[go: up one dir, main page]

WO2002043674A1 - Micro-emulsions cosmetiques - Google Patents

Micro-emulsions cosmetiques Download PDF

Info

Publication number
WO2002043674A1
WO2002043674A1 PCT/EP2001/013634 EP0113634W WO0243674A1 WO 2002043674 A1 WO2002043674 A1 WO 2002043674A1 EP 0113634 W EP0113634 W EP 0113634W WO 0243674 A1 WO0243674 A1 WO 0243674A1
Authority
WO
WIPO (PCT)
Prior art keywords
esters
acid
alcohols
fatty
carbon atoms
Prior art date
Application number
PCT/EP2001/013634
Other languages
German (de)
English (en)
Inventor
Marc Beuche
Francisco Fabra Gine
Rafael Pi Subirana
Achim Ansmann
Stefan BRÜNING
Original Assignee
Cognis Deutschland Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland Gmbh & Co. Kg filed Critical Cognis Deutschland Gmbh & Co. Kg
Priority to AU2002226353A priority Critical patent/AU2002226353A1/en
Publication of WO2002043674A1 publication Critical patent/WO2002043674A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/068Microemulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/59Mixtures
    • A61K2800/594Mixtures of polymers

Definitions

  • esters of linear C 5 -C 22 fatty acids with branched alcohols in particular 2-ethylhexanol
  • esters of C 8 -C 38 alkylhydroxycarboxylic acids with linear or branched C 6 -C 22 fatty alcohols cf.
  • Copolymers of diallyl ammonium salts and acrylamides such as e.g. Luviquat® (BASF), condensation products of polyglycols and amines, quaternized collagen polypeptides, such as, for example, lauryidimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides,
  • quaternized vinyl pyrrolidone / vinyl imidazole polymers such as e.g. Luviquat® (BASF)
  • condensation products of polyglycols and amines condensation products of polyglycols and amines
  • quaternized collagen polypeptides such as, for example, lauryidimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides,
  • Polyacrylate polyesters are known substances which can be obtained by the relevant methods of organic chemistry and typically have an average molecular weight in the range from 50 to 200. Possible polyol components are:
  • Dialcohol amines such as diethanolamine or 2-amino-l, 3-propanediol, and in particular
  • Fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE 2024051 PS as refatting agents for cosmetic preparations.
  • polyglycerol esters are polyglyceryl-2 dipolyhydroxystearates (Dehymuls® PGPH), polyglycerol-3-diisostearates (Lameform® TGI), polyglyceryl-4
  • the cosmetic microemulsions according to the invention preferably contain the components in the following amounts:
  • the invention includes the knowledge that even very small amounts of emulsifier together with the polyacrylate polyol esters are sufficient to ensure the production and stabilization of the particularly fine-particle emulsions.
  • the average droplet size of the microemulsions produced in this way is in the range from 2 to 20, preferably 5 to 10 ⁇ m.
  • the water content of the emulsions is generally 20 to 70 and preferably 30 to 50% by weight.
  • Another object of the invention relates to the use of mixtures of polyacrylate polyol esters, especially polyacrylate glycerol esters, and nonionic emulsifiers, preferably in a weight ratio of 90: 10 to 99: 1, for the preparation of polymer-containing microemulsions in which they are present in amounts of 0.1 to 20 wt .-% - based on the final formulations - may be included.
  • anionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, optionally partially oxidized alk (en) yl oligoglycosides, especially glucoronic acid, or glucoramic acid derivatives, and glucoronic acid nuclei (glucoronic acid) derivatives, in particular, glucoronic acid (G) -glucoronic acid (G) -glucoronic acid (G) -glucoric acid-derived (G) -glucoramic acid-derived (G) -glucoramic acid (G) -glucoric acid-derived (especially
  • nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • cationic surfactants are quaternary ammonium compounds, such as, for example, dimethyldistearylammonium chloride, and esterquats, in particular quaternized fatty acid trialkanolamine ester salts.
  • amphoteric or zwitterionic Surfactants are alkyl betaines, alkyl amido betaines, aminopropionates, aminoglycinates, imidazoline betaines and sulfobetaines. The surfactants mentioned are exclusively known compounds.
  • Typical examples of particularly suitable mild, ie particularly skin-compatible, surfactants are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, fatty acid glutamates, ⁇ -olefin sulfonates, fatty acid gluco amide fatty acids, alkyl carboxylates, fatty acid gluco amide fatty acids, fatty acid gluco amide fatty acids, fatty acid gluco amide fatty acids, fatty acid glucoamides, fatty acid glucoamides, fatty acid glucosacid fatty acids, fatty acid glucamate fatty acids, fatty acid glucosacid fatty acids, fatty acid glucosaccharides, fatty acid glucosacids, fatty acid fatty acids,
  • Typical anionic emulsifiers are aliphatic fatty acids with 12 to 22 carbon atoms, such as, for example, palmitic acid, stearic acid or behenic acid, and dicarboxylic acids with 12 to 22 carbon atoms, such as, for example, azelaic acid or sebacic acid.
  • Zwitterionic surfactants can also be used as emulsifiers. Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Suitable emulsifiers are ampholytic surfactants.
  • Ampholytic surfactants are surface-active compounds which, in addition to a C 8 / alkyl or acyl group, contain at least one free amino group and at least one - COOH or -SO 3 H group in the molecule and are capable of forming internal salts.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids with each about 8 to 18 carbon atoms in the alkyl group.
  • ampho- lytic surfactants are the N-cocoalkylaminopropionate, the cocoacylaminoethylamino propionate and the C ⁇ 2 / ⁇ 8 -acylsarcosine.
  • cationic surfactants are also suitable as emulsifiers, those of the esterquat type, preferably methylquaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • Typical examples of fats are glycerides, i.e. Solid or liquid vegetable or animal products, which consist essentially of mixed glycerol esters of higher fatty acids, come as waxes, among others. natural waxes, such as Candelilla wax, carnauba wax, Japanese wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, walnut, lanolin (wool wax), pretzel fat, ceresin, ozokerite (earth wax), petrolatum, paraffin waxes, microfax waxes chemically modified waxes (hard waxes), e.g.
  • natural waxes such as Candelilla wax, carnauba wax, Japanese wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax
  • Examples of natural lecithins are the cephalins, which are also referred to as phosphatidic acids and are derivatives of 1,2-diacyl-sn-glycerol-3-phosphoric acids.
  • phospholipids are usually understood to be mono- and preferably diesters of phosphoric acid with glycerol (glycerol phosphates), which are generally classed as fats.
  • glycerol phosphates glycerol phosphates
  • sphingosines or sphingolipids are also suitable.
  • Pearlescent waxes are: alkylene glycol esters, especially ethylene glycol stearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid re or behenic acid, ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15 carbon
  • Suitable consistency agents are primarily fatty alcohols or hydroxy fatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and, in addition, partial glycerides, fatty acids or hydroxy fatty acids.
  • a combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Surfactants such as ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with a narrow homolog distribution or alkyl oligoglucosides as well as electrolytes such as table salt and ammonium chloride are also suitable.
  • Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers. stabilizers
  • UV light protection factors are understood to mean, for example, organic substances (light protection filters) which are liquid or crystalline at room temperature and are able to absorb ultraviolet rays and absorb the energy in the form of longer-wave radiation, e.g. To give off heat again.
  • UVB filters can be oil-soluble or water-soluble.
  • oil-soluble substances e.g. to call:
  • 3-benzylidene camphor or 3-benzylidene norcampher and its derivatives e.g. 3- (4-methylbenzylidene) camphor as described in EP 0693471 B1;
  • 4-aminobenzoic acid derivatives preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate;
  • Triazine derivatives such as 2,4,6-trianilino- (p-carbo-2 , -ethyl- -hexyloxy) -l, 3,5-triazine and octyl triazone, as described in EP 0818450 AI or dioctyl butamido triazone ( Uvasorb® HEB);
  • Typical UV-A filters are, in particular, derivatives of benzoyl methane such as l- (4 x -tert.Butylphenyl) -3- (4-methoxyphenyl) propan-l, 3-dione, 4-tert-butyl 4 l - methoxydibenzoylmethane (Parsol® 1789), l-phenyl-3- (4Msopropylphenyl) propane-l, 3-dione and enamine compounds, as described in DE 19712033 AI (BASF).
  • the UV-A and UV-B filters can of course also be used in mixtures.
  • Particularly favorable combinations consist of the derivatives of benzoylmethane, for example 4-tert-butyl-4 , -methoxydibenzoylmethane (Parsol® 1789) and 2-cyano-3,3-phenylcinnamic acid-2-ethyl-hexyl ester (octocrylene) in combination with Esters of cinnamic acid, preferably 2-ethylhexyl 4-methoxycinnamate and / or propyl 4-methoxycinnamate and / or isoamyl 4-methoxycinnamate.
  • benzoylmethane for example 4-tert-butyl-4 , -methoxydibenzoylmethane (Parsol® 1789) and 2-cyano-3,3-phenylcinnamic acid-2-ethyl-hexyl ester (octocrylene) in combination with Esters of cinnamic acid, preferably 2-eth
  • water-soluble filters such as, for example, 2-phenylbenzimidazole-5-sulfonic acid and their alkali metal, alkaline earth metal, ammonium, alkylammonium, alkanolammonium and glucammonium salts.
  • secondary light stabilizers of the antioxidant type can also be used, which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin.
  • amino acids e.g. glycine, histidine, tyrosine, tryptophan
  • imidazoles e.g. urocanic acid
  • peptides such as D, L-carnosine, D-camosine, L-camosine and their derivatives (e.g. Anserine)
  • carotenoids eg .alpha.-carotene, .beta.-carotene, lycopene
  • carotenes eg .alpha.-carotene, .beta.-carotene, lycopene
  • lipoic acid and their derivatives eg dihydroliponic acid
  • aurothioglucose eg dihydroliponic acid
  • propylthiouracil and other thiols eg thioredoxin, glutathione, cysteine, cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl -, Butyl and lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters
  • salts dilauryl thiodipropionate
  • ⁇ -hydroxy fatty acids palmitic acid, phytic acid, lactoferrin
  • hydroxy acids e.g. citric acid, lactic acid, malic acid
  • humic acid bile acid, bile extracts, bilirubin, biliverdin, EDTA, EGTA and their Derivatives
  • unsaturated fatty acids and their derivatives e.g. ⁇ -oleolenic acid, linoleic acid, oleic acid
  • folic acid and their derivatives ubiquinone and ubiquinol and their derivatives
  • vitamin C and derivatives e.g.
  • biogenic active ingredients are tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, (deoxy) ribonucleic acid and its fragmentation products, ß-glucans, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudo-ceramides, penal ceramides, Plant extracts, such as To understand prunus extract, Bambaranus extract and vitamin complexes.
  • Esterase inhibitors are suitable as enzyme inhibitors. These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT).
  • the substances inhibit enzyme activity and thereby reduce odor.
  • esterase inhibitors include sterol sulfates or phosphates, such as, for example, lanosterol, cholesterol, campesteric, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, such as, for example, glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, Adipic acid, adipic acid monoethyl ester, adipic acid diethyl ester, malonic acid and malonic acid diethyl ester, hydroxycarboxylic acids and their esters such as citric acid, malic acid, tartaric acid or tartaric acid diethyl ester and zinc glycinate.
  • dicarboxylic acids and their esters such as, for example, glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, Adipic acid, adipic acid monoethyl ester, a
  • Suitable odor absorbers are substances which absorb odor-forming compounds and can retain them to a large extent. They lower the partial pressure of the individual components and thus also reduce their speed of propagation. It is important that perfumes must remain unaffected. Odor absorbers are not effective against bacteria. They contain, for example, a complex zinc salt of ricinoleic acid or special, largely odorless fragrances, which are known to the person skilled in the art as "fixers", such as, for example, the main constituent. B. extracts of Labdanum or Styrax or certain abietic acid derivatives. Fragrance agents or perfume oils act as odor maskers, which, in addition to their function as odor maskers, give the deodorants their respective fragrance.
  • Fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example Benzyl acetate, p-tert-butylcyclohexyl acetate, linalyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, allylcydohexyl propionate, styrallyl propionate and benzyl salieylate.
  • the ethers include, for example, benzyl ethyl ether
  • the aldehydes include, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal
  • the ketones include, for example, the joonones and methylcedryl ketone
  • the alcohols are anethole
  • Citronellol Citronellol
  • eugenol isoeugenol
  • geraniol linalool
  • the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, for example sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, Linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbana oil, labdanum oil and lavandin oil.
  • Antiperspirants reduce sweat formation by influencing the activity of the eccrine sweat glands and thus counteract armpit wetness and body odor.
  • Aqueous or anhydrous formulations of antiperspirants typically contain the following ingredients:
  • water-soluble additives are e.g. Preservatives, water-soluble fragrances, pH adjusting agents, e.g. Buffer mixtures, water soluble thickeners, e.g. water-soluble natural or synthetic polymers such as e.g. Xanthan gum, hydroxyethyl cellulose, polyvinyl pyrrolidone or high molecular weight polyethylene oxides.
  • Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Piroctone olamine (1-hydroxy-4-methyl-6- (2,4,4-trimythylpentyl) -2- (1H) -pyridinone monoethanolamine salt
  • Baypival® climbazole
  • Ketoeonazol® (4-acetyl-l - ⁇ - 4- [2- (2.4-dichlorophenyl) r-2- (lH-imidazol-l-ylmethyl) -l, 3-dioxylan-c-4-ylmethoxyphenyl ⁇ piperazine, ketoeonazole, elubiol, selenium disulfide, sulfur colloidal, Sulfur-polyethylene glycol sorbitan monooleate, sulfur ricinole polyhexylate, SchwfeReer distillates, salicylic acid (or in combination with hexachlorophene), undexylene acid monoethanolamide Sulfosuccinate Na salt, Lamepon® UD (protein undecylenic acid conden
  • Montmorillonites, clay minerals, pemulene and alkyl-modified carbopol types can serve as swelling agents for aqueous phases. Further suitable polymers or swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993).
  • Possible insect repellents are N, N-diethyl-m-toluamide, 1,2-pentanediol or ethyl butyl acetylaminopropionate
  • Dihydroxyacetone is suitable as a self-tanner.
  • Arbutin, ferulic acid, kojic acid, coumaric acid and ascorbic acid (vitamin C) can be used as tyrosine inhibitors, which prevent the formation of melanin and are used in depigmenting agents.
  • Methyl compounds such as, in particular, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol; > Lower alkyl glucosides, especially those with 1 to 8 carbons in the alkyl radical, such as methyl and butyl glucoside;
  • Aminosugars such as glucamine; > Dialcohol amines, such as diethanolamine or 2-amino-l, 3-propanediol.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid as well as the silver complexes known under the name Surfacine® and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Regulation.
  • Perfume oils include mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patehouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), woods (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme) ), Needles and twigs (spruce, fir, pine, mountain pine), resins and balsams (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linylbenzoate, benzyl formate, ethylmethylphenylglycinate, allylcyclohexyl benzyl propionate, benzyl formate.
  • Essential oils of lower volatility, which are mostly used as aroma components, are also suitable as perfume oils, e.g. Sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • bergamot oil dihydromyrcenol, lilial, lyral, citronellol, phenylethyl alcohol, ⁇ -hexylcinnamaldehyde, geraniol, benzyl acetone, cyclamen aldehyde, linalool, Boisambrene Forte, Ambroxan, indole, hedione, Sandelice, lemon oil, mandarin oil, orange oil, allyl amyl glycolate, Cyclovertal, lavandin oil, muscatel Sage oil, ß-Damascone, geranium oil bourbon, cyclohexyl salicylate, Vertofix Coeur,
  • Iso-E-Super Fixolide NP, Evernyl, Iraldein gamma, phenylacetic acid, geranyl acetate, benzyl acetate, rose oxide, Romilllat, Irotyl and Floramat used alone or in mixtures.
  • suitable flavors are peppermint oil, spearmint oil, anise oil, stemanis oil, caraway oil, eucalyptus oil, fennel oil, lemon oil, wintergreen oil, clove oil, menthol and the like.
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. Examples are culinary red A (CI 16255), patent blue V (CI42051), indigo (CI73015), chlorophyllin (CI75810), quinoline yellow (CI47005), titanium dioxide (CI77891), indanthrene blue RS (CI 69800) and madder - lacquer (CI58000). Luminol may also be present as the luminescent dye. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • the total proportion of auxiliaries and additives can be 1 to 50, preferably 5 to 40,% by weight, based on the composition.
  • the agents can be produced by customary cold or hot processes; the phase inversion temperature method is preferably used. Examples

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

Micro-émulsions cosmétiques qui contiennent (a) des corps huileux, (b) des polymères anioniques, non ioniques, cationiques et / ou amphotères, (c) des polyacrylatepolyolesters, (d) des émulsifiants non ioniques et (e) de l'eau.
PCT/EP2001/013634 2000-11-28 2001-11-17 Micro-emulsions cosmetiques WO2002043674A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002226353A AU2002226353A1 (en) 2000-11-28 2001-11-17 Cosmetic microemulsions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0015329A FR2817149A1 (fr) 2000-11-28 2000-11-28 Micro-emulsions cosmetiques
FR0015329 2000-11-28

Publications (1)

Publication Number Publication Date
WO2002043674A1 true WO2002043674A1 (fr) 2002-06-06

Family

ID=8856944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/013634 WO2002043674A1 (fr) 2000-11-28 2001-11-17 Micro-emulsions cosmetiques

Country Status (3)

Country Link
AU (1) AU2002226353A1 (fr)
FR (1) FR2817149A1 (fr)
WO (1) WO2002043674A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2793859A4 (fr) * 2011-12-23 2015-08-26 Dial Corp Microémulsions transparentes à polymère de coiffage formant un film et procédés de fabrication associés
EP3308766A1 (fr) 2016-10-11 2018-04-18 Ionia Azure AG Microémulsion eau dans l'huile cosmétique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449510A (en) * 1991-05-27 1995-09-12 L'oreal Emulsion of the oil-in-water type based on silicone oil and its use in cosmetics and dermatology
US5932608A (en) * 1996-07-25 1999-08-03 Societe L'oreal S.A. Melatonin derivative dermocosmetic compositions for whitening/depigmenting the skin
WO2000066075A1 (fr) * 1999-04-30 2000-11-09 Cognis Deutschland Gmbh Creme solaire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449510A (en) * 1991-05-27 1995-09-12 L'oreal Emulsion of the oil-in-water type based on silicone oil and its use in cosmetics and dermatology
US5932608A (en) * 1996-07-25 1999-08-03 Societe L'oreal S.A. Melatonin derivative dermocosmetic compositions for whitening/depigmenting the skin
WO2000066075A1 (fr) * 1999-04-30 2000-11-09 Cognis Deutschland Gmbh Creme solaire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2793859A4 (fr) * 2011-12-23 2015-08-26 Dial Corp Microémulsions transparentes à polymère de coiffage formant un film et procédés de fabrication associés
EP3308766A1 (fr) 2016-10-11 2018-04-18 Ionia Azure AG Microémulsion eau dans l'huile cosmétique
WO2018068884A1 (fr) 2016-10-11 2018-04-19 Ionia Azuré Ag Microémulsion cosmétique de type eau-dans-huile

Also Published As

Publication number Publication date
FR2817149A1 (fr) 2002-05-31
AU2002226353A1 (en) 2002-06-11

Similar Documents

Publication Publication Date Title
EP2012741B1 (fr) Agents épaississants
EP1286758B1 (fr) Agents emulsifiants
EP1524029B1 (fr) Compositions auto-emuslifiantes
WO2002043685A2 (fr) Emulsions cosmetiques et/ou pharmaceutiques
EP1395643A1 (fr) Melanges d'agents tensioactifs
EP1414881A2 (fr) Epaississant
WO2001072264A2 (fr) Preparations encapsulees dans des proliposomes (iv)
WO2001074302A1 (fr) Preparations a encapsulation pro-liposomique
EP1254655B1 (fr) Utilisation d'esters quaternaires
WO2001074303A1 (fr) Preparation a encapsulation pro-liposomique
EP1283854A1 (fr) Agent de solubilisation
EP1286952A2 (fr) Melanges de composes quaternaires d'ester
EP1264633B1 (fr) Utilisation d'alkyl(ether)phosphates(I)
WO2002087537A1 (fr) Utilisation de preparations cationiques
EP1374845B1 (fr) Préparations cosmétiques
EP1264634B1 (fr) Utilisation d'alkyl(ether)phosphates
WO2002032380A2 (fr) Emulsions cosmetiques
WO2002013778A2 (fr) Preparations cosmetiques
WO2002043674A1 (fr) Micro-emulsions cosmetiques
WO2004000258A1 (fr) Preparations hautement visqueuses contenant de l'huile
EP1252880A1 (fr) Utilisation d'hydrolysates de protéines du lait
EP1254909A1 (fr) Esters d'acide phosphorique
WO2002100523A1 (fr) Emulsifiants polymeres
WO2001074304A1 (fr) Preparations encapsulees dans des proliposomes
EP1413285A1 (fr) Compositions d'apres-shampooing contenant des tensioactifs cationiques, des huiles et des alcohols d'acides gras

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP