[go: up one dir, main page]

WO2002050847A1 - Dispositif de conditionnement, pour le transport en vrac de matieres fissiles uraniferes - Google Patents

Dispositif de conditionnement, pour le transport en vrac de matieres fissiles uraniferes Download PDF

Info

Publication number
WO2002050847A1
WO2002050847A1 PCT/FR2001/004111 FR0104111W WO0250847A1 WO 2002050847 A1 WO2002050847 A1 WO 2002050847A1 FR 0104111 W FR0104111 W FR 0104111W WO 0250847 A1 WO0250847 A1 WO 0250847A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
opening
fissile
cover
cavity
Prior art date
Application number
PCT/FR2001/004111
Other languages
English (en)
Inventor
Pierre Malalel
Original Assignee
Cogéma Logistics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cogéma Logistics filed Critical Cogéma Logistics
Priority to DE60126507T priority Critical patent/DE60126507T2/de
Priority to JP2002551864A priority patent/JP4298293B2/ja
Priority to EP01994933A priority patent/EP1344227B1/fr
Priority to US10/451,645 priority patent/US20040071254A1/en
Publication of WO2002050847A1 publication Critical patent/WO2002050847A1/fr

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/12Closures for containers; Sealing arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/08Shock-absorbers, e.g. impact buffers for containers

Definitions

  • the invention relates to a device for bulk packaging of uraniferous fissile materials, in particular in the form of powder or pellets, for the purpose of their transport.
  • the invention applies to the transport of all uraniferous fissile materials capable of causing a chain reaction, such as materials containing uranium 235.
  • materials containing uranium 235 include uranium oxide powder and pellets Low enriched U0 2 , that is to say containing less than 5% uranium 235 by mass.
  • Existing containers intended for the transport of uranium oxide powder or pellets comprise a hollow body, which internally delimits a closed cavity used to accommodate fissile materials.
  • the hollow body generally has a cylindrical shape. More specifically, fissile materials are usually packaged in metal containers closed by metal hoop covers. The external geometry of these containers is designed to conform to that of the cavity delimited by the hollow body.
  • the hollow body of the container has, at least at one of its ends, an opening allowing to access the cavity, to introduce and extract from it the container containing the fissile materials. Under normal conditions of transport, this opening is closed by a closing device such as a bolted plug.
  • a container capable of receiving fissile radioactive material must be designed to prevent an uncontrolled multiplication of the neutrons emitted by these materials. Otherwise, runaway chain reaction could have serious consequences for people near the container. Indeed, these would then be exposed to radiation due to neutrons emitted almost instantaneously and in very large quantities.
  • the containment usually includes the body of the container, its closure device and sealing means interposed therebetween.
  • This requirement concerns containers with a mass of less than 500 kg and a density less than 1000 kg / m 3 . It is therefore applicable to most of the existing containers used for the transport of uraniferous fissile materials, when these are in the form of powder or pellets of uranium oxide U0 2 .
  • the subject of the invention is precisely a packaging device intended for the transport of fissile uranium matter in powder or in pellets, whose original design allows it to meet the most recent regulatory requirements, while retaining maximum transport capacity.
  • a packaging device for the bulk transport of uraniferous fissile materials, comprising a container capable of containing the fissile materials and a container delimiting a cavity capable of receiving the container, through a container opening, intended to be closed by a lid, characterized in that: the container comprises a container opening, intended to be sealed by a plug, to form therewith an enclosure containment of fissile material; the container comprises an external envelope, an internal well delimiting said cavity and a cellular thermomechanical protection material, placed in a space separating the external envelope from the internal well.
  • the cap is screwed onto the opening of the container, with the interposition of a seal.
  • This arrangement facilitates access to the interior of the container, while making it possible to preserve the confinement in the event that a particularly severe shock would cause its deformation.
  • the container comprises a neck integrating the opening of the container, a cylindrical main part and a frustoconical part connecting the neck to the cylindrical main part.
  • the frustoconical part of the container is then able to deform without breaking the confinement, under the effect of a shock oriented along the axis of the container.
  • the opening of the container then has a diameter at least equal to 60% of the diameter of the cylindrical main part.
  • these are preferably made from a material chosen from the group comprising plastics, stainless steels and aluminum alloys .
  • this material is high density polyethylene.
  • thermomechanical protective cellular material is phenolic foam.
  • the lid of the container preferably cooperates with the opening of the latter by a bayonet mechanism. This mechanism opposes any axial ejection of the container containing the fissile material, in the event of a violent impact.
  • a container cap is provided to be interposed between the cover and the cavity capable of receiving the container.
  • This container stopper then advantageously incorporates a perforated metal plate, advantageously made of light alloy. This plate absorbs the shocks suffered by the container, at its opening, in a radial direction. It therefore also contributes to avoiding excessive deformation of the container and, consequently, to preserving its confinement.
  • a layer of the cellular material and a layer of a thermal protection material such as plaster are also integrated into the cap of the container, for example on the exterior and interior faces of the perforated plate, respectively.
  • the internal well includes a peripheral wall which incorporates a screen neutron. This peripheral wall is completed by a bottom wall.
  • the containment device mainly comprises a container 10, capable of containing uranium fissile material in bulk, as well as a container 12 internally delimiting a cavity 14 in which the container can be placed 10.
  • loose uranium fissile material means here, as throughout the text, all fissile material containing uranium and in the form of a powder, pellets or in any comparable form .
  • the fissile materials in bulk can be placed either directly inside the container 10, or in one or more bags of flexible plastic material facilitating handling, themselves received in the container 10.
  • the invention advantageously applies, although not exclusively, to the transport of a powder and lozenges uranium oxide U0 2 containing less than 5% by mass of uranium 235.
  • the containment device illustrated in the figure has, conventionally, a cylindrical geometry. Consequently, the container 10 and the container 12 both have a longitudinal axis generally oriented in a vertical direction.
  • the container 10 has a cylindrical main part 16, of uniform diameter, closed downwards by a flat bottom, not visible in the figure.
  • the main cylindrical part 16 is extended upwards by a frustoconical part 18.
  • the container ends in a neck 20, provided with a thread on its outer peripheral surface.
  • the neck 20 internally delimits an opening through which the fissile material can be introduced into the container 10 and be extracted therefrom.
  • a container stopper 22 is provided to be screwed onto the thread of the neck 20, with the interposition of a seal 24, in order to seal the opening of the container 10.
  • the seal 24 is a planar annular seal, of rectangular section, designed to be interposed between two opposite planar surfaces formed respectively in the bottom of the plug 22 and on the upper end edge of the neck 20.
  • the seal 24 is preferably trapped in the bottom of the plug 22, so as to be linked to the latter when it is screwed and unscrewed.
  • the container 10 closed in leaktight manner by its plug 22 with interposition of the seal 24, forms a confinement enclosure for the fissile materials it contains.
  • the fissile materials in bulk contained in the container 10 are confined vis-à-vis the outside by this same container, when it is closed by its cap 22.
  • the container 10 and its stopper 22 are made of a material such as plastic, stainless steel or an aluminum alloy.
  • this material is high density polyethylene.
  • high density polyethylene has a flexibility and elasticity allowing a significant geometric deformation without risk of rupture.
  • this material is deformed in such a way that any ovalization of the opening of the container is accompanied by comparable ovalization of the stopper, so that the seal provided by the seal 24 is preserved.
  • the elastic deformation of high density polyethylene combined with the frustoconical shape of the part 18 of the container 10 makes it possible to avoid a rupture of the confinement when the container is compressed along its longitudinal axis. Indeed, this then results in a simple reduction in length of the part 18.
  • the ability of the container 10 to deform without breaking its seal makes it possible to give the diameter of the opening formed in the neck 20 a relatively large value, which facilitates the filling and emptying of the container.
  • the diameter of the opening of the container 10 is advantageously at least equal to 60% of the diameter of the main cylindrical part of the container.
  • the container 12 mainly comprises an outer casing 26 and an internal well 28 delimiting the cavity 14. These two components are separated by a space filled with a cellular material 30 of thermomechanical protection.
  • the outer casing 26 is constituted by a metal sheet, preferably made of stainless steel.
  • This sheet includes a cylindrical part, of constant diameter, and a generally flat bottom part.
  • the upper end of the aforementioned cylindrical part is open and equipped on its internal face with the female part 32 with a bayonet mechanism.
  • the internal well 28 is also produced by means of a metal sheet, preferably made of stainless steel.
  • This sheet includes a cylindrical part, of constant diameter, and a generally flat bottom part. These two parts are spaced at all points from the corresponding parts of the outer casing 26, to provide at the periphery and in the bottom of the container 12 said space in which the cellular material 30 is received.
  • the cylindrical part of the internal well includes two coaxial metal walls, between which a neutron absorbing material is trapped 34. This material is a neutron absorbing resin, which ensures the prevention of the risk of criticality.
  • the upper end of the internal well 28 is open, so as to allow the introduction of the container 10 into the cavity 14 and its extraction, when the members which normally ensure the closure of the container 12 are removed.
  • the internal well 28 is mechanically connected to the external envelope 26 by a stepped wall 36, also made of stainless steel.
  • This wall 36 connects the upper end of the internal well 28 to the upper end of the outer casing 26, below the female part 32 of the bayonet mechanism. Thus, the wall 36 also closes upwards the space in which the cellular material 30 is received.
  • the cellular material 30 consists of phenolic foam.
  • This material has the advantage of being deformed in an identical or very similar manner regardless of the direction of the force applied. It therefore provides isotropic and effective shock absorption whatever the angle of fall of the container.
  • Phenolic foam also has the advantages of being self-extinguishing and having a low thermal conductivity as well as good temperature resistance. It therefore also provides very good thermal protection for the container 10.
  • the opening formed at the top end of the container 12 for allowing the introduction and extraction of the container 10 is normally closed by a cover 38, under which is placed a container cap 40.
  • the cover 38 is a metal part, preferably made of stainless steel. It comprises a peripheral part 42, comprising on its outer surface a male part 44 of the bayonet mechanism, the female part 32 of which is carried by the upper part of the outer casing 26.
  • the male 44 and female 32 parts of the bayonet mechanism are provided to cooperate with each other in order to secure the cover 38 of the container 12 when they are engaged.
  • the peripheral part 42 of the cover 38 is then housed in the upper part of the outer casing 26.
  • the cover 38 also includes a bottom 46, a peripheral region of which, projecting downwards, is intended to bear against a high shoulder 48 of the stepped wall 36, when the male 44 and female 32 parts are engaged.
  • a cleanliness seal 50 made of foam, is glued to the upper shoulder 48. This seal prevents the penetration of dust and moisture under the cover 38. However, it does not in any case constitute a seal comparable to seal 24 which confines the fissile material inside the container 10.
  • the cover 38 further comprises a gripping part, such as a crosspiece 52, placed inside the peripheral part 42, above the bottom 46.
  • This gripping part allows an operator to rotate the cover 38 in a sense or in the other, depending on whether he wishes to close or open the container 12.
  • a device (not shown) is provided to oppose any rotation of the cover 38 when the male 44 and female 32 parts are engaged.
  • This device comprises, for example, a blocking pin placed in a hole which passes radially through the upper part of the outer casing 26 as well as the peripheral part 42 of the cover.
  • the anti-rotation device may also include a cable to be sealed, received in a hole comparable to the previous one.
  • the cap 40 of the container 12 is placed below the cover 38, so as to rest on a low shoulder 54 of the stepped wall 36, without interposition of seals.
  • the stopper 40 is then spaced from the lower face of the cover 38 and the upper face of the stopper 22 of the container 10, when such a container is placed in the cavity 14.
  • the cap 40 of the container 12 has the external shape of a disc. It comprises a perforated plate 56, placed between an upper layer 58 of thermomechanical protection and a lower layer 60 of thermal protection. A metal jacket 62, preferably made of stainless steel, envelops the assembly thus formed.
  • the perforated plate 56 is a solid metal plate, preferably made of aluminum alloy. It is traversed over its entire thickness and over its entire surface by perforations, for example of circular section as illustrated in the figure.
  • the perforated plate 56 has the function of absorbing the shocks applied radially to the outer casing 26 of the container 12, at the level of the access opening provided in the upper part thereof.
  • the damping is obtained by a controlled deformation of the plate 56 in the radial direction, made possible by the presence of the perforations. It results in a controlled ovalization of the upper part of the container 12, without breaking the confinement of the container 10.
  • thermomechanical protective layer 58 which overhangs it.
  • This protective layer 58 is advantageously made of the same cellular material 30 as that which is interposed between the outer casing 26 and the inner well 28, that is to say made of phenolic foam.
  • the layer 58 of cellular material provides both mechanical protection and thermal protection of the container 10.
  • the function of the lower layer 60 is to complete the thermal protection, at the level of the opening of the container 12. It is preferably made of plaster.
  • a flexible chain can be used, optionally, to connect the plug 40 and the cover 38 This chain is then made, for example, of stainless steel.
  • a protective cap 64 made of plastic, can be placed above the cover 38. The cap 64 is then fitted on the upper edge of the outer casing 26 of the container 12.
  • vents 66 pass through the outer casing 26, the cellular material 30 and the outer wall of the inner well 28. These vents 66 are normally closed by fusible pads at the casing 26. They allow the evacuation of the gases released by the neutron absorbing resin 34 and by the cellular material 30, in the event of a fire. Comparable vents can also be provided in the cap 40 of the container 12.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Closures For Containers (AREA)
  • Buffer Packaging (AREA)
  • Wrapping Of Specific Fragile Articles (AREA)
  • Auxiliary Devices For And Details Of Packaging Control (AREA)
  • Packages (AREA)

Abstract

Le dispositif comprend un récipient interne (10) formant enceinte de confinement pour les matières fissiles qu'il contient. Ce récipient est réalisé avantageusement en polyéthylène haute densité. Il est placé à l'intérieur d'un conteneur (12) formé d'une enveloppe extérieure (26) et d'un puits interne (28) séparés par un matériau cellulaire de protection thermomécanique tel qu'une mousse phénolique. La conception du conteneur (12) permet de limiter une déformation du récipient (10) susceptible de rompre le confinement de la matière fissile, en cas de choc.

Description

DISPOSITIF DE CONDITIONNEMENT, POUR LE TRANSPORT EN VRAC DE MATIERES FISSILES URANIFERES
DESCRIPTION
Domaine technique
L'invention concerne un dispositif de conditionnement en vrac de matières fissiles uraniferes, notamment sous forme de poudre ou de pastilles, en vue de leur transport.
L ' invention s ' applique au transport de toutes matières fissiles uraniferes susceptibles de provoquer une réaction en chaîne, telles que des matières contenant de l'uranium 235. Parmi ces matières, on citera notamment la poudre et les pastilles d'oxyde d'uranium U02 faiblement enrichi, c'est-à-dire contenant moins de 5% d'uranium 235 en masse.
Etat de la technique Les conteneurs existants destinés au transport de poudre ou de pastilles d'oxyde d'uranium comprennent un corps creux, qui délimite intérieurement une cavité fermée servant à loger les matières fissiles. Le corps creux a généralement une forme cylindrique. Plus précisément, les matières fissiles sont habituellement conditionnées dans des récipients métalliques fermés par des couvercles à cerce métallique. La géométrie extérieure de ces récipients est conçue pour se conformer à celle de la cavité délimitée par le corps creux.
Le corps creux du conteneur comporte, au moins à l'une de ses extrémités, une ouverture permettant d'accéder à la cavité, pour y introduire et en extraire le récipient contenant les matières fissiles. En conditions normales de transport, cette ouverture est obturée par un dispositif de fermeture tel qu'un bouchon boulonné.
Le transport des matières fissiles est régi par une réglementation internationale qui impose aux conteneurs utilisés à cette fin des conditions de plus en plus sévères. Ces conditions concernent la prévention du risque de criticité, le confinement de la matière transportée et la protection du public vis-à-vis des rayonnements ionisants.
En premier lieu, un conteneur susceptible de recevoir des matières radioactives fissiles doit être conçu pour empêcher une multiplication non contrôlée des neutrons émis par ces matières. Dans le cas contraire, un emballement de la réaction en chaîne pourrait avoir des conséquences sérieuses pour des personnes situées à proximité du conteneur. En effet, celles-ci seraient alors exposées aux rayonnements dus aux neutrons émis de façon quasi instantanée et en très grande quantité.
Ce phénomène est amplifié lorsqu'un grand nombre de conteneurs est placé en réseau, notamment dans le cas où ils seraient détériorés par un accident survenu pendant le transport. C'est pourquoi la réglementation impose aux conteneurs destinés au transport de matières fissiles de subir des épreuves représentatives de conditions accidentelles de transport. La prévention du risque de criticité nécessite également un confinement des matières fissiles. Cette fonction est assurée par l'ensemble des éléments du conteneur qui délimitent le volume fermé pouvant être occupé par les matières fissiles. Cet ensemble d'éléments forme ce qu'on appelle "l'enceinte de confinement" du conteneur.
Dans les conteneurs existants, l'enceinte de confinement comprend habituellement le corps du conteneur, son dispositif de fermeture et des moyens d'étanchéité interposés entre eux.
Par ailleurs, la réglementation internationale la plus récente impose la prise en compte de la pénétration éventuelle d'eau dans l'enceinte de confinement pour l'évaluation de la sous-criticité des conteneurs de transport.
Ce renforcement de la réglementation s'explique par le fait que, si les matières fissiles sont mélangées à de l'eau, la multiplication des neutrons est grandement amplifiée par l'hydrogène contenu dans l'eau. Les risques d'accident de criticité sont alors potentiellement accrus.
Dans les conteneurs existants, la prise en compte de la pénétration éventuelle d'eau dans l'enceinte de confinement conduit à réduire leur capacité de transport. Il en résulte une augmentation des coûts d'exploitation.
Par ailleurs, la réglementation internationale récente impose une épreuve au cours de laquelle on fait chuter une plaque lourde sur le conteneur posé au sol.
Cette exigence concerne les conteneurs présentant une masse inférieure à 500 kg et une masse volumique inférieure à 1000 kg/m3. Elle est donc applicable à la majeure partie des conteneurs existants utilisés pour le transport de matières fissiles uranifères, lorsque celles-ci sont sous forme de poudre ou de pastilles d'oxyde d'uranium U02.
Cependant, la structure des conteneurs existants destinés au transport de ces matières est telle que cette épreuve aurait pour conséquence de faire perdre l'étanchéité de leur enceinte de confinement à la poudre ou aux pastilles.
Dans ces conditions, le respect de la nouvelle réglementation par des conteneurs de conception classique se traduirait donc par une nouvelle diminution de la masse de matière fissile transportable dans ces conteneurs.
Dans le domaine plus général du transport de matières fluides en vrac, et notamment de produits chimiques toxiques ou dangereux, les documents US-A-5 395 007 et US-A-5 595 319 concernent tous deux un conteneur réutilisable. Ce conteneur comprend une enceinte extérieure fermée et une enceinte intérieure fermée, séparées l'une de l'autre et entre lesquelles est interposé un matériau amortisseur. Des orifices d'accès formés dans chacune des enceintes et reliés par un élément tubulaire déformable permettent l'entrée et la sortie des matières fluides. Des bouchons distincts obturent normalement chacun de ces orifices.
Exposé de l'invention L'invention a précisément pour objet un dispositif de conditionnement destiné au transport de matières fissiles uranifères en poudre ou en pastilles, dont la conception originale lui permet de satisfaire les prescriptions réglementaires les plus récentes, tout en conservant une capacité de transport maximale.
Conformément à l'invention, ce résultat est obtenu au moyen d'un dispositif de conditionnement, pour le transport en vrac de matières fissiles uranifères, comprenant un récipient apte à contenir les matières fissiles et un conteneur délimitant une cavité apte à recevoir le récipient, au travers d'une ouverture de conteneur, prévue pour être fermée par un couvercle, caractérisé en ce que : le récipient comporte une ouverture de récipient, prévue pour être fermée de façon étanche par un bouchon, pour former avec celui-ci une enceinte de confinement des matières fissiles ; le conteneur comprend une enveloppe extérieure, un puits interne délimitant ladite cavité et un matériau cellulaire de protection thermomécanique, placé dans un espace séparant l'enveloppe extérieure du puits interne.
Dans cet agencement original, du fait que l'enceinte de confinement est constituée par le récipient qui contient la matière fissile en vrac, fermé par son bouchon, un choc violant produisant une déformation importante du conteneur est sans conséquence sur le confinement de ladite matière fissile. La protection du confinement est également assurée par la présence du matériau cellulaire entre
1 ' enveloppe extérieure du conteneur et le puits interne dans lequel est placé le récipient. En effet, en se déformant progressivement, ce matériau amortit les chocs subis par l'enveloppe extérieure et limite leur transmission au puits interne. Le matériau cellulaire assure également la protection thermique du récipient vis-à-vis d'un éventuel incendie.
Selon un mode de réalisation préféré de l'invention, le bouchon est vissé sur l'ouverture du récipient, avec interposition d'un joint d'étanchéité. Cet agencement facilite l'accès à l'intérieur du récipient, tout en permettant de préserver le confinement dans le cas où un choc particulièrement sévère entraînerait sa déformation.
Dans ce mode de réalisation préféré, le récipient comporte un goulot intégrant l'ouverture du récipient, une partie principale cylindrique et une partie tronconique reliant le goulot à la partie principale cylindrique. La partie tronconique du récipient est alors apte à se déformer sans rupture du confinement, sous l'effet d'un choc orienté selon l'axe du récipient.
Avantageusement, l'ouverture du récipient a alors un diamètre au moins égal à 60% du diamètre de la partie principale cylindrique. Pour faciliter encore la préservation du confinement même en cas de déformation limitée du récipient et de son bouchon, ceux-ci sont réalisés, de préférence, dans un matériau choisi dans le groupe comprenant les matières plastiques, les aciers inoxydables et les alliages d'aluminium. Dans le mode de réalisation préféré de l'invention, ce matériau est du polyethylene haute densité.
Avantageusement, le matériau cellulaire de protection thermomécanique est de la mousse phenolique.
En outre, le couvercle du conteneur coopère de préférence avec l'ouverture de celui-ci par un mécanisme à baïonnette. Ce mécanisme s'oppose à toute éjection axiale du récipient contenant la matière fissile, en cas de choc violent.
Dans le mode de réalisation préféré de l'invention, un bouchon de conteneur est prévu pour être interposé entre le couvercle et la cavité apte à recevoir le récipient. Ce bouchon de conteneur intègre alors avantageusement une plaque métallique perforée, réalisée avantageusement en alliage léger. Cette plaque amortit les chocs subis par le conteneur, au niveau de son ouverture, dans une direction radiale. Elle contribue donc également à éviter une déformation excessive du récipient et, par conséquent, à préserver son confinement.
Dans ce cas, une couche du matériau cellulaire et une couche d'un matériau de protection thermique tel que du plâtre sont également intégrées au bouchon du conteneur, par exemple sur les faces extérieure et intérieure de la plaque perforée, respectivement.
Afin d'assurer une protection du public contre les rayonnements ionisants, le puits interne comprend une paroi périphérique qui intègre un écran neutrophage. Cette paroi périphérique est complétée par une paroi de fond.
Brève description des dessins On décrira à présent, à titre d'exemple non limitatif, un mode de réalisation préféré de l'invention, en se référant au dessin annexé, dans lequel la figure unique est une vue en perspective éclatée, avec arrachements partiels, qui représenté un dispositif de confinement conforme à l'invention.
Description détaillée d'un mode de réalisation préféré de 1 ' invention
Comme l'illustre la figure unique, le dispositif de confinement selon l'invention comprend principalement un récipient 10, apte à contenir des matières fissiles uranifères en vrac, ainsi qu'un conteneur 12 délimitant intérieurement une cavité 14 dans laquelle peut être placé le récipient 10. L'expression "matières fissiles uranifères en vrac" désigne ici, ainsi que dans l'ensemble du texte, toutes matières fissiles contenant de l'uranium et se présentant sous la forme d'une poudre, de pastilles ou sous toute forme comparable. Il est à noter que les matières fissiles en vrac peuvent être placées soit directement à l'intérieur du récipient 10, soit dans une ou plusieurs poches en matière plastique souple facilitant la manutention, elles-mêmes reçues dans le récipient 10. Parmi les matières fissiles, l'invention s'applique avantageusement, bien que de façon non exclusive, au transport d'une poudre et de pastilles d'oxyde d'uranium U02 contenant moins de 5% en masse d'uranium 235.
Le dispositif de confinement illustré sur la figure présente, de façon classique, une géométrie cylindrique. Par conséquent, le récipient 10 et le conteneur 12 présentent, l'un et l'autre, un axe longitudinal généralement orienté selon une direction verticale.
Le récipient 10 comporte une partie principale cylindrique 16, de diamètre uniforme, fermée vers le bas par un fond plan, non visible sur la figure. La partie principale cylindrique 16 est prolongée vers le haut par une partie tronconique 18. A l'extrémité haute de la partie tronconique 18, le récipient se termine par un goulot 20, muni d'un filetage sur sa surface périphérique extérieure. Le goulot 20 délimite intérieurement une ouverture par laquelle les matières fissiles peuvent être introduites dans le récipient 10 et en être extraites. Un bouchon 22 de récipient est prévu pour être vissé sur le filetage du goulot 20, avec interposition d'un joint d'étanchéité 24, afin de fermer de façon étanche l'ouverture du récipient 10.
Plus précisément, le joint d'étanchéité 24 est un joint annulaire plan, de section rectangulaire, prévu pour être interposé entre deux surfaces planes en vis-à-vis formées respectivement dans le fond du bouchon 22 et sur le bord d'extrémité supérieur du goulot 20. Pour faciliter les manutentions, le joint d'étanchéité 24 est, de préférence, emprisonné dans le fond du bouchon 22, de façon à être lié à celui-ci lorsqu'il est vissé et dévissé. Dans l'agencement qui vient d'être décrit, le récipient 10, obturé de façon étanche par son bouchon 22 avec interposition du joint d'étanchéité 24, forme une enceinte de confinement pour les matières fissiles qu'il contient. En d'autres termes, les matières fissiles en vrac contenues dans le récipient 10 sont confinées vis-à-vis de l'extérieur par ce même récipient, lorsqu'il est fermé par son bouchon 22.
Le récipient 10 ainsi que son bouchon 22 sont réalisés en un matériau tel qu'une matière plastique, un acier inoxydable ou un alliage d'aluminium.
Dans le mode de réalisation préféré de l'invention, ce matériau est du polyethylene haute densité. L'utilisation de ce matériau permet de garantir la préservation du confinement des matières fissiles même dans l'hypothèse d'une déformation géométrique du récipient et/ou de son bouchon. En effet, le polyethylene haute densité présente une souplesse et une élasticité autorisant une déformation géométrique importante sans risque de rupture. De plus, ce matériau se déforme de façon telle qu'une éventuelle ovalisation de l'ouverture du récipient s'accompagne d'une ovalisation comparable du bouchon, de sorte que l'étanchéité assurée par le joint 24 est préservée. La déformation élastique du polyethylene haute densité combinée avec la forme tronconique de la partie 18 du récipient 10 permet d'éviter une rupture du confinement lorsque le récipient est comprimé selon son axe longitudinal. En effet, cela se traduit alors par une simple diminution de longueur de la partie 18.
Il est à noter que l'aptitude du récipient 10 à se déformer sans rompre son étanchéité permet de donner au diamètre de l'ouverture formée dans le goulot 20 une valeur relativement importante, qui facilite le remplissage et la vidange du récipient. Ainsi, le diamètre de l'ouverture du récipient 10 est avantageusement au moins égal à 60% du diamètre de la partie principale cylindrique du récipient.
Comme l'illustre la figure unique, le conteneur 12 comprend principalement une enveloppe extérieure 26 et un puits interne 28 délimitant la cavité 14. Ces deux composants sont séparés par un espace rempli d'un matériau cellulaire 30 de protection thermomécanique.
De façon plus précise, l'enveloppe extérieure 26 est constituée par une tôle métallique, de préférence en acier inoxydable. Cette tôle comprend une partie cylindrique, de diamètre constant, et une partie de fond généralement plane. L'extrémité haute de la partie cylindrique précitée est ouverte et équipée sur sa face intérieure de la partie femelle 32 d'un mécanisme à baïonnette.
Le puits interne 28 est également réalisé au moyen d'une tôle métallique, de préférence en acier inoxydable. Cette tôle comprend une partie cylindrique, de diamètre constant, et une partie de fond généralement plane. Ces deux parties sont espacées en tous points des parties correspondantes de l'enveloppe extérieure 26, pour ménager à la périphérie et dans le fond du conteneur 12 ledit espace dans lequel est reçu le matériau cellulaire 30. En outre, la partie cylindrique du puits interne comprend deux parois métalliques coaxiales, entre lesquelles est emprisonné un matériau neutrophage 34. Ce matériau est une résine neutrophage, qui assure la prévention du risque de criticité.
L'extrémité haute du puits interne 28 est ouverte, de façon à permettre l'introduction du récipient 10 dans la cavité 14 et son extraction, lorsque les organes qui assurent normalement la fermeture du conteneur 12 sont enlevés.
Le puits interne 28 est relié mécaniquement à l'enveloppe extérieure 26 par une paroi en gradins 36, réalisée également en acier inoxydable. Cette paroi 36 relie l'extrémité haute du puits interne 28 à l'extrémité haute de l'enveloppe extérieure 26, en dessous de la partie femelle 32 du mécanisme à baïonnette. Ainsi, la paroi 36 ferme également vers le haut l'espace dans lequel est reçu le matériau cellulaire 30.
Dans le mode de réalisation préféré de l'invention illustré sur la figure, le matériau cellulaire 30 est constitué par de la mousse phenolique.
Ce matériau a l'avantage de se déformer de façon identique ou très similaire quelle que soit la direction de l'effort appliqué. Il assure donc un amortissement des chocs isotrope et efficace quel que soit l'angle de chute du conteneur.
La mousse phenolique a aussi pour avantages d'être auto-extinguible et de présenter une faible conductivité thermique ainsi qu'une bonne tenue en température. Elle assure donc également une très bonne protection thermique du récipient 10.
Comme le montre la figure unique, l'ouverture formée à l'extrémité haute du conteneur 12 pour permettre 1 ' introduction et 1 ' extraction du récipient 10 est normalement fermée par un couvercle 38, sous lequel est placé un bouchon 40 de conteneur.
De façon plus précise, le couvercle 38 est une pièce métallique, réalisée de préférence en acier inoxydable. Il comprend une partie périphérique 42, comportant sur sa surface extérieure une partie mâle 44 du mécanisme à baïonnette dont la partie femelle 32 est portée par la partie haute de l'enveloppe extérieure 26. Les parties mâle 44 et femelle 32 du mécanisme à baïonnette sont prévues pour coopérer entre elles afin de solidariser le couvercle 38 du conteneur 12 lorsqu'elles sont en prise. La partie périphérique 42 du couvercle 38 est alors logée dans la partie haute de l'enveloppe extérieure 26.
Le couvercle 38 comporte également un fond 46 dont une région périphérique, en saillie vers le bas, est prévue pour venir en appui contre un épaulement haut 48 de la paroi en gradins 36, lorsque les parties mâle 44 et femelle 32 sont en prise. Un joint de propreté 50, en mousse, est collé sur l' épaulement haut 48. Ce joint évite la pénétration des poussières et de l'humidité sous le couvercle 38. Toutefois, il ne constitue en aucun cas un joint d'étanchéité comparable au joint 24 qui assure le confinement des matières fissiles à l'intérieur du récipient 10.
Le couvercle 38 comporte de plus une partie de préhension, telle qu'un croisillon 52, placée à l'intérieur de la partie périphérique 42, au-dessus du fond 46. Cette partie de préhension permet à un opérateur de faire tourner le couvercle 38 dans un sens ou dans l'autre, selon qu'il désire fermer ou ouvrir le conteneur 12.
En outre, un dispositif (non représenté) est prévu pour s'opposer à toute rotation du couvercle 38 lorsque les parties mâle 44 et femelle 32 sont en prise. Ce dispositif comprend, par exemple, un pion de blocage placé dans un trou qui traverse radialement la partie haute de l'enveloppe extérieure 26 ainsi que la partie périphérique 42 du couvercle. Le dispositif anti-rotation peut aussi comprendre un câble à sceller, reçu dans un trou comparable au précédent.
Le bouchon 40 du conteneur 12 est placé en dessous du couvercle 38, de façon à reposer sur un épaulement bas 54 de la paroi en gradins 36, sans interposition de joint. Le bouchon 40 est alors espacé de la face inférieure du couvercle 38 et de la face supérieure du bouchon 22 du récipient 10, lorsqu'un tel récipient est placé dans la cavité 14.
Le bouchon 40 du conteneur 12 présente extérieurement la forme d'un disque. Il comprend une plaque perforée 56, placée entre une couche supérieure 58 de protection thermomécanique et une couche inférieure 60 de protection thermique. Une chemise métallique 62, réalisée de préférence en acier inoxydable, enveloppe l'ensemble ainsi formé.
La plaque perforée 56 est une plaque métallique massive, réalisée de préférence en alliage d'aluminium. Elle est traversée sur toute son épaisseur et sur toute sa surface par des perforations, par exemple de section circulaire comme l'illustre la figure. La plaque perforée 56 a pour fonction d'amortir les chocs appliqués radialement sur l'enveloppe extérieure 26 du conteneur 12, au niveau de l'ouverture d'accès prévue dans la partie supérieure de celui-ci. L'amortissement est obtenu par une déformation contrôlée de la plaque 56 dans le sens radial, rendue possible par la présence des perforations. Il se traduit par une ovalisation contrôlée de la partie supérieure du conteneur 12, sans rupture du confinement du récipient 10.
Au contraire, un choc exercé selon l'axe du conteneur 12 n'est pas amorti par la plaque 56, mais par la couche de protection thermomécanique 58 qui la surplombe. Cette couche de protection 58 est réalisée avantageusement dans le même matériau cellulaire 30 que celui qui est interposé entre l'enveloppe extérieure 26 et le puits interne 28, c'est-à-dire en mousse phenolique.
Comme le matériau cellulaire 30, la couche 58 de matériau cellulaire assure à la fois une protection mécanique et une protection thermique du récipient 10.
La couche inférieure 60 a pour fonction de compléter la protection thermique, au niveau de l'ouverture du conteneur 12. Elle est réalisée, de préférence, en plâtre.
Afin de réduire les manipulations lors des opérations de chargement et de déchargement, ainsi que les risques d'erreurs humaines lors de la fermeture dudispositif de confinement, une chaînette flexible peut être utilisée, de façon optionnelle, pour relier le bouchon 40 et le couvercle 38. Cette chaînette est alors réalisée, par exemple, en acier inoxydable. Pour éviter l'accumulation d'humidité sur le couvercle 38, en cas d'entreposage à l'extérieur, une coiffe de protection 64, réalisée en matière plastique, peut être placée au-dessus du couvercle 38. La coiffe 64 est alors emboîtée sur le bord supérieur de l'enveloppe extérieure 26 du conteneur 12.
Le dispositif de confinement conforme à l'invention, tel qu'il vient d'être décrit à titre d'exemple en se référant à la figure unique, permet d'assurer de façon simple le maintien du confinement des matières fissiles uranifères en vrac qu'il contient, dans toutes les circonstances prévues par les réglementations les plus sévères. Ce résultat est obtenu grâce à l'utilisation conjointe d'un récipient interne étanche aux poudres les plus fines, constituant ainsi une enceinte de confinement pour lesdites matières, et d'un conteneur dont la conception permet d'éviter une- déformation du récipient susceptible de rompre ledit confinement. Comme on l'a illustré schématiquement sur la figure, des évents 66 traversent l'enveloppe extérieure 26, le matériau cellulaire 30 et la paroi extérieure du puits interne 28. Ces évents 66 sont normalement obturés par des pastilles fusibles au niveau de l'enveloppe 26. Ils permettent l'évacuation des gaz libérés par la résine neutrophage 34 et par le matériau cellulaire 30, en cas d'incendie. Des évents comparables peuvent également être prévus dans le bouchon 40 du conteneur 12.

Claims

REVENDICATIONS
1. Dispositif de conditionnement, pour le transport en vrac de matières fissiles uranifères, comprenant un récipient (10) apte à contenir les matières fissiles et un conteneur (12) délimitant une cavité (14) apte à recevoir le récipient (10), au travers d'une ouverture de conteneur, prévue pour être fermée par un couvercle (38), caractérisé en ce que : - le récipient (10) comporte une ouverture de récipient, prévue pour être fermée de façon étanche par un bouchon (22), pour former avec celui-ci une enceinte de confinement des matières fissiles ; - le conteneur (12) comprend une enveloppe extérieure (26), un puits interne (28) délimitant ladite cavité (14) et un matériau cellulaire (30) de protection thermomécanique, placé dans un espace séparant l'enveloppe extérieure (26) du puits interne (28).
2. Dispositif selon la revendication 1, dans lequel le bouchon (22) est vissé sur l'ouverture du récipient (10), avec interposition d'un joint d' étanchéité (24).
3. Dispositif selon l'une quelconque des revendications 1 et 2, dans lequel le récipient (10) comporte un goulot (20) intégrant l'ouverture du récipient, une partie principale cylindrique (16) et une partie tronconique (18) reliant . le goulot (20) à la partie principale cylindrique (16).
4. Dispositif selon la revendication 3, dans lequel l'ouverture du récipient (10) a un diamètre au moins égal à 60% du diamètre de la partie principale cylindrique ( 16 ) .
5. Dispositif selon l'une quelconque des revendications 1 à 4, dans lequel le récipient (10) et son bouchon (22) sont réalisés dans un matériau choisi dans le groupe comprenant les matières plastiques, les aciers inoxydables et les alliages d'aluminium.
6. Dispositif selon la revendication 5, dans lequel ledit matériau est du polyethylene haute densité.
7. Dispositif selon l'une quelconque des revendications 1 à 6, dans lequel le matériau cellulaire de protection thermomécanique est de la mousse phenolique.
8. Dispositif selon l'une quelconque des revendications 1 à 7, dans lequel le couvercle (38) est apte à coopérer avec l'ouverture du conteneur (12) par un mécanisme à baïonnette (32, 44).
9. Dispositif selon l'une quelconque des revendications 1 à 8, dans lequel un bouchon (40) de conteneur est prévu pour être interposé entre le couvercle (38) et la cavité (14) apte à recevoir le récipient (10).
10. Dispositif selon la revendication 9, dans lequel le bouchon (40) de conteneur intègre une plaque métallique perforée (56).
11. Dispositif selon la revendication 10, dans lequel le bouchon (40) de conteneur intègre également une couche (58) dudit matériau cellulaire et une couche de protection thermique (60).
12. Dispositif selon l'une quelconque des revendications 1 à 11, dans lequel le puits interne (28) comprend une paroi périphérique et une paroi de fond, et la paroi périphérique intègre un écran neutrophage ( 34 ) .
PCT/FR2001/004111 2000-12-21 2001-12-20 Dispositif de conditionnement, pour le transport en vrac de matieres fissiles uraniferes WO2002050847A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60126507T DE60126507T2 (de) 2000-12-21 2001-12-20 Verpackungseinrichtung für den massentransport von uranhaltigen spaltbaren materialien
JP2002551864A JP4298293B2 (ja) 2000-12-21 2001-12-20 ウラニウムを含む核分裂性物質を粉末或いはペレットの形態で輸送するための包装装置
EP01994933A EP1344227B1 (fr) 2000-12-21 2001-12-20 Dispositif de conditionnement, pour le transport en vrac de matieres fissiles uraniferes
US10/451,645 US20040071254A1 (en) 2000-12-21 2001-12-20 Packaging device for bulk transportation of uraniferous fissile materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/16764 2000-12-21
FR0016764A FR2818790B1 (fr) 2000-12-21 2000-12-21 Dispositif de conditionnement, pour le transport en vrac de matieres fissiles uraniferes

Publications (1)

Publication Number Publication Date
WO2002050847A1 true WO2002050847A1 (fr) 2002-06-27

Family

ID=8857995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/004111 WO2002050847A1 (fr) 2000-12-21 2001-12-20 Dispositif de conditionnement, pour le transport en vrac de matieres fissiles uraniferes

Country Status (10)

Country Link
US (1) US20040071254A1 (fr)
EP (1) EP1344227B1 (fr)
JP (1) JP4298293B2 (fr)
AT (1) ATE353468T1 (fr)
CZ (1) CZ295170B6 (fr)
DE (1) DE60126507T2 (fr)
ES (1) ES2282322T3 (fr)
FR (1) FR2818790B1 (fr)
RU (1) RU2284066C2 (fr)
WO (1) WO2002050847A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846778A1 (fr) * 2002-11-06 2004-05-07 Cogema Logistics Conteneur pour le stockage/transport de matieres radioactives non irradiees telles que des assemblages de combustible nucleaire
RU2426183C2 (ru) * 2006-06-30 2011-08-10 Холтек Интернэшнл, Инк. Устройство, система и способ хранения высокоактивных отходов
CN106927130B (zh) * 2015-12-30 2018-08-24 核动力运行研究所 一种乏燃料相关组件包装容器

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247701A (ja) * 2010-05-25 2011-12-08 Mitsubishi Heavy Ind Ltd 放射性物質格納容器
US11887744B2 (en) 2011-08-12 2024-01-30 Holtec International Container for radioactive waste
US11373774B2 (en) 2010-08-12 2022-06-28 Holtec International Ventilated transfer cask
CN104272398A (zh) 2012-04-18 2015-01-07 霍尔泰克国际股份有限公司 高放射性废料的存储和/或运输
US9466400B2 (en) * 2013-01-25 2016-10-11 Holtec International Ventilated transfer cask with lifting feature
CN104831092B (zh) * 2015-05-13 2017-09-29 中核通辽铀业有限责任公司 分布式原地浸出采铀树脂转运方法及装置
EP3582231B1 (fr) * 2018-06-15 2020-08-26 GNS Gesellschaft für Nuklear-Service mbH Récipient destiné à la réception des déchets radioactif et récipient agrégat
CN109533612A (zh) * 2018-09-28 2019-03-29 中国辐射防护研究院 一种六氟化铀运输容器外包装结构
KR102683251B1 (ko) * 2019-10-03 2024-07-10 홀텍 인터내셔날 충격 보호 기능이 있는 핵폐기물 캐스크
US11610696B2 (en) 2019-10-03 2023-03-21 Holtec International Nuclear waste cask with impact protection, impact amelioration system for nuclear fuel storage, unventilated cask for storing nuclear waste, and storage and transport cask for nuclear waste
FR3114302B1 (fr) * 2020-09-22 2023-03-31 Tn Int Emballage de transport et/ou d’entreposage de matieres radioactives, comprenant un systeme ameliore de verrouillage axial d’un capot amortisseur de chocs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0169440A2 (fr) * 1984-07-24 1986-01-29 STEAG Kernenergie GmbH Procédé de fermeture d'un récipient pour matériau radioactif et récipient pour réaliser ce procédé
JPS62249100A (ja) * 1986-04-22 1987-10-30 日本ニユクリア・フユエル株式会社 核燃料ペレツト輸送用容器
EP0314025A2 (fr) * 1987-10-30 1989-05-03 Westinghouse Electric Corporation Chauteau en titane de poids léger pour transport des matériaux radioactifs
CA1260629A (fr) * 1987-04-03 1989-09-26 Majesty (Her) In Right Of Canada As Represented By Atomic Energy Of Canada Limited/L'energie Atomique Du Canada Limitee Recipient protecteur
JPH032696A (ja) * 1989-05-31 1991-01-09 Power Reactor & Nuclear Fuel Dev Corp 核燃料航空輸送容器
WO1993000279A1 (fr) * 1991-06-26 1993-01-07 Housholder William R Conteneur reutilisable

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2634244A (en) * 1950-11-09 1953-04-07 Lockheed Aircraft Corp Cellular plastics having foam stabilizing additives
DE1420831B2 (de) * 1959-07-28 1972-04-20 Will, Günther, Dr , 6100 Darmstadt Verfahren zur herstellung von poroesen formkoerpern
US3600337A (en) * 1967-03-10 1971-08-17 Hoechst Ag Process of making epoxy cellular plastics
US3695992A (en) * 1969-09-08 1972-10-03 Du Pont Porous aromatic polyamide fiber
DE2118509A1 (de) * 1971-04-16 1972-10-26 Farbwerke Hoechst AG, vormals Meister Lucius & Brüning, 6000 Frankfurt Verfahren zur Herstellung von Schäumen aus Polyamiden
US3882313A (en) * 1972-11-07 1975-05-06 Westinghouse Electric Corp Concentric annular tanks
US3982134A (en) * 1974-03-01 1976-09-21 Housholder William R Shipping container for nuclear fuels
US5303836A (en) * 1993-07-21 1994-04-19 The Babcock & Wilcox Company Shipping container for highly enriched uranium
RU2095865C1 (ru) * 1995-06-14 1997-11-10 Конструкторское бюро специального машиностроения Способ изготовления контейнера для транспортировки и/или хранения отработавшего ядерного топлива

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0169440A2 (fr) * 1984-07-24 1986-01-29 STEAG Kernenergie GmbH Procédé de fermeture d'un récipient pour matériau radioactif et récipient pour réaliser ce procédé
JPS62249100A (ja) * 1986-04-22 1987-10-30 日本ニユクリア・フユエル株式会社 核燃料ペレツト輸送用容器
CA1260629A (fr) * 1987-04-03 1989-09-26 Majesty (Her) In Right Of Canada As Represented By Atomic Energy Of Canada Limited/L'energie Atomique Du Canada Limitee Recipient protecteur
EP0314025A2 (fr) * 1987-10-30 1989-05-03 Westinghouse Electric Corporation Chauteau en titane de poids léger pour transport des matériaux radioactifs
JPH032696A (ja) * 1989-05-31 1991-01-09 Power Reactor & Nuclear Fuel Dev Corp 核燃料航空輸送容器
WO1993000279A1 (fr) * 1991-06-26 1993-01-07 Housholder William R Conteneur reutilisable

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 198749, Derwent World Patents Index; Class K07, AN 1987-345148, XP002175472 *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 111 (P - 1180) 18 March 1991 (1991-03-18) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846778A1 (fr) * 2002-11-06 2004-05-07 Cogema Logistics Conteneur pour le stockage/transport de matieres radioactives non irradiees telles que des assemblages de combustible nucleaire
WO2004044925A3 (fr) * 2002-11-06 2005-10-06 Cogema Logistics Conteneur pour le stockage/transport de matieres radioactives non irradiees telles que des assemblages de combustible nucleaire
JP2006505780A (ja) * 2002-11-06 2006-02-16 コジェマ ロジスティックス 核燃料集合体のような未照射の放射性物質の貯蔵/運搬用容器
RU2426183C2 (ru) * 2006-06-30 2011-08-10 Холтек Интернэшнл, Инк. Устройство, система и способ хранения высокоактивных отходов
CN106927130B (zh) * 2015-12-30 2018-08-24 核动力运行研究所 一种乏燃料相关组件包装容器

Also Published As

Publication number Publication date
DE60126507T2 (de) 2007-11-15
EP1344227A1 (fr) 2003-09-17
DE60126507D1 (de) 2007-03-22
FR2818790B1 (fr) 2003-03-21
ATE353468T1 (de) 2007-02-15
US20040071254A1 (en) 2004-04-15
ES2282322T3 (es) 2007-10-16
RU2284066C2 (ru) 2006-09-20
EP1344227B1 (fr) 2007-02-07
JP2004516483A (ja) 2004-06-03
JP4298293B2 (ja) 2009-07-15
FR2818790A1 (fr) 2002-06-28
CZ295170B6 (cs) 2005-06-15
CZ20031706A3 (en) 2004-05-12

Similar Documents

Publication Publication Date Title
EP1344227B1 (fr) Dispositif de conditionnement, pour le transport en vrac de matieres fissiles uraniferes
EP0871180B1 (fr) Emballage de transport de colis dangereux, tels que des colis nucléaires de forte activité
EP0283337B1 (fr) Conteneur de transport aérien pour matières dangereuses
EP3042378B1 (fr) Colis comprenant des moyens ameliores d'amortissement de choc entre un ensemble renfermant des matieres radioactives et le couvercle de l'emballage
FR2805655A1 (fr) Conteneur a double enceinte pour le transport ou le stockage de matieres radioactives
FR2896613A1 (fr) Element de stockage de combustible nucleaire empilable et module de stockage forme par un empilement de tels elements
EP2092533B1 (fr) Dispositif de transport de combustible nucleaire et procede de chargement/dechargement dudit dispositif
FR2860640A1 (fr) Procede et dispositif de conditionnement de crayons de combustible nucleaire non etanches en vue de leur transport et de leur stockage ou entreposage de longue duree
WO1995021449A1 (fr) Dispositif de fixation du fond d'un conteneur de transport et/ou stockage de matieres radioactives
EP1525591B1 (fr) Paroi de protection a blindage anti-poincon pour conteneur et conteneur comprenant au moins une telle paroi
EP3721452B1 (fr) Panier de rangement pour stockage ou transport de matieres nucleaires
EP1576621B1 (fr) Conteneur pour le stockage/transport de matieres radioactives non irradiees telles que des assemblages de combustible nucleaire
EP4315369B1 (fr) Ensemble pour le transport d'hexafluorure d'uranium, comprenant des capots amortisseurs de choc
EP0338894B1 (fr) Conteneur de stockage de déchets radio-actifs
EP0988239B1 (fr) Coffre-conteneur de transport pour objets fragiles et/ou de valeur
EP4126692B1 (fr) Bouchon adapté pour contenir un fluide
EP0877388B1 (fr) Dispositif de fermeture étanche d'un boitier de confinement à usages multiples pour assemblages combustibles nucléaires irradiés ou déchets à haute activité
EP0143033B1 (fr) Conteneur blindé pour le transport et le stockage d'un chargement radioactif
FR3121265A1 (fr) Ensemble pour le transport d’hexafluorure d’uranium
FR2725299A1 (fr) Dispositif de transport et d'entreposage d'un couvercle irradie d'une cuve de reacteur nucleaire

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CZ JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001994933

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PV2003-1706

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 2002551864

Country of ref document: JP

ENP Entry into the national phase

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2001994933

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10451645

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: PV2003-1706

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: PV2003-1706

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 2001994933

Country of ref document: EP