WO2002040649A1 - Slo2 and slo4, novel potassium channel proteins from human brain - Google Patents
Slo2 and slo4, novel potassium channel proteins from human brain Download PDFInfo
- Publication number
- WO2002040649A1 WO2002040649A1 PCT/US2001/025701 US0125701W WO0240649A1 WO 2002040649 A1 WO2002040649 A1 WO 2002040649A1 US 0125701 W US0125701 W US 0125701W WO 0240649 A1 WO0240649 A1 WO 0240649A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polypeptide
- nucleic acid
- slo2
- slo4
- seq
- Prior art date
Links
- 108020001213 potassium channel Proteins 0.000 title claims abstract description 136
- 102000004257 Potassium Channel Human genes 0.000 title claims abstract description 135
- 210000004556 brain Anatomy 0.000 title description 26
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 212
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 169
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 169
- 238000000034 method Methods 0.000 claims abstract description 163
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 91
- 238000012216 screening Methods 0.000 claims abstract description 18
- 108090000623 proteins and genes Proteins 0.000 claims description 204
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 195
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 186
- 229920001184 polypeptide Polymers 0.000 claims description 179
- 210000004027 cell Anatomy 0.000 claims description 113
- 150000001875 compounds Chemical class 0.000 claims description 94
- 108091006146 Channels Proteins 0.000 claims description 90
- 150000001413 amino acids Chemical class 0.000 claims description 66
- 230000000694 effects Effects 0.000 claims description 61
- 239000013598 vector Substances 0.000 claims description 48
- 239000000523 sample Substances 0.000 claims description 44
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 39
- 238000009396 hybridization Methods 0.000 claims description 39
- 230000004907 flux Effects 0.000 claims description 38
- 239000003446 ligand Substances 0.000 claims description 37
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 33
- 238000009739 binding Methods 0.000 claims description 29
- 230000027455 binding Effects 0.000 claims description 28
- 201000010099 disease Diseases 0.000 claims description 27
- 125000003729 nucleotide group Chemical group 0.000 claims description 27
- 239000002773 nucleotide Substances 0.000 claims description 26
- 239000013604 expression vector Substances 0.000 claims description 22
- 239000003153 chemical reaction reagent Substances 0.000 claims description 21
- 230000004913 activation Effects 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 18
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims description 16
- 230000007423 decrease Effects 0.000 claims description 13
- 239000012472 biological sample Substances 0.000 claims description 12
- 210000000170 cell membrane Anatomy 0.000 claims description 12
- 230000035772 mutation Effects 0.000 claims description 10
- 102100023073 Calcium-activated potassium channel subunit alpha-1 Human genes 0.000 claims description 8
- 101710189782 Calcium-activated potassium channel subunit alpha-1 Proteins 0.000 claims description 8
- 239000002853 nucleic acid probe Substances 0.000 claims description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 7
- 238000011534 incubation Methods 0.000 claims description 7
- 230000000704 physical effect Effects 0.000 claims description 6
- 230000002925 chemical effect Effects 0.000 claims description 4
- 239000011780 sodium chloride Substances 0.000 claims description 4
- 239000003112 inhibitor Substances 0.000 abstract description 17
- 108091082510 Slo family Proteins 0.000 abstract description 16
- 239000012190 activator Substances 0.000 abstract description 13
- 102000003734 Voltage-Gated Potassium Channels Human genes 0.000 abstract description 9
- 108090000013 Voltage-Gated Potassium Channels Proteins 0.000 abstract description 9
- 239000004036 potassium channel stimulating agent Substances 0.000 abstract 1
- 102000004169 proteins and genes Human genes 0.000 description 140
- 235000018102 proteins Nutrition 0.000 description 132
- 230000014509 gene expression Effects 0.000 description 80
- 235000001014 amino acid Nutrition 0.000 description 75
- 229940024606 amino acid Drugs 0.000 description 67
- 239000012634 fragment Substances 0.000 description 65
- 238000003556 assay Methods 0.000 description 57
- 239000000178 monomer Substances 0.000 description 44
- 150000002500 ions Chemical class 0.000 description 40
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 38
- 239000011591 potassium Substances 0.000 description 35
- 229910052700 potassium Inorganic materials 0.000 description 34
- 239000002299 complementary DNA Substances 0.000 description 31
- 108091034117 Oligonucleotide Proteins 0.000 description 30
- 210000001519 tissue Anatomy 0.000 description 30
- 238000003018 immunoassay Methods 0.000 description 28
- 239000000126 substance Substances 0.000 description 27
- 238000012360 testing method Methods 0.000 description 26
- 210000004379 membrane Anatomy 0.000 description 23
- 239000012528 membrane Substances 0.000 description 23
- 239000000203 mixture Substances 0.000 description 23
- 238000003752 polymerase chain reaction Methods 0.000 description 22
- 239000013615 primer Substances 0.000 description 22
- 108020004705 Codon Proteins 0.000 description 20
- 230000000692 anti-sense effect Effects 0.000 description 20
- 239000000758 substrate Substances 0.000 description 19
- 108700028369 Alleles Proteins 0.000 description 18
- 108091026890 Coding region Proteins 0.000 description 18
- 108020004414 DNA Proteins 0.000 description 18
- 230000002163 immunogen Effects 0.000 description 18
- 239000011148 porous material Substances 0.000 description 18
- 239000007787 solid Substances 0.000 description 18
- 101100019748 Rattus norvegicus Kcnt1 gene Proteins 0.000 description 17
- 239000000427 antigen Substances 0.000 description 17
- 108091007433 antigens Proteins 0.000 description 17
- 102000036639 antigens Human genes 0.000 description 17
- 238000004422 calculation algorithm Methods 0.000 description 17
- 230000003321 amplification Effects 0.000 description 16
- 239000011230 binding agent Substances 0.000 description 16
- 238000003199 nucleic acid amplification method Methods 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 15
- 230000001605 fetal effect Effects 0.000 description 15
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 14
- 241000894006 Bacteria Species 0.000 description 14
- 208000002193 Pain Diseases 0.000 description 14
- 210000002216 heart Anatomy 0.000 description 14
- -1 phosphoramidite triester Chemical class 0.000 description 14
- 238000013518 transcription Methods 0.000 description 14
- 230000035897 transcription Effects 0.000 description 14
- 101000944018 Homo sapiens Potassium channel subfamily T member 1 Proteins 0.000 description 13
- 102100033508 Potassium channel subfamily T member 1 Human genes 0.000 description 13
- 210000002569 neuron Anatomy 0.000 description 13
- 238000001727 in vivo Methods 0.000 description 12
- 210000000287 oocyte Anatomy 0.000 description 12
- 238000001415 gene therapy Methods 0.000 description 11
- 238000000338 in vitro Methods 0.000 description 11
- 108020004999 messenger RNA Proteins 0.000 description 11
- 239000007790 solid phase Substances 0.000 description 11
- 241000894007 species Species 0.000 description 11
- 210000000952 spleen Anatomy 0.000 description 11
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical group CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 10
- 108091005461 Nucleic proteins Proteins 0.000 description 10
- 206010015037 epilepsy Diseases 0.000 description 10
- 210000004072 lung Anatomy 0.000 description 10
- 229930182817 methionine Chemical group 0.000 description 10
- 208000020925 Bipolar disease Diseases 0.000 description 9
- 238000000636 Northern blotting Methods 0.000 description 9
- 241000269370 Xenopus <genus> Species 0.000 description 9
- 210000004899 c-terminal region Anatomy 0.000 description 9
- 239000000975 dye Substances 0.000 description 9
- 210000003527 eukaryotic cell Anatomy 0.000 description 9
- 238000000099 in vitro assay Methods 0.000 description 9
- 230000001939 inductive effect Effects 0.000 description 9
- 210000004185 liver Anatomy 0.000 description 9
- 210000002027 skeletal muscle Anatomy 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 8
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 8
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 8
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 239000011575 calcium Substances 0.000 description 8
- 229910052791 calcium Inorganic materials 0.000 description 8
- 238000010367 cloning Methods 0.000 description 8
- 229940088598 enzyme Drugs 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 210000002826 placenta Anatomy 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 7
- 230000033228 biological regulation Effects 0.000 description 7
- 235000020958 biotin Nutrition 0.000 description 7
- 229960002685 biotin Drugs 0.000 description 7
- 239000011616 biotin Substances 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- 230000001413 cellular effect Effects 0.000 description 7
- 210000005220 cytoplasmic tail Anatomy 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 210000003734 kidney Anatomy 0.000 description 7
- 238000002372 labelling Methods 0.000 description 7
- 239000002502 liposome Substances 0.000 description 7
- 230000036961 partial effect Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- 101000944004 Homo sapiens Potassium channel subfamily U member 1 Proteins 0.000 description 6
- 206010061218 Inflammation Diseases 0.000 description 6
- 208000019695 Migraine disease Diseases 0.000 description 6
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 6
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 6
- 235000011130 ammonium sulphate Nutrition 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 230000001186 cumulative effect Effects 0.000 description 6
- 208000035475 disorder Diseases 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 210000003000 inclusion body Anatomy 0.000 description 6
- 230000004054 inflammatory process Effects 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 208000004296 neuralgia Diseases 0.000 description 6
- 208000021722 neuropathic pain Diseases 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 230000001177 retroviral effect Effects 0.000 description 6
- 238000010561 standard procedure Methods 0.000 description 6
- 238000001890 transfection Methods 0.000 description 6
- 230000003612 virological effect Effects 0.000 description 6
- 208000019901 Anxiety disease Diseases 0.000 description 5
- 108700024394 Exon Proteins 0.000 description 5
- 241000238631 Hexapoda Species 0.000 description 5
- 108060003951 Immunoglobulin Proteins 0.000 description 5
- 208000028017 Psychotic disease Diseases 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- 108010090804 Streptavidin Proteins 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 230000036506 anxiety Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000012875 competitive assay Methods 0.000 description 5
- 230000009260 cross reactivity Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 210000001320 hippocampus Anatomy 0.000 description 5
- 239000005556 hormone Substances 0.000 description 5
- 229940088597 hormone Drugs 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 230000001900 immune effect Effects 0.000 description 5
- 102000018358 immunoglobulin Human genes 0.000 description 5
- 238000005462 in vivo assay Methods 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 230000004112 neuroprotection Effects 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 108091033319 polynucleotide Proteins 0.000 description 5
- 102000040430 polynucleotide Human genes 0.000 description 5
- 239000002157 polynucleotide Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 210000001236 prokaryotic cell Anatomy 0.000 description 5
- 238000000159 protein binding assay Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000012552 review Methods 0.000 description 5
- 201000000980 schizophrenia Diseases 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 241001430294 unidentified retrovirus Species 0.000 description 5
- 239000013603 viral vector Substances 0.000 description 5
- 108020004635 Complementary DNA Proteins 0.000 description 4
- 241000702421 Dependoparvovirus Species 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 4
- 108700026244 Open Reading Frames Proteins 0.000 description 4
- 108091093037 Peptide nucleic acid Proteins 0.000 description 4
- 102100033525 Potassium channel subfamily U member 1 Human genes 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 206010003119 arrhythmia Diseases 0.000 description 4
- 238000002820 assay format Methods 0.000 description 4
- 208000006673 asthma Diseases 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 229940049706 benzodiazepine Drugs 0.000 description 4
- 150000001557 benzodiazepines Chemical class 0.000 description 4
- 208000028683 bipolar I disease Diseases 0.000 description 4
- 208000025307 bipolar depression Diseases 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000003169 central nervous system Anatomy 0.000 description 4
- 208000015114 central nervous system disease Diseases 0.000 description 4
- 208000010877 cognitive disease Diseases 0.000 description 4
- 210000001072 colon Anatomy 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 230000009849 deactivation Effects 0.000 description 4
- 238000004925 denaturation Methods 0.000 description 4
- 230000036425 denaturation Effects 0.000 description 4
- 230000002999 depolarising effect Effects 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000007850 fluorescent dye Substances 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 238000001502 gel electrophoresis Methods 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000007901 in situ hybridization Methods 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 238000001638 lipofection Methods 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 210000004165 myocardium Anatomy 0.000 description 4
- 230000036963 noncompetitive effect Effects 0.000 description 4
- 230000009871 nonspecific binding Effects 0.000 description 4
- 230000001473 noxious effect Effects 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 4
- 210000000813 small intestine Anatomy 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 238000010361 transduction Methods 0.000 description 4
- 230000026683 transduction Effects 0.000 description 4
- 241001598984 Bromius obscurus Species 0.000 description 3
- 102000034573 Channels Human genes 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 239000003155 DNA primer Substances 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 241000276498 Pollachius virens Species 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 210000003710 cerebral cortex Anatomy 0.000 description 3
- 230000009137 competitive binding Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- 238000005194 fractionation Methods 0.000 description 3
- 210000002837 heart atrium Anatomy 0.000 description 3
- 238000012203 high throughput assay Methods 0.000 description 3
- 238000013537 high throughput screening Methods 0.000 description 3
- 230000000984 immunochemical effect Effects 0.000 description 3
- 229960003444 immunosuppressant agent Drugs 0.000 description 3
- 239000003018 immunosuppressive agent Substances 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 150000002611 lead compounds Chemical class 0.000 description 3
- 238000007834 ligase chain reaction Methods 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 210000005036 nerve Anatomy 0.000 description 3
- 238000007857 nested PCR Methods 0.000 description 3
- 230000008587 neuronal excitability Effects 0.000 description 3
- 239000004090 neuroprotective agent Substances 0.000 description 3
- 230000003957 neurotransmitter release Effects 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 210000001672 ovary Anatomy 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 210000001322 periplasm Anatomy 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229910001414 potassium ion Inorganic materials 0.000 description 3
- 229910052701 rubidium Inorganic materials 0.000 description 3
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 230000009870 specific binding Effects 0.000 description 3
- 239000000021 stimulant Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 210000001550 testis Anatomy 0.000 description 3
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 241000701447 unidentified baculovirus Species 0.000 description 3
- 210000003932 urinary bladder Anatomy 0.000 description 3
- 238000011179 visual inspection Methods 0.000 description 3
- 208000030507 AIDS Diseases 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- 241001156002 Anthonomus pomorum Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 108091035707 Consensus sequence Proteins 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- 241000713813 Gibbon ape leukemia virus Species 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 108010058683 Immobilized Proteins Proteins 0.000 description 2
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 2
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 2
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 102100034349 Integrase Human genes 0.000 description 2
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical group CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- 241000713666 Lentivirus Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 241000714177 Murine leukemia virus Species 0.000 description 2
- 108091061960 Naked DNA Proteins 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 108010067902 Peptide Library Proteins 0.000 description 2
- 101710182846 Polyhedrin Proteins 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 108010083644 Ribonucleases Proteins 0.000 description 2
- 102000006382 Ribonucleases Human genes 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- 241000713311 Simian immunodeficiency virus Species 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 101710120037 Toxin CcdB Proteins 0.000 description 2
- 108700009124 Transcription Initiation Site Proteins 0.000 description 2
- 108700019146 Transgenes Proteins 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000036982 action potential Effects 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 210000004727 amygdala Anatomy 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 229920001222 biopolymer Polymers 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 230000009460 calcium influx Effects 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 210000001159 caudate nucleus Anatomy 0.000 description 2
- 210000001638 cerebellum Anatomy 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000003398 denaturant Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 210000001652 frontal lobe Anatomy 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000000762 glandular Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 229960000789 guanidine hydrochloride Drugs 0.000 description 2
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 238000000670 ligand binding assay Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000028161 membrane depolarization Effects 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 206010027599 migraine Diseases 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 238000007826 nucleic acid assay Methods 0.000 description 2
- 238000007899 nucleic acid hybridization Methods 0.000 description 2
- 210000001009 nucleus accumben Anatomy 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 210000000869 occipital lobe Anatomy 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000012402 patch clamp technique Methods 0.000 description 2
- 238000002823 phage display Methods 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 230000001817 pituitary effect Effects 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000003823 potassium efflux Effects 0.000 description 2
- 230000003805 potassium influx Effects 0.000 description 2
- 235000008476 powdered milk Nutrition 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004224 protection Effects 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 210000002637 putamen Anatomy 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 230000009155 sensory pathway Effects 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 210000003523 substantia nigra Anatomy 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 210000003478 temporal lobe Anatomy 0.000 description 2
- 210000001103 thalamus Anatomy 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000004797 therapeutic response Effects 0.000 description 2
- 230000001550 time effect Effects 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 230000024033 toxin binding Effects 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000014621 translational initiation Effects 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 1
- VGONTNSXDCQUGY-RRKCRQDMSA-N 2'-deoxyinosine Chemical group C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC2=O)=C2N=C1 VGONTNSXDCQUGY-RRKCRQDMSA-N 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- KGLPWQKSKUVKMJ-UHFFFAOYSA-N 2,3-dihydrophthalazine-1,4-dione Chemical class C1=CC=C2C(=O)NNC(=O)C2=C1 KGLPWQKSKUVKMJ-UHFFFAOYSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- JRYMOPZHXMVHTA-DAGMQNCNSA-N 2-amino-7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-pyrrolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O JRYMOPZHXMVHTA-DAGMQNCNSA-N 0.000 description 1
- 108020005345 3' Untranslated Regions Proteins 0.000 description 1
- ZOOGRGPOEVQQDX-UUOKFMHZSA-N 3',5'-cyclic GMP Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-UUOKFMHZSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 206010001497 Agitation Diseases 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 244000105975 Antidesma platyphyllum Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 208000036487 Arthropathies Diseases 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 241000208199 Buxus sempervirens Species 0.000 description 1
- QCMYYKRYFNMIEC-UHFFFAOYSA-N COP(O)=O Chemical class COP(O)=O QCMYYKRYFNMIEC-UHFFFAOYSA-N 0.000 description 1
- 206010058019 Cancer Pain Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 208000000094 Chronic Pain Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- UPEZCKBFRMILAV-JNEQICEOSA-N Ecdysone Natural products O=C1[C@H]2[C@@](C)([C@@H]3C([C@@]4(O)[C@@](C)([C@H]([C@H]([C@@H](O)CCC(O)(C)C)C)CC4)CC3)=C1)C[C@H](O)[C@H](O)C2 UPEZCKBFRMILAV-JNEQICEOSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 1
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 206010065390 Inflammatory pain Diseases 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 102000009855 Inwardly Rectifying Potassium Channels Human genes 0.000 description 1
- 108010009983 Inwardly Rectifying Potassium Channels Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 208000012659 Joint disease Diseases 0.000 description 1
- 102000012359 KCNQ Potassium Channels Human genes 0.000 description 1
- 108010022282 KCNQ Potassium Channels Proteins 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical group OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- QEFRNWWLZKMPFJ-ZXPFJRLXSA-N L-methionine (R)-S-oxide Chemical group C[S@@](=O)CC[C@H]([NH3+])C([O-])=O QEFRNWWLZKMPFJ-ZXPFJRLXSA-N 0.000 description 1
- QEFRNWWLZKMPFJ-UHFFFAOYSA-N L-methionine sulphoxide Chemical group CS(=O)CCC(N)C(O)=O QEFRNWWLZKMPFJ-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108010092555 Large-Conductance Calcium-Activated Potassium Channels Proteins 0.000 description 1
- 102000016469 Large-Conductance Calcium-Activated Potassium Channels Human genes 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101100019753 Mus musculus Kcnu1 gene Proteins 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 108700019961 Neoplasm Genes Proteins 0.000 description 1
- 102000048850 Neoplasm Genes Human genes 0.000 description 1
- 241000772415 Neovison vison Species 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 208000001294 Nociceptive Pain Diseases 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108010043958 Peptoids Proteins 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 241001415846 Procellariidae Species 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 description 1
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 102000003800 Selectins Human genes 0.000 description 1
- 108090000184 Selectins Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 238000005076 Van der Waals potential Methods 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 108070000030 Viral receptors Proteins 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 241000269368 Xenopus laevis Species 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 208000005298 acute pain Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000007818 agglutination assay Methods 0.000 description 1
- UPEZCKBFRMILAV-UHFFFAOYSA-N alpha-Ecdysone Natural products C1C(O)C(O)CC2(C)C(CCC3(C(C(C(O)CCC(C)(C)O)C)CCC33O)C)C3=CC(=O)C21 UPEZCKBFRMILAV-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 230000009830 antibody antigen interaction Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 230000003185 calcium uptake Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- UHBYWPGGCSDKFX-UHFFFAOYSA-N carboxyglutamic acid Chemical compound OC(=O)C(N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-UHFFFAOYSA-N 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229940125400 channel inhibitor Drugs 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000014107 chromosome localization Effects 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000003271 compound fluorescence assay Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 229920005565 cyclic polymer Polymers 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 125000001295 dansyl group Chemical group [H]C1=C([H])C(N(C([H])([H])[H])C([H])([H])[H])=C2C([H])=C([H])C([H])=C(C2=C1[H])S(*)(=O)=O 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000009025 developmental regulation Effects 0.000 description 1
- 238000011026 diafiltration Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- UPEZCKBFRMILAV-JMZLNJERSA-N ecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@H]([C@H](O)CCC(C)(C)O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 UPEZCKBFRMILAV-JMZLNJERSA-N 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000002001 electrophysiology Methods 0.000 description 1
- 230000007831 electrophysiology Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000005421 electrostatic potential Methods 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000003209 gene knockout Methods 0.000 description 1
- 238000003208 gene overexpression Methods 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000009395 genetic defect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 235000009424 haa Nutrition 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000002962 histologic effect Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 150000001469 hydantoins Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 230000002102 hyperpolarization Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000010324 immunological assay Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 102000002467 interleukin receptors Human genes 0.000 description 1
- 108010093036 interleukin receptors Proteins 0.000 description 1
- 102000027411 intracellular receptors Human genes 0.000 description 1
- 108091008582 intracellular receptors Proteins 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 125000000741 isoleucyl group Chemical group [H]N([H])C(C(C([H])([H])[H])C([H])([H])C([H])([H])[H])C(=O)O* 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 108020004084 membrane receptors Proteins 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-O methylsulfide anion Chemical compound [SH2+]C LSDPWZHWYPCBBB-UHFFFAOYSA-O 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 230000010070 molecular adhesion Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000002981 neuropathic effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 108010087904 neutravidin Proteins 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 229940127240 opiate Drugs 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000003200 peritoneal cavity Anatomy 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 210000004896 polypeptide structure Anatomy 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- AAEVYOVXGOFMJO-UHFFFAOYSA-N prometryn Chemical compound CSC1=NC(NC(C)C)=NC(NC(C)C)=N1 AAEVYOVXGOFMJO-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 150000003235 pyrrolidines Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000036279 refractory period Effects 0.000 description 1
- 230000029219 regulation of pH Effects 0.000 description 1
- 238000004153 renaturation Methods 0.000 description 1
- 230000002336 repolarization Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 239000012465 retentate Substances 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 229910001419 rubidium ion Inorganic materials 0.000 description 1
- 230000021317 sensory perception Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 239000005495 thyroid hormone Substances 0.000 description 1
- 229940036555 thyroid hormone Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 206010044652 trigeminal neuralgia Diseases 0.000 description 1
- 230000010415 tropism Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000002435 venom Substances 0.000 description 1
- 231100000611 venom Toxicity 0.000 description 1
- 210000001048 venom Anatomy 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 239000000277 virosome Substances 0.000 description 1
- 208000009935 visceral pain Diseases 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/02—Drugs for disorders of the nervous system for peripheral neuropathies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/06—Antimigraine agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/08—Antiepileptics; Anticonvulsants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/22—Anxiolytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the inward rectifier family of potassium channels belong to a structural family containing 2 transmembrane domains (see, e.g., Lagrutta et al, Jpn. Heart. J. 37:651-660 1996)). Yet another functionally diverse family (TP, or "two-pore”) contains 2 tandem repeats of this inward rectifier motif.
- the Slo family of potassium channels can be further divided into two subfamilies, based on homology.
- the first subfamily includes Slol and Slo3 (see, e.g., Elkins et al, Proc. Nat'lAcad. Sci USA 83:8415 (1986); Atkinson et al, Science 253:551 (1991); Adelman et al, Neuron 9:209 (1992) (Drosophila Slol); Bulter et al, Science 261:221-224 (1993); D worntsky et al, Mol Brain Res. 27:189-193 (1994); Tseng-Crank et al, Neuron 13:1315-1330 (1994); McCobb et al, Am. J. Physiol.
- Slo channels play a role in a wide variety of physiological processes ranging from renal salt secretion (Wang et al, Annu. Rev. Physiol. 59:413-36 (1997), regulation of neuronal and glandular secretion (Lingle et al, Ion Channels 4:261-301 (1996); Robitaille et al, Neuron 11 :645-655 (1993); Peterson et al, Nature 307:693-696 (1984); Robitaille & Charlton, J. Neurosci.
- the present invention provides an isolated nucleic acid encoding a Slo4 polypeptide comprising an alpha subunit of a Slo potassium channel, the polypeptide: (i) forming, with at least one additional Slo alpha subunit, a Slo potassium channel comprising the characteristic of voltage-gating; and (ii) comprising a sequence having at least 60% amino acid sequence identity to an amino acid sequence of SEQ ID NO:
- the nucleic acid encodes an amino acid sequence of
- the nucleic acid is amplified by at least one pair of primers that selectively hybridize under stringent hybridization conditions to the same sequence as the primers selected from the group consisting of: 5'-GGCGTCTGCTTGATTGGTGTTAGGA-3' (SEQ ID NO:23) 5'-ATCAAAGTTGAGTTTCCTCCCGAG-3' (SEQ ID NO:24) 5'-CCCGGAGCATCTACCGTACATCTTC-3' (SEQ ID NO:25) 5'-CCAGCTGTTCAAACTGTATGGGTAG-3' (SEQ ID NO:26) 5 '-GCTTGGAGGACCATGTTTCAGGAGT-3 ' (SEQ ID NO:27)
- the polypeptide is expressed in a eukaryotic host cell or cell membrane. In another embodiment, the polypeptide is recombinant.
- the present invention provides a method for identifying a compound that increases or decreases ion flux through a potassium channel comprising a Slo4 polypeptide, the method comprising the steps of: (i) entering into a computer system an amino acid sequence of at least 25 amino acids of a Slo4 polypeptide or at least 75 nucleotides of a nucleic acid encoding the Slo4 polypeptide, the Slo4 polypeptide comprising a subsequence having at least 60% amino acid sequence identity to an amino acid sequence of SEQ ID NO:4; (ii) generating a three-dimensional structure of the polypeptide encoded by the amino acid sequence; (iii) generating a three-dimensional structure of the potassium channel comprising the Slo4 polypeptide; (iv) generating a three-dimensional structure of the compound; and (v) comparing the three-dimensional structures
- the hSlo4-specific reagent is selected from the group consisting of: hSlo4-specif ⁇ c antibodies, hSlo4-specific oligonucleotide primers, and hSlo4-nucleic acid probes.
- the present invention provides, in a computer system, a method of screening for mutations of a human Slo4 gene, the method comprising the steps of: (i) entering into the computer a first nucleic acid sequence encoding a Slo4 polypeptide having an amino acid sequence of SEQ ID NO:4, and conservatively .
- the second nucleic acid sequence is associated with a disease state.
- the nucleic acid comprises a nucleotide sequence of SEQ ID NO: 1.
- the potassium channel further comprises the characteristic of rapid activation.
- the polypeptide encoded by the nucleic acid comprises an alpha subunit of a heteromeric or homomeric potassium channel.
- the polypeptide has a molecular weight of between about 134 kD to about
- the functional effect is a physical effect or a chemical effect. In another embodiment, the functional effect is determined by measuring ion flux, changes in ion concentrations, changes in current or changes in voltage. In another embodiment, the functional effect is determined by measuring ligand binding to the channel.
- Slo2 polypeptide the method comprising the steps of: (i) entering into a computer system an amino acid sequence of SEQ ID NO:2; (ii) generating a three-dimensional structure of the polypeptide encoded by the amino acid sequence; (iii) generating a three-dimensional structure of the potassium channel comprising the Slo2 polypeptide; (iv) generating a three-dimensional structure of the compound; and (v) comparing the three-dimensional structures of the polypeptide and the compound to determine whether or not the compound binds to the polypeptide.
- the hSlo2 -specific reagent is selected from the group consisting of: hSlo2-specific antibodies, hSlo2-specif ⁇ c oligonucleotide primers, and hSlo2 -nucleic acid probes.
- the present invention provides, in a computer system, a method of screening for mutations of a human Slo2 gene, the method comprising the steps of: (i) entering into the computer a first nucleic acid sequence encoding a Slo2 polypeptide having an amino acid sequence of SEQ ID NO:2, and conservatively modified versions thereof; (ii) comparing the first nucleic acid sequence with a second nucleic acid sequence having substantial identity to the first nucleic acid sequence; and (iii) identifying nucleotide differences between the first and second nucleic acid sequences.
- Two main branches define two distinct gene subfamilies.
- Human Slo2 and Slo4 are in a subfamily that also includes rat SLACK and the C. elegans Slo2 gene (ceSlo2). Note that C. elegans Slo2 branches separately from both Slo2 and Slo4, suggesting that it is not orthologous to either of these genes.
- Figure 4. Messenger RNA expression patterns of human Slo2. Blots were probed with a 32 P-labeled Slo2 PCR fragment and hybridized with standard high ⁇ stringency procedures.
- B mRNA dot blot hybridized with the same Slo2 probe. Note the strong signals seen in CNS tissues, skeletal muscle, spleen, heart, pituitary and ovary.
- FIG. 5 Functional expression of human Slo2 in Xenopus oocytes.
- A Slo2 currents elicited by depolarizing voltage steps from a holding potential of -120 mV up to +40 mV. Steps were taken in 20 mV increments and tail currents were measured at -60 mV. Note that Slo2 current is clearly seen at voltages as low as -80 mV. Activation at -100 mV may be obscured because this in near the potassium equilibrium potential.
- FIG. 6 Functional expression of human Slo4 in Xenopus oocytzs.
- A Slo4 currents elicited by depolarizing voltage steps from -80 mV up to +80 mV. Steps were taken in 20 mV increments from a holding potential of -100 mV, and tail currents were measured at -60 mN. The Slo4 current is clearly seen at -60 mV, and some Slo4 current is present even at -80 mV.
- FIG. 7 Human northern blot hybridized with a 32 P -labeled Slo4 cDNA probe. Marks at the left margin indicate molecular weight in kilobases (Kb). Lane numbers are given at the top. The following is a list of the tissues in these lanes: 1) whole brain, 2) heart, 3) skeletal muscle, 4) colon, 5) thymus, 6) spleen, 7) kidney, 8) liver, 9) small intestine, 10) placenta, 11) lung, 12) peripheral blood leukocytes. A transcript of approximately 5.5 Kb is labeled in most of these tissues. Expression is highest in the liver, with high level expression also being found in the brain and heart.
- the present invention provides for the first time nucleic acids encoding Slo4 potassium channels.
- the present invention also provides the sequence of human Slo2.
- These polypeptide monomers are members of the Slo family of potassium channels, and the Slo2/4 subfamily. Members of this family are polypeptide subunits of potassium channels having six transmembrane regions and a pore-loop domain, as well as a cytoplasmic tail.
- Both human Slo2 and Slo4 are expressed in the heart and central nervous system and appear to contribute to the modulation of neuronal excitability, because both Slo2 and Slo4 begin to activate in a voltage range below the typical thresholds for action potential generation.
- the invention provides assays for Slo2 and Slo4 activity where Slo2 or Slo4 acts as a direct or indirect reporter molecule.
- Slo2 and Slo4 can be used as a reporter molecule fo measure changes in potassium concentration, membrane potential, current flow, ion flux, transcription, signal transduction, receptor-ligand interactions, second messenger concentrations, in vitro, in vivo, and ex vivo.
- the invention also provides for methods of detecting Slo2 and Slo4 nucleic acid and protein expression, allowing investigation of the channel diversity provided by Slo2 and Slo4 family members, as well as diagnosis of disorders, including CNS disorders, such as neuropathic pain, epilepsy and other seizure disorders, migraines, anxiety, psychotic disorders such as schizophrenia, bipolar disease, and depression, cognitive disorders of learning and memory caused by diseases such as Alzheimer's, hypercontractility of muscles, cardiac arrhythmias, inflammation, and asthma.
- CNS disorders such as neuropathic pain, epilepsy and other seizure disorders, migraines, anxiety, psychotic disorders such as schizophrenia, bipolar disease, and depression
- cognitive disorders of learning and memory caused by diseases such as Alzheimer's, hypercontractility of muscles, cardiac arrhythmias, inflammation, and asthma.
- Slo2 and Slo4 potassium channels are potassium selective and voltage gated (e.g., the number of channels that open during a voltage step increases with increasing depolarization)
- these channels may be regulated by other means, e.g., calcium, chloride, or pH (see, e.g., Yuan et al, Nat. Neurosci. 8:771-779 (2000); see also Schreiber, supra, and Butler, supra).
- such channels are heteromeric or homomeric and contain four alpha subunits or monomers each with six or seven transmembrane domains.
- Heteromeric Slo channels can comprise one or more Slo2 or Slo4 alpha subunits along with one or more additional alpha subunits from the Slo family (see, e.g., McManus et al, Neuron 14:645-650 (1995); Schopperle et al, Neuron 20:565- 573 (1998); Brenner et al, J. Biol Chem. 275:6453-6461 (1999); and WO 0050444). Slo2 and Slo4 channels may also be homomeric. In addition, such homomeric channels may comprise one or more auxiliary beta subunits.
- the nucleotide sequence of human Slo4 (SEQ ID NO:3) encodes a protein of about 1135 amino acids (SEQ ID NO:4) with a predicted molecular weight of about 130 Kd, and a range of approximately 125 Kd to 135 Kd.
- human Slo2 or Slo4 having the amino acid sequence of SEQ ID NO:2 or 4 is used as a positive control in comparison to the putative Slo2 or Slo4 protein to demonstrate the identification of a Slo2 or Slo4 polymorphic variant, ortholog, conservatively-modified variant, mutant, or allele.
- Slo2 or Slo4 nucleotide and amino acid sequence information may also be used to construct models of Slo voltage-gated potassium channels in a computer system. These models are subsequently used to identify compounds that can activate or inhibit voltage-gated potassium channels comprising Slo2 or Slo4 polypeptides. Such compounds that modulate the activity of channels comprising Slo2 or Slo4 polypeptides can be used to investigate the role of Slo2 or Slo4 polypeptides in modulation of channel activity and in channel diversity.
- the isolation of biologically active human Slo2 and human Slo4 for the first time provides a means for assaying for inhibitors and activators of voltage-gated potassium channels that comprise Slo2 or Slo4 subunits.
- Biologically active Slo2 or Slo4 polypeptides are useful for testing inhibitors and activators of voltage-gated potassium channels comprising subunits of Slo2 or Slo4 and/or other Slo members such as Slol or Slo3, using in vivo and in vitro expression that measure, e.g., changes in voltage or current.
- Such activators and inhibitors identified using a potassium channel comprising at least one Slo2 or Slo4 subunit, optionally up to four Slo2 or Slo4 subunits can be used to further study voltage gating, channel kinetics and conductance properties of potassium channels.
- Such activators and inhibitors are useful as pharmaceutical agents for treating diseases involving abnormal ion flux, e.g., CNS disorders, such as neuropathic pain, epilepsy and other seizure disorders, migraines, anxiety, psychotic disorders such as schizophrenia, bipolar disease, and depression.
- CNS disorders such as neuropathic pain, epilepsy and other seizure disorders, migraines, anxiety, psychotic disorders such as schizophrenia, bipolar disease, and depression.
- Such modulators are also useful as neuroprotective agents (e.g., to prevent stroke).
- Modulators could also be useful in treating cognitive disorders of learning and memory caused by diseases such as Alzheimer's, or to enhance learning and memory in the aging population, as well providing neuroprotection.
- modulators could be useful for treating hypercontractility of muscles, cardiac arrhythmias, inflammation, asthma, and as immunosuppressants or stimulants.
- Methods of detecting Slo2 or Slo4 nucleic acids and polypeptides and expression of channels comprising Slo2 or Slo4 polypeptides are also useful for diagnostic applications for diseases involving abnormal ion flux, e.g., as described above.
- chromosome localization of the gene encoding human Slo2 or Slo4 can be used to identify diseases caused by and associated with Slo2 or Slo4.
- Methods of detecting Slo2 or Slo4 are also useful for examining the role of Slo2 or Slo4 in channel diversity and modulation of channel activity.
- Slo2 therefore refers to Slo4 polymorphic variants, alleles, and mutants that: (1) have amino acid sequence identity greater than about 95%, 96%, 97%, 98%, 99%, or more amino acid sequence identity using a sequence comparison algorithm such as BLASTP with the parameters described herein, to a Slo2 amino acid sequence of SEQ ID NO:2 or a conserved region such as the core transmembrane domain or the C- terminal cytoplasmic tail; (2) bind to antibodies, e.g., polyclonal or monoclonal antibodies, raised against an immunogen comprising an amino acid sequence of SEQ ID NO:2 or an immunogenic fragment thereof, and conservatively modified variants thereof; (3) specifically hybridize under highly and/or moderately stringent hybridization conditions to a sequence of SEQ ID NO: 1, and conservatively modified variants thereof; or (4) are amplified by primers that specifically hybridize under highly and/or moderately stringent hybridization conditions to the same sequence as a primer set selected from the group consisting of SEQ ID NOS:5-2
- the characteristic of voltage gating can be measured by a variety of techniques for measuring changes in current flow and ion flux through a channel, e.g., by changing the [K + ] of the external solution and measuring the activation potential of the channel current (see, e.g., U.S. Patent No. 5,670,335), by measuring current with patch clamp techniques or voltage clamp under different conditions, and by measuring ion flux with radiolabeled tracers or voltage-sensitive dyes under different conditions.
- “Homomeric channel” refers to a Slo2 or a Slo4 channel composed of identical alpha subunits
- heteromeric channel refers to a Slo channel composed of at least one Slo2 or Slo4 alpha subunit, plus at least one other different type of alpha subunit from another Slo family member such as Slol or Slo3.
- Both homomeric and heteromeric channels can include auxiliary beta subunits.
- the channel is composed of four alpha subunits and the channel can be heteromeric or homomeric.
- the phrase "functional effects" in the context of assays for testing compounds affecting a channel comprising Slo2 or Slo4 includes the determination of any parameter that is indirectly or directly under the influence of the channel. It includes e.g., direct, physical effects, such as ligand binding, and indirect, chemical or phenotypic effects, e.g., changes in ion flux and membrane potential, and other physiologic effects such as increases or decreases of transcription or hormone release.
- “Functional effects” include in vitro (biochemical or ligand binding assays using, e.g., isolated protein, cell lysates or cell membranes), in vivo (cell- and animal-based assays), and ex vivo activities.
- the term refers to the functional effect of the compound on the channels comprising Slo2 or Slo4, e.g., changes in ion flux including radioisotopes, current amplitude, membrane potential, current flow, conductance, transcription, protein binding, phosphorylation, dephosphorylation, second messenger concentrations (cAMP, cGMP, Ca 2+ , IP 3 ), ligand binding, changes in ion concentration, and other physiological effects such as hormone and neurotransmitter release, as well as changes in voltage and current.
- Such functional effects can be measured by any means known to those skilled in the art, e.g., patch clamping, voltage-sensitive dyes, ion sensitive dyes, whole cell currents, radioisotope efflux, inducible markers, and the like.
- Inhibitors “Inhibitors,” “activators” or “modulators” of voltage-gated potassium channels comprising a Slo2 or a Slo4 polypeptide refer to inhibitory or activating molecules identified using in vitro and in vivo assays for Slo2 or a Slo4 channel function.
- Inhibitors are compounds that decrease, block, prevent, delay activation, inactivate, desensitize, or down regulate the channel, e.g., antagonists.
- Activators are compounds that increase, open, activate, facilitate, enhance activation, sensitize or up regulate channel activity, e.g., agonists.
- Biologically active Slo2 or a Slo4 polypeptides refers to Slo2 or a Slo4 polypeptides that have the ability to form a potassium channel having the characteristic of voltage-gating and rapid deactivation, tested as described above.
- isolated refers to material that is substantially or essentially free from components that normally accompany it as found in its native state. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein that is the predominant species present in a preparation is substantially purified. In particular, an isolated Slo2 or a Slo4 nucleic acid is separated from open reading frames that flank the Slo2 or Slo4 gene and encode proteins other than Slo2 or Slo4.
- the test compound can be in the form of a library of test compounds, such as a combinatorial or randomized library that provides a sufficient range of diversity.
- Test compounds are optionally linked to a fusion partner, e.g., targeting compounds, rescue compounds, dimerization compounds, stabilizing compounds, addressable compounds, and other functional moieties.
- a fusion partner e.g., targeting compounds, rescue compounds, dimerization compounds, stabilizing compounds, addressable compounds, and other functional moieties.
- new chemical entities with useful properties are generated by identifying a test compound (called a "lead compound") with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds.
- HTS high throughput screening
- a "small organic molecule” refers to an organic molecule, either naturally occurring or synthetic, that has a molecular weight of more than about 50 daltons and less than about 5000 daltons, preferably less than about 2000 daltons, preferably between about 100 to about 1000 daltons, more preferably between about 200 to about 500 daltons.
- pain refers to all categories of pain, including pain that is described in terms of stimulus or nerve response, e.g., somatic pain (normal nerve response to a noxious stimulus) and neuropathic pain (abnormal response of a injured or altered sensory pathway, often without clear noxious input); pain that is categorized temporally, e.g., chronic pain and acute pain; pain that is categorized in terms of its severity, e.g., mild, moderate, or severe; and pain that is a symptom or a result of a disease state or syndrome, e.g., inflammatory pain, cancer pain, AIDS pain, arthropathy, migraine, trigeminal neuralgia, cardiac ischaemia, and diabetic neuropathy (see, e.g., Harrison 's Principles of Internal Medicine, pp. 93-98 (Wilson et al, eds., 12th ed. 1991); Williams et al, J. of Medicinal Chem. 42:1481-1485 (19
- Somatic pain refers to a normal nerve response to a noxious stimulus such as injury or illness, e.g., trauma, burn, infection, inflammation, or disease process such as cancer, and includes both cutaneous pain (e.g., skin, muscle or joint derived) and visceral pain (e.g., organ derived).
- a noxious stimulus such as injury or illness, e.g., trauma, burn, infection, inflammation, or disease process such as cancer
- cutaneous pain e.g., skin, muscle or joint derived
- visceral pain e.g., organ derived
- nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated.
- degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed- base and/or deoxyinosine residues (Batzer et al, Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); Rossolini et al, Mol. Cell. Probes 8:91-98 (1994)).
- nucleic acid is used interchangeably with gene, cDNA, niRNA, ohgonucleotide, and polynucleotide.
- a particular nucleic acid sequence also implicitly encompasses "splice variants.”
- a particular protein encoded by a nucleic acid implicitly encompasses any protein encoded by a splice variant of that nucleic acid.
- “Splice variants,” as the name suggests, are products of alternative splicing of a gene. After transcription, an initial nucleic acid transcript may be spliced such that different (alternate) nucleic acid splice products encode different polypeptides.
- Mechanisms for the production of splice variants vary, but include alternate splicing of exons. Alternate polypeptides derived from the same nucleic acid by read-through transcription are also encompassed by this definition.
- amino acid refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids.
- Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, ⁇ -carboxyglutamate, and O-phosphoserine.
- Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.
- Constantly modified variants applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide.
- nucleic acid variations are "silent variations," which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid.
- each codon in a nucleic acid except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan
- TGG which is ordinarily the only codon for tryptophan
- amino acid sequences one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention.
- Domains are portions of a polypeptide that form a compact unit of the polypeptide and are typically about 18 to 350 amino acids long, e.g., the transmembrane regions, pore loop domain, and the C-terminal tail domain. Typical domains are made up of sections of lesser organization such as stretches of ⁇ -sheet and ⁇ -helices.
- “Tertiary structure” refers to the complete three dimensional structure of a polypeptide monomer.
- Quaternary structure refers to the three dimensional structure formed by the noncovalent association of independent tertiary units. Anisotropic terms are also known as energy terms.
- a “label” is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, or chemical means.
- useful labels include 32 P, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins for which antisera or monoclonal antibodies are available (e.g., the polypeptide of SEQ ID NO:2 or 4 can be made detectable, e.g., by incorporating a radiolabel into the peptide, and used to detect antibodies specifically reactive with the peptide).
- recombinant when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified.
- recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all.
- a “promoter” is defined as an array of nucleic acid control sequences that direct transcription of a nucleic acid.
- a promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element.
- a promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription.
- a “constitutive” promoter is a promoter that is active under most environmental and developmental conditions.
- An “inducible” promoter is a promoter that is active under environmental or developmental regulation.
- operably linked refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.
- a nucleic acid expression control sequence such as a promoter, or array of transcription factor binding sites
- heterologous when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature.
- the nucleic acid is typically recombinanfly produced, having two or more sequences from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source.
- a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).
- nucleic acids or polypeptide sequences refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., 60% identity, preferably 65%, 70%, 75%, 80%, 85%, 90%, or 95% identity over a specified region of SEQ ID NO:2 or 4), when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection. Such sequences are then said to be “substantially identical.” This definition also refers to the compliment of a test sequence.
- the identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.
- sequence comparison typically one sequence acts as a reference sequence, to which test sequences are compared.
- test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated.
- the sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
- a “comparison window”, as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.
- Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl Math.
- BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention.
- Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/).
- Exemplary stringent hybridization conditions can be as following: 50% formamide, 5x SSC, and 1% SDS, incubating at 42°C, or, 5x SSC, 1% SDS, incubating at 65°C, with wash in 0.2x SSC, and 0.1 % SDS at 65°C.
- Antibody refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen.
- the recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes.
- Light chains are classified as either kappa or lambda.
- Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively.
- An exemplary immunoglobulin (antibody) structural unit comprises a tetramer.
- Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light” (about 25 kD) and one "heavy” chain (about 50-70 kD).
- the N- . terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition.
- the terms variable light chain (V ) and variable heavy chain (V H ) refer to these light and heavy chains respectively.
- Antibodies exist, e.g., as intact immunoglobulins or as a number of well- characterized fragments produced by digestion with various peptidases.
- pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)' 2) a dimer of Fab which itself is a light chain joined to V H -CH1 by a disulfide bond.
- the F(ab)' 2 may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)' 2 dimer into an Fab' monomer.
- the Fab' monomer is essentially Fab with part of the hinge region (see Fundamental Immunology (Paul ed., 3d ed. 1993).
- any technique known in the art can be used (see, e.g., Kohler & Milstein, Nature 256:495-497 (1975); Kozbor et al, Immunology Today 4: 72 (1983); Cole et al, pp. 77-96 in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. (1985)).
- Techniques for the production of single chain antibodies can be adapted to produce antibodies to polypeptides of this invention.
- transgenic mice, or other organisms such as other mammals may be used to express humanized antibodies.
- an “anti- Slo2” or “anti-Slo4" antibody is an antibody or antibody fragment that specifically binds a polypeptide encoded by a Slo2 or Slo4 gene, cDNA, or a subsequence thereof.
- a “chimeric antibody” is an antibody molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity.
- immunoassay is an assay that uses an antibody to specifically bind an antigen.
- the immunoassay is characterized by the use of specific binding properties of a particular antibody to isolate, target, and/or quantify the antigen.
- the phrase “specifically (or selectively) binds” to an antibody or “specifically (or selectively) immunoreactive with,” when referring to a protein or peptide, refers to a binding reaction that is determinative of the presence of the protein in a heterogeneous population of proteins and other biologies.
- the specified antibodies bind to a particular protein at least two times the background and do not substantially bind in a significant amount to other proteins present in the sample.
- antibodies e.g., polyclonal or monoclonal antibodies, raised to Slo2 or a Slo4, as shown in SEQ ID NOS:2 or 4, or splice variants, or portions thereof, can be selected to obtain only those polyclonal antibodies that are specifically immunoreactive with Slo2 or Slo4 family members and not with other Slo proteins. This selection may be achieved by subtracting out antibodies that cross-react with molecules such as other Slo family members.
- antibodies e.g., polyclonal or monoclonal antibodies, raised to human Slo2 or human Slo4 polymorphic variants, alleles, and conservatively modified variants can be selected to obtain only those antibodies that recognize human Slo2 or human Slo4, but not other Slo2 or Slo4 orthologs, e.g., rat Slo2 (rat SLACK).
- a variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein.
- solid-phase ELISA immunoassays are routinely used to select antibodies specifically immunoreactive with a protein (see, e.g., Harlow & Lane, Antibodies, A Laboratory Manual (1988) for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity).
- a specific or selective reaction will be at least twice background signal or noise and more typically more than 10 to 100 times background.
- Biological sample as used herein is a sample of biological tissue or fluid that contains Slo2 or Slo4 polypeptides or nucleic acid encoding a Slo2 or Slo4 protein. Such samples include, but are not limited to, tissue isolated from humans. Biological samples may also include sections of tissues such as frozen sections taken for histologic purposes.
- a biological sample is typically obtained from a eukaryotic organism, preferably eukaryotes such as fungi, plants, insects, protozoa, birds, fish, reptiles, and preferably a mammal such as rat, mice, cow, dog, guinea pig, or rabbit, and most preferably a primate such as chimpanzees or humans.
- Kb kilobases
- bp base pairs
- Kb kilobases
- bp base pairs
- kD kilodaltons
- Proteins sizes are estimated from gel electrophoresis, from sequenced proteins, from derived amino acid sequences, or from published protein sequences.
- sequence of the cloned genes and synthetic oligonucleotides can be verified after cloning using, e.g., the chain termination method for sequencing double- stranded templates of Wallace et al, Gene 16:21-26 (1981).
- the nucleic acid sequences encoding Slo2 or a Slo4 and related nucleic acid sequence homologs are cloned from cD ⁇ A and genomic D ⁇ A libraries or isolated using amplification techniques with ohgonucleotide primers.
- Slo2 or a Slo4 sequences are typically isolated from human nucleic acid (genomic or cD ⁇ A) libraries by hybridizing with a nucleic acid probe or polynucleotide, the sequence of which can be derived from SEQ ID ⁇ OS:l or 3.
- a suitable tissue from which Slo2 or Slo4 RNA and cDNA can be isolated is nervous system tissue such as whole brain, or any other tissues in which Slo2 or Slo4 is expressed (see, e.g., Figures 4 and 7).
- Amplification techniques using primers can also be used to amplify and isolate Slo2 or Slo4.
- the following primers can also be used to amplify a sequence of human Slo2:
- primers can be used, e.g., to amplify either the full length sequence or a probe of one to several hundred nucleotides, which is then used to screen a library for full-length Slo2 or Slo4.
- Degenerate oligonucleotides can be designed to amplify Slo2 or Slo4 homologs using the sequences provided herein. Restriction endonuclease sites can be incorporated into the primers. Polymerase chain reaction or other in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences that code for proteins to be expressed, to make nucleic acids to use as probes for detecting the presence of Slo2 or Slo4 encoding mRNA in physiological samples, for nucleic acid sequencing, or for other purposes. Genes amplified by the PCR reaction can be purified from agarose gels and cloned into an appropriate vector.
- Gene expression of Slo2 or Slo4 can also be analyzed by techniques known in the art, e.g., reverse transcription and amplification of mRNA, isolation of total RNA or poly A + RNA, northern blotting, dot blotting, in situ hybridization, RNase protection, high density polynucleotide array technology and the like.
- Synthetic oligonucleotides can be used to construct recombinant Slo2 or Slo4 genes for use as probes or for expression of protein. This method is performed using a series of overlapping oligonucleotides usually 40-120 bp in length, representing both the sense and nonsense strands of the gene. These DNA fragments are then annealed, ligated and cloned. Alternatively, amplification techniques can be used with precise primers to amplify a specific subsequence of the Slo2 or Slo4 gene. The specific subsequence is then ligated into an expression vector.
- the nucleic acid encoding Slo2 or Slo4 is typically cloned into intermediate vectors before transformation into prokaryotic or eukaryotic cells for replication and/or expression.
- These intermediate vectors are typically prokaryote vectors, e.g., plasmids, or shuttle vectors.
- a cloned gene such as those cDNAs encoding Slo2 or Slo4
- Suitable bacterial promoters are well known in the art and described, e.g., in Sambrook et al, and Ausubel et al, supra.
- Bacterial expression systems for expressing Slo2 or Slo4 protein are available in, e.g., E.
- the expression vector typically contains a transcription unit or expression cassette that contains all the additional elements required for the expression of the Slo2 or Slo4 encoding nucleic acid in host cells.
- a typical expression cassette thus contains a promoter operably linked to the nucleic acid sequence encoding Slo2 or Slo4 and signals required for efficient polyadenylation of the transcript, ribosome binding sites, and translation termination. Additional elements of the cassette may include enhancers and, if genomic DNA is used as the structural gene, introns with functional splice donor and acceptor sites.
- the expression cassette should also contain a transcription termination region downstream of the structural gene to provide for efficient termination.
- the termination region may be obtained from the same gene as the promoter sequence or may be obtained from different genes.
- the particular expression vector used to transport the genetic information into the cell is not particularly critical. Any of the conventional vectors used for expression in eukaryotic or prokaryotic cells may be used. Standard bacterial expression vectors include plasmids such as pBR322 based plasmids, pSKF, pET23D, and fusion expression systems such as MBP, GST, and LacZ. Epitope tags can also be added to recombinant proteins to provide convenient methods of isolation, e.g., c-myc.
- Expression vectors containing regulatory elements from eukaryotic viruses are typically used in eukaryotic expression vectors, e.g., SN40 vectors, papilloma virus vectors, and vectors derived from Epstein-Barr virus.
- eukaryotic vectors include pMSG, pAN009/A + , ⁇ MTO10/A + , pMAMneo-5, baculovirus pDSNE, and any other vector allowing expression of proteins under the direction of the CMV promoter, S V40 early promoter, SV40 later promoter, metallothionein promoter, murine mammary tumor virus promoter, Rous sarcoma virus promoter, polyhedrin promoter, or other promoters shown effective for expression in eukaryotic cells.
- Expression of proteins from eukaryotic vectors can be also be regulated using inducible promoters.
- inducible promoters expression levels are tied to the concentration of inducing agents, such as tetracycline or ecdysone, by the incorporation of response elements for these agents into the promoter. Generally, high level expression is obtained from inducible promoters only in the presence of the inducing agent; basal expression levels are minimal.
- Inducible expression vectors are often chosen if expression of the protein of interest is detrimental to eukaryotic cells.
- Some expression systems have markers that provide gene amplification such as thymidine kinase and dihydrofolate reductase.
- markers that provide gene amplification such as thymidine kinase and dihydrofolate reductase.
- high yield expression systems not involving gene amplification are also suitable, such as using a baculovirus vector in insect cells, with a Slo2 or Slo4 encoding sequence under the direction of the polyhedrin promoter or other strong baculovirus promoters.
- Standard transfection methods are used to produce bacterial, mammalian, yeast or insect cell lines that express large quantities of Slo2 or Slo4 protein, which are then purified using standard techniques (see, e.g., Colley et al., J. Biol Chem. 264:17619- 17622 (1989); Guide to Protein Purification, in Methods in Enzymology, vol. 182 (Deutscher, ed., 1990)). Transformation of eukaryotic and prokaryotic cells are performed according to standard techniques (see, e.g., Morrison, J. Bad. 132:349-351 (1977); Clark-Curtiss & Curtiss, Methods in Enzymology 101:347-362 (Wu et al., eds, 1983).
- Any of the well-known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, biolistics, liposomes, microinjection, plasma vectors, viral vectors and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook et al, supra). It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least one gene into the host cell capable of expressing Slo2 or Slo4.
- the transfected cells are cultured under conditions favoring expression of Slo2 or Slo4, which is recovered from the culture using standard techniques identified below.
- the Slo2 or Slo4 monomers may be purified to substantial purity by standard techniques, including selective precipitation with such substances as ammonium sulfate; column chromatography, immunopurification methods, and others (see, e.g.,
- Slo2 or Slo4 monomers A number of procedures can be employed when recombinant Slo2 or Slo4 monomers are being purified. For example, proteins having established molecular adhesion properties can be reversible fused to the Slo2 or Slo4 monomers. With the appropriate ligand, the Slo2 or Slo4 monomers can be selectively adsorbed to a purification column and then freed from the column in a relatively pure form. The fused protein is then removed by enzymatic activity. Finally the Slo2 or Slo4 monomers could be purified using immunoaffinity columns.
- Recombinant proteins are expressed by transformed bacteria in large amounts, typically after promoter induction; but expression can be constitutive.
- Promoter induction with IPTG is one example of an inducible promoter system.
- Bacteria are grown according to standard procedures in the art. Fresh or frozen bacteria cells are used for isolation of protein.
- inclusion bodies Proteins expressed in bacteria may form insoluble aggregates ("inclusion bodies").
- purification of inclusion bodies typically involves the extraction, separation and/or purification of inclusion bodies by disruption of bacterial cells, e.g., by incubation in a buffer of 50 mM TRIS/HCL pH 7.5, 50 mM NaCl, 5 mM MgCl 2 , 1 mM DTT, 0.1 mM ATP, and 1 mM PMSF.
- the cell suspension can be lysed using 2-3 passages through a French Press, homogenized using a Polytron (Brinkman Instruments) or sonicated on ice. Alternate methods of lysing bacteria are apparent to those of skill in the art (see, e.g., Sambrook et al, supra; Ausubel et al, supra).
- the inclusion bodies are solubilized, and the lysed cell suspension is typically centrifuged to remove unwanted insoluble matter. Proteins that formed the inclusion bodies may be renatured by dilution or dialysis with a compatible buffer.
- suitable solvents include, but are not limited to urea (from about 4 M to about 8 M), formamide (at least about 80%, volume/volume basis), and guanidine hydrochloride (from about 4 M to about 8 M).
- Some solvents which are capable of solubilizing aggregate-forming proteins are inappropriate for use in this procedure due to the possibility of irreversible denaturation of the proteins, accompanied by a lack of immunogenicity and/or activity.
- SDS sodium dodecyl sulfate
- 70% formic acid are inappropriate for use in this procedure due to the possibility of irreversible denaturation of the proteins, accompanied by a lack of immunogenicity and/or activity.
- guanidine hydrochloride and similar agents are denaturants, this denaturation is not irreversible and renaturation may occur upon removal (by dialysis, for example) or dilution of the denaturant, allowing re-formation of immunologically and/or biologically active protein.
- Other suitable buffers are known to those skilled in the art.
- Human Slo monomers are separated from other bacterial proteins by standard separation techniques, e.g., with Ni-NTA agarose resin.
- the periplasmic fraction of the bacteria can be isolated by cold osmotic shock in addition to other methods known to skill in the art.
- the bacterial cells are centrifuged to form a pellet. The pellet is resuspended in a buffer containing 20% sucrose.
- the bacteria are centrifuged and the pellet is resuspended in ice-cold 5 mM MgSO 4 and kept in an ice bath for approximately 10 minutes.
- the cell suspension is centrifuged and the supernatant decanted and saved.
- the recombinant proteins present in the supernatant can be separated from the host proteins by standard separation techniques well known to those of skill in the art.
- an initial salt fractionation can separate many of the unwanted host cell proteins (or proteins derived from the cell culture media) from the recombinant protein of interest.
- the preferred salt is ammonium sulfate.
- Ammonium sulfate precipitates proteins by effectively reducing the amount of water in the protein mixture. Proteins then precipitate on the basis of their solubility. The more hydrophobic a protein is, the more likely it is to precipitate at lower ammonium sulfate concentrations.
- a typical protocol includes adding saturated ammonium sulfate to a protein solution so that the resultant ammonium sulfate concentration is between 20-30%. This concentration will precipitate the most hydrophobic of proteins.
- the precipitate is then discarded (unless the protein of interest is hydrophobic) and ammonium sulfate is added to the supernatant to a concentration known to precipitate the protein of interest.
- the precipitate is then solubilized in buffer and the excess salt removed if necessary, either through dialysis or diafiltration.
- Other methods that rely on solubility of proteins, such as cold ethanol precipitation, are well known to those of skill in the art and can be used to fractionate complex protein mixtures.
- the molecular weight of the Slo2 or Slo4 monomers can be used to isolate it from proteins of greater and lesser size using ultrafiltration through membranes of different pore size (for example, Amicon or Millipore membranes).
- membranes of different pore size for example, Amicon or Millipore membranes.
- the protein mixture is ultrafiltered through a membrane with a pore size that has a lower molecular weight cut-off than the molecular weight of the protein of interest.
- the retentate of the ultrafiltration is then ultrafiltered against a membrane with a molecular cut off greater than the molecular weight of the protein of interest.
- the recombinant protein will pass through the membrane into the filtrate.
- the filtrate can then be chromatographed as described below.
- the Slo2 or Slo4 monomers can also be separated from other proteins on the basis of its size, net surface charge, hydrophobicity, and affinity for ligands.
- antibodies raised against proteins can be conjugated to column matrices and the proteins immunopurified. All of these methods are well known in the art. It will be apparent to one of skill that chromatographic techniques can be performed at any scale and using equipment from many different manufacturers (e.g., Pharmacia Biotech).
- Immunoassays can be used to qualitatively or quantitatively analyze the hSlo2 or Slo4 monomers. A general overview of the applicable technology can be found in Harlow & Lane, Antibodies: A Laboratory Manual (1988). A. Antibodies to Slo2 or Slo4 monomers
- Such techniques include antibody preparation by selection of antibodies from libraries of recombinant antibodies in phage or similar vectors, as well as preparation of polyclonal and monoclonal antibodies by immunizing rabbits or mice (see, e.g., Huse et al, Science 246: 1275-1281 (1989); Ward et al, Nature 341 :544-546 (1989)).
- a number of immunogens comprising portions of Slo2 or Slo4 monomers may be used to produce antibodies specifically reactive with Slo2 or Slo4 monomers.
- recombinant Slo2 or Slo4 monomers or an antigenic fragment thereof such as a conserved region (see, e.g., the pore loop or the C-terminal tail domains)
- Recombinant protein can be expressed in eukaryotic or prokaryotic cells as described above, and purified as generally described above.
- Recombinant protein is the preferred immunogen for the production of monoclonal or polyclonal antibodies.
- a synthetic peptide derived from the sequences disclosed herein and conjugated to a carrier protein can be used an immunogen.
- Naturally occurring protein may also be used either in pure or impure form.
- the product is then injected into an animal capable of producing antibodies. Either monoclonal or polyclonal antibodies may be generated, for subsequent use in immunoassays to measure the protein.
- mice e.g., BALB/C mice
- rabbits is immunized with the protein using a standard adjuvant, such as Freund's adjuvant, and a standard immunization protocol.
- the animal's immune response to the immunogen preparation is monitored by taking test bleeds and determining the titer of reactivity to the beta subunits.
- blood is collected from the animal and antisera are prepared. Further fractionation of the antisera to enrich for antibodies reactive to the protein can be done if desired (see, Harlow & Lane, supra).
- Monoclonal antibodies may be obtained by various techniques familiar to those skilled in the art. Briefly, spleen cells from an animal immunized with a desired antigen are immortalized, commonly by fusion with a myeloma cell (see, Kohler & Milstein, Eur. J. Immunol. 6:511-519 (1976)). Alternative methods of immortalization include transformation with Epstein Barr Virus, oncogenes, or retroviruses, or other methods well known in the art. Colonies arising from single immortalized cells are screened for production of antibodies of the desired specificity and affinity for the antigen, and yield of the monoclonal antibodies produced by such cells may be enhanced by various techniques, including injection into the peritoneal cavity of a vertebrate host. Alternatively, one may isolate DNA sequences which encode a monoclonal antibody or a binding fragment thereof by screening a DNA library from human B cells according to the general protocol outlined by Huse, et al, Science 246:1275-1281 (1989).
- Monoclonal antibodies and polyclonal sera are collected and titered against the immunogen protein in an immunoassay, for example, a solid phase immunoassay with the immunogen immobilized on a solid support.
- an immunoassay for example, a solid phase immunoassay with the immunogen immobilized on a solid support.
- polyclonal antisera with a titer of 10 4 or greater are selected and tested for their cross reactivity against non-Slo family proteins and other Slo family proteins, using a competitive binding immunoassay.
- Specific polyclonal antisera and monoclonal antibodies will usually bind with a K d of at least about 0.1 mM, more usually at least about 1 ⁇ M, preferably at least about 0.1 ⁇ M or better, and most preferably, 0.01 ⁇ M or better.
- Antibodies specific only for a particular Slo2 or Slo4 ortholog, such as human Slo2 or Slo4 can also be made, by subtracting out other cross-reacting
- the polypeptides can be detected by a variety of immunoassay methods.
- immunoassay methods see Basic and Clinical Immunology (Stites & Terr eds., 7 th ed. 1991).
- the immunoassays of the present invention can be performed in any of several configurations, which are reviewed extensively in Enzyme Immunoassay (Maggio, ed., 1980); and Harlow & Lane, supra.
- the Slo2 or Slo4 polypeptides of the invention can be detected and/or quantified using any of a number of well recognized immunological binding assays (see, e.g., U.S. Patents 4,366,241; 4,376,110; 4,517,288; and 4,837,168).
- immunological binding assays see also Methods in Cell Biology: Antibodies in Cell Biology, volume 37 (Asai, ed. 1993); Basic and Clinical Immunology (Stites & Terr, eds., 7 th ed. 1991).
- Immunological binding assays typically use an antibody that specifically binds to a protein or antigen of choice (in this case Slo2 or Slo4 or an antigenic subsequence thereof).
- the antibody e.g., anti- Slo2 or Slo4
- the antibody may be produced by any of a number of means well known to those of skill in the art and as described above.
- Immunoassays also often use a labeling agent to specifically bind to and label the complex formed by the antibody and antigen.
- the labeling agent may itself be one of the moieties comprising the antibody/antigen complex.
- the labeling agent may be a labeled Slo2 or Slo4 polypeptide or a labeled anti-Slo2 or Slo4 antibody.
- the labeling agent may be a third moiety, such a secondary antibody, which specifically binds to the antibody/Slo2 or Slo4 complex (a secondary antibody is typically specific to antibodies of the species from which the first antibody is derived).
- Other proteins capable of specifically binding immunoglobulin constant regions, such as protein A or protein G may also be used as the label agent.
- the labeling agent can be modified with a detectable moiety, such as biotin, to which another molecule can specifically bind, such as streptavidin.
- detectable moieties are well known to those skilled in the art.
- incubation and/or washing steps may be required after each combination of reagents. Incubation steps can vary from about 5 seconds to several hours, preferably from about 5 minutes to about 24 hours.
- the incubation time will depend upon the assay format, antigen, volume of solution, concentrations, and the like.
- the assays will be carried out at ambient temperature, although they can be conducted over a range of temperatures, such as 10°C to 40°C.
- Immunoassays for detecting the Slo2 or Slo4 in samples may be either competitive or noncompetitive.
- Noncompetitive immunoassays are assays in which the amount of antigen is directly measured.
- the anti-Slo2 or Slo4 subunit antibodies can be bound directly to a solid substrate on which they are immobilized. These immobilized antibodies then capture Slo2 or Slo4 present in the test sample.
- the Slo2 or Slo4 monomers are thus immobilized and then bound by a labeling agent, such as a second Slo2 or Slo4 antibody bearing a label.
- the second antibody may lack a label, but it may, in turn, be bound by a labeled third antibody specific to antibodies of the species from which the second antibody is derived.
- the second or third antibody is typically modified with a detectable moiety, such as biotin, to which another molecule specifically binds, e.g., streptavidin, to provide a detectable moiety.
- the amount of the Slo2 or Slo4 present in the sample is measured indirectly by measuring the amount of known, added (exogenous) Slo2 or Slo4 displaced (competed away) from an anti-Slo2 or Slo4 antibody by the unknown Slo2 or Slo4 present in a sample.
- a known amount of the Slo2 or Slo4 is added to a sample and the sample is then contacted with an antibody that specifically binds to the Slo2 or Slo4.
- the amount of exogenous Slo2 or Slo4 bound to the antibody is inversely proportional to the concentration of the Slo2 or Slo4 present in the sample.
- the antibody is immobilized on a solid substrate.
- Immunoassays in the competitive binding format can also be used for crossreactivity determinations for Slo2 or Slo4.
- a Slo2 or Slo4 protein at least partially corresponding to an amino acid sequence of SEQ ID NO:2 or 4 or an immunogenic region thereof, such as a conserved region (e.g., the pore loop or tail domain), can be immobilized to a solid support.
- Other proteins such as other Slo family members are added to the assay so as to compete for binding of the antisera to the immobilized antigen.
- the ability of the added proteins to compete for binding of the antisera to the immobilized protein is compared to the ability of the Slo2 or Slo4 or immunogenic portion thereof to compete with itself.
- the percent crossreactivity for the . above proteins is calculated, using standard calculations.
- Those antisera with less than 10% crossreactivity with each of the added proteins listed above are selected and pooled.
- the cross-reacting antibodies are optionally removed from the pooled antisera by irnmunoabsorption with the added considered proteins, e.g., distantly related homologs.
- Antibodies that specifically bind only to Slo2 or Slo4, or only to particular orthologs of Slo2 or Slo4, such as human Slo2 or Slo4, can also be made using this methodology.
- the immunoabsorbed and pooled antisera are then used in a competitive binding immunoassay as described above to compare a second protein, thought to be perhaps Slo2 or Slo4 or an allele, ortholog, or polymorphic variant thereof, to the immunogen protein.
- the two proteins are each assayed at a wide range of concentrations and the amount of each protein required to inhibit 50% of the binding of the antisera to the immobilized protein is determined. If the amount of the second protein required to inhibit 50% of binding is less than 10 times the amount of the protein encoded by Slo2 or Slo4 that is required to inhibit 50% of binding, then the second protein is said to specifically bind to the polyclonal antibodies generated to the respective Slo2 or Slo4 immunogen.
- the technique generally comprises separating sample proteins by gel electrophoresis on the basis of molecular weight, transferring the separated proteins to a suitable solid support, (such as a nitrocellulose filter, a nylon filter, or derivatized nylon filter), and incubating the sample with the antibodies that specifically bind Slo2 or Slo4.
- a suitable solid support such as a nitrocellulose filter, a nylon filter, or derivatized nylon filter
- the anti-Slo2 or Slo4 antibodies specifically bind to Slo2 or Slo4 on the solid support.
- These antibodies may be directly labeled or alternatively may be subsequently detected using labeled antibodies (e.g., labeled sheep anti-mouse antibodies) that specifically bind to the anti-Slo2 or Slo4 antibodies.
- LOA liposome immunoassays
- the particular label or detectable group used in the assay is not a critical aspect of the invention, as long as it does not significantly interfere with the specific binding of the antibody used in the assay.
- the detectable group can be any material having a detectable physical or chemical property.
- Such detectable labels have been well- developed in the field of immunoassays and, in general, most any label useful in such methods can be applied to the present invention.
- a label is any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means.
- Useful labels in the present invention include magnetic beads (e.g., DYNABEADSTM), fluorescent dyes (e.g., fluorescein isothiocyanate, Texas red, rhodamine, and the like), radiolabels (e.g., 3 H, 125 1, 35 S, 14 C, or 32 P), enzymes (e.g., horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass or plastic beads (e.g., polystyrene, polypropylene, latex, etc.).
- magnetic beads e.g., DYNABEADSTM
- fluorescent dyes e.g., fluorescein isothiocyanate, Texas red, rhodamine, and the like
- radiolabels e.g., 3 H, 125 1, 35 S, 14 C, or 32 P
- enzymes e.g., horse radish per
- the label may be coupled directly or indirectly to the desired component of the assay according to methods well known in the art. As indicated above, a wide variety of labels may be used, with the choice of label depending on sensitivity required, ease of conjugation with the compound, stability requirements, available instrumentation, and disposal provisions.
- Non-radioactive labels are often attached by indirect means.
- a ligand molecule e.g., biotin
- the ligand then binds to another molecule (e.g., streptavidin), which is either inherently detectable or covalently bound to a signal system, such as a detectable enzyme, a fluorescent compound, or a chemiluminescent compound.
- a signal system such as a detectable enzyme, a fluorescent compound, or a chemiluminescent compound.
- the ligands and their targets can be used in any suitable combination with antibodies that recognize hSlo2 or Slo4, or secondary antibodies that recognize anti-hSlo2 or Slo4 antibodies.
- Means of detecting labels are well known to those of skill in the art.
- means for detection include a scintillation counter or photographic film as in autoradiography.
- the label is a fluorescent label, it may be detected by exciting the fluorochrome with the appropriate wavelength of light and detecting the resulting fluorescence. The fluorescence may be detected visually, by means of photographic film, by the use of electronic detectors such as charge coupled devices (CCDs) or photomultiphers and the like.
- CCDs charge coupled devices
- enzymatic labels may be detected by providing the appropriate substrates for the enzyme and detecting the resulting reaction product.
- simple colorimetric labels may be detected simply by observing the color associated with the label. Thus, in various dipstick assays, conjugated gold often appears pink, while various conjugated beads appear the color of the bead.
- agglutination assays can be used to detect the presence of the target antibodies.
- antigen-coated particles are agglutinated by samples comprising the target antibodies.
- none of the components need be labeled and the presence of the target antibody is detected by simple visual inspection.
- Adenoviral based systems are typically used.
- Adenoviral based vectors are capable of very high transduction efficiency in many cell types and do not require cell division. With such vectors, high titer and levels of expression have been obtained. This vector can be produced in large quantities in a relatively simple system.
- Adeno-associated virus (“AAV”) vectors are also used to transduce cells with target nucleic acids, e.g., in the in vitro production of nucleic acids and peptides, and for in vivo and ex vivo gene therapy procedures (see, e.g., West et al, Virology 160:38-47 (1987); U.S. Patent No.
- Vectors e.g., retroviruses, adenoviruses, liposomes, etc.
- therapeutic nucleic acids can be also administered directly to the organism for transduction of cells in vivo.
- naked DNA can be administered.
- Administration is by any of the routes normally used for introducing a molecule into ultimate contact with blood or tissue cells. Suitable methods of administering such nucleic acids are available and well known to those of skill in the art, and, although more than one route can be used to administer a particular composition, a particular route can often provide a more immediate and more effective reaction than another route.
- Administration is by any of the routes normally used for introducing a molecule into ultimate contact with blood or tissue cells.
- Tablet forms can include one or more of lactose, sucrose, mannitol, sorbitol, calcium phosphates, corn starch, potato starch, microcrystalline cellulose, gelatin, colloidal silicon dioxide, talc, magnesium stearate, stearic acid, and other excipients, colorants, fillers, binders, diluents, buffering agents, moistening agents, preservatives, flavoring agents, dyes, disintegrating agents, and pharmaceutically compatible carriers.
- Lozenge forms can comprise the active ingredient in a flavor, e.g., sucrose, as well as pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, carriers known in the art.
- a flavor e.g., sucrose
- an inert base such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, carriers known in the art.
- Aerosol formulations i.e., they can be "nebulized" to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.
- the dose administered to a patient should be sufficient to effect a beneficial therapeutic response in the patient over time.
- the dose will be determined by the efficacy of the particular vector employed and the condition of the patient, as well as the body weight or surface area of the patient to be treated.
- the size of the dose also will be determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a particular vector, or transduced cell type in a particular patient.
- the physician evaluates circulating plasma levels of the vector, vector toxicities, progression of the disease, and the production of anti- vector antibodies.
- the dose equivalent of a naked nucleic acid from a vector is from about 1 ⁇ g to 100 ⁇ g for a typical 70 kilogram patient, and doses of vectors which include a retroviral particle are calculated to yield an equivalent amount of therapeutic nucleic acid.
- compounds and transduced cells of the present invention can be administered at a rate determined by the LD-50 of the inhibitor, vector, or transduced cell type, and the side-effects of the inhibitor, vector or cell type at various concentrations, as applied to the mass and overall health of the patient. Administration can be accomplished via single or divided doses.
- X. KITS Human Slo2 or Slo4 and their homologs are useful tools for examining expression and regulation of potassium channels.
- Human Slo2 or Slo4-specific reagents that specifically hybridize to hSlo2 or Slo4 nucleic acid, such as hSlo2 or Slo4 probes and primers, and hSlo2 or Slo4-specific reagents that specifically bind to the hSlo2 or Slo4 protein, e.g., hSlo2 or Slo4 antibodies are used to examine expression and regulation.
- hSlo2 or Slo4 protein can be detected with the various immunoassay techniques described above.
- the test sample is typically compared to both a positive control (e.g., a sample expressing recombinant Slo2 or Slo4 monomers) and a negative control.
- Two new Slo2 antisense oligos were designed based on the 5' end of this -500 bp fragment.
- a clone containing a 5' incomplete (but otherwise full-length) human Slo2 sequence was constructed using overlap extension PCR and 3 Slo2 fragments amplified from human hippocampus cDNA.
- a 5' fragment of approximately 1.3 Kb was amplified using the sense oligo 5'-CACCTTCAAGGAGCGGCTCAAGCTG-3' (9) (SEQ ID NO: 13) and the antisense oligo 5'-GACGTGTGCACCAGCAGGGTGATGAG-3' (10) SEQ ID NO: 14).
- the middle of the Slo2 sequence was amplified as a 1.55 Kb fragment with the oligos (sense) 5'-GTTTCACGTCAAGTTTGCTGACCACG-3' (11) (SEQ ID NO: 15) and (antisense) 5'-CCGTACGTGCGGATCCACAGGTCG-3' (12) (SEQ ID NO:16).
- the 3' end of the Slo2 coding sequence was amplified with the sense oligo 5'- CGTGAAGGACTACATGATCACCATC-3' (13) (SEQ ID NO:17) and the antisense oligo 5'-CAGGGTCTAGATTAGAGCTGTGTCTCGTCGCGAGTCTC-3' (14) (SEQ ID NO: 18) to produce a fragment of 800 bp.
- this exon contained the 5' end of human Slo2 coding sequence.
- a complete putative human Slo2 coding sequence was constructed using the sequence of the 3.5 Kb construct described herein, the 5' end exon, and two other exons identified in the BLAST search. BLAST analysis of this complete coding sequence vs. the human Slo2 genomic sequence shows that the hSlo2 coding sequence is divided into at least 30 exons. This cDNA sequence could not be predicted from genomic DNA, without the cloned cDNA.
- the 5' end of Slo2 was amplified from human brain cDNA using an overlap extension PCR screen.
- a fragment containing the start codon and first 200 bp of Slo2 was amplified using the sense oligo 5'-CCACCATGGCGCGGGCCAAGCT-3' (15) (SEQ ID NO:19) and the antisense oligo 5'- GAGACAGGGAGGAGTCCAGGCTGAA-3 ' (16) (SEQ ID NO:20).
- SEQ ID NO:19 sense oligo 5'-CCACCATGGCGCGGGCCAAGCT-3'
- the antisense oligo 5'- GAGACAGGGAGGAGTCCAGGCTGAA-3 ' (16)
- a second fragment of approximately 400 bp that overlapped the first fragment and a unique Hind III restriction site in the 3.5 Kb Slo2 clone was amplified using the oligos 5'- CGTGGGCCAGAGGCTTCCTGTAGAA-3' (17) (SEQ ID NO:21) and 5'-
- GCTCCCAGATGTTGCCTTTGTAGCTG-3' (18) (SEQ ID NO:22). These two fragments were mixed and amplified with oligos 15 and 18 to produce an approximately 550 bp fragment containing both the initiator methionine of Slo2 and the unique Slo2 Hind III site. This fragment was cloned into a standard plasmid and 3 clones were sequenced. Each clone was identical to the consensus human Slo2 derived from our cDNA and genomic information. A full length Slo2 coding region was then assembled by joining the 5' end fragment and 3.5 Kb Slo2 fragment at their common Hind III restriction site by standard DNA cloning methods.
- KIAA1422 contains a 2 amino acid insertion (GT) at the equivalent position of amino acid 650 in the hSlo2 sequence.
- GT 2 amino acid insertion
- the numbered oligonucleotides listed above can be used in various combinations to amplify sections of the hSlo2 cDNA from an appropriate template, such as human brain cDNA, using the conditions described above.
- Oligos 14-17 are not contained in the KIAA1422 sequence and oligo pairs including at least one of these oligos can be used to amplify fragments that could not be derived from the KIAA1422 sequence.
- Oligo 17 can be paired with 18, 8, 7, 6, 5, 4, 3 and 14 to produce fragments of approximately 415 bp, 1.25 Kb, 1.3 Kb, 2.19 Kb, 2.23 Kb, 2.59 Kb, 2.74 Kb and 3.58 Kb, respectively. Oligo 15 can be substituted for 17 in the above combinations to produce fragments that are approximately 150 bp longer than those listed above. Additionally, oligo 14 can be paired with 9, 11, 1, 2 and 13 to produce fragments of approximately 3.49 Kb, 2.29 Kb, 1.03 Kb, 880 bp and 830 bp, respectively. None of the oligo pairs listed above will amplify KIAA1422.
- FIG. 3 A northern blot and mRNA dot blot probed with a 32 P-labeled PCR fragment produced with oligos 13 and 14 are shown in Figure 3.
- On the northern blot prominent band of approximately 5 Kb is seen in brain, with a less intense band visible at roughly 6 Kb. Similar bands are seen in skeletal muscle, albeit at a lower intensity. Faint signals are seen in heart and spleen.
- the mRNA dot blot shows widespread expression of human Slo2 in the central nervous system. Expression is highest in the cerebellum, cerebral cortex, occipital lobe, temporal lobe, putamen and nucleus accumbens.
- Slo2 Functional expression of human Slo2 was examined in Xenopus oocytes. Slo2 was cloned into the pOX expression vector and run-off cRNA transcripts were prepared. These transcripts were injected in mature stage 4 Xenopus oocytes and examined under whole cell two-electrode voltage clamp after 24-48 hours. Oocyte expression procedures were performed according to Jegla & Salkoff J. Neurosci 17(l):32-44 (1996)).
- Figure 5 a shows a series of currents recorded from an oocyte expressing human Slo2.
- a large, outwardly rectifying current is seen in voltage steps above -100 mV. No similar current was seen in uninjected control oocytes.
- the reversal potential of the human Slo2 current shifted with changes in external potassium concentration (Figure 5b).
- the reversal potential of the Slo2 current shifts almost +70 mV in response to an increase in external potassium concentration from 2 mM to 50 mM. This large shift is almost as much as that predicted for a channel that is perfectly potassium selective, and indicates that Slo2 channels are highly selective for potassium over other cations.
- Example 2 Cloning and Expression of Slo4 A. Cloning Partial human Slo4 sequences were originally identified with TBLASTN searches of 3 databases with the rat SLACK sequence and partial human Slo2 sequences: A proprietary database, the public EST database at NCBI, and the public Genome Survey Sequence Database at NCBI. The proprietary clone 5035170 contained a short stretch of Slo4 coding sequence with amino acid 60% identity to rat SLACK amino acids 646-730. The entire clone had an insert of less than 700 bp. It was sequenced in its entirety and determined that most of the insert probably represented intronic sequence.
- a single round of RACE PCR with the Slo4-specific antisense oligo 5'-CCCGGAGCATCTACCGTACATCTTC-3' (21) (SEQ ID NO:25) produced a fragment of approximately 800 bp from human brain cDNA. This fragment extended the Slo4 coding sequence by almost 500 bp into a region highly homologous to the pore-loop motifs of Slo potassium channels.
- the 5' end of the Slo4 coding sequence was cloned with 2 nested rounds of 5' RACE PCR using Slo4-specific antisense oligos based on the new sequence obtained in the first 5' RACE attempt.
- the Slo4-specif ⁇ c oligos used were 5'- CCAGCTGTTCAAACTGTATGGGTAG-3 ' (22) (SEQ ID NO:26) and 5 '-
- oligo #20 ATCCCAATTGCCGCCATGGTTGATTTGGAGAGCGAAGTG-3' (24) (SEQ ID NO:28) and the antisense oligo overlapping the stop codon, oligo #20. Only the bases listed in bold type in oligos 20 and 24 match the Slo4 DNA sequence. In oligo 20, the additional bases at the 5' end add an Xbal restriction site to assist subcloning. In oligo 24 the additional bases at the 5' end add a Muni site for subcloning and a Kozak consensus sequence to boost translation initiation at the Slo4 methionine codon. Only the areas given in bold type are used for the amplification of Slo4; the other bases need not be present to obtain amplification. Two additional Slo4-specific sense oligos and one Slo4-specific antisense oligo can be used to amplify Slo4:
- oligos can be used in combination with the other Slo4 oligos listed above to amplify a variety of Slo4 fragments from an appropriate cDNA source such as human brain.
- 24 can be used with 23, 22, 21 , 27 or 20 to produce fragments of approximately 780 bp, 830 bp, 1.46 Kb, 1.98 Kb and 3.4 Kb, respectively.
- 25 can be used with 21, 27 or 20 to produce bands of around 250 bp, 780 bp and 2.2.Kb, respectively.
- 19 can be used with 27 or 20 to produce fragments of approximately 420 bp and 1.85 Kb.
- 26 can be used with 20 to produce a fragment of around 600 bp. If at least one of these amplifications can be obtained from a gene, and the sequence of the fragment is substantially identical to that of human Slo4, then the sequence should be considered a species of human Slo4.
- a human northern blot and dot blot hybridized with a 32 P-labeled Slo4 cDNA probe are shown in Figure 7.
- a transcript of approximately 5.5 Kb is labeled in most of the tissues on the northern blot. Expression is highest in the liver, with high level expression also being found in the brain and heart. Lower levels of expression are detected in skeletal muscle, colon, spleen, kidney, small intestine, placenta and lung. Larger transcripts of approximately 9 Kb and 13 Kb are seen in brain and heart. These may represent alternative transcripts or incompletely processed transcripts.
- a 4.5 Kb transcript is seen in lung, and may represent an alternative transcript; it is long enough to encode a complete Slo4 protein.
- Slo4 Functional expression of human Slo4 was examined in Xenopus oocytes. Slo4 was cloned into the pOX expression vector and run-off cRNA transcripts were prepared. These transcripts were injected in mature stage 4 Xenopus oocytes and examined under whole cell two-electrode voltage clamp after 24-48 hours. Oocyte expression procedures were performed according to Jegla & Salkoff, J. Neurosci 17(l):32-44 (1996)).
- FIG. 6 shows a similar set of experiments conducted with human Slo4.
- Slo2 large, outwardly rectifying potassium currents are seen with depolarizing voltage steps.
- the reversal potential for Slo4 was also highly sensitive to changes in external potassium concentration.
- change in external potassium concentration from 2 mM to 20 mM caused the Slo4 current reversal potential to shift over +45 mV. This change is almost at great at the +48 mV shift that would be expected for a perfectly potassium selective channel, indicating that Slo4 is very highly potassium selective over other cations, as is Slo2.
- These re'sults also indicate that Slo4 is voltage gated.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Pain & Pain Management (AREA)
- Psychiatry (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Cell Biology (AREA)
- Hospice & Palliative Care (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001284995A AU2001284995B2 (en) | 2000-11-15 | 2001-08-15 | Slo2 and Slo4, novel potassium channel proteins from human brain |
AT01964104T ATE525396T1 (en) | 2000-11-15 | 2001-08-15 | SLO2 AND SLO4, NEW POTASSIUM CHANNEL PROTEINS FROM HUMAN BRAIN |
AU8499501A AU8499501A (en) | 2000-11-15 | 2001-08-15 | Slo2 and slo4, novel potassium channel proteins from human brain |
CA002428350A CA2428350A1 (en) | 2000-11-15 | 2001-08-15 | Slo2 and slo4, novel potassium channel proteins from human brain |
EP01964104A EP1334178B1 (en) | 2000-11-15 | 2001-08-15 | Slo2 and slo4, novel potassium channel proteins from human brain |
JP2002543646A JP2005507633A (en) | 2000-11-15 | 2001-08-15 | SLO2 and SLO4, novel potassium channel proteins from human brain |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24911200P | 2000-11-15 | 2000-11-15 | |
US60/249,112 | 2000-11-15 | ||
US09/921,159 | 2001-08-01 | ||
US09/921,159 US7041494B2 (en) | 2000-11-15 | 2001-08-01 | DNA encoding Slo2 and Slo4, potassium channel |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002040649A1 true WO2002040649A1 (en) | 2002-05-23 |
WO2002040649A8 WO2002040649A8 (en) | 2002-11-07 |
Family
ID=26939832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/025701 WO2002040649A1 (en) | 2000-11-15 | 2001-08-15 | Slo2 and slo4, novel potassium channel proteins from human brain |
Country Status (7)
Country | Link |
---|---|
US (4) | US7041494B2 (en) |
EP (2) | EP1334178B1 (en) |
JP (1) | JP2005507633A (en) |
AT (1) | ATE525396T1 (en) |
AU (2) | AU8499501A (en) |
CA (1) | CA2428350A1 (en) |
WO (1) | WO2002040649A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003095644A1 (en) * | 2002-05-14 | 2003-11-20 | Takeda Pharmaceutical Company Limited | Novel proteins and dnas thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1029042A4 (en) * | 1997-10-22 | 2004-10-13 | Univ Washington | A ph sensitive potassium channel in spermatocytes |
US20030143676A1 (en) * | 1999-03-25 | 2003-07-31 | Genesis Research And Development Corporation Limited | Fibroblast growth factor receptors and methods for their use |
US6972187B2 (en) * | 2000-05-12 | 2005-12-06 | Millennium Pharmaceuticals, Inc. | OAT5 molecules and uses therefor |
WO2001090366A2 (en) * | 2000-05-24 | 2001-11-29 | Curagen Corporation | Human polynucleotides and polypeptides encoded thereby |
US20020048787A1 (en) * | 2000-06-14 | 2002-04-25 | Ming-Hui Wei | Isolated human transporter proteins, nucleic acid molecules encoding human transporter proteins, and uses thereof |
EP1320600A1 (en) * | 2000-08-03 | 2003-06-25 | Incyte Genomics, Inc. | Transporters and ion channels |
JP2005518185A (en) * | 2001-06-04 | 2005-06-23 | キュラジェン コーポレイション | Novel protein and nucleic acid encoding it |
-
2001
- 2001-08-01 US US09/921,159 patent/US7041494B2/en not_active Expired - Fee Related
- 2001-08-15 JP JP2002543646A patent/JP2005507633A/en active Pending
- 2001-08-15 EP EP01964104A patent/EP1334178B1/en not_active Expired - Lifetime
- 2001-08-15 WO PCT/US2001/025701 patent/WO2002040649A1/en active IP Right Grant
- 2001-08-15 EP EP10176436A patent/EP2295454A1/en not_active Withdrawn
- 2001-08-15 CA CA002428350A patent/CA2428350A1/en not_active Abandoned
- 2001-08-15 AU AU8499501A patent/AU8499501A/en active Pending
- 2001-08-15 AT AT01964104T patent/ATE525396T1/en not_active IP Right Cessation
- 2001-08-15 AU AU2001284995A patent/AU2001284995B2/en not_active Ceased
-
2006
- 2006-01-04 US US11/325,764 patent/US7411043B2/en not_active Expired - Fee Related
-
2008
- 2008-07-22 US US12/177,819 patent/US7767450B2/en not_active Expired - Fee Related
-
2010
- 2010-03-09 US US12/720,461 patent/US7893209B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
JOINER ET AL.: "Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits", NATURE NEUROSCIENCE, vol. 1, no. 6, October 1998 (1998-10-01), pages 462 - 469, XP002909244 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003095644A1 (en) * | 2002-05-14 | 2003-11-20 | Takeda Pharmaceutical Company Limited | Novel proteins and dnas thereof |
Also Published As
Publication number | Publication date |
---|---|
US20090017534A1 (en) | 2009-01-15 |
AU2001284995B2 (en) | 2007-03-29 |
CA2428350A1 (en) | 2002-05-23 |
ATE525396T1 (en) | 2011-10-15 |
US20100267930A1 (en) | 2010-10-21 |
US7411043B2 (en) | 2008-08-12 |
EP1334178A4 (en) | 2006-03-29 |
US7767450B2 (en) | 2010-08-03 |
WO2002040649A8 (en) | 2002-11-07 |
US7041494B2 (en) | 2006-05-09 |
EP1334178A1 (en) | 2003-08-13 |
AU8499501A (en) | 2002-05-27 |
US7893209B2 (en) | 2011-02-22 |
EP1334178B1 (en) | 2011-09-21 |
US20030017533A1 (en) | 2003-01-23 |
EP2295454A1 (en) | 2011-03-16 |
US20060099640A1 (en) | 2006-05-11 |
JP2005507633A (en) | 2005-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7309772B2 (en) | KCNQ5, a novel potassium channel | |
EP1183330B1 (en) | Kv10.1, A NOVEL VOLTAGE-GATED POTASSIUM CHANNEL FROM HUMAN BRAIN | |
CA2408847C (en) | Cng3b: a novel cyclic nucleotide-gated cation channel | |
AU771483B2 (en) | Human Eag2 | |
AU2001263183A1 (en) | Cng3b: a novel cyclic nucleotide-gated cation channel | |
US7893209B2 (en) | Slo2, novel potassium channel proteins from human brain | |
WO2002014467A2 (en) | Cng2b: a putative human cyclic nucleotide-gated ion channel | |
AU2001284995A1 (en) | Slo2 and Slo4, novel potassium channel proteins from human brain | |
AU2001284884B2 (en) | CNG2B: a putative human cyclic nucleotide-gated ion channel | |
AU2007202750A1 (en) | SL02 and SL04, novel potassium channel proteins from human brain | |
AU2001284884A1 (en) | CNG2B: a putative human cyclic nucleotide-gated ion channel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
AK | Designated states |
Kind code of ref document: C1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: C1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2428350 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002543646 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001284995 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001964104 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001964104 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 2001284995 Country of ref document: AU |