply circuit for generating a voltage applied to a common electrode of the liquid crystal panel; wherein the second step-up power supply circuit includes a reference voltage generation circuit having a differential amplifier operating with an external power supply voltage; A booster circuit having a plurality of capacitors and a switch for charging each of the capacitors, and a switch for adding the charged voltage by connecting the capacitors in series; and A resistive dividing means for dividing the output voltage of the booster circuit is fee Dopakku to an input terminal of the differential amplifier, constituted by the connected smoothing capacitor to the output terminal of the booster circuit.
- another invention of the present application relates to a reference voltage generating circuit having a differential amplifier operated by an external power supply voltage, a plurality of capacitors, a switch for charging the capacitors, and a capacitor connected in series to be charged.
- a booster circuit having a switch for adding the boosted voltage, a feedpack means for feeding a voltage corresponding to an output voltage of the booster circuit to an input terminal of the differential amplifier, and a booster circuit connected to an output terminal of the booster circuit.
- a first step-up power supply circuit configured to generate a voltage to be applied to the segment electrode of the liquid crystal panel, the first step-up power supply circuit being configured by the first step-up power supply circuit.
- the load on the common electrode is small.
- the second boosting type power supply circuit may include a plurality of capacitors and a switch for charging the capacitors, and a switch for connecting the capacitors in series and adding a charged voltage. And a smoothing capacitor connected to the output terminal of the booster circuit.
- the second booster-type power supply circuit includes a reference voltage generating circuit having a differential amplifier.
- a booster circuit having a capacitor, a switch for charging the capacitor, and a switch for connecting the capacitor in series and adding a charged voltage; and dividing the output voltage of the booster circuit into the differential amplifier. And a smoothing capacitor connected to the output terminal of the booster circuit.
- Still another aspect of the present invention provides a liquid crystal drive voltage generation circuit having the above-described configuration, a display memory for storing data to be displayed on the liquid crystal panel, and a method for generating data to be written in the display memory and for displaying the data.
- a control circuit for controlling data reading from the memory; and a control circuit for applying data to the segment electrodes of the liquid crystal panel based on data read from the display memory and a driving voltage generated by the liquid crystal driving voltage generating circuit.
- a common electrode drive circuit that generates a signal to be applied to a common electrode of the liquid crystal panel based on the drive voltage generated by the liquid crystal drive voltage generation circuit and a predetermined timing signal. It constitutes a liquid crystal display control device.
- it is possible to realize a liquid crystal display device capable of displaying high-quality images without deterioration of the liquid crystal.
- the liquid crystal drive voltage generation circuit, the display memory, the control circuit, the segment drive circuit, and the common electrode drive circuit are formed on one semiconductor chip.
- the number of components of the electronic device including the liquid crystal display device can be reduced, the mounting density can be increased, and the size of the electronic device can be reduced.
- the liquid crystal drive voltage generation circuit, the display memory, the control circuit, and the segment drive circuit are configured as a semiconductor integrated circuit on one semiconductor chip (first chip).
- the common electrode drive circuit is mounted on a semiconductor chip (second chip) separate from the semiconductor chip on which the liquid crystal drive voltage generation circuit is formed.
- the common electrode drive circuit is configured as a conductor integrated circuit, and is configured by an element having a higher withstand voltage than an element configuring the liquid crystal drive voltage generation circuit. This makes it possible to simplify the manufacturing process of each of the first and second chips, thus lowering the packaging density of portable electronic devices, but reducing the manufacturing costs of the first and second chips. Can be achieved.
- the portable electronic device of the present invention includes a liquid crystal display control device configured as described above, a signal generated by the segment driving circuit, and a signal generated by the common electrode driving circuit.
- a liquid crystal panel that performs display in a dot matrix system and a battery that supplies a power supply voltage of the liquid crystal display control device are provided. This makes it possible to realize a portable electronic device that has good display image quality, low power consumption, and can be driven for a long time by a battery.
- FIG. 1 is a circuit diagram showing a first embodiment of the booster circuit according to the present invention.
- FIG. 2 is a waveform diagram showing a waveform example of a clock signal for operating the booster circuit of the embodiment.
- FIG. 3 is an operation explanatory diagram for explaining the operation of the booster circuit according to the embodiment.
- FIG. 4 is a circuit diagram showing a specific example of the variable resistance circuit of the booster circuit according to the embodiment.
- FIG. 5 is a circuit diagram showing a preferred embodiment when the present invention is applied to a liquid crystal drive voltage generation circuit.
- FIG. 6 is a circuit diagram showing another embodiment in which the present invention is applied to a liquid crystal drive voltage generation circuit.
- FIG. 7 is a waveform diagram showing a waveform example of the segment applied voltage VSEG and the common applied voltage VC0M of the liquid crystal panel. '
- FIG. 8 is a block diagram showing a configuration example of a liquid crystal display system including a liquid crystal control driver as a liquid crystal display control device incorporating a power supply circuit including a booster circuit according to the present invention and a liquid crystal panel driven by the driver. It is.
- FIG. 9 shows an entire portable telephone equipped with a liquid crystal control driver to which the present invention is applied. It is a block diagram which shows a body structure.
- FIG. 10 is a circuit diagram showing a specific example of a voltage inversion circuit that generates a negative voltage applied to the common electrode.
- FIG. 11 is a circuit diagram showing a configuration example of a conventional liquid crystal drive voltage generation circuit.
- FIG. 12 is a circuit diagram showing another configuration example of the conventional liquid crystal drive voltage generation circuit.
- FIG. 13 is a waveform diagram showing how the boosted voltage changes in the liquid crystal drive voltage generation circuit of FIG.
- FIG. 14 is a waveform chart showing how the boosted voltage changes in the liquid crystal drive voltage generation circuit of FIG.
- FIG. 15 is a waveform chart showing how the boosted voltage changes in the liquid crystal drive voltage generation circuit of the example.
- FIG. 1 shows a first embodiment of a step-up power supply circuit according to the present invention.
- reference numeral 10 denotes a reference voltage generation circuit including a differential amplifier AMP
- reference numeral 20 denotes a charge pump circuit.
- the voltage obtained by dividing the boosted output V out of the charge pump 20 by the variable resistor circuit 30 is fed back to the inverting input terminal of the differential amplifier AMP of the reference voltage generating circuit 10. I have.
- the charge pump 20 has switches SW1 to SW4 that are turned on and off by the clock signal ⁇ 1 and a clock signal ⁇ ) 2 formed so that the high-level period does not overlap with the clock signal ⁇ 1.
- switches SW5 to SW7 that are turned on and off by switches SW5 to SW7, step-up capacitors C1 and C2 that are connected in series by switches SW5 and SW6, and output capacitor C connected to output terminal OUT. It consists of three.
- the low-potential side terminal C 1 _ of the boosting capacitor C 1 is connectable to the ground point or the first reference potential terminal T 1 via the switch SW 4 or SW 7, and is a boosting capacitor.
- the terminal C 1 + on the high potential side of 1 is connectable to the second reference potential terminal T 2 via the switch SW3.
- the terminal C 2— on the low potential side of the boosting capacitor C 2 is The terminal C 2 + on the high potential side of the step-up capacitor C 2 can be connected to the second reference potential terminal T 2 via the switch SW 1 while being connected to the ground point via the switch SW 2.
- the output terminal OUT and the terminal C 2 + on the high potential side of the boosting capacitor C 2 can be connected via the switch SW 5, and the terminal C 2 —
- the connection between the capacitor C 1 and the terminal C 1 + on the high potential side of the step-up capacitor C 1 can be connected via a switch SW 6.
- the reference voltage Va from the reference voltage generation circuit 10 is applied to the first reference potential terminal T1, and the operating power supply voltage VDD of the reference voltage generation circuit 10 is applied to the second reference potential terminal T2. I have.
- the charge pump 20 configured as described above operates while the switch SW1 to SW4 is turned on (at this time, SW5 to SW7 are turned off) as shown in FIG. Then, the boost capacitors C 1 and C 2 are charged to the power supply voltage VDD. Next, when the switches SW1 to SW4 are turned off, the switches SW5 to SW7 are turned on instead, and as shown in FIG.
- the terminal C 1 on the reference end side, that is, the low potential side of the capacitor C 1 is connected to the first reference potential terminal T 1 via the switch SW7.
- the voltage of the output terminal OUT is boosted to (Va + 2VDD).
- the electric charge charged in the boosting capacitor C2 is transferred to the smoothing capacitor C3 connected to the output terminal OUT, and the boosted voltage Vout of (Va + 2VDD) is obtained. Is output.
- the booster circuit of the embodiment of FIG. 1 is configured such that the voltage Vf obtained by dividing the boosted voltage Vout by the variable resistor circuit 30 is fed back to the inverting input terminal of the differential amplifier AMP of the reference voltage generating circuit 10.
- the reference voltage Vref is applied to the non-inverting input terminal of the differential amplifier AMP. Therefore, by adjusting the resistance value of the variable resistor circuit 30 and changing the voltage Vf to be fed back to the inverting input terminal of the differential amplifier AMP of the reference voltage generation circuit 10, the output voltage Vf of the reference voltage generation circuit 10 is changed. By changing a, the output voltage itself of the liquid crystal drive voltage generation circuit can be arbitrarily adjusted.
- the reference voltage Vref is, for example, Supplied from a reference voltage generation circuit such as a low-gap reference circuit with low temperature dependency and low power supply voltage dependency.
- FIG. 4 shows a specific example of the variable resistance circuit 30.
- 24 unit resistors R 1 to R 24 each having a resistance value of r are connected in series between the output terminal OUT of the booster circuit and the ground point, and a connection node n 1 of R 16 and R 17 is connected.
- One terminal of SW15 is connected, and the other terminals of switches SW11 to SW15 are connected to a common feedback voltage terminal Tfb.
- Each of the switches SW11 to SW15 is configured so that one of the switches is turned on in accordance with the set value of the register REG. Therefore, when the switch SWl1 is turned on, the output voltage Vout is divided into three and the voltage of Vout / 3, and when any of SW12, SW13, SW14 and SW15 is turned on, the output voltage becomes The voltage Vout / 4, Vout / 6, Vout / 8, Vout / 12, which is obtained by dividing Vout into four, six, eight, and twelve, is transmitted to the terminal T fb, which generates the reference voltage as the feedback voltage V f Supplied to the inverting input terminal of the differential amplifier AMP of the circuit 10.
- the output voltage Va of the differential amplifier AMP changes so that the potential of the inverting input terminal matches the reference voltage Vref of the non-inverting input terminal.
- the differential amplifier AMP detects this and outputs the output V Works to raise a. Therefore, when the step-up power supply circuit of this embodiment is used as a liquid crystal drive voltage generation circuit in a liquid crystal display device, As shown in FIG. 15, the output Vout of the loop 20 hardly changes immediately after the start of display on the liquid crystal panel, and a highly accurate voltage can be generated and maintained.
- the differential amplifier AMP constituting the reference voltage generating circuit 10 operates at the external power supply voltage VDD, the differential amplifier AMP can be formed by low-withstand-voltage elements, and the circuit occupation area is reduced. can do.
- FIGS. 5 and 6 show a preferred embodiment in which the present invention is applied to a liquid crystal drive voltage generation circuit.
- the voltage VC0M to be applied has an amplitude several times the amplitude of the voltage VSEG applied to the segment electrodes as shown in FIG.
- the liquid crystal drive voltage generation circuits shown in FIGS. 5 and 6 are examples of a circuit that generates a voltage applied to the segment electrode and a voltage applied to the common electrode.
- the circuit is suitable for a panel with a small load on the common electrode of the liquid crystal panel, and the liquid crystal drive voltage generation circuit in Fig. 6 is a circuit suitable for a panel with a large load on the common electrode of the liquid crystal panel.
- both the liquid crystal drive voltage generation circuit in FIG. 5 and the liquid crystal drive voltage generation circuit in FIG. 6 use the booster circuit shown in FIG. 1 as a circuit for generating the voltage VSEG applied to the segment electrodes.
- a booster circuit 40 that generates the common applied voltage VC0M based on the voltage VSEG generated by the booster circuit for the segment applied voltage is provided, and the difference between the two is that a booster circuit 40 that generates the common applied voltage VC0M is provided in the subsequent stage. It is in.
- the booster circuit 40 at the subsequent stage in the liquid crystal drive voltage generator circuit of FIG. 5 is a charge pump circuit 20 omitting the reference voltage generator circuit 10 at the previous booster circuit for generating the segment applied voltage VSEG. 'It is the only circuit.
- the booster circuit 40 in the subsequent stage in the liquid crystal drive voltage generator circuit of FIG. 6 includes the reference voltage generator circuit 10 ′ and the charge pump circuit 20 ′ in the same manner as the booster circuit in the preceding stage that generates the segment applied voltage VSEG.
- the output voltage of the charge pump 20 ' is variable The circuit is configured to feed-back to the reference voltage generation circuit 10 'via the circuit 30'.
- the booster circuit 40 at the subsequent stage in the liquid crystal drive voltage generating circuit of FIG. 5 receives the voltage VSEG generated by the booster circuit at the preceding stage and generates a voltage of three times, that is, 3 VSEG.
- the subsequent booster circuit 40 'in the liquid crystal drive voltage generation circuit of FIG. 6 generates a voltage of 2VSEG + Va' based on the voltage VSEG generated by the previous booster circuit and the power supply voltage VDD.
- the voltage of Va ′ is the output voltage of the reference voltage generating circuit 10 ′, and the voltage Va, can be adjusted according to the feedback voltage Vf, of the variable resistor circuit 30 ′.
- the feedback voltage V f ′ can be changed by changing the set value of the register REG provided in the variable resistor circuit 30 configured in the same manner as in FIG.
- the booster circuits 40 and 40 in the subsequent stage by changing the number of capacitors connected in series, the voltages m ′ VSEG and (m ⁇ VSEG + V a ′) obtained by raising the reference voltage to an arbitrary integral multiple are obtained. ) Can be generated respectively.
- the differential amplifiers constituting the reference voltage generating circuits 10 and 10 ′ of the booster circuits 40 and 40 operate at the external power supply voltage VDD, they must be formed of low withstand voltage elements. Thus, the area occupied by the circuit can be reduced.
- the boosted voltage V COM for example, 20 V
- the polarity are centered around the liquid crystal center potential VMI (for example, 3 V).
- VMI liquid crystal center potential
- a negative voltage VC0M is generated from the boosted voltage VC0M by using a voltage inverting circuit as shown in FIG. 10A shows a general voltage inversion circuit
- FIG. 10B shows a voltage inversion circuit with a reference voltage correction circuit.
- the voltage inversion circuit shown in Fig. 10 (A) has a voltage terminal Ta to which the positive boosted voltage VC0M generated by the liquid crystal drive voltage generation circuit shown in Fig. 5 or Fig. 6 is applied, and a liquid crystal center potential VMI.
- a smoothing capacitor C22 for negative voltage connected between the grounding point and the grounding point.
- the voltage inversion circuit of this embodiment turns on the switches SW21 and SW23 and turns off the switches SW22 and SW24 by the clocks (see ⁇ 1 and ⁇ 2 in FIG. 2) in which the high-level periods do not overlap each other.
- the switches SW21 and SW23 are turned off, and the switches SW22 and SW24 are turned on.
- An operation is performed to charge the smoothing capacitor C22 with a negative voltage VC0M having a polarity opposite to that of the boosted voltage VC0M around the center potential VMI.
- the voltage inverting circuit shown in Fig. 10 ( ⁇ ) uses the boosted voltage VC0M and the liquid crystal center potential VMI to generate a negative voltage.
- the positive voltage V COM and the negative voltage-V COM need to be symmetrical with respect to the liquid crystal center potential V Ml, and when the negative voltage drops, the display becomes thin, The image quality deteriorates and the liquid crystal deteriorates.
- the voltage inverting circuit in Fig. 10 (A) may not be suitable for use in color LCD panels that require highly accurate symmetry of the positive and negative voltages or large LCD panels with large output loads.
- the voltage inverting circuit in Fig. 10 (B) is an improvement of the circuit in Fig. 10 (A).
- the voltage inverting circuit in Fig. 10 (A) has a reference for correcting the liquid crystal center potential VMI as a reference voltage.
- a voltage correction circuit is added. Specifically, the liquid crystal center potential VMI applied to the voltage terminal Tb is input to its non-inverting input terminal, and the inverting input terminal has a resistor connected in series between the voltage terminal Ta and the output terminal Tc.
- a differential amplifier AMP20 to which the voltage divided by R31 and R32 is input is provided.
- the operation of the switches SW21 to SW24 is the same as that of the circuit of FIG.
- a voltage is output such that the intermediate voltage of the output that is fed back to the inverting input terminal becomes equal to the liquid crystal center potential VMI by the operation of the differential amplifier AMP20.
- the reference voltage input terminal of the voltage inverting circuit is supplied with a direction for correcting the negative voltage drop, that is, a voltage lower than the center potential VMI.
- the voltage inverting circuit of FIG. 10 (B) can supply a more accurate negative voltage than the voltage inverting circuit of FIG. 10 (A), improving the display quality of the liquid crystal panel and improving the liquid crystal display. There is an advantage that deterioration can be prevented.
- FIG. 8 is a block diagram showing a configuration of a liquid crystal display device including a liquid crystal control driver as a liquid crystal display control device incorporating the power supply circuit of the embodiment as a liquid crystal drive voltage generation power supply circuit and a liquid crystal panel driven by the driver.
- a liquid crystal control driver as a liquid crystal display control device incorporating the power supply circuit of the embodiment as a liquid crystal drive voltage generation power supply circuit and a liquid crystal panel driven by the driver.
- 100 is a liquid crystal control driver
- 200 is a liquid crystal panel driven by the liquid crystal control driver 100.
- the LCD control driver 100 has a segment driver 110 that drives the segment electrodes of the liquid crystal panel 200, and a common driver 120 that drives the common electrodes of the liquid crystal panel 200.
- CPU microprocessor
- These circuits are mounted on a single semiconductor chip such as single crystal silicon. Is configured.
- the LCD control driver 100 has an address counter for generating an address for the display RAM 140, and data read from the display RAM 140 and an external microcomputer.
- Logical operation means for performing a logical operation for watermark display and superimposed display based on the supplied new display data, operation timing for the segment driver 10 and the common driver 120 T / JP01 / 11233
- a timing generation circuit for generating signals is provided.
- the register R EG for setting the feedback voltage V f provided in the variable resistance circuit 30 is configured to be rewritable by the control unit 150. Then, the control unit 150 sets the register REG based on a command supplied from an external microcomputer or the like.
- the control section 150 is provided with a control register for controlling the operation state of the entire chip such as the operation mode of the liquid crystal control panel 100 in the liquid crystal panel control panel 100. Therefore, the register REG for setting the feedback voltage Vf may be provided as a part of the control register.
- the control method of the control unit 150 includes a method of receiving a command code from an external microcomputer and decoding the command to generate a control signal, and a method of executing a plurality of command codes and a command to be executed in the control unit in advance.
- An instruction register (referred to as an index register) is provided, and the microcomputer can take any control method such as a method of generating a control signal by specifying a command to be executed by writing to the index register. .
- the liquid crystal control driver 100 is configured to perform display on the above-described liquid crystal panel 200 based on command data from an external microcomputer.
- a drawing process for sequentially writing display data to the display RAM I 40 is performed, and a reading process for sequentially reading display data from the display RAM 140 is performed, and the segment of the liquid crystal panel 200 is performed.
- the signals to be applied to the electrodes and the signals to be applied to the common electrode are output by Dryno 110 and 120.
- FIG. 9 is a block diagram showing an overall configuration of a mobile phone as an application example of the liquid crystal display device including the liquid crystal control driver 100 and the liquid crystal panel 200 of FIG.
- the mobile phone of this embodiment has a liquid crystal panel 200 as a display unit, a transmitting / receiving antenna 321, a voice output speaker 32, a voice input microphone 32, and the present invention.
- High-frequency interface 340 for input / output of signals between DSPs, DSP (Digital Signal Processor) 351 for signal processing related to audio signals and transmission / reception signals, ASIC (Application Specific Integrated) providing custom functions (user logic) Circuits) 352, a system controller 353 composed of a microprocessor or microcomputer for controlling the entire apparatus including display control, and a memory 360 for storing data and programs.
- the DSP 351, the ASIC 352, and the microcomputer 353 as a system control device constitute a so-called base band section 350.
- the liquid crystal panel 200 is a dot matrix type panel in which a large number of display pixels are arranged in a matrix.
- one pixel consists of three dots: red, blue, and green.
- the memory 360 is composed of, for example, flash memory that can be erased in batches in predetermined blocks, and stores a control program and control data of the entire mobile phone system including display control, and a two-dimensional memory. It also has a function as a CGROM (Character Generator Read Only Memory), which is a pattern memory that stores display data such as character fonts and other display patterns.
- CGROM Charge Only Memory
- the liquid crystal control driver 100 is configured as a liquid crystal control driver including the segment driver 110 and the common driver 120, but drives the common electrode of the liquid crystal panel.
- the common driver 120 is formed on a separate semiconductor chip, and the driving voltage is supplied to the common driver chip from the liquid crystal drive voltage generation circuit 140 in the liquid crystal control driver 100. Is also good.
- the voltage of the common electrode signal is higher than that of the segment electrode signal, so that the common driver is composed of elements having a relatively high withstand voltage. Therefore, if a segment driver and a common driver are formed on the same chip, a process for forming a high withstand voltage element and a process for forming a low withstand voltage element become necessary, which complicates the process.
- the use of a chip eliminates the need for a process for forming a high withstand voltage element constituting a common driver.
- the liquid crystal drive voltage generation of the above-described embodiment is performed. If a circuit is applied, the liquid crystal drive voltage generation circuit itself can be configured without using a high voltage element, so that a liquid crystal control driver with a built-in liquid crystal drive voltage generation circuit can be manufactured by a simple process. it can.
- boosting is performed by charging the two capacitors CI and C2 to the power supply voltage VDD and then switching the switches to connect them in series, but in series.
- the number of connected capacitors is not limited to two, but may be three or more.
- the invention made by the present inventor has been mainly described with respect to the liquid crystal control driver for driving the liquid crystal panel of the mobile phone, which is the field of application, but the present invention is not limited to this.
- the present invention can be applied to various portable electronic devices having a liquid crystal panel such as a pager, a pager, and a PDA (Personal Digital Assistants).
- the present invention it is possible to realize a power supply circuit capable of generating a boosted voltage with a small current loss and high accuracy, and thereby a liquid crystal driving voltage generation for generating a voltage for driving a liquid crystal panel.
- a power supply circuit capable of generating a boosted voltage with a small current loss and high accuracy, and thereby a liquid crystal driving voltage generation for generating a voltage for driving a liquid crystal panel.
- a liquid crystal display device and a portable electronic device that can display a high-quality image without deterioration of the liquid crystal, can consume less power, and can be driven by a battery for a long time.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
A boosting power circuit, wherein an external power voltage is used as a reference voltage for charging the boosting power circuit formed of a charging pump, a voltage boosted by the charging pump is output as a liquid crystal drive voltage by using the reference voltage generated in a reference voltage generating circuit formed of a differential amplifier at the time of boosting, and a voltage obtained by resistively dividing an output voltage from the charging pump is allowed to feed back to the input terminal of the differential amplifier in the reference voltage generating circuit.
Description
明 細 書 昇圧型電源回路および液晶表示装置並びに携帯用電子機器 技術分野 Description Boost type power supply circuit, liquid crystal display device and portable electronic equipment
この発明は、 電源電圧を昇圧した電圧を発生する昇圧型電源回路に適用して有 効な技術に関し、 例えば液晶表示装置を駆動する電圧を発生する液晶駆動電圧発 生回路およびそれを内蔵した液晶表示制御装置並びにそれを搭載した携帯用電子 機器に利用して有効な技術に関する。 ' 背景技術 The present invention relates to a technology that is effective when applied to a boosting type power supply circuit that generates a voltage obtained by boosting a power supply voltage. For example, the present invention relates to a liquid crystal driving voltage generating circuit that generates a voltage for driving a liquid crystal display device, and a liquid crystal incorporating the same. The present invention relates to a display control device and a technique effective for use in a portable electronic device equipped with the display control device. '' Background technology
近年、 携帯電話器やページャ一などの携帯用電子機器の表示装置としては、 一 般に複数の表示画素が例えばマトリックス状に 2次元配列されたドットマトリツ クス型液晶パネルが用いられており、 機器内部にはこの液晶パネルの表示制御を 行なう半導体集積回路化された表示制御装置や液晶パネルを駆動するドライバも しくはそのようなドライバを内蔵した表示制御装置が搭載されている。 かかる半 導体集積回路化されだ表示制御装置は 5 V以下の電圧で動作可能であるのに対し、 液晶パネルの表示駆動には 5〜4 0 Vのような駆動電圧を必要とするため、 この 表示制御装置には電源電圧を昇圧して液晶パネルを駆動する電圧を発生する液晶 駆動電圧発生回路が内蔵されていることが多い。 In recent years, as a display device of a portable electronic device such as a mobile phone or a pager, a dot matrix type liquid crystal panel in which a plurality of display pixels are two-dimensionally arranged in a matrix, for example, is generally used. The semiconductor device is provided with a semiconductor integrated circuit-based display control device for controlling the display of the liquid crystal panel, a driver for driving the liquid crystal panel, or a display control device incorporating such a driver. Such a display control device integrated into a semiconductor integrated circuit can operate at a voltage of 5 V or less, whereas a display drive of a liquid crystal panel requires a drive voltage of 5 to 40 V. In many cases, the display control device has a built-in liquid crystal drive voltage generation circuit that generates a voltage for driving the liquid crystal panel by boosting the power supply voltage.
このような液晶表示制御装置に内蔵されている液晶駆動電圧発生回路として、 本発明者等は図 1 1および図 1 2に示すような回路について'検討した。 図 1 1の 回路は、 差動アンプ AM Pからなる基準電圧発生回路と該基準電圧発生回路で発 生された基準電圧 V aを昇圧するチャージポンプ C P Mとから構成されたもの、 図 1 2の回路は電源電圧 VDD を昇圧するチャージポンプ C P Mと該チャージポ ンプで昇圧された電圧 V pを電源として動作して液晶駆動電圧を発生する基準電 圧発生回路 1 0およびボルテージフォロワ 1 1とから構成されたものである。 な お、 図 1 1および図 1 2には、 一例としてチャージポンプ C P Mが基準となる電
圧 V aまたは VDD を 3倍に昇圧する回路が示されているが、 必要とする電圧に 応じて 4倍昇圧型や 5倍昇圧型等のチャージポンプが使用される。 The present inventors have studied a circuit as shown in FIGS. 11 and 12 as a liquid crystal drive voltage generation circuit built in such a liquid crystal display control device. The circuit in FIG. 11 includes a reference voltage generation circuit including a differential amplifier AMP and a charge pump CPM that boosts the reference voltage Va generated by the reference voltage generation circuit. The circuit is composed of a charge pump CPM that boosts the power supply voltage VDD, a reference voltage generation circuit 10 that operates using the voltage Vp boosted by the charge pump as a power supply, and a liquid crystal drive voltage, and a voltage follower 11. It is a thing. Fig. 11 and Fig. 12 show the charge pump CPM as an example. Although a circuit that boosts the voltage Va or VDD three times is shown, a charge pump such as a four-fold boost type or a five-fold boost type is used depending on the required voltage.
また、 例えば特開 2 0 0 0— 2 6 2 0 4 3号公報に示されているような回路も あることが発明を成した後に行なわれた調査で明らかとなつた。 ' In addition, it has been clarified by a study conducted after the invention was made that there is a circuit as disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-260423. '
しかしながら、 図 1 1のような昇圧回路型の液晶駆動電圧発生回路は、 チヤ一 ジポンプ C P Mにより昇圧された電圧で直接液晶パネルを駆動するため電流効率 は良いが、 チヤ一ジポンプは電流供給能力が低レ、ため液晶パネルの表示を開始し たときにパネルの負荷がチャージポンプに接続されることによってチャージポン プ C P Mの出力 Voutのレベルが図 1 3のように低下することが分った。 そして、 その電圧低下量が負荷の大きさすなわちパネルの大きさやパネルの特性に依存す るため、 出力電圧の精度が悪く液晶に直流電圧が印加されて液晶が劣化するおそ れがあるとともに例えばカラー液晶表示パネルでは表示色がずれるなど良好な画 質が得られないという不具合があることも分った。 However, the booster-type liquid crystal drive voltage generation circuit as shown in Fig. 11 drives the liquid crystal panel directly with the voltage boosted by the charge pump CPM, so current efficiency is good, but the charge pump has a current supply capacity. It was found that the level of the output Vout of the charge pump CPM was reduced as shown in Fig. 13 due to the load of the panel being connected to the charge pump when the display on the liquid crystal panel was started. Since the amount of the voltage drop depends on the size of the load, that is, the size of the panel and the characteristics of the panel, the accuracy of the output voltage is poor and a DC voltage may be applied to the liquid crystal, which may cause deterioration of the liquid crystal. It was also found that there was a problem in that good image quality could not be obtained with the liquid crystal display panel, such as a shift in display color.
一方、 図 1 2のようなボルテージフォロワ型の液晶駆動電圧発生回路にあって は、 液晶パネルの表示を開始したときにパネルの負荷がボルテージフォロワ 1 1 に接続されたとしてもポルテージフォロワは電流供給能力が高いため直ちにその 負荷を充分に駆動できるような電圧を出力する。 そのため、 図 1 4のように出力 される液晶駆動電圧 Vout の精度が高く良好な表示画質が得られるが、 チャージ ポンプ C P Mで昇圧された液晶駆動出力電圧 Vout よりも高い電圧 V pを基準電 圧発生回路 1 0およびボルテージフォロワ 1 1の動作電源として用いるため、 消 費電力が多いつまり電流のロスが多いことが分った。 また、 基準電圧発生回路 1 0およびボルテージフォロワ 1 1がチャージポンプ C P Mで昇圧された電圧を電 源として動作するため高耐圧の素子を使用して回路を構成する必要があり、 その 分回路面積が大きくなつたりプロセスが複雑になったりするという不具合がある ことが分った。 On the other hand, in the voltage-follower type liquid crystal drive voltage generation circuit as shown in Fig. 12, even when the load on the panel is connected to the voltage follower 11 when the LCD panel starts displaying, the voltage follower will have a current Since the supply capacity is high, a voltage is output that immediately drives the load sufficiently. As a result, as shown in Fig. 14, the liquid crystal drive voltage Vout output has high accuracy and good image quality can be obtained.However, a voltage Vp higher than the liquid crystal drive output voltage Vout boosted by the charge pump CPM is set to the reference voltage. Since it is used as an operating power supply for the generator circuit 10 and the voltage follower 11, it has been found that the power consumption is large, that is, the current loss is large. In addition, since the reference voltage generation circuit 10 and the voltage follower 11 operate using the voltage boosted by the charge pump CPM as a power supply, it is necessary to configure the circuit using a high withstand voltage element, and the circuit area is correspondingly reduced. It was found that there was a problem that the size and the process became complicated.
この発明は、 上記のような問題点に鑑みてなされたもので、 電流のロスが少な くかつ精度の高い昇圧電圧を発生することが可能な昇圧型電源回路を提供するこ とを目的としている。
この発明の他の目的は、 消費電力が少なくかつ精度の高い液晶駆動電圧を発生 することができるとともに回路の占有面積も小さくて済む液晶表示制御装置を提 供することにある。 The present invention has been made in view of the above problems, and has as its object to provide a step-up power supply circuit capable of generating a highly accurate boosted voltage with a small current loss. . Another object of the present invention is to provide a liquid crystal display control device capable of generating a liquid crystal drive voltage with low power consumption and high accuracy and requiring a small circuit occupation area.
この発明の前記ならびにそのほかの目的と新規な特徴については、 本明細書の 記述および添附図面から明らかになるであろう。 The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
発明の開示 Disclosure of the invention
本願において開示される発明のうち代表的なものの概要を説明すれば、 下記の とおりである。 The outline of a typical invention disclosed in the present application is as follows.
すなわち、 チャージポンプ (2 0 ) からなる昇圧回路の充電用の基準電圧とし て外部電源電圧 (VDD) を用いるとともに、 ブース トの際に差動アンプからなる 基準電圧発生回路 (1 0 ) で発生された基準電圧 (V a ) を用いてチャージボン プで昇圧した電圧を液晶駆動電圧として出力するとともに、 チャージポンプの出 力電圧を抵抗分割した電圧を基準電圧発生回路 (1 0 ) の差動アンプの入力端子 にフィードバックさせるように構成したものである。 That is, the external power supply voltage (VDD) is used as the reference voltage for charging the booster circuit composed of the charge pump (20), and the voltage is generated by the reference voltage generator circuit (10) composed of a differential amplifier during boosting. Using the reference voltage (V a) thus obtained, the voltage boosted by the charge pump is output as the liquid crystal drive voltage, and the voltage obtained by dividing the output voltage of the charge pump by resistance is used as the differential voltage of the reference voltage generation circuit (10). It is configured to feed back to the input terminal of the amplifier.
より詳細には、 外部電源電圧で動作する差動アンプを有する基準電圧発生回路 と、 複数の容量と該容量をそれぞれ充電するためのスィツチおよび前記容量を直 列に接続して充電された電圧を加算するためのスィツチを有する昇圧回路と、 該 昇圧回路の出力電圧に応じた電圧を前記差動アンプの入力端子にフィードバック させるフィードバック手段と、 前記昇圧回路の出力端子に接続された平滑容量と から構成された昇圧型電源回路において、 前記昇圧回路は、 充電動作の際に前記 差動アンプの勲作電源電圧に基づいて前記容量への充電を行ない、 前記複数の容 量が直列に接続されて充電電圧を加算する動作を行なう際には前記差動アンプか ら出力される基準電圧に基づいて前記容量の基準端側の電圧を押し上げるように 構成した。 More specifically, a reference voltage generating circuit having a differential amplifier that operates on an external power supply voltage, a plurality of capacitors, a switch for charging each of the capacitors, and a voltage connected by connecting the capacitors in series, and A booster circuit having a switch for addition, feedback means for feeding back a voltage corresponding to an output voltage of the booster circuit to an input terminal of the differential amplifier, and a smoothing capacitor connected to an output terminal of the booster circuit. In the booster power supply circuit thus configured, the booster circuit charges the capacitor based on the power supply voltage of the differential amplifier during a charging operation, and the plurality of capacitors are connected in series. When the operation of adding the charging voltage is performed, the voltage on the reference end side of the capacitor is boosted based on the reference voltage output from the differential amplifier.
上記した手段によれば、 昇圧回路の出力電圧を昇圧回路の基準電圧を発生する 差動アンプの入力端子にフィードバックさせているため精度の高い昇圧電圧を発 生することができるとともに、 ブーストの際の基準電圧を発生する差動アンプは
昇圧電圧よりも低い外部電源電圧で動作するため消費電力を減らすことができる。 また、 望ましくは、 前記フィードバック手段は、 前記昇圧回路の出力端子と電 源電圧端子との間に直列に接続された複数の抵抗素子からなる抵抗分割手段と、 これらの抵抗素子のいずれかの接続ノードの電位を選択して前記差動アンプの入 力端子に伝達させる選択手段とを備えるようにする。 これにより、 フィードパッ ク電圧を選択することが可能になり、 液晶表示パネルのような負荷や回路の特性 に応じて出力昇圧電圧を調整することができるようになる。 According to the above-described means, since the output voltage of the booster circuit is fed back to the input terminal of the differential amplifier that generates the reference voltage of the booster circuit, a highly accurate boosted voltage can be generated, and at the time of boosting, The differential amplifier that generates the reference voltage of Since the device operates with an external power supply voltage lower than the boosted voltage, power consumption can be reduced. Preferably, the feedback means includes: a resistance dividing means including a plurality of resistance elements connected in series between an output terminal of the booster circuit and a power supply voltage terminal; Selecting means for selecting the potential of the node and transmitting the selected potential to the input terminal of the differential amplifier. As a result, it becomes possible to select the feed voltage, and the output boost voltage can be adjusted according to the characteristics of a load or a circuit such as a liquid crystal display panel.
さらに、 望ましくは、 前記選択手段により前記差動アンプの入力端子にフィー ドバックされる電圧を指定するためのレジスタを設ける。 これにより、 レジスタ の設定値を変更することで出力昇圧電圧を調整することができ、 使用されるシス テムへの適応能力が高い昇圧型電源回路を得ることができる。 Preferably, a register is provided for designating a voltage to be fed back to the input terminal of the differential amplifier by the selection means. As a result, the output boost voltage can be adjusted by changing the set value of the register, and a boost power supply circuit with high adaptability to the system to be used can be obtained.
また、 本発明に係る液晶駆動電圧発生回路は、 外部電源電圧で動作する差動ァ ンプを有する基準電圧発生回路と、 複数の容量と該容量をそれぞれ充電するため のスィッチおよび前記容量を直列に接続して充電された電圧を加算するためのス イッチを有する昇圧回路と、 該昇圧回路の出力電圧に応じた電圧を前記差動アン プの入力端子にフィードパックさせるフィードバック手段と、 前記昇圧回路の出 力端子に接続された平滑容量とから構成され液晶パネルのセグメント電極に印加 される電圧を発生する第 1の昇圧型電源回路と、 前記第 1の昇圧型電源回路によ り発生された電圧に基づいて前記液晶パネルのコモン電極に印加される電圧を発 生する第 2の昇圧型電源回路とを設け、 前記第 2の昇圧型電源回路は、 複数の容 量と該容量をそれぞれ充電するためのスィツチおよび前記容量を直列に接続して 充電された電圧を加算するためのスィツチを有する昇圧回路と、 前記昇圧回路の 出力端子に接続された平滑容量とにより構成するようにした。 これにより、 第 2 の昇圧型電源回路の負荷が小さい場合には、 上記第 2の昇圧型電源回路により充 分に精度の高いコモン電極印加電圧を発生することができ、 しかも回路面積が小 さくかつ消費電力の少ない電源回路を実現することができる。 Further, a liquid crystal drive voltage generation circuit according to the present invention includes a reference voltage generation circuit having a differential amplifier operated by an external power supply voltage, a plurality of capacitors, a switch for charging each of the capacitors, and the capacitors in series. A booster circuit having a switch for adding the charged voltage connected thereto; feedback means for feeding back a voltage corresponding to an output voltage of the booster circuit to an input terminal of the differential amplifier; A first boosting power supply circuit configured to generate a voltage to be applied to the segment electrodes of the liquid crystal panel, the first boosting power supply circuit including a smoothing capacitor connected to the output terminal of A second step-up power supply circuit that generates a voltage applied to a common electrode of the liquid crystal panel based on a voltage; and wherein the second step-up power supply circuit includes a plurality of capacitors and the capacitors. The booster circuit has a switch for charging and a switch for adding the charged voltage by connecting the capacitors in series, and a smoothing capacitor connected to an output terminal of the booster circuit. . Thereby, when the load of the second booster type power supply circuit is small, the second booster type power supply circuit can generate a sufficiently accurate common electrode applied voltage by the second booster type power supply circuit, and the circuit area is reduced. In addition, a power supply circuit with low power consumption can be realized.
また、 外部電源電圧で動作する差動アンプを有する基準電圧発生回路と、 複数 の容量と該容量をそれぞれ充電するためのスィッチおよぴ前記容量を直列に接続
して充電された電圧を加算するためのスィツチを有する昇圧回路と、 該昇圧回路 の出力電圧に応じた電圧を前記差動アンプの入力端子にフィードバックさせる フィードバック手段と、 前記昇圧回路の出力端子に接続された平滑容量とから構 成され液晶パネルのセグメント電極に印加される電圧を発生する第 1の昇圧型電 源回路と、 前記第 1の昇圧型電源回路により発生された電圧に基づいて前記液晶 パネルのコモン電極に印加される電圧を発生する第 2の昇圧型電源回路とを設け、 前記第 2の昇圧型電源回路は、 外部電源電圧で動作する差動アンプを有する基準 電圧発生回路と、 複数の容量と該容量をそれぞれ充電するためのスィツチおょぴ 前記容量を直列に接続して充電された電圧を加算するためのスィツチを有する昇 圧回路と、 該昇圧回路の出力電圧を分割して前記差動アンプの入力端子にフィー ドパックさせる抵抗分割手段と、 前記昇圧回路の出力端子に接続された平滑容量 とにより構成した。 これにより、 第 2の昇圧型電源回路の負荷が大きい場合にお いても、 上記第 2の昇圧型電源回路により充分に精度の高いコモン電極印加電圧 を発生することができる。 Also, a reference voltage generating circuit having a differential amplifier operated by an external power supply voltage, a plurality of capacitors, a switch for charging each of the capacitors, and the capacitor are connected in series. A booster circuit having a switch for adding the charged voltage, a feedback circuit for feeding back a voltage corresponding to an output voltage of the booster circuit to an input terminal of the differential amplifier, and an output terminal of the booster circuit. A first boosted power supply circuit configured to generate a voltage applied to the segment electrodes of the liquid crystal panel, the first boosted power supply circuit being configured from a connected smoothing capacitor, and a voltage generated by the first boosted power supply circuit. A second step-up power supply circuit for generating a voltage applied to a common electrode of the liquid crystal panel; wherein the second step-up power supply circuit includes a reference voltage generation circuit having a differential amplifier operating with an external power supply voltage; A booster circuit having a plurality of capacitors and a switch for charging each of the capacitors, and a switch for adding the charged voltage by connecting the capacitors in series; and A resistive dividing means for dividing the output voltage of the booster circuit is fee Dopakku to an input terminal of the differential amplifier, constituted by the connected smoothing capacitor to the output terminal of the booster circuit. Thus, even when the load on the second booster power supply circuit is large, a sufficiently accurate common electrode applied voltage can be generated by the second booster power supply circuit.
さらに、 本願の他の発明は、 外部電源電圧で動作する差動アンプを有する基準 電圧発生回路と、 複数の容量と該容量をそれぞれ充電するためのスィツチおよび 前記容量を直列に接続して充電された電圧を加算するためのスィツチを有する昇 圧回路と、 該昇圧回路の出力電圧に応じた電圧を前記差動アンプの入力端子に フィードパックさせるフィードパック手段と、 前記昇圧回路の出力端子に接続さ れた平滑容量とから構成され液晶パネルのセグメント電極に印加される電圧を発 生する第 1の昇圧型電源回路と、 前記第 1の昇圧型電源回路により発生された電 圧に基づいて前記液晶パネルのコモン電極に印加される電圧を発生する第 2の昇 圧型電源回路とを備えた液晶駆動電圧発生回路の設計方法において、 前記コモン 電極の負荷が小さい場合には、 前記第 2の昇圧型電源回路を 複数の容量と該容 量をそれぞれ充電するためのスィツチおよび前記容量を直列に接続して充電され た電圧を加算するためのスィツチを有する昇圧回路と、 該昇圧回路の出力端子に 接続された平滑容量とにより構成し、 前記コモン電極の負荷が大きい場合には、 前記第 2の昇圧型電源回路を、 差動アンプを有する基準電圧発生回路と、 複数の
容量と該容量をそれぞれ充電するためのスィツチおよび前記容量を直列に接続し て充電された電圧を加算するためのスィツチを有する昇圧回路と、 該昇圧回路の 出力電圧を分割して前記差動アンプの入力端子にフィードパックさせる抵抗分割 手段と、 前記昇圧回路の出力端子に接続された平滑容量とにより構成するように した。 Further, another invention of the present application relates to a reference voltage generating circuit having a differential amplifier operated by an external power supply voltage, a plurality of capacitors, a switch for charging the capacitors, and a capacitor connected in series to be charged. A booster circuit having a switch for adding the boosted voltage, a feedpack means for feeding a voltage corresponding to an output voltage of the booster circuit to an input terminal of the differential amplifier, and a booster circuit connected to an output terminal of the booster circuit. A first step-up power supply circuit configured to generate a voltage to be applied to the segment electrode of the liquid crystal panel, the first step-up power supply circuit being configured by the first step-up power supply circuit. In a method for designing a liquid crystal driving voltage generating circuit including a second boosting type power supply circuit for generating a voltage applied to a common electrode of a liquid crystal panel, the load on the common electrode is small. In this case, the second boosting type power supply circuit may include a plurality of capacitors and a switch for charging the capacitors, and a switch for connecting the capacitors in series and adding a charged voltage. And a smoothing capacitor connected to the output terminal of the booster circuit. When the load on the common electrode is large, the second booster-type power supply circuit includes a reference voltage generating circuit having a differential amplifier. And multiple A booster circuit having a capacitor, a switch for charging the capacitor, and a switch for connecting the capacitor in series and adding a charged voltage; and dividing the output voltage of the booster circuit into the differential amplifier. And a smoothing capacitor connected to the output terminal of the booster circuit.
上記した手段によれば、 第 2の昇圧型電源回路の負荷が小さい場合にも負荷が 大きい場合にも、 上記第 2の昇圧型電源回路により充分に精度の高いコモン電極 印加電圧を発生することができるとともに、 第 2の昇圧型電源回路の負荷が小さ い場合には、 回路面積が小さくかつ消費電力の少ない電源回路を実現することが できる。 According to the above-described means, it is possible to generate a sufficiently accurate common electrode applied voltage by the second booster power supply circuit regardless of whether the load of the second booster power supply circuit is small or large. In addition, when the load of the second step-up power supply circuit is small, a power supply circuit having a small circuit area and low power consumption can be realized.
本願のさらに他の発明は、 上記のような構成を有する液晶駆動電圧発生回路と、 前記液晶パネルに表示するデータを記憶する表示用メモリと、 前記表示用メモリ に書き込むデータの生成および前記表示用メモリからのデータ読出しに関する制 御を行う制御回路と、 前記表示用メモリから読み出されたデ一タと前記液晶駆動 電圧発生回路により発生された駆動電圧とに基づき前記液晶パネルのセグメント 電極に印加する信号を生成するセグメント駆動回路と、 前記液晶駆動電圧発生回 路により発生された駆動電圧と所定のタイミング信号とに基づき前記液晶パネル のコモン電極に印加する信号を生成するコモン電極駆動回路とにより液晶表示制 御装置を構成したものである。 これにより、 液晶の劣化がなく高画質の表示が可 能な液晶表示装置を実現することができる。 Still another aspect of the present invention provides a liquid crystal drive voltage generation circuit having the above-described configuration, a display memory for storing data to be displayed on the liquid crystal panel, and a method for generating data to be written in the display memory and for displaying the data. A control circuit for controlling data reading from the memory; and a control circuit for applying data to the segment electrodes of the liquid crystal panel based on data read from the display memory and a driving voltage generated by the liquid crystal driving voltage generating circuit. And a common electrode drive circuit that generates a signal to be applied to a common electrode of the liquid crystal panel based on the drive voltage generated by the liquid crystal drive voltage generation circuit and a predetermined timing signal. It constitutes a liquid crystal display control device. Thus, it is possible to realize a liquid crystal display device capable of displaying high-quality images without deterioration of the liquid crystal.
また、 望ましくは、 前記液晶駆動電圧発生回路と、 前記表示用メモリと、 前記 制御回路と、 前記セグメント駆動回路と、 前記コモン電極駆動回路とは、 一つの 半導体チップ上に形成する。 これにより、 液晶表示装置を備えた電子機器の部品 点数を減らし、 実装密度を高めて電子機器の小型化を図ることができる。 Preferably, the liquid crystal drive voltage generation circuit, the display memory, the control circuit, the segment drive circuit, and the common electrode drive circuit are formed on one semiconductor chip. As a result, the number of components of the electronic device including the liquid crystal display device can be reduced, the mounting density can be increased, and the size of the electronic device can be reduced.
さらに、 前記液晶駆動電圧発生回路と、 前記表示用メモリと、 前記制御回路と、 前記セグメント駆動回路とは、 一つの半導体チップ (第 1チップ) 上に半導体集 積回路として構成される。 一方、 前記コモン電極駆動回路は前記液晶駆動電圧発 生回路が形成された半導体チップとは別個の半導体チップ (第 2チップ) 上に半
導体集積回路として構成され、 該コモン電極駆動回路は前記液晶駆動電圧発生回 路を構成する素子よりも耐圧の高い素子で構成する。 これにより、 第 1チップ及 ぴ第 2チップのそれぞれの製造プロセスが簡略化可能となるので、 携帯用電子機 器の実装密度は悪くなるものの、 第 1チップ及ぴ第 2チップの製造コストの低減 を図ることができる。 Further, the liquid crystal drive voltage generation circuit, the display memory, the control circuit, and the segment drive circuit are configured as a semiconductor integrated circuit on one semiconductor chip (first chip). On the other hand, the common electrode drive circuit is mounted on a semiconductor chip (second chip) separate from the semiconductor chip on which the liquid crystal drive voltage generation circuit is formed. The common electrode drive circuit is configured as a conductor integrated circuit, and is configured by an element having a higher withstand voltage than an element configuring the liquid crystal drive voltage generation circuit. This makes it possible to simplify the manufacturing process of each of the first and second chips, thus lowering the packaging density of portable electronic devices, but reducing the manufacturing costs of the first and second chips. Can be achieved.
さらに、 本発明の携帯用電子機器は、 上記のように構成された液晶表示制御装 置と、 前記セグメント駆動回路により生成された信号おょぴ前記コモン電極駆動 回路により生成された信号に基づいてドットマトリックス方式で表示を行なう液 晶パネルと、 上記液晶表示制御装置の電源電圧を与える電池とを設けるようにし た。 これにより、 表示画質が良好であるとともに低消費電力で長時間の電池駆動 が可能な携帯用電子機器を実現することができる。 図面の簡単な説明 Further, the portable electronic device of the present invention includes a liquid crystal display control device configured as described above, a signal generated by the segment driving circuit, and a signal generated by the common electrode driving circuit. A liquid crystal panel that performs display in a dot matrix system and a battery that supplies a power supply voltage of the liquid crystal display control device are provided. This makes it possible to realize a portable electronic device that has good display image quality, low power consumption, and can be driven for a long time by a battery. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る昇圧回路の第 1の実施例を示す回路図である。 FIG. 1 is a circuit diagram showing a first embodiment of the booster circuit according to the present invention.
図 2は、 実施例の昇圧回路を動作させるクロック信号の波形例を示す波形図で あ 0 ' FIG. 2 is a waveform diagram showing a waveform example of a clock signal for operating the booster circuit of the embodiment.
図 3は、 実施例の昇圧回路の動作を説明するための作用説明図である。 FIG. 3 is an operation explanatory diagram for explaining the operation of the booster circuit according to the embodiment.
図 4は、 実施例の昇圧回路の可変抵抗回路の具体例を示す回路図である。 FIG. 4 is a circuit diagram showing a specific example of the variable resistance circuit of the booster circuit according to the embodiment.
図 5は、 本発明を液晶駆動電圧発生回路に適用した場合の好適な実施例を示す 回路図である。 FIG. 5 is a circuit diagram showing a preferred embodiment when the present invention is applied to a liquid crystal drive voltage generation circuit.
図 6は、 本発明を液晶駆動電圧発生回路に適用した場合の他の実施例を示す回 路図である。 FIG. 6 is a circuit diagram showing another embodiment in which the present invention is applied to a liquid crystal drive voltage generation circuit.
図 7は、 液晶パネルのセグメント印加電圧 VSEG とコモン印加電圧 VC0M の波 形例を示す波形図である。 ' FIG. 7 is a waveform diagram showing a waveform example of the segment applied voltage VSEG and the common applied voltage VC0M of the liquid crystal panel. '
図 8は、 本発明に係る昇圧回路を含む電源回路を内蔵した液晶表示制御装置と しての液晶コントロールドライバとこのドライバにより駆動される液晶パネルと からなる液晶表示システムの構成例を示すブロック図である。 FIG. 8 is a block diagram showing a configuration example of a liquid crystal display system including a liquid crystal control driver as a liquid crystal display control device incorporating a power supply circuit including a booster circuit according to the present invention and a liquid crystal panel driven by the driver. It is.
図 9は、 本発明を適用した液晶コントロールドライバを備えた携帯電話器の全
体構成を示すブロック図である。 FIG. 9 shows an entire portable telephone equipped with a liquid crystal control driver to which the present invention is applied. It is a block diagram which shows a body structure.
図 1 0は、 コモン電極に印加される負電圧を発生する電圧反転回路の具体例を 示す回路図である。 FIG. 10 is a circuit diagram showing a specific example of a voltage inversion circuit that generates a negative voltage applied to the common electrode.
図 1 1は、 従来の液晶駆動電圧発生回路の構成例を示す回路図である。 FIG. 11 is a circuit diagram showing a configuration example of a conventional liquid crystal drive voltage generation circuit.
図 1 2は、 従来の液晶駆動電圧発生回路の他の構成例を示す回路図である。 図 1 3は、 図 1 1の液晶駆動電圧発生回路における昇圧電圧の変化の様子を示 す波形図である。 FIG. 12 is a circuit diagram showing another configuration example of the conventional liquid crystal drive voltage generation circuit. FIG. 13 is a waveform diagram showing how the boosted voltage changes in the liquid crystal drive voltage generation circuit of FIG.
図 14は、 図 1 2の液晶駆動電圧発生回路における昇圧電圧の変化の様子を示 す波形図である。 FIG. 14 is a waveform chart showing how the boosted voltage changes in the liquid crystal drive voltage generation circuit of FIG.
図 15は、 実施例の液晶駆動電圧発生回路における昇圧電圧の変化の様子を示 す波形図である。 発明を実施するため最良の形態 FIG. 15 is a waveform chart showing how the boosted voltage changes in the liquid crystal drive voltage generation circuit of the example. BEST MODE FOR CARRYING OUT THE INVENTION
図 1は、 本発明に係る昇圧型電源回路の第 1の実施例を示す。 FIG. 1 shows a first embodiment of a step-up power supply circuit according to the present invention.
図 1において、 1 0は差動アンプ AMPからなる基準電圧発生回路、 20は チャージポンプ回路である。 この実施例では、 チャージポンプ 20の昇圧出力 V out を可変抵抗回路 30で抵抗分割した電圧が基準電圧発生回路 1 0の差動アン プ AMPの反転入力端子にフィードパックされるように構成されている。 In FIG. 1, reference numeral 10 denotes a reference voltage generation circuit including a differential amplifier AMP, and reference numeral 20 denotes a charge pump circuit. In this embodiment, the voltage obtained by dividing the boosted output V out of the charge pump 20 by the variable resistor circuit 30 is fed back to the inverting input terminal of the differential amplifier AMP of the reference voltage generating circuit 10. I have.
上記チャージポンプ 20は、 クロック信号 φ 1によりオン、 オフ動作されるス イッチ SW1〜SW4と、 上記クロック信号 φ 1とハイレベルの期間が重ならな いように形成されたクロック信号 <ί) 2 (図 2参照) によりオン、 オフ動作される スィッチ SW5〜SW7と、 スィッチ SW5, SW6により直列形態にされる昇 圧容量 C l, C 2と、 出力端子 OUTに接続された出力の平滑容量 C 3とから構 成されている。 The charge pump 20 has switches SW1 to SW4 that are turned on and off by the clock signal φ1 and a clock signal <ί) 2 formed so that the high-level period does not overlap with the clock signal φ1. (See Fig. 2) Switches SW5 to SW7 that are turned on and off by switches SW5 to SW7, step-up capacitors C1 and C2 that are connected in series by switches SW5 and SW6, and output capacitor C connected to output terminal OUT. It consists of three.
上記昇圧容量 C 1の低電位側の端子 C 1 _はスィツチ SW4または SW7を介 して接地点または第 1基準電位端子 T 1に接続可能にされているとともに、 昇圧 容量。 1の高電位側の端子 C 1 +はスィツチ SW3を介して第 2基準電位端子 T 2に接続可能にされている。 また、 上記昇圧容量 C 2の低電位側の端子 C 2—は
スィツチ SW2を介して接地点に接続可能にされているとともに、 昇圧容量 C 2 の高電位側の端子 C 2 +はスィツチ SW1を介して第 2基準電位端子 T 2に接続 可能にされている。 The low-potential side terminal C 1 _ of the boosting capacitor C 1 is connectable to the ground point or the first reference potential terminal T 1 via the switch SW 4 or SW 7, and is a boosting capacitor. The terminal C 1 + on the high potential side of 1 is connectable to the second reference potential terminal T 2 via the switch SW3. In addition, the terminal C 2— on the low potential side of the boosting capacitor C 2 is The terminal C 2 + on the high potential side of the step-up capacitor C 2 can be connected to the second reference potential terminal T 2 via the switch SW 1 while being connected to the ground point via the switch SW 2.
さらに、 出力端子 O U Tと上記昇圧容量 C 2の高電位側の端子 C 2 +との間は スィッチ SW5を介して接続可能にされているとともに、 昇圧容量 C 2の低電位 側の端子 C 2—と昇圧容量 C 1の高電位側の端子 C 1 +との間はスィッチ S W 6 を介して接続可能にされている。 そして、 上記第 1基準電位端子 T 1には基準電 圧発生回路 10からの基準電圧 Vaが印加され、 第 2基準電位端子 T 2には基準 電圧発生回路 10の動作電源電圧 VDDが印加されている。 Further, the output terminal OUT and the terminal C 2 + on the high potential side of the boosting capacitor C 2 can be connected via the switch SW 5, and the terminal C 2 — The connection between the capacitor C 1 and the terminal C 1 + on the high potential side of the step-up capacitor C 1 can be connected via a switch SW 6. The reference voltage Va from the reference voltage generation circuit 10 is applied to the first reference potential terminal T1, and the operating power supply voltage VDD of the reference voltage generation circuit 10 is applied to the second reference potential terminal T2. I have.
上記のように構成されたチャージポンプ 20は、 クロック信号 φ 1がハイレべ ルにされて図 3 (A) のようにスィッチ SW1〜SW4がオン (このとき SW5 〜SW7はオフ) されている間に昇圧容量 C 1, C 2が電源電圧 VDD に充電さ れる。 そして、 次に、 スィッチ SW1〜SW4がオフされると代ってスィッチ S W5〜SW7がオン状態にされ、 図 3 (B) のように昇圧容量 C I, C 2が直列 形態になるとともに、 昇圧容量 C 1の基準端側すなわち低電位側の端子 C 1一は スィッチ SW7を介して第 1基準電位端子 T 1に接続される。 これによつて、 出 力端子 OUTの電圧は (Va + 2VDD) に押し上げられる。 上記充電動作とブー スト動作とを繰り返すことにより、 昇圧容量 C 2に充電された電荷が出力端子 O UTに接続されている平滑容量 C 3へ転送され、 (Va + 2VDD) の昇圧電圧 V outが出力される。 The charge pump 20 configured as described above operates while the switch SW1 to SW4 is turned on (at this time, SW5 to SW7 are turned off) as shown in FIG. Then, the boost capacitors C 1 and C 2 are charged to the power supply voltage VDD. Next, when the switches SW1 to SW4 are turned off, the switches SW5 to SW7 are turned on instead, and as shown in FIG. The terminal C 1 on the reference end side, that is, the low potential side of the capacitor C 1 is connected to the first reference potential terminal T 1 via the switch SW7. As a result, the voltage of the output terminal OUT is boosted to (Va + 2VDD). By repeating the charging operation and the boosting operation, the electric charge charged in the boosting capacitor C2 is transferred to the smoothing capacitor C3 connected to the output terminal OUT, and the boosted voltage Vout of (Va + 2VDD) is obtained. Is output.
さらに、 図 1の実施例の昇圧回路においては、 昇圧電圧 Vout を可変抵抗回路 30で抵抗分割した電圧 V f が基準電圧発生回路 10の差動アンプ AMPの反転 入力端子にフィードバックされるように構成されているとともに、 差動アンプ A MPの非反転入力端子には基準電圧 Vref が印加されている。 そのため、 可変抵 抗回路 30の抵抗値を調整して基準電圧発生回路 10の差動アンプ AMPの反転 入力端子にフィードバックさせる電圧 V f を変化させることにより、 基準電圧発 生回路 10の出力電圧 V aを変化させ、 これにより液晶駆動電圧発生回路の出力 電圧そのものを任意に調整することができる。 なお、 基準電圧 Vref は例えばバ
ンドギャップリファランス回路のような温度依存性および電源電圧依存性の小さ な基準電圧発生回路から供給される。 Further, the booster circuit of the embodiment of FIG. 1 is configured such that the voltage Vf obtained by dividing the boosted voltage Vout by the variable resistor circuit 30 is fed back to the inverting input terminal of the differential amplifier AMP of the reference voltage generating circuit 10. The reference voltage Vref is applied to the non-inverting input terminal of the differential amplifier AMP. Therefore, by adjusting the resistance value of the variable resistor circuit 30 and changing the voltage Vf to be fed back to the inverting input terminal of the differential amplifier AMP of the reference voltage generation circuit 10, the output voltage Vf of the reference voltage generation circuit 10 is changed. By changing a, the output voltage itself of the liquid crystal drive voltage generation circuit can be arbitrarily adjusted. The reference voltage Vref is, for example, Supplied from a reference voltage generation circuit such as a low-gap reference circuit with low temperature dependency and low power supply voltage dependency.
図 4には、 上記可変抵抗回路 30の具体例が示されている。 この実施例では、 昇圧回路の出力端子 OUTと接地点との間に、 抵抗値が rの単位抵抗 R 1〜R 2 4が 24個直列に接続され、 R 16と R 17の接続ノード n 1と、 R 18と R 1 9の接続ノード n 2と、 R20と R21の接続ノード n 3と、 R21と R 22の 接続ノード n4と、 R22と R 23の接続ノード n 5にそれぞれスィツチ SW1 1〜SW1 5の一方の端子が接続され、 スィツチ SW1 1〜SW15の他方の端 子は共通のフィードバック電圧端子 T f bに接続されている。 FIG. 4 shows a specific example of the variable resistance circuit 30. In this embodiment, 24 unit resistors R 1 to R 24 each having a resistance value of r are connected in series between the output terminal OUT of the booster circuit and the ground point, and a connection node n 1 of R 16 and R 17 is connected. Switch SW1 1 to switch node n2 between R18 and R19, connection node n3 between R20 and R21, connection node n4 between R21 and R22, and connection node n5 between R22 and R23. One terminal of SW15 is connected, and the other terminals of switches SW11 to SW15 are connected to a common feedback voltage terminal Tfb.
そして、 上記各スィッチ SW1 1〜SW15はレジスタ REGの設定値に応じ ていずれか 1つがオン状態にされるように構成されている。 従って、 スィッチ S Wl 1がオン状態にされると出力電圧 Vout を 3分割した Vout/ 3の電圧が、 また SW1 2, SW13 , SW14, S W 15のいずれかオン状態にされると、 それぞれ出力電圧 Vout を 4分割、 6分割、 8分割、 1 2分割した電圧 Vout/ 4, Vout/ 6 , Vout/ 8, V out/ 1 2が端子 T f bに伝達され、 これが フィードバック電圧 V f として基準電圧発生回路 10の差動アンプ AMPの反転 入力端子に供給される。 すると、 差動アンプ AMPは反転入力端子の電位を非反 転入力端子の基準電圧 Vref に一致させるように出力電圧 V aが変化する。 その 結果、 フィードバック電圧 V f に応じて基準電圧発生回路 10で発生される基準 電圧 V aが変化され、 昇圧電圧 Vout ( = V a + 2 VDD) そのものも変化される こととなる。 Each of the switches SW11 to SW15 is configured so that one of the switches is turned on in accordance with the set value of the register REG. Therefore, when the switch SWl1 is turned on, the output voltage Vout is divided into three and the voltage of Vout / 3, and when any of SW12, SW13, SW14 and SW15 is turned on, the output voltage becomes The voltage Vout / 4, Vout / 6, Vout / 8, Vout / 12, which is obtained by dividing Vout into four, six, eight, and twelve, is transmitted to the terminal T fb, which generates the reference voltage as the feedback voltage V f Supplied to the inverting input terminal of the differential amplifier AMP of the circuit 10. Then, the output voltage Va of the differential amplifier AMP changes so that the potential of the inverting input terminal matches the reference voltage Vref of the non-inverting input terminal. As a result, the reference voltage Va generated by the reference voltage generation circuit 10 is changed according to the feedback voltage Vf, and the boosted voltage Vout (= Va + 2 VDD) itself is also changed.
このように、 図 1の実施例の昇圧型電源回路においては、 チャージポンプ 20 の出力をそのまま昇圧電圧としているため電流のロスが少ないとともに、 昇圧出 力 Vout を可変抵抗回路 30で抵抗分割した電圧を、 昇圧基準電圧を発生する基 準電圧発生回路 1◦の差動アンプ AMPにフィードバックしているため、 チヤ一 ジポンプ 20の出力 Vout が下がると差動アンプ AMPがそれを検知して直ちに 出力 V aを上げるように動作する。 そのため、 この実施例の昇圧型電源回路を液 晶表示装置における液晶駆動電圧発生回路として用いた場合には、 チャージボン
プ 2 0の出力 Vout が図 1 5に示すように液晶パネルの表示を開始した直後もほ とんど変化せず精度の高い電圧を発生しかつそれを維持することができる。 また、 この実施例においては、 基準電圧発生回路 1 0を構成する差動アンプ AM Pが外 部電源電圧 VDD で動作するため、 低耐圧の素子で形成することができ、 回路の 占有面積を小さくすることができる。 As described above, in the step-up power supply circuit of the embodiment of FIG. 1, since the output of the charge pump 20 is used as the step-up voltage as it is, the loss of current is small, Is fed back to the differential amplifier AMP of the 1 ° reference voltage generation circuit that generates the boosted reference voltage.When the output Vout of the charge pump 20 drops, the differential amplifier AMP detects this and outputs the output V Works to raise a. Therefore, when the step-up power supply circuit of this embodiment is used as a liquid crystal drive voltage generation circuit in a liquid crystal display device, As shown in FIG. 15, the output Vout of the loop 20 hardly changes immediately after the start of display on the liquid crystal panel, and a highly accurate voltage can be generated and maintained. In this embodiment, since the differential amplifier AMP constituting the reference voltage generating circuit 10 operates at the external power supply voltage VDD, the differential amplifier AMP can be formed by low-withstand-voltage elements, and the circuit occupation area is reduced. can do.
図 5および図 6には、 本発明を液晶駆動電圧発生回路に適用した場合の好適な 実施例を示す。 周知のように、 液晶パネルを用いた表示装置においては、 液晶パ ネルのセグメント電極に印加される電圧とコモン電極に印加される電圧をそれぞ れ形成する必要があり、 このうちコモン電極に印加される電圧 VC0M は、 図 7に 示すようにセグメント電極に印加される電圧 VSEGの振幅の数倍の振幅とされる。 図 5および図 6に示されている液晶駆動電圧発生回路は、 セグメント電極に印加 される電圧とコモン電極に印加される電圧を生成する回路の実施例であり、 特に 図 5の液晶駆動電圧発生回路は液晶パネルのコモン電極の負荷が小さなパネルに 適した回路、 図 6の液晶駆動電圧発生回路は液晶パネルのコモン電極の負荷が大 きいパネルに適した回路である。 5 and 6 show a preferred embodiment in which the present invention is applied to a liquid crystal drive voltage generation circuit. As is well known, in a display device using a liquid crystal panel, it is necessary to form a voltage applied to a segment electrode of the liquid crystal panel and a voltage applied to a common electrode, respectively. The voltage VC0M to be applied has an amplitude several times the amplitude of the voltage VSEG applied to the segment electrodes as shown in FIG. The liquid crystal drive voltage generation circuits shown in FIGS. 5 and 6 are examples of a circuit that generates a voltage applied to the segment electrode and a voltage applied to the common electrode. The circuit is suitable for a panel with a small load on the common electrode of the liquid crystal panel, and the liquid crystal drive voltage generation circuit in Fig. 6 is a circuit suitable for a panel with a large load on the common electrode of the liquid crystal panel.
以下、 図 5の液晶駆動電圧発生回路と図 6の液晶駆動電圧発生回路のそれぞれ について、 その構成を説明する。 なお、 図 5の液晶駆動電圧発生回路も図 6の液 晶駆動電圧発生回路もいずれも、 図 1に示されている昇圧回路をセグメント電極 に印加される電圧 VSEG を発生する回路としているとともに、 セグメント印加電 圧用の昇圧回路で発生した電圧 VSEG に基づいてコモン印加電圧 VC0M を発生す る昇圧回路 4 0を設けており、 両者の違いはコモン印加電圧 VC0M を発生する後 段の昇圧回路 4 0にある。 Hereinafter, the configuration of each of the liquid crystal drive voltage generation circuit of FIG. 5 and the liquid crystal drive voltage generation circuit of FIG. 6 will be described. Note that both the liquid crystal drive voltage generation circuit in FIG. 5 and the liquid crystal drive voltage generation circuit in FIG. 6 use the booster circuit shown in FIG. 1 as a circuit for generating the voltage VSEG applied to the segment electrodes. A booster circuit 40 that generates the common applied voltage VC0M based on the voltage VSEG generated by the booster circuit for the segment applied voltage is provided, and the difference between the two is that a booster circuit 40 that generates the common applied voltage VC0M is provided in the subsequent stage. It is in.
具体的には、 図 5の液晶駆動電圧発生回路における後段の昇圧回路 4 0は、 セ グメント印加電圧 VSEG を発生する前段の昇圧回路における基準電圧発生回路 1 0を省略してチャージポンプ回路 2 0 ' のみとした回路とされている。 これに対 し、 図 6の液晶駆動電圧発生回路における後段の昇圧回路 4 0, は、 セグメント 印加電圧 VSEG を発生する前段の昇圧回路と同様に基準電圧発生回路 1 0 ' と チャージポンプ回路 2 0, とを備えチャージポンプ 2 0 ' の出力電圧を可変抵抗
回路 30' を介して基準電圧発生回路 1 0' にフィードパックさせるように構成 された回路とされている。 Specifically, the booster circuit 40 at the subsequent stage in the liquid crystal drive voltage generator circuit of FIG. 5 is a charge pump circuit 20 omitting the reference voltage generator circuit 10 at the previous booster circuit for generating the segment applied voltage VSEG. 'It is the only circuit. On the other hand, the booster circuit 40 in the subsequent stage in the liquid crystal drive voltage generator circuit of FIG. 6 includes the reference voltage generator circuit 10 ′ and the charge pump circuit 20 ′ in the same manner as the booster circuit in the preceding stage that generates the segment applied voltage VSEG. , And the output voltage of the charge pump 20 'is variable The circuit is configured to feed-back to the reference voltage generation circuit 10 'via the circuit 30'.
これによつて、 図 5の液晶駆動電圧発生回路における後段の昇圧回路 40は、 前段の昇圧回路で発生された電圧 VSEG を受けて 3倍すなわち 3 VSEG の電圧を 発生する。 一方、 図 6の液晶駆動電圧発生回路における後段の昇圧回路 40' は、 前段の昇圧回路で発生された電圧 VSEG と電源電圧 VDD とに基づいて 2VSEG + V a ' の電圧を発生する。 Thereby, the booster circuit 40 at the subsequent stage in the liquid crystal drive voltage generating circuit of FIG. 5 receives the voltage VSEG generated by the booster circuit at the preceding stage and generates a voltage of three times, that is, 3 VSEG. On the other hand, the subsequent booster circuit 40 'in the liquid crystal drive voltage generation circuit of FIG. 6 generates a voltage of 2VSEG + Va' based on the voltage VSEG generated by the previous booster circuit and the power supply voltage VDD.
なお、 ここで、 Va ' の電圧は基準電圧発生回路 10' の出力電圧であり、 こ の電圧 V a, は可変抵抗回路 30' のフィードバック電圧 V f , に応じて調整可 能である。 また、 フィードバック電圧 V f ' は図 4と同様に構成された可変抵抗 回路 30, に設けられているレジスタ REGの設定値を変えることによって変更 することが可能である。 さらに、 後段の昇圧回路 40および 40, においても、 直列に接続される容量の数を変えることによって、 基準電圧を任意の整数倍に昇 圧した電圧 m ' VSEG と (m · VSEG+V a ') をそれぞれ発生させることができ る。 そして、 これらの実施例においても、 昇圧回路 40, 40, の基準電圧発生 回路 1 0, 1 0 ' を構成する差動アンプは外部電源電圧 VDD で動作するため、 低耐圧の素子で形成することができ、 回路の占有面積を小さくすることができる。 Here, the voltage of Va ′ is the output voltage of the reference voltage generating circuit 10 ′, and the voltage Va, can be adjusted according to the feedback voltage Vf, of the variable resistor circuit 30 ′. Also, the feedback voltage V f ′ can be changed by changing the set value of the register REG provided in the variable resistor circuit 30 configured in the same manner as in FIG. Further, in the booster circuits 40 and 40 in the subsequent stage, by changing the number of capacitors connected in series, the voltages m ′ VSEG and (m · VSEG + V a ′) obtained by raising the reference voltage to an arbitrary integral multiple are obtained. ) Can be generated respectively. Also in these embodiments, since the differential amplifiers constituting the reference voltage generating circuits 10 and 10 ′ of the booster circuits 40 and 40 operate at the external power supply voltage VDD, they must be formed of low withstand voltage elements. Thus, the area occupied by the circuit can be reduced.
ところで、 図 7を参照すると明らかなように、 コモン電極に印加される信号を 生成するには、 液晶中心電位 VMI (例えば 3 V) を中心にして上記昇圧電圧 V COM (例えば 20 V) と極性が逆の負電圧— VC0M (例えば一 14 V) が必要であ る。 本実施例においては、 上記昇圧電圧 VC0M から図 10に示されているような 電圧反転回路を用いて負電圧一 VC0Mを発生させるようにしている。 図 10のう ち (A) は一般的な電圧反転回路、 (B) は基準電圧補正回路付きの電圧反転回 路である。 By the way, as apparent from FIG. 7, in order to generate a signal to be applied to the common electrode, the boosted voltage V COM (for example, 20 V) and the polarity are centered around the liquid crystal center potential VMI (for example, 3 V). Requires the opposite negative voltage — VC0M (eg, 14 V). In this embodiment, a negative voltage VC0M is generated from the boosted voltage VC0M by using a voltage inverting circuit as shown in FIG. 10A shows a general voltage inversion circuit, and FIG. 10B shows a voltage inversion circuit with a reference voltage correction circuit.
図 1 0 (A) の電圧反転回路は、 図 5または図 6の液晶駆動電圧発生回路で発 生された正の昇圧電圧 VC0Mが印加される電圧端子 T aと、 液晶中心電位 VMIが 印加される電圧端子 Tbと、 電圧反転用容量 C 21と、 該容量 C 2 1の一方の端 子と上記電圧端子 T aとの間および電圧端子 Tbとの間にそれぞれ接続されたス
イッチ SW21, SW22と、 電圧反転用容量 C 21の他方の端子と上記電圧端 子 Tbとの間おょぴ出力端子 T cとの間にそれぞれ接続されたスィツチ SW23, SW24と、 出力端子 T cと接地点の間に接続された負電圧用平滑容量 C 22と から構成されている。 The voltage inversion circuit shown in Fig. 10 (A) has a voltage terminal Ta to which the positive boosted voltage VC0M generated by the liquid crystal drive voltage generation circuit shown in Fig. 5 or Fig. 6 is applied, and a liquid crystal center potential VMI. A voltage terminal Tb, a voltage inverting capacitor C21, and switches connected between one terminal of the capacitor C21 and the voltage terminal Ta and the voltage terminal Tb. Switches SW21 and SW22, switches SW23 and SW24 respectively connected between the other terminal of the voltage inverting capacitor C21 and the output terminal Tc between the voltage terminal Tb and the output terminal Tc. And a smoothing capacitor C22 for negative voltage connected between the grounding point and the grounding point.
この実施例の電圧反転回路は、 互いにハイレベル期間が重ならないようにされ たクロック (図 2の φ 1, φ 2参照) によりスィッチ SW2 1および SW23を オン、 SW22, SW24·をオフさせて、 電圧反転用容量 C 2 1に正の昇圧電圧 VC0Mと液晶中心電位 VMIとの電位差に相当する電圧を充電させた後、 スィツチ SW2 1および SW23をオフ、 またスィッチ SW22と SW24をオンさせる ことで液晶中心電位 VMIを中心にして上記昇圧電圧 VC0Mと極性が逆の負電圧一 VC0Mを平滑容量 C 22に充電させるように動作される。 The voltage inversion circuit of this embodiment turns on the switches SW21 and SW23 and turns off the switches SW22 and SW24 by the clocks (see φ1 and φ2 in FIG. 2) in which the high-level periods do not overlap each other. After charging the voltage inverting capacitor C 21 with a voltage corresponding to the potential difference between the positive step-up voltage VC0M and the liquid crystal center potential VMI, the switches SW21 and SW23 are turned off, and the switches SW22 and SW24 are turned on. An operation is performed to charge the smoothing capacitor C22 with a negative voltage VC0M having a polarity opposite to that of the boosted voltage VC0M around the center potential VMI.
ところで、 図 1 0 (Α) の電圧反転回路は、 これに昇圧電圧 VC0M、 液晶中心 電位 VMIを入力して負電圧を発生させた場合、 反転回路內のスィツチのオン抵抗 による内部損失と負電圧が供給される液晶パネルでの電流の消費により電圧降下 が発生し、 負電圧の電圧レベルは [(正電圧)- (基準電圧)] =[ (基準電圧) -(負電 圧)]の関係を十分に満たすことができない場合があることに 意する必要がある。 液晶パネルを駆動する場合、 正の電圧 V COMと負の電圧一 V COMは液晶中心電位 V Mlを中心にして対称性が必要であり、 負電圧が電圧降下した場合、 表示が薄く なったり、 画質の低下、 液晶の劣化が起こってしまう。 そのため図 1 0 (A) の ような電圧反転回路は、 正負電圧に高精度な対称性が必要なカラー液晶パネルや、 出力負荷の大きい大型液晶パネルに使用することは適切ではない場合がある。 図 10 (B) の電圧反転回路は、 図 1 0 (A) の回路を改良したもので、 図 1 0 (A) の電圧反転回路に、 基準電圧としての液晶中心電位 VMI を補正する基 準電圧補正回路を付加したものである。 具体的には、 電圧端子 Tbに印加された 液晶中心電位 VMI がその非反転入力端子に入力され、 反転入力端子には電圧端 子 T aと出力端子 T cとの間に直列接続された抵抗 R 31, R 32で分割された 電圧が入力された差動アンプ AMP 20が設けられている。 スィツチ SW2 1〜 SW24の動作は図 1 0 (A) の回路と同様である。
図 1 0 ( B ) の電圧反転回路においては、 差動アンプ AM P 2 0の作用により 反転入力端子に帰還入力されている出力の中間電圧が液晶中心電位 VMIと等しく なるような電圧が出力される。 これによつて、 電圧反転回路の基準電圧入力端子 には、 負電圧の電圧降下を補正する方向、 即ち中心電位 VMIより低い電圧が供給 される。 その結果、 この電圧反転回路では、 出力負荷が増加した場合も基準電圧 補正回路が電圧降下を打ち消す方向に電圧反転回路の基準電圧を下げるため、 出 力電圧を一定に保つことができる。 従って、 図 1 0 ( B ) の電圧反転回路は図 1 0 (A) の電圧反転回路に比べて高精度な負電圧を供給することができ、 液晶パ ネルの表示画質を向上させ、 液晶の劣化を防止することができるという利点があ る。 By the way, the voltage inverting circuit shown in Fig. 10 (Α) uses the boosted voltage VC0M and the liquid crystal center potential VMI to generate a negative voltage. The voltage drop occurs due to the current consumption in the liquid crystal panel to which the voltage is supplied, and the voltage level of the negative voltage is expressed as [(positive voltage)-(reference voltage)] = [(reference voltage)-(negative voltage)]. We need to be aware that in some cases we may not be able to fully satisfy them. When driving a liquid crystal panel, the positive voltage V COM and the negative voltage-V COM need to be symmetrical with respect to the liquid crystal center potential V Ml, and when the negative voltage drops, the display becomes thin, The image quality deteriorates and the liquid crystal deteriorates. For this reason, the voltage inversion circuit shown in Fig. 10 (A) may not be suitable for use in color LCD panels that require highly accurate symmetry of the positive and negative voltages or large LCD panels with large output loads. The voltage inverting circuit in Fig. 10 (B) is an improvement of the circuit in Fig. 10 (A). The voltage inverting circuit in Fig. 10 (A) has a reference for correcting the liquid crystal center potential VMI as a reference voltage. A voltage correction circuit is added. Specifically, the liquid crystal center potential VMI applied to the voltage terminal Tb is input to its non-inverting input terminal, and the inverting input terminal has a resistor connected in series between the voltage terminal Ta and the output terminal Tc. A differential amplifier AMP20 to which the voltage divided by R31 and R32 is input is provided. The operation of the switches SW21 to SW24 is the same as that of the circuit of FIG. In the voltage inverting circuit of Fig. 10 (B), a voltage is output such that the intermediate voltage of the output that is fed back to the inverting input terminal becomes equal to the liquid crystal center potential VMI by the operation of the differential amplifier AMP20. You. As a result, the reference voltage input terminal of the voltage inverting circuit is supplied with a direction for correcting the negative voltage drop, that is, a voltage lower than the center potential VMI. As a result, in this voltage inversion circuit, even when the output load increases, the output voltage can be kept constant because the reference voltage correction circuit lowers the reference voltage of the voltage inversion circuit in a direction to cancel the voltage drop. Therefore, the voltage inverting circuit of FIG. 10 (B) can supply a more accurate negative voltage than the voltage inverting circuit of FIG. 10 (A), improving the display quality of the liquid crystal panel and improving the liquid crystal display. There is an advantage that deterioration can be prevented.
図 8は、 前記実施例の電源回路を液晶駆動電圧発生電源回路として内蔵した液 晶表示制御装置としての液晶コントロールドライバとこのドライバにより駆動さ れる液晶パネルとからなる液晶表示装置の構成を示すプロック図である。 FIG. 8 is a block diagram showing a configuration of a liquid crystal display device including a liquid crystal control driver as a liquid crystal display control device incorporating the power supply circuit of the embodiment as a liquid crystal drive voltage generation power supply circuit and a liquid crystal panel driven by the driver. FIG.
図 8において、 1 0 0は液晶コントロールドライバ、 2 0 0はこの液晶コント ロールドライバ 1 0 0により駆動される液晶パネルである。 液晶コントロールド ライノく 1 0 0は、 液晶パネル 2 0 0のセグメント電極を駆動するセグメントドラ ィバ 1 1 0、 液晶パネル 2 0 0のコモン電極を駆動するコモンドライバ 1 2 0、 これらのドライバに必要とされる駆動電圧を発生する前記実施例の液晶駆動電圧 発生回路 1 3 0、 液晶パネル 2 0 0に表示すべき画像データをビットマップ方式 で記憶する表示用 R AM 1 4 0、 外部のマイクロプロセッサ (以下、 マイコン ( C P U) とも言う) 等からの指令に基づいてチップ内部全体を制御する制御部 1 5 0等を備え、 これらの回路は単結晶シリコンのような 1個の半導体チップ上 に構成されている。 In FIG. 8, 100 is a liquid crystal control driver, and 200 is a liquid crystal panel driven by the liquid crystal control driver 100. The LCD control driver 100 has a segment driver 110 that drives the segment electrodes of the liquid crystal panel 200, and a common driver 120 that drives the common electrodes of the liquid crystal panel 200. The liquid crystal drive voltage generating circuit 130 of the above-described embodiment for generating the required drive voltage, a display RAM 140 for storing image data to be displayed on the liquid crystal panel 200 in a bitmap manner, and an external It has a controller 150 that controls the entire inside of the chip based on commands from a microprocessor (hereinafter also referred to as a microcomputer (CPU)), etc. These circuits are mounted on a single semiconductor chip such as single crystal silicon. Is configured.
図示しないが、 この液晶コントロールドライバ 1 0 0には、 表示用 R AM 1 4 0に対するアドレスを生成するアドレスカウンタや、 表示用 R AM I 4 0から読 み出されたデータと外部のマイコン等から供給された新たな表示データとに基づ いてすかし表示や重ね合わせ表示のための論理演算を行なう論理演算手段、 上記 セグメントドライバ 1 0およぴコモンドライバ 1 2 0に対する動作タイミング
T/JP01/11233 Although not shown, the LCD control driver 100 has an address counter for generating an address for the display RAM 140, and data read from the display RAM 140 and an external microcomputer. Logical operation means for performing a logical operation for watermark display and superimposed display based on the supplied new display data, operation timing for the segment driver 10 and the common driver 120 T / JP01 / 11233
15 信号を生成するタイミング生成回路などが設けられている。 15 A timing generation circuit for generating signals is provided.
前記実施例の液晶駆動電圧発生回路において、 可変抵抗回路 3 0に設けられて いるフィードバック電圧 V f の設定用レジスタ R E Gは、 上記制御部 1 5 0に よって書換え可能に構成されている。 そして、 制御部 1 5 0は、 外部のマイコン 等から供給されるコマンドに基づいてレジスタ R E Gに対する設定を行なう。 液 晶コント口ールドライノく 1 0 0には、 一般に、 前記制御部 1 5 0にこの液晶コン ト ロールドライノく 1 0 0の動作モードなどチップ全体の動作状態を制御するため のコントロールレジスタが設けられるので、 上記フィードパック電圧 V f の設定 用レジスタ R E Gをこのコントロールレジスタの一部として設けるようにしても 良い。 In the liquid crystal drive voltage generation circuit of the embodiment, the register R EG for setting the feedback voltage V f provided in the variable resistance circuit 30 is configured to be rewritable by the control unit 150. Then, the control unit 150 sets the register REG based on a command supplied from an external microcomputer or the like. In general, the control section 150 is provided with a control register for controlling the operation state of the entire chip such as the operation mode of the liquid crystal control panel 100 in the liquid crystal panel control panel 100. Therefore, the register REG for setting the feedback voltage Vf may be provided as a part of the control register.
なお、 前記制御部 1 5 0の制御方式としては、 外部のマイコンからコマンド コードを受けるとこのコマンドをデコードして制御信号を生成する方式や予め制 御部内に複数のコマンドコードと実行するコマンドを指示するレジスタ (ィン デックスレジスタと称する) とを備えマイコンがィンデッタスレジスタに書込み を行なうことで実行するコマンドを指定して制御信号を生成する方式など任意の 制御方式をとることができる。 The control method of the control unit 150 includes a method of receiving a command code from an external microcomputer and decoding the command to generate a control signal, and a method of executing a plurality of command codes and a command to be executed in the control unit in advance. An instruction register (referred to as an index register) is provided, and the microcomputer can take any control method such as a method of generating a control signal by specifying a command to be executed by writing to the index register. .
このように構成された制御部 1 5 0による制御によって、 液晶コントロールド ライパ 1 0 0は、 外部のマイコンからの指令おょぴデータに基づいて上述した液 晶パネル 2 0 0に表示を行なう際に、 表示データを表示用 R AM I 4 0に順次書 き込んでいく描画処理を行うと共に、 表示 R AM用 1 4 0から順次表示データを 読み出す読出し処理を行なって液晶パネル 2 0 0のセグメント電極に印加する信 号およびコモン電極に印加する信号をドライノ 1 1 0, 1 2 0により出力させる。 図 9は、 図 8の液晶コントロールドライバ 1 0 0と液晶パネル 2 0 0とからな る液晶表示装置の応用例としての携帯電話器の全体構成を示すプロック図である。 この実施例の携帯電話器は、 表示部としての液晶パネル 2 0 0、 送受信用のァ ンテナ 3 2 1、 音声出力用のスピーカ 3 2 2、 音声入力用のマイクロホン 3 2 3、 本発明を適用した液晶コントロールドライバ 1 0 0、 スピーカ 3 2 2やマイクロ ホンの信号の入出力を行なう音声インターフェース 3 3 0、 アンテナ 3 2 1との
間の信号の入出力を行なう高周波インターフェース 3 4 0、 音声信号や送受信信 号に係る信号処理を行う D S P (Digital Signal Processor) 3 5 1、 カスタム 機能 (ユーザ論理) を提供する A S I C (Application Specific Integrated Circuits) 3 5 2、 表示制御を含め装置全体の制御を行なうマイクロプロセッサ もしくはマイクロコンピュータなどからなるシステム制御装置 3 5 3およびデー タゃプログラムの記憶用メモリ 3 6 0等を備えてなる。 上記 D S P 3 5 1、 A S I C 3 5 2およびシステム制御装置としてのマイコン 3 5 3により、 いわゆる ベースパンド部 3 5 0が構成される。 With the control of the control unit 150 configured as described above, the liquid crystal control driver 100 is configured to perform display on the above-described liquid crystal panel 200 based on command data from an external microcomputer. In addition, a drawing process for sequentially writing display data to the display RAM I 40 is performed, and a reading process for sequentially reading display data from the display RAM 140 is performed, and the segment of the liquid crystal panel 200 is performed. The signals to be applied to the electrodes and the signals to be applied to the common electrode are output by Dryno 110 and 120. FIG. 9 is a block diagram showing an overall configuration of a mobile phone as an application example of the liquid crystal display device including the liquid crystal control driver 100 and the liquid crystal panel 200 of FIG. The mobile phone of this embodiment has a liquid crystal panel 200 as a display unit, a transmitting / receiving antenna 321, a voice output speaker 32, a voice input microphone 32, and the present invention. LCD control driver 100, speaker 3 22 and audio interface 3 30 for input / output of microphone and microphone signals, and antenna 3 2 1 High-frequency interface 340 for input / output of signals between DSPs, DSP (Digital Signal Processor) 351 for signal processing related to audio signals and transmission / reception signals, ASIC (Application Specific Integrated) providing custom functions (user logic) Circuits) 352, a system controller 353 composed of a microprocessor or microcomputer for controlling the entire apparatus including display control, and a memory 360 for storing data and programs. The DSP 351, the ASIC 352, and the microcomputer 353 as a system control device constitute a so-called base band section 350.
特に制限されるものでないが、 上記液晶パネル 2 0 0は、 多数の表示画素がマ トリックス状に配列されたドットマトリックス方式のパネルである。 なお、 力 ラー表示の液晶パネルの場合、 1画素は赤、 青、 緑の 3 ドットで構成される。 ま た、 メモリ 3 6 0は、 例えば所定のプロック単位で一括消去可能なフラッシュメ モリ等から構成され、 表示制御を含む携帯電話器システム全体の制御プログラム や制御データが記憶されると共に、 2次元的な表示パターンとして文字フォント 等の表示データが格納されたパターンメモリである C G R O M ( Character Generator Read Only Memory) としての機能を兼ね備えている。 Although not particularly limited, the liquid crystal panel 200 is a dot matrix type panel in which a large number of display pixels are arranged in a matrix. In the case of a color LCD panel, one pixel consists of three dots: red, blue, and green. The memory 360 is composed of, for example, flash memory that can be erased in batches in predetermined blocks, and stores a control program and control data of the entire mobile phone system including display control, and a two-dimensional memory. It also has a function as a CGROM (Character Generator Read Only Memory), which is a pattern memory that stores display data such as character fonts and other display patterns.
さらに、 この実施例のシステムにおいては、 液晶コントロールドライバ 1 0 0 がセグメントドライバ 1 1 0とコモンドライバ 1 2 0を内蔵した液晶コントロー ルドライバとして構成されているが、 液晶パネルのコモン電極を駆動するコモン ドライバ 1 2 0は別の半導体チップ上に構成し、 液晶コントロールドライバ 1 0 0内の液晶駆動電圧発生回路 1 4 0からコモンドライバ ·チップに対して駆動電 圧を供給するような構成にしても良い。 Further, in the system of this embodiment, the liquid crystal control driver 100 is configured as a liquid crystal control driver including the segment driver 110 and the common driver 120, but drives the common electrode of the liquid crystal panel. The common driver 120 is formed on a separate semiconductor chip, and the driving voltage is supplied to the common driver chip from the liquid crystal drive voltage generation circuit 140 in the liquid crystal control driver 100. Is also good.
通常、 コモン電極信号はセグメント電極信号よりも電圧が高いためコモンドラ ィバは比較的高耐圧の素子により構成される。 従って、 セグメントドライバとコ モンドライバを同一のチップ上に形成すると、 高耐圧の素子を形成するプロセス と低耐圧の素子を形成するプロセスとが必要となってプロセスが複雑になるが、 コモンドライパを別チップとすることによりコモンドライバを構成する高耐圧の 素子を形成するプロセスが不要となる。 しかも、 前記実施例の液晶駆動電圧発生
回路を適用すれば、 液晶駆動電圧発生回路自身も高耐圧の素子を用いずに構成す ることができるので、 液晶駆動電圧発生回路を内蔵した液晶コントロールドライ バを簡易なプロセスで製造することができる。 Usually, the voltage of the common electrode signal is higher than that of the segment electrode signal, so that the common driver is composed of elements having a relatively high withstand voltage. Therefore, if a segment driver and a common driver are formed on the same chip, a process for forming a high withstand voltage element and a process for forming a low withstand voltage element become necessary, which complicates the process. The use of a chip eliminates the need for a process for forming a high withstand voltage element constituting a common driver. Moreover, the liquid crystal drive voltage generation of the above-described embodiment is performed. If a circuit is applied, the liquid crystal drive voltage generation circuit itself can be configured without using a high voltage element, so that a liquid crystal control driver with a built-in liquid crystal drive voltage generation circuit can be manufactured by a simple process. it can.
以上本発明者によってなされた発明を実施例に基づき具体的に説明したが、 本 発明は上記実施の形態に限定されるものではなく、 その要旨を逸脱しない範囲で 種々変更可能であることはいうまでもない。 例えば、 前記実施例の昇圧回路にお いては、 2個の容量 C I , C 2を各々電源電圧 VDD に充電した後にスィッチを 切り換えて直列形態に接続することで昇圧を行なっているが、 直列に接続する容 量の数は 2個に限定されず 3個以上であっても良い。 Although the invention made by the inventor has been specifically described based on the embodiments, the present invention is not limited to the above-described embodiment, and it can be said that various modifications can be made without departing from the gist of the invention. Not even. For example, in the booster circuit of the above embodiment, boosting is performed by charging the two capacitors CI and C2 to the power supply voltage VDD and then switching the switches to connect them in series, but in series. The number of connected capacitors is not limited to two, but may be three or more.
以上の説明では主として本発明者によってなされた発明をその背景となった利 用分野である携帯電話器の液晶パネルを駆動する液晶コントロールドライバにつ いて説明したがこの発明はそれに限定されるものでなく、 例えば、 ポケットベル、 ページャ一、 P D A (Personal Digital Assistants) など液晶パネルを有する 種々の携帯型電子機器に適用することができる。 産業上の利用可能性 In the above description, the invention made by the present inventor has been mainly described with respect to the liquid crystal control driver for driving the liquid crystal panel of the mobile phone, which is the field of application, but the present invention is not limited to this. For example, the present invention can be applied to various portable electronic devices having a liquid crystal panel such as a pager, a pager, and a PDA (Personal Digital Assistants). Industrial applicability
本発明に従うと、 電流のロスが少なくかつ精度の高い昇圧電圧を発生すること が可能な電源回路を実現することができ、 これによつて液晶パネルを駆動する電 圧を発生する液晶駆動電圧発生回路に適用した場合には液晶の劣化がなく高画質 の表示が可能になるとともに、 低消費電力で長時間の電池駆動が可能な液晶表示 装置および携帯用電子機器を提供することができる。
According to the present invention, it is possible to realize a power supply circuit capable of generating a boosted voltage with a small current loss and high accuracy, and thereby a liquid crystal driving voltage generation for generating a voltage for driving a liquid crystal panel. When applied to a circuit, it is possible to provide a liquid crystal display device and a portable electronic device that can display a high-quality image without deterioration of the liquid crystal, can consume less power, and can be driven by a battery for a long time.
Claims
1 . 外部電源電圧で動作する差動アンプを有する基準電圧発生回路と、 複数の 容量と該容量をそれぞれ充電するためのスィッチおよび前記容量を直列に接続し て充電された電圧を加算するためのスィッチを有する昇圧回路と、 該昇圧回路の 出力電圧に応じた電圧を前記差動アンプの入力端子にフィードバックさせる フィードバック手段と、 前記昇圧回路の出力端子に接続された平滑容量とを含み、 前記昇圧回路は、 充電動作の際に前記差動アンプの動作電源電圧に基づいて前 記容量への充電を行ない、 前記複数の容量が直列に接続されて充電電圧を加算す る動作を行なう際には前記差動アンプから出力される基準電圧に基づいて前記容 量の基準端側の電圧を押し上げるように構成されていることを特徴とする昇圧型 電源回路。 1. A reference voltage generating circuit having a differential amplifier that operates with an external power supply voltage, a plurality of capacitors, a switch for charging the capacitors, and a switch for connecting the capacitors in series to add a charged voltage. A booster circuit having a switch; feedback means for feeding back a voltage corresponding to an output voltage of the booster circuit to an input terminal of the differential amplifier; and a smoothing capacitor connected to an output terminal of the booster circuit. The circuit performs charging to the capacitor based on an operation power supply voltage of the differential amplifier during a charging operation, and performs an operation in which the plurality of capacitors are connected in series to add a charging voltage. A step-up power supply circuit configured to boost a voltage on a reference end side of the capacitor based on a reference voltage output from the differential amplifier.
2 . 前記フィードバック手段は、 前記昇圧回路の出力端子と電源電圧端子との 間に直列に接続された複数の抵抗素子からなる抵抗分割手段と、 これらの抵抗素 子のいずれかの接続ノードの電位を選択して前記差動アンプの入力端子に伝達さ せる選択手段とを備え、 フィードバック電圧を切り換えることで前記昇圧回路の 出力電圧を調整可能に構成されてなることを特徴とする請求項 1に記載の昇圧型 電源回路。 2. The feedback means includes: a resistance dividing means including a plurality of resistance elements connected in series between an output terminal of the booster circuit and a power supply voltage terminal; and a potential at a connection node of any one of these resistance elements. Selecting means for selecting the voltage and transmitting the selected voltage to the input terminal of the differential amplifier, wherein the output voltage of the booster circuit can be adjusted by switching the feedback voltage. The boost type power supply circuit described.
3 . 前記選択手段により前記差動アンプの入力端子にフィードバックされる電 圧を指定するためのレジスタを備えていることを特徴とする請求項 2に記載の昇 圧型電源回路。 3. The step-up power supply circuit according to claim 2, further comprising a register for designating a voltage fed back to an input terminal of the differential amplifier by the selection unit.
4 . 外部電源電圧で動作する差動アンプを有する基準電圧発生回路と、 複数の 容量と該容量をそれぞれ充電するためのスィツチおよび前記容量を直列に接続し て充電された電圧を加算するためのスィツチを有する昇圧回路と、 該昇圧回路の 出力電圧に応じた電圧を前記差動アンプの入力端子にフィードパックさせる
フィードパック手段と、 前記昇圧回路の出力端子に接続された平滑容量とから構 成され液晶パネルのセグメント電極に印加される電圧を発生する第 1の昇圧型電 源回路と、 4. A reference voltage generating circuit having a differential amplifier that operates with an external power supply voltage, a plurality of capacitors, a switch for charging each of the capacitors, and a capacitor for connecting the capacitors in series to add a charged voltage. A booster circuit having a switch, and a voltage corresponding to an output voltage of the booster circuit is fed back to an input terminal of the differential amplifier. A first step-up power supply circuit configured to generate a voltage applied to a segment electrode of a liquid crystal panel, the first step-up power supply circuit including a feed pack unit, and a smoothing capacitor connected to an output terminal of the step-up circuit;
前記第 1の昇圧型電源回路により発生された電圧に基づいて前記液晶パネルの コモン電極に印加される電圧を発生する第 2の昇圧型電源回路とを備え、 前記第 2の昇圧型電源回路は、 複数の容量と該容量をそれぞれ充電するための スィッチおよぴ前記容量を直列に接続して充電された電圧を加算するためのス ィッチを有する昇圧回路と、 前記昇圧回路の出力端子に接続された平滑容量とに より構成されていることを特徴とする液晶駆動電圧発生回路。 A second step-up power supply circuit that generates a voltage applied to a common electrode of the liquid crystal panel based on a voltage generated by the first step-up power supply circuit. A booster circuit having a plurality of capacitors, a switch for charging each of the capacitors, and a switch for connecting the capacitors in series to add a charged voltage; and a switch connected to an output terminal of the booster circuit. A liquid crystal drive voltage generating circuit, comprising: a smoothing capacitor;
5 . 外部電源電圧で動作する差動アンプを有する基準電圧発生回路と、 複数の 容量と該容量をそれぞれ充電するためのスィツチおよび前記容量を直列に接続し て充電された電圧を加算するためのスィツチを有する昇圧回路と、 該昇圧回路の 出力電圧に応じた電圧を前記差動アンプの入力端子にフィードバックさせる フィードバック手段と、 前記昇圧回路の出力端子に接続された平滑容量とから構 成され液晶パネルのセグメント電極に印加される電圧を発生する第 1の昇圧型電 源回路と、 5. A reference voltage generating circuit having a differential amplifier operating on an external power supply voltage, a plurality of capacitors, a switch for charging each of the capacitors, and a capacitor for connecting the capacitors in series to add a charged voltage A liquid crystal comprising a booster circuit having a switch, feedback means for feeding back a voltage corresponding to an output voltage of the booster circuit to an input terminal of the differential amplifier, and a smoothing capacitor connected to an output terminal of the booster circuit A first step-up power supply circuit for generating a voltage applied to a panel segment electrode;
前記第 1の昇圧型電源回路により発生された電圧に基づいて前記液晶パネルの コモン電極に印加される電圧を発生する第 2の昇圧型電源回路とを備え、 前記第 2の昇圧型電源回路は、 外部電源電圧で動作する差動アンプを有する基 準電圧発生回路と、 複数の容量と該容量をそれぞれ充電するためのスィツチおよ ぴ前記容量を直列に接続して充電された電圧を加算するためのスィツチを有する 昇圧回路と、 該昇圧回路の出力電圧を分割して前記差動アンプの入力端子に フィードバックさせる抵抗分割手段と、 前記昇圧回路の出力'端子に接続された平 滑容量とにより構成されていることを特徴とする液晶駆動電圧発生回路。 A second step-up power supply circuit that generates a voltage applied to a common electrode of the liquid crystal panel based on a voltage generated by the first step-up power supply circuit. A reference voltage generating circuit having a differential amplifier operating on an external power supply voltage, a plurality of capacitors and a switch for charging each of the capacitors, and adding the charged voltages by connecting the capacitors in series. Circuit, a resistor dividing means for dividing an output voltage of the booster circuit and feeding it back to an input terminal of the differential amplifier, and a smoothing capacitor connected to an output 'terminal of the booster circuit. A liquid crystal drive voltage generation circuit, comprising:
6 . 第 1の電圧が印加される第 1の電圧入力端子と、 第 2の電圧が印加される 第 2の電圧入力端子と、 容量素子と、 該容量素子の一方の端子が接続された第 1
の端子と、 前記容量素子の他方の端子が接続された第 2の端子と、 電圧出力端子 と、 前記第 1の電圧入力端子にその非反転入力端子が接続された差動アンプと、 前記第 1の電圧入力端子と前記第 1の端子との間に接続された第 1のスィッチ素 子と、 前記第 1の端子と前記差動アンプの出力端子との間に接続された第 2のス イッチ素子と、 前記第 2の端子と前記差動アンプの出力端子との間に接続された 第 3のスィツチ素子と、 前記第 2の端子と前記出力端子との間に接続された第 4 のスイツチ素子と、 前記第 1の入力端子と前記出力端子との間に接続された抵抗 分割回路とを含み、 6. A first voltage input terminal to which the first voltage is applied, a second voltage input terminal to which the second voltage is applied, a capacitor, and a capacitor connected to one terminal of the capacitor. 1 A second terminal to which the other terminal of the capacitive element is connected; a voltage output terminal; a differential amplifier having the first voltage input terminal connected to its non-inverting input terminal; A first switch element connected between the first voltage input terminal and the first terminal; and a second switch connected between the first terminal and the output terminal of the differential amplifier. A switch element, a third switch element connected between the second terminal and the output terminal of the differential amplifier, and a fourth switch element connected between the second terminal and the output terminal. A switch element, and a resistance dividing circuit connected between the first input terminal and the output terminal,
前記抵抗分割回路で分割された電圧が前記差動ァンプの反転入力端子に印加さ れ、 前記第 2のスィッチ素子おょぴ第 4のスィッチ素子がオフされた状態で前記 第 1のスィツチ素子および第 3のスィツチ素子がオンされて前記容量素子に前記 第 1の電圧と第 2の電圧の差電圧に相当する電荷が充電された後、 前記第 1のス ィツチ素子おょぴ第 3のスィツチ素子がオフされかつ前記第 2のスィツチ素子お よび第 4のスィツチ素子がオンされることで、 前記第 2の電圧を基準に前記第 1 の電圧を極性反転した電圧を前記出力端子に出力するように構成されてなること を特徴とする電圧反転回路。 The voltage divided by the resistance dividing circuit is applied to an inverting input terminal of the differential amplifier, and the first switch element and the fourth switch element are turned off in a state where the second switch element and the fourth switch element are turned off. After the third switch element is turned on and the capacitor element is charged with a charge corresponding to the difference voltage between the first voltage and the second voltage, the first switch element and the third switch are turned on. When the element is turned off and the second switch element and the fourth switch element are turned on, a voltage obtained by inverting the polarity of the first voltage with respect to the second voltage is output to the output terminal. A voltage inverting circuit characterized by being configured as described above.
7 . 外部電源電圧で動作する差動アンプを有する基準電圧発生回路と、 複数の 容量と該容量をそれぞれ充電するためのスィッチおよび前記容量を直列に接続し て充電された電圧を加算するためのスィッチを有する昇圧回路と、 該昇圧回路の 出力電圧に応じた電圧を前記差動アンプの入力端子にフィードパックさせる フィードパック手段と、 前記昇圧回路の出力端子に接続された平滑容量とから構 成され液晶パネルのセグメント電極に印加される電圧を発生する第 1の昇圧型電 源回路と、 7. A reference voltage generating circuit having a differential amplifier that operates on an external power supply voltage, a plurality of capacitors and a switch for charging the capacitors, and a switch for connecting the capacitors in series to add a charged voltage A booster circuit having a switch; a feed pack means for feeding a voltage corresponding to an output voltage of the booster circuit to an input terminal of the differential amplifier; and a smoothing capacitor connected to an output terminal of the booster circuit. A first step-up power supply circuit for generating a voltage applied to the segment electrodes of the liquid crystal panel;
前記第 1の昇圧型電源回路により発生された電圧に基づいて前記液晶パネルの コモン電極に印加される電圧を発生する第 2の昇圧型電源回路とを備えた液晶駆 動電圧発生回路の設計方法であって、 A method for designing a liquid crystal driving voltage generating circuit comprising: a second boosting type power supply circuit for generating a voltage applied to a common electrode of the liquid crystal panel based on a voltage generated by the first boosting type power supply circuit And
前記コモン電極の負荷が小さい場合には、 前記第 2の昇圧型電源回路を、 複数
の容量と該容量をそれぞれ充電するた'めのスィッチおよび前記容量を直列に接続 して充電された電圧を加算するためのスィツチを有する昇圧回路と、 該昇圧回路 の出力端子に接続された平滑容量とにより構成し、 When the load on the common electrode is small, the second booster type power supply circuit A booster circuit having a switch for charging the capacitor, a switch for charging the capacitor, and a switch for adding the charged voltage by connecting the capacitor in series; and a smoothing circuit connected to an output terminal of the booster circuit. With capacity,
前記コモン電極の負荷が大きい場合には、 前記第 2の昇圧型電源回路を、 差動 アンプを有する基準電圧発生回路と、 複数の容量と該容量をそれぞれ充電するた めのスィッチおよび前記容量を直列に接続して充電された電圧を加算するための スィツチを有する昇圧回路と、 該昇圧回路の出力電圧を分割して前記差動アンプ の入力端子にフィードバックさせる抵抗分割手段と、 前記昇圧回路の出力端子に 接続された平滑容量とにより構成することを特徴とする液晶駆動電圧発生回路の 設計方法。 When the load on the common electrode is large, the second boosting type power supply circuit includes a reference voltage generating circuit having a differential amplifier, a plurality of capacitors, a switch for charging each of the capacitors, and the capacitor. A booster circuit having a switch for adding a charged voltage connected in series; a resistor dividing means for dividing an output voltage of the booster circuit and feeding it back to an input terminal of the differential amplifier; A method for designing a liquid crystal drive voltage generating circuit, comprising: a smoothing capacitor connected to an output terminal.
8 . 請求項 4または請求項 5に記載の液晶駆動電圧発生回路と、 8. The liquid crystal drive voltage generation circuit according to claim 4 or claim 5,
前記液晶パネルに表示するデータを記憶する表示用メモリと、 A display memory for storing data to be displayed on the liquid crystal panel;
前記表示用メモリに書き込むデータの生成および前記表示用メモリからのデー タ読出しに関する制御を行う制御回路と、 A control circuit for controlling generation of data to be written to the display memory and reading of data from the display memory;
前記表示用メモリから読み出されたデータと前記液晶駆動電圧発生回路により 発生された駆動電圧とに基づき前記液晶パネルのセグメント電極に印加する信号 を生成するセグメント駆動回路と、 A segment drive circuit that generates a signal to be applied to a segment electrode of the liquid crystal panel based on data read from the display memory and a drive voltage generated by the liquid crystal drive voltage generation circuit;
前記液晶駆動電圧発生回路により発生された駆動電圧と所定のタイミング信号 とに基づき前記液晶パネルのコモン電極に印加する信号を生成するコモン電極駆 動回路と、 . A common electrode driving circuit that generates a signal to be applied to a common electrode of the liquid crystal panel based on the driving voltage generated by the liquid crystal driving voltage generating circuit and a predetermined timing signal;
を備えたことを特徴とする液晶表示制御装置。 A liquid crystal display control device comprising:
9 . 前記液晶駆動電圧発生回路と、 前記表示用メモリと、 前記制御回路と、 前 記セグメント駆動回路と、 前記コモン電極駆動回路とは、 一つの半導体チップ上 に形成されていることを特徴とする請求項 8に記載の液晶表示制御装置。 9. The liquid crystal drive voltage generation circuit, the display memory, the control circuit, the segment drive circuit, and the common electrode drive circuit are formed on one semiconductor chip. 9. The liquid crystal display control device according to claim 8, wherein:
1 0 . 前記液晶駆動電圧発生回路と、 前記表示用メモリと、 前記制御回路と、
前記セグメント駆動回路とは、 第 1の半導体チップ上に半導体集積回路として構 成され、 前記コモン電極駆動回路は前記液晶駆動電圧発生回路が形成された半導 体チップとは別個の第 2の半導体チップ上に半導体集積回路として構成され、 該 コモン電極駆動回路は前記液晶駆動電圧発生回路を構成する素子よりも耐圧の高 い素子で構成されていることを特徴とする請求項 9に記載の液晶表示制御装置。 10. The liquid crystal drive voltage generation circuit, the display memory, and the control circuit, The segment drive circuit is configured as a semiconductor integrated circuit on a first semiconductor chip, and the common electrode drive circuit is a second semiconductor separate from the semiconductor chip on which the liquid crystal drive voltage generation circuit is formed. 10. The liquid crystal device according to claim 9, wherein the liquid crystal device is configured as a semiconductor integrated circuit on a chip, and the common electrode drive circuit is configured by an element having a higher withstand voltage than an element configuring the liquid crystal drive voltage generation circuit. Display control device.
1 1 . 外部電源電圧で動作する差動アンプを有する基準電圧発生回路と、 複数 の容量と該容量をそれぞれ充電するためのスィッチおよび前記容量を直列に接続 して充電された電圧を加算するためのスィツチを有する昇圧回路と、 該昇圧回路 の出力電圧に応じた電圧を前記差動アンプの入力端子にフィードバックさせる フィードバック手段と、 前記昇圧回路の出力端子に接続された平滑容量とから構 成され液晶パネルのセグメント電極に印加される電圧を発生する第 1の昇圧型電 源回路と、 前記第 1の昇圧型電源回路により発生 れた電圧に基づいて前記液晶 パネルのコモン電極に印加される電圧を発生する第 2の昇圧型電源回路とを備え、 前記第 2の昇圧型電源回路は、 複数の容量と該容量をそれぞれ充電するためのス ィツチおょぴ前記容量を直列に接続して充電された電圧を加算するためのスィッ チを有する昇圧回路と、 前記昇圧回路の出力端子に接続された平滑容量とにより 構成された液晶駆動電圧発生回路と、 1 1. A reference voltage generating circuit having a differential amplifier that operates with an external power supply voltage, a plurality of capacitors and a switch for charging each of the capacitors, and a capacitor connected in series to add the charged voltages A booster circuit having the following switches: feedback means for feeding back a voltage corresponding to the output voltage of the booster circuit to an input terminal of the differential amplifier; and a smoothing capacitor connected to an output terminal of the booster circuit. A first step-up power supply circuit for generating a voltage applied to a segment electrode of the liquid crystal panel; and a voltage applied to a common electrode of the liquid crystal panel based on a voltage generated by the first step-up power supply circuit. And a second boost type power supply circuit for generating a plurality of capacitances, and a switch for charging each of the plurality of capacitances. A boosting circuit having a Sui' switch for adding the voltage charged by connecting an amount in series, the liquid crystal driving voltage generation circuit constituted by a connected smoothing capacitor to an output terminal of said booster circuit,
前記液晶パネルに表示するデータを記憶する表示用メモリと、 前記表示用メモ リに書き込むデータの生成および前記表示用メモリからのデータ読出しに関する 制御を行う制御回路と、 前記表示用メモリから読み出されたデータと前記液晶駆 動電圧発生回路により発生された駆動電圧とに基づき前記液晶パネルのセグメン ト電極に印加する信号を生成するセグメント駆動回路と、 前記液晶駆動電圧発生 回路により発生された駆動電圧と所定のタイミング信号とに基づき前記液晶パネ ルのコモン電極に印加する信号を生成するコモン電極駆動回路とを備えた液晶表 示制御装置と、 A display memory for storing data to be displayed on the liquid crystal panel; a control circuit for controlling generation of data to be written to the display memory and reading of data from the display memory; and a control circuit for reading data from the display memory. A segment drive circuit for generating a signal to be applied to the segment electrode of the liquid crystal panel based on the data obtained and the drive voltage generated by the liquid crystal drive voltage generation circuit; and a drive voltage generated by the liquid crystal drive voltage generation circuit. A liquid crystal display control device comprising: a common electrode driving circuit that generates a signal to be applied to the common electrode of the liquid crystal panel based on the predetermined timing signal and
前記セグメント駆動回路により生成された信号および前記コモン電極駆動回路 により生成された信号に基づいてドットマトリックス方式で表示を行なう液晶パ
ネルと、 A liquid crystal panel that performs display in a dot matrix system based on the signal generated by the segment drive circuit and the signal generated by the common electrode drive circuit Flannel,
上記液晶表示制御装置の電源電圧を与える電池とを備えた携帯用電子機器。 A portable electronic device comprising: a battery that supplies a power supply voltage of the liquid crystal display control device.
1 2 . 前記液晶駆動電圧発生回路と、 前記表示用メモリと、 前記制御回路と、 前記セグメント駆動回路と、 前記コモン電極駆動回路とは、 一つの半導体チップ 上に形成されていることを特徴とする請求項 1 1に記載の携帯用電子機器。 12. The liquid crystal drive voltage generation circuit, the display memory, the control circuit, the segment drive circuit, and the common electrode drive circuit are formed on one semiconductor chip. The portable electronic device according to claim 11, wherein
1 3 . 前記液晶駆動電圧発生回路と、 前記表示用メモリと、 前記制御回路と、 前記セグメント駆動回路とは、 第 1の半導体チップ上に半導体集積回路として構 成され、 前記コモン電極駆動回路は前記液晶駆動電圧発生回路が形成された半導 体チップとは別個の第 2の半導体チップ上に半導体集積回路として構成され、 該 コモン電極駆動回路は前記液晶駆動電圧発生回路を構成する素子よりも耐圧の高 い素子で構成されていることを特徴とする請求項 1 1に記載の携帯用電子機器。 13. The liquid crystal drive voltage generation circuit, the display memory, the control circuit, and the segment drive circuit are configured as a semiconductor integrated circuit on a first semiconductor chip, and the common electrode drive circuit is The liquid crystal driving voltage generation circuit is formed as a semiconductor integrated circuit on a second semiconductor chip separate from the semiconductor chip on which the liquid crystal driving voltage generation circuit is formed, and the common electrode driving circuit is smaller than an element forming the liquid crystal driving voltage generation circuit. 12. The portable electronic device according to claim 11, wherein the portable electronic device is configured by a device having a high withstand voltage.
1 4 . 前記第 2の昇圧型電源回路により発生された電圧を極性反転して前記液 晶パネルの前記コモン電極に印加される逆極性の電圧を発生する電圧反転回路を さらに備えていることを特徴とする請求項 1 1〜1 3の何れかに記載の携帯用電 子機器。 14. A voltage inverting circuit for inverting the polarity of the voltage generated by the second boosting type power supply circuit and generating a voltage of the opposite polarity applied to the common electrode of the liquid crystal panel is further provided. 14. The portable electronic device according to claim 11, wherein the portable electronic device is a portable electronic device.
1 5 . 前記電圧反転回路は、 前記第 2の昇圧型電源回路により発生された電圧 が印加される第 1の電圧入力端子と、 基準電圧が印加される第 2の電圧入力端子 と、 容量素子と、 該容量素子の一方の端子が接続された第 1の端子と、 前記容量 素子の他方の端子が接続された第 2の端子と、 電圧出力端子と、 前記第 1の電圧 入力端子にその非反転入力端子が接続された差動アンプと、 前記第 1の電圧入力 端子と前記第 1の端子との間に接続された第 1のスイツチ素子と、 前記第 1の端 子と前記差動アンプの出力端子との間に接続された第 2のスィツチ素子と、 前記 第 2の端子と前記差動アンプの出力端子との間に接続された第 3のスィツチ素子 と、 前記第 2の端子と前記出力端子との間に接続された第 4のスイツチ素子と、
前記第 1の入力端子と前記出力端子との間に接続された抵抗分割回路とを含み、 前記抵抗分割回路で分割された電圧が前記差動アンプの反転入力端子に印加さ れ、 前記第 2のスィツチ素子おょぴ第 4のスィツチ素子がオフされた状態で前記 第 1のスィツチ素子および第 3のスィツチ素子がオンされて前記容量素子に前記 第 1の電圧と第 2の電圧の差電圧に相当する電荷が充電された後、 前記第 1のス ィツチ素子おょぴ第 3のスィツチ素子がオフされかつ前.記第 2のスィツチ素子お よび第 4のスィッチ素子がオンされることで、 前記基準電圧を中心にして前記第 1の電圧入力端子の電圧を極性反転した電圧を前記出力端子に出力するように構 成されてなることを特徴とする請求項 1 4に記載の携帯用電子機器。 15. The voltage inverting circuit includes a first voltage input terminal to which a voltage generated by the second step-up power supply circuit is applied, a second voltage input terminal to which a reference voltage is applied, and a capacitor A first terminal to which one terminal of the capacitive element is connected; a second terminal to which the other terminal of the capacitive element is connected; a voltage output terminal; and a first voltage input terminal. A differential amplifier to which a non-inverting input terminal is connected; a first switch element connected between the first voltage input terminal and the first terminal; a first terminal and the differential A second switch element connected between an output terminal of the amplifier, a third switch element connected between the second terminal and an output terminal of the differential amplifier, and the second terminal A fourth switch element connected between the output terminal and A resistor dividing circuit connected between the first input terminal and the output terminal, wherein a voltage divided by the resistance dividing circuit is applied to an inverting input terminal of the differential amplifier; The first switch element and the third switch element are turned on in a state where the fourth switch element is turned off, and the difference voltage between the first voltage and the second voltage is applied to the capacitor element. After the electric charge corresponding to the above is charged, the first switch element and the third switch element are turned off and the second switch element and the fourth switch element are turned on. 15. The portable device according to claim 14, wherein a voltage obtained by inverting the polarity of the voltage of the first voltage input terminal around the reference voltage is output to the output terminal. Electronics.
1 6 . 外部電源電圧で動作する差動アンプを有する基準電圧発生回路と、 複数 の容量と該容量をそれぞれ充電するためのスィツチおよび前記容量を直列に接続 して充電された電圧を加算するためのスィツチを有する昇圧回路と、 該昇圧回路 の出力電圧に応じた電圧を前記差動アンプの入力端子にフィードパックさせる フィードバック手段と、 前記昇圧回路の出力端子に接続された平滑容量とから構 成され液晶パネルのセグメント電極に印加される電圧を発生する第 1の昇圧型電 源回路と、 前記第 1の昇圧型電源回路により発生された電圧に基づいて前記液晶 パネルのコモン電極に印加される電圧を発生する第 2の昇圧型電源回路とを備え、 前記第 2の昇圧型電源回路は、 外部電源電圧で動作する善動アンプを有する基準 電圧発生回路と、 複数の容量と該容量をそれぞれ充電するためのスィツチおよび 前記容量を直列に接続して充電された電圧を加算するためのスィツチを有する昇 圧回路と、 該昇圧回路の出力電圧を分割して前記差動アンプの入力端子にフィ一 ドバックさせる抵抗分割手段と、 前記昇圧回路の出力端子に接続された平滑容量 とにより構成された液晶駆動電圧発生回路と、 16. A reference voltage generating circuit having a differential amplifier that operates with an external power supply voltage, a plurality of capacitors, a switch for charging the capacitors, and a capacitor connected in series to add the charged voltages A booster circuit having the following switches: feedback means for feeding back a voltage corresponding to an output voltage of the booster circuit to an input terminal of the differential amplifier; and a smoothing capacitor connected to an output terminal of the booster circuit. A first boosted power supply circuit for generating a voltage to be applied to a segment electrode of the liquid crystal panel; and a voltage applied to a common electrode of the liquid crystal panel based on a voltage generated by the first boosted power supply circuit. A second step-up power supply circuit that generates a voltage, wherein the second step-up power supply circuit has a reference voltage generation circuit that includes a good operating amplifier that operates with an external power supply voltage; A booster circuit having a plurality of capacitors, a switch for charging each of the capacitors, and a switch for connecting the capacitors in series to add a charged voltage; dividing the output voltage of the booster circuit into A liquid crystal drive voltage generation circuit configured by a resistance dividing unit that feeds back to an input terminal of the differential amplifier, and a smoothing capacitor connected to an output terminal of the booster circuit;
前記液晶パネルに表示するデータを記憶する表示用メモリと、 前記表示用メモ リに書き込むデータの生成および前記表示用メモリからのデータ読出しに関する 制御を行う制御回路と、 前記表示用メモリから読み出されたデータと前記液晶駆 動電圧発生回路により発生された駆動電圧とに基づき前記液晶パネルのセグメン
ト電極に印加する信号を生成するセグメント駆動回路と、 前記液晶駆動電圧発生 回路により発生された駆動電圧と所定のタイミング信号とに基づき前記液晶パネ ルのコモン電極に印加する信号を生成するコモン電極駆動回路とを備えた液晶表 示制御装置と、 A display memory for storing data to be displayed on the liquid crystal panel; a control circuit for controlling generation of data to be written to the display memory and reading of data from the display memory; and a control circuit for reading data from the display memory. Segment of the liquid crystal panel based on the data thus obtained and the driving voltage generated by the liquid crystal driving voltage generating circuit. A segment drive circuit for generating a signal to be applied to the common electrode; and a common electrode for generating a signal to be applied to the common electrode of the liquid crystal panel based on the drive voltage generated by the liquid crystal drive voltage generation circuit and a predetermined timing signal. A liquid crystal display control device having a drive circuit;
前記セグメント駆動回路により生成された信号および前記コモン電極駆動回路 により生成された信号に基づいてドットマトリックス方式で表示を行なう液晶パ ネルと、 A liquid crystal panel that performs display in a dot matrix system based on a signal generated by the segment driving circuit and a signal generated by the common electrode driving circuit;
上記液晶表示制御装置の電源電圧を与える電池とを備えた携帯用電子機器。 A portable electronic device comprising: a battery that supplies a power supply voltage of the liquid crystal display control device.
1 7 . 前記液晶駆動電圧発生回路と、 前記表示用メモリ と、 前記制御回路と、 前記セグメント駆動回路と、 前記コモン電極駆動回路とは、 一つの半導体チップ 上に形成されていることを特徴とする請求項 1 6に記載の携帯用電子機器。 17. The liquid crystal drive voltage generation circuit, the display memory, the control circuit, the segment drive circuit, and the common electrode drive circuit are formed on one semiconductor chip. 17. The portable electronic device according to claim 16, wherein:
1 8 . 前記液晶駆動電圧発生回路と、 前記表示用メモリ と、 前記制御回路と、 前記セグメント駆動回路とは、 第 1の半導体チップ上に半導体集積回路として構 成され、 前記コモン電極駆動回路は前記液晶駆動電圧発生回路が形成された半導 体チップとは別個の第 2の半導体チップ上に半導体集積回路として構成され、 該 コモン電極駆動回路は前記液晶駆動電圧発生回路を構成する素子よりも耐圧の高 い素子で構成されていることを特徴とする請求項 1 7に記載の携帯用電子機器。 18. The liquid crystal drive voltage generation circuit, the display memory, the control circuit, and the segment drive circuit are configured as a semiconductor integrated circuit on a first semiconductor chip, and the common electrode drive circuit is The liquid crystal driving voltage generation circuit is formed as a semiconductor integrated circuit on a second semiconductor chip separate from the semiconductor chip on which the liquid crystal driving voltage generation circuit is formed, and the common electrode driving circuit is smaller than an element forming the liquid crystal driving voltage generation circuit. 18. The portable electronic device according to claim 17, wherein the portable electronic device is configured with a high withstand voltage element.
1 9 . 前記第 2の昇圧型電源回路により発生された電圧を極性反転して前記液 晶パネルの前記コモン電極に印加される逆極性の電圧を発生する電圧反転回路を さらに備えていることを特徴とする請求項 1 6〜 1 8の何れかに記載の携帯用電 子機器。 19. A voltage inverting circuit for inverting the polarity of the voltage generated by the second step-up power supply circuit and generating a voltage of the opposite polarity applied to the common electrode of the liquid crystal panel is further provided. 19. The portable electronic device according to claim 16, wherein the portable electronic device is a portable electronic device.
2 0 . 前記電圧反転回路は、 前記第 2の昇圧型電源回路により発生された電圧 が印加される第 1の電圧入力端子と、 基準電圧が印加される第 2の電圧入力端子 と、 容量素子と、 該容量素子の一方の端子が接続された第 1の端子と、 前記容量
素子の他方の端子が接続された第 2の端子と、 電圧出力端子と、 前記第 1の電圧 入力端子にその非反転入力端子が接続された差動アンプと、 前記第 1の電圧入力 端子と前記第 1の端子との間に接続された第 1のスィツチ素子と、 前記第 1の端 子と前記差動アンプの出力端子との間に接続された第 2のスイツチ素子と、 前記 第 2の端子と前記差動アンプの出力端子との間に接続された第 3のスィツチ素子 と、 前記第 2の端子と前記出力端子との間に接続された第 4のスイツチ素子と、 前記第 1の入力端子と前記出力端子との間に接続された抵抗分割回路とを含み、 前記抵抗分割回路で分割された電圧が前記差動アンプの反転入力端子に印加さ れ、 前記第 2のスィツチ素子および第 4のスィツチ素子がオフされた状態で前記 第 1のスィツチ素子および第 3のスィツチ素子がオンされて前記容量素子に前記 第 1の電圧と第 2の電圧の差電圧に相当する電荷が充電された後、 前記第 1のス ィツチ素子および第 3のスィツチ素子がオフされかつ前記第 2のスィツチ素子お よび第 4のスィッチ素子がオンされることで、 前記基準電圧を中心にして前記第 1の電圧入力端子の電圧を極性反転した電圧を前記出力端子に出力するように構 成されてなることを特徴とする請求項 1 9に記載の携帯用電子機器。
20. The voltage inverting circuit includes a first voltage input terminal to which a voltage generated by the second step-up power supply circuit is applied, a second voltage input terminal to which a reference voltage is applied, and a capacitor A first terminal to which one terminal of the capacitive element is connected; A second terminal to which the other terminal of the element is connected; a voltage output terminal; a differential amplifier having the non-inverting input terminal connected to the first voltage input terminal; and a first voltage input terminal. A first switch element connected between the first terminal, a second switch element connected between the first terminal and an output terminal of the differential amplifier, A third switch element connected between the second terminal and the output terminal of the differential amplifier; a fourth switch element connected between the second terminal and the output terminal; A resistor divided circuit connected between the input terminal of the differential amplifier and the output terminal of the differential amplifier; a voltage divided by the resistor divided circuit is applied to an inverting input terminal of the differential amplifier; And the first switch element and the fourth switch element are turned off. After the third switch element is turned on and the capacitor element is charged with a charge corresponding to the difference voltage between the first voltage and the second voltage, the first switch element and the third switch element Is turned off and the second switch element and the fourth switch element are turned on, so that a voltage obtained by inverting the polarity of the voltage of the first voltage input terminal around the reference voltage is output to the output terminal. 10. The portable electronic device according to claim 19, wherein the portable electronic device is configured to output.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002561358A JPWO2002061931A1 (en) | 2001-01-30 | 2001-12-21 | Boost type power supply circuit, liquid crystal display device, and portable electronic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-21196 | 2001-01-30 | ||
JP2001021196 | 2001-01-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002061931A1 true WO2002061931A1 (en) | 2002-08-08 |
Family
ID=18886793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/011233 WO2002061931A1 (en) | 2001-01-30 | 2001-12-21 | Boosting power circuit, liquid crystal display device, and portable electronic equipment |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2002061931A1 (en) |
WO (1) | WO2002061931A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007089373A (en) * | 2005-09-26 | 2007-04-05 | Matsushita Electric Works Ltd | Power supply circuit |
WO2009028394A1 (en) * | 2007-08-30 | 2009-03-05 | Sanyo Electric Co., Ltd. | Charge pump type booster circuit |
US7511561B2 (en) | 2006-07-20 | 2009-03-31 | Oki Semiconductor Co., Ltd. | Boosting circuit |
JP2009168970A (en) * | 2008-01-15 | 2009-07-30 | Renesas Technology Corp | Power circuit and display device |
US7884497B2 (en) | 2008-02-20 | 2011-02-08 | Renesas Electronics Corporation | Power supply circuit |
WO2011023672A1 (en) * | 2009-08-25 | 2011-03-03 | Store Electronic Systems | High efficiency regulated charge pump |
US8686936B2 (en) | 2010-05-17 | 2014-04-01 | Samsung Display Co., Ltd. | Liquid crystal display apparatus and method of driving the same |
US12083227B2 (en) | 2017-08-18 | 2024-09-10 | Abbvie Inc. | Solid pharmaceutical formulations for treating endometriosis, uterine fibroids, polycystic ovary syndrome or adenomyosis |
US12102637B2 (en) | 2017-08-18 | 2024-10-01 | Abbvie Inc. | Pharmaceutical formulations for treating endometriosis, uterine fibroids, polycystic ovary syndrome or adenomyosis |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11150943A (en) * | 1997-11-14 | 1999-06-02 | Nec Corp | Booster circuit |
JP2000262043A (en) * | 1999-03-10 | 2000-09-22 | Nec Corp | Constant voltage circuit |
-
2001
- 2001-12-21 JP JP2002561358A patent/JPWO2002061931A1/en active Pending
- 2001-12-21 WO PCT/JP2001/011233 patent/WO2002061931A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11150943A (en) * | 1997-11-14 | 1999-06-02 | Nec Corp | Booster circuit |
JP2000262043A (en) * | 1999-03-10 | 2000-09-22 | Nec Corp | Constant voltage circuit |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007089373A (en) * | 2005-09-26 | 2007-04-05 | Matsushita Electric Works Ltd | Power supply circuit |
US7511561B2 (en) | 2006-07-20 | 2009-03-31 | Oki Semiconductor Co., Ltd. | Boosting circuit |
WO2009028394A1 (en) * | 2007-08-30 | 2009-03-05 | Sanyo Electric Co., Ltd. | Charge pump type booster circuit |
JP2009168970A (en) * | 2008-01-15 | 2009-07-30 | Renesas Technology Corp | Power circuit and display device |
US7884497B2 (en) | 2008-02-20 | 2011-02-08 | Renesas Electronics Corporation | Power supply circuit |
WO2011023672A1 (en) * | 2009-08-25 | 2011-03-03 | Store Electronic Systems | High efficiency regulated charge pump |
US8593213B2 (en) | 2009-08-25 | 2013-11-26 | Store Electronic Systems | High efficiency regulated charge pump |
AU2010288620B2 (en) * | 2009-08-25 | 2014-10-09 | Vusiongroup | High efficiency regulated charge pump |
US8686936B2 (en) | 2010-05-17 | 2014-04-01 | Samsung Display Co., Ltd. | Liquid crystal display apparatus and method of driving the same |
US12083227B2 (en) | 2017-08-18 | 2024-09-10 | Abbvie Inc. | Solid pharmaceutical formulations for treating endometriosis, uterine fibroids, polycystic ovary syndrome or adenomyosis |
US12102637B2 (en) | 2017-08-18 | 2024-10-01 | Abbvie Inc. | Pharmaceutical formulations for treating endometriosis, uterine fibroids, polycystic ovary syndrome or adenomyosis |
Also Published As
Publication number | Publication date |
---|---|
JPWO2002061931A1 (en) | 2004-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4397936B2 (en) | Switching power supply device and electronic device using the same | |
JP3666805B2 (en) | DC / DC converter | |
JP4717458B2 (en) | Voltage generator | |
JP3572473B2 (en) | Liquid crystal display control device | |
KR101127580B1 (en) | Power driver, source driver, and display apparatus | |
JP2007074797A (en) | Switching power supply and electronic device using the same | |
EP1139330A2 (en) | Driving apparatus for display device | |
JP2005073495A (en) | Voltage boost circuit and method thereof | |
JP2001075536A (en) | Booster circuit, source circuit and liquid crystal drive device | |
KR20130025057A (en) | Power converting circuit for display driver | |
WO2002061931A1 (en) | Boosting power circuit, liquid crystal display device, and portable electronic equipment | |
KR101465045B1 (en) | Drive circuit | |
CN110675796A (en) | Wide-narrow viewing angle switching circuit, display device and viewing angle control method | |
JP2004361709A (en) | Liquid crystal driving method, liquid crystal display system and liquid crystal driving controller | |
JP3554135B2 (en) | LCD driver | |
CN101873064A (en) | Booster circuit and liquid crystal display device using booster circuit | |
JP2005039936A (en) | Power supply | |
US20020075272A1 (en) | Display control device and mobile electronic apparatus | |
JP2007531447A (en) | DA converter | |
CN100479308C (en) | DC-DC converter and organic light emitting display using the same | |
US7230471B2 (en) | Charge pump circuit of LCD driver including driver having variable current driving capability | |
JP2005010697A (en) | Display device | |
JP2007195345A (en) | DC-DC converter | |
JPH0530662A (en) | Power supply device and electronic device including the same | |
US7525467B2 (en) | System for displaying image and digital-to-analog converting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR SG US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002561358 Country of ref document: JP |
|
122 | Ep: pct application non-entry in european phase |