[go: up one dir, main page]

WO2002048738A1 - Clocking apparatus, clocking method, and range finder - Google Patents

Clocking apparatus, clocking method, and range finder Download PDF

Info

Publication number
WO2002048738A1
WO2002048738A1 PCT/JP2001/010844 JP0110844W WO0248738A1 WO 2002048738 A1 WO2002048738 A1 WO 2002048738A1 JP 0110844 W JP0110844 W JP 0110844W WO 0248738 A1 WO0248738 A1 WO 0248738A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
pulse signal
pulse
reception timing
clock pulse
Prior art date
Application number
PCT/JP2001/010844
Other languages
French (fr)
Japanese (ja)
Inventor
Naoto Inaba
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2002048738A1 publication Critical patent/WO2002048738A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/14Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein a voltage or current pulse is initiated and terminated in accordance with the pulse transmission and echo reception respectively, e.g. using counters

Definitions

  • the present invention relates to a timing device, a timing method, and a distance measuring device, and more particularly, to a timing device that measures the reception timing of a pulse cloud signal.
  • a timing device that measures the reception timing of a pulse signal transmitted at a predetermined timing, for example, based on the transmission timing.
  • a distance measuring device that irradiates a target with laser light, receives reflected light thereof, and measures the distance to the target has been proposed.
  • the time difference between the emission timing of the laser beam (transmission timing) and the reception timing of the reflected light (reception timing) is obtained from the count value of the clock pulse generated at a constant interval.
  • the distance to the target is calculated based on the calculated time difference (count value) and the speed of the pulsed laser light.
  • the measurement accuracy of the time difference is directly connected to the measurement accuracy of the distance.
  • the clock cycle is 12.5 nsec, and the distance measurement resolution corresponding to one clock pulse generation interval takes into account the speed of light. It is about 2 m.
  • the time difference between the emission timing of the pulsed laser light and the reception timing of the reflected light is obtained as the count value of the clock pulse (sample clock), which improves the accuracy of distance measurement. If there is more It is sufficient to use a clock pulse oscillator with a high frequency. In this case, an IC or the like capable of high-speed signal processing is also required. For example, if an oscillator of about 30 OMHz is used, the resolution of the distance measuring device can be increased to about 50 cm.
  • the present invention has been made in view of such circumstances, and does not require a high-frequency oscillator or the like, and is capable of measuring the reception timing of a pulse signal with a resolution shorter than a clock pulse generation interval.
  • An object of the present invention is to provide a timing method and a distance measuring device using the same.
  • a timing device includes: a transmitting unit that repeatedly transmits a pulse signal; and A timing unit including a receiving unit for measuring, wherein the transmitting unit transmits the pulse signal while shifting a transmitting timing for the clock pulse at a predetermined interval.
  • a plurality of count values can be obtained by counting the reception timing based on the clock pulse while shifting the transmission timing of the repeatedly transmitted pulse signal a plurality of times at predetermined intervals. . Since the pulse signal is transmitted while shifting the transmission timing with respect to the clock pulse at predetermined intervals, for example, a pulse that is repeatedly transmitted The signal transmission timing is shifted a plurality of times at predetermined intervals, the received timing is counted based on the clock pulse, and the obtained count values are calculated by statistical processing to obtain the clock pulse.
  • the reception timing can be counted at intervals shorter than the occurrence interval of the reception.
  • a timing device is a transmitting unit that repeatedly transmits a pulse signal, and a receiving unit that receives the pulse signal and measures reception timing of the pulse signal based on a count value of a clock pulse. Wherein the receiving unit shifts the reception timing at predetermined intervals.
  • the reception timing is shifted at a predetermined interval, for example, the shifted reception timing of the repeatedly transmitted pulse signal is counted based on the clock pulse, and the obtained plurality is obtained.
  • the reception timing can be counted at intervals shorter than the clock pulse generation interval.
  • the timing device is the timing device according to the first invention or the second invention, wherein the predetermined interval is a fixed interval shorter than a clock pulse period, and the maximum width of the shift is The value is one cycle or more of the clock pulse.
  • the pulse signal is shifted at a constant interval shorter than the clock pulse cycle, and the maximum value is one cycle or more of the clock pulse. Therefore, the reception timing is obtained a plurality of times and statistically processed. In this case, appropriate sampling is possible.
  • the timing device is the timing device according to the third invention, further comprising the receiving unit, wherein the reception unit obtains the count value obtained each time the transmission timing or the reception timing is shifted. The reception timing is counted according to the frequency distribution.
  • the timing device is the timing device according to a fifth invention, wherein the reception unit further includes a plurality of count values obtained by shifting the pulse signal a plurality of times. (l) to T (m), and when the frequency of occurrence of each count value is N (l) to N (m), the reception timing t of the pulse signal is
  • the reception unit counts the reception timing according to the frequency distribution of the count value of the pulse pulse obtained every time the transmission timing is shifted. Therefore, simple statistical processing becomes possible.
  • a timing device is the timing device according to any one of the first invention to the fifth invention, wherein the transmitting unit transmits a pulsed laser light as the pulse signal.
  • a light source unit that irradiates the object with light
  • the receiving unit includes a light receiving unit that receives the pulsed laser light reflected from the object, and the receiving unit receives timing of the pulsed laser light. Is measured.
  • the time difference between the emission timing and the reception timing of the pulsed laser light can be counted with high accuracy, the time measurement until the transmitted laser light is reflected by the target object and received is performed.
  • the resolution is improved, and the timing accuracy is also improved.
  • the timekeeping method includes: a step of repeatedly transmitting a pulse signal; a step of receiving the pulse signal; and a step of measuring a reception timing of the pulse signal based on a count value of a clock pulse.
  • the transmission timing or reception timing for the clock pulse is shifted at predetermined intervals. And transmitting the pulse signal.
  • the transmission timing or the reception timing of the repeatedly transmitted pulse signal is shifted a plurality of times at a predetermined interval, and the reception timing is timed based on the clock pulse to obtain a plurality of times.
  • a pulse signal is transmitted while shifting the transmission timing for a clock pulse at a predetermined interval.
  • the transmission timing of a repeatedly transmitted pulse signal is shifted a plurality of times at a predetermined interval.
  • a distance measuring apparatus is a distance measuring apparatus according to the sixth aspect of the present invention, comprising: a timing device configured to measure the reception timing and the light speed of the pulsed laser light to reach the target object.
  • a timing device configured to measure the reception timing and the light speed of the pulsed laser light to reach the target object.
  • the time difference between the emission timing of the pulsed laser light and the reception timing can be counted with high accuracy, so that the distance to the target object can be calculated.
  • the resolution of the distance is improved, and the distance measurement accuracy is also improved.
  • FIG. 1 is a perspective view of a laser distance measuring apparatus to which the present invention is applied.
  • FIG. 2 is a block diagram showing the internal configuration of the laser distance measuring device.
  • FIG. 3 is a circuit diagram showing a configuration of the shift circuit.
  • FIG. 4 is a timing chart for explaining shift values of light emission timing (transmission timing) by the shift circuit.
  • Fig. 5 is a timing chart showing how light reception timing (reception timing) is measured when determining the distance to the target.
  • FIG. 6 is a timing chart showing how the light reception timing is measured when the distance to the target is 500 m.
  • FIG. 7 is a timing chart showing how the light reception timing is measured when the distance to the target is 502 m.
  • FIG. 8 is a timing chart showing how the light reception timing is measured when the distance to the object is 501 m.
  • FIG. 9 is a flowchart showing the distance measuring program.
  • FIG. 10 is a timing chart showing a state of measurement when obtaining the distance to the target object while shifting the reception timing.
  • FIG. 1 is a perspective view of a laser distance measuring apparatus 100 to which the present invention is applied
  • FIG. 2 is a block diagram showing an internal configuration thereof.
  • the laser distance measuring apparatus 100 is provided with a power and distance measurement start button 101 and a mode change button 102 on its upper surface. Further, a laser irradiation window 103 and a laser receiving window 104 are provided on the front surface thereof, and a finder window (not shown) is provided on the rear surface thereof.
  • a collimating lens 111 is arranged on the side of the laser irradiation window 103, and a condenser lens 121 is arranged on the side of the laser receiving window 104.
  • a semiconductor laser (light emitting element) 112 As shown in FIG. 2, a semiconductor laser (light emitting element) 112, a pulse generating circuit 130, a shift circuit 130, and a collimating lens 111 are provided inside the laser range finder 100 as shown in FIG. Circuit 140 is arranged.
  • a photodiode (light receiving element) 122 and a receiving circuit 150 are arranged on the side of the condenser lens 121.
  • the control circuit 160 delays the light emission start signal output from the above-described pulse generation circuit 130 by a predetermined shift value using the shift circuit 140, and outputs the signal from the semiconductor laser 112. Laser light is emitted at a predetermined timing (light emission timing).
  • control circuit 160 detects the reception timing (reception timing) of the laser beam reflected by the object 1 based on the signal from the reception circuit 150.
  • the control circuit '160 detects the time difference (t in Fig. 2 (b)) between the light emission timing (transmission timing) and the light reception timing (reception timing) by counting the clock pulse (see Fig. 5). .
  • control circuit 160 calculates a distance L from the laser distance measuring apparatus 100 to the object 1 based on the counted time difference and the speed of the laser beam (as a distance calculation unit). function).
  • the control circuit 160 displays this calculation result on the liquid crystal display 170 in the finder.
  • the detection of the time difference t is performed by repeatedly generating a pulsed laser beam, and is repeated each time each laser beam is generated. Then, the time difference t obtained a plurality of times is statistically processed to obtain one value (time difference).
  • the emission timing is determined by a predetermined shift value S with respect to a clock pulse for counting the emission timing. Only to shift it.
  • the transmitting section is constituted by the collimating lens 111, the semiconductor laser 112, the pulse generating circuit 130, the shift circuit 140, and the control circuit 160.
  • the light source section is composed of the collimating lens 111 and the semiconductor laser 112.
  • the receiving unit is composed of a condenser lens 121, a photodiode 122, a receiving circuit 150, and a control circuit 160, of which a condenser lens 121 and a photodiode 122 are formed. Constitutes a light receiving section.
  • the emission timing of the laser light is shifted by the shift value S by the operation of the shift circuit 140.
  • the light emission timing is shifted a plurality of times, but the difference ⁇ S between the shift values S is shorter than the clock pulse period Tx.
  • the maximum value Sx of the shift value S is equal to or longer than the clock pulse period Tx (see FIG. 5).
  • the shift circuit 140 includes an analog switch 141, a comparator 142, a capacitor 143, and the like, as shown in FIG. Then, a signal (light emission start signal) from the pulse generation circuit 130 is input to the analog switch 141, and the current Ic flows from the constant current source when the analog switch 141 is turned on by this signal. . A setting voltage Vc for setting shift value S is applied to the other terminal of comparator 142.
  • FIG. 4 is a timing chart when the light emission timing is delayed by the shift circuit 140.
  • td CxVc / Ic (C is the capacitance of the capacitor) ⁇ ' ⁇ (1)
  • S the light emission timing (transmission) of the semiconductor laser 112 according to the shift value set voltage Vc by the shift circuit 140 Timing is delayed for a predetermined time td (S).
  • Fig. 5 shows the light emission timing when the light emission timing is changed with different shift values S (SI, S2 to Sx) with respect to the closing pulse, and the target 1
  • S x SlO.
  • the light emission timing (transmission timing) is shifted 10 times within a period Sx slightly longer than the clock pulse period Tx.
  • the number of pulses at which the reflected light is detected depends on the distance L from the laser distance measuring device 100 to the target 1.
  • the frequency of the oscillator (not shown) of the pulse generator circuit 130 is 80 MHz (period 12.5 nsnsc), the resolution of the laser range finder 100 is 2 m, and the laser range finder Consider the case where the distance L from 100 to the target 1 is 50 Om (Figs. 5 and 6).
  • the emission timing of the semiconductor laser 112 is shifted 10 times within the period Sx. It is also assumed that shift values S (SI, S2-Sx) are shifted from each other by a fixed time (difference ⁇ S).
  • the reception timing of the laser beam generated 10 times in 10 shifts is as shown in Fig. 7 (a), and the timing is once for the clock pulse (Tn). It is counted eight times by the clock pulse (Tn + 1) and once by the clock pulse ( ⁇ + 2). The histogram obtained at this time is shown in Fig. 7 (b).
  • the distance L 1 (here, 502 m) from the laser range finder 100 to the target 1 is calculated through the calculation of the reception timing. Is done.
  • the distance L to the target 1 is an integer multiple of the resolution (for example, 2 m) (for example, 500 m, 502 m-) s histogram, one clock pulse The shape of the histogram is almost the same even though it is shifted.
  • a histogram (Fig. 8 (b)) is obtained.
  • the count value is a value (Tn or Tn + 1) representing either 500 m or 502 m.
  • the period indicating the light reception timing is equivalent to a clock panel (Tn) corresponding to 500 m, and equivalent to 500 m. It is counted by the clock pulse (Tn + 1).
  • the clock pulse Tn + 1 the clock pulse irradiated after being shifted ten times.
  • the light reception timing is counted five times by the clock pulse Tn and five times by the clock pulse ⁇ + 1 (histogram in Fig. 8 (b)).
  • the value of L3 (501 m) can be obtained through the calculation of the reception timing.
  • the distance at the point between LI (500 m) and L 2 (502 m) can be calculated by the conventional resolution (2 m). A finer resolution can be obtained.
  • the difference of the shift value S is constant (AS)
  • AS the shift value
  • the shift value is known in advance, it differs from the equation (2).
  • the distance L can be obtained precisely by calculation.
  • the number of shifts may be increased and the shift value difference AS may be shortened.
  • the distance measurement accuracy of the laser distance measuring apparatus 100 is improved.
  • the accuracy of distance measurement is further improved.
  • the light emission of the semiconductor laser 112 is directly detected by the sensor 199 (indicated by a broken line in FIG. 2), and the light emission timing is detected from the time when the light emission timing is actually detected. Starting the counting can increase the measurement accuracy.
  • FIG. 9 is a flowchart showing a distance measurement program executed by a CPU (not shown) in the control circuit 160 to perform the above-described distance measurement.
  • step S1 When the power and measurement start button 101 provided on the laser range finder 100 is pressed and the power is turned on, first, the counting of clock pulses is started in step S1, and the semiconductor is then started in step S2. The light emission processing of the laser 112 is performed. Here, the light emission timing is shifted by the above-mentioned constant shift value by the shift circuit 140.
  • step S3 it is determined whether or not the photodiodes 122 detect the laser beam reflected by the object 1. While the determination result is “No”, the count of the clock pulse is continued. When the determination result changes to "Yes”, the count value of the clock pulse at this time is captured in step S4.
  • the histogram is updated using the count value acquired this time, and in the following step S6, it is determined whether or not n (for example, 10) detections have been performed. Is determined.
  • step S6 As long as the determination result of step S6 is "No", steps S1 to S5 described above are repeatedly executed. Then, when the result of the determination in step S6 changes to "Yes", the process proceeds to step S7, and based on the histogram obtained up to this point, the distance from the laser ranging device 100 to the target 1 is increased. The distance L is calculated.
  • the reception timing is shifted by a delay circuit that is substantially the same as the shift circuit 140.
  • a signal for counting may be generated (S1 to Sx in FIG. 10).
  • the actual light receiving pulse is obtained at the timing indicated by light receiving pulse # 1, but at the next light receiving time (indicated by light receiving pulse # 2), this light receiving pulse is obtained. Is delayed by S2 and sent to the next connected processing circuit.
  • the received light pulse is delayed by Sn and sent to the processing circuit connected next.
  • the laser ranging device 100 counts the light receiving timing of the semiconductor laser 112, but other light emitting elements (eg, LEDs) are used.
  • the present invention is also applicable to the measuring instrument used.
  • the case where the laser beam is measured once for one shift value has been described for the sake of simplicity. Even if the shift value is changed to the maximum shift value while measuring multiple laser beams for one shift value, the reception timing is measured while changing the shift value to the maximum shift value. The cycle may be repeated several times, and by processing this The reliability of the measured values can be improved.
  • the timekeeping device and the timekeeping method of the present invention can be used to measure time with high accuracy using an inexpensive configuration.
  • the distance measuring device of the present invention can be used for measuring distance with high accuracy by an inexpensive configuration.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Unknown Time Intervals (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

A laser range finder (100) comprising a pulse generating circuit (130) for generating a pulse laser beam repeatedly, a semiconductor laser (112), a photodiode (122) for receiving the laser beam, and a receiving circuit (150). A control circuit (160) measures the light receiving timing based on the count of clock pulses. The laser range finder (100) further comprises a circuit (140) for shifting the irradiation timing of laser beam from the clock pulse at a predetermined interval. Receiving timing of a pulse signal can be measured with a resolution shorter than the generation interval of clock pulse without requiring a high frequency oscillator.

Description

明 細 書 計時装置、 計時方法、 及び測距装置 技術分野  Description Timekeeping device, timekeeping method, and distance measuring device
本発明は、 計時装置、 計時方法、 及び測距装置に関し、 特にパルス雲 号の受信タイ ミングを計時する計時装置等に関するものである。 背景技術  The present invention relates to a timing device, a timing method, and a distance measuring device, and more particularly, to a timing device that measures the reception timing of a pulse cloud signal. Background art
従来、所定のタイ ミ ングで発信されたパルス信号の受信タイ ミングを、 例えば、 発信夕イ ミングを基準に計時する計時装置が知られている。 そして、 かかる計時装置を用いた測定装置として、 例えば、 レーザ光 を目的物に照射し、 その反射光を受光して、 目的物までの距離を測定す る測距装置が提案されている。 この測距装置では、 レーザ光の発光タイ ミング (発信夕イ ミング) から反射光の受光タイ ミング (受信タイ ミン グ) までの時間差を、 一定間隔で発生するクロックパルスのカウント値 で求め、 斯く求めた時間差 (カウン ト値) と、 パルス状のレーザ光の光 速度とに基づいて、 目的物までの距離を求めるようになつている。  2. Description of the Related Art Conventionally, there has been known a timing device that measures the reception timing of a pulse signal transmitted at a predetermined timing, for example, based on the transmission timing. As a measuring device using such a timing device, for example, a distance measuring device that irradiates a target with laser light, receives reflected light thereof, and measures the distance to the target has been proposed. In this distance measuring device, the time difference between the emission timing of the laser beam (transmission timing) and the reception timing of the reflected light (reception timing) is obtained from the count value of the clock pulse generated at a constant interval. The distance to the target is calculated based on the calculated time difference (count value) and the speed of the pulsed laser light.
ところで、 上記距離装置では、 時間差の計測精度が、 距離の計測精度 にそのまま直結する。 例えば、 クロックパルスの周波数が 8 O M H zの 発振器が用いられていれば、 クロック周期は 1 2 . 5 n s e cであり、 1クロックパルスの発生間隔に相当する測距の分解能は、 光速を考慮し て約 2 mとなる。  By the way, in the distance device, the measurement accuracy of the time difference is directly connected to the measurement accuracy of the distance. For example, if an oscillator with a clock pulse frequency of 8 MHZ is used, the clock cycle is 12.5 nsec, and the distance measurement resolution corresponding to one clock pulse generation interval takes into account the speed of light. It is about 2 m.
ここで、 パルス状のレ一ザ光の発光タイ ミングとその反射光の受光夕 イ ミングとの時間差は、 クロックパルス (サンプルクロック) のカウン ト値として求められるため、 距離計測の精度を高めるのであれば、 より 周波数の高いクロックパルスの発振器を用いればよく、 この場合、 高速 の信号処理が可能な I C等も必要となる。 例えば、 3 0 O M H z程度の 発振器を用いれば、 当該測距装置の分解能を 5 0 c m程度まで上げられ る。 Here, the time difference between the emission timing of the pulsed laser light and the reception timing of the reflected light is obtained as the count value of the clock pulse (sample clock), which improves the accuracy of distance measurement. If there is more It is sufficient to use a clock pulse oscillator with a high frequency. In this case, an IC or the like capable of high-speed signal processing is also required. For example, if an oscillator of about 30 OMHz is used, the resolution of the distance measuring device can be increased to about 50 cm.
しかし、 発振器は、 周波数が高いほど高価であり、 又、 不要な電気的 輻射が生じ易くなつてこれが誤動作を招くことがある。 更に、 高速処理 が要求される I Cは、 動作時の発熱量が大きく、 測距装置の小型化に適 さない。 従って、 低価格、 小型化が要求される一般用途の民生用測距装 置等においては、 その分解能を上げることが困難であった。 発明の開示  However, the higher the frequency, the more expensive the oscillator, and the more likely it is that unwanted electrical radiation will occur, which can lead to malfunctions. Furthermore, ICs that require high-speed processing generate a large amount of heat during operation, and are not suitable for miniaturization of distance measuring devices. Therefore, it has been difficult to increase the resolution of a general-purpose consumer range finder that requires low cost and miniaturization. Disclosure of the invention
本発明は、 かかる事情に鑑みてなされたもので、 高周波数の発振器等 を必要とせずに、 パルス信号の受信タイ ミングを、 クロックパルスの発 生間隔より短い分解能にて計測可能な計時装置、 計時方法、 及びこれを 用いた測距装置を提供することを目的とする。  The present invention has been made in view of such circumstances, and does not require a high-frequency oscillator or the like, and is capable of measuring the reception timing of a pulse signal with a resolution shorter than a clock pulse generation interval. An object of the present invention is to provide a timing method and a distance measuring device using the same.
上記目的を達成するための、 第 1の発明である計時装置は、 パルス信 号を繰り返し発信させる発信部と、 前記パルス信号を受信し前記パルス 信号の受信タイミングをクロックパルスのカウント値に基づいて測定す る受信部とを備える計時装置であって、 前記発信部が、 前記クロックパ ルスに対する発信タイミングを所定間隔でシフ 卜させながら前記パルス 信号を発信させるものである。  To achieve the above object, a timing device according to a first aspect of the present invention includes: a transmitting unit that repeatedly transmits a pulse signal; and A timing unit including a receiving unit for measuring, wherein the transmitting unit transmits the pulse signal while shifting a transmitting timing for the clock pulse at a predetermined interval.
本発明においては、 繰り返し発信されたパルス信号の発信タイ ミング を、 複数回、 所定間隔でシフ トさせながら当該受信タイミングをクロッ クパルスに基づいてカウントして、 複数のカウント値を得ることができ る。 クロックパルスに対する発信タイミングを所定間隔でシフ トさせな がらパルス信号が発信されるので、 例えば、 繰り返し発信されたパルス 信号の発信タイ ミングを、 複数回、 所定間隔でシフ 卜させながら当該受 信タイ ミングをクロツクパルスに基づいてカウントし、 得られた複数の カウン ト値を統計処理にて演算することで、 クロックパルスの発生間隔 より短い間隔で、 当該受信タイ ミングを計数することができる。 In the present invention, a plurality of count values can be obtained by counting the reception timing based on the clock pulse while shifting the transmission timing of the repeatedly transmitted pulse signal a plurality of times at predetermined intervals. . Since the pulse signal is transmitted while shifting the transmission timing with respect to the clock pulse at predetermined intervals, for example, a pulse that is repeatedly transmitted The signal transmission timing is shifted a plurality of times at predetermined intervals, the received timing is counted based on the clock pulse, and the obtained count values are calculated by statistical processing to obtain the clock pulse. The reception timing can be counted at intervals shorter than the occurrence interval of the reception.
又、 第 2の発明である計時装置は、 パルス信号を繰り返し発信させる 発信部と、 前記パルス信号を受信し、 前記パルス信号の受信タイ ミング をクロックパルスのカウン ト値に基づいて測定する受信部とを備える計 時装置であって、 前記受信部が、 受信タイミングを所定間隔でシフ トさ せるものである。  Further, a timing device according to a second invention is a transmitting unit that repeatedly transmits a pulse signal, and a receiving unit that receives the pulse signal and measures reception timing of the pulse signal based on a count value of a clock pulse. Wherein the receiving unit shifts the reception timing at predetermined intervals.
本発明によれば、 受信タイ ミングが所定間隔でシフ トされるので、 例 えば、 繰り返し発信されたパルス信号のシフ トされた受信タイ ミングを クロックパルスに基づいてカウン トし、 得られた複数のカウン ト値を統 計処理にて演算することで、クロックパルスの発生間隔より短い間隔で、 当該受信タイ ミングを計数することができる。  According to the present invention, since the reception timing is shifted at a predetermined interval, for example, the shifted reception timing of the repeatedly transmitted pulse signal is counted based on the clock pulse, and the obtained plurality is obtained. By calculating the count value in the statistical processing, the reception timing can be counted at intervals shorter than the clock pulse generation interval.
又、 第 3の発明である計時装置は、 前記第 1の発明、 又は第 2の発明 であって、 さらに、 前記所定間隔をクロックパルス周期よりも短い一定 間隔とし、 前記シフ トの幅の最大値を前記クロックパルスの 1周期以上 としたものである。  Further, the timing device according to a third invention is the timing device according to the first invention or the second invention, wherein the predetermined interval is a fixed interval shorter than a clock pulse period, and the maximum width of the shift is The value is one cycle or more of the clock pulse.
本発明によれば、 パルス信号が、 クロックパルス周期よりも短い一定 間隔でシフ トされ、 その最大値がクロックパルスの 1周期以上であるの で、 受信タイミングを複数回求め、 これを統計処理する際の適正なサン プリングが可能になる。  According to the present invention, the pulse signal is shifted at a constant interval shorter than the clock pulse cycle, and the maximum value is one cycle or more of the clock pulse. Therefore, the reception timing is obtained a plurality of times and statistically processed. In this case, appropriate sampling is possible.
又、第 4の発明である計時装置は、前記第 3の発明であって、 さらに、 前記受信部が、 前記発信タイ ミング又は受信タイ ミングがシフ 卜される 毎に得られる前記カウン ト値の度数分布に応じて、 前記受信タイ ミング を計数するものである。 又、第 5の発明である計時装置は、前記第 4の発明であって、さらに、 前記受信部が、 前記パルス信号を複数回シフ トさせたときに得られる前 記複数のカウント値を T(l)〜T(m)、 各カウント値の発生度数を N(l)〜 N(m)としたときに、 前記パルス信号の受信タイミング tを、 Further, the timing device according to a fourth invention is the timing device according to the third invention, further comprising the receiving unit, wherein the reception unit obtains the count value obtained each time the transmission timing or the reception timing is shifted. The reception timing is counted according to the frequency distribution. Further, the timing device according to a fifth invention is the timing device according to the fourth invention, wherein the reception unit further includes a plurality of count values obtained by shifting the pulse signal a plurality of times. (l) to T (m), and when the frequency of occurrence of each count value is N (l) to N (m), the reception timing t of the pulse signal is
t =[N(l)x T(l)+N(2)x T(2)十… + N(m)x T(m)]  t = [N (l) xT (l) + N (2) xT (2) ten ... + N (m) xT (m)]
/[N(l)+N(2)十… N(m)]  / [N (l) + N (2) ten… N (m)]
(但し、 m、 Nは整数)  (However, m and N are integers)
に基づいて求めるものである。  Is determined based on
これら、 第 4の発明、 第 5の発明によれば、 受信部が、 発信タイミン グがシフ トされる毎に得られるク口ヅクパルスのカウント値の度数分布 に応じて、 受信タイ ミングを計数するので、 簡易な統計処理が可能にな る。  According to the fourth and fifth inventions, the reception unit counts the reception timing according to the frequency distribution of the count value of the pulse pulse obtained every time the transmission timing is shifted. Therefore, simple statistical processing becomes possible.
又、 第 6の発明である計時装置は、 前記第 1の発明から第 5の発明の いずれかであって、 前記発信部が、 前記パルス信号としてパルス状のレ 一ザ光を発信し、 目的物に向かって照射する光源部を備え、 前記受信部 が、 前記目的物から反射された前記パルス状のレーザ光を受光する受光 部を備え、 前記受信部が前記パルス状のレーザ光の受信タイミングを測 定するものである。  A timing device according to a sixth invention is the timing device according to any one of the first invention to the fifth invention, wherein the transmitting unit transmits a pulsed laser light as the pulse signal. A light source unit that irradiates the object with light, the receiving unit includes a light receiving unit that receives the pulsed laser light reflected from the object, and the receiving unit receives timing of the pulsed laser light. Is measured.
本発明によれば、 パルス状のレーザ光の発光タイ ミングと受光タイミ ングとの時間差を高精度に計数できるので、 発信されたレーザ光が目的 物で反射されて受信されるまでの時間測定の分解能が高まり、 又、 その 計時精度も向上する。  According to the present invention, since the time difference between the emission timing and the reception timing of the pulsed laser light can be counted with high accuracy, the time measurement until the transmitted laser light is reflected by the target object and received is performed. The resolution is improved, and the timing accuracy is also improved.
又、 第 7の発明である計時方法は、 パルス信号を繰り返し発信させる 手順と、 前記パルス信号を受信し、 前記パルス信号の受信タイ ミングを クロックパルスのカウント値に基づいて測定する手順と、 前記クロック パルスに対する発信タイ ミング又は受信タイミングを所定間隔でシフ ト させながら前記パルス信号を発信させる手順とを含むものである。 The timekeeping method according to a seventh aspect of the present invention includes: a step of repeatedly transmitting a pulse signal; a step of receiving the pulse signal; and a step of measuring a reception timing of the pulse signal based on a count value of a clock pulse. The transmission timing or reception timing for the clock pulse is shifted at predetermined intervals. And transmitting the pulse signal.
本発明においては、 繰り返し発信されたパルス信号の発信タイ ミング 又は受信タイ ミングを、 複数回、 所定間隔でシフ トさせながら当該受信 タイ ミングをクロックパルスに基づいて力ゥン トして、 複数のカウン ト 値を得ることができる。 たとえば、 クロックパルスに対する発信夕イ ミ ングを所定間隔でシフ トさせながらパルス信号が発信されるので、 例え ば、 繰り返し発信されたパルス信号の発信タイ ミングを、 複数回、 所定 間隔でシフ トさせながら当該受信タイ ミングをクロックパルスに基づい てカウントし、 得られた複数のカウント値を統計処理にて演算すること で、 クロックパルスの発生間隔より短い間隔で、 当該受信タイ ミングを 計数することができる。  In the present invention, the transmission timing or the reception timing of the repeatedly transmitted pulse signal is shifted a plurality of times at a predetermined interval, and the reception timing is timed based on the clock pulse to obtain a plurality of times. You can get the count value. For example, a pulse signal is transmitted while shifting the transmission timing for a clock pulse at a predetermined interval.For example, the transmission timing of a repeatedly transmitted pulse signal is shifted a plurality of times at a predetermined interval. By counting the reception timing based on the clock pulse, and calculating the obtained count values by statistical processing, the reception timing can be counted at intervals shorter than the clock pulse generation interval. it can.
又、 第 8の発明である測距装置は、 第 6の発明である計時装置と、 前 記測定された受信タイ ミングと前記パルス状のレーザ光の光速度に基づ いて前記目的物までの距離を演算する距離演算部とを備えるものである < 本発明によれば、 パルス状のレーザ光の発光タイ ミングと受光夕イ ミ ングとの時間差を高精度に計数できるので、 目的物までの距離の分解能 が高まり、 又、 その測距精度も向上する。 図面の簡単な説明  Further, a distance measuring apparatus according to an eighth aspect of the present invention is a distance measuring apparatus according to the sixth aspect of the present invention, comprising: a timing device configured to measure the reception timing and the light speed of the pulsed laser light to reach the target object. According to the present invention, the time difference between the emission timing of the pulsed laser light and the reception timing can be counted with high accuracy, so that the distance to the target object can be calculated. The resolution of the distance is improved, and the distance measurement accuracy is also improved. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明が適用されたレーザ測距装置の斜視図である。  FIG. 1 is a perspective view of a laser distance measuring apparatus to which the present invention is applied.
図 2は、 レーザ測距装置の内部構成を示すプロック図である。  FIG. 2 is a block diagram showing the internal configuration of the laser distance measuring device.
図 3は、 シフ ト回路の構成を示す回路図である。  FIG. 3 is a circuit diagram showing a configuration of the shift circuit.
図 4は、 シフ ト回路による発光タイ ミング (発信タイ ミング) のシフ ト値を説明するためのタイ ミングチャートである。  FIG. 4 is a timing chart for explaining shift values of light emission timing (transmission timing) by the shift circuit.
図 5は、 目的物までの距離を求める際の、 受光タイ ミング (受信タイ ミング) の測定の様子を示すタイ ミングチャートである。 図 6は、 目的物までの距離が 5 0 0 mのときの、 受光タイミングの測 定の様子を示すタイミングチャートである。 Fig. 5 is a timing chart showing how light reception timing (reception timing) is measured when determining the distance to the target. FIG. 6 is a timing chart showing how the light reception timing is measured when the distance to the target is 500 m.
図 7は、 目的物までの距離が 5 0 2 mのときの、 受光タイミングの測 定の様子を示すタイ ミングチャートである。  FIG. 7 is a timing chart showing how the light reception timing is measured when the distance to the target is 502 m.
図 8は、 目的物までの距離が 5 0 1 mのときの、 受光タイ ミングの測 定の様子を示すタイ ミングチヤ一トである。  FIG. 8 is a timing chart showing how the light reception timing is measured when the distance to the object is 501 m.
図 9は、 測距プログラムを示すフローチャートである。  FIG. 9 is a flowchart showing the distance measuring program.
図 1 0は、 目的物までの距離を受信タイミングをシフ トさせながら求 める際の測定の様子を示すタイ ミングチャートである。 発明を実施するための最良の形態  FIG. 10 is a timing chart showing a state of measurement when obtaining the distance to the target object while shifting the reception timing. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態について、図 1から図 9を用いて説明する。 図 1は、本発明が適用されるレーザ測距装置 1 0 0の斜視図、図 2は、 その内部構成を示すプロック図である。  Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 9. FIG. 1 is a perspective view of a laser distance measuring apparatus 100 to which the present invention is applied, and FIG. 2 is a block diagram showing an internal configuration thereof.
レーザ測距装置 1 0 0は、 図 1に示すように、 その上面にパワー及び 測距開始ボタン 1 0 1、モード変更ボタン 1 0 2が設けられている。又、 その前面にレーザ照射窓 1 0 3、 レ一ザ受光窓 1 0 4が設けられ、 その 背面にはファインダ窓 (図示省略) が設けられている。  As shown in FIG. 1, the laser distance measuring apparatus 100 is provided with a power and distance measurement start button 101 and a mode change button 102 on its upper surface. Further, a laser irradiation window 103 and a laser receiving window 104 are provided on the front surface thereof, and a finder window (not shown) is provided on the rear surface thereof.
レーザ測距装置 1 0 0の内部には、 レーザ照射窓 1 0 3側にコリメ一 トレンズ 1 1 1が、 レーザ受光窓 1 0 4側に集光レンズ 1 2 1が配置さ れている。  Inside the laser distance measuring device 100, a collimating lens 111 is arranged on the side of the laser irradiation window 103, and a condenser lens 121 is arranged on the side of the laser receiving window 104.
又、 レーザ測距装置 1 0 0の内部には、 図 2に示すように、 コリメ一 トレンズ 1 1 1側に、 半導体レーザ (発光素子) 1 1 2、 パルス発生回 路 1 3 0、 シフ ト回路 1 4 0が配置されている。 又、 集光レンズ 1 2 1 側に、 フォ トダイオード (受光素子) 1 2 2、 受信回路 1 5 0.が配置さ れている。 制御回路 1 6 0は、 上記したパルス発生回路 1 3 0から出力される発 光開始信号を、 シフ ト回路 1 4 0を用いて所定のシフ ト値だけ遅延させ て、 半導体レーザ 1 1 2から所定のタイミング (発光タイミング) でレ 一ザ光を照射させる。 As shown in FIG. 2, a semiconductor laser (light emitting element) 112, a pulse generating circuit 130, a shift circuit 130, and a collimating lens 111 are provided inside the laser range finder 100 as shown in FIG. Circuit 140 is arranged. A photodiode (light receiving element) 122 and a receiving circuit 150 are arranged on the side of the condenser lens 121. The control circuit 160 delays the light emission start signal output from the above-described pulse generation circuit 130 by a predetermined shift value using the shift circuit 140, and outputs the signal from the semiconductor laser 112. Laser light is emitted at a predetermined timing (light emission timing).
—方で、 制御回路 1 6 0は、 目的物 1で反射したレーザ光の受光タイ ミング (受信タイミング) を受信回路 1 5 0からの信号に基づいて検知 する。  On the other hand, the control circuit 160 detects the reception timing (reception timing) of the laser beam reflected by the object 1 based on the signal from the reception circuit 150.
制御回路' 1 6 0は、 発光タイミング (発信タイミング) と受光タイミ ング (受信タイミング) との時間差 (図 2 ( b ) の t ) を、 クロヅクパ ルス (図 5参照) をカウントすることによって検出する。  The control circuit '160 detects the time difference (t in Fig. 2 (b)) between the light emission timing (transmission timing) and the light reception timing (reception timing) by counting the clock pulse (see Fig. 5). .
そして、 制御回路 1 6 0は、 この計数した時間差 と、 レーザ光の速 度とに基づいて、 レーザ測距装置 1 0 0から目的物 1までの距離 Lを算 出する (距離演算部としての機能)。 制御回路 1 6 0はこの算出結果を、 フアインダ内の液晶表示部 1 7 0にて表示する。  Then, the control circuit 160 calculates a distance L from the laser distance measuring apparatus 100 to the object 1 based on the counted time difference and the speed of the laser beam (as a distance calculation unit). function). The control circuit 160 displays this calculation result on the liquid crystal display 170 in the finder.
ところで、 時間差 tの検出は、 パルス状のレーザ光を繰り返し発生さ せ、 各々のレーザ光の発生毎に繰り返し行われる。 そして、 複数回求め られた時間差 tを統計処理して、 1つの値(時間差)を求める。そして、 この実施の形態では、 パルス状のレーザ光を複数回繰り返し発光する際 に、 その発光タイミング (発信タイ ミング) を、 これをカウントするた めのクロックパルスに対して所定のシフ ト値 Sだけずらすようにしてい る。 尚、 この実施の形態では、 コリメ一トレンズ 1 1 1、 半導体レーザ 1 1 2、 パルス発生回路 1 3 0、 シフ ト回路 1 4 0、 制御回路 1 6 0に よって発信部が構成され、 このうちコリメートレンズ 1 1 1、 半導体レ 一ザ 1 1 2によって光源部が構成されている。 又、 集光レンズ 1 2 1、 フォ トダイオード 1 2 2、 受信回路 1 5 0、 制御回路 1 6 0によって受 信部が構成され、 このうち集光レンズ 1 2 1、 フォ トダイオード 1 2 2 によって受光部が構成されている。 By the way, the detection of the time difference t is performed by repeatedly generating a pulsed laser beam, and is repeated each time each laser beam is generated. Then, the time difference t obtained a plurality of times is statistically processed to obtain one value (time difference). In this embodiment, when the pulsed laser light is repeatedly emitted a plurality of times, the emission timing (transmission timing) is determined by a predetermined shift value S with respect to a clock pulse for counting the emission timing. Only to shift it. In this embodiment, the transmitting section is constituted by the collimating lens 111, the semiconductor laser 112, the pulse generating circuit 130, the shift circuit 140, and the control circuit 160. The light source section is composed of the collimating lens 111 and the semiconductor laser 112. The receiving unit is composed of a condenser lens 121, a photodiode 122, a receiving circuit 150, and a control circuit 160, of which a condenser lens 121 and a photodiode 122 are formed. Constitutes a light receiving section.
このレーザ測距装置 100では、 レーザ光の発光タイ ミングがシフ ト 回路 140の働きによって、 シフ ト値 Sだけずらされる。  In the laser distance measuring apparatus 100, the emission timing of the laser light is shifted by the shift value S by the operation of the shift circuit 140.
この発光タイ ミングのシフ トは複数回行われるが、 各シフ ト値 Sの差 分 Δ Sは、 クロヅクパルス周期 Txよりも短い。 又、 シフ ト値 Sの最大 値 Sxは、 クロヅクパルス周期 Tx以上である (図 5参照)。  The light emission timing is shifted a plurality of times, but the difference ΔS between the shift values S is shorter than the clock pulse period Tx. The maximum value Sx of the shift value S is equal to or longer than the clock pulse period Tx (see FIG. 5).
ここで、 シフ ト回路 140は、 図 3に示すように、 アナログスィ ッチ 141、 コンパレー夕 142、 コンデンサ 143等によって構成されて いる。 そして、 アナログスイ ッチ 14 1にはパルス発生回路 13 0から の信号 (発光開始信号) が入力され、 この信号によってアナログスイ ツ チ 14 1がオンしたときに定電流源から電流 I cが流れる。 このコンパ レー夕 142の他方の端子には、 シフ ト値 Sを設定するための設定電圧 V cが印加されている。  Here, the shift circuit 140 includes an analog switch 141, a comparator 142, a capacitor 143, and the like, as shown in FIG. Then, a signal (light emission start signal) from the pulse generation circuit 130 is input to the analog switch 141, and the current Ic flows from the constant current source when the analog switch 141 is turned on by this signal. . A setting voltage Vc for setting shift value S is applied to the other terminal of comparator 142.
図 4は、 このシフ ト回路 140によって発光夕イ ミングを遅延させた ときのタイ ミングチャートである。  FIG. 4 is a timing chart when the light emission timing is delayed by the shift circuit 140.
この図に示すように、 アナログスィ ツチ 14 1が、 発光開始信号によ り、 図 4 (a) に示すようにオンしたときに電流 I cが流れることによ つて、 コンパレ一夕 142の一方の電圧 V 1が図 4 (b ) に示すように 徐々に大きくなる。 そして、 V 1が閾値 V cを超えた時点で、 コンパレ 一夕 142の出力がハイレベルになる。 このハイレベルの出力が発生す るまでの時間 t dがシフ ト値 Sとなる。 ここで、 シフ ト値 S (時間 t d) は以下のように表される。  As shown in this figure, when the analog switch 141 is turned on by the light emission start signal as shown in FIG. Voltage V1 gradually increases as shown in FIG. 4 (b). Then, when V1 exceeds the threshold Vc, the output of the comparator 142 goes high. The time td until the high-level output is generated is the shift value S. Here, the shift value S (time t d) is expressed as follows.
t d = CxVc/I c (Cは、コンデンサの容量) ·'·( 1) このようにシフ ト回路 140によって、 シフ ト値設定電圧 V cに応じ て、 半導体レーザ 1 12の発光タイ ミング (発信タイ ミング) が、 所定 時間 t d (S) 遅延される。 図 5に、 発光タイ ミングを、 ク口ヅクパルスに対して、 互いに異なる シフ ト値 S ( S I, S2〜S x) で変化させたときの、 当該発光タイ ミン グと、 このとき目的物 1で反射したレーザ光の受光タイ ミングと、 クロ ヅクパルスとの関係の一例を示す。 ここで、 S x= SlOである。 td = CxVc / Ic (C is the capacitance of the capacitor) · '· (1) As described above, the light emission timing (transmission) of the semiconductor laser 112 according to the shift value set voltage Vc by the shift circuit 140 Timing is delayed for a predetermined time td (S). Fig. 5 shows the light emission timing when the light emission timing is changed with different shift values S (SI, S2 to Sx) with respect to the closing pulse, and the target 1 An example of the relationship between the timing of receiving the reflected laser light and the clock pulse is shown. Here, S x = SlO.
このとき得られたクロックパルス (図では、 各クロックパルスが経過 時間 Tl〜Tmで示されている)のカウント値の発生度数を N(l)〜N(m) としたときに、レーザ光の受信タイ ミング tは、以下の式で求められる。 t = [N 1 X T 1+ N2X T2十… + NmX T m]/[N 1+ N 2 +… N m] … ( 2 )  When the frequency of occurrence of the count value of the clock pulse obtained at this time (each clock pulse is represented by elapsed time Tl to Tm) is N (l) to N (m), the laser light The reception timing t is obtained by the following equation. t = [N 1 X T 1 + N2X T2 tens ... + NmX T m] / [N 1 + N 2 + ... N m] ... (2)
(但し、 m、 Nは整数)  (However, m and N are integers)
ここで、 図 5に示すように、 発光タイ ミング (発信タイミング) を、 クロヅクパルス周期 Txより若干長い期間 S x内で、 1 0回シフ トさせ た場合を考える。  Here, as shown in FIG. 5, it is assumed that the light emission timing (transmission timing) is shifted 10 times within a period Sx slightly longer than the clock pulse period Tx.
このとき何パルス目で反射光が検知されるか (受光タイ ミング) は、 レ一ザ測距装置 1 0 0から目的物 1までの距離 Lによって異なる。  The number of pulses at which the reflected light is detected (light receiving timing) depends on the distance L from the laser distance measuring device 100 to the target 1.
今、 パルス発生回路 1 3 0の発信器 (図示省略) の周波数が 8 0 MH z (周期 1 2. 5 n s Θ c ) でレーザ測距装置 1 0 0の分解能が 2 m、 レーザ測距装置 1 0 0から目的物 1までの距離 Lが 5 0 Omの場合を考 える (図 5、 図 6 )。  Now, the frequency of the oscillator (not shown) of the pulse generator circuit 130 is 80 MHz (period 12.5 nsnsc), the resolution of the laser range finder 100 is 2 m, and the laser range finder Consider the case where the distance L from 100 to the target 1 is 50 Om (Figs. 5 and 6).
このとき半導体レーザ 1 1 2の発光タイ ミングを期間 Sx内で 1 0回 シフ トさせる。 又、 シフ ト値 S ( SI, S2-S x) は互いに一定時間 (差 分 Δ S) だけずれているとする。  At this time, the emission timing of the semiconductor laser 112 is shifted 10 times within the period Sx. It is also assumed that shift values S (SI, S2-Sx) are shifted from each other by a fixed time (difference ΔS).
このとき、 仮に N— 1番目のクロヅクパルス ( Tn-1) で 1回、 Ν + 1 番目のクロヅクパルス (Τ η)で 8回、 N+ 1番目のクロヅクパルス ( Τ n+1) で 1回という具合にカウン トされたとすると (図 6 (a))、 この とき得られるヒス トグラムは図 6 (b) に示すようになる。 この測定結 果を、 上記した式 ( 2 ) に当てはめることで、 受信夕イ ミングが算出さ れ、 これよりレ一ザ測距装置 1 00から目的物 1までの距離 L 1 (ここ では 5 0 0 m) が算出される。 In this case, suppose that N—the 1st clock pulse (Tn-1) is used once, the 1 + 1st clock pulse (Τη) is used 8 times, and the N + 1st clock pulse (Τn + 1) is used once. If counting is performed (Fig. 6 (a)), the histogram obtained at this time will be as shown in Fig. 6 (b). This measurement result By applying the result to the above equation (2), the reception timing is calculated, and the distance L 1 from the laser range finder 100 to the target 1 (here, 500 m) is calculated. Is calculated.
又、 レーザ測距装置 1 0 0から目的物 1までの距離 Lが、 上記した距 離 L 1 ( 5 0 0 m) より、 丁度、 1分解能 ( 2 m) 分ずれている場合(距 離 L 2 = 5 0 2 m) には、 1 0回のシフ トで 1 0回発生したレーザ光の 受光タイ ミングは、 図 7 (a) に示すようになり、 クロックパルス (T n) で 1回、 クロックパルス ( Tn+1) で 8回、 クロックパルス ( Τη+2) で 1回カウン トされる。 このとき得られるヒス トグラムを図 7 ( b ) に 示す。 この測定結果を、 上記した式 ( 2 ) に当てはめると、 受信夕イ ミ ングの算出を経てレーザ測距装置 1 0 0から目的物 1までの距離 L 1 (ここでは 5 0 2 m) が算出される。  If the distance L from the laser range finder 100 to the target 1 is shifted from the above distance L 1 (500 m) by exactly one resolution (2 m) (distance L 2 = 5 0 2 m), the reception timing of the laser beam generated 10 times in 10 shifts is as shown in Fig. 7 (a), and the timing is once for the clock pulse (Tn). It is counted eight times by the clock pulse (Tn + 1) and once by the clock pulse (Τη + 2). The histogram obtained at this time is shown in Fig. 7 (b). When this measurement result is applied to the above equation (2), the distance L 1 (here, 502 m) from the laser range finder 100 to the target 1 is calculated through the calculation of the reception timing. Is done.
このように、 目的物 1までの距離 Lが分解能 (例えば、 2 m) の整数 倍であれば (例えば、 5 0 0 m、 5 0 2 m-)s ヒス トグラムは、 クロヅ クパルスが 1つ宛ずれるもののヒス トグラムの形状は、 略同じになる。 これに対して、 レーザ測距装置 1 0 0から目的物 1までの距離 Lが、 上記した距離 L 1、 L 2との間(例えば、 L 3 = 5 0 1 m)のときには、 形状の異なるヒス トグラム (図 8 (b)) が得られる。  Thus, if the distance L to the target 1 is an integer multiple of the resolution (for example, 2 m) (for example, 500 m, 502 m-) s histogram, one clock pulse The shape of the histogram is almost the same even though it is shifted. On the other hand, when the distance L from the laser range finder 100 to the object 1 is between the above-mentioned distances L 1 and L 2 (for example, L 3 = 501 m), the shapes are different. A histogram (Fig. 8 (b)) is obtained.
すなわち、 図 8 ( a) に示すように、 レーザ測距装置 1 0 0から目的 物 1までの距離 L 3が 5 0 1 mであれば、 レーザ測距装置 1 0 0の分解 能が 2 mであるから、 カウント値は、 5 0 0 mか 5 0 2 mの何れかを表 す値 (T n又は Tn+1) となる。  That is, as shown in FIG. 8 (a), if the distance L3 from the laser ranging device 100 to the object 1 is 501 m, the resolution of the laser ranging device 100 is 2 m. Therefore, the count value is a value (Tn or Tn + 1) representing either 500 m or 502 m.
ここで、 発光タイ ミングが 1 0回シフ トされて、 レーザ光が照射され るため、 受光タイ ミングを示す期間は、 5 0 0 mに相当するクロックパ ノレス (Tn)、 5 0 2 mに相当するクロヅクパルス ( Tn+1) でカウント される。 図 8の例では、 距離 Lが、 L I ( 500 m) と L 2 ( 502 ) の丁度 真中の距離 L 3 ( 5 0 1 m) であるから、 10回シフ トされて照射され たレーザ光の受光タイ ミングは、 クロックパルス Tnで 5回、 クロック パルス Τη+1で 5回カウン トされる (図 8 ( b ) のヒス トグラム)。 Here, since the light emission timing is shifted 10 times and the laser light is irradiated, the period indicating the light reception timing is equivalent to a clock panel (Tn) corresponding to 500 m, and equivalent to 500 m. It is counted by the clock pulse (Tn + 1). In the example of FIG. 8, since the distance L is the distance L 3 (501 m) exactly in the middle between LI (500 m) and L 2 (502), the laser light irradiated after being shifted ten times The light reception timing is counted five times by the clock pulse Tn and five times by the clock pulse Τη + 1 (histogram in Fig. 8 (b)).
このように得られたカウント値を上記した式 (2 ) に当てはめること で、 受信夕イ ミングの算出を経て L 3の値 (50 1 m) を求めることが できる。  By applying the count value thus obtained to the above equation (2), the value of L3 (501 m) can be obtained through the calculation of the reception timing.
尚、 レーザ測距装置 1 00から目的物 1までの距離 L 3が 50 1 mの ときには、 L I ( 500 m) と L 2 ( 502 m) との丁度真中であるか ら、 発生度数が図 8 (b) に示すように、 5回ずつに分かれているが、 距離 L 1 ( 500 m) L 2 ( 502 m)との何れかに近ければ、 その分、 クロックパルス Tnとクロックパルス Τη+1でのカウン ト数 (発生度数 の分布) が偏る。  When the distance L3 from the laser range finder 100 to the target 1 is 501 m, since the distance between L1 (500 m) and L2 (502 m) is exactly in the middle, the frequency of occurrence is shown in FIG. As shown in (b), it is divided into 5 times, but if it is closer to any of the distances L 1 (500 m) and L 2 (502 m), the clock pulse Tn and the clock pulse Τη + 1 The number of counts (distribution of the frequency of occurrence) is uneven.
この場合にも得られたカウン ト値を上記した式 ( 2) に代入すること で、 L I ( 500 m) と L 2 ( 502 m) との間の点で距離を、 従来の 分解能 (2m) より細かな分解能で得ることができる。  Also in this case, by substituting the obtained count value into the above equation (2), the distance at the point between LI (500 m) and L 2 (502 m) can be calculated by the conventional resolution (2 m). A finer resolution can be obtained.
尚、 上記した例では、 シフ ト値 Sの差分が一定 (A S) である場合を 例にあげて説明したが、 シフ ト値が予め分かっていれば、 式 (2) とは 異なる、 これらの変化する差分を有するシフ ト値に対応する算出式を用 いることにより、 演算によって距離 Lを精細に求めることができる。 又、 レーザ測距装置 1 00による測距の精度を高めるのであれば、 シ フ トの回数を増やし、 シフ ト値の差分 A Sを短くすればよい。  In the above example, the case where the difference of the shift value S is constant (AS) has been described as an example. However, if the shift value is known in advance, it differs from the equation (2). By using a calculation formula corresponding to a shift value having a changing difference, the distance L can be obtained precisely by calculation. To increase the accuracy of the distance measurement by the laser distance measuring device 100, the number of shifts may be increased and the shift value difference AS may be shortened.
このように、 半導体レーザ 1 12の発光タイ ミング(発信タイ ミング) をシフ トさせて受光タイ ミングを高精度に求めることで、 レーザ測距装 置 100の測距の精度が向上する。 このとき、 発光タイ ミングをも同様 の手法によって高精度に求めれば、 更に測距の精度が向上する。 又、 発光タイ ミングを求めるに当たって、 半導体レーザ 1 1 2の発光 をセンサ 1 9 9 (図 2中、 破線で示す) で直接検出し、 発光タイ ミング を実際に検出した時点より、受光タイ ミングのカウン トを始めることで、 測定精度を高めることができる。 As described above, by shifting the emission timing (transmission timing) of the semiconductor laser 112 to obtain the reception timing with high accuracy, the distance measurement accuracy of the laser distance measuring apparatus 100 is improved. At this time, if the light emission timing is obtained with high accuracy by the same method, the accuracy of distance measurement is further improved. In determining the light emission timing, the light emission of the semiconductor laser 112 is directly detected by the sensor 199 (indicated by a broken line in FIG. 2), and the light emission timing is detected from the time when the light emission timing is actually detected. Starting the counting can increase the measurement accuracy.
図 9は、 上記した測距を行うために制御回路 1 6 0内の C P U (図示 省略) で実行される測距プログラムを示すフローチヤ一トである。  FIG. 9 is a flowchart showing a distance measurement program executed by a CPU (not shown) in the control circuit 160 to perform the above-described distance measurement.
レーザ測距装置 1 0 0に設けられたパワー及び測定開始ボタン 1 0 1 が押圧され電源が投下されると、 先ず、 ステップ S 1でクロックパルス のカウン トが開始され、 続くステヅプ S 2で半導体レーザ 1 1 2の発光 処理が行われる。ここではシフ ト回路 1 4 0によって発光タイ ミングが、 上記した一定のシフ ト値だけシフ トされる。  When the power and measurement start button 101 provided on the laser range finder 100 is pressed and the power is turned on, first, the counting of clock pulses is started in step S1, and the semiconductor is then started in step S2. The light emission processing of the laser 112 is performed. Here, the light emission timing is shifted by the above-mentioned constant shift value by the shift circuit 140.
次のステップ S 3では、 フォ トダイオード 1 2 2が、 目的物 1で反射 されたレーザ光を検知したか否かが判別される。 この判別結果が" N o " であるうちはクロックパルスのカウン トが継続され、 判別結果が " Y e s " に転じると、 ステップ S 4でこの時点でのクロックパルスのカウン ト値が取り込まれる。  In the next step S3, it is determined whether or not the photodiodes 122 detect the laser beam reflected by the object 1. While the determination result is "No", the count of the clock pulse is continued. When the determination result changes to "Yes", the count value of the clock pulse at this time is captured in step S4.
次のステップ S 5では、 今回取り込まれたカウン ト値を用いたヒス ト グラムの更新が行われ、 続くステップ S 6で、 n回 (例えば、 1 0回) の検出が行われたか否かが判別される。  In the next step S5, the histogram is updated using the count value acquired this time, and in the following step S6, it is determined whether or not n (for example, 10) detections have been performed. Is determined.
このステップ S 6の判別結果が " N o " であるうちは、 上記したステ ヅプ S 1〜ステップ S 5が繰り返し実行される。 そして、 ステップ S 6 の判別結果が " Y e s " に転じたとき、 ステップ S 7に進み、 この時点 までに得られたヒス トグラムに基づいて、 レーザ測距装置 1 0 0から目 的物 1 までの距離 Lの演算が行われる。  As long as the determination result of step S6 is "No", steps S1 to S5 described above are repeatedly executed. Then, when the result of the determination in step S6 changes to "Yes", the process proceeds to step S7, and based on the histogram obtained up to this point, the distance from the laser ranging device 100 to the target 1 is increased. The distance L is calculated.
尚、 発信タイ ミングをシフ トさせのではなく、 例えば、 図 1 0に示す ように受信タイ ミングを、 シフ ト回路 1 4 0と略同一の遅延回路によつ てシフ トさせて (図 1 0の S l〜S x ) カウン ト用の信号を発生させて もよい。 すなわち、 実際の受光パルスは、 受光パルス # 1に示される夕 ィ ミングで得られているのであるが、 次に受光するタイ ミング (受光パ ルス # 2で示されている) では、 この受光パルスを S 2だけ遅延させて 次に接続される処理回路に送っている。 同様に、 受光パルス # nで示さ れる夕イ ミングでは、 受光パルスを S nだけ遅延させて次に接続される 処理回路に送る。 請求の範囲や、 発明の開示の欄でいう 「受信タイ ミン グをシフ トさせる」、 「受信タイ ミングのシフ ト」 とは、 このように、 実 際に得られた受信タイ ミ ングを遅延させて処理することを言う。 Instead of shifting the transmission timing, for example, as shown in FIG. 10, the reception timing is shifted by a delay circuit that is substantially the same as the shift circuit 140. Alternatively, a signal for counting may be generated (S1 to Sx in FIG. 10). In other words, the actual light receiving pulse is obtained at the timing indicated by light receiving pulse # 1, but at the next light receiving time (indicated by light receiving pulse # 2), this light receiving pulse is obtained. Is delayed by S2 and sent to the next connected processing circuit. Similarly, at the timing indicated by the received light pulse #n, the received light pulse is delayed by Sn and sent to the processing circuit connected next. The terms "shifting the reception timing" and "shifting the reception timing" referred to in the claims and the disclosure of the invention mean that the actually obtained reception timing is delayed. Let it be processed.
このような場合でも、 発信タイ ミングをシフ トさせた例で説明したよ うな種々の手段を変形して用いることができ、 同様な効果が得られるこ と、 そのためにどのような変形を行えばよいかは、 当業者には自明のこ とであろう。  Even in such a case, various means as described in the example in which the transmission timing is shifted can be modified and used, and the same effect can be obtained. It will be obvious to those skilled in the art.
又、 上記した実施の形態では、 レーザ測距装置 1 0 0において、 半導 体レーザ 1 1 2の受光タイ ミングを計数する例をあげて説明したが、 他 の発光素子 (例えば、 L E D ) を用いた測定機器にも本発明は適用可能 である。  Also, in the above-described embodiment, an example has been described in which the laser ranging device 100 counts the light receiving timing of the semiconductor laser 112, but other light emitting elements (eg, LEDs) are used. The present invention is also applicable to the measuring instrument used.
以上の説明では、 クロックパルスに対する発信タイ ミ ングをシフ トさ せながらパルス信号を発信させる例を説明したが、 これの代わりに、 パ ルス信号に対するク口ックパルスの発信タイ ミ ングをシフ トさせる場合 も考え方は全く等価であり、 本発明の範囲に入る。  In the above description, the example in which the pulse signal is transmitted while shifting the transmission timing for the clock pulse has been described. Instead, the transmission timing of the clock pulse for the pulse signal is shifted. In this case, the concepts are completely equivalent and fall within the scope of the present invention.
更に又、 以上の説明では、 説明の簡単のために、 ひとつのシフ ト値に 対してレーザ光を 1回測定する場合を説明した。 ひとつのシフ ト値に対 して複数のレーザ光を測定しながら、 シフ ト値を最大シフ ト値まで変化 させても、 シフ ト値を最大シフ ト値まで変化させながら受信タイ ミング を測定するサイクルを複数繰り返してもよく、 これを処理することによ り測定値の信頼性を向上させることができる。 Furthermore, in the above description, the case where the laser beam is measured once for one shift value has been described for the sake of simplicity. Even if the shift value is changed to the maximum shift value while measuring multiple laser beams for one shift value, the reception timing is measured while changing the shift value to the maximum shift value. The cycle may be repeated several times, and by processing this The reliability of the measured values can be improved.
以上のように、本発明は、以上の説明の範囲に限定されるものでなく、 本発明の技術的思想の全ての範囲に及ぶ。 産業上の利用可能性  As described above, the present invention is not limited to the scope of the above description, but covers the entire scope of the technical idea of the present invention. Industrial applicability
本発明の計時装置、 計時方法は、 安価な構成により時間を高精度に測 定するために使用することができる。 本発明の測距装置は、 安価な構成 により距離を高精度に測定するために使用することができる。  The timekeeping device and the timekeeping method of the present invention can be used to measure time with high accuracy using an inexpensive configuration. The distance measuring device of the present invention can be used for measuring distance with high accuracy by an inexpensive configuration.

Claims

請 求 の 範 囲 The scope of the claims
1. パルス信号を繰り返し発信させる発信部と、 前記パルス信号を受 信し、 前記パルス信号の受信タイミングをクロックパルスのカウント値 に基づいて測定する受信部とを備える計時装置であって、前記発信部が、 前記ク口ックパルスに対する発信タイ ミングを所定間隔でシフ トさせな がら前記パルス信号を発信させることを特徴とする計時装置。 1. A timing device comprising: a transmitting unit that repeatedly transmits a pulse signal; and a receiving unit that receives the pulse signal and measures a reception timing of the pulse signal based on a count value of a clock pulse. A timing unit that transmits the pulse signal while shifting the transmission timing for the pulse at predetermined intervals.
2. パルス信号を繰り返し発信させる発信部と、 前記パルス信号を受 信し、 前記パルス信号の受信タイミングをクロックパルスのカウント値 に基づいて測定する受信部とを備える計時装置であって、前記受信部が、 受信タイ ミングを所定間隔でシフ トさせることを特徴とする計時装置。 2. A timing device comprising: a transmitting unit that repeatedly transmits a pulse signal; and a receiving unit that receives the pulse signal and measures a reception timing of the pulse signal based on a count value of a clock pulse. A timing unit that shifts reception timing at predetermined intervals.
3. 前記所定間隔がクロックパルス周期よりも短い一定間隔であり、 前記シフ 卜の幅の最大値が前記クロックパルスの 1周期以上であること を特徴とする請求の範囲第 1項又は第 2項に記載の計時装置。 3. The method according to claim 1, wherein the predetermined interval is a constant interval shorter than a clock pulse cycle, and a maximum value of the shift width is one cycle or more of the clock pulse. 2. The timing device according to 1.
4. 前記受信部は、 前記発信タイ ミング又は受信タイ ミングがシフ ト される毎に得られる前記カウン ト値の度数分布に応じて、 前記受信タイ ミングを計数することを特徴とする請求の範囲第 3項に記載の計時装置, 4. The receiving unit counts the reception timing according to a frequency distribution of the count value obtained each time the transmission timing or the reception timing is shifted. The timing device according to paragraph 3,
5. 前記受信部は、 前記パルス信号を複数回シフ トさせたときに得ら れる前記複数のカウン ト値を T(l)〜T(m)、 各カウン ト値の発生度数を N(l)〜N(m)としたときに、 前記パルス信号の受信タイ ミング tを、 t =[N(1)X T(l)+N(2)x T(2)十… + N(m)x T(m)] 5. The receiving unit sets the plurality of count values obtained when the pulse signal is shifted a plurality of times to T (l) to T (m), and sets the frequency of occurrence of each count value to N (l ) To N (m), the reception timing t of the pulse signal is t = [N (1) XT (l) + N (2) x T (2) 10 + N (m) x T (m)]
Z[N(1)+N(2)十… N(m)]  Z [N (1) + N (2) 10… N (m)]
(但し、 m、 Nは整数)  (However, m and N are integers)
に基づいて求めることを特徴とする請求の範囲第 4項に記載の計時装置 ( The timing device ( Claim 4) according to claim 4,
6. 前記発信部が、 前記パルス信号としてパルス状のレーザ光を発信 し、 目的物に向かって照射する光源部を備え、 前記受信部が、 前記目的 物から反射された前記パルス状のレーザ光を受光する受光部を備え、 前 記受信部が、 前記パルス状のレーザ光の受信タイミングを測定すること を特徴とする請求の範囲第 1項から第 5項の何れか 1項に記載の計時装 置。 6. The transmitting section includes a light source section that transmits a pulsed laser beam as the pulse signal, and irradiates the object with an object. A light receiving unit that receives the pulsed laser light reflected from an object, wherein the receiving unit measures a reception timing of the pulsed laser light. The timing device according to any one of the five items.
7 . パルス信号を繰り返し発信させる手順と、 前記パルス信号を受信 し、 前記パルス信号の受信タイミングをクロックパルスのカウント値に 基づいて測定する手順と、前記クロックパルスに対する発信タイミング、 又は受信タイミングを所定間隔でシフ トさせながら前記パルス信号を発 信させる手順とを含むことを特徴とする計時方法。  7. A procedure for repeatedly transmitting a pulse signal, a procedure for receiving the pulse signal and measuring a reception timing of the pulse signal based on a count value of a clock pulse, and a procedure for determining a transmission timing or a reception timing for the clock pulse Transmitting the pulse signal while shifting the pulse signal at intervals.
8 . 請求の範囲第 6項に記載の計時装置と、 前記測定された受信タイ ミングと前記パルス状のレーザ光の光速度に基づいて前記目的物までの 距離を演算する距離演算部とを備えることを特徴とする測距装置。 8. The timing device according to claim 6, further comprising: a distance calculating unit that calculates a distance to the object based on the measured reception timing and the light speed of the pulsed laser light. A distance measuring device characterized by the above-mentioned.
PCT/JP2001/010844 2000-12-15 2001-12-11 Clocking apparatus, clocking method, and range finder WO2002048738A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-382288 2000-12-15
JP2000382288A JP2002181934A (en) 2000-12-15 2000-12-15 Apparatus and method for clocking as well as distance measuring apparatus

Publications (1)

Publication Number Publication Date
WO2002048738A1 true WO2002048738A1 (en) 2002-06-20

Family

ID=18850142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010844 WO2002048738A1 (en) 2000-12-15 2001-12-11 Clocking apparatus, clocking method, and range finder

Country Status (2)

Country Link
JP (1) JP2002181934A (en)
WO (1) WO2002048738A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412474A (en) * 2013-05-24 2013-11-27 西安交通大学 TDC-GP2 time study range high-precision expansion circuit based on FPGA

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328170A (en) * 2001-05-01 2002-11-15 Nikon Corp Delay circuit, timing device and laser distance measuring device
US7379395B2 (en) * 2004-06-30 2008-05-27 Teradyne, Inc. Precise time measurement apparatus and method
JP2006208360A (en) * 2004-12-27 2006-08-10 Tokyo Keiso Co Ltd Device for measuring transfer time
JP2006329902A (en) * 2005-05-30 2006-12-07 Nikon Corp Distance measuring apparatus and distance measuring method
EP3206046B1 (en) * 2007-12-21 2021-08-25 Leddartech Inc. Detection and ranging methods and systems
DE502008001492D1 (en) * 2008-11-21 2010-11-18 Sick Ag Optoelectronic sensor and method for measuring distances according to the time of flight principle
DE502008001493D1 (en) * 2008-11-21 2010-11-18 Sick Ag Optoelectronic sensor and method for measuring distances according to the time of flight principle
DE502008001000D1 (en) * 2008-11-21 2010-09-02 Sick Ag Optoelectronic sensor and method for measuring distances according to the time of flight principle
EP2315045B1 (en) * 2009-10-22 2012-08-01 Sick Ag Measurement of distances or changes in distances
JP6304321B2 (en) * 2016-07-26 2018-04-04 オムロン株式会社 Ranging sensor and ranging method
CN108508451A (en) * 2018-04-03 2018-09-07 深圳新亮智能技术有限公司 The pulsed laser ranging sensor of High-precision high-frequency time
JP2021099271A (en) * 2019-12-23 2021-07-01 ソニーセミコンダクタソリューションズ株式会社 Distance measuring device, control method therefor, and electronic apparatus
WO2022264504A1 (en) * 2021-06-15 2022-12-22 ソニーセミコンダクタソリューションズ株式会社 Distance measuring device, distance measuring method, and distance measuring sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142397A (en) * 1989-10-27 1991-06-18 Nec Corp Laser distance measuring equipment
JPH09127240A (en) * 1995-10-30 1997-05-16 Koden Electron Co Ltd Pulse radar and time axis elongation circuit
EP0875772A2 (en) * 1997-05-02 1998-11-04 Endress + Hauser GmbH + Co. Method and arrangement for distance measurement with electromagnetic waves using the pulse time of flight principle
JP2001124855A (en) * 1999-10-26 2001-05-11 Matsushita Electric Works Ltd Method and device for measuring distance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03142397A (en) * 1989-10-27 1991-06-18 Nec Corp Laser distance measuring equipment
JPH09127240A (en) * 1995-10-30 1997-05-16 Koden Electron Co Ltd Pulse radar and time axis elongation circuit
EP0875772A2 (en) * 1997-05-02 1998-11-04 Endress + Hauser GmbH + Co. Method and arrangement for distance measurement with electromagnetic waves using the pulse time of flight principle
JP2001124855A (en) * 1999-10-26 2001-05-11 Matsushita Electric Works Ltd Method and device for measuring distance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412474A (en) * 2013-05-24 2013-11-27 西安交通大学 TDC-GP2 time study range high-precision expansion circuit based on FPGA

Also Published As

Publication number Publication date
JP2002181934A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
US10641876B2 (en) Apparatus and method for mitigating LiDAR interference through pulse coding and frequency shifting
WO2002048738A1 (en) Clocking apparatus, clocking method, and range finder
JP3976868B2 (en) Optical sensor using light transmission time
CN109946706B (en) Optical sensor and electronic device
US20090235127A1 (en) Time lag measuring device, distance measuring apparatus and distance measuring method
CN103308921B (en) A kind of device and method measuring object distance
JP6261681B2 (en) Improvements in or relating to processing of time-of-flight signals
JP6990356B2 (en) Sensor device and detection method
EP2914973B1 (en) Device and method for measuring distance values and distance images
JP2941593B2 (en) Distance measuring device
CN111033307B (en) Sensor device and measurement method
CN111868473B (en) Optical detection device, optical detection method, and optical distance measuring sensor
JPH06138230A (en) Distance measuring equipment
WO2002054109A1 (en) Method for detecting emission timing, emission timing detector and distance measuring apparatus
JPH11281744A (en) Distance measuring instrument
JP2790590B2 (en) Distance measuring device
JP2002372578A (en) Range finder
JPH0476480A (en) Pulse range finder
CN111580125B (en) Time-of-flight module and control method thereof, and electronic device
JPH08105971A (en) Distance measuring method and apparatus using multi-pulse
JPH0119112Y2 (en)
JPH04318490A (en) Range finding in laser rader
JP7568907B2 (en) Laser radar
US20240255619A1 (en) Sensor device
JPH0776790B2 (en) Laser range finder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase