WO2002055880A1 - Swash plate compressor - Google Patents
Swash plate compressor Download PDFInfo
- Publication number
- WO2002055880A1 WO2002055880A1 PCT/JP2001/011304 JP0111304W WO02055880A1 WO 2002055880 A1 WO2002055880 A1 WO 2002055880A1 JP 0111304 W JP0111304 W JP 0111304W WO 02055880 A1 WO02055880 A1 WO 02055880A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drive shaft
- swash plate
- chamber
- housing
- sealing device
- Prior art date
Links
- 238000007789 sealing Methods 0.000 claims abstract description 45
- 238000004891 communication Methods 0.000 claims abstract description 31
- 230000033001 locomotion Effects 0.000 claims description 13
- 239000010687 lubricating oil Substances 0.000 claims description 12
- 241001634822 Biston Species 0.000 claims description 4
- FFGPTBGBLSHEPO-UHFFFAOYSA-N carbamazepine Chemical compound C1=CC2=CC=CC=C2N(C(=O)N)C2=CC=CC=C21 FFGPTBGBLSHEPO-UHFFFAOYSA-N 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims 2
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 239000003507 refrigerant Substances 0.000 description 36
- 230000006835 compression Effects 0.000 description 18
- 238000007906 compression Methods 0.000 description 18
- 230000007246 mechanism Effects 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000006073 displacement reaction Methods 0.000 description 11
- 238000005461 lubrication Methods 0.000 description 8
- 230000009471 action Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/10—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
- F04B27/1036—Component parts, details, e.g. sealings, lubrication
Definitions
- the present invention relates to, for example, a swash plate type compressor having a single-headed piston used for an air conditioner of a vehicle or the like, and more particularly to a radial bearing and a shaft sealing device for supporting a drive shaft for driving a biston.
- the present invention relates to improvement of a lubrication structure.
- the housing is generally composed of a front housing 71, a cylinder block 72 and a rear housing 73 which are fixedly connected to each other.
- the drive shaft 74 is rotatable with respect to the housing via a pair of radial bearings 75, 76 at the first end and the second end so that the first end projects forward from the front housing 71.
- a shaft sealing device 78 for preventing refrigerant gas from leaking from the crank chamber 77 to the atmosphere is disposed closer to the first end of the drive shaft 74 than the first radial bearing 75 in the housing.
- the shaft sealing device 78 has an isolation chamber 80 formed forward of the first radial bearing 75. It is contained in The drive shaft 74 has a pressure reducing passage 79 formed therein. The entrance 79 a of the decompression passage 79 opens toward the isolation chamber 80, and the exit 79 b of the decompression passage 79 is The drive shaft 74 is open at the end face of the second end. 'A fan 81 is fixed to the second end of the drive shaft 74. When the fan 81 rotates integrally with the drive shaft 74, the refrigerant in the pressure reducing passage 79 is pumped to the outlet 79b. The refrigerant pumped to the outlet 799b side flows out of the radial bearing 76 into the crankcase 77.
- the isolation chamber 80 communicates with the crank chamber 77 via a gap in the radial bearing 75 and a gap in the thrust bearing 82.
- the gap in the radial bearing 75 and the gap in the thrust bearing 82 function as an oil supply passage.
- a chamber 8 in which a second end of a drive shaft 74 communicates with a suction chamber 83 is provided. 4 facing.
- a communication passage 85 is formed in the drive shaft 74. The entrance 85 a of the communication passage 85 opens toward the isolation chamber 80, and the outlet 85 b opens to communicate with the chamber 84.
- a part of the refrigerant gas in the crank chamber 77 is made to flow by the action of the fan 81 provided on the drive shaft 74 or the first radial bearing 75 or the thruster. It is introduced into the pressure reducing passageway 79 through the gap between the bearings 82 and returns to the crank chamber 77 through the gap between the second radial bearing 76. Therefore, both radial bearings.
- Lubrication of 75, 76 and shaft sealing device 78 will be improved.
- the fan 81 is required to generate the flow of the lubricating oil in the pressure reducing passage 79, which complicates the structure.
- the refrigerant moves through the gap between the radial bearings 75 and 76 or the thrust bearing 82 based on the pressure difference between the refrigerant and the thrust bearing 82.
- the inlet 85 a is located between the first radial bearing 75 and the thrust bearing 82, either The flow of the refrigerant gas passing through one side is weakened, resulting in insufficient lubrication.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a swash plate compressor that can favorably lubricate a radial bearing that supports a drive shaft and a shaft sealing device with a simple configuration. To provide. Disclosure of the invention
- a swash plate compressor having the following configuration.
- the swash plate compressor has a housing having a suction chamber, a discharge chamber, and a crank chamber.
- the housing has at least one cylinder bore.
- a drive shaft is rotatably supported by the housing.
- the drive shaft has a first end and a second end, and the first end is supported so as to protrude from the housing.
- the first and second ends of the drive shaft are supported by first and second radial bearings, respectively.
- the piston is reciprocally housed in each cylinder bore.
- a cam plate is housed in the crank chamber and is operatively connected to the piston for converting the rotational motion of the drive shaft into the reciprocating motion of the piston.
- the shaft sealing device seals between the drive shaft and the housing.
- the shaft sealing device is accommodated in the suction chamber, and the suction chamber is also disposed on the first end side of the drive shaft with the first radial bearing.
- the drive shaft has a communication hole for communicating the suction chamber and the crank chamber.
- the communication hole has an inlet and an outlet, and the inlet is located on the second end side of the second radial bearing, and the outlet is located on the second end side of the first radial bearing.
- FIG. 1 is a cross-sectional view of the compressor according to the first embodiment.
- FIG. 2 (a) is a partial cross-sectional view of the shaft seal device of the compressor in Fig. 1
- Fig. 2 (b) is a partially enlarged cross-sectional view near the outlet of the communication hole
- Fig. 2 (c) is the second end of the drive shaft.
- FIG. FIG. 3 is a partial cross-sectional view of the compressor according to the second embodiment.
- FIG. 4 is a sectional view of a variable displacement compressor according to the third embodiment.
- FIG. 5 is a partial cross-sectional view of a shaft sealing device according to a fourth embodiment. '
- Fig. 6 is a cross-sectional view of a conventional variable displacement compressor.
- FIG. 7 is a cross-sectional view of another conventional variable displacement compressor.
- FIG. 8 is a sectional view showing a compressor according to a fifth embodiment.
- FIG. 1 the front housing 12, the cylinder block 13, and the rear housing 14, which constitute the housing 11 of the compressor 10, are connected to the first end of the housing 11 (the left side of FIG. 1). ) And are fixed to each other by a plurality of through bolts (only one is shown) 15.
- the valve plate 16 is interposed between the front housing 12 and the cylinder block 13.
- the crank chamber 17 is partitioned between the cylinder block 13 and the rear housing 14.
- the drive shaft 18 penetrates a hole formed in the valve plate 16, the first end of which protrudes from the front housing 12, and the second end of which is disposed in the crank chamber 17.
- a suction chamber 19 as a suction pressure area is formed in the front housing 12, and a substantially annular discharge chamber 20 is formed so as to surround the suction chamber 19. Is formed.
- the front housing 12 has a receiving recess 21 facing the pulp plate 16 of the suction chamber 19.
- a shaft hole 22 is formed in the cylinder block 13 so that the crank chamber 17 and the suction chamber 19 communicate with each other.
- a housing recess 23 is formed in the rear housing 14 and opens toward the crank chamber 17. The housing recess 23 forms a part of the crank chamber 17.
- the drive shaft 18 penetrates through the shaft hole 22, the suction chamber 19, the accommodation recess 21, and the insertion hole formed in the front nosing 12.
- the intermediate portion of the drive shaft 18 is rotatably supported by the cylinder block 13 by the first radial bearing 24 disposed in the shaft hole 22, and the second end of the drive shaft is housed therein.
- the second radial bearing 25 disposed in the concave portion 23 rotatably supports the rear housing 14.
- a shaft sealing device 26 'composed of a mechanical seal is provided in the suction chamber 19. That is, as shown in FIG. 2 (a), the shaft sealing device 26 includes a fixing ring 27 fitted and fixed in the housing recess 21, and a 0 (o) ring 28 on the drive shaft 18. And a sliding ring 29 made of carbon that slides on the fixing ring 27.
- the fixed ring 27 is loosely inserted into the drive shaft 18, and an O-ring 30 is interposed between the fixed ring 27 and the front housing 12.
- a groove 29 a extending in the axial direction is formed in the outer peripheral portion of the sliding ring 29.
- the shaft sealing device 26 includes a support ring 31 that can rotate integrally with the drive shaft 18.
- the support ring 31 has a locking piece 31a that engages with the groove 29a and a panel 32 that urges the sliding ring 29 toward the fixed ring 27 side. Then, the seal between the drive shaft 18 and the housing 11 is held by the contact between the O-ring 28, the sliding ring 29, the fixed ring 27 and the O-ring 30.
- a plurality of (only one is shown in the drawing) cylinder bores 33 are formed in the cylinder block 13 so as to surround the drive shaft 18 at equal angular intervals. That is, the cylinder bore 33 is formed between the crank chamber 17 in the housing 11 and the valve plate 16.
- the single-headed piston 34 is reciprocally accommodated in each cylinder bore 33.
- the front and rear openings of the cylinder bore 33 are closed by a valve plate 16 and a piston 34, and a piston 34 is provided in the cylinder bore 33.
- a compression chamber 35 whose volume changes according to the reciprocating motion is defined.
- a lug plate 36 as a rotary support is fixed to the crank chamber 17 near the second end of the drive shaft 18 so as to be integrally rotatable.
- the lug plate 36 is in contact with the inner wall surface 14a of the rear housing 14 via the first thrust bearing 37.
- the inner wall surface 14a supports the axial load due to the compression reaction force of the piston 34, and functions as a regulating surface that regulates the axial position of the drive shaft 1-8.
- the swash plate 38 as a cam plate has a through hole 38a, and is disposed in the crank chamber 17 with the drive shaft 18 penetrating the through hole 38a. Hinge mechanism 3
- the hinge mechanism 39 includes two support arms 40 (only one is shown) protruding from the front surface of the lug plate 36, a guide hole 41 formed in each support arm 40, It consists of two guide bins (only one is shown) fixed to the plate 38. Guide bins
- the drive shaft 18 can rotate synchronously with the lug plate 36 and the drive shaft 18 via the hinge mechanism 39, and can tilt with respect to the drive shaft 18 while sliding in the axial direction of the drive shaft 18. It is possible.
- the lug plate 36 and the hinge mechanism 39 constitute tilt control means.
- the swash plate 38 is formed with a power weight part 38 b on the opposite side of the hinge mechanism 39 with respect to the drive shaft 18.
- a lock ring (for example, a circuit) 43 is fixed to the drive shaft 18, and the lock ring 43 is disposed in the large-diameter portion 22 a of the shaft hole 22.
- the second thrust bearing 44 is accommodated in the large diameter portion 22 a while being inserted through the drive shaft 18, and between the locking ring 43 and the thrust bearing 44 on the drive shaft 18.
- the first coil spring 45 is wound on the first coil spring. At least when the compressor 10 is stopped, the first coil spring 45 moves the drive shaft 18 to the regulating surface (the inner wall surface 14 of the rear housing 14). a) Bias toward.
- a second coil spring 46 is wound on the drive shaft 18 between the lug plate 36 and the swash plate 38. The second coil panel 46 urges the swash plate 38 in a direction to approach the cylinder block 13, that is, in a direction to decrease the tilt angle.
- a third coil spring 47 as a return panel is provided on the drive shaft 18 between the swash plate 38 and the locking ring 43.
- the third coil panel 47 simply exists around the drive shaft 18 with its natural length. It does not exert any biasing action on the swash plate 38 or other members.
- the third coil spring 47 contracts between the swash plate 38 and the locking ring 43 and contracts. According to the degree of contraction, the swash plate 38 is urged in a direction away from the cylinder block 13 (that is, in a direction to increase the tilt angle).
- the piston 34 is moored to the periphery of the swash plate 38 via a shoe 48.
- the swash plate 38 and the shroud 48 are both made of iron-based metal, and the sliding contact between the swash plate 38 and the shroud 48 is subjected to surface treatment to prevent seizure, such as thermal spraying or friction of aluminum-based metal. Processing such as pressure welding is performed.
- the drive shaft 18 is operatively connected to the engine 50 via a power transmission mechanism 49.
- the power transmission mechanism 49 may be a clutch mechanism (for example, an electromagnetic clutch) capable of selecting power transmission interruption by external electric control, or a constant transmission type that does not have such a clutch mechanism.
- a clutchless mechanism (for example, a combination of a belt Z pulley) may be used.
- a clutchless type power transmission mechanism 49 is employed.
- the valve plate 16 corresponds to each cylinder bore 33 and has a suction port 51, a suction valve 52 for opening and closing the port 51, a discharge port 53, and a discharge valve 5 for opening and closing the port 53. 4 are formed.
- the suction chamber 19 communicates with each of the cylinder bores 33 via the suction port 51, and the cylinder bore 33 communicates with the discharge chamber 20 via the discharge port 53.
- the cylinder block 13 and the rear housing 14 are provided with an air supply passage 55 for communicating the crank chamber 17 and the discharge chamber 20.In the middle of the air supply passage 55, the inclination angle of the swash plate is set.
- a control valve 56 for controlling is provided.
- the outlet 55 a of the air supply passage 55 is formed above the first thrust bearing 37.
- the control valve 56 is formed of a known solenoid valve, a valve chamber is formed on the air supply passage 55, the air supply passage 55 is opened by excitation of the solenoid, and the air supply passage 55 is formed by demagnetization of the solenoid. Is blocked. Also, the opening can be adjusted depending on the magnitude of the excitation current of the solenoid.
- the suction chamber 19 and the discharge chamber 20 are connected by an external refrigerant circuit 57.
- the external refrigerant circuit 57 and the compressor constitute a refrigeration circuit of the vehicle air conditioner.
- the drive shaft 18 is provided with a communication hole 60 that forms a part of a bleed passage that connects the suction chamber 19 and the crank chamber 17. Is formed.
- the communication hole 60 has an inlet 60 a located on the second end side of the second radial bearing 25 and an outlet 60 b located on the second end side of the first radial bearing 24.
- a throttle portion 61 is provided in the middle of the formed communication hole 60.
- the throttle portion 61 is formed by fitting and fixing a separate member having a predetermined small-diameter hole in the communication hole 60.
- a filter 62 is fixed to the opening of the entrance 60 a of the communication hole 60 so as to be rotatable.
- the filter 62 is formed of, for example, a net, a plate in which a number of holes are formed, or a porous plate.
- a seal is provided between the outlet 60b and the second thrust bearing 44 so as to be located between the outer peripheral surface of the drive shaft 18 and the inner surface of the cylinder block 13 in the shaft hole 22.
- Ring 63 is provided.
- the seal ring 63 prevents the pressure in the crank chamber 17 from leaking into the suction chamber 19 via the shaft hole 22.
- the seal ring 63 is made of, for example, a rubber material-fluorine resin, and has a U-shaped cross section.
- the swash plate 38 With the rotation of the drive shaft 18, the swash plate 38 is integrally rotated via the lug plate 36 and the hinge mechanism 39, and the rotational motion of the swash plate 38 causes the movement of each piston 3 4 Converted to reciprocating motion.
- the suction, compression, and discharge of the refrigerant are sequentially repeated.
- the refrigerant supplied from the external refrigerant circuit 57 to the suction chamber 19 is sucked into the compression chamber 35 through the suction boat 51 and subjected to the compression action by the movement of the piston 34, and then to the discharge port 53. Through the discharge chamber 20.
- the refrigerant discharged into the discharge chamber 20 is sent to the external refrigerant circuit 57 via a discharge passage.
- the opening of the control valve 56 that is, the opening of the air supply passage 55 is adjusted by a control device (not shown) according to the cooling load, and the communication state between the discharge chamber 20 and the crank chamber 17 is changed. Is done.
- the cooling load is large, the opening of the air supply passage 55 is reduced, and the flow rate of the refrigerant gas supplied from the discharge chamber 20 to the crank chamber 17 is reduced.
- the pressure of the crank chamber 17 gradually decreases due to the escape of the refrigerant gas to the suction chamber 19 via the communication hole (bleed passage) 60.
- the pressure P c (not shown) of the crank chamber 17 acts in the opposite direction to the compression reaction force F 1, and at the first end, the crank chamber 17 Atmospheric pressure Pa (not shown) lower than pressure Pc acts in the same direction as the compression reaction force F1. That is, the cross-sectional area S (not shown) of the portion corresponding to the seal ring 63 of the drive shaft 18 in the crank chamber 17 is determined by the differential pressure between the pressure P c of the crank chamber 17 and the atmospheric pressure Pa.
- the multiplied force F 2 (P c -P a) ⁇ S acts on the drive shaft 18 in a direction opposite to the compression reaction force F 1.
- the action direction of the compression reaction force F1 and the force F2 are the same, whereas in the present invention, the latter force F2 acts in the opposite direction to the compression reaction force F1. Therefore, the power for driving the drive shaft 18 is reduced.
- the rotation of the engine 50 is transmitted to the drive shaft 18 even when the operation of the air conditioner is stopped. At this time, the inclination angle of the swash plate 38 is the maximum. Although it is kept small, the compression operation by the piston 34 is performed, and the compression reaction force F 1 acts on the drive shaft 18.
- the force F2 based on the differential pressure between the crank pressure Pc and the atmospheric pressure Pa acts on the drive shaft 18 in the direction to cancel the compression reaction force F1, so that the air conditioner Power consumption during operation stop is reduced.
- the compression reaction force F 1 of the bistone 34 does not act on the drive shaft 18, there is no force for urging the drive shaft 18 toward the regulation surface.
- the pressure in the housing 11 is higher than the pressure Pa of the outside air, the drive shaft 18 moves away from the rear housing 14 when there is no force to bias the drive shaft 18 toward the regulation surface.
- the lug plate 36 is moved away from the thrust bearing 37.
- the lug plate 36 remains in the thrust even while the compressor 10 is stopped. Are held in contact with the bearings 37.
- the crank chamber 17 and the suction chamber 19 are communicated through a communication hole 60 formed in the drive shaft 18, and a seal ring 6 is provided on the crank chamber 17 side from the outlet 60 b of the communication hole 60. 3 are provided. Accordingly, the path connecting the crank chamber 17 and the suction chamber 19 is formed by the gap between the first thrust bearing 37, the gap between the lug plate 36 and the inner wall surface 14a of the lya housing 14, and the second gap.
- a suction pressure area for accommodating the shaft sealing device 26 of the drive shaft 18 is provided on the first end side of the first radial bearing 24 with respect to the first radial bearing 24.
- a communication hole 60 for communicating the pressure region with the crank chamber 17 is formed.
- the inlet 60 a of the communication hole 60 is formed so as to be located on the second end side of the second radial bearing 25, and the outlet 60 b is located on the second end side of the first radial bearing 24. . Therefore, the flow of the refrigerant gas from the crank chamber 17 to the suction pressure region surely passes through the two radial bearings 24 and 25, and the lubricating oil contained in the refrigerant gas causes the two radial bearings 24 and 25 to flow. Good lubrication.
- the ambient temperature of the shaft sealing device 26 is lowered by the refrigerant gas in the suction pressure region as compared with the conventional configuration, and the durability is improved.
- a seal ring 63 is provided on the side of the crank chamber 17 from the outlet 6 Ob of the communication hole 60, and the refrigerant gas force from the crank chamber 17 to the suction pressure region
- the first thrust bearing 37 and both It passes through the radial bearings 24 and 25 reliably. Therefore, the lubrication of each of the bearings 24, 25, and 37 is performed more favorably. Also, the crankcase
- the refrigerant gas in 17 is extracted into the suction chamber 19 only from the communication hole 60 functioning as a bleed passage, so that it is possible to accurately adjust the pressure in the crank chamber 17 when changing the discharge capacity. Will be possible.
- the suction chamber 19 and the discharge chamber 20 are provided on the projecting side of the drive shaft 18 with respect to the crank chamber 17, and the shaft sealing device 26 is disposed in the suction chamber 19. Therefore, the life of the shaft sealing device 26 can be extended as compared with a conventional compressor that requires a sealing force to withstand a differential pressure between the crankcase 17 having a higher pressure than the suction chamber 19 and the outside air. Therefore, the reliability of the shaft seal is improved. Also, the pressure of the crank chamber 17 against the drive shaft 18 A force F 2 proportional to the pressure difference between P c and the outside air (atmosphere) Pa acts in the opposite direction to the compression reaction force F 1 acting on the drive shaft 18.
- the power for driving the drive shaft 18 can be greatly reduced as compared with the conventional compressor in which the directions of action of the two F 1 and F 2 are the same. Also, the durability of the thrust pairing 37 is improved.
- the communication hole 60 formed in the drive shaft 18 functions as a bleed passage, and the communication hole 60 is formed with a throttle 61 in the middle.
- C 0 2 becomes high pressure in the crank chamber 1 within 7 as refrigerant, extraction air amount to the suction chamber 1 9 with a slight difference in the diameter of the bleed passage is greatly changed, the capacity control accurately Difficult to do.
- the throttle unit 61 as in the present embodiment, the capacity control is simplified.
- An air supply passage 55 communicating the discharge chamber 20 and the crank chamber 17 is provided, and the opening of the air supply passage 55 is provided by a control valve 56 provided in the middle of the air supply passage 55. Change the pressure in the crankcase 17 to 'adjust. Therefore, the pressure in the crank chamber 17 can be easily adjusted.
- the shaft sealing device 26 is made of a mechanical seal, and the mechanical seal has excellent pressure resistance. Therefore, as in the case of using the C_ ⁇ 2 as the refrigerant, if the pressure in the crank chamber 1 in 7 is significantly higher compared to CFCs, so a particularly effective sealing action. Further, the stroke of the piston 34 is more effective in the case of the variable displacement type in which the pressure in the crank chamber 17 becomes higher than that of the fixed displacement type compressor.
- the embodiment is not limited to the above, and may be configured as follows, for example. Les ,.
- the shaft sealing device 26 does not necessarily need to be disposed in the suction chamber 19, and sucks the chamber 64 as a suction pressure area in which the shaft sealing device 26 is housed, as in the second embodiment shown in FIG.
- a partition wall 65 defines the inside of the chamber 19, and the suction chamber 19 and the chamber 64 communicate with each other through the hole 65a.
- the suction pressure area accommodating the shaft sealing device 26 is formed independently of the suction chamber 19, the suction chamber 19 may be arranged outside the discharge chamber 20.
- the suction chamber 19 and the discharge chamber 20 may be provided in the rear housing 14 and arranged on the side opposite to the protruding end of the drive shaft 18.
- the chamber 64 serving as the suction pressure area is communicated with the suction chamber 19 by a passage (not shown).
- This passage may be an external pipe or a passage formed in the wall of the housing.
- the bleed passage 60 may be formed to have a constant inner diameter by eliminating the throttle portion 61 in the bleed passage 60 in FIG.
- the compressor is not limited to the variable capacity type, but may be a fixed capacity type compressor. Instead of a structure in which the cam plate (swash plate 38) rotates integrally with the drive shaft 18, the present invention can be applied to a puple-type compressor in which the cam plate is supported to be rotatable relative to the drive shaft and swings. Good.
- the shaft sealing device is not limited to the mechanical seal 26, and a lip seal may be used.
- the lip seal allows the shaft sealing device to be constructed at low cost and has the advantage of excellent oil sealing.
- a resin lip ring 67 b and a lip ring 67 c made of a resin such as a fluororesin are held in a main body bracket 67 a. ing. Includes multiple rip rings 67b, 67c As a result, shaft sealing performance is enhanced.
- a spiral groove 67 d centering on the axis of the drive shaft 18 is formed on the sliding surface of the rip ring 67 b with the drive shaft 18.
- the helical groove 67 d acts to guide the lubricating oil to the suction chamber 19 by relative rotation with the drive shaft 18, further improving the oil sealing performance of the lip seal 67.
- the control valves 56 and the like for adjusting the opening degree of the control passage are not limited to the electromagnetic control valves.
- a so-called internal control valve may be provided which includes a diaphragm that is displaced by the displacement and a valve mechanism that controls the opening degree of the control passage by the displacement of the diaphragm.
- an externally controllable solenoid valve is preferable.
- the drive source of the compressor is not limited to the engine 50, but may be an electric motor. In this case, it can be installed in electric vehicles. In the fifth embodiment shown in FIG.
- a spiral for returning lubricating oil to the crank chamber 1.7 side with the rotation of the drive shaft 18 is provided on the sliding surface of the seal ring 63 with the drive shaft 18.
- a groove 63a is formed.
- the lubricating oil existing between the seal ring 63 and the drive shaft 18 is sent out to the crank chamber 17 side.
- the lubricating oil is not excessively supplied to the suction chamber 19, and there is no possibility that the lubricating oil leaks out of the housing 11 from the shaft sealing device 26.
- the spiral groove 63a on the seal ring 63 side instead of forming the spiral groove 63a on the seal ring 63 side, it may be formed on the drive shaft 1'8 side. In this case, the same effect as that formed on the seal ring 63 side can be obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Abstract
In a swash plate compressor, a shaft seal device (26) for sealing a clearance between a drive shaft (18) and a housing is received in a suction chamber (19). The drive shaft (18) is supported at the first end thereof by a first radial bearing (24) and at the second end thereof by a second radial bearing (25). The suction chamber (19) is disposed closer to the first end of the drive shaft than the first radial bearing (24). The drive shaft (18) is formed with a communication hole (60), which provides communication between the suction chamber (19) and a crank chamber (17). The inlet (60a) of the communication hole is positioned closer to the second end than the second radial bearing (25), and the outlet (60b) is positioned closer to the second end than the first radial bearing (24).
Description
明細書 Specification
斜板式圧縮機 Swash plate compressor
技術分野 Technical field
本発明は、 例えば、 車両等の空調装置に使用される片頭ピス トンを備えた斜板 式圧縮機に係り、 詳しくはビス トンを駆動する駆動軸を支持するためのラジアル ベアリング及び軸封装置の潤滑構造の改良に関するものである。 背景技術 The present invention relates to, for example, a swash plate type compressor having a single-headed piston used for an air conditioner of a vehicle or the like, and more particularly to a radial bearing and a shaft sealing device for supporting a drive shaft for driving a biston. The present invention relates to improvement of a lubrication structure. Background art
この種の斜板式圧縮機では、 一般に図 6に示すように、 ハウジングは互いに接 合固定されたフロントハウジング 7 1、 シリンダブ口ック 7 2及びリャハウジン グ 7 3で構成されている。 駆動軸 7 4は第 1端部がフロントハウジング 7 1から 前方へ突出するように、 第 1端部及び第 2端部において一対のラジアルベアリン グ 7 5, 7 6を介してハウジングに回転可能に支持されている。 ハウジングには 第 1ラジアルベアリング 7 5より駆動軸 7 4の第 1端部寄りに、 冷媒ガスがクラ ンク室 7 7から大気へ洩れるのを防止する軸封装置 7 8が配設されている。. 圧縮機では、 ベアリング等の摺動部の潤滑は、 冷媒ガス中にミス ト状で存在す る潤滑油によって行われる。 従って、 冷媒ガスの流れが淀んだ部分では潤滑が不 充分になる。 また、 近年フロンに代えて二酸化炭素 (c o2) が冷凍回路に使用さ れる圧縮機も提案されている。 このような冷媒を使用した場合は、 冷媒圧力がフ ロンを用いた場合の圧力よりも 1 0倍以上大きくなり、 ベアリングや軸封装置へ の負荷が大きくなるため、 特に潤滑を良好に行う必要がある。 特開平]. 1 — 2 4 ] 6 8 1号公報に記載の圧縮機では、 図 6に示すように、 軸 封装置 7 8は第 1ラジアルベアリング 7 5よりも前方に形成した隔離室 8 0に収 容されている。 駆動軸 7 4には減圧通路 7 9が形成されている。 減圧通路 7 9の 入口 7 9 aは隔離室 8 0に向かって開口しており、 減圧通路 7 9の出口 7 9 bは
駆動軸 7 4の第 2端部の端面にて開口している。'駆動軸 7 4の第 2端部にはファ ン 8 1が止着されている。 そして、 ファン 8 1が駆動軸 7 4と一体的に回転する と、 減圧通路 7 9内の冷媒が出口 7 9 b側へ汲み出される。 出口 7 9 b側へ汲み 出された冷媒はラジアルベアリング 7 6の隙間からクランク室 7 7へ流出する。 隔離室 8 0は、 ラジア ベアリング 7 5内の隙間及ぴスラストベアリング 8 2 の隙間を介して、 クランク室 7 7に連通されている。 ラジアルベアリング 7 5内 の隙間及びスラス トベアリング 8 2内の隙間は油供給通路として機能する。 また、 特開平 8 _ 1 6 5 9 8 7号公報に記載の別の圧縮機では、 図 7に示すよ うに、 駆動軸 7 4の第 2端部が吸入室 8 3に連通された室 8 4に対向している。 駆動軸 7 4には連通路 8 5が形成されている。 連通路 8 5の入口 8 5 aは隔離室 8 0に向かって開口し、 出口 8 5 bは室 8 4に連通するように開口している。 図 6に開示の従来装置では、 駆動軸 7 4に設けられたファン 8 1の作用によつ てクランク室 7 7内の冷媒ガスの一部が第 1ラ,ジアルべァリング 7 5あるいはス ラス トベアリング 8 2の隙間を経て減圧通路 7 9へ導入され、 第 2ラジアルベア リング 7 6の隙間を経てクランク室 7 7へ戻る。 従って、 両ラジアルベアリング.In this type of swash plate compressor, as shown in FIG. 6, the housing is generally composed of a front housing 71, a cylinder block 72 and a rear housing 73 which are fixedly connected to each other. The drive shaft 74 is rotatable with respect to the housing via a pair of radial bearings 75, 76 at the first end and the second end so that the first end projects forward from the front housing 71. Supported. A shaft sealing device 78 for preventing refrigerant gas from leaking from the crank chamber 77 to the atmosphere is disposed closer to the first end of the drive shaft 74 than the first radial bearing 75 in the housing. In a compressor, lubrication of sliding parts such as bearings is performed by lubricating oil that exists in a mist state in the refrigerant gas. Therefore, lubrication becomes insufficient in the portion where the flow of the refrigerant gas is stagnant. In recent years, a compressor using carbon dioxide (co 2 ) in a refrigeration circuit instead of chlorofluorocarbon has been proposed. When such a refrigerant is used, the pressure of the refrigerant is at least 10 times higher than the pressure when fluorocarbon is used, and the load on the bearings and shaft sealing device is increased. There is. In the compressor described in Japanese Unexamined Patent Application Publication No. Hei. 1—2 4] 681, as shown in FIG. 6, the shaft sealing device 78 has an isolation chamber 80 formed forward of the first radial bearing 75. It is contained in The drive shaft 74 has a pressure reducing passage 79 formed therein. The entrance 79 a of the decompression passage 79 opens toward the isolation chamber 80, and the exit 79 b of the decompression passage 79 is The drive shaft 74 is open at the end face of the second end. 'A fan 81 is fixed to the second end of the drive shaft 74. When the fan 81 rotates integrally with the drive shaft 74, the refrigerant in the pressure reducing passage 79 is pumped to the outlet 79b. The refrigerant pumped to the outlet 799b side flows out of the radial bearing 76 into the crankcase 77. The isolation chamber 80 communicates with the crank chamber 77 via a gap in the radial bearing 75 and a gap in the thrust bearing 82. The gap in the radial bearing 75 and the gap in the thrust bearing 82 function as an oil supply passage. Further, in another compressor described in Japanese Patent Application Laid-Open No. H08-165,897, as shown in FIG. 7, a chamber 8 in which a second end of a drive shaft 74 communicates with a suction chamber 83 is provided. 4 facing. A communication passage 85 is formed in the drive shaft 74. The entrance 85 a of the communication passage 85 opens toward the isolation chamber 80, and the outlet 85 b opens to communicate with the chamber 84. In the conventional apparatus disclosed in FIG. 6, a part of the refrigerant gas in the crank chamber 77 is made to flow by the action of the fan 81 provided on the drive shaft 74 or the first radial bearing 75 or the thruster. It is introduced into the pressure reducing passageway 79 through the gap between the bearings 82 and returns to the crank chamber 77 through the gap between the second radial bearing 76. Therefore, both radial bearings.
7 5, 7 6や軸封装置 7 8の潤滑が良好になる。 しかし、 減圧通路 7 9内に潤滑 油の流れを生じさせるためにファン 8 1が必要となり、 構造が複雑になる。 Lubrication of 75, 76 and shaft sealing device 78 will be improved. However, the fan 81 is required to generate the flow of the lubricating oil in the pressure reducing passage 79, which complicates the structure.
—方、図 7に開示された従来構成では、駆動軸 7 4にファンを設ける代わりに、 駆動軸 7 4の第 2端部を室 8 4内に配置し、 駆動軸 7 4に隔離室 8 0と室 8 4と を連通させる連通路 8 5が形成されている。 従って、 クランク室 7 7の圧力と室On the other hand, in the conventional configuration disclosed in FIG. 7, instead of providing a fan on the drive shaft 74, the second end of the drive shaft 74 is disposed in the chamber 84, and the isolation chamber 8 is provided on the drive shaft 74. A communication passage 85 that connects the chamber 0 and the chamber 84 is formed. Therefore, the pressure in the crankcase 7 7 and the chamber
8 4との圧力差に基づいて、 冷媒がラジアルベアリング 7 5, 7 6あるいはスラ ストベアリング 8 2の隙間を通るように移動する。 しかし、 入口 8 5 aが第 1ラ ジアルべァリング 7 5とスラストベアリング 8 2との中間にあるため、 いずれか
一方を通過する冷媒ガスの流れが弱くなって潤滑が不充分になる。 本発明は前記の問題点に鑑みてなされたものであって、 その目的は、 駆動軸を 支持するラジアルベアリング及び軸封装置の潤滑を簡単な構成で良好に行うこと ができる斜板式圧縮機を提供することにある。 発明の開示 The refrigerant moves through the gap between the radial bearings 75 and 76 or the thrust bearing 82 based on the pressure difference between the refrigerant and the thrust bearing 82. However, since the inlet 85 a is located between the first radial bearing 75 and the thrust bearing 82, either The flow of the refrigerant gas passing through one side is weakened, resulting in insufficient lubrication. The present invention has been made in view of the above problems, and an object of the present invention is to provide a swash plate compressor that can favorably lubricate a radial bearing that supports a drive shaft and a shaft sealing device with a simple configuration. To provide. Disclosure of the invention
上記目的を達成するために、 本発明によれば、 以下の構成の斜板式圧縮機が提 供される。 斜板式圧縮機は吸入室、 吐出室及びクランク室を備えたハウジングを 有する。 そのハウジングは少なく とも一つのシリンダボアを有する。 前記ハウジ ングには駆動軸が回転可能に支持されている。 その駆動軸は第 1端部及ぴ第 2端 部を備え、 第 1端部が前記ハウジングから突出するように支持されている。 駆動. 軸の第 1端部及び第 2端部はそれぞれ第 1及び第 2ラジアルベアリングによって 支持されている。 ビストンは各シリンダボア内に往復動可能に収容されている。 カムプレートはクランク室内に収容され、. 駆動軸の回転運動を前記ビストンの往 復運動に変換するため、 前記ピストンと作動連結されている。 軸封装置は駆動軸 とハウジングとの間をシールする。 その軸封装置は前記吸入室に収容され、 前記 吸入室は前記第 1ラジアルベアリングょりも駆動軸の第 1端部側に配置されてい る。 前記駆動軸には、 前記吸入室と前記クランク室とを連通するための連通孔が 形成されている。 その連通孔は入口及び出口を備え、 入口が前記第 2ラジアルべ ァリングより第 2端部側に位置し、 出口が前記第 1ラジアルベアリングより第 2 端部側に位置する。 図面の簡単な説明 According to the present invention, there is provided a swash plate compressor having the following configuration. The swash plate compressor has a housing having a suction chamber, a discharge chamber, and a crank chamber. The housing has at least one cylinder bore. A drive shaft is rotatably supported by the housing. The drive shaft has a first end and a second end, and the first end is supported so as to protrude from the housing. The first and second ends of the drive shaft are supported by first and second radial bearings, respectively. The piston is reciprocally housed in each cylinder bore. A cam plate is housed in the crank chamber and is operatively connected to the piston for converting the rotational motion of the drive shaft into the reciprocating motion of the piston. The shaft sealing device seals between the drive shaft and the housing. The shaft sealing device is accommodated in the suction chamber, and the suction chamber is also disposed on the first end side of the drive shaft with the first radial bearing. The drive shaft has a communication hole for communicating the suction chamber and the crank chamber. The communication hole has an inlet and an outlet, and the inlet is located on the second end side of the second radial bearing, and the outlet is located on the second end side of the first radial bearing. BRIEF DESCRIPTION OF THE FIGURES
図 1は第一実施形態の圧縮機の断面図。 FIG. 1 is a cross-sectional view of the compressor according to the first embodiment.
図 2 ( a ) は図 1の圧縮機の軸封装置の部分断面図、 図 2 ( b ) は連通孔の出 口付近の部分拡大断面図、図 2 ( c )は駆動軸の第 2端部付近の部分拡大断面図。
図 3は第二実施形態における圧縮機の部分断面図。 Fig. 2 (a) is a partial cross-sectional view of the shaft seal device of the compressor in Fig. 1, Fig. 2 (b) is a partially enlarged cross-sectional view near the outlet of the communication hole, and Fig. 2 (c) is the second end of the drive shaft. FIG. FIG. 3 is a partial cross-sectional view of the compressor according to the second embodiment.
図 4は第三実施形態における可変容量圧縮機の断面図。 FIG. 4 is a sectional view of a variable displacement compressor according to the third embodiment.
図 5は第四実施形態の軸封装置の部分断面図。 ' FIG. 5 is a partial cross-sectional view of a shaft sealing device according to a fourth embodiment. '
図 6は従来技術の可変容量圧縮機の断面図。 Fig. 6 is a cross-sectional view of a conventional variable displacement compressor.
図 7は別の従来技術の可変容量圧縮機の断面図。 FIG. 7 is a cross-sectional view of another conventional variable displacement compressor.
図 8は第五実施形態の圧縮機を示す断面図。 発明を実施するための最良の形態 FIG. 8 is a sectional view showing a compressor according to a fifth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を車両用空調装置の可変容量型圧縮機に具体化した第一実施形態 を図 1及び図 2に従って説明する。 図 1に示すように、 圧縮機 1 0のハウジング 1 1を構成するフロントハウジング 1 2、 シリンダブ口ック 1 3及びリャハウジ ング 1 4は、 ハウジング 1 1の第 1端部側 (図 1の左側) から順に配置され、 複 数の通しボルト (1本のみ図示) 1 5によって相互に固定されている。 バルブプ レート 1 6はフロントハウジング 1 2とシリンダブ口ック 1 3との間に介装され ている。 クランク室 1 7は、 シリンダプロック 1 3とリャハウジング 1 4との間 に区画されている。 駆動軸 1 8は、 バルブプレート 1 6に形成された孔を貫通し、 その第 1端部が フロントハウジング 1 2から突出し、 第 2端部がクランク室 1 7内に配置された 状態で、 ハウジング 1 1に回転可能に支承されている。 駆動軸 1 8の第 1端部近 傍において、 フロントハウジング 1 2には、 吸入圧領域としての吸入室 1 9が形 成され、 吸入室 1 9を取り囲むようにほぼ環状の吐出室 2 0が形成されている。 フロントハウジング 1 2には吸入室 1 9のパルププレート 1 6と対向する収容凹 部 2 1が形成されている。 シリンダプロック 1 3には、 クランク室 1 7と吸入室 1 9とを連通するように軸孔 2 2が形成されている。 リャハウジング 1 4にはク ランク室 1 7に向かって開口する収容凹部 2 3が形成されている。 収容凹部 2 3 はクランク室 1 7の一部を構成する。
駆動軸 1 8は軸孔 2 2、 吸入室 1 9、 収容凹部 2 1及び、 フロントノヽゥジング 1 2に形成された挿通孔を貫通している。 その状態で、 駆動軸 1 8の中間部は、 軸孔 2 2内に配設された第 1 ラジアルベアリング 2 4によってシリンダブロック 1 3に回転可能に支持され、 駆動軸の第 2端部は収容凹部 2 3内に配設された第 2ラジアルベアリング 2 5によってリャハウジング 1 4に回転可能に支持されて いる。 吸入室 1 9内にはメカニカルシールよりなる軸封装置 2 6'が配設されている。 すなわち、 図 2 ( a ) に示すように、 軸封装置 2 6は、 収容凹部 2 1に嵌合固定 された固定リング 2 7と、 駆動軸 1 8に 0 (ォー) リング 2 8を介して一体回転 可能に取り付けられるとともに、 固定リング 2 7に摺接するカーボン製の摺動リ ング 2 9とを備えている。 固定リング 2 7は駆動軸 1 8に遊挿され、 固定リング 2 7とフロントハウジング 1 2との間には Oリング 3 0が介装されている。 摺動 リング 2 9の外周部には軸方向に延びる溝 2 9 aが形成されている。 また、 軸封 装置 2 6は、 駆動軸 1 8と一体回転可能な支持リング 3 1を備えている。 支持リ ング 3 1は溝 2 9 aと係合する掛止片 3 1 aを備えるとともに、'摺動リング 2 9 を固定リング 2 7側に付勢するパネ 3 2を備えている。 そして、 駆動軸 1 8とハ ウジング 1 1との間のシールが、 Oリング 2 8、 摺動リング 2 9、 固定リング 2 7及び Oリング 3 0間の接触により保持される。 複数 (図面には一つのみ示す) のシリンダボア 3 3は、 駆動軸 1 8を等角度間 隔にて取り囲むようにしてシリンダブロック 1 3に形成されている。 即ち、 シリ ンダボア 3 3は、 ハウジング 1 1内のクランク室 1 7とバルブプレート 1 6との 間に形成されている。 片頭型のビストン 3 4は、.各シリンダボア 3 3に往復動可 能に収容されている。 シリンダボア 3 3の前後開口は、 バルブプレート 1 6及び ピス トン 3 4によって閉塞されており、 シリンダボア 3 3内にはビス トン 3 4の
往復動に応じて体積変化する圧縮室 3 5が区画されている。 回転支持体としてのラグプレート 3 6は、 クランク室 1 7において駆動軸 1 8 の第 2端部近傍に一体回転可能に固定されている。 ラグプレート 3 6は第 1のス ラストベアリング 3 7を介してリャハウジング 1 4の内壁面 1 4 aに当接してい る。 内壁面 1 4 aはピス トン 3 4の圧縮反力による軸荷重を支承し、 駆動軸 1 -8 の軸方向位置を規制する規制面として機能する。 カムプレートとしての斜板 3 8は貫通孔 3 8 aを備え、 その貫通孔 3 8 aを駆 動軸 1 8が貫通した状態で、 クランク室 1 7内に配設されている。 ヒンジ機構 3Hereinafter, a first embodiment in which the present invention is embodied in a variable displacement compressor of a vehicle air conditioner will be described with reference to FIGS. As shown in FIG. 1, the front housing 12, the cylinder block 13, and the rear housing 14, which constitute the housing 11 of the compressor 10, are connected to the first end of the housing 11 (the left side of FIG. 1). ) And are fixed to each other by a plurality of through bolts (only one is shown) 15. The valve plate 16 is interposed between the front housing 12 and the cylinder block 13. The crank chamber 17 is partitioned between the cylinder block 13 and the rear housing 14. The drive shaft 18 penetrates a hole formed in the valve plate 16, the first end of which protrudes from the front housing 12, and the second end of which is disposed in the crank chamber 17. It is rotatably supported on 1 1. Near the first end of the drive shaft 18, a suction chamber 19 as a suction pressure area is formed in the front housing 12, and a substantially annular discharge chamber 20 is formed so as to surround the suction chamber 19. Is formed. The front housing 12 has a receiving recess 21 facing the pulp plate 16 of the suction chamber 19. A shaft hole 22 is formed in the cylinder block 13 so that the crank chamber 17 and the suction chamber 19 communicate with each other. A housing recess 23 is formed in the rear housing 14 and opens toward the crank chamber 17. The housing recess 23 forms a part of the crank chamber 17. The drive shaft 18 penetrates through the shaft hole 22, the suction chamber 19, the accommodation recess 21, and the insertion hole formed in the front nosing 12. In this state, the intermediate portion of the drive shaft 18 is rotatably supported by the cylinder block 13 by the first radial bearing 24 disposed in the shaft hole 22, and the second end of the drive shaft is housed therein. The second radial bearing 25 disposed in the concave portion 23 rotatably supports the rear housing 14. In the suction chamber 19, a shaft sealing device 26 'composed of a mechanical seal is provided. That is, as shown in FIG. 2 (a), the shaft sealing device 26 includes a fixing ring 27 fitted and fixed in the housing recess 21, and a 0 (o) ring 28 on the drive shaft 18. And a sliding ring 29 made of carbon that slides on the fixing ring 27. The fixed ring 27 is loosely inserted into the drive shaft 18, and an O-ring 30 is interposed between the fixed ring 27 and the front housing 12. A groove 29 a extending in the axial direction is formed in the outer peripheral portion of the sliding ring 29. Further, the shaft sealing device 26 includes a support ring 31 that can rotate integrally with the drive shaft 18. The support ring 31 has a locking piece 31a that engages with the groove 29a and a panel 32 that urges the sliding ring 29 toward the fixed ring 27 side. Then, the seal between the drive shaft 18 and the housing 11 is held by the contact between the O-ring 28, the sliding ring 29, the fixed ring 27 and the O-ring 30. A plurality of (only one is shown in the drawing) cylinder bores 33 are formed in the cylinder block 13 so as to surround the drive shaft 18 at equal angular intervals. That is, the cylinder bore 33 is formed between the crank chamber 17 in the housing 11 and the valve plate 16. The single-headed piston 34 is reciprocally accommodated in each cylinder bore 33. The front and rear openings of the cylinder bore 33 are closed by a valve plate 16 and a piston 34, and a piston 34 is provided in the cylinder bore 33. A compression chamber 35 whose volume changes according to the reciprocating motion is defined. A lug plate 36 as a rotary support is fixed to the crank chamber 17 near the second end of the drive shaft 18 so as to be integrally rotatable. The lug plate 36 is in contact with the inner wall surface 14a of the rear housing 14 via the first thrust bearing 37. The inner wall surface 14a supports the axial load due to the compression reaction force of the piston 34, and functions as a regulating surface that regulates the axial position of the drive shaft 1-8. The swash plate 38 as a cam plate has a through hole 38a, and is disposed in the crank chamber 17 with the drive shaft 18 penetrating the through hole 38a. Hinge mechanism 3
9は、ラグプレート 3 6と斜板 3 8との間に介在されている。ヒンジ機構 3 9は、 ラグプレート 3 6のフロント面から突設された 2本の支持アーム 4 0 ( 1本のみ 図示) と、 各支持アーム 4 0に形成されたガイ ド孔 4 1 と、 斜板 3 8に固定され た 2本のガイ ドビン (一本のみ図示) 4 2とから構成されている。 各ガイ ドビン9 is interposed between the lug plate 36 and the swash plate 38. The hinge mechanism 39 includes two support arms 40 (only one is shown) protruding from the front surface of the lug plate 36, a guide hole 41 formed in each support arm 40, It consists of two guide bins (only one is shown) fixed to the plate 38. Guide bins
4 2は先端にガイ ド孔 4 1と係合する球状部 4 2 aを備えている。 そして、 斜板42 has a spherical portion 42a at the tip for engaging with the guide hole 41. And the swashplate
3 8は、 ヒンジ機構 3 9を介して、 ラグプレート 3 6及び駆動軸 1 8と同期回転 可能であり、 かつ駆動軸 1 8の軸線方向へのスライ ドを伴いながら駆動軸 1 8に 対し傾動可能である。 ラグプレート 3 6及びヒンジ機構 3 9は傾角制御手段を構 成する。 なお、 斜板 3 8には、 駆動軸 1 8を挟んでヒンジ機構 3 9と反対側に力 ゥンタウヱイ ト部 3 8 bがー体に形成されている。 駆動軸 1 8には係止リング (例えばサーク ップ) 4 3が固着され、 その係止 リング 4 3は軸孔 2 2の大径部 2 2 a内に配置されている。 大径部 2 2 a内には 第 2のスラストベアリング 4 4が駆動軸 1 8に挿通された状態で収容され、 係止 リング 4 3とスラストベアリング 4 4との間において、 駆動軸 1 8上には第 1コ ィルバネ 4 5が卷装されている。 この第 1コイルバネ 4 5は少なくとも圧縮機 1 0の運転停止時に駆動軸 1 8を、 前記規制面 (リアハウジング 1 4の内壁面 1 4
a ) に向けて付勢する。 ラグプレート 3 6と斜板 3 8 との間において駆動軸 1 8上には、 第 2コイルバ ネ 4 6が卷装されている。 第 2コイルパネ 4 6は斜板 3 8をシリンダプロック 1 3に接近する方向、 即ち傾角を減少させる方向に付勢する。 また、 斜板 3 8と係止リング 4 3との間において駆動軸 1 8上には、 復帰パネ としての第 3コイルバネ 4 7が設けられている。 斜板 3 8が大傾角状態にあると き (例えば図 1に実線で示す位置にあるとき) には、 第 3コイルパネ 4 7は、 自 然長のまま駆動軸 1 8の周囲に単に存在するのみで斜板 3 8やその他の部材に対 していかなる付勢作用も及ぼさなレ、。 他方、 図 1に鎖線で示すように斜板 3 8が 小俾角状態に移行すると、 第 3コィルバネ 4 7は斜板 3 8と係止リング 4 3 との 間に挟まれて収縮し、 その収縮の程度に応じて斜板 3 8をシリンダブロック 1 3 から離間する方向 (即ち傾角増大方向) に付勢する。 ピス トン 3 4はシユー 4 8を介して斜板 3 8の周縁部に係留されている。 従つ て、 駆動軸 1 8の回転に伴う斜板 3 8の回転運動が、 シユー 4 8を介してピス ト ン 3 4の往復運動に変換される。 斜板 3 8及びシユー 4 8は共に鉄系金属製で、 斜板 3 8のシユー 4 8との摺接部には焼付き防止のための表面処理、 例えば、 ァ ルミニゥム系金属の溶射や摩擦圧接等の処理が施されている。 駆動軸 1 8は、動力伝達機構 4 9を介してエンジン 5 0に作動連結されている。 動力伝達機構 4 9は、 外部からの電気制御によって動力の伝達ノ遮断を選択可能 なクラッチ機構 (例えば電磁クラッチ) であってもよく、 又は、 そのようなクラ ツチ機構を持たない常時伝達型のクラッチレス機構 (例えばベルト Zプーリの組 合せ) であってもよい。 なお、 本実施形態では、 クラッチレスタイプの動力伝達 機構 4 9が採用されている。
バルブプレー卜 1 6には各シリンダボア 3 3に対応して、 吸入ポート 5 1、 同 ポート 5 1を開閉する吸入弁 5 2、 吐出ポート 5 3、 及び同ポート 5 3を開閉す る吐出弁 5 4が形成されている。 吸入ポート 5 1を介して吸入室 1 9と各シリン ダボア 3 3とが連通され、 吐出ポート 5 3を介して各シリンダボア 3 3と吐出室 2 0とが連通される。 シリンダブ口ック 1 3及びリャハウジング 1 4にはクランク室 1 7と吐出室 2 0とを連通する給気通路 5 5が設けられ、 給気通路 5 5の途中には、 斜板の傾角 を制御するための制御弁 5 6が設けられている。 給気通路 5 5の出口 5 5 aは第 1のスラストベアリング 3 7の上方に形成されている。 制御弁 5 6は公知の電磁 弁よりなり、 弁室が給気通路 5 5上に形成され、 ソレノイ ドの励磁により給気通 路 5 5が開放され、 ソレノィ ドの消磁により給気通路 5 5が閉塞されるようにな つている。 また、 ソレノイ ドの励磁電流の大きさにより開度が調整可能となって レ、る。 吸入室 1 9と吐出室 2 0とは外部冷媒回路 5 7で接続されている。 外部冷媒回 路 5 7と圧縮機とによって車两空調装置の冷凍回路が構成されている。 図 1及び図 2 ( b ) , ( c ) に示すように、 駆動軸 1 8には吸入室 1 9とクラン ク室 1 7とを連通する抽気通路の一部を構成する連通孔 6 0が形成されている。 連通孔 6 0は、 その入口 6 0 aが第 2ラジアルベアリング 2 5より第 2端部側に 位置し、 出口 6 0 bが第 1ラジアルベアリング 2 4より第 2端部側に位置するよ うに形成されている 連通孔 6 0の途中には絞り部 6 1が設けられている。 絞り 部 6 1は、 所定の小径の孔が形成された別部材を連通孔 6 0内に嵌合固定するこ' とによって、 形成されている。
駆動軸 1 8の第 2端部において、 連通孔 6 0の入口 6 0 aの開口部にはフィル タ 6 2がー体回転可能に固定されている。 フィルタ 6 2は、 例えば網、 多数の孔 が形成された板、 あるいは多孔質プレートで形成されている。 軸孔 2 2内において駆動軸 1 8の外周面とシリンダブ口ック 1 3内面との間に 位置するように、 出口 6 0 b と第 2のスラス トベアリング 4 4との間には、 シー ルリング 6 3が設けられている。 シールリング 6 3は、 クランク室 1 7内の圧力 が軸孔 2 2を介して吸入室 1 9に洩れるのを防止する。 シールリング 6 3は例え ばゴム材ゃフッ素樹脂で形成され、 その断面は U字形状に形成されている。 次に前記のように構成された圧縮機の作用を説明する。 The drive shaft 18 can rotate synchronously with the lug plate 36 and the drive shaft 18 via the hinge mechanism 39, and can tilt with respect to the drive shaft 18 while sliding in the axial direction of the drive shaft 18. It is possible. The lug plate 36 and the hinge mechanism 39 constitute tilt control means. The swash plate 38 is formed with a power weight part 38 b on the opposite side of the hinge mechanism 39 with respect to the drive shaft 18. A lock ring (for example, a circuit) 43 is fixed to the drive shaft 18, and the lock ring 43 is disposed in the large-diameter portion 22 a of the shaft hole 22. The second thrust bearing 44 is accommodated in the large diameter portion 22 a while being inserted through the drive shaft 18, and between the locking ring 43 and the thrust bearing 44 on the drive shaft 18. The first coil spring 45 is wound on the first coil spring. At least when the compressor 10 is stopped, the first coil spring 45 moves the drive shaft 18 to the regulating surface (the inner wall surface 14 of the rear housing 14). a) Bias toward. A second coil spring 46 is wound on the drive shaft 18 between the lug plate 36 and the swash plate 38. The second coil panel 46 urges the swash plate 38 in a direction to approach the cylinder block 13, that is, in a direction to decrease the tilt angle. A third coil spring 47 as a return panel is provided on the drive shaft 18 between the swash plate 38 and the locking ring 43. When the swash plate 38 is in the state of large inclination (for example, at the position shown by the solid line in FIG. 1), the third coil panel 47 simply exists around the drive shaft 18 with its natural length. It does not exert any biasing action on the swash plate 38 or other members. On the other hand, as shown by the chain line in FIG. 1, when the swash plate 38 shifts to the small angle state, the third coil spring 47 contracts between the swash plate 38 and the locking ring 43 and contracts. According to the degree of contraction, the swash plate 38 is urged in a direction away from the cylinder block 13 (that is, in a direction to increase the tilt angle). The piston 34 is moored to the periphery of the swash plate 38 via a shoe 48. Therefore, the rotational motion of the swash plate 38 accompanying the rotation of the drive shaft 18 is converted to the reciprocating motion of the piston 34 via the shoe 48. The swash plate 38 and the shroud 48 are both made of iron-based metal, and the sliding contact between the swash plate 38 and the shroud 48 is subjected to surface treatment to prevent seizure, such as thermal spraying or friction of aluminum-based metal. Processing such as pressure welding is performed. The drive shaft 18 is operatively connected to the engine 50 via a power transmission mechanism 49. The power transmission mechanism 49 may be a clutch mechanism (for example, an electromagnetic clutch) capable of selecting power transmission interruption by external electric control, or a constant transmission type that does not have such a clutch mechanism. A clutchless mechanism (for example, a combination of a belt Z pulley) may be used. In this embodiment, a clutchless type power transmission mechanism 49 is employed. The valve plate 16 corresponds to each cylinder bore 33 and has a suction port 51, a suction valve 52 for opening and closing the port 51, a discharge port 53, and a discharge valve 5 for opening and closing the port 53. 4 are formed. The suction chamber 19 communicates with each of the cylinder bores 33 via the suction port 51, and the cylinder bore 33 communicates with the discharge chamber 20 via the discharge port 53. The cylinder block 13 and the rear housing 14 are provided with an air supply passage 55 for communicating the crank chamber 17 and the discharge chamber 20.In the middle of the air supply passage 55, the inclination angle of the swash plate is set. A control valve 56 for controlling is provided. The outlet 55 a of the air supply passage 55 is formed above the first thrust bearing 37. The control valve 56 is formed of a known solenoid valve, a valve chamber is formed on the air supply passage 55, the air supply passage 55 is opened by excitation of the solenoid, and the air supply passage 55 is formed by demagnetization of the solenoid. Is blocked. Also, the opening can be adjusted depending on the magnitude of the excitation current of the solenoid. The suction chamber 19 and the discharge chamber 20 are connected by an external refrigerant circuit 57. The external refrigerant circuit 57 and the compressor constitute a refrigeration circuit of the vehicle air conditioner. As shown in FIGS. 1 and 2 (b) and (c), the drive shaft 18 is provided with a communication hole 60 that forms a part of a bleed passage that connects the suction chamber 19 and the crank chamber 17. Is formed. The communication hole 60 has an inlet 60 a located on the second end side of the second radial bearing 25 and an outlet 60 b located on the second end side of the first radial bearing 24. A throttle portion 61 is provided in the middle of the formed communication hole 60. The throttle portion 61 is formed by fitting and fixing a separate member having a predetermined small-diameter hole in the communication hole 60. At the second end of the drive shaft 18, a filter 62 is fixed to the opening of the entrance 60 a of the communication hole 60 so as to be rotatable. The filter 62 is formed of, for example, a net, a plate in which a number of holes are formed, or a porous plate. A seal is provided between the outlet 60b and the second thrust bearing 44 so as to be located between the outer peripheral surface of the drive shaft 18 and the inner surface of the cylinder block 13 in the shaft hole 22. Ring 63 is provided. The seal ring 63 prevents the pressure in the crank chamber 17 from leaking into the suction chamber 19 via the shaft hole 22. The seal ring 63 is made of, for example, a rubber material-fluorine resin, and has a U-shaped cross section. Next, the operation of the compressor configured as described above will be described.
駆動軸 1 8の回転に伴い、 ラグプレート 3 6及びヒンジ機構 3 9を介して斜板 3 8が一体回転され、 斜板 3 8の回転運動がシュ一 4 8を介して各ピストン 3 4 の往復運動に変換される。 それにより、 圧縮室 3 5では、 冷媒の吸入、 圧縮及び 吐出が順次繰り返される。外部冷媒回路 5 7から吸入室 1 9に供給された冷媒は、 吸入ボート 5 1を介して圧縮室 3 5に吸入され、 ピス トン 3 4の移動による圧縮 作用を受けた後、 吐出ポート 5 3を介して吐出室 2 0に吐出される。 吐出室 2 0 に吐出された冷媒は吐出通路を経て外部冷媒回路 5 7に送り出される。 そして、 図示しない制御装置により、 冷房負荷に応じて、 制御弁 5 6の開度、 即ち給気通路 5 5の開度が調整され、 吐出室 2 0とクランク室 1 7との連通状態 が変更される。 . 冷房負荷が大きい場合は、 給気通路 5 5の開度が低減され、 吐出室 2 0からク ランク室 1 7に供給される冷媒ガスの流量が減少する。 クランク室 1 7に供給さ れる冷媒ガスの量が減少すると、 連通孔 (抽気通路) 6 0を介した吸入室 1 9 へ の冷媒ガスの逃がしにより、クランク室 1 7の圧力が次第に低下する。その結果、
クランク室 1 7の圧力とシリンダボア 3 3の圧力とのビストン 3 4を介した差が 小さくなるため、 斜板 3 8が最大傾斜角側に変位する。 従って、 ピス トン 3 4の ストローク量が増大し、 圧縮機の吐出容量が増大する。 逆に、 冷房負荷が小さくなると、 制御弁 5 6の開度が増加させられ、 吐出室 2 0からクランク室 1 7に供給される冷媒ガスの流量が増大する。 クランク室 1 7 に供給される冷媒ガスの量が、 連通孔 6 0を介した吸入室 1 9への冷媒ガスの逃 がし量を上回ると、 クランク室 1 7の圧力が次第に上昇していく。 その結果、 ク ランク室 1 7の圧力とシリンダボア 3 3の圧力とのビストン 3 4を介した差が大 きくなるため、 斜板 3 8が最小傾斜角側に変位する。 従って、 ピス トン 3 4のス トローク量が減少し、 圧縮機の吐出容量が減少する。 ピス トン 3 4が冷媒ガスの圧縮動作を行う際、 駆動軸 1 8にはビス トン 3 4の 圧縮反力 F 1 (図示略) がシユー 4 8、 ヒンジ機構 3 9及びラグプレート 3 6を, 介してリャハウジング 1 4側に向かうように作用する。 また、 駆動軸 1 8の第 2 端部にはクランク室 1 7の圧力 P c (図示略) が圧縮反力 F 1と逆向きに作用す るとともに、 第 1端部にはクランク室 1 7の圧力 P cより低圧の大気圧 P a (図 示略) が圧縮反力 F 1と同じ向きに作用する。 即ち、 クランク室 1 7の圧力 P c と大気圧 P a との差圧に、 クランク室 1 7内における駆動軸 1 8のシ一ルリング 6 3と対応する部分の断面積 S (図示略)を掛け合わせた力 F 2 = ( P c - P a ) · Sが、 前記圧縮反力 F 1と逆向きに駆動軸 1 8に作用する。 従来は、 圧縮反力 F 1及び力 F 2の作用方向が同じであつたのに対して、 本発明では後者の力 F 2が 圧縮反力 F 1と逆方向に作用する。 従って、 駆動軸 1 8を駆動するための動力が 低減される。 また、 クラッチレスタイプの場合は空調装置の運転を停止した状態においても 駆動軸 1 8にエンジン 5 0の回転が伝達される。 このとき、 斜板 3 8の傾角は最
小に保持されるが、 ピス トン 3 4による圧縮動作が行われ、 駆動軸 1 8に圧縮反 力 F 1が作用する。 しカゝし、 前記のように駆動軸 1 8にクランク圧 P cと大気圧 P a との差圧に基づく力 F 2が圧縮反力 F 1を打ち消す方向に作用するため、 空 調装置の運転停止時における動力消費が低滅される。 圧縮機 1 0の運転停止時、 即ちビス トン 3 4の圧縮反力 F 1が駆動軸 1 8に作 用しない時には、 駆動軸 1 8を前記規制面に向けて付勢する力がなくなる.。 ハウ ジング 1 1内の圧力は外気の圧力 P aより高いため、 駆動軸 1 8を前記規制面に 向けて付勢する力がない状態では、 駆動軸 1 8がリャハウジング 1 4から離れる 方向に移動され、 ラグプレート 3 6がスラストベアリング 3 7から離間する。 し かし、 この実施の形態では、 第 1コイルバネ 4 5が常に駆動軸 1 8をリャハウジ ング 1 4側へ付勢しているため、 圧縮機 1 0の運転停止中もラグプレート 3 6が スラス トベアリング 3 7に当接した状態に保持される。 クランク室 1 7と吸入室 1 9とが駆動軸 1 8に形成された連通孔 6 0を介して 連通され、 連通孔 6 0の出口 6 0 bよりクランク室 1 7側にはシ一ルリング 6 3 が設けられている。 従って、 クランク室 1 7と吸入室 1 9とを連通する経路は、 第 1のスラス トベアリング 3 7の隙間、 ラグプレート 3 6とリャハウジング 1 4 の内壁面 1 4 aとの隙間、 第 2ラジアルベアリング 2 5の隙間、 収容凹部 2 3、 連通孔 6 0及び第 1ラジアルベアリング 2 4の隙間を通る経路となる。その結果、 クランク室 1 7の圧力 P cと吸入室 1 9の圧力 P sとの差圧に基づいて、 クラン ク室 1 7から吸入室 1 9へ移動する冷媒ガスの流れは、 第 1のスラス トベアリン グ 3 7、 第 2ラジアルベアリング 2 5及び第 1ラジアルベアリング 2 4を必ず通 過し、 各ベアリング 3 7, 2 5, 2 4が冷媒ガス中の潤滑油によって確実に潤滑 される。 また、軸封装置 2 6が収容された吸入室 1 9に絶えず冷媒ガスが流入するため、
軸封装置 2 6の潤滑も良好に行われる。 この実施の形態は以下に示す効果を有する。 With the rotation of the drive shaft 18, the swash plate 38 is integrally rotated via the lug plate 36 and the hinge mechanism 39, and the rotational motion of the swash plate 38 causes the movement of each piston 3 4 Converted to reciprocating motion. Thus, in the compression chamber 35, the suction, compression, and discharge of the refrigerant are sequentially repeated. The refrigerant supplied from the external refrigerant circuit 57 to the suction chamber 19 is sucked into the compression chamber 35 through the suction boat 51 and subjected to the compression action by the movement of the piston 34, and then to the discharge port 53. Through the discharge chamber 20. The refrigerant discharged into the discharge chamber 20 is sent to the external refrigerant circuit 57 via a discharge passage. Then, the opening of the control valve 56, that is, the opening of the air supply passage 55 is adjusted by a control device (not shown) according to the cooling load, and the communication state between the discharge chamber 20 and the crank chamber 17 is changed. Is done. When the cooling load is large, the opening of the air supply passage 55 is reduced, and the flow rate of the refrigerant gas supplied from the discharge chamber 20 to the crank chamber 17 is reduced. When the amount of the refrigerant gas supplied to the crank chamber 17 decreases, the pressure of the crank chamber 17 gradually decreases due to the escape of the refrigerant gas to the suction chamber 19 via the communication hole (bleed passage) 60. as a result, Since the difference between the pressure in the crank chamber 17 and the pressure in the cylinder bore 33 through the piston 4 becomes smaller, the swash plate 38 is displaced toward the maximum inclination angle. Therefore, the stroke amount of the piston 34 increases, and the displacement of the compressor increases. Conversely, when the cooling load decreases, the opening of the control valve 56 increases, and the flow rate of the refrigerant gas supplied from the discharge chamber 20 to the crank chamber 17 increases. When the amount of refrigerant gas supplied to the crank chamber 17 exceeds the amount of refrigerant gas leaked to the suction chamber 19 through the communication hole 60, the pressure in the crank chamber 17 gradually increases. . As a result, the difference between the pressure in the crank chamber 17 and the pressure in the cylinder bore 33 via the pistons 34 increases, so that the swash plate 38 is displaced to the minimum inclination angle side. Accordingly, the stroke amount of the piston 34 is reduced, and the discharge capacity of the compressor is reduced. When the piston 34 performs the compression operation of the refrigerant gas, the compression reaction force F 1 (not shown) of the biston 34 is applied to the drive shaft 18 by the shower 48, the hinge mechanism 39 and the lug plate 36, Acts toward the lya housing 14 side. At the second end of the drive shaft 18, the pressure P c (not shown) of the crank chamber 17 acts in the opposite direction to the compression reaction force F 1, and at the first end, the crank chamber 17 Atmospheric pressure Pa (not shown) lower than pressure Pc acts in the same direction as the compression reaction force F1. That is, the cross-sectional area S (not shown) of the portion corresponding to the seal ring 63 of the drive shaft 18 in the crank chamber 17 is determined by the differential pressure between the pressure P c of the crank chamber 17 and the atmospheric pressure Pa. The multiplied force F 2 = (P c -P a) · S acts on the drive shaft 18 in a direction opposite to the compression reaction force F 1. Conventionally, the action direction of the compression reaction force F1 and the force F2 are the same, whereas in the present invention, the latter force F2 acts in the opposite direction to the compression reaction force F1. Therefore, the power for driving the drive shaft 18 is reduced. In the case of the clutchless type, the rotation of the engine 50 is transmitted to the drive shaft 18 even when the operation of the air conditioner is stopped. At this time, the inclination angle of the swash plate 38 is the maximum. Although it is kept small, the compression operation by the piston 34 is performed, and the compression reaction force F 1 acts on the drive shaft 18. However, as described above, the force F2 based on the differential pressure between the crank pressure Pc and the atmospheric pressure Pa acts on the drive shaft 18 in the direction to cancel the compression reaction force F1, so that the air conditioner Power consumption during operation stop is reduced. When the operation of the compressor 10 is stopped, that is, when the compression reaction force F 1 of the bistone 34 does not act on the drive shaft 18, there is no force for urging the drive shaft 18 toward the regulation surface. Since the pressure in the housing 11 is higher than the pressure Pa of the outside air, the drive shaft 18 moves away from the rear housing 14 when there is no force to bias the drive shaft 18 toward the regulation surface. The lug plate 36 is moved away from the thrust bearing 37. However, in this embodiment, since the first coil spring 45 always urges the drive shaft 18 toward the rear housing 14 side, the lug plate 36 remains in the thrust even while the compressor 10 is stopped. Are held in contact with the bearings 37. The crank chamber 17 and the suction chamber 19 are communicated through a communication hole 60 formed in the drive shaft 18, and a seal ring 6 is provided on the crank chamber 17 side from the outlet 60 b of the communication hole 60. 3 are provided. Accordingly, the path connecting the crank chamber 17 and the suction chamber 19 is formed by the gap between the first thrust bearing 37, the gap between the lug plate 36 and the inner wall surface 14a of the lya housing 14, and the second gap. The path passes through the gap between the radial bearings 25, the accommodation recess 23, the communication hole 60, and the gap between the first radial bearing 24. As a result, the flow of the refrigerant gas moving from the crank chamber 17 to the suction chamber 19 based on the pressure difference between the pressure Pc of the crank chamber 17 and the pressure Ps of the suction chamber 19 is The thrust bearing 37, the second radial bearing 25 and the first radial bearing 24 must pass through, and the bearings 37, 25, 24 are surely lubricated by the lubricating oil in the refrigerant gas. Also, since the refrigerant gas constantly flows into the suction chamber 19 containing the shaft sealing device 26, Lubrication of the shaft sealing device 26 is also performed well. This embodiment has the following effects.
( 1 ) ハウジング 1 1において、 第 1ラジアルベアリング 2 4よりも第 1端 部側に駆動軸 1 8の軸封装置 2 6を収容する吸入圧領域が設けられ、 駆動軸 1 8 には該吸入圧領域とクランク室 1 7とを連通するための連通孔 6 0が形成されて ,いる。連通孔 6 0の入口 6 0 aが第 2ラジアルベアリング 2 5より第 2端部側に、 出口 6 0 bが第 1ラジアルベアリング 2 4より第 2端部側に位置するように形成 されている。従って、クランク室 1 7から吸入圧領域へ向かう冷媒ガスの流れが、 両ラジアルベアリング 2 4 , 2 5を確実に通過し、 冷媒ガス中に含まれる潤滑油 によって両ラジアルベアリング 2 4, 2 5の潤滑が良好に行われる。 また、 吸入 圧領域の冷媒ガスにより軸封装置 2 6の雰囲気温度が従来の構成に比べて低くな り、 耐久性が向上する。 (1) In the housing 11, a suction pressure area for accommodating the shaft sealing device 26 of the drive shaft 18 is provided on the first end side of the first radial bearing 24 with respect to the first radial bearing 24. A communication hole 60 for communicating the pressure region with the crank chamber 17 is formed. The inlet 60 a of the communication hole 60 is formed so as to be located on the second end side of the second radial bearing 25, and the outlet 60 b is located on the second end side of the first radial bearing 24. . Therefore, the flow of the refrigerant gas from the crank chamber 17 to the suction pressure region surely passes through the two radial bearings 24 and 25, and the lubricating oil contained in the refrigerant gas causes the two radial bearings 24 and 25 to flow. Good lubrication. In addition, the ambient temperature of the shaft sealing device 26 is lowered by the refrigerant gas in the suction pressure region as compared with the conventional configuration, and the durability is improved.
( 2 ) 連通孔 6 0の出口 6 O bよりクランク室 1 7側にシールリング 6 3が 設けられ、 クランク室 1 7から吸入圧領域へ向かう冷媒ガス力 第 1のスラス ト ベアリング 3 7及び両ラジアルベアリング 2 4 , 2 5を確実に通過する。従って、 各ベアリング 2 4 , 2 5 , 3 7の潤滑がより良好に行われる。 また、 クランク室(2) A seal ring 63 is provided on the side of the crank chamber 17 from the outlet 6 Ob of the communication hole 60, and the refrigerant gas force from the crank chamber 17 to the suction pressure region The first thrust bearing 37 and both It passes through the radial bearings 24 and 25 reliably. Therefore, the lubrication of each of the bearings 24, 25, and 37 is performed more favorably. Also, the crankcase
1 7の冷媒ガスは、 抽気通路として機能する連通孔 6 0からのみ吸入室 1 9に抽 気されるため、 吐出容量を変更する際のクランク室 1 7の圧力調整を精度良く行 うことが可能になる。 The refrigerant gas in 17 is extracted into the suction chamber 19 only from the communication hole 60 functioning as a bleed passage, so that it is possible to accurately adjust the pressure in the crank chamber 17 when changing the discharge capacity. Will be possible.
( 3 ) 吸入室 1 9及び吐出室 2 0はクランク室 1 7よりも駆動軸 1 8の突出 側に設けられ、 軸封装置 2 6は吸入室 1 9内に配置されている。 従って、 吸入室 1 9より圧力の高いクランク室 1 7と外気との差圧に耐えるシール力を必要とす る従来の圧縮機に比較して、 軸封装置 2 6の寿命を伸ばすことができ、 よって、 軸シールの信頼性が向上する。 また、 駆動軸 1 8に対してクランク室 1 7の圧力
P cと外気 (大気) P aとの差圧に比例した力 F 2が、 駆動軸 1 8に作用する圧 縮反力 F 1と逆方向に作用する。 従って、 前記両者 F l , F 2の作用方向が同じ である従来の圧縮機に比較して、 駆動軸 1 8を駆動するための動力を大幅に低減 できる。 また、 スラス トペアリ ング 3 7の耐久性が向上する。 これらの効果は、 冷媒として C 02を使用した場合のように、クランク室 1 7内の圧力がフロンを使 用した場合に比較して大幅に高くなる場合に特に顕著となる。 また、 ピス トン 3 4のス トロークが一定の固定容量型の圧縮機に比較してクランク室 1 7の圧力が 高くなる可変容量型の場合により顕著となる。 (3) The suction chamber 19 and the discharge chamber 20 are provided on the projecting side of the drive shaft 18 with respect to the crank chamber 17, and the shaft sealing device 26 is disposed in the suction chamber 19. Therefore, the life of the shaft sealing device 26 can be extended as compared with a conventional compressor that requires a sealing force to withstand a differential pressure between the crankcase 17 having a higher pressure than the suction chamber 19 and the outside air. Therefore, the reliability of the shaft seal is improved. Also, the pressure of the crank chamber 17 against the drive shaft 18 A force F 2 proportional to the pressure difference between P c and the outside air (atmosphere) Pa acts in the opposite direction to the compression reaction force F 1 acting on the drive shaft 18. Therefore, the power for driving the drive shaft 18 can be greatly reduced as compared with the conventional compressor in which the directions of action of the two F 1 and F 2 are the same. Also, the durability of the thrust pairing 37 is improved. These effects, as in the case of using the C 0 2 as the refrigerant becomes particularly remarkable when the pressure of the crank chamber 1 in 7 is significantly higher than when using Freon. Further, the stroke of the piston 34 becomes more remarkable in the case of the variable displacement type in which the pressure in the crank chamber 17 becomes higher than that of the fixed displacement type compressor.
( 4 ) 駆動軸 1 8に形成された連通孔 6 0が抽気通路の役割を果たし、 連通 孔 6 0 ©途中に絞り部 6 1が形成されている。 冷媒としてクランク室 1 7内で高 圧になる C 02を使用する際には、抽気通路の径の僅かな違いで吸入室 1 9への抽 気量が大きく変化し、 容量制御を正確に行うのが難しくなる。 それに対し、 本実 施形態のように絞り部 6 1を配置することにより、 容量制御が簡単になる。 (4) The communication hole 60 formed in the drive shaft 18 functions as a bleed passage, and the communication hole 60 is formed with a throttle 61 in the middle. When using C 0 2 becomes high pressure in the crank chamber 1 within 7 as refrigerant, extraction air amount to the suction chamber 1 9 with a slight difference in the diameter of the bleed passage is greatly changed, the capacity control accurately Difficult to do. On the other hand, by arranging the throttle unit 61 as in the present embodiment, the capacity control is simplified.
( 5 ) 吐出室 2 0とクランク室 1 7とを連通する給気通路 5 5が設けられ、 該給気通路 5 5の途中に設けられた制御弁 5 6により給気通路 5 5の開度を変更 してクランク室 1 7の圧力が調整さする'。 従って、 クランク室 1 7内の圧力を簡 単に調整できる。 (5) An air supply passage 55 communicating the discharge chamber 20 and the crank chamber 17 is provided, and the opening of the air supply passage 55 is provided by a control valve 56 provided in the middle of the air supply passage 55. Change the pressure in the crankcase 17 to 'adjust. Therefore, the pressure in the crank chamber 17 can be easily adjusted.
( 6 ) 軸封装置 2 6はメカニカルシールよりなり、 同メカニカルシールは耐 圧性に優れる。 従って、 冷媒として C〇2を使用した場合のように、 クランク室 1 7内の圧力がフロンに比較して大幅に高くなる場合に、 特に有効なシール作用を 奏する。 また、 ピス トン 3 4のス トロークが一定の固定容量型の圧縮機に比較し てクランク室 1 7の圧力が高くなる可変容量型の場合により有効となる。 実施の形態は前記に限定されるものではなく、 例えば次のように構成してもよ
レ、。 (6) The shaft sealing device 26 is made of a mechanical seal, and the mechanical seal has excellent pressure resistance. Therefore, as in the case of using the C_〇 2 as the refrigerant, if the pressure in the crank chamber 1 in 7 is significantly higher compared to CFCs, so a particularly effective sealing action. Further, the stroke of the piston 34 is more effective in the case of the variable displacement type in which the pressure in the crank chamber 17 becomes higher than that of the fixed displacement type compressor. The embodiment is not limited to the above, and may be configured as follows, for example. Les ,.
軸封装镡 2 6は必ずしも吸入室 1 9内に配設する必要はなく、 図 3に示す第二 実施形態ように、 軸封装置 2 6が収容される吸入圧領域としての室 6 4を吸入室 1 9の内側に区画壁 6 5により区画し、 吸入室 1 9と室 6 4とを孔 6 5 aで連通 この場合も前記実施の形態とほぼ同様の効果を期待できる。 軸封装置 2 6を収容する吸入圧領域を吸入室 1 9から独立して形成した場合、 吸入室 1 9を吐出室 2 0の外側に配置してもよい。 図 4に示す第三実施形態ように、 吸入室 1 9及び吐出室 2 0をリャハウジング 1 4に設け、 駆動軸 1 8の突出端とは反対側に配置してもよい。 吸入圧領域とし ての室 6 4は図示しない通路により吸入室 1 9と連通されている。 この通路は外 部配管でもハウジングの壁内に形成された通路のいずれであってもよい。 ' 図 1の抽気通路 6 0における絞り部 6 1をなく して、 抽気通路 6 0を一定の内 径に形成してもよい。 圧縮機は可変容量タイプに限らず固定容量タイプの圧縮機 であってもよレ、。 カムプレート (斜板 3 8 ) が駆動軸 1 8と一体回転する構成に代えて、 カムプ レートが駆動軸に対して相対回転可能に支承されて揺動するヮップルタイプの圧 縮機に適用してもよい。 軸封装置はメカニカルシール 2 6に限らず、 リップシールを使用してもよい。 リップシールは軸封装置を安価に構成することができるし、 オイルシール性に優 れる利点がある.。 特に、 図 5に示す第四実施形態のリ ップシール 6 7では、 本体 金具 6 7 a内にフッ素樹脂等の樹脂製のリップリング 6 7 bと、 ゴム製のリップ リング 6 7 c とが保持されている。 複数のリ ップリング 6 7 b , 6 7 cを備える
ことで、 軸封性能が高まる。 また、 リ ップリング 6 7 bにおいて駆動軸 1 8との 摺動面には、 駆動軸 1 8の軸線を中心とした螺旋溝 6 7 dが刻設されている。.同 螺旋溝 6 7 dは、 駆動軸 1 8との相対回転によって潤滑油を吸入室 1 9側に案内 する作用を奏し、 リップシール 6 7のオイルシール性をさらに向上させる。 制御通路の開度を調整する制御弁 5 6等は電磁制御弁に限らず、 例えば、 特開 平 6— 1 2 3 2 8 1号公報に開示された制御弁のように、 吸入圧力を検知して変 位するダイァフラムと、 ダイアフラムの変位により制御通路の開度を制御する弁 機構を備えた、 所謂内部制御弁であってもよい。 し力 し、 クラッチレスタイプの 圧縮機においては、 外部から制御可能な電磁弁が好ましい。 圧縮機の駆動源はエンジン 5 0に限らず、電動モータとしてもよい。この場合、 電気自動車に装備できる。 . 図 8に示す第五実施形態では、 シールリング 6 3の駆動軸 1 8との摺接面に、 駆動軸 1 8の回転に伴って潤滑油をクランク室 1 . 7側へ戻すための螺旋溝 6 3 a が形成されている。 この場合、 シールリング 6 3と駆動軸 1 8との間に存在する 潤滑油がクランク室 1 7側へと送り出される。 その結果、 吸入室 1 9に潤滑油が 過剰に供給されることがなく、 それによつて軸封装置 2 6からハウジング 1 1外 へ潤滑油が漏れ出す虞がない。 ' The shaft sealing device 26 does not necessarily need to be disposed in the suction chamber 19, and sucks the chamber 64 as a suction pressure area in which the shaft sealing device 26 is housed, as in the second embodiment shown in FIG. A partition wall 65 defines the inside of the chamber 19, and the suction chamber 19 and the chamber 64 communicate with each other through the hole 65a. In this case, substantially the same effect as in the above embodiment can be expected. When the suction pressure area accommodating the shaft sealing device 26 is formed independently of the suction chamber 19, the suction chamber 19 may be arranged outside the discharge chamber 20. As in the third embodiment shown in FIG. 4, the suction chamber 19 and the discharge chamber 20 may be provided in the rear housing 14 and arranged on the side opposite to the protruding end of the drive shaft 18. The chamber 64 serving as the suction pressure area is communicated with the suction chamber 19 by a passage (not shown). This passage may be an external pipe or a passage formed in the wall of the housing. 'The bleed passage 60 may be formed to have a constant inner diameter by eliminating the throttle portion 61 in the bleed passage 60 in FIG. The compressor is not limited to the variable capacity type, but may be a fixed capacity type compressor. Instead of a structure in which the cam plate (swash plate 38) rotates integrally with the drive shaft 18, the present invention can be applied to a puple-type compressor in which the cam plate is supported to be rotatable relative to the drive shaft and swings. Good. The shaft sealing device is not limited to the mechanical seal 26, and a lip seal may be used. The lip seal allows the shaft sealing device to be constructed at low cost and has the advantage of excellent oil sealing. In particular, in the lip seal 67 of the fourth embodiment shown in FIG. 5, a resin lip ring 67 b and a lip ring 67 c made of a resin such as a fluororesin are held in a main body bracket 67 a. ing. Includes multiple rip rings 67b, 67c As a result, shaft sealing performance is enhanced. A spiral groove 67 d centering on the axis of the drive shaft 18 is formed on the sliding surface of the rip ring 67 b with the drive shaft 18. The helical groove 67 d acts to guide the lubricating oil to the suction chamber 19 by relative rotation with the drive shaft 18, further improving the oil sealing performance of the lip seal 67. The control valves 56 and the like for adjusting the opening degree of the control passage are not limited to the electromagnetic control valves. A so-called internal control valve may be provided which includes a diaphragm that is displaced by the displacement and a valve mechanism that controls the opening degree of the control passage by the displacement of the diaphragm. However, in a clutchless type compressor, an externally controllable solenoid valve is preferable. The drive source of the compressor is not limited to the engine 50, but may be an electric motor. In this case, it can be installed in electric vehicles. In the fifth embodiment shown in FIG. 8, a spiral for returning lubricating oil to the crank chamber 1.7 side with the rotation of the drive shaft 18 is provided on the sliding surface of the seal ring 63 with the drive shaft 18. A groove 63a is formed. In this case, the lubricating oil existing between the seal ring 63 and the drive shaft 18 is sent out to the crank chamber 17 side. As a result, the lubricating oil is not excessively supplied to the suction chamber 19, and there is no possibility that the lubricating oil leaks out of the housing 11 from the shaft sealing device 26. '
尚、 螺旋溝 6 3 aをシールリング 6 3側に形成する代わりに駆動軸 1 '8側に形 成してもよい。 この場合もシールリング 6 3側に形成したものと同様な効果を奏 する。
Incidentally, instead of forming the spiral groove 63a on the seal ring 63 side, it may be formed on the drive shaft 1'8 side. In this case, the same effect as that formed on the seal ring 63 side can be obtained.
Claims
1. 吸入室 (1 9)、 吐出室 (2 0) 及びクランク室 (1 7) を備え、 少なくと も一つのシリンダボア (3 3) を有するハウジングと、 1. A housing having a suction chamber (1 9), a discharge chamber (20) and a crank chamber (17), and having at least one cylinder bore (33);
前記ハウジングに回転可能に支持され、 かつ、 第 1端部及び第 2端部を備え、 第 1端部が前記ハウジングから突出するように支持された駆動軸 (1 8) と、 前記駆動軸の第 1端部及び第 2端部をそれぞれ支持する第 1及び第 2ラジアル ベアリング (2 4, 2 5) と、 A drive shaft (18) rotatably supported by the housing, having a first end and a second end, the first end being supported so as to protrude from the housing; and First and second radial bearings (24, 25) supporting first and second ends, respectively;
前記各シリンダポア内に往復動可能に収容されたピス トン (34) と、 前記クランク室 (1 7) 内に収容され、 前記駆動軸の回転運動を前記ピス トン の往復運動に変換するため、前記ビストンと作動連結されたカムプレート (3 8) 'と、 A piston (34) housed in each of the cylinder pores so as to be able to reciprocate; and a piston (34) housed in the crank chamber (17) for converting the rotational movement of the drive shaft into the reciprocating movement of the piston. A cam plate (3 8) 'operatively connected to Viston,
前記駆動軸とハウジングとの間をシールするための軸封装置 (2 6) と、 を備えた斜板式圧縮機において、 A shaft sealing device (26) for sealing between the drive shaft and the housing;
その軸封装置は前記吸入室 (1 9) に収容され、 前記吸入室 (1 9) は前記第 1ラジアルベアリング (24) よりも駆動軸の第 1端部側に配置されていること と、 The shaft sealing device is housed in the suction chamber (19), and the suction chamber (19) is disposed closer to the first end of the drive shaft than the first radial bearing (24).
前記駆動軸に形成され、 前記吸入室 (1 9) と前記クランク室 (1 7) とを連 通するための連通孔 ( 6 0) と、 その連通孔は入口 (6 0 a ) 及び出口 (6 0 b) を備え、 入口 (6 0 a) が前記第 2ラジアルベアリング (2 5) より第 2端部側 に位置し、 出口 (6 0 b) が前記第 1ラジアルベアリング (2 4) より第 2端部 側に位置することと A communication hole (60) formed in the drive shaft for communicating the suction chamber (19) with the crank chamber (17); the communication hole has an inlet (60a) and an outlet ( 60b), the inlet (60a) is located on the second end side from the second radial bearing (25), and the outlet (60b) is located from the first radial bearing (24). Be located on the second end side
を特徴とする斜板式圧縮機。 A swash plate compressor.
2. 前記吐出室 (2 0) は前記クランク室 (1 7) に対して前記駆動軸の第 1端部側に設けられている請求項 1に記載の斜板式圧縮機。
2. The swash plate compressor according to claim 1, wherein the discharge chamber (20) is provided on a first end side of the drive shaft with respect to the crank chamber (17).
3. 前記カムプレート (38) はその傾角を変更可能に前記駆動軸に対して 支持され、 前記圧縮機は前記カムプレートの傾角を変更して前記ビス トンのス卜 ロークを変更する請求項 1または 2に記載の斜板式圧縮機。 3. The cam plate (38) is supported on the drive shaft so that its inclination can be changed, and the compressor changes the stroke of the biston by changing the inclination of the cam plate. Or the swash plate type compressor according to 2.
4. 前記連通孔 (6 0) にはその途中に絞り部 (6 1) が設けられている請 求項 1または 2に記載の斜板式圧縮機。 4. The swash plate compressor according to claim 1, wherein the communication hole (60) is provided with a throttle (61) in the middle thereof.
5. 前記軸封装置はメカニカルシール (26) よりなる請求項ュまたは 2に 記載の斜板式圧縮機。 5. The swash plate compressor according to claim 2, wherein the shaft sealing device comprises a mechanical seal (26).
6. 前記軸封装置はリ ップシール (6 7) よりなる請求項 1または 2に記載 の斜板式圧縮機。 6. The swash plate compressor according to claim 1, wherein the shaft sealing device comprises a lip seal (67).
7. 請求項 1'または 2に記載の斜板式圧縮機において、 前記連通孔 (60) の出口 (60 b) よりも前記駆動軸の第 2端部側に-、 その出口とクランク室との 間をシールするためのシール装置 (6 3) が設けられている斜板式圧縮機。 7. The swash plate type compressor according to claim 1, wherein the second end of the drive shaft is located closer to the second end of the drive shaft than the outlet of the communication hole. A swash plate type compressor equipped with a sealing device (63) for sealing between spaces.
8. 請求項 6に記載の斜板式圧縮機において、 前記リップシ一ル (6 7) は 複数のリップリングを備えている斜板式圧縮機。 8. The swash plate compressor according to claim 6, wherein the lip seal (67) has a plurality of lip rings.
9. 請求項 6に記載の斜板式圧縮機において、 前記リップシール (6 7) に は、 駆動軸の回転に伴って潤滑油をハウジング内へ戻すための溝 (6 7 d) が ¾ 成されている斜板式圧縮機。 9. The swash plate compressor according to claim 6, wherein the lip seal (67) is provided with a groove (67d) for returning lubricating oil into the housing as the drive shaft rotates. Swash plate compressor.
1 0. 請求項 1または 2に記載の斜板式圧縮機において、 前記連通孔にフィル タを配設した斜板式圧縮機。
10. The swash plate compressor according to claim 1 or 2, wherein a filter is provided in the communication hole.
1 1. 請求項 4の斜板式圧縮機において、 前記絞り部よりも上流側にフィルタ を配設した斜板式圧縮機。 1 1. The swash plate compressor according to claim 4, wherein a filter is disposed upstream of the throttle section.
1 2. 吸入室 (1 9)、 吐出室 (2 0) 及びクランク室 (1 7) を備え、 少なく とも一つのシリ ンダボア (3 3) を有するハウジングと、 1 2. A housing having a suction chamber (1 9), a discharge chamber (20), and a crank chamber (17), and having at least one cylinder bore (33).
前記ハウジングに回転可能に支持され、 かつ、 第 1端部及び第 2端部を備え、 第 1端部が前記ハウジングから突出するように支持された駆動軸 (1 8) と、 前記各シリンダボア内に往復動可能に収容されたピス トン (34) と、 前記クランク室 (1 7) 内に収容され、 前記駆動軸の回転運動を前記ピス トン の往復運動に変換するため、前記.ビス トンと作動連結されたカムプレー卜 (3 8) と、 前記カムプレートの傾角は、 前記クランク室内の圧力を制御することにより 制御され、 前記ビス トンの往復動に伴う前記シリンダポアから前記吐出室への吐 出容量が変更されることと A drive shaft (18) rotatably supported by the housing, having a first end and a second end, the first end being supported so as to protrude from the housing; A piston (34) accommodated in the crank chamber (17), which is reciprocally accommodated in the piston, and a piston, which is adapted to convert the rotational movement of the drive shaft into the reciprocating movement of the piston, The operatively connected cam plate (38) and the tilt angle of the cam plate are controlled by controlling the pressure in the crank chamber, and discharge from the cylinder pore to the discharge chamber accompanying the reciprocation of the biston. That the capacity changes
を備えた斜板式圧縮機において、 In a swash plate type compressor equipped with
前記駆動軸とハウジングとの間をシールするための軸封装置 (2 6), と、 その 軸封装置は前記吸入室 (1 9) に収容されていることと、 A shaft sealing device (26) for sealing between the drive shaft and the housing, and the shaft sealing device is housed in the suction chamber (19);
前記吸入室と前記クランク室との間をシールするためのシ一ル装置(6 3)と、 そのシール装置及び前記駆動軸の内の一方に形成され、 駆動軸の回転に伴って潤 滑油の流れを生じさせる螺旋溝 (6 3 a ) と · A sealing device (63) for sealing between the suction chamber and the crank chamber; and a sealing device formed on one of the sealing device and the drive shaft, and a lubricating oil as the drive shaft rotates. Spiral grooves (63a) that cause the flow of
を特徴とする斜板式圧縮機。 A swash plate compressor.
1 3. 前記螺旋溝は前記駆動軸の回転に伴って潤滑油を前記クランク室へ戻す 請求項 1 2に記載の斜板式圧縮機。
13. The swash plate compressor according to claim 12, wherein the spiral groove returns lubricating oil to the crank chamber with rotation of the drive shaft.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001006530A JP2002070729A (en) | 2000-06-13 | 2001-01-15 | Swash plate compressor |
JP2001-6530 | 2001-01-15 | ||
JP2001083346A JP2002070745A (en) | 2000-06-13 | 2001-03-22 | Compressor |
JP2001-83346 | 2001-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002055880A1 true WO2002055880A1 (en) | 2002-07-18 |
Family
ID=26607704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/011304 WO2002055880A1 (en) | 2001-01-15 | 2001-12-21 | Swash plate compressor |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN1429317A (en) |
WO (1) | WO2002055880A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5413834B2 (en) * | 2009-11-27 | 2014-02-12 | サンデン株式会社 | Reciprocating compressor |
JP6171875B2 (en) * | 2013-11-13 | 2017-08-02 | 株式会社豊田自動織機 | Variable capacity swash plate compressor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5431611A (en) * | 1977-08-12 | 1979-03-08 | Sentoraru Jidoushiya Kougiyou | Cooling medium compressor |
JPH06221265A (en) * | 1993-01-29 | 1994-08-09 | Toyota Autom Loom Works Ltd | Oscillating swash plate type variable capacity compressor |
JPH09105381A (en) * | 1995-10-11 | 1997-04-22 | Toyota Autom Loom Works Ltd | Compressor |
JPH10122146A (en) * | 1996-10-18 | 1998-05-12 | Yunikura:Kk | Swash plate compressor |
EP0926342A2 (en) * | 1997-12-26 | 1999-06-30 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Seal mechanism protector for compressors |
JP2002005010A (en) * | 2000-06-19 | 2002-01-09 | Toyota Industries Corp | Variable displacement compressor |
-
2001
- 2001-12-21 WO PCT/JP2001/011304 patent/WO2002055880A1/en active Application Filing
- 2001-12-21 CN CN 01809467 patent/CN1429317A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5431611A (en) * | 1977-08-12 | 1979-03-08 | Sentoraru Jidoushiya Kougiyou | Cooling medium compressor |
JPH06221265A (en) * | 1993-01-29 | 1994-08-09 | Toyota Autom Loom Works Ltd | Oscillating swash plate type variable capacity compressor |
JPH09105381A (en) * | 1995-10-11 | 1997-04-22 | Toyota Autom Loom Works Ltd | Compressor |
JPH10122146A (en) * | 1996-10-18 | 1998-05-12 | Yunikura:Kk | Swash plate compressor |
EP0926342A2 (en) * | 1997-12-26 | 1999-06-30 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Seal mechanism protector for compressors |
JP2002005010A (en) * | 2000-06-19 | 2002-01-09 | Toyota Industries Corp | Variable displacement compressor |
Also Published As
Publication number | Publication date |
---|---|
CN1429317A (en) | 2003-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5871337A (en) | Swash-plate compressor with leakage passages through the discharge valves of the cylinders | |
US5823294A (en) | Lubrication mechanism in compressor | |
US5762476A (en) | Variable capacity single-headed piston refrigement compressor | |
US5586870A (en) | Bearing structure used in a compressor | |
US20020018722A1 (en) | Variable displacement compressor | |
US20090220356A1 (en) | Swash plate type variable displacement compressor | |
US5873704A (en) | Variable capacity refrigerant compressor | |
US6217293B1 (en) | Variable displacement compressor | |
JP4734623B2 (en) | Variable capacity clutchless compressor | |
US5741122A (en) | Variable displacement compressor having a spool with a coating layer | |
US20020176785A1 (en) | Compressor provided with sliding bearing | |
US6544004B2 (en) | Single-headed piston type compressor | |
US5730249A (en) | Fluid displacement apparatus with a lubricating mechanism driven by a wobble plate balancing weight | |
US6350106B1 (en) | Variable displacement compressor with capacity control mechanism | |
US6533555B2 (en) | Swash plate type compressor | |
US6126406A (en) | Variable displacement compressor | |
US6192699B1 (en) | Variable capacity compressor | |
JP2017150438A (en) | Piston type swash plate compressor | |
US5380163A (en) | Gas guiding mechanism in a piston type compressor | |
US6520748B2 (en) | Variable displacement compressor | |
WO2002055880A1 (en) | Swash plate compressor | |
JP5240535B2 (en) | Variable capacity clutchless compressor | |
JP2002005010A (en) | Variable displacement compressor | |
WO2013118637A1 (en) | Variable displacement compressor | |
JPH1054350A (en) | Variable displacement compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 018094678 Country of ref document: CN |