WO2002039154A1 - Semiconductor laser module, and raman amplifier using the semiconductor laser module - Google Patents
Semiconductor laser module, and raman amplifier using the semiconductor laser module Download PDFInfo
- Publication number
- WO2002039154A1 WO2002039154A1 PCT/JP2001/009741 JP0109741W WO0239154A1 WO 2002039154 A1 WO2002039154 A1 WO 2002039154A1 JP 0109741 W JP0109741 W JP 0109741W WO 0239154 A1 WO0239154 A1 WO 0239154A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser diode
- optical fiber
- base
- laser
- fixing
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 110
- 238000001069 Raman spectroscopy Methods 0.000 title claims description 31
- 239000013307 optical fiber Substances 0.000 claims abstract description 270
- 239000000463 material Substances 0.000 claims abstract description 19
- 230000003287 optical effect Effects 0.000 claims description 38
- 239000000835 fiber Substances 0.000 claims description 28
- 238000005452 bending Methods 0.000 claims description 24
- 238000003466 welding Methods 0.000 claims description 19
- 230000005284 excitation Effects 0.000 claims description 15
- 230000002265 prevention Effects 0.000 claims description 10
- 230000003014 reinforcing effect Effects 0.000 claims description 10
- 229910017709 Ni Co Inorganic materials 0.000 claims description 2
- 229910003267 Ni-Co Inorganic materials 0.000 claims description 2
- 229910003262 Ni‐Co Inorganic materials 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 241000233805 Phoenix Species 0.000 claims 1
- 230000008878 coupling Effects 0.000 description 21
- 238000010168 coupling process Methods 0.000 description 21
- 238000005859 coupling reaction Methods 0.000 description 21
- 230000005540 biological transmission Effects 0.000 description 17
- 230000003321 amplification Effects 0.000 description 14
- 238000003199 nucleic acid amplification method Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 12
- 230000008859 change Effects 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 239000004859 Copal Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 241000016649 Copaifera officinalis Species 0.000 description 3
- 241000782205 Guibourtia conjugata Species 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 229910001080 W alloy Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 229910000833 kovar Inorganic materials 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4202—Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
- G02B6/4203—Optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4207—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4236—Fixing or mounting methods of the aligned elements
- G02B6/4237—Welding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094003—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/30—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
- H01S3/302—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/02208—Mountings; Housings characterised by the shape of the housings
- H01S5/02216—Butterfly-type, i.e. with electrode pins extending horizontally from the housings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02407—Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
- H01S5/02415—Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02438—Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
Definitions
- the present invention relates to a semiconductor laser module used in the optical communication field and a Raman amplifier using the semiconductor laser module.
- wavelength multiplex transmission (WDM transmission) has been widely accepted in the communication field, and the era of wavelength multiplex transmission is now approaching.
- WDM transmission wavelength multiplex transmission
- Wavelength-multiplexed optical transmission can transmit light of multiple wavelengths over a single optical fiber. Therefore, it is an optical transmission method suitable for large-capacity high-speed communication.
- studies on this transmission technology are being actively conducted.
- Raman amplification uses the phenomenon that when strong light (cocoon-induced light) is incident on an optical fiber, gain appears about 100 nm longer than the excitation light wavelength due to induced Raman scattering.
- Raman amplification is an optical signal amplification method that utilizes the phenomenon that when signal light in the wavelength region having the above gain is incident on an optical fiber that has been pumped with pump light, the signal light is amplified. is there. Therefore, existing optical fibers can be used as an amplification medium in Raman amplification without using EDF as an amplification medium.
- an amplification gain can be obtained at an arbitrary wavelength. Therefore, the number of signal light channels in wavelength division multiplexing transmission can be increased by using Raman amplification.
- the Raman gain is as small as about 3 dB with a 100 mW pump light input when using a (normally existing) communication optical fiber. For this reason, it is necessary to provide a plurality of excitation light sources (pump lasers) and obtain a strong excitation light by multiplexing these. In general, it has been studied to achieve a total excitation light intensity of about 500 mW to 1 W by multiplexing.
- the pump light source of the Raman amplifier in order to apply Raman amplification to wavelength division multiplexing transmission, the pump light source of the Raman amplifier must have low noise, high output of, for example, 300 mW or more, and It is necessary to provide a light source with good stability.
- the development of a semiconductor laser module having such characteristics for a pumping light source is very important.
- a semiconductor laser module is a device in which laser light from a semiconductor laser (laser diode) is optically coupled to an optical fiber on the optical transmission side. It is applied not only as an excitation light source as described above but also as a signal light source, and various configurations have been proposed. Disclosure of the invention The present invention provides a semiconductor laser module applicable to a signal light source or an excitation light source, and a Raman amplifier using the semiconductor laser module.
- a semiconductor laser module according to one aspect of the present invention is configured as follows:
- a laser diode mounted on the base; a first optical fiber mounted on the base and optically coupled to the laser diode;
- a plurality of fixing members mounted on the base and arranged at intervals in the longitudinal direction of the first optical fiber;
- a second optical fiber disposed opposite to the other end of the laser diode to receive and transmit light emitted from the other end of the laser diode, wherein the first optical fiber has It is located toward one end of the laser diode,
- the first optical fiber has a diffraction grating that reflects light having a set wavelength, and is configured to return the light having the set wavelength among the lights emitted from one end of the laser diode to the laser diode.
- the first optical fiber is fixed to the base by a fixing member at a plurality of positions at intervals in the longitudinal direction of the optical fiber.
- a semiconductor laser module according to another aspect of the present invention is configured as follows;
- a fixing member mounted on the base, for fixing the first optical fiber to the base;
- a second optical fiber disposed opposite to the other end of the laser diode, for receiving and transmitting light emitted from the other end of the laser diode;
- thermocouple mounted on the bottom plate of the package and mounting the base;
- the first optical fiber has a diffraction grating that reflects light of a set wavelength, and returns the light of the set wavelength among the lights emitted from one end side of the laser diode to the laser diode.
- the thermo module comprises: a base side plate on which the base is mounted; a bottom plate side plate placed on the bottom plate of the package; and a Peltier element sandwiched and fixed between these plate members.
- a laser diode mounting member that is mounted and fixed in contact with an upper surface of the thermo module and mounts the laser diode; a fixing member that is coupled to the laser diode mounting member and mounts the fixing member; And a mounting member.
- the laser diode mounting member is formed of a material having a linear expansion coefficient in a range between a linear expansion coefficient of the fixed member mounting member and a linear expansion coefficient of a base side plate of the thermomodule.
- a first optical fiber mounted on the base, arranged with the fiber tip side toward one end of the laser diode, and optically coupled to the laser diode;
- a fixing member mounted on the base, for fixing the first optical fiber to the base;
- a second optical fiber disposed opposite to the other end of the laser diode, for receiving and transmitting light emitted from the other end of the laser diode;
- thermocouple mounted on the bottom plate of the package and mounting the base;
- the first optical fiber has a diffraction grating that reflects light of a set wavelength, and returns the light of the set wavelength among the lights emitted from one end side of the laser diode to the laser diode.
- a laser diode mounting member for mounting and fixing the laser diode in contact with an upper surface of the thermo module; and a base coupled to the laser diode mounting member for fixing the base. And a fixed member mounting member for mounting the member.
- the bottom plate of the package is formed of a material having substantially the same linear expansion coefficient as the laser diode tower mounting member of the base.
- a fixing member mounted on the base and fixing the first optical fiber to the base while holding the first optical fiber from both sides;
- a second optical fiber disposed opposite to the other end of the laser diode, for receiving and transmitting light emitted from the other end of the laser diode;
- thermoelectric unit mounted on the base plate of the package and mounting the base;
- the first optical fiber has a diffraction grating that reflects light of a set wavelength, and the light of the set wavelength among the lights emitted from one end of the laser diode is transmitted to the laser diode.
- the base is provided with a fixed member tower mounting portion for mounting the fixed member on the base.
- the fixing member mounting portion and the fixing member are laser-welded at a first laser welding portion.
- the first optical fiber side and the fixing member are laser-welded at a second laser-welded portion
- the first laser welded portion and the second laser welded portion are substantially the same height in a direction perpendicular to the package bottom plate.
- the semiconductor laser module according to still another embodiment of the present invention Is composed as follows:
- a laser diode mounted on the base; a laser die mounted on the base; A first optical fiber disposed toward one end of the diode and optically coupled to the laser diode;
- a fixing member mounted on the base, for fixing the first optical fiber to the base;
- a second optical fiber disposed opposite to the other end of the laser diode, for receiving and transmitting light emitted from the other end of the laser diode;
- thermo module on which the base is mounted; wherein the first optical fiber has a diffraction grating that reflects light having a set wavelength, and the first optical fiber is set out of light emitted from one end of the laser diode. A wavelength of light is fed back to the laser diode, and at least a part of the base is located at one or both sides of the side of the first optical fiber, and the length of the first optical fiber is Along the direction
- a bending preventing means for preventing bending of the base is provided.
- a laser diode mounted on the base; a first optical fiber mounted on the base, arranged with a fiber tip end side toward one end of the laser diode, and optically coupled to the laser diode;
- a fixing member mounted on the base and fixing the first optical fiber to the base at a position near the laser diode and at a position farther from the laser diode than the laser diode;
- a second optical fiber disposed opposite to the other end of the laser diode, for receiving and transmitting light emitted from the other end of the laser diode; Iva;
- thermo module on which the base is mounted; wherein the first optical fiber has a diffraction grating that reflects light having a set wavelength, and the first optical fiber is set out of light emitted from one end of the laser diode. Wavelength of light is fed back to the laser diode, wherein the first optical fiber and the laser diode are aligned, and the first optical fiber is on a side closer to the laser diode. Are fixed from both sides by fixing members at each point on the far side
- the fixing member for fixing the position far from the laser diode comprises a pair of fixing parts.
- the fixed parts of this pair are fixed to the base with the first optical fiber sandwiched from both sides,
- the fixed parts and the first optical fiber side are fixed by laser welding.
- FIG. 1 is a configuration explanatory view showing a first embodiment of a semiconductor laser module according to the present invention
- FIG. 2 is a plan view showing a configuration of a peripheral portion of a base of the semiconductor laser module of the first embodiment
- FIG. 3 is an exploded view showing the structure of the base in the first embodiment in an exploded view
- FIG. 4 is a sectional view taken along line AA of FIG. 3, and FIGS.
- FIG. B is an explanatory diagram showing a perspective configuration of each fixing member provided in the first embodiment.
- FIG. 6 is an explanatory view showing a fiber lens of the first optical fiber provided in the first embodiment and its peripheral configuration
- FIG. 7 is a laser diode in the first embodiment.
- Perspective view showing the arrangement area of FIG. 8 is an explanatory diagram showing a simplified cross-sectional configuration on the side where the second optical fiber is disposed in the first embodiment
- FIG. 9 is a diagram showing a semiconductor laser module according to the present invention.
- FIG. 10 is a perspective view showing the configuration of the second embodiment with a package partially omitted.
- FIG. 10 shows a laser diode and a first optical fiber in a third embodiment of the semiconductor laser module according to the present invention.
- FIG. 11 is a perspective view showing the fixing configuration of FIG. 11, and FIG. 11 is a plan view of FIG.
- FIG. 12 is an exploded view showing the structure of the base in the third embodiment in an exploded view.
- FIG. 13 is a diagram showing the structure around the base in another embodiment of the semiconductor laser module according to the present invention.
- FIG. 14 is an explanatory view of a fiber lens structure of a first optical fiber in another embodiment of the semiconductor laser module according to the present invention.
- FIG. 15 is a perspective view of the semiconductor laser module according to the present invention.
- FIG. 16 is an explanatory view of a second optical fiber in another embodiment of the semiconductor laser module.
- FIG. 16 is an explanatory view showing an example of a conventional semiconductor laser module in a cross section.
- FIG. A is a diagram showing a configuration of the Peltier device, and
- FIG. 17B is an explanatory diagram showing a problem of the semiconductor laser module.
- FIG. 16 shows an example of a conventional semiconductor laser module.
- This semiconductor laser module is for a signal light source, and employs fiber grating technology to improve the wavelength stability.
- thermomodule 25 is provided in a knockout 27.
- the base 2 is mounted on the thermo module 25.
- the laser diode 1 is mounted and fixed on the LD bonding portion 2 1 of the base 2 via the heat sink 22.
- a first optical fiber 4 optically coupled to the laser diode 1 is mounted on the base 2, a first optical fiber 4 optically coupled to the laser diode 1 is mounted.
- the first optical fiber 4 is disposed with the distal end of the fiber lens 14 formed on the distal end thereof facing the one end 31 of the laser diode 1.
- the first optical fiber 4 is housed in a metal sleep 3.
- the first optical fiber 4 is fixed by laser welding to a fixed arm 63 projecting above the base 2 at a fixed portion 62.
- the base 2 is preferably formed of a metal having low thermal conductivity and high laser weldability.
- the material of the base 2 is preferably a material having a linear expansion coefficient close to that of the glass-based material forming the first optical fiber 4. . Therefore, in a conventional semiconductor laser module, the base 2 is generally formed of a Fe—Ni—Co alloy known as Copal (trademark).
- the first optical fiber 4 has a grating 12 as a diffraction grating that reflects light of a set wavelength.
- the first optical fiber 4 receives light emitted from one end 31 of the laser diode 1 via a fiber lens 14. Then, of the received light, the light of the set wavelength is reflected and returned to the laser diode 1.
- a monitoring diode 9 is disposed to face.
- the monitor photodiode 9 is fixed to the monitor photodiode fixed part 39.
- the monitor photodiode fixing section 39 is fixedly arranged in the package 27.
- Monitor Photodiode 9 Monitors the output of the laser diode 1 by receiving the laser light transmitted through the first optical fiber 4.
- a second optical fiber 13 is arranged to face the other via a space.
- the second optical fiber 13 receives the light emitted from the other end 30 of the laser diode 1 and transmits it.
- the connection end face of the second optical fiber 13 is fixedly inserted into a ferrule 59, and the ferrule 59 is fixed to the rear end of the package 27.
- a collimating lens 51, a light transmitting plate 55, and a condensing lens 57 are spaced from each other in this order from the laser diode 1 side. It is arranged.
- the collimator lens 51 is fixed to the base 2.
- the condenser lens 57 is fixed to the lens holder 56 and is fixed to the package 27.
- thermomodule 25 is usually mounted on the bottom plate 26 of the package 27.
- the bottom plate 26 of the package 27 is made of Cu—W alloy Cu W 20 (weight ratio of Cu is 20% and W is 80%).
- the thermo module 25 usually includes a base plate 17, a bottom plate 18, and a Peltier element 1 sandwiched and fixed between the plates 17, 18. 9 Is formed by both the base side ⁇ 1 7 and the bottom plate side plate member 1 8 of the thermo-module 2 5 A 1 2 O 3.
- the first optical fiber 4 and the second optical fiber 13 are both centered on the laser diode 1. Then, the laser light emitted from one end 31 of the laser diode 1 is received by the first optical fiber 4. The light having the set wavelength is reflected from the grating 12 and returns to the laser diode 1, and is emitted from the other end 30 of the laser diode 1. This output light is transmitted to the second optical fiber 13. Thus, the light is received, transmitted through the second optical fiber 13, and provided for a desired use.
- the first optical fiber The distance between the tip of 4 and the laser diode 1 can be reduced. For this reason, it is possible to widen the frequency range in which the semiconductor laser module has a good RIN (Relative Inte nite n Si ty N o i s e) characteristic.
- thermo module when a current is applied to drive the laser diode 1, the temperature of the laser diode 1 rises due to heat generation. This temperature rise causes a change in the oscillation wavelength and light output of the laser diode 1. For this reason, when using the semiconductor laser module, the temperature of the laser diode 1 is measured by a thermistor (not shown) fixed near the laser diode 1. Based on the measured value, the current flowing through the thermo module 25 is controlled to control the temperature of the laser diode 1 to be constant.
- the semiconductor laser module having the above configuration receives the light emitted from the laser diode 1 by the first optical fiber 4, and reflects the light having a set wavelength out of the light by the grating 12. It is a configuration to return to the code 1. Therefore, when the first optical fiber 4 is displaced with respect to the laser diode 1, the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 is greatly reduced.
- the above-described conventional semiconductor laser module has a configuration in which the first optical fiber 4 is sandwiched and fixed by the fixing portion 62 at one position in the longitudinal direction. Therefore, it is difficult to properly center and fix the first optical fiber 4. Therefore, when fixing the first optical fiber 4, There has been a problem that displacement is likely to occur.
- the base 2 is formed by copal
- the base side plate member 1 7 of thermo-module is formed by A 1 2 O 3.
- the base 2 and the base side plate 17 have significantly different linear expansion coefficients.
- the base 2 bends as shown in FIG. 17B with the operation of the thermo module 25 when the semiconductor laser module is used. This bending causes a problem that the laser diode 1 and the first optical fiber 4 are displaced from the centering position, and the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 is reduced.
- the linear expansion coefficient between the base 2 and the base side plate 17 of the thermomodule 25 also increases.
- the difference also causes base 2 to bow.
- the optical coupling between the laser diode 1 and the first optical fiber 4 is deviated, and when the semiconductor laser module is used, the optical coupling does not completely return to the original state, and the optical coupling shift remains. turn into.
- the fixing portion 62 of the sleeve 3 is on the tip side of the fixing arm 63 formed to protrude above the base 2. That is, since the fixed portion 62 is formed at a position higher than the bottom of the base 2, the sleeve 3 is largely displaced when the base 2 is bent. As a result, the rate of decrease in the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 was large.
- the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 decreases in accordance with a change in the use environment temperature when the semiconductor laser module is used and when it is left unattended, the first optical fiber 4
- the intensity of the light received and returned to the laser diode 1 decreases.
- the intensity of the return light decreases, the light with high output and stable wavelength from the semiconductor laser module Output and transmission.
- One aspect of the present invention is to optically couple a laser diode and an optical fiber that receives laser light from the laser diode and returns light of a set wavelength to the laser diode with high accuracy regardless of a temperature change.
- a highly reliable semiconductor laser module is provided.
- the present invention provides a pumping light source having low noise, high power, and good wavelength stability, which is suitable for wavelength multiplex transmission by using the semiconductor laser module as described above. Provide an amplifier.
- FIG. 1 is a perspective view showing the configuration of a first embodiment of the semiconductor laser module according to the present invention.
- the semiconductor laser module of this embodiment also has a package 27 for accommodating the laser diode 1 and the like as in the conventional example.
- the package 27 is shown in a partially omitted state.
- the semiconductor laser module of the first embodiment includes a thermo module 25, a base 2, a laser diode 1, a first optical fiber 4, and the like provided in a package 27. It is configured.
- a plurality of lead terminals 60 are arranged on the side wall of the package 27 with a space therebetween, and the lead terminals 60 are formed so as to protrude toward the outside of the package 27.
- the first embodiment is different from the conventional example in the configuration of the base 2 and the first optical fiber.
- the semiconductor laser module of the first embodiment has a reliable optical coupling between the laser diode 1 and the first optical fiber 4 with high accuracy irrespective of changes in the use environment temperature. It is a semiconductor laser module with high performance.
- the base 2 on which the laser diode 1 is directly or indirectly mounted is a laser diode mounting member 8 on which the laser diode 1 is mounted, and a fixing member mounting member provided on the laser diode mounting member 8. 5 and.
- the fixing member mounting member 5 mounts the fixing members 6 and 7, and the fixing members 6 and 7 are arranged at an interval in the longitudinal direction of the optical fiber.
- the first optical fiber 4 is fixed through a metal sleeve 3 as an optical fiber holding member.
- the fixing members 6 and 7 fix the first optical fiber 4 to the base 2 by supporting and fixing the sleep 3.
- the same grating as that shown in FIG. 16 is formed in the core of the first optical fiber 4.
- the first optical fiber 4 is fixed to the base 2 by the fixing members 6 and 7 at a plurality of points (here, two points) spaced apart in the longitudinal direction of the optical fiber. ing.
- the first optical fiber 4 is clamped and fixed from both sides by fixing members 6 and 7 in a state where the first optical fiber 4 is aligned with the laser diode 1.
- Base 2 is mounted on thermo module 25.
- the laser diode mounting member 8 of the base 2 is arranged in contact with the thermo module 25.
- an LD bonding portion 21 which is formed integrally with the laser diode mounting member 8 is provided above the laser diode mounting member 8.
- the LD bonding part 21 is a laser diode mounting area.
- Fixing member mounting member 5 The laser diode mounting member 8 is arranged at a position avoiding the laser diode mounting area of the laser diode mounting member 8.
- FIG. 3 is a perspective view showing the base 2 in an exploded state, and the fixing member mounting member 5 is mounted on the laser diode mounting member 8 at the position of the silver mouth ⁇ joint 46 shown by hatching in FIG. Is connected and fixed.
- the base 2 is configured to include the fixing member mounting member 5 and the laser diode mounting member 8.
- the laser diode mounting member 8 is made of a material having a linear expansion coefficient in a range between the linear expansion coefficient of the fixed member mounting member 5 and the linear expansion coefficient of the base side plate 17 of the thermomodule 25. It is formed by.
- the fixing member mounting member 5 is formed of copearl
- the laser diode mounting member 8 is a Cu—W alloy CuWIO (weight ratio of Cu is 10%, W 90%).
- CuW10 has a thermal conductivity of 180 to 200 (W / mK), which is about 17 to 18 (W / m-K), which is the thermal conductivity of Copal. It has 10 times the thermal conductivity.
- the bottom plate 26 of the package 27 is formed of the same material as the laser diode mounting member 8 of the base 2. Thereby, the linear expansion coefficient of the bottom plate 26 and the linear expansion coefficient of the laser diode mounting member 8 are made the same.
- the fixing member mounting member 5 as the fixing member mounting portion and the fixing members 6 and 7 are laser-welded at a first laser welded portion 10.
- the fixing members 6, 7 and the sleeve 3 are laser-welded at a second laser-welded portion 11 (11a, lib).
- the height of the first laser welded portion 10 and the height of the second laser welded portion 11 in a direction perpendicular to the package bottom plate 26 are substantially the same.
- the laser welding is performed by a YAG laser or the like.
- the difference between the height of the first laser welded portion 10 and the height of the second laser welded portion 11 in the direction perpendicular to the package bottom plate 26 is within ⁇ 500 mm, preferably within ⁇ 50 ⁇ . I have to.
- the height of the laser welded portions 10 and 11 in FIG. 12 on the fixing member 6 side is the same as the position of the laser light receiving end 32 of the first optical fiber 4 and the center position of the optical axis. Has become.
- the fiber lens 14 of the first optical fiber 4 has a spherical shape shown in FIG. 6, and the tip is a laser beam receiving end 32.
- the laser light receiving end 32 is arranged at the same height position as the plane of the active layer (not shown) of the laser diode 1.
- the upper surface of the fixing member mounting member 5 and the upper surfaces of the fixing members 6 and 7 are flush (within 100 ⁇ m of soil). So that This is preferable because the height of the laser welded portion 10 can be easily made uniform for each product.
- a bending preventing means 15 is formed on the fixing member mounting member 5 of the base 2.
- the radius prevention means 15 is formed on both sides of the first optical fiber 4 along the longitudinal direction of the first optical fiber 4.
- the radius preventing means 15 prevents the base 2 from bending.
- the bending preventing means 15 is formed by forming a wall portion which is provided at least upward from the bottom 16 of the fixing member mounting member 5 in the longitudinal direction of the first optical fiber 4. It is.
- the deflection preventing means 15 is provided in the entire area in the longitudinal direction of the fixing member mounting member 5 (the area within the broken line frame B in FIG. 2).
- the bending prevention means 15 is provided on both sides of the axis part 33 connecting the laser light emitting end face of one end 31 of the laser diode 1 and the laser light receiving end 32 of the first optical fiber 4, and the laser.
- On both sides of the fixing member 6 located on the side close to the diode 1. Is also provided.
- the tip of the deflection preventing means 15 extends to the area where the LD bonding part 21 of the laser diode mounting member 8 is provided.
- the deflection preventing means 15 is formed of a fixed member mounting member 5 and an integral member. 2 and 3, as shown in FIGS. 2 and 3, the walls constituting the deflection preventing means 15 and the fixing member fixing wall 35 form the fitting recesses 37a, 37 of the fixing members 6, 7 respectively. b is formed.
- the fixing members 6, 7 are welded and fixed to the fixing member mounting member 5 by the first laser welded portion 10 in a state of being fitted to the corresponding fitting concave portions 37a, 37b.
- the deflection preventing means is formed.
- the fixing member mounting member 5 in which the wall portion 15 and the fixing member fixing wall portion 35 are integrally formed is obtained.
- the fixing member 6 located on the side closer to the laser diode 1 is, as shown in FIGS. 5A and 5B, a holding portion for holding the first optical fiber 4 from both sides. It is formed by an integral part with 28. As an example, as shown in FIG. 5B, the holding portion 28 of the fixing member 6 may be formed in an arm shape. Then, when the laser diode 1 and the first optical fiber 4 are aligned, when the first optical fiber 4 integrated with the sleep 3 is rotated with the laser welded portion 11a as a fulcrum, the laser welding is performed. The stress applied to the portion 11a is dispersed into the deformation stress of the arm of the holding portion 28, and the concentration of stress can be prevented.
- the fixing member 7 for fixing the first optical fiber 4 farther from the laser diode 1 includes a pair of fixing parts 7a and 7b.
- the fixed parts 7 a and 7 b of this pair are fixed to the fixing member mounting member 5 of the base 2 with the sleep 3 sandwiched from both sides.
- the fixed parts 7a and 7b are the first laser weld lib, The welding is fixed.
- the fixing member fixing wall 35 of the fixing member mounting member 5 functions as a guide for guiding the movement of the fixing components 7a and 7b.
- a minute gap is interposed between the fixing member fixing wall portion 35 and the sleeve 3.
- the fixed parts 7 a and 7 b are fixed to the fixed member fixing wall 35 at the position of the first laser welded part 10.
- the laser diode mounting member 8 of the base 2 is fixed to the upper surface of the thermo module 25.
- the fixing member mounting member 5 connected to the laser diode tower mounting member 8 is a thermo module.
- the first optical fiber 4 is provided so as to protrude from the upper surface of the first optical fiber 4 in the longitudinal direction.
- the first optical fiber 4 is fixed on a fixing member mounting member 5 protruding from the thermomodule 25 side.
- the end face (rear end face) of the first optical fiber 4 far from the laser diode 1 is formed obliquely with respect to the optical axis of the first optical fiber 4.
- a monitor photodiode 9 is provided so as to face the rear end face of the first optical fiber 4, and the monitor photodiode 9 is fixed to a monitor photodiode fixing portion 39.
- the mounting portion 39 is mainly made of alumina. Motor diode fixed part
- Numeral 39 is fixed on the laser diode mounting member 8 of the base 2 by a solder material or the like.
- the laser diode 1 is fixed on the heat sink 22 by a solder material 40 mainly composed of AuSn solder.
- the heat sink 22 is fixed on the laser diode mounting member 8 mainly by a solder material 41 having AuSn or AuSi.
- the heat sink 22 is made of a high thermal conductive material such as A 1 N or diamond.
- a second optical fiber 13 is arranged to face the other end 30 of the laser diode 1 with an interval therebetween.
- the second optical fiber 13 is fixed to a ferrule holder 58 while being supported and fixed to a ferrule 59.
- FIG. 1 As shown in FIG. 1, FIG. 2, and FIG. 8, between the other end 30 of the laser diode 1 and the second optical fiber 13, the other end 30 of the laser diode 1 is provided.
- a collimating lens 51 that converts laser light into parallel light is provided on the surface at intervals.
- the collimating lens 51 is mounted and fixed on the laser diode mounting member 8 of the base 2 while being supported and fixed by the lens holder 52.
- the lens holder mounting portion 47 is shown by hatching.
- the laser diode mounting member 8 is provided with an isolator 53 via a gap with the collimating lens 51.
- the isolator 53 is fixed on the laser diode mounting member 8 via the isolator holder 54.
- a condensing lens 57 is provided on the emission side of the isolator 53 via an interval.
- a light transmitting plate 55 is provided between the isolator 53 and the condenser lens 57.
- the condenser lens 57 condenses the light emitted from the laser diode 1 on the tip side of the second optical fiber 13.
- the condenser lens 57 is fixed to the lens holder 56.
- the light transmitting plate 55 provided on the incident side of the condenser lens 57 is made of sapphire glass or the like.
- Light transmission plate 5 5 The package 27 has a sealing function.
- the light transmitting plate 55 is disposed obliquely with respect to the optical axis of the condenser lens 57.
- the operation of fixing the first optical fiber 4 to the fixing member mounting member 5 of the base 2 is performed, for example, as follows. First, the first optical fiber 4 and the laser diode 1 are aligned. With this alignment, the laser diode The distal end side of the first optical fiber 4 near the optical fiber 1 is clamped and fixed by the fixing member 6 from both sides.
- This alignment is performed, for example, as follows. That is, the fixed component 6 is arranged in the fitting recess 37 a on the fixed component mounting member 5 of the base 2. Then, the first optical fiber 4 is arranged between the holding portions 28 (see FIG. 5) of the fixed component 6. Note that the interval between the holding portion 28 and the sleep 3 is about 0 to 2 ⁇ . In this state, the rear end side of the first optical fiber 4 far from the laser diode 1 is gripped by, for example, an alignment jig. Using this alignment jig, the laser diode 1 and the first optical fiber 4 are aligned. At this time, the fixed component 6 can move in the X direction along the surface of the fixed member mounting member 5 of the base 2 together with the sleep 3.
- the fixed component 6 is fixed to the fixed member mounting member 5 of the base 2 at the first laser welded portion 10.
- the first optical fiber 4 side (specifically, the sleep 3 of the first optical fiber 4) is fixed to the fixed component 6 by welding at the second laser welding portion 11a.
- the side of the first optical fiber 4 close to the laser diode 1 is fixed to the fixing member mounting member 5. Note that the force for fixing the fixed component 6 to the fixed component mounting member 5 first and then welding and fixing the first optical fiber 4 side to the fixed component 6 or vice versa depends on the alignment. It should be selected in consideration of ease of alignment, alignment accuracy, etc.o
- the end of the first optical fiber 4 farther from the laser diode 1 is fixed to the first part by the centering jig with the holding part (the laser welded part 11 a) held by the fixed part 6 as a fulcrum. Perform centering movement in the Y direction in the figure. Then, the first optical fiber 4 and the laser diode 1 are realigned.
- the fixing parts 7 a and 7 b are inserted into the fitting recesses 37 b in a manner guided by the fixing member fixing wall 35 of the fixing member mounting member 5 of the base 2, Place both sides of Sleep 3 gently.
- the fixing parts 7 a and 7 b are guided by a fixing member fixing wall 35, and are fixed to the fixing member of the base 2 in the X direction substantially perpendicular to the optical axis of the first optical fiber 4. Slide along the surface of the mounting member 5. By this slide movement, the distance between the fixed parts 7a and 7b of the sleep 3 on both sides and the side surface of the sleep 3 is adjusted to 0 to about 5 ⁇ m.
- the fixed parts 7a and 7b are fixed to the fixed member fixing wall 35 by welding using a plurality of first laser welds 10. After that, the fixed parts 7a and 7b and the first optical fiber 4 side are fixed by laser welding (for example, YAG welding fixed) by the second laser welded part 11.
- laser welding for example, YAG welding fixed
- the centering operation is performed, for example, while oscillating laser light from the laser diode 1 and making the laser light incident and propagate on the first optical fiber 4.
- the rear end of the first optical fiber 4 far from the laser diode 1 is centered and moved using the centering jig and the like.
- the position where the intensity of the laser light propagating through the first optical fiber 4 becomes the highest is defined as the centering position.
- the centering movement of the first optical fiber 4 is performed, for example, by attaching a stepping motor or the like to the centering jig, and measuring the intensity of the light propagating through the first optical fiber 4 and emitted by the light intensity detecting device. While monitoring, the amount of sleep 3 movement by the stepping motor may be adjusted by a person. Alternatively, both the light intensity detecting device and the driving device of the stepping motor may be connected to a computer, and the first optical fiber 4 may be automatically moved to the centering position by computer control.
- the laser light emitted from one end 31 of the laser diode 1 is received by the first optical fiber 4 as in the conventional example. Then, while returning the light of the set wavelength to the laser diode 1, the light emitted from the other end 30 of the laser diode 1 is transmitted to the second optical fiber. The light is received by 13 and transmitted through the second optical fiber 13. At this time, also in this embodiment, the temperature of the laser diode 1 is controlled by the thermo module 25 as in the conventional example.
- the first optical fiber 4 is fixed to the base 2 by the fixing members 6 and 7 at two points at an interval in the longitudinal direction of the fiber. Therefore, the first optical fiber 4 can be appropriately centered and fixed on the base 2 with respect to the laser diode 1, and the displacement of the first optical fiber 4 can be suppressed.
- the laser diode mounting member 8 of the base 2 that contacts the base side plate member 17 of the thermomodule 25 is the linear expansion coefficient of the fixed member mounting member 5 provided on the upper side.
- C u having a linear expansion coefficient between the copal and a 1 2 O 3 that material (in other words having a linear expansion coefficient in the range between the linear expansion coefficient of the base side plate member 1 7 of thermo-module 2 5 W 10). Therefore, compared with the set Keru conventional direct contact with the base 2 formed by copal on the base side plate member 1 7 consisting of A 1 2 O 3, can be alleviated deflection of the base 2 caused by environmental temperature changes .
- the first embodiment it is possible to suppress a decrease in the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 due to a change in the use environment temperature.
- CuW 10 forming the laser diode mounting member 8 has a good thermal conductivity, and has a thermal conductivity that is about 10 times that of Copal. Therefore, in the first embodiment, the heat generated by the laser diode 1 is efficiently transmitted to the thermomodule 25 via the heat sink 22 and the laser diode mounting member 8. Therefore, the laser module 1 can be efficiently cooled by the thermo module 25. Therefore, according to the first embodiment, the power consumption of the laser diode 1 and the thermomodule 25 can be reduced, and a semiconductor laser module with low power consumption can be obtained. Further, the radius of the thermo module 25 can be reduced.
- the linear expansion coefficient of the laser diode mounting member 8 and the bottom plate 26 of the package 27 are the same, when the operating temperature of the semiconductor laser module changes, The same stress is applied to both the upper and lower sides of the thermo module 25, and the bending of the thermo module 25 is canceled. Therefore, according to the first embodiment, it is possible to more effectively suppress a decrease in the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 due to a change in the use environment temperature.
- the second laser-welded portion 11 formed by laser welding with the package 3 is formed to have substantially the same height in the direction perpendicular to the package bottom plate 26. Therefore, even if a slight radius of the base 2 occurs, the radius does not cause the sleeve 3 to be largely displaced around the first laser welded portion 10 as a fulcrum. Therefore, it is possible to suppress the decrease in the optical coupling efficiency between the laser diode 1 and the optical fiber 2 even more efficiently.
- the optical fiber is attached to the fixing member mounting member 5 of the base 2. Along the lengthwise direction of 4, a radius preventing means 15 for preventing the base 2 from bending is provided. Therefore, the radius of the base 2 along the longitudinal direction of the optical fiber can be suppressed by the deflection preventing means 15.
- the light that is not emitted from the laser diode 1 emits the first light from the tip side of the first optical fiber 4.
- Light enters fiber 4.
- the displacement of the fixing position of the first optical fiber 4 by the fixing member 6 on the side closer to the laser diode 1 is the same as the displacement of the fixing position of the first optical fiber 4 by the fixing member 7 on the side farther from the laser diode 1.
- the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 is greatly reduced as compared with the deviation. Therefore, it is extremely important to suppress the radius of the base 2 in the area where the fixing member 6 is provided.
- the means for preventing deflection 15 is provided with both sides of an axis portion 33 connecting the one end 31 of the laser diode 1 and the light receiving end 32 of the laser beam in the first optical fiber 4, It is provided in a region including both sides of the fixing member 6 located on the side closer to the laser diode 1.
- the bending of the base 2 in the area where the axis portion 33 and the fixing member 6 are provided can be suppressed. Therefore, it is possible to effectively suppress the deflection of the base 2 in accordance with a change in the use environment temperature of the semiconductor laser module. Further, it is possible to extremely efficiently suppress a reduction in the optical coupling rate between the laser diode 1 and the first optical fiber 4.
- the bending preventing means 15 is provided with a fixing member mounting member 5 At least an upper wall from the bottom 16 of the first optical fiber 4 is formed in the longitudinal direction of the first optical fiber 4.
- the deflection preventing means 15 is formed as an integral member with the fixed member mounting member 5.
- the bending prevention means 15 is composed of a separate component from the fixing member mounting member 5, and the strength is reduced by the connection between the bending prevention means 15 and the fixing member mounting member 5 as in the case of bonding them. 1/09741
- the radius prevention means 15 has a simple configuration, facilitating manufacture, and can effectively suppress the deflection of the base 2. Further, according to the first embodiment, it is close to the laser diode 1
- the fixing member 6 for supporting and fixing the first optical fiber 4 on the side was formed as an integrated component having a holding portion 28 for holding the first optical fiber 4 from both sides. Therefore, since the connecting portion 49 connecting both sides of the holding portion 28 works as a deflection suppressing member, the bending of the base 2 in the X direction in FIGS. 2 and 5 can be further suppressed. . Therefore, according to the first embodiment, it is possible to suppress the decrease in the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 even more efficiently.
- the fixing member 7 for fixing the first optical fiber 4 farther from the laser diode 1 is a pair of the fixing members 7 fixed to the base 2 with the sleep 3 sandwiched from both sides.
- the fixed parts are 7a and 7b. Therefore, by aligning and fixing the first optical fiber 4 to the laser diode 1 using the above-described fixing method, the YAG welding of the fixed parts 7a and 7b and the first optical fiber 4 side is performed. The amount of movement of the first optical fiber 4 can be reduced. Therefore, when the first optical fiber 4 side is fixed by the fixing parts 7a and 7b, there is almost no displacement of the first optical fiber 4 (sleep 3).
- the alignment work involved in manufacturing the semiconductor laser module can be performed accurately, the work time can be extremely shortened, and the cost can be reduced accordingly.
- the fixing member mounting member 5 of the base 2 is farther from the thermomodule 25 than the optical fiber mounting end to be mounted and fixed on the thermomodule 25 (in the optical fiber longitudinal direction). ) I have. Therefore, the portion (projecting portion) not in contact with the thermo module 25 is not affected by the bending of the thermo module 25.
- the first optical fiber 4 is fixed to a fixing member mounting member 5 protruding from the thermomodule 25.
- the first optical fiber 4 becomes extremely insensitive to the bending of the thermo module 25, and the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 is reduced even more efficiently. Can be suppressed.
- the fixing member mounting member 5 is formed of Kovar.
- Kovar has almost the same linear expansion coefficient as that of the first optical fiber 4 and has excellent laser weldability. For this reason, it is possible to prevent the first optical fiber 4 from being adversely affected by a difference in linear expansion coefficient from the first optical fiber 4. Further, the laser welding workability with the sleep 3 is good, and the semiconductor laser module can be manufactured with a low manufacturing cost.
- the first optical fiber 4 Thus, the laser light of the laser diode 1 is fed back to the laser diode 1. Therefore, the distance between the end of the first optical fiber 4 (laser light receiving end 32) and one end 31 of the laser diode 1 can be made very short, and a semiconductor laser with small noise and good wavelength stability can be obtained. It can be a module.
- the first light The light reflected on the rear end face of the fiber 4 can be prevented from returning to the laser diode 1 side, and the output from the laser diode 1 can be stabilized.
- the collimating lens 51 and the focusing lens 57 are An isolator 53 is provided between them. Therefore, it is possible to reliably suppress the laser light from returning to the laser diode 1 from the second optical fiber 13 side, and to stabilize the output of the semiconductor laser module.
- the light transmission plate 55 provided on the incident end side of the second optical fiber 2 is disposed obliquely with respect to the optical axis of the light collection lens 57. Therefore, the laser beam reflected by the light transmitting plate 55 can be prevented from returning to the laser diode 1, and the output of the semiconductor laser module can be further stabilized.
- the laser diode 1 and the first optical fiber 4 can be optically coupled with high accuracy regardless of a change in the use environment temperature. A highly reliable semiconductor laser module with low noise, high output and good wavelength stability is obtained. Therefore, when a Raman amplifier is configured using the semiconductor laser module of the first embodiment as an excitation light source, this Raman amplifier can be an excellent Raman amplifier suitable for wavelength division multiplexing transmission.
- thermo-module 25 has a higher laser beam intensity than the first embodiment. It is formed so as to be long in the axial direction so that the end of the base 2 on the rear end side of the first optical fiber 4 does not protrude from the thermomodule 25.
- the entire lower surface of the laser diode mounting member 8 of the base 2 is brought into contact with the base side plate 17 of the thermomodule 25.
- the semiconductor laser module of the second embodiment has the entire lower surface of the laser diode mounting member 8 of the base 2 in contact with the thermomodule 25.
- the second embodiment can also provide substantially the same effects as those of the first embodiment.
- FIG. 10 is a perspective view showing a fixing structure of the first optical fiber 4 in the third embodiment of the semiconductor laser module according to the present invention. Also, a plan view of the fixed configuration is shown in FIG. FIG. 12 shows an exploded view of the configuration of the base 2 in the third embodiment.
- the third embodiment is substantially the same as the first embodiment. The difference between the third embodiment and the first embodiment is that the fixing member mounting member 5 and the laser diode mounting member constituting the base 2 are different. That is, the shape of FIG. 8 is configured as shown in FIG. 10 to FIG.
- the deflection preventing means 15 is formed by both the fixing member mounting member 5 and the laser diode mounting member 8. Both sides of the axis part 33 connecting the one end 31 of the laser diode 1 to the light receiving end 32 of the laser light in the first optical fiber 4 and the side part of the fixing member 6 located on the side close to the laser diode 1
- the radius prevention means 15 provided on both sides are constituted by a laser diode mounting member 8 and an integral member.
- three first laser welded portions 10 are provided at each of the fixing portions of the fixing member mounting member 5 and the fixing members 6 and 7.
- two fixing portions are provided at each of the above fixing portions.
- the number of laser welds 10 at each of the fixing portions is not particularly limited, and is appropriately set.
- the third embodiment can also provide substantially the same effects as the first embodiment.
- the present invention is not limited to each of the above embodiments, but can adopt various embodiments.
- the deflection preventing means 15 One side of the axis 1 33 connecting one end 3 1 of the diode 1 to the light receiving end 32 of the laser beam in the first optical fiber 4 and the side of the fixing member 6 located on the side close to the laser diode 1 It is formed in a region including both sides.
- the radius preventing means 15 is provided along at least one side of at least one side of the first optical fiber 4, at least along a part of the longitudinal direction of the optical fiber, and the radius of the base 2 is provided. The configuration may be such that only the configuration of the embodiment is prevented.
- the deflection preventing means 15 is provided at least on one side of the axis portion 33, the deflection of the base 2 in the axis portion 33 can be suppressed, and the laser diode 1 and the first A decrease in optical coupling efficiency with the optical fiber 4 can be efficiently suppressed. Therefore, it is preferable to provide the bending prevention means 15 at least on one side of the axis portion 33 (more preferably, on both sides of the axis portion 33).
- At least one of the fixing members which support the first optical fiber 4 at positions spaced from each other in the longitudinal direction of the first optical fiber 4. If the bending preventing means 15 is provided on one side of the fixing member located closest to the laser diode 1, the displacement of the support position of the first optical fiber 4 on the side near the laser diode 1 can be suppressed. . Therefore, it is possible to efficiently suppress a decrease in optical coupling efficiency between the laser diode 1 and the first optical fiber 4 due to the bending of the base 2. Therefore, it is preferable to provide the bending prevention means 15 on one side of the fixing member located closest to the laser diode 1.
- the bending preventing means 15 is configured by forming a wall standing upright from the bottom 16 of the fixing member mounting member 8 in the longitudinal direction of the optical fiber.
- the configuration of the deflection preventing means 15 is not particularly limited, and may be a configuration other than the embodiment.
- rod-shaped or square-shaped deflection prevention The means 15 may be provided by being fixedly adhered to the fixing member mounting member 5.
- the base 2 is configured to have the fixing member mounting member 5 and the laser diode mounting member 8.
- the configuration of the base 2 is not particularly limited to the embodiment.
- the base 2 may be formed of one member having a fixing member mounting portion for mounting the fixing members 6 and 7.
- the first optical fiber 4 is fixed by the fixing members 6 and 7 at two points with an interval in the longitudinal direction.
- the first optical fiber 4 can be properly aligned and fixed with respect to the laser diode 1 as compared with the conventional example.
- the first laser welded portion 10 and the second laser welded portion 11 are The height in the direction perpendicular to the package bottom plate 26 should be substantially the same. By doing so, it is possible to reduce the displacement of sleep 3 that occurs when base 2 curves, as compared with the conventional semiconductor laser module, and the light between laser diode 1 and first optical fiber 4 can be reduced. A reduction in coupling efficiency can be suppressed.
- the first optical fiber 4 has a configuration in which the fiber lens 14 has a spherical shape.
- the shape of the fiber lens 14 of the first optical fiber 4 is not particularly limited and may be another shape.
- the fiber lens 14 may be a wedge-shaped anamorphic (rotationally asymmetric) lens or may be a non-wedge-shaped anamorphic lens.
- 14a indicates a ridge line.
- a fiber lens 14 is formed on the distal end side of the first optical fiber 4 so that the first optical fiber 4 and the laser diode 1 are optically coupled to each other.
- a lens system similar to the collimator lens 51 or the condenser lens 56 is provided between the first optical fiber 4 and the laser diode 1 so that the first optical fiber 4 and the laser diode 1 are connected to each other. It is also possible to have a configuration in which the light is optically coupled.
- the collimator lens 51, the isolator 53, and the condenser lens 57 are provided between the second optical fiber 13 and the other end 30 of the laser diode 1. .
- the collimating lens 51 and the isolator 53 may not be used.
- a fiber lens 23 may be formed on the distal end side of the second optical fiber 13 as shown in FIG. 15, for example.
- the fiber lens 23 may be an anamorphic lens as shown in FIG. 15 or a conical shape like the fiber lens 14 of the first optical fiber 4 in each of the above embodiments. It can be a fiber lens.
- the fixing member mounting member 5 is provided so as to protrude from the rear end side of the first optical fiber 4 with respect to the laser diode mounting member 8, and the monitor photodiode 9 and the monitor photodiode are fixed to the protruding region.
- Section 39 is provided.
- the fixing member mounting member 5 is formed so as to protrude from the laser diode 'mounting member 8, and the monitor photo diode fixing portion 39 is separate from the base 2. May be provided.
- the fixing member mounting member 5 When the fixing member mounting member 5 is formed so as to protrude from the laser diode mounting member 8, the fixing members 6, 7 and the sleeve 3, the first optical fiber 4, which are mounted on the protruding portion, are attached to the laser diode mounting member. 8 can be suppressed from being affected. Therefore, it is possible to more efficiently suppress a decrease in the optical coupling efficiency between the laser diode 1 and the first optical fiber 4. If the protrusion length L of the fixing member mounting member 5 is too long, the bonding strength to the laser diode mounting member 8 will be insufficient. For this reason, there is a possibility that the adhesive may be peeled off when the protrusion is subjected to vibration. Therefore, it is preferable to set L ⁇ 5 mm.
- the fixing member mounting member 5 When the fixing member mounting member 5 is formed so as to protrude from the laser diode mounting member 8, as shown in FIG. 13, the fixing member mounting member 5 is located below the fixing member 6 located closest to the laser diode 1. By forming the reinforcing portion 20, vibration of the fixed member mounting member 5 in the Y direction in the figure can be suppressed.
- the contact area between the laser diode mounting member 8 and the fixing member mounting member 5 is increased. be able to . Therefore, both can be firmly fixed mechanically. Since the lower surface of the reinforcing portion 20 is not in contact with the thermo module 25, the reinforcing portion 20 is not affected by the bending of the thermo module 25.
- the shape of the reinforcing portion 20 is not particularly limited, and may be another shape. For example, it may have a rectangular parallelepiped shape as shown in FIG. 13 or may have a configuration having a tapered surface as shown by oblique line A in FIG.
- the fixing member mounting member 5 is formed so as to protrude from the laser diode mounting member 8
- the capturing portion 20 may not be provided.
- the fixing member 6 located closest to the laser diode 1 is formed as an integrated component having the holding portion 28 as shown in FIG. 5, but the structure of the fixing member 6 Is not particularly limited, and may have another configuration.
- the radius of the base 2 in the X direction can be suppressed.
- the laser diode mounting member 8 and the bottom plate 26 of the package 27 are made of the same material to have the same linear expansion coefficient, but the laser diode mounting member 8 and the bottom plate 2 of the package 27 are the same. As long as the coefficient of linear expansion of 6 is substantially the same, different materials may be used. It is preferable that the linear expansion coefficients of the laser diode mounting member 8 and the bottom plate 26 of the package 27 be substantially the same, but they may be different from each other.
- the lead terminal 60 is formed to protrude outward from the side wall of the package 27, but the lead terminal 60 may be formed to extend downward from the side wall of the package 27.
- the arrangement form and shape of the lead terminals 60 and the shape of the package 27 are arbitrarily designed.
- the semiconductor laser module of each embodiment is applied to a Raman amplifier.
- the semiconductor laser module of the present invention is not only used as an excitation light source for a Raman amplifier, but also used for other than a Raman amplifier. It is applied to various light sources for optical communication, such as an excitation light source for an amplifier and a signal light source.
- the semiconductor laser module and the Raman amplifier using the semiconductor laser module according to the present invention are suitable for use in optical communication and the like, which obtain a stable laser output while suppressing the influence of temperature change. I have.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Lasers (AREA)
- Semiconductor Lasers (AREA)
Abstract
A semiconductor laser module with high output, less noise, excellent stability of wavelength, and high reliability independent of a variation in working environment temperature, wherein a thermo module (25) having a base side plate material (17), a bottom plate side plate material (18), and Peltier elements (19) is disposed on the bottom plate (26) of a package (27), a base (2) is disposed on the thermo module (25), and a laser diode (1), a first optical fiber (4) allowing the laser beam radiated from the laser diode (1) to return to the laser diode (1), and fixing members (6, 7) for supporting the first optical fiber (4) at at least two longitudinal positions are disposed on the base (2), the base (2) is formed of a laser diode mounting member (8) on the thermo module (25) and a fixing member mounting member (5) installed thereon, and the laser diode mounting member (8) is formed of a material having a coefficient of linear expansion between the coefficient of linear expansion of the fixing member mounting member (5) and that of the base side plate material (17) of the thermo module (25).
Description
明 細 書 半導体レーザモジュールおよびその半導体レーザモジュールを用いた ラマンアンプ 技術分野 Description Semiconductor laser module and Raman amplifier using the semiconductor laser module
本発明は、 光通信分野に用いられる半導体レーザモジュールおよぴそ の半導体レーザモジュールを用いたラマンアンプに関するものである。 背景技術 The present invention relates to a semiconductor laser module used in the optical communication field and a Raman amplifier using the semiconductor laser module. Background art
情報社会の発展により、 通信情報量が飛躍的に増大する傾向にある。 このよ うな情報の増大化に伴い、 波長多重伝送 (W D M伝送) が通信分 野に広く受け入れられ、 今や波長多重伝送の時代を迎えている。 波長多 重光伝送は、 複数の波長の光を 1本の光ファイバで伝送できる。 そのた め、 大容量高速通信に適した光伝送方式である。 現在、 この伝送技術の 検討が盛んに行なわれている。 With the development of the information society, the amount of communication information tends to increase dramatically. With the increase of such information, wavelength multiplex transmission (WDM transmission) has been widely accepted in the communication field, and the era of wavelength multiplex transmission is now approaching. Wavelength-multiplexed optical transmission can transmit light of multiple wavelengths over a single optical fiber. Therefore, it is an optical transmission method suitable for large-capacity high-speed communication. Currently, studies on this transmission technology are being actively conducted.
波長多重伝送は、 今まで、 エルビウム ドープファイバ (E D F ) 型光 増幅器の利得帯域である波長 1 . 5 5 μ m帯で行なうことが検討されて きた。 最近においては、 波長多重伝送の帯域をさらに広帯域で行なえる ようにするために、 ラマン増幅に対する期待が高まっている。 Up to now, it has been studied to perform wavelength multiplex transmission in the 1.55-μm wavelength band, which is the gain band of an erbium-doped fiber (EDF) type optical amplifier. In recent years, expectations for Raman amplification have been increasing in order to make the bandwidth of wavelength multiplexing transmission even wider.
ラマン増幅は、 光ファイバに強い光 (繭起光) を入射したときに、 誘 導ラマン散乱により、 励起光波長から約 1 0 0 n m程度長波長側にゲイ ンが現われる現象を利用する。 すなわち、 ラマン増幅は、 励起光で励起 された状態の光ファイバに、 上記ゲインを有する波長域の信号光を入射 すると、 その信号光が増幅されるという現象を利用した光信号の増幅方 法である。
したがって、 ラマン増幅では E D Fを増幅媒体と しなくても、 既設の 光ファイバを増幅媒体と して使用することができる。 また、 任意の波長 において増幅利得を得ることができる。 このため、 ラマン増幅を利用す ることにより、 波長多重伝送における信号光のチャンネル数を増加させ ることができる。 Raman amplification uses the phenomenon that when strong light (cocoon-induced light) is incident on an optical fiber, gain appears about 100 nm longer than the excitation light wavelength due to induced Raman scattering. In other words, Raman amplification is an optical signal amplification method that utilizes the phenomenon that when signal light in the wavelength region having the above gain is incident on an optical fiber that has been pumped with pump light, the signal light is amplified. is there. Therefore, existing optical fibers can be used as an amplification medium in Raman amplification without using EDF as an amplification medium. In addition, an amplification gain can be obtained at an arbitrary wavelength. Therefore, the number of signal light channels in wavelength division multiplexing transmission can be increased by using Raman amplification.
ただし、 ラマン利得は、 (通常の既設の) 通信用光ファイバを使用し た場合、 1 0 0 m Wの励起光入力で約 3 d Bと小さレ、。 このため、 励起 光源 (ポンプレーザ) を複数設け、 これらを多重化することにより強い 励起光を得ることが必要となる。 一般に、 多重化により トータルで 5 0 0 m W〜 1 W程度の励起光強度とすることが検討されている。 However, the Raman gain is as small as about 3 dB with a 100 mW pump light input when using a (normally existing) communication optical fiber. For this reason, it is necessary to provide a plurality of excitation light sources (pump lasers) and obtain a strong excitation light by multiplexing these. In general, it has been studied to achieve a total excitation light intensity of about 500 mW to 1 W by multiplexing.
また、 ラマン増幅 (特に前方励起) では、 増幅の起こる過程が早く起 こるため、 ポンプ光強度が揺らいでいると、 ラマン利得が揺らぐことに なる。 このため、 ラマン利得の揺らぎがそのまま信号光強度の揺らぎと して現われてしまう。 したがって、 ラマン増幅を行う場合には、 励起光 のノイズを小さくすることが重要となる。 Also, in Raman amplification (especially forward pumping), the process of amplification occurs quickly, so if the pump light intensity fluctuates, the Raman gain fluctuates. For this reason, the fluctuation of the Raman gain appears directly as the fluctuation of the signal light intensity. Therefore, when performing Raman amplification, it is important to reduce the noise of the pump light.
以上の点から、 ラマン増幅を波長多重伝送用に適用するためには、 ラ マンアンプの励起光源を、 ノイズが小さく、 かつ、 例えば 3 0 0 m W以 上の高出力を有し、 さらに、 波長安定性の良好な光源とする必要がある 。 このよ うな特性を有する励起光源用の半導体レーザモジュールの開発 が非常に重要となっている。 In view of the above, in order to apply Raman amplification to wavelength division multiplexing transmission, the pump light source of the Raman amplifier must have low noise, high output of, for example, 300 mW or more, and It is necessary to provide a light source with good stability. The development of a semiconductor laser module having such characteristics for a pumping light source is very important.
ところで、 半導体レーザモジュールは、 半導体レーザ (レーザダイォ 一ド) からのレーザ光を光伝送側の光ファィバに光学的に結合させたデ パイスである。 上記のような励起光源と してのみならず、 信号光光源と しても適用され、 その構成も様々なものが提案されている。 発明の開示
本発明は、 信号光源や、 励起光源に適用可能な半導体レーザモジユー ルおよびその半導体レーザモジュールを用いたラマンアンプを提供する 。 本発明の 1つの側面の半導体レーザモジュールは以下のように構成さ れる ; Incidentally, a semiconductor laser module is a device in which laser light from a semiconductor laser (laser diode) is optically coupled to an optical fiber on the optical transmission side. It is applied not only as an excitation light source as described above but also as a signal light source, and various configurations have been proposed. Disclosure of the invention The present invention provides a semiconductor laser module applicable to a signal light source or an excitation light source, and a Raman amplifier using the semiconductor laser module. A semiconductor laser module according to one aspect of the present invention is configured as follows:
ベース ; Base;
前記ベース上に搭載されたレーザダイオード ; 前記ベース上に搭載され、 前記レーザダイォードに光結合さ れる第 1の光ファイバ ; A laser diode mounted on the base; a first optical fiber mounted on the base and optically coupled to the laser diode;
前記ベース上に搭載され、 前記第 1 の光ファイバの長手方向 に間隔を介して複数配置された固定部材 ; A plurality of fixing members mounted on the base and arranged at intervals in the longitudinal direction of the first optical fiber;
前記レーザダイォードの他端側に対向配置され該レーザダイ ォードの他端側から出射される光を受光して伝送する第 2の光ファイバ ここで、 前記第 1 の光ファイバはその先端側を前記レーザダ ィォードの一端側に向けて配置されており, A second optical fiber disposed opposite to the other end of the laser diode to receive and transmit light emitted from the other end of the laser diode, wherein the first optical fiber has It is located toward one end of the laser diode,
前記第 1の光ファイバは設定波長の光を反射する回折格子を 有して前記レーザダイォードの一端側から出射される光のうち前記設定 波長の光を前記レーザダイォードに帰還させる構成と成し, The first optical fiber has a diffraction grating that reflects light having a set wavelength, and is configured to return the light having the set wavelength among the lights emitted from one end of the laser diode to the laser diode. And
前記第 1の光ファイバは光フアイパ長手方向に間隔を介した 複数点位置で固定部材により前記ベースに固定されている。 The first optical fiber is fixed to the base by a fixing member at a plurality of positions at intervals in the longitudinal direction of the optical fiber.
また、 本発明の他の側面の半導体レーザモジュールは以下のように構 成される ; . A semiconductor laser module according to another aspect of the present invention is configured as follows;
ノ ッケージ ; Knockage;
前記パッケージ内に収容されたベース ; A base housed in the package;
前記ベース上に搭載されたレーザダイオード ; 前記ベース上に搭載され、 フアイバ先端側を前記レーザダイ
ォードの一端側に向けて配置されて、 前記レーザダイォードに光結合さ れる第 1の光ファイバ ; A laser diode mounted on the base; a laser diode mounted on the base; A first optical fiber disposed toward one end of the diode and optically coupled to the laser diode;
前記ベース上に搭載され、 前記第 1 の光ファイバをベースに 固定する固定部材 ; A fixing member mounted on the base, for fixing the first optical fiber to the base;
前記レーザダイォードの他端側に対向配置され、 前記レーザ ダイォードの他端側から出射される光を受光して伝送する第 2の光ファ ィバ ; A second optical fiber disposed opposite to the other end of the laser diode, for receiving and transmitting light emitted from the other end of the laser diode;
前記パッケージの底板上に配置され前記ベースを搭載してい るサーモモジユーノレ ; A thermocouple mounted on the bottom plate of the package and mounting the base;
ここで、 前記第 1の光ファイバは設定波長の光を反射する回 折格子を有して前記レーザダイォードの一端側から出射される光のうち 前記設定波長の光を前記レーザダイォードに帰還させる構成と成し, 前記サーモモジュールは、 前記ベースを搭載するベース側板 材と、 前記パッケージの底板上に載置される底板側板材と、 これら板材 間に挟持固定されるペルチェ素子とを有し, Here, the first optical fiber has a diffraction grating that reflects light of a set wavelength, and returns the light of the set wavelength among the lights emitted from one end side of the laser diode to the laser diode. The thermo module comprises: a base side plate on which the base is mounted; a bottom plate side plate placed on the bottom plate of the package; and a Peltier element sandwiched and fixed between these plate members. ,
前記ベースは、 前記サーモモジュールの上面に接触して載置 固定されて前記レーザダイォードを搭載するレーザダイォード搭載部材 と、 該レーザダイォード搭載部材に結合されて前記固定部材を搭載する 固定部材搭載部材とを有して構成され, A laser diode mounting member that is mounted and fixed in contact with an upper surface of the thermo module and mounts the laser diode; a fixing member that is coupled to the laser diode mounting member and mounts the fixing member; And a mounting member.
前記レーザダイォード搭載部材は前記固定部材搭載部材の線 膨張係数と前記サーモモジュールのベース側板材の線膨張係数との間の 範囲内の線膨張係数を有する材質により形成されている。 The laser diode mounting member is formed of a material having a linear expansion coefficient in a range between a linear expansion coefficient of the fixed member mounting member and a linear expansion coefficient of a base side plate of the thermomodule.
本発明のさらに他の形態の半導体レーザモジュールは以下のように構 成される ; A semiconductor laser module according to still another embodiment of the present invention is configured as follows:
パッケージ ; Package;
前記パッケージ内に収容されたベース ;
前記ベース上に搭載されたレーザダイォード ; A base housed in the package; A laser diode mounted on the base;
前記ベース上に搭載され、 ファイバ先端側を前記レーザダイ ォードの一端側に向けて配置されて、 前記レーザダイォードに光結合さ れる第 1の光ファイバ ; A first optical fiber mounted on the base, arranged with the fiber tip side toward one end of the laser diode, and optically coupled to the laser diode;
前記ベース上に搭載され、 前記第 1の光ファイバをベースに 固定する固定部材 ; A fixing member mounted on the base, for fixing the first optical fiber to the base;
前記レーザダイォードの他端側に対向配置され、 前記レーザ ダイォードの他端側から出射される光を受光して伝送する第 2の光ファ ィバ ; A second optical fiber disposed opposite to the other end of the laser diode, for receiving and transmitting light emitted from the other end of the laser diode;
前記パッケージの底板上に配置され前記ベースを搭載してい るサーモモジユーノレ ; A thermocouple mounted on the bottom plate of the package and mounting the base;
ここで、 前記第 1の光ファイバは設定波長の光を反射する回 折格子を有して前記レーザダイォードの一端側から出射される光のうち 前記設定波長の光を前記レーザダイォードに帰還させる構成と成し, 前記ベースは、 前記サーモモジュールの上面に接触して載置 固定されて前記レーザダイォードを搭載するレーザダイォード搭載部材 と、 該レーザダイォード搭載部材に結合されて前記固定部材を搭載する 固定部材搭載部材とを有して構成され, Here, the first optical fiber has a diffraction grating that reflects light of a set wavelength, and returns the light of the set wavelength among the lights emitted from one end side of the laser diode to the laser diode. A laser diode mounting member for mounting and fixing the laser diode in contact with an upper surface of the thermo module; and a base coupled to the laser diode mounting member for fixing the base. And a fixed member mounting member for mounting the member.
前記パッケージの底板は前記ベースのレーザダイォード塔載 部材と実質的に同一の線膨張係数を有する材質で形成されている。 The bottom plate of the package is formed of a material having substantially the same linear expansion coefficient as the laser diode tower mounting member of the base.
本発明のさらに他の形態の半導体レーザモジュールは以下のように構 成される ; A semiconductor laser module according to still another embodiment of the present invention is configured as follows:
ノヽ 、ソケ · ~ン : ヽ
前記パッケージ内に収容されたベース ; A base housed in the package;
前記ベース上に搭載されたレーザダイオード ; 前記ベース上に搭載され、 ファイバ先端側を前記レーザダイ
ォードの一端側に向けて配置されて、 前記レーザダイォードに光結合さ れる第 1の光ファイバ ; A laser diode mounted on the base; a laser diode mounted on the base; A first optical fiber disposed toward one end of the diode and optically coupled to the laser diode;
前記ベース上に搭載され、 前記第 1 の光ファイバを両側部が わから挟持してベースに固定する固定部材 ; A fixing member mounted on the base and fixing the first optical fiber to the base while holding the first optical fiber from both sides;
前記レーザダイォードの他端側に対向配置され、 前記レーザ ダイォードの他端側から出射される光を受光して伝送する第 2の光ファ ィバ ; A second optical fiber disposed opposite to the other end of the laser diode, for receiving and transmitting light emitted from the other end of the laser diode;
前記パッケージの底板上に配置され前記ベースを搭載してい るサーモモジユ ーノレ ; A thermoelectric unit mounted on the base plate of the package and mounting the base;
こ こで、 前記第 1の光ファイバは設定波長の光を反射する回 折格子を有して前記レーザダイォードの一端側から出射される光のうち 前記設定波長の光を前記レーザダイォードに帰還させる構成と成し, 前記ベースには、 前記固定部材を搭載する固定部材塔載部が 形成され, Here, the first optical fiber has a diffraction grating that reflects light of a set wavelength, and the light of the set wavelength among the lights emitted from one end of the laser diode is transmitted to the laser diode. The base is provided with a fixed member tower mounting portion for mounting the fixed member on the base.
前記固定部材搭載部と前記固定部材とは第 1 のレーザ溶接部 でレーザ溶接され, The fixing member mounting portion and the fixing member are laser-welded at a first laser welding portion.
前記第 1 の光ファイバ側と前記固定部材とは第 2のレーザ溶 接部でレーザ溶接され, The first optical fiber side and the fixing member are laser-welded at a second laser-welded portion,
前記第 1 のレーザ溶接部と、 前記第 2 のレーザ溶接部とは、 前記パッケージ底板に対し垂直な方向の高さが実質的に同じ高さである 本発明のさらに他の形態の半導体レーザモジュールは以下のように構 成される ; The first laser welded portion and the second laser welded portion are substantially the same height in a direction perpendicular to the package bottom plate. The semiconductor laser module according to still another embodiment of the present invention. Is composed as follows:
ベース ; Base;
前記ベース上に搭載されたレーザダイォード ; 前記ベース上に搭載され、 ファイバ先端側を前記レーザダイ
ォードの一端側に向けて配置されて、 前記レーザダイォードに光結合さ れる第 1の光ファイバ ; A laser diode mounted on the base; a laser die mounted on the base; A first optical fiber disposed toward one end of the diode and optically coupled to the laser diode;
前記ベース上に搭載され、 前記第 1 の光ファイバをベースに 固定する固定部材 ; A fixing member mounted on the base, for fixing the first optical fiber to the base;
前記レーザダイオー ドの他端側に対向配置され、 前記レーザ ダイォードの他端側から出射される光を受光して伝送する第 2の光ファ ィバ ; A second optical fiber disposed opposite to the other end of the laser diode, for receiving and transmitting light emitted from the other end of the laser diode;
前記ベースを搭載しているサーモモジュール ; ここで、 前記第 1の光ファイバは設定波長の光を反射する回 折格子を有して前記レーザダイォードの一端側から出射される光のうち 前記設定波長の光を前記レーザダイォードに帰還させる構成と成し, 前記ベースの少なく とも一部には前記第 1の光ファイバの側 部の片側又は両側の位置に、 前記第 1の光ファィバの長手方向に沿って A thermo module on which the base is mounted; wherein the first optical fiber has a diffraction grating that reflects light having a set wavelength, and the first optical fiber is set out of light emitted from one end of the laser diode. A wavelength of light is fed back to the laser diode, and at least a part of the base is located at one or both sides of the side of the first optical fiber, and the length of the first optical fiber is Along the direction
、 前記ベースの撓みを防止する撓み防止手段が設けられている。 A bending preventing means for preventing bending of the base is provided.
本発明のさらに他の形態の半導体レーザモジュールは以下のよ うに構 成される ; A semiconductor laser module according to still another embodiment of the present invention is configured as follows:
ベース ; Base;
前記ベース上に搭載されたレーザダイオード ; 前記ベース上に搭載され、 フアイパ先端側を前記レーザダイ ォードの一端側に向けて配置されて、 前記レーザダイォードに光結合さ れる第 1の光ファイバ ; A laser diode mounted on the base; a first optical fiber mounted on the base, arranged with a fiber tip end side toward one end of the laser diode, and optically coupled to the laser diode;
前記ベース上に搭載され、 前記第 1 の光ファイバを前記レー ザダイォードに近い位置とそれより もレーザダイォードから遠い位置で ベースに固定する固定部材; A fixing member mounted on the base and fixing the first optical fiber to the base at a position near the laser diode and at a position farther from the laser diode than the laser diode;
前記レーザダイォードの他端側に対向配置され、 前記レーザ ダイォードの他端側から出射される光を受光して伝送する第 2の光ファ
ィバ ; A second optical fiber disposed opposite to the other end of the laser diode, for receiving and transmitting light emitted from the other end of the laser diode; Iva;
前記ベースを搭載しているサーモモジュール ; ここで、 前記第 1の光ファイバは設定波長の光を反射する回 折格子を有して前記レーザダイォードの一端側から出射される光のうち 前記設定波長の光を前記レーザダイォードに帰還させる構成と成し, 前記第 1 の光ファイバと前記レーザダイォードとが調心され た状態で、 前記第 1の光フアイバは前記レーザダイォードに近い側と遠 い側のそれぞれの箇所において固定部材により両側から挟持固定されて おり, A thermo module on which the base is mounted; wherein the first optical fiber has a diffraction grating that reflects light having a set wavelength, and the first optical fiber is set out of light emitted from one end of the laser diode. Wavelength of light is fed back to the laser diode, wherein the first optical fiber and the laser diode are aligned, and the first optical fiber is on a side closer to the laser diode. Are fixed from both sides by fixing members at each point on the far side
前記レーザダイォードから遠い側の位置を固定する固定部材 は対の固定部品からなり, The fixing member for fixing the position far from the laser diode comprises a pair of fixing parts.
この対の固定部品は第 1の光フアイパを両側から挟んだ状態 で前記ベースに固定されており、 The fixed parts of this pair are fixed to the base with the first optical fiber sandwiched from both sides,
前記各固定部品と第 1 の光ファイバ側とがレーザ溶接固定さ れている。 図面の簡単な説明 The fixed parts and the first optical fiber side are fixed by laser welding. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係る半導体レーザモジュールの第 1実施例を示す 構成説明図であり、 第 2図は、 上記第 1実施例の半導体レーザモジユ ー ルのベース周辺部の構成を示す平面図であり、 第 3図は、 上記第 1実施 例におけるベースの構成を分解図により示す説明図であり、 第 4図は、 第 3図の A— A断面図であり、 第 5 A図, 5 B図は、 上記第 1実施例に 設けられている各固定部材の斜視構成を示す説明図である。 FIG. 1 is a configuration explanatory view showing a first embodiment of a semiconductor laser module according to the present invention, and FIG. 2 is a plan view showing a configuration of a peripheral portion of a base of the semiconductor laser module of the first embodiment. FIG. 3 is an exploded view showing the structure of the base in the first embodiment in an exploded view. FIG. 4 is a sectional view taken along line AA of FIG. 3, and FIGS. FIG. B is an explanatory diagram showing a perspective configuration of each fixing member provided in the first embodiment.
また、 第 6図は、 上記第 1実施例に設けられている第 1の光ファイバ のファイバレンズおよびその周辺構成を示す説明図であり、 第 7図は、 上記第 1実施例におけるレーザダイォードの配設領域を示す斜視説明図
であり、 第 8図は、 上記第 1実施例における第 2の光ファイバの配設部 側の断面構成を簡略化して示す説明図であり、 第 9図は、 本発明に係る 半導体レーザモジュールの第 2実施例の構成を、 パッケージを部分的に 省略して示す斜視図であり、 第 1 0図は、 本発明に係る半導体レーザモ ジュールの第 3実施例におけるレーザダイォードと第 1の光ファイバの 固定構成を示す斜視図であり、 第 1 1図は、 第 1 0図の平面図である。 FIG. 6 is an explanatory view showing a fiber lens of the first optical fiber provided in the first embodiment and its peripheral configuration, and FIG. 7 is a laser diode in the first embodiment. Perspective view showing the arrangement area of FIG. 8 is an explanatory diagram showing a simplified cross-sectional configuration on the side where the second optical fiber is disposed in the first embodiment, and FIG. 9 is a diagram showing a semiconductor laser module according to the present invention. FIG. 10 is a perspective view showing the configuration of the second embodiment with a package partially omitted. FIG. 10 shows a laser diode and a first optical fiber in a third embodiment of the semiconductor laser module according to the present invention. FIG. 11 is a perspective view showing the fixing configuration of FIG. 11, and FIG. 11 is a plan view of FIG.
さらに、 第 1 2図は、 上記第 3実施例におけるベースの構成を分解図 により示す説明図であり、 第 1 3図は、 本発明に係る半導体レーザモジ ユールの他の実施例におけるベース周辺構成を示す斜視図であり 、 第 1 4図は、 本発明に係る半導体レーザモジュールの他の実施例における第 1 の光ファイバのファイバレンズ構成の説明図であり、 第 1 5図は、 本 発明に係る半導体レーザモジュールの他の実施例における第 2の光ファ ィバの説明図であり、 第 1 6図は、 従来の半導体レーザモジュールの一 例を断面によ り示す説明図であり、 第 1 7 A図は、 ペルチヱ素子の構成 を示す図であり、 第 1 7 B図は、 半導体レーザモジュールの問題点を示 す説明図である。 発明を実施するための最良の形態 FIG. 12 is an exploded view showing the structure of the base in the third embodiment in an exploded view. FIG. 13 is a diagram showing the structure around the base in another embodiment of the semiconductor laser module according to the present invention. FIG. 14 is an explanatory view of a fiber lens structure of a first optical fiber in another embodiment of the semiconductor laser module according to the present invention. FIG. 15 is a perspective view of the semiconductor laser module according to the present invention. FIG. 16 is an explanatory view of a second optical fiber in another embodiment of the semiconductor laser module. FIG. 16 is an explanatory view showing an example of a conventional semiconductor laser module in a cross section. FIG. A is a diagram showing a configuration of the Peltier device, and FIG. 17B is an explanatory diagram showing a problem of the semiconductor laser module. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明 する。 説明の都合上、 本発明の実施例を説明する前に、 先ず、 従来例を 説明する。 第 1 6図には、 従来の半導体レーザモジュールの一例が示さ れている。 この半導体レーザモジュールは信号光光源用のものであり、 波長安定性を良好にするためにファイバグレーティング技術が採用され ている。 The present invention will be described in more detail with reference to the accompanying drawings. Prior to describing the embodiments of the present invention, for convenience of description, first, a conventional example will be described. FIG. 16 shows an example of a conventional semiconductor laser module. This semiconductor laser module is for a signal light source, and employs fiber grating technology to improve the wavelength stability.
この従来の半導体レーザモジュールは、 日本国特許出願の公開公報 ( 公開番号 : 2 0 0 0— 2 0 8 8 6 9 ) に提案されたものである。 第 1 6
図において、 ノ ッケージ 2 7内にサーモモジュール 2 5が設けられてい る。 このサーモモジュール 2 5上にベース 2が搭載されている。 ベース 上 2の L Dボンディング部 2 1上にヒートシンク 2 2を介して、 レーザ ダイオード 1が搭載固定されている。 This conventional semiconductor laser module has been proposed in a Japanese Patent Application Publication No. (publication number: 2000-2008). 1st 6 In the figure, a thermomodule 25 is provided in a knockout 27. The base 2 is mounted on the thermo module 25. The laser diode 1 is mounted and fixed on the LD bonding portion 2 1 of the base 2 via the heat sink 22.
前記ベース 2上には、 前記レーザダイォード 1に光結合される第 1 の 光ファイバ 4が搭載されている。 第 1の光ファイバ 4はその先端側に形 成されたファイバレンズ 1 4の先端側をレーザダイオード 1の一端 3 1 側に向けて配置されている。 第 1の光ファイバ 4は金属製のスリープ 3 に収容されている。 第 1の光ファイバ 4は、 前記ベース 2の上方に突出 する固定アーム 6 3に固定部 6 2でレーザ溶接固定されている。 On the base 2, a first optical fiber 4 optically coupled to the laser diode 1 is mounted. The first optical fiber 4 is disposed with the distal end of the fiber lens 14 formed on the distal end thereof facing the one end 31 of the laser diode 1. The first optical fiber 4 is housed in a metal sleep 3. The first optical fiber 4 is fixed by laser welding to a fixed arm 63 projecting above the base 2 at a fixed portion 62.
スリーブ 3 とベース 2をレーザ溶接により固定するので、 ベース 2は 、 熱伝導率が低く、 レーザ溶接性に富む金属製で形成されることが好ま しい。 また、 ベース 2上には第 1の光ファイバ 4を搭载することから、 ベース 2の材質は、 第 1の光ファイバ 4を形成するガラス系材料と線膨 張係数が近い材質であることが好ましい。 そのため、 従来の半導体レー ザモジュールにおいては、 ベース 2は、 コパール (商標) で知られてい る F e — N i — C o合金により形成されているのが一般的である。 Since the sleeve 3 and the base 2 are fixed by laser welding, the base 2 is preferably formed of a metal having low thermal conductivity and high laser weldability. In addition, since the first optical fiber 4 is mounted on the base 2, the material of the base 2 is preferably a material having a linear expansion coefficient close to that of the glass-based material forming the first optical fiber 4. . Therefore, in a conventional semiconductor laser module, the base 2 is generally formed of a Fe—Ni—Co alloy known as Copal (trademark).
前記第 1の光ファイバ 4は設定波長の光を反射する回折格子と しての グレーティング 1 2を有している。 第 1の光ファイバ 4は、 前記レーザ ダイォード 1の一端 3 1側から出射される光を、 ファイバレンズ 1 4を 介して受光する。 そして、 この受光した光のうち前記設定波長の光は反 射して前記レーザダイォード 1に帰還させる構成と成している。 The first optical fiber 4 has a grating 12 as a diffraction grating that reflects light of a set wavelength. The first optical fiber 4 receives light emitted from one end 31 of the laser diode 1 via a fiber lens 14. Then, of the received light, the light of the set wavelength is reflected and returned to the laser diode 1.
また、 第 1 の光ファイバ 4の後端側にはモユタフォ トダイオード 9が 対向配置されている。 モニタフォ トダイオード 9はモニタフォ トダイォ 一ド固定部 3 9に固定されている。 モニタフォ トダイォ ド固定部 3 9 はパッケージ 2 7内に固定配置されている。 モニタフォ トダイォード 9
は、 第 1 の光ファイバ 4を透過したレーザ光を受光することにより レー ザダイォード 1 の出力をモニタする。 Further, at the rear end side of the first optical fiber 4, a monitoring diode 9 is disposed to face. The monitor photodiode 9 is fixed to the monitor photodiode fixed part 39. The monitor photodiode fixing section 39 is fixedly arranged in the package 27. Monitor Photodiode 9 Monitors the output of the laser diode 1 by receiving the laser light transmitted through the first optical fiber 4.
前記レーザダイォード 1 の他端 3 0側には第 2 の光ファィパ 1 3が間 隔を介して対向配置されている。 第 2 の光ファイバ 1 3はレーザダイ才 ード 1の他端 3 0側から出射される光を受光して伝送する。 第 2の光フ アイパ 1 3の接続端面側はフエルール 5 9に揷入固定されており、 フエ ルール 5 9はパッケージ 2 7 の後端側に固定されている。 On the other end 30 side of the laser diode 1, a second optical fiber 13 is arranged to face the other via a space. The second optical fiber 13 receives the light emitted from the other end 30 of the laser diode 1 and transmits it. The connection end face of the second optical fiber 13 is fixedly inserted into a ferrule 59, and the ferrule 59 is fixed to the rear end of the package 27.
レーザダイオード 1の他端 3 0 と第 2の光ファイバ 1 3 との間には、 レーザダイオード 1側から順に、 コリメートレンズ 5 1、 光透過板 5 5 、 集光レンズ 5 7が互いに間隔を介して配置されている。 コリメ一ト レ ンズ 5 1は前記ベース 2に固定されている。 集光レンズ 5 7はレンズホ ルダ 5 6に固定されてパッケージ 2 7に固定されている。 Between the other end 30 of the laser diode 1 and the second optical fiber 13, a collimating lens 51, a light transmitting plate 55, and a condensing lens 57 are spaced from each other in this order from the laser diode 1 side. It is arranged. The collimator lens 51 is fixed to the base 2. The condenser lens 57 is fixed to the lens holder 56 and is fixed to the package 27.
このような従来の半導体レーザモジュールにおいて、 通常、 前記サー モモジュール 2 5は前記パッケージ 2 7の底板 2 6上に搭載されている 。 パッケージ 2 7の底板 2 6は C u— W合金の C u W 2 0 (重量比は C uが 2 0 %、 Wが 8 0 % ) 等により形成されている。 また、 通常、 第 1 7 A図に示すように、 サーモモジュール 2 5は、 ベース側板材 1 7 と、 底板側板材 1 8 と、 これら板材 1 7 , 1 8間に挟持固定されるペルチェ 素子 1 9 とを有している。 サーモモジュール 2 5のベース側扳材 1 7 と 底板側板材 1 8は共に A 1 2 O 3により形成されている。 In such a conventional semiconductor laser module, the thermomodule 25 is usually mounted on the bottom plate 26 of the package 27. The bottom plate 26 of the package 27 is made of Cu—W alloy Cu W 20 (weight ratio of Cu is 20% and W is 80%). In addition, as shown in FIG. 17A, the thermo module 25 usually includes a base plate 17, a bottom plate 18, and a Peltier element 1 sandwiched and fixed between the plates 17, 18. 9 Is formed by both the base side扳材1 7 and the bottom plate side plate member 1 8 of the thermo-module 2 5 A 1 2 O 3.
上記半導体レーザモジュールにおいて、 第 1 の光ファイバ 4 と第 2 の 光ファイバ 1 3は、 いずれもレーザダイオード 1 と調心されている。 そ して、 レーザダイオード 1 の一端 3 1側から出射されたレーザ光は第 1 の光ファイバ 4で受光される。 また、 前記設定波長の光はグレーティン グ 1 2で反射してレーザダイォード 1に帰還しながら、 レーザダイォー ド 1 の他端 3 0側から出射する。 この出射光は第 2 の光ファイバ 1 3に
よって受光され、 第 2の光ファイバ 1 3内を伝送し、 所望の用途に供さ れる。 In the semiconductor laser module, the first optical fiber 4 and the second optical fiber 13 are both centered on the laser diode 1. Then, the laser light emitted from one end 31 of the laser diode 1 is received by the first optical fiber 4. The light having the set wavelength is reflected from the grating 12 and returns to the laser diode 1, and is emitted from the other end 30 of the laser diode 1. This output light is transmitted to the second optical fiber 13. Thus, the light is received, transmitted through the second optical fiber 13, and provided for a desired use.
上記のように、 レーザダイォード 1の一端 3 1側から出射されたレー ザ光のうち設定波長の光をレーザダイォード 1に帰還しながらレーザ光 発振を行なう構成にすると、 第 1の光ファイバ 4の先端とレーザダイォ ード 1 との間隔を小さくすることができる。 このため、 半導体レーザモ ジュールの R I N (R e l a t i v e I n t e n s i t y N o i s e ) 特性の良い周波数領域を広げることができる。 As described above, when the laser light is oscillated while returning the set wavelength light of the laser light emitted from one end 31 of the laser diode 1 to the laser diode 1, the first optical fiber The distance between the tip of 4 and the laser diode 1 can be reduced. For this reason, it is possible to widen the frequency range in which the semiconductor laser module has a good RIN (Relative Inte nite n Si ty N o i s e) characteristic.
また、 半導体レーザモジュールにおいて、 レーザダイオード 1を駆動 するために電流を流すと、 発熱により レーザダイォード 1の温度が上昇 する。 この温度上昇はレーザダイオード 1の発振波長と光出力の変化を 引き起こす原因となる。 このため、 半導体レーザモジュールの使用時に は、 レーザダイオード 1の近傍に固定されたサーミ スタ (図示せず) に より レーザダイオード 1 の温度を測定する。 この測定値に基づいて、 サ 一モモジュール 2 5に流す電流を制御することによってレーザダイォー ド 1の温度を一定に保つ制御が行われる。 Also, in a semiconductor laser module, when a current is applied to drive the laser diode 1, the temperature of the laser diode 1 rises due to heat generation. This temperature rise causes a change in the oscillation wavelength and light output of the laser diode 1. For this reason, when using the semiconductor laser module, the temperature of the laser diode 1 is measured by a thermistor (not shown) fixed near the laser diode 1. Based on the measured value, the current flowing through the thermo module 25 is controlled to control the temperature of the laser diode 1 to be constant.
上記構成の半導体レーザモジュールは、 前記したように、 レーザダイ ォード 1からの出射光を第 1の光ファイバ 4により受光し、 この光のう ち設定波長の光をグレーティング 1 2で反射してレーザダイォード 1に 帰還させる構成である。 そのために、 第 1の光ファイバ 4がレーザダイ ォード 1に対して位置ずれを起すと、 レーザダイオード 1 と第 1の光フ アイパ 4 との光結合効率が大きく低下してしまう。 As described above, the semiconductor laser module having the above configuration receives the light emitted from the laser diode 1 by the first optical fiber 4, and reflects the light having a set wavelength out of the light by the grating 12. It is a configuration to return to the code 1. Therefore, when the first optical fiber 4 is displaced with respect to the laser diode 1, the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 is greatly reduced.
上記従来の半導体レーザモジュールは、 第 1の光ファイバ 4をその長 手方向の 1点の位置で固定部 6 2で挟持固定する構成である。 そのため に、 第 1の光ファイバ 4を適切に調心固定することが困難である。 それ 故、 第 1の光ファイバ 4を固定する際に、 レーザダイオード 1に対して
位置ずれが生じ易いといった問題があった。 The above-described conventional semiconductor laser module has a configuration in which the first optical fiber 4 is sandwiched and fixed by the fixing portion 62 at one position in the longitudinal direction. Therefore, it is difficult to properly center and fix the first optical fiber 4. Therefore, when fixing the first optical fiber 4, There has been a problem that displacement is likely to occur.
また、 上記のよ うな従来の半導体レーザモジュールは、 通常、 ベース 2をコパールにより形成し、 サーモモジュールのベース側板材 1 7を A 1 2 O 3により形成している。 この構成ではベース 2 , ベース側板材 1 7 の線膨張係数が大きく異なる。 そうすると、 半導体レーザモジュール 使用時のサーモモジュール 2 5の作動に伴って、 第 1 7 B図に示すよ う にベース 2が撓む。 この撓みにとって、 レーザダイオード 1 と第 1 の光 ファイバ 4 とが調心位置からずれ、 レーザダイォード 1 と第 1の光フ了 ィバ 4 との光結合効率が低下してしまう といった問題が生じた。 Further, the above good Una conventional semiconductor laser module, usually, the base 2 is formed by copal, the base side plate member 1 7 of thermo-module is formed by A 1 2 O 3. In this configuration, the base 2 and the base side plate 17 have significantly different linear expansion coefficients. Then, the base 2 bends as shown in FIG. 17B with the operation of the thermo module 25 when the semiconductor laser module is used. This bending causes a problem that the laser diode 1 and the first optical fiber 4 are displaced from the centering position, and the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 is reduced. Was.
また、 例えば半導体レーザモジュールを使用せずに 7 5〜 8 5 °Cの高 温環境下で放置したときにも、 上記ベース 2 とサーモモジュール 2 5 の ベース側板材 1 7 との線膨張係数の違いによつて同様にベース 2が橈む 。 そのため、 レーザダイオード 1 と第 1の光ファイバ 4 との光結合がず れ、 半導体レーザモジュールを使用しょう と したときに、 完全に元の状 態に戻らずに光結合のずれが残ったままとなってしまう。 Also, for example, when the semiconductor laser module is left in a high temperature environment of 75 to 85 ° C without using the semiconductor laser module, the linear expansion coefficient between the base 2 and the base side plate 17 of the thermomodule 25 also increases. The difference also causes base 2 to bow. As a result, the optical coupling between the laser diode 1 and the first optical fiber 4 is deviated, and when the semiconductor laser module is used, the optical coupling does not completely return to the original state, and the optical coupling shift remains. turn into.
特に、 従来の半導体レーザモジュールにおいては、 ス リーブ 3の固定 部 6 2は、 ベース 2の上側に突出形成された固定アーム 6 3 の先端側で ある。 つまり、 固定部 6 2は、 ベース 2の底部からの高さが高い位置に 形成されているために、 ベース 2の撓みが生じたときにス リーブ 3が大 きく位置ずれする。 そのことにより、 レーザダイオード 1 と第 1の光フ アイパ 4との光結合効率の低下の割合が大きかった。 In particular, in the conventional semiconductor laser module, the fixing portion 62 of the sleeve 3 is on the tip side of the fixing arm 63 formed to protrude above the base 2. That is, since the fixed portion 62 is formed at a position higher than the bottom of the base 2, the sleeve 3 is largely displaced when the base 2 is bent. As a result, the rate of decrease in the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 was large.
そして、 上記のように、 半導体レーザモジュールの使用時および放置 時の使用環境温度変化に応じてレーザダイオード 1 と第 1の光ファイバ 4 との光結合効率が低下すると、 第 1の光ファイバ 4によって受光して レーザダイオード 1に帰還する光の強度が小さく なる。 帰還光の強度が 小さく なると、 半導体レーザモジュールから高出力で波長が安定した光
を出力して伝送させることが困難となる。 Then, as described above, when the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 decreases in accordance with a change in the use environment temperature when the semiconductor laser module is used and when it is left unattended, the first optical fiber 4 The intensity of the light received and returned to the laser diode 1 decreases. When the intensity of the return light decreases, the light with high output and stable wavelength from the semiconductor laser module Output and transmission.
したがって、 上記従来の半導体レーザモジユールの構成を例えば信号 光源や前記ラマン増幅用の励起光源として適用しょ う とすると、 波長が 安定した必要な出力を得ることができない。 そのため、 波長多重伝送シ ステムなどの構築が困難となる。 Therefore, if the configuration of the above-described conventional semiconductor laser module is applied to, for example, a signal light source or a pump light source for Raman amplification, a required output having a stable wavelength cannot be obtained. This makes it difficult to construct a wavelength division multiplexing transmission system.
本発明は 1 つの様相において、 レーザダイオードと該レーザダイォー ドからのレーザ光を受けて設定波長の光をレーザダイォードに帰還させ る光ファイバとを、 温度変化によらず高精度で光結合することができる 信頼性の高い半導体レーザモジュールを提供する。 また、 本発明は別の 側面において、 上記のような半導体レーザモジュールを用いることによ り、 ノイズが小さく、 高出力で波長安定性の良好な励起光源となる、 波 長多重伝送に好適なラマンアンプを提供する。 One aspect of the present invention is to optically couple a laser diode and an optical fiber that receives laser light from the laser diode and returns light of a set wavelength to the laser diode with high accuracy regardless of a temperature change. A highly reliable semiconductor laser module is provided. In another aspect, the present invention provides a pumping light source having low noise, high power, and good wavelength stability, which is suitable for wavelength multiplex transmission by using the semiconductor laser module as described above. Provide an amplifier.
以下、 本発明の実施例を図面に基づいて説明する。 なお、 以下の実施 例の説明において、 従来例と同一名称部分には同一符号を付し、 その重 複説明は省略又は簡略化する。 第 1図には、 本発明に係る半導体レーザ モジュールの第 1実施例の構成が斜視図により示されている。 なお、 こ の実施例の半導体レーザモジュールも従来例のものと同様にレーザダイ ォード 1等を収容するパッケージ 2 7を有している。 第 1図においては パッケージ 2 7を部分的に省略した状態で示している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the embodiments, the same reference numerals are given to the same parts as those in the conventional example, and the overlapping description is omitted or simplified. FIG. 1 is a perspective view showing the configuration of a first embodiment of the semiconductor laser module according to the present invention. The semiconductor laser module of this embodiment also has a package 27 for accommodating the laser diode 1 and the like as in the conventional example. In FIG. 1, the package 27 is shown in a partially omitted state.
第 1図に示すように、 第 1実施例の半導体レーザモジュールは、 パッ ケージ 2 7内に設けられたサーモモジュール 2 5、 ベース 2、 レーザダ ィオード 1、 第 1 の光ファイバ 4等を有して構成されている。 パッケ一 ジ 2 7の側壁には複数のリード端子 6 0が互いに間隔を介して配設され ており、 リー ド端子 6 0はパッケージ 2 7 の外側に向けて突出形成され ている。 As shown in FIG. 1, the semiconductor laser module of the first embodiment includes a thermo module 25, a base 2, a laser diode 1, a first optical fiber 4, and the like provided in a package 27. It is configured. A plurality of lead terminals 60 are arranged on the side wall of the package 27 with a space therebetween, and the lead terminals 60 are formed so as to protrude toward the outside of the package 27.
第 1実施例が従来例と異なる点は、 ベ一ス 2の構成および第 1の光フ
„ハ / ra The first embodiment is different from the conventional example in the configuration of the base 2 and the first optical fiber. „Ha / ra
PCT/JP01/09741 PCT / JP01 / 09741
15 アイパ 4をベース 2へ固定する構成である。 これらの従来例とは異なる 構成により、 第 1実施例の半導体レーザモジュールは、 使用環境温度変 化によらずレーザダイォード 1 と第 1の光ファイバ 4を高精度で光結合 することができる信頼性の高い半導体レーザモジュールと成している。 第 1実施例においてレーザダイォード 1を直接又は間接に搭載するべ ース 2は、 レーザダイオード 1を搭載するレーザダイォード搭載部材 8 と、 レーザダイォード搭載部材 8上に設けられる固定部材搭載部材 5 と を有している。 固定部材搭載部材 5は固定部材 6 , 7を搭載するもので あり、 固定部材 6 , 7は互いに光ファイバ長手方向に間隔を介して配置 されている。 15 In this configuration, the eyepiece 4 is fixed to the base 2. With a configuration different from these conventional examples, the semiconductor laser module of the first embodiment has a reliable optical coupling between the laser diode 1 and the first optical fiber 4 with high accuracy irrespective of changes in the use environment temperature. It is a semiconductor laser module with high performance. In the first embodiment, the base 2 on which the laser diode 1 is directly or indirectly mounted is a laser diode mounting member 8 on which the laser diode 1 is mounted, and a fixing member mounting member provided on the laser diode mounting member 8. 5 and. The fixing member mounting member 5 mounts the fixing members 6 and 7, and the fixing members 6 and 7 are arranged at an interval in the longitudinal direction of the optical fiber.
第 1 の光ファイバ 4は光ファイバ保持部材としての金属製スリーブ 3 内に揷通固定されている。 固定部材 6 , 7は、 ス リープ 3を支持固定す ることで、 第 1の光ファイバ 4をベース 2に固定している。 第 1の光フ アイパ 4のコアには第 1 6図に示されたものと同様のグレーティングが 形成されている。 The first optical fiber 4 is fixed through a metal sleeve 3 as an optical fiber holding member. The fixing members 6 and 7 fix the first optical fiber 4 to the base 2 by supporting and fixing the sleep 3. The same grating as that shown in FIG. 16 is formed in the core of the first optical fiber 4.
第 1実施例は、 上記のよ うに、 第 1の光ファイバ 4を光ファイバ長手 方向に間隔を介した複数点 (ここでは 2点) の位置で固定部材 6 , 7に よりベース 2に固定している。 この第 1 の光ファイバ 4はレーザダイォ ード 1に調心された状態で、 固定部材 6 , 7により両側から挟持固定さ れている。 In the first embodiment, as described above, the first optical fiber 4 is fixed to the base 2 by the fixing members 6 and 7 at a plurality of points (here, two points) spaced apart in the longitudinal direction of the optical fiber. ing. The first optical fiber 4 is clamped and fixed from both sides by fixing members 6 and 7 in a state where the first optical fiber 4 is aligned with the laser diode 1.
ベース 2はサーモモジュール 2 5上に搭載されている。 ベース 2 のレ 一ザダイォード搭載部材 8がサーモモジュール 2 5上に接触して配置さ れている。 また、 第 1図、 第 3図に示すように、 レーザダイオード搭載 部材 8 の上部側には該レーザダイォード搭載部材 8 と一体部材で構成さ れる L Dボンディング部 2 1が設けられている。 この L Dボンディング 部 2 1はレーザダイォード搭載領域と成している。 固定部材搭載部材 5
はレーザダイォード搭載部材 8のレーザダイォード搭載領域を避けた位 置に配置されている。 Base 2 is mounted on thermo module 25. The laser diode mounting member 8 of the base 2 is arranged in contact with the thermo module 25. Also, as shown in FIGS. 1 and 3, an LD bonding portion 21 which is formed integrally with the laser diode mounting member 8 is provided above the laser diode mounting member 8. The LD bonding part 21 is a laser diode mounting area. Fixing member mounting member 5 The laser diode mounting member 8 is arranged at a position avoiding the laser diode mounting area of the laser diode mounting member 8.
第 3図は、 ベース 2を分解状態で示す斜視図であり、 同図にハツチン グを付して示す銀口ゥ接合部 4 6の位置で、 固定部材搭載部材 5がレー ザダイォード搭載部材 8上に連結固定されている。 FIG. 3 is a perspective view showing the base 2 in an exploded state, and the fixing member mounting member 5 is mounted on the laser diode mounting member 8 at the position of the silver mouth ゥ joint 46 shown by hatching in FIG. Is connected and fixed.
上記の如くベース 2は固定部材搭載部材 5 とレーザダイォード搭載部 材 8 とを有する構成と した。 そして、 レーザダイオード搭載部材 8は、 前記固定部材搭載部材 5の線膨張係数と前記サーモモジュール 2 5のべ ース側板材 1 7の線膨張係数との間の範囲内の線膨張係数を有する材質 により形成している。 具体的には、 第 1実施例において、 固定部材搭載 部材 5はコパールにより形成し、 レーザダイォード搭載部材 8は C u— W合金の C uW I O (重量比は C uが 1 0 %、 Wが 9 0 %) により形成 している。 As described above, the base 2 is configured to include the fixing member mounting member 5 and the laser diode mounting member 8. The laser diode mounting member 8 is made of a material having a linear expansion coefficient in a range between the linear expansion coefficient of the fixed member mounting member 5 and the linear expansion coefficient of the base side plate 17 of the thermomodule 25. It is formed by. Specifically, in the first embodiment, the fixing member mounting member 5 is formed of copearl, and the laser diode mounting member 8 is a Cu—W alloy CuWIO (weight ratio of Cu is 10%, W 90%).
C u W 1 0は、 熱伝導率が 1 8 0〜 2 0 0 (W/m · K) であり、 コ パールの熱伝導率である 1 7〜 1 8 (W/m - K) の約 1 0倍の熱伝導 率を有している。 CuW10 has a thermal conductivity of 180 to 200 (W / mK), which is about 17 to 18 (W / m-K), which is the thermal conductivity of Copal. It has 10 times the thermal conductivity.
この第 1実施例では、 パッケージ 2 7の底板 2 6はベース 2のレーザ ダイオード搭載部材 8 と同一材質により形成している。 それにより、 底 板 2 6の線膨張係数とレーザダイォード搭載部材 8の線膨張係数を同一 と している。 In the first embodiment, the bottom plate 26 of the package 27 is formed of the same material as the laser diode mounting member 8 of the base 2. Thereby, the linear expansion coefficient of the bottom plate 26 and the linear expansion coefficient of the laser diode mounting member 8 are made the same.
第 1図、 第 2図に示すように、 固定部材搭载部と しての固定部材搭載 部材 5 と固定部材 6, 7 とは第 1のレーザ溶接部 1 0においてレーザ溶 接されている。 前記固定部材 6 , 7 と前記ス リーブ 3 とは第 2のレーザ 溶接部 1 1 ( 1 1 a, l i b ) においてレーザ溶接されている。 そして 、 前記パッケージ底板 2 6に対し垂直な方向の、 第 1のレーザ溶接部 1 0 と第 2のレーザ溶接部 1 1 の高さを略同じ高さにしている。
前記レーザ溶接は、 Y A Gレーザ等により行われる。 パッケージ底板 2 6に対し垂直な方向の、 第 1のレーザ溶接部 1 0 と第 2のレーザ溶接 部 1 1の高さの差は、 ± 5 0 0 ΠΙ以内、 好ましく は ± 5 0 μ πι以内に している。 As shown in FIGS. 1 and 2, the fixing member mounting member 5 as the fixing member mounting portion and the fixing members 6 and 7 are laser-welded at a first laser welded portion 10. The fixing members 6, 7 and the sleeve 3 are laser-welded at a second laser-welded portion 11 (11a, lib). The height of the first laser welded portion 10 and the height of the second laser welded portion 11 in a direction perpendicular to the package bottom plate 26 are substantially the same. The laser welding is performed by a YAG laser or the like. The difference between the height of the first laser welded portion 10 and the height of the second laser welded portion 11 in the direction perpendicular to the package bottom plate 26 is within ± 500 mm, preferably within ± 50 μπι. I have to.
また、 前記固定部材 6側の第 1 2図のレーザ溶接部 1 0, 1 1の高さ は第 1 の光ファィパ 4 のレーザ光受光端 3 2 の位置および光軸中心位置 と同じ高さになっている。 第 1の光ファイバ 4のファイバレンズ 1 4は 、 第 6図に示す先球形状と成しており、 その先端がレーザ光受光端 3 2 である。 このレーザ光受光端 3 2は、 レーザダイオード 1 の活性層 (図 示せず) の平面と同一の高さ位置に配置されている。 The height of the laser welded portions 10 and 11 in FIG. 12 on the fixing member 6 side is the same as the position of the laser light receiving end 32 of the first optical fiber 4 and the center position of the optical axis. Has become. The fiber lens 14 of the first optical fiber 4 has a spherical shape shown in FIG. 6, and the tip is a laser beam receiving end 32. The laser light receiving end 32 is arranged at the same height position as the plane of the active layer (not shown) of the laser diode 1.
この例では、 固定部材搭載部材 5 と固定部材 6 , 7をレーザ溶接する 際、 該固定部材搭載部材 5の上面と固定部材 6, 7 の上面とが面一 (土 1 0 0 μ m以内) となるようにする。 そうれば、 製品ごとにレーザ溶接 部 1 0の高さを容易に均一にすることができるので好ましい。 In this example, when the fixing member mounting member 5 and the fixing members 6 and 7 are laser-welded, the upper surface of the fixing member mounting member 5 and the upper surfaces of the fixing members 6 and 7 are flush (within 100 μm of soil). So that This is preferable because the height of the laser welded portion 10 can be easily made uniform for each product.
この実施例では、 第 2図、 第 4図に示すように、 ベース 2の固定部材 搭載部材 5に撓み防止手段 1 5を形成している。 橈み防止手段 1 5は、 第 1 の光ファィバ 4の側部両側に、 第 1 の光ファィパ 4の長手方向に沿 つて形成されている。 この橈み防止手段 1 5はベース 2の撓みを防止す る。 この撓み防止手段 1 5は、 第 4図に示すように、 固定部材搭載部材 5 の底部 1 6から少なく とも上側に立設された壁部を第 1 の光ファイバ 4の長手方向に形成したものである。 In this embodiment, as shown in FIGS. 2 and 4, a bending preventing means 15 is formed on the fixing member mounting member 5 of the base 2. The radius prevention means 15 is formed on both sides of the first optical fiber 4 along the longitudinal direction of the first optical fiber 4. The radius preventing means 15 prevents the base 2 from bending. As shown in FIG. 4, the bending preventing means 15 is formed by forming a wall portion which is provided at least upward from the bottom 16 of the fixing member mounting member 5 in the longitudinal direction of the first optical fiber 4. It is.
第 2図に示すように、 撓み防止手段 1 5は固定部材搭載部材 5 の長手 方向全領域 (同図の破線枠 B内の領域) に設けられている。 撓み防止手 段 1 5は、 レーザダイオード 1 の,一端 3 1 のレーザ光出射端面と第 1 の 光ファイバ 4におけるレーザ光の受光端 3 2を結ぶ軸線部 3 3の側部両 側と、 レーザダイォード 1に近い側に位置する固定部材 6 の側部両側に
も設けられている。 撓み防止手段 1 5の先端部はレーザダイォ一ド搭載 部材 8の L Dボンディング部 2 1の配設領域まで伸設されている。 As shown in FIG. 2, the deflection preventing means 15 is provided in the entire area in the longitudinal direction of the fixing member mounting member 5 (the area within the broken line frame B in FIG. 2). The bending prevention means 15 is provided on both sides of the axis part 33 connecting the laser light emitting end face of one end 31 of the laser diode 1 and the laser light receiving end 32 of the first optical fiber 4, and the laser. On both sides of the fixing member 6 located on the side close to the diode 1. Is also provided. The tip of the deflection preventing means 15 extends to the area where the LD bonding part 21 of the laser diode mounting member 8 is provided.
第 1実施例では、 撓み防止手段 1 5は固定部材搭載部材 5 と一体部材 により形成されている。 第 2·図、 第 3図に示すよ うに、 撓み防止手段 1 5を成す壁部と固定部材固定用壁部 3 5によつて前記固定部材 6 , 7 の 嵌合凹部 3 7 a , 3 7 bが形成されている。 固定部材 6 , 7は対応する 嵌合凹部 3 7 a , 3 7 bに嵌合した状態で、 第 1のレーザ溶接部 1 0に より固定部材搭載部材 5に溶接固定されている。 In the first embodiment, the deflection preventing means 15 is formed of a fixed member mounting member 5 and an integral member. 2 and 3, as shown in FIGS. 2 and 3, the walls constituting the deflection preventing means 15 and the fixing member fixing wall 35 form the fitting recesses 37a, 37 of the fixing members 6, 7 respectively. b is formed. The fixing members 6, 7 are welded and fixed to the fixing member mounting member 5 by the first laser welded portion 10 in a state of being fitted to the corresponding fitting concave portions 37a, 37b.
なお、 第 3図に示すように、 例えば固定部材 6 , 7の嵌合凹部 3 7 a , 3 7 b とスリープ 3の揷入部 3 8を刳り貫いた形状に成形することに より、 撓み防止手段 1 5を成す壁部と固定部材固定用壁部 3 5を一体的 に形成した固定部材搭載部材 5が得られる。 As shown in FIG. 3, for example, by forming the fitting recesses 37a, 37b of the fixing members 6, 7 and the insertion portion 38 of the sleep 3 into a hollow shape, the deflection preventing means is formed. Thus, the fixing member mounting member 5 in which the wall portion 15 and the fixing member fixing wall portion 35 are integrally formed is obtained.
固定部材 6, 7のうち、 レーザダイオード 1に近い側に位置する固定 部材 6は、 第 5 A , 5 B図に示すように、 第 1の光ファイバ 4を両側部 がわから挟持する挟持部' 2 8を備えた一体部品により形成されている。 一例として、 第 5 B図に示すように固定部材 6の挟持部 2 8をアーム 状に形成してもよい。 そうすると、 レーザーダイオード 1 と第 1の光フ アイパ 4を調心する際、 レーザ溶接部 1 1 aを支点としてス リープ 3 と 一体の第 1の光ファイバ 4を回動させた際に、 レーザ溶接部 1 1 aに加 わる応力が、 挟持部 2 8 のアームの変形応力に分散され、 応力集中を防 止できる。 Of the fixing members 6 and 7, the fixing member 6 located on the side closer to the laser diode 1 is, as shown in FIGS. 5A and 5B, a holding portion for holding the first optical fiber 4 from both sides. It is formed by an integral part with 28. As an example, as shown in FIG. 5B, the holding portion 28 of the fixing member 6 may be formed in an arm shape. Then, when the laser diode 1 and the first optical fiber 4 are aligned, when the first optical fiber 4 integrated with the sleep 3 is rotated with the laser welded portion 11a as a fulcrum, the laser welding is performed. The stress applied to the portion 11a is dispersed into the deformation stress of the arm of the holding portion 28, and the concentration of stress can be prevented.
第 1実施例において、 固定部材 6 , 7のうち、 レーザダイオード 1か ら遠い側の第 1の光ファイバ 4を固定する固定部材 7は、 対の固定部品 7 a , 7 bからなる。 この対の固定部品 7 a, 7 bはス リープ 3を両側 から挟んだ状態で前記ベース 2 の固定部材搭載部材 5に固定されている 。 固定部品 7 a , 7 bは第 1 のレーザ溶接部 l i b でス.リーブ 3 とレー
ザ溶接固定されている。 In the first embodiment, of the fixing members 6 and 7, the fixing member 7 for fixing the first optical fiber 4 farther from the laser diode 1 includes a pair of fixing parts 7a and 7b. The fixed parts 7 a and 7 b of this pair are fixed to the fixing member mounting member 5 of the base 2 with the sleep 3 sandwiched from both sides. The fixed parts 7a and 7b are the first laser weld lib, The welding is fixed.
第 1実施例において、 固定部材搭载部材 5の固定部材固定用壁部 3 5 が固定部品 7 a , 7 bの移動を案内するガイ ド部と して機能している。 固定部材固定用壁部 3 5 とス リーブ 3 との間には微小隙間が介在する。 固定部品 7 a , 7 bは固定部材固定用壁部 3 5に第 1 のレーザ溶接部 1 0の位置で固定されている。 In the first embodiment, the fixing member fixing wall 35 of the fixing member mounting member 5 functions as a guide for guiding the movement of the fixing components 7a and 7b. A minute gap is interposed between the fixing member fixing wall portion 35 and the sleeve 3. The fixed parts 7 a and 7 b are fixed to the fixed member fixing wall 35 at the position of the first laser welded part 10.
また、 第 1実施例では、 ベース 2 のレーザダイオード塔載部材 8がサ 一モモジュール 2 5の上面に固定されている。 そして、 このレーザダイ ォード塔載部材 8に連結された固定部材搭載部材 5はサーモモジュール In the first embodiment, the laser diode mounting member 8 of the base 2 is fixed to the upper surface of the thermo module 25. The fixing member mounting member 5 connected to the laser diode tower mounting member 8 is a thermo module.
2 5の上面よ りも第 1の光ファイバ 4の長手方向に突出して設けられて いる。 このサーモモジュール 2 5側から突出した固定部材搭載部材 5上 に第 1の光ファイバ 4が固定されている。 The first optical fiber 4 is provided so as to protrude from the upper surface of the first optical fiber 4 in the longitudinal direction. The first optical fiber 4 is fixed on a fixing member mounting member 5 protruding from the thermomodule 25 side.
また、 第 1実施例においては、 レーザダイオード 1から遠い側の第 1 の光ファイバ 4の端面 (後端面) は、 第 1 の光ファイバ 4の光軸に対し て斜めに形成している。 Further, in the first embodiment, the end face (rear end face) of the first optical fiber 4 far from the laser diode 1 is formed obliquely with respect to the optical axis of the first optical fiber 4.
第 1の光ファイバ 4の後端面に対向させて、 モニタフォ トダイオード 9が設けられており、 モニタフォ トダイオード 9はモニタフォ トダイォ 一ド固定部 3 9に固定されている。 モユタフォ トダイォード固定部 3 9 は主にアルミナにより形成されている。 モ-タフォ トダイォード固定部 A monitor photodiode 9 is provided so as to face the rear end face of the first optical fiber 4, and the monitor photodiode 9 is fixed to a monitor photodiode fixing portion 39. The mounting portion 39 is mainly made of alumina. Motor diode fixed part
3 9は半田材等によりベース 2 のレーザダイォード搭載部材 8上に固定 されている。 Numeral 39 is fixed on the laser diode mounting member 8 of the base 2 by a solder material or the like.
また、 第 7図に示すように、 レーザダイオード 1は主に A u S n半田 から成る半田材 4 0によってヒートシンク 2 2上に固定される。 ヒート シンク 2 2は主に A u S n又は A u S i を有する半田材 4 1によってレ 一ザダイォー ド搭載部材 8上に固定されている。 ヒー トシンク 2 2は A 1 Nやダイャモンド等の高熱伝導性材料により形成されている。
また、 第 1図、 第 8図に示すように、 レーザダイォード 1 の他端 3 0 側に間隔を介し、 第 2の光ファイバ 1 3が対向配置されている。 第 2 の 光ファイバ 1 3 は、 フェルール 5 9 に支持固定された状態でフエルール ホルダ 5 8に固定されている。 Further, as shown in FIG. 7, the laser diode 1 is fixed on the heat sink 22 by a solder material 40 mainly composed of AuSn solder. The heat sink 22 is fixed on the laser diode mounting member 8 mainly by a solder material 41 having AuSn or AuSi. The heat sink 22 is made of a high thermal conductive material such as A 1 N or diamond. In addition, as shown in FIGS. 1 and 8, a second optical fiber 13 is arranged to face the other end 30 of the laser diode 1 with an interval therebetween. The second optical fiber 13 is fixed to a ferrule holder 58 while being supported and fixed to a ferrule 59.
第 1図、 第 2図、 第 8図に示すように、 前記レーザダイオード 1 の他 端 3 0と前記第 2の光ファイバ 1 3 との間には、 レーザダイオー ド 1の 他端 3 0の面に間隔を介して、 レーザ光を平行光とするコリメートレン ズ 5 1が設けられている。 コリメートレンズ 5 1はレンズホルダ 5 2に 支持固定された状態で、 ベース 2 のレーザダイォード搭載部材 8上に搭 載固定されている。 なお、 第 1図では、 レンズホルダ搭载部 4 7をハツ チングにより示している。 As shown in FIG. 1, FIG. 2, and FIG. 8, between the other end 30 of the laser diode 1 and the second optical fiber 13, the other end 30 of the laser diode 1 is provided. A collimating lens 51 that converts laser light into parallel light is provided on the surface at intervals. The collimating lens 51 is mounted and fixed on the laser diode mounting member 8 of the base 2 while being supported and fixed by the lens holder 52. In FIG. 1, the lens holder mounting portion 47 is shown by hatching.
レーザダイォード搭載部材 8には、 コリメートレンズ 5 1 と間隔を介 してアイ ソ レータ 5 3 が設けられている。 アイ ソ レータ 5 3 はアイ ソ レ ータホルダ 5 4を介してレーザダイォード搭載部材 8上に固定されてい る。 アイ ソ レータ 5 3 の出射側には、 間隔を介して集光レンズ 5 7が設 けられている。 ァイソレータ 5 3 と集光レンズ 5 7との間には光透過板 5 5が設けられている。 The laser diode mounting member 8 is provided with an isolator 53 via a gap with the collimating lens 51. The isolator 53 is fixed on the laser diode mounting member 8 via the isolator holder 54. A condensing lens 57 is provided on the emission side of the isolator 53 via an interval. A light transmitting plate 55 is provided between the isolator 53 and the condenser lens 57.
集光レンズ 5 7はレーザダイオード 1から出射される光を第 2の光フ アイバ 1 3 の先端側に集光する。 集光レンズ 5 7はレンズホルダ 5 6に 固定されている。 集光レンズ 5 7 の入射側に設けられた光透過板 5 5は 、 サフアイャガラスなどにより形成されている。 光透過板 5 5は、 ノ、。ッ ケージ 2 7の封止用の機能を有している。 また、 第 1実施例では、 光透 過板 5 5は集光レンズ 5 7の光軸に対して斜めに配設されている。 The condenser lens 57 condenses the light emitted from the laser diode 1 on the tip side of the second optical fiber 13. The condenser lens 57 is fixed to the lens holder 56. The light transmitting plate 55 provided on the incident side of the condenser lens 57 is made of sapphire glass or the like. Light transmission plate 5 5 The package 27 has a sealing function. In the first embodiment, the light transmitting plate 55 is disposed obliquely with respect to the optical axis of the condenser lens 57.
第 1 の光ファイバ 4をベース 2 の固定部材搭载部材 5に固定する作業 は、 例えば、 以下のようにして行われている。 まず、 第 1の光ファイバ 4 とレーザダイオード 1 とを調心する。 この調心状態で、 レーザダイォ
ード 1に近い側の第 1の光ファイバ 4の先端側を固定部材 6により両側 部がわから挟持固定する。 The operation of fixing the first optical fiber 4 to the fixing member mounting member 5 of the base 2 is performed, for example, as follows. First, the first optical fiber 4 and the laser diode 1 are aligned. With this alignment, the laser diode The distal end side of the first optical fiber 4 near the optical fiber 1 is clamped and fixed by the fixing member 6 from both sides.
この調心は、 例えば以下のようにして行なわれる。 すなわち、 ベース 2の固定部品搭載部材 5上の嵌合凹部 3 7 aに固定部品 6を配置する。 そして、 この固定部品 6の挟持部 2 8 (第 5図参照) 間に第 1の光ファ ィパ 4を配置する。 なお、 挟持部 2 8 とスリープ 3 との間隔は、 0〜 2 Ο μ ηι程度とする。 その状態で、 レーザダイオード 1から遠い側の第 1 の光ファイバ 4の後端側を、 例えば調心治具によって把持する。 この調 心治具を用いてレーザダイォード 1 と第 1の光ファィパ 4 とを調心する 。 このとき、 固定部品 6はスリープ 3と共にベース 2の固定部材搭載部 材 5の表面に沿って X方向に移動可能とする。 This alignment is performed, for example, as follows. That is, the fixed component 6 is arranged in the fitting recess 37 a on the fixed component mounting member 5 of the base 2. Then, the first optical fiber 4 is arranged between the holding portions 28 (see FIG. 5) of the fixed component 6. Note that the interval between the holding portion 28 and the sleep 3 is about 0 to 2 μμηι. In this state, the rear end side of the first optical fiber 4 far from the laser diode 1 is gripped by, for example, an alignment jig. Using this alignment jig, the laser diode 1 and the first optical fiber 4 are aligned. At this time, the fixed component 6 can move in the X direction along the surface of the fixed member mounting member 5 of the base 2 together with the sleep 3.
前記調心の後、 固定部品 6は第 1のレーザ溶接部 1 0でベース 2の固 定部材搭載部材 5に固定する。 その後、 第 1の光ファイバ 4側 (具体的 には第 1 の光ファイバ 4のス リープ 3 ) は固定部品 6に第 2のレーザ溶 接部 1 1 aで溶接固定する。 このよ うに、 先ず、 第 1 の光ファイバ 4の レーザダイォード 1に近い側を固定部材搭載部材 5に固定した状態とす る。 なお、 固定部品 6を固定部材搭載部材 5に先に固定し、 その後、 第 1の光ファイバ 4側を固定部品 6に溶接固定する力 、 あるいは、 その逆 の工程をとるかは、 調心のし易さ、 調心精度等を考慮して選択すればよ い o After the alignment, the fixed component 6 is fixed to the fixed member mounting member 5 of the base 2 at the first laser welded portion 10. Then, the first optical fiber 4 side (specifically, the sleep 3 of the first optical fiber 4) is fixed to the fixed component 6 by welding at the second laser welding portion 11a. As described above, first, the side of the first optical fiber 4 close to the laser diode 1 is fixed to the fixing member mounting member 5. Note that the force for fixing the fixed component 6 to the fixed component mounting member 5 first and then welding and fixing the first optical fiber 4 side to the fixed component 6 or vice versa depends on the alignment. It should be selected in consideration of ease of alignment, alignment accuracy, etc.o
その後、 固定部品 6による挟持部 (ここではレーザ溶接部 1 1 a ) を 支点と してレーザダイォード 1から遠い側の第 1の光ファイバ 4の端部 を、 前記調心治具によって第 1図の Y方向に調心移動させる。 そして、 第 1 の光ファイバ 4とレーザダイオード 1 とを再調心する。 Thereafter, the end of the first optical fiber 4 farther from the laser diode 1 is fixed to the first part by the centering jig with the holding part (the laser welded part 11 a) held by the fixed part 6 as a fulcrum. Perform centering movement in the Y direction in the figure. Then, the first optical fiber 4 and the laser diode 1 are realigned.
そして、 ベース 2の固定部材搭載部材 5の固定部材固定用壁部 3 5に ガイ ドされる態様で、 嵌合凹部 3 7 bに固定部品 7 a, 7 bを挿入し、
ス リープ 3 の両側部がわに静かに配置する。 この固定部品 7 a , 7 bは 、 固定部材固定用壁部 3 5にガイ ドされて、 第 1 の光ファイバ 4の光軸 に対して略直交する図の X方向に、 ベース 2の固定部材搭載部材 5の表 面に沿ってスライ ド移動する。 このスライ ド移動によって、 ス リープ 3 の両側部がわの固定部品 7 a , 7 b とス リープ 3 の側面との間隔は 0〜 約 5 μ mに調整する。 Then, the fixing parts 7 a and 7 b are inserted into the fitting recesses 37 b in a manner guided by the fixing member fixing wall 35 of the fixing member mounting member 5 of the base 2, Place both sides of Sleep 3 gently. The fixing parts 7 a and 7 b are guided by a fixing member fixing wall 35, and are fixed to the fixing member of the base 2 in the X direction substantially perpendicular to the optical axis of the first optical fiber 4. Slide along the surface of the mounting member 5. By this slide movement, the distance between the fixed parts 7a and 7b of the sleep 3 on both sides and the side surface of the sleep 3 is adjusted to 0 to about 5 μm.
そして、 固定部品 7 a, 7 bは、 複数の第 1のレーザ溶接部 1 0によ つて固定部材固定用壁部 3 5に溶接固定する。 その後、 固定部品 7 a , 7 b と第 1 の光ファイバ 4側は第 2のレーザ溶接部 1 1 により レーザ 溶接固定 (例えば Y A G溶接固定) する。 The fixed parts 7a and 7b are fixed to the fixed member fixing wall 35 by welding using a plurality of first laser welds 10. After that, the fixed parts 7a and 7b and the first optical fiber 4 side are fixed by laser welding (for example, YAG welding fixed) by the second laser welded part 11.
なお、 前記調心作業は、 例えば、 レーザダイオード 1からレーザ光を 発振させて第 1の光ファイバ 4に入射伝播させながら行う。 前記のよ う に、 調心治具等を用いてレーザダイォード 1から遠い側の第 1の光ファ ィパ 4の後端部を調心移動する。 第 1 の光ファィパ 4を伝播するレーザ 光の強度がもっとも強くなる位置を調心位置とする。 The centering operation is performed, for example, while oscillating laser light from the laser diode 1 and making the laser light incident and propagate on the first optical fiber 4. As described above, the rear end of the first optical fiber 4 far from the laser diode 1 is centered and moved using the centering jig and the like. The position where the intensity of the laser light propagating through the first optical fiber 4 becomes the highest is defined as the centering position.
また、 第 1 の光ファイバ 4の調心移動は、 例えば、 調心治具にステツ ビングモータなどを取り付け、 第 1 の光ファイバ 4を伝播して出射され る光の強度を光強度検出装置で監視しながら、 ステッ ピングモータによ るス リープ 3 の移動量を人が調節して行なってもよい。 あるいは、 前記 光強度検出装置とステツ ビングモータの駆動装置を共にコ ンピュータに 接続し、 コンピュータ制御により 自動的に第 1の光ファィパ 4を調心位 置に移動させるよ うにしてもよい。 The centering movement of the first optical fiber 4 is performed, for example, by attaching a stepping motor or the like to the centering jig, and measuring the intensity of the light propagating through the first optical fiber 4 and emitted by the light intensity detecting device. While monitoring, the amount of sleep 3 movement by the stepping motor may be adjusted by a person. Alternatively, both the light intensity detecting device and the driving device of the stepping motor may be connected to a computer, and the first optical fiber 4 may be automatically moved to the centering position by computer control.
第 1実施例の半導体レーザモジュールは、 従来例と同様に、 レーザダ ィオード 1 の一端 3 1側から出射されたレーザ光を第 1 の光ファイバ 4 で受光する。 そして、 設定波長の光をレーザダイオード 1に帰還しなが ら、 レーザダイォード 1の他端 3 0側からの出射光を第 2の光ファイバ
1 3によって受光し、 第 2の光ファイバ 1 3内を伝送させる。 また、 このとき、 この実施例においても従来例と同様にサーモモジュ ール 2 5によるレーザダイオード 1 の温度制御が行なわれる。 In the semiconductor laser module of the first embodiment, the laser light emitted from one end 31 of the laser diode 1 is received by the first optical fiber 4 as in the conventional example. Then, while returning the light of the set wavelength to the laser diode 1, the light emitted from the other end 30 of the laser diode 1 is transmitted to the second optical fiber. The light is received by 13 and transmitted through the second optical fiber 13. At this time, also in this embodiment, the temperature of the laser diode 1 is controlled by the thermo module 25 as in the conventional example.
第 1実施例によれば、 第 1の光ファィバ 4はそのファィバ長手方向に 間隔を介した 2点位置で固定部材 6 , 7によりベース 2に固定される。 そのため、 ベース 2上に、 第 1の光ファイバ 4をレーザダイオード 1に 対して適切に調心固定することができ、 第 1の光ファイバ 4の位置ずれ を抑制することができる。 According to the first embodiment, the first optical fiber 4 is fixed to the base 2 by the fixing members 6 and 7 at two points at an interval in the longitudinal direction of the fiber. Therefore, the first optical fiber 4 can be appropriately centered and fixed on the base 2 with respect to the laser diode 1, and the displacement of the first optical fiber 4 can be suppressed.
また、 第 1実施例によれば、 サーモモジュール 2 5 のベース側板部材 1 7に接触するベース 2のレーザダイォード搭載部材 8は、 その上側に 設けられている固定部材搭載部材 5 の線膨張係数とサーモモジュール 2 5のベース側板材 1 7の線膨張係数との間の範囲内の線膨張係数を有す る材質 (言い換えればコパールと A 1 2 O 3の間の線膨張係数を有する C u W 1 0 ) によ り形成している。 このために、 コパールにより形成し たベース 2を A 1 2 O 3からなるベース側板材 1 7上に直接接触して設 ける従来例に比べ、 使用環境温度変化によって生じるベース 2の撓みが 緩和できる。 Further, according to the first embodiment, the laser diode mounting member 8 of the base 2 that contacts the base side plate member 17 of the thermomodule 25 is the linear expansion coefficient of the fixed member mounting member 5 provided on the upper side. C u having a linear expansion coefficient between the copal and a 1 2 O 3 that material (in other words having a linear expansion coefficient in the range between the linear expansion coefficient of the base side plate member 1 7 of thermo-module 2 5 W 10). Therefore, compared with the set Keru conventional direct contact with the base 2 formed by copal on the base side plate member 1 7 consisting of A 1 2 O 3, can be alleviated deflection of the base 2 caused by environmental temperature changes .
したがって、 第 1実施例によれば、 使用環境温度変化に起因したレー ザダイォード 1 と第 1 の光ファイバ 4 との光結合効率低下を抑制するこ とができる。 Therefore, according to the first embodiment, it is possible to suppress a decrease in the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 due to a change in the use environment temperature.
しかも、 レーザダイォード搭载部材 8を形成する C u W 1 0は熱伝導 率が良好で、 コパールの熱伝導率の約 1 0倍の熱伝導率を有する。 その ために、 第 1実施例においては、 レーザダイオード 1で発生した熱が、 ヒートシンク 2 2 、 レーザダイォード搭載部材 8を介して効率的にサー モモジュール 2 5側に伝えられる。 それ故、 サーモモジュール 2 5によ つてレーザダイオード 1を効率的に冷却することができる。
従って、 第 1実施例によれば、 レーザダイオード 1およぴサーモモジ ユール 2 5の消費電力を小さくでき、 消費電力の小さい半導体レーザモ ジュールとすることができる。 さらに、 サーモモジュール 2 5の橈み量 を小さくすることができる。 Moreover, CuW 10 forming the laser diode mounting member 8 has a good thermal conductivity, and has a thermal conductivity that is about 10 times that of Copal. Therefore, in the first embodiment, the heat generated by the laser diode 1 is efficiently transmitted to the thermomodule 25 via the heat sink 22 and the laser diode mounting member 8. Therefore, the laser module 1 can be efficiently cooled by the thermo module 25. Therefore, according to the first embodiment, the power consumption of the laser diode 1 and the thermomodule 25 can be reduced, and a semiconductor laser module with low power consumption can be obtained. Further, the radius of the thermo module 25 can be reduced.
また、 第 1実施例によれば、 レーザダイオード搭載部材 8 とパッケ一 ジ 2 7 の底板 2 6 の線膨張係数を同一と しているので、 半導体レーザモ ジュールの使用環境温度変化が生じたときにサーモモジュール 2 5の上 下両側に同じ応力が加わり、 サーモモジュール 2 5の撓みが相殺される 。 したがって、 第 1実施例によれば、 使用環境温度変化に起因したレー ザダイォード 1 と第 1 の光ファィバ 4 との光結合効率低下をより一層効 率的に抑制することができる。 Further, according to the first embodiment, since the linear expansion coefficient of the laser diode mounting member 8 and the bottom plate 26 of the package 27 are the same, when the operating temperature of the semiconductor laser module changes, The same stress is applied to both the upper and lower sides of the thermo module 25, and the bending of the thermo module 25 is canceled. Therefore, according to the first embodiment, it is possible to more effectively suppress a decrease in the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 due to a change in the use environment temperature.
さらに、 第 1実施例によれば、 ベース 2の固定部材搭載部材 5 と固定 部材 6, 7 とをレーザ溶接してなる第 1 のレーザ溶接部 1 0 と、 固定部 材 6 , 7 とス リ プ 3 とをレーザ溶接してなる第 2 のレーザ溶接部 1 1 とは、 パッケージ底板 2 6に対し垂直な方向の高さが略同じ高さに形成 されている。 そのために、 たとえ多少ベース 2の橈みが生じても、 この 橈みによってス リーブ 3が第 1 のレーザ溶接部 1 0を支点に大きく位置 ずれすることはない。 したがって、 レーザダイオード 1 と光ファイバ 2 との光結合効率の低下をさらにより一層効率的に抑制することができる さらに、 第 1実施例によれば、 ベース 2 の固定部材搭載部材 5に、 光 ファイバ 4の長手方向に沿って、 ベース 2 の撓みを防止する橈み防止手 段 1 5を設けている。 そのために、 撓み防止手段 1 5によってベース 2 の光フアイバ長手方向に沿つた橈みを抑制できる。 Further, according to the first embodiment, the first laser welded portion 10 formed by laser welding the fixed member mounting member 5 of the base 2 and the fixed members 6 and 7 and the fixed members 6 and 7 and the three The second laser-welded portion 11 formed by laser welding with the package 3 is formed to have substantially the same height in the direction perpendicular to the package bottom plate 26. Therefore, even if a slight radius of the base 2 occurs, the radius does not cause the sleeve 3 to be largely displaced around the first laser welded portion 10 as a fulcrum. Therefore, it is possible to suppress the decrease in the optical coupling efficiency between the laser diode 1 and the optical fiber 2 even more efficiently. Further, according to the first embodiment, the optical fiber is attached to the fixing member mounting member 5 of the base 2. Along the lengthwise direction of 4, a radius preventing means 15 for preventing the base 2 from bending is provided. Therefore, the radius of the base 2 along the longitudinal direction of the optical fiber can be suppressed by the deflection preventing means 15.
特に、 この実施例の半導体レーザモジュールにおいて、 レーザダイォ ード 1から出射ざれる光は、 第 1の光フアイバ 4の先端側から第 1の光
ファイバ 4に入射する。 レーザダイォード 1 と第 1の光ファイバ 4 との 光結合に際し、 レーザダイオード 1 と第 1の光ファイバ 4のレーザ光受 光端 3 2 との位置ずれを抑制することは極めて重要である。 したがって 、 上記軸線部 3 3におけるベース 2の橈みを抑制することは極めて重要 である。 In particular, in the semiconductor laser module of this embodiment, the light that is not emitted from the laser diode 1 emits the first light from the tip side of the first optical fiber 4. Light enters fiber 4. At the time of optical coupling between the laser diode 1 and the first optical fiber 4, it is extremely important to suppress the displacement between the laser diode 1 and the laser light receiving end 32 of the first optical fiber 4. Therefore, it is extremely important to suppress the radius of the base 2 in the axis portion 33.
また 同様に、 レーザダイオード 1に近い側の固定部材 6によるの第 1の光ファイバ 4の固定位置のずれは、 レーザダイオード 1から遠い側 の固定部材 7による第 1の光ファイバ 4の固定位置のずれに比べ、 レー ザダイオード 1 と第 1 の光ファイバ 4 との光結合効率低下が大きい。 そ のため、 固定部材 6の配設領域におけるベース 2の橈みを抑制すること は極めて重要である。 Similarly, the displacement of the fixing position of the first optical fiber 4 by the fixing member 6 on the side closer to the laser diode 1 is the same as the displacement of the fixing position of the first optical fiber 4 by the fixing member 7 on the side farther from the laser diode 1. The optical coupling efficiency between the laser diode 1 and the first optical fiber 4 is greatly reduced as compared with the deviation. Therefore, it is extremely important to suppress the radius of the base 2 in the area where the fixing member 6 is provided.
そこで、 第 1実施例では、 撓み防止.手段 1 5は、 レーザダイオード 1 の一端 3 1 と第 1の光ファイバ 4におけるレーザ光の受光端 3 2を結ぶ 軸線部 3 3の側部両側と、 レーザダイオード 1に近い側に位置する固定 部材 6の側部両側を含む領域に設けている。 それにより、 上記軸線部 3 3および固定部材 6の配設領域におけるベース 2の撓みを抑制できる。 そのため、 半導体レーザモジュールの使用環境温度変化に応じたベース 2の撓みを効果的に抑制できる。 また、 レーザダイオード 1 と第 1の光 ファイバ 4 との光結合劾率低下を非常に効率的に抑制することができる さらに、 第 1実施例では、 撓み防止手段 1 5は、 固定部材搭載部材 5 の底部 1 6から少なく とも上側に立設された壁部を第 1の光ファイバ 4 の長手方向に形成している。 しかも、 撓み防止手段 1 5は固定部材搭載 部材 5 と一体部材により形成している。 そのために、 撓み防止手段 1 5 を固定部材搭載部材 5 と別部品により構成し、 これらを接着するときの ように撓み防止手段 1 5 と固定部材搭載部材 5 との接続による強度低下
1/09741 Therefore, in the first embodiment, the means for preventing deflection 15 is provided with both sides of an axis portion 33 connecting the one end 31 of the laser diode 1 and the light receiving end 32 of the laser beam in the first optical fiber 4, It is provided in a region including both sides of the fixing member 6 located on the side closer to the laser diode 1. Thereby, the bending of the base 2 in the area where the axis portion 33 and the fixing member 6 are provided can be suppressed. Therefore, it is possible to effectively suppress the deflection of the base 2 in accordance with a change in the use environment temperature of the semiconductor laser module. Further, it is possible to extremely efficiently suppress a reduction in the optical coupling rate between the laser diode 1 and the first optical fiber 4. Further, in the first embodiment, the bending preventing means 15 is provided with a fixing member mounting member 5 At least an upper wall from the bottom 16 of the first optical fiber 4 is formed in the longitudinal direction of the first optical fiber 4. In addition, the deflection preventing means 15 is formed as an integral member with the fixed member mounting member 5. For this purpose, the bending prevention means 15 is composed of a separate component from the fixing member mounting member 5, and the strength is reduced by the connection between the bending prevention means 15 and the fixing member mounting member 5 as in the case of bonding them. 1/09741
26 が生じることもない。 その上、 橈み防止手段 1 5を簡単な構成と し作製 を容易化し、 しかも、 ベース 2の撓みを効果的に抑制することができる さらに、 第 1実施例によれば、 レーザダイオード 1に近い側で第 1の 光ファイバ 4を支持固定する固定部材 6は、 第 1の光ファイバ 4を両側 部がわから挟持する挟持部 2 8を備えた一体部品により形成した。 その ために、 挟持部 2 8 の両側を連結する連結部 4 9が撓み抑制部材と して 働くので、 第 2図、 、図 5の X方向のベース 2の撓みをより一層抑制する ことができる。 したがって、 第 1実施例によれば、 レーザダイオード 1 と第 1の光ファイバ 4 との光結合効率低下をさらにより一層効率的に抑 制することができる。 26 does not occur. In addition, the radius prevention means 15 has a simple configuration, facilitating manufacture, and can effectively suppress the deflection of the base 2. Further, according to the first embodiment, it is close to the laser diode 1 The fixing member 6 for supporting and fixing the first optical fiber 4 on the side was formed as an integrated component having a holding portion 28 for holding the first optical fiber 4 from both sides. Therefore, since the connecting portion 49 connecting both sides of the holding portion 28 works as a deflection suppressing member, the bending of the base 2 in the X direction in FIGS. 2 and 5 can be further suppressed. . Therefore, according to the first embodiment, it is possible to suppress the decrease in the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 even more efficiently.
さらに、 第 1実施例によれば、 レーザダイオード 1から遠い側の第 1 の光ファイバ 4を固定する固定部材 7は、 ス リープ 3を両側から挟んだ 状態で前記ベース 2に固定された対の固定部品 7 a , 7 b と している。 そのため、 前記した固定方法を用いて第 1の光ファイバ 4をレーザダイ オード 1に対して調心固定することによって、 固定部品 7 a , 7 b と第 1の光ファイバ 4側との Y A G溶接時の第 1の光ファイバ 4の移動量を 少なくできる。 そのため、 固定部品 7 a, 7 bによって第 1の光フアイ パ 4側を固定する時に、 第 1 の光ファイバ 4 (ス リープ 3 ) のずれが殆 どない。 Further, according to the first embodiment, the fixing member 7 for fixing the first optical fiber 4 farther from the laser diode 1 is a pair of the fixing members 7 fixed to the base 2 with the sleep 3 sandwiched from both sides. The fixed parts are 7a and 7b. Therefore, by aligning and fixing the first optical fiber 4 to the laser diode 1 using the above-described fixing method, the YAG welding of the fixed parts 7a and 7b and the first optical fiber 4 side is performed. The amount of movement of the first optical fiber 4 can be reduced. Therefore, when the first optical fiber 4 side is fixed by the fixing parts 7a and 7b, there is almost no displacement of the first optical fiber 4 (sleep 3).
そのため、 第 1実施例によれば、 半導体レーザモジュール作製に伴う 調心作業を正確に行なえ、 かつ、 その作業時間を非常に短くすることが でき、 その分だけコス トも安くすることができる。 Therefore, according to the first embodiment, the alignment work involved in manufacturing the semiconductor laser module can be performed accurately, the work time can be extremely shortened, and the cost can be reduced accordingly.
さらに、 第 1実施例によれば、 ベース 2 の固定部材搭載部材 5をサー モモジュール 2 5に載置固定される光ファイバ搭載側端部より もサーモ モジュール 2 5から離れる側 (光ファイバ長手方向) に突出して設けて
いる。 そのために、 サーモモジュール 2 5に接触していない部分 (突出 部分) はサーモモジュール 2 5の撓みめ影響を受けることはない。 Further, according to the first embodiment, the fixing member mounting member 5 of the base 2 is farther from the thermomodule 25 than the optical fiber mounting end to be mounted and fixed on the thermomodule 25 (in the optical fiber longitudinal direction). ) I have. Therefore, the portion (projecting portion) not in contact with the thermo module 25 is not affected by the bending of the thermo module 25.
そして、 第 1実施例において、 第 1 の光ファイバ 4はサーモモジユー ル 2 5から突出した固定部材搭載部材 5に固定されている。 そのために 、 第 1の光ファイバ 4はサーモモジュール 2 5の撓みの影響を非常に受 け難くなり、 レーザダイォード 1 と第 1 の光ファイバ 4 との光結合効率 低下をさらにより一層効率的に抑制することができる。 In the first embodiment, the first optical fiber 4 is fixed to a fixing member mounting member 5 protruding from the thermomodule 25. As a result, the first optical fiber 4 becomes extremely insensitive to the bending of the thermo module 25, and the optical coupling efficiency between the laser diode 1 and the first optical fiber 4 is reduced even more efficiently. Can be suppressed.
さらに、 第 1実施例によれば、 固定部材搭載部材 5はコバールにより 形成している。 コバールは第 1の光ファイバ 4 と線膨張係数がほぼ同一 であり、 しかもレーザ溶接性に優れている。 そのために、 第 1の光ファ ィパ 4 との線膨張係数の違いによって第 1の光ファイバ 4に悪影響を及 ぼすことを抑制できる。 さらに、 スリープ 3とのレーザ溶接作業性も良 好であり、 製造のしゃすい半導体レーザモジュールとすることができる さらに、 第 1実施例によれば、 従来例と同様に、 第 1の光ファイバ 4 によって、 レーザダイォ一ド 1 のレーザ光をレーザダイォード 1に帰還 させる構成としている。 そのために、 第 1 の光ファイバ 4 の先端 (レー ザ光受光端 3 2 ) とレーザダイォード 1 の一端 3 1 との距離を非常に短 くでき、 ノイズが小さく波長安定性の良好な半導体レーザモジュールと することができる。 Further, according to the first embodiment, the fixing member mounting member 5 is formed of Kovar. Kovar has almost the same linear expansion coefficient as that of the first optical fiber 4 and has excellent laser weldability. For this reason, it is possible to prevent the first optical fiber 4 from being adversely affected by a difference in linear expansion coefficient from the first optical fiber 4. Further, the laser welding workability with the sleep 3 is good, and the semiconductor laser module can be manufactured with a low manufacturing cost. Further, according to the first embodiment, the first optical fiber 4 Thus, the laser light of the laser diode 1 is fed back to the laser diode 1. Therefore, the distance between the end of the first optical fiber 4 (laser light receiving end 32) and one end 31 of the laser diode 1 can be made very short, and a semiconductor laser with small noise and good wavelength stability can be obtained. It can be a module.
さらに、 第 1実施例によれば、 レーザダイオード 1から遠い側の第 1 の光ファイバ 4の後端面を、 第 1の光ファイバ 4の光軸に対して斜めに 形成したために、 第 1の光ファイバ 4の後端面で反射した光がレーザダ ィォード 1側に戻ることを抑制でき、 レーザダイォード 1からの出力を 安定化することができる。 Further, according to the first embodiment, since the rear end face of the first optical fiber 4 farther from the laser diode 1 is formed obliquely with respect to the optical axis of the first optical fiber 4, the first light The light reflected on the rear end face of the fiber 4 can be prevented from returning to the laser diode 1 side, and the output from the laser diode 1 can be stabilized.
さらに、 第 1実施例では、 コリメートレンズ 5 1 と集光レンズ 5 7 と
の間に、 アイ ソ レータ 5 3を設けている。 そのため、 レーザ光が第 2の 光ファイバ 1 3側からレーザダイォード 1に戻ることを確実に抑制でき 、 半導体レーザモジュールの出力を安定化することができる。 Further, in the first embodiment, the collimating lens 51 and the focusing lens 57 are An isolator 53 is provided between them. Therefore, it is possible to reliably suppress the laser light from returning to the laser diode 1 from the second optical fiber 13 side, and to stabilize the output of the semiconductor laser module.
さらに、 第 2の光ファイバ 2の入射端側に設けた光透過板 5 5は、 集 光レンズ 5 7の光軸に対して斜めに配設している。 そのため、 光透過板 5 5で反射したレーザ光がレーザダイォード 1に戻ることを抑制でき、 半導体レーザモジュールの出力をより一層安定させることができる。 以上のように、 第 1実施例は、 使用環境温度変化によらずレーザダイ オード 1 と第 1の光ファイバ 4を高精度で光結合することができる。 そ して、 ノイズが小さく、 高出力で波長安定性の良好な、 信頼性の高い半 導体レーザモジュールとなる。 したがって、 第 1実施例の半導体レーザ モジュールを励起光源としてラマンアンプを構成する と、 このラマンァ ンプは、 波長多重伝送に適した優れたラマンアンプとすることができる 第 9図には、 本発明に係る半導体レーザモジュールの第 2実施例の構 成がパッケージ 2 7を一部省略して斜視図により示されている。 第 2実 施例は上記第 1実施例とほぼ同様に構成されており、 第 2実施例が上記 第 1実施例と異なることは、 サーモモジュール 2 5を上記第 1実施例よ り も レーザ光軸方向に長く形成し、 第 1 の光ファイバ 4の後端側となる ベース 2の端部をサーモモジュール 2 5から突き出さないように構成し たこ とである。 Further, the light transmission plate 55 provided on the incident end side of the second optical fiber 2 is disposed obliquely with respect to the optical axis of the light collection lens 57. Therefore, the laser beam reflected by the light transmitting plate 55 can be prevented from returning to the laser diode 1, and the output of the semiconductor laser module can be further stabilized. As described above, in the first embodiment, the laser diode 1 and the first optical fiber 4 can be optically coupled with high accuracy regardless of a change in the use environment temperature. A highly reliable semiconductor laser module with low noise, high output and good wavelength stability is obtained. Therefore, when a Raman amplifier is configured using the semiconductor laser module of the first embodiment as an excitation light source, this Raman amplifier can be an excellent Raman amplifier suitable for wavelength division multiplexing transmission. The configuration of a second embodiment of such a semiconductor laser module is shown in a perspective view with a package 27 partially omitted. The second embodiment is configured substantially in the same manner as the first embodiment. The difference between the second embodiment and the first embodiment is that the thermo-module 25 has a higher laser beam intensity than the first embodiment. It is formed so as to be long in the axial direction so that the end of the base 2 on the rear end side of the first optical fiber 4 does not protrude from the thermomodule 25.
この構成により、 第 2実施例の半導体レーザモジュールは、 ベース 2 のレーザダイォード搭載部材 8 の下面全体をサーモモジュール 2 5 のべ ース側板材 1 7に接触させている。 With this configuration, in the semiconductor laser module of the second embodiment, the entire lower surface of the laser diode mounting member 8 of the base 2 is brought into contact with the base side plate 17 of the thermomodule 25.
第 2実施例の半導体レーザモジュールは、 ベース 2のレーザダイォー ド搭載部材 8 の下面全体をサーモモジュール 2 5に接触させているもの
の、 他の構成は上記第 1実施例と同様であるので、 第 2実施例も上記第 1実施例とほぼ同様の効果を奏することができる。 The semiconductor laser module of the second embodiment has the entire lower surface of the laser diode mounting member 8 of the base 2 in contact with the thermomodule 25. However, since the other configuration is the same as that of the first embodiment, the second embodiment can also provide substantially the same effects as those of the first embodiment.
第 1 0図には、 本発明に係る半導体レーザモジュールの第 3実施例に おける第 1 の光ファイバ 4の固定構成が斜視図により示されている。 ま た、 固定構成の平面図が第 1 1図に示されている。 また、 第 1 2図には 、 第 3実施例におけるベース 2 の構成が分解図により示されている。 第 3実施例は上記第 1実施例とほぼ同様に構成されており、 第 3実施 例が上記第 1実施例と異なることは、 ベース 2を構成する固定部材搭載 部材 5 と レーザダイォード搭載部材 8の形状を、 第 1 0図〜第 1 2図に 示す構成としたことである。 FIG. 10 is a perspective view showing a fixing structure of the first optical fiber 4 in the third embodiment of the semiconductor laser module according to the present invention. Also, a plan view of the fixed configuration is shown in FIG. FIG. 12 shows an exploded view of the configuration of the base 2 in the third embodiment. The third embodiment is substantially the same as the first embodiment. The difference between the third embodiment and the first embodiment is that the fixing member mounting member 5 and the laser diode mounting member constituting the base 2 are different. That is, the shape of FIG. 8 is configured as shown in FIG. 10 to FIG.
すなわち、 第 3実施例では、 撓み防止手段 1 5は、 固定部材搭載部材 5 と レーザダイォー ド搭載部材 8 の両方により形成している。 レーザダ ィオード 1の一端 3 1 と第 1の光ファイバ 4におけるレーザ光の受光端 3 2を結ぶ軸線部 3 3 の側部両側と、 レーザダイオード 1に近い側に位 置する固定部材 6 の側部両側に設けた橈み防止手段 1 5は、 レーザダイ ォード搭載部材 8 と一体部材により構成している。 That is, in the third embodiment, the deflection preventing means 15 is formed by both the fixing member mounting member 5 and the laser diode mounting member 8. Both sides of the axis part 33 connecting the one end 31 of the laser diode 1 to the light receiving end 32 of the laser light in the first optical fiber 4 and the side part of the fixing member 6 located on the side close to the laser diode 1 The radius prevention means 15 provided on both sides are constituted by a laser diode mounting member 8 and an integral member.
なお、 上記第 1 2図の実施例において、 第 1のレーザ溶接部 1 0は、 固定部材搭載部材 5 と固定部材 6 , 7とのそれぞれの固定部位に 3ケ所 ずつ設けた。 第 3実施例においては、 上記それぞれの固定部位に 2ケ所 ずつ設けている。 このように、 本発明の半導体レーザモジュールにおい て、 上記各固定部位におけるレーザ溶接部 1 0の数は特に限定されるも のではなく適宜設定されるものである。 In the embodiment of FIG. 12 described above, three first laser welded portions 10 are provided at each of the fixing portions of the fixing member mounting member 5 and the fixing members 6 and 7. In the third embodiment, two fixing portions are provided at each of the above fixing portions. As described above, in the semiconductor laser module of the present invention, the number of laser welds 10 at each of the fixing portions is not particularly limited, and is appropriately set.
第 3実施例も上記第 1実施例とほぼ同様の効果を奏することができる なお、 本発明は上記各実施例に限定されることはなく、 様々な実施の 態様を採り得る。 例えば、 上記各実施例では、 撓み防止手段 1 5は、 レ
一ザダイォード 1の一端 3 1 と第 1の光ファイバ 4におけるレーザ光の 受光端 3 2を結ぶ軸線部 3 3 の側部両側と、 レーザダイォード 1に近い 側に位置する固定部材 6 の側部両側を含む領域に形成している。 しかし 、 代替的には、 橈み防止手段 1 5は、 第 1 の光ファィバ 4の少なく とも 側部片側の、 少なく とも光ファイバ長手方向の一部に沿って設けられて 、 前記ベース 2の橈みを防止する構成と してもよく、 実施例の構成に限 定されない。 The third embodiment can also provide substantially the same effects as the first embodiment. Note that the present invention is not limited to each of the above embodiments, but can adopt various embodiments. For example, in each of the above embodiments, the deflection preventing means 15 One side of the axis 1 33 connecting one end 3 1 of the diode 1 to the light receiving end 32 of the laser beam in the first optical fiber 4 and the side of the fixing member 6 located on the side close to the laser diode 1 It is formed in a region including both sides. However, alternatively, the radius preventing means 15 is provided along at least one side of at least one side of the first optical fiber 4, at least along a part of the longitudinal direction of the optical fiber, and the radius of the base 2 is provided. The configuration may be such that only the configuration of the embodiment is prevented.
撓み防止手段 1 5を少なく とも上記軸線部 3 3 の側部片側に設けると 、 軸線部 3 3におけるベース 2 の撓みを抑制することができ、 ベース 2 の撓みによるレーザダイォード 1 と第 1の光ファイバ 4との光結合効率 低下を効率的に抑制できる。 そのため、 撓み防止手段 1 5を少なく とも 上記軸線部 3 3 の側部片側 (より好ましくは軸線部 3 3 の側部両側) に 設けることが好ましい。 If the deflection preventing means 15 is provided at least on one side of the axis portion 33, the deflection of the base 2 in the axis portion 33 can be suppressed, and the laser diode 1 and the first A decrease in optical coupling efficiency with the optical fiber 4 can be efficiently suppressed. Therefore, it is preferable to provide the bending prevention means 15 at least on one side of the axis portion 33 (more preferably, on both sides of the axis portion 33).
また、 第 1 の光ファイバ 4 の長手方向に互いに間隔を介した位置で第 1の光ファイバ 4を支持する態様の固定部材 (上記各実施例では固定部 材 6 , 7 ) のうち、 少なく ともレーザダイオード 1に最も近い側に位置 する固定部材の側部片側に撓み防止手段 1 5を設けると、 第 1の光ファ ィパ 4のレーザダイォード 1に近い側の支持位置のずれを抑制できる。 そのために、 ベース 2の撓みによるレーザダイオード 1 と第 1の光ファ ィバ 4 との光結合効率低下を効率的に抑制できる。 それ故、 撓み防止手 段 1 5をレーザダイオード 1に最も近い側に位置する固定部材の側部片 側に設けることが好ましい。 In addition, at least one of the fixing members (the fixing members 6 and 7 in the above-described embodiments) which support the first optical fiber 4 at positions spaced from each other in the longitudinal direction of the first optical fiber 4. If the bending preventing means 15 is provided on one side of the fixing member located closest to the laser diode 1, the displacement of the support position of the first optical fiber 4 on the side near the laser diode 1 can be suppressed. . Therefore, it is possible to efficiently suppress a decrease in optical coupling efficiency between the laser diode 1 and the first optical fiber 4 due to the bending of the base 2. Therefore, it is preferable to provide the bending prevention means 15 on one side of the fixing member located closest to the laser diode 1.
さらに、 上記第 1実施例では、 撓み防止手段 1 5は固定部材搭載部材 8の底部 1 6から上側に立設された壁部を光ファィバ長手方向に形成し て構成した。 しかし、 撓み防止手段 1 5 の構成は特に限定されるもので なく、 実施例以外の構成でもよい。 例えば棒状または角材状の撓み防止
手段 1 5を固定部材搭載部材 5に接着固定して設けてもよい。 さらに、 上記各実施例では、 ベース 2は固定部材搭载部材 5 とレーザ ダイオード搭载部材 8 とを有する構成と した。 しかし、 ベース 2 の構成 は特に実施例のものに限定されない。 例えばベース 2は固定部材 6, 7 を搭載する固定部材搭載部が形成された 1つの部材により形成してもよ い Further, in the above-described first embodiment, the bending preventing means 15 is configured by forming a wall standing upright from the bottom 16 of the fixing member mounting member 8 in the longitudinal direction of the optical fiber. However, the configuration of the deflection preventing means 15 is not particularly limited, and may be a configuration other than the embodiment. For example, rod-shaped or square-shaped deflection prevention The means 15 may be provided by being fixedly adhered to the fixing member mounting member 5. Further, in each of the above embodiments, the base 2 is configured to have the fixing member mounting member 5 and the laser diode mounting member 8. However, the configuration of the base 2 is not particularly limited to the embodiment. For example, the base 2 may be formed of one member having a fixing member mounting portion for mounting the fixing members 6 and 7.
この場合でも、 固定部材 6, 7によって、 第 1の光ファイバ 4をその 長手方向に間隔を介した 2点位置で固定する。 このことにより、 従来例 に比べ、 第 1の光ファィバ 4をレーザダイォード 1に対して適切に調心 固定することができる。 Also in this case, the first optical fiber 4 is fixed by the fixing members 6 and 7 at two points with an interval in the longitudinal direction. As a result, the first optical fiber 4 can be properly aligned and fixed with respect to the laser diode 1 as compared with the conventional example.
また、 上記のよ うに、 上記固定部材搭載部を有する 1つの部材により ベース 2を形成した場合においても、 前記第 1 のレーザ溶接部 1 0 と、 前記第 2のレーザ溶接部 1 1 とを、 パッケージ底板 2 6に対し垂直な方 向の高さが略同じ高さになるようにする。 そうすることで、 ベース 2が 橈んだときに生じるスリープ 3の位置ずれを従来の半導体レーザモジュ ールに比べて小さくすることができ、 レーザダイォード 1 と第 1の光フ アイバ 4 との光結合効率低下を抑制することができる。 Further, as described above, even when the base 2 is formed by one member having the fixing member mounting portion, the first laser welded portion 10 and the second laser welded portion 11 are The height in the direction perpendicular to the package bottom plate 26 should be substantially the same. By doing so, it is possible to reduce the displacement of sleep 3 that occurs when base 2 curves, as compared with the conventional semiconductor laser module, and the light between laser diode 1 and first optical fiber 4 can be reduced. A reduction in coupling efficiency can be suppressed.
さらに、 上記各実施例では、 第 1の光ファイバ 4は先球形状のフアイ パレンズ 1 4を有する構成と した。 しかし、 第 1 の光ファイバ 4のファ ィバレンズ 1 4の形状は特に限定されるものでなく他の形状にしてもよ い。 フアイパレンズ 1 4は、 例えば第 1 4図に示すように、 楔型のアナ モルフィック (回転非対称) レンズと してもよいし、 楔型以外のアナモ ルフィックレンズと してもよい。 なお、 第 1 4図において、 1 4 aは稜 線を示す。 Furthermore, in each of the above embodiments, the first optical fiber 4 has a configuration in which the fiber lens 14 has a spherical shape. However, the shape of the fiber lens 14 of the first optical fiber 4 is not particularly limited and may be another shape. As shown in FIG. 14, for example, the fiber lens 14 may be a wedge-shaped anamorphic (rotationally asymmetric) lens or may be a non-wedge-shaped anamorphic lens. In FIG. 14, 14a indicates a ridge line.
さらに、 上記各実施例では、 第 1 の光ファイバ 4の先端側にファイバ レンズ 1 4を形成して第 1 の光ファイバ 4 と レーザダイオード 1 とを光
結合している。 しかし、 代替的には、 第 1の光ファイバ 4とレーザダイ オード 1の間にコリメートレンズ 5 1や集光レンズ 5 6 と同様のレンズ 系を設けて第 1 の光ファイバ 4 とレーザダイォード 1 とを光結合する構 成も可能である。 Further, in each of the above embodiments, a fiber lens 14 is formed on the distal end side of the first optical fiber 4 so that the first optical fiber 4 and the laser diode 1 are optically coupled to each other. Are combined. However, alternatively, a lens system similar to the collimator lens 51 or the condenser lens 56 is provided between the first optical fiber 4 and the laser diode 1 so that the first optical fiber 4 and the laser diode 1 are connected to each other. It is also possible to have a configuration in which the light is optically coupled.
さらに、 上記各実施例では、 第 2 の光ファィバ 1 3 と レーザダイォー ド 1の他端 3 0側との間に、 コリメートレンズ 5 1 、 アイ ソ レータ 5 3 、 集光レンズ 5 7を設けている。 しかし、 代替的な実施例と して、 例え ばコリメートレンズ 5 1やアイソレータ 5 3は使用しなく ともよい。 ま た、 集光レンズ 5 7を設ける代わりに、 例えば第 1 5図に示すように、 第 2 の光ファイバ 1 3 の先端側にファイバレンズ 2 3を形成してもよい 。 この場合も、 ファイバレンズ 2 3は、 第 1 5図に示すようなアナモル フィ ックレンズと してもよいし、 上記各実施例の第 1の光ファイバ 4の ファイバレンズ 1 4のような円錐形状のファイバレンズと してもよレ、。 Further, in each of the above embodiments, the collimator lens 51, the isolator 53, and the condenser lens 57 are provided between the second optical fiber 13 and the other end 30 of the laser diode 1. . However, as an alternative embodiment, for example, the collimating lens 51 and the isolator 53 may not be used. Instead of providing the condenser lens 57, a fiber lens 23 may be formed on the distal end side of the second optical fiber 13 as shown in FIG. 15, for example. Also in this case, the fiber lens 23 may be an anamorphic lens as shown in FIG. 15 or a conical shape like the fiber lens 14 of the first optical fiber 4 in each of the above embodiments. It can be a fiber lens.
さらに、 上記各実施例では、 固定部材搭載部材 5をレーザダイオード 搭載部材 8より も第 1 の光ファイバ 4の後端側に突出させて設け、 該突 出領域にモニタフォ トダイオード 9及びモニタフォ トダイォード固定部 3 9を設けている。 この代替的な実施例として、 例えば第 1 3図に示す ように、 固定部材搭載部材 5をレーザダイォード '搭載部材 8より も突出 させて形成し、 モニタフォ トダイォード固定部 3 9はベース 2 と別個に 設けてもよい。 Further, in each of the above embodiments, the fixing member mounting member 5 is provided so as to protrude from the rear end side of the first optical fiber 4 with respect to the laser diode mounting member 8, and the monitor photodiode 9 and the monitor photodiode are fixed to the protruding region. Section 39 is provided. As an alternative embodiment, as shown in FIG. 13, for example, as shown in FIG. 13, the fixing member mounting member 5 is formed so as to protrude from the laser diode 'mounting member 8, and the monitor photo diode fixing portion 39 is separate from the base 2. May be provided.
固定部材搭載部材 5をレーザダイォード搭載部材 8より も突出させて 形成すると、 この突出部分に搭載されている固定部材 6, 7やス リーブ 3、 第 1の光ファイバ 4がレーザダイォード搭載部材 8の撓みの影響を 受けることを抑制できる。 そのため、 レーザダイオード 1 と第 1の光フ アイバ 4との光結合効率低下をさらにより一層効率的に抑制することが できる。
なお、 固定部材搭載部材 5 の突出長 Lが長すぎると、 レーザダイォー ド搭载部材 8に対する接着強度が不足する。 このため、 該突出部が振動 を受けた場合に接着が剥がれてしまう可能性があるので、 L≤ 5 m mと することが好ましい。 When the fixing member mounting member 5 is formed so as to protrude from the laser diode mounting member 8, the fixing members 6, 7 and the sleeve 3, the first optical fiber 4, which are mounted on the protruding portion, are attached to the laser diode mounting member. 8 can be suppressed from being affected. Therefore, it is possible to more efficiently suppress a decrease in the optical coupling efficiency between the laser diode 1 and the first optical fiber 4. If the protrusion length L of the fixing member mounting member 5 is too long, the bonding strength to the laser diode mounting member 8 will be insufficient. For this reason, there is a possibility that the adhesive may be peeled off when the protrusion is subjected to vibration. Therefore, it is preferable to set L ≦ 5 mm.
また、 固定部材搭載部材 5をレーザダイォード搭載部材 8より も突出 させて形成する場合、 第 1 3図に示すよ うに、 レーザダイオード 1に最 も近い側に位置する固定部材 6の下部側に補強部 2 0を形成することに より、 固定部材搭載部材 5の図の Y方向の振動を抑制できる。 When the fixing member mounting member 5 is formed so as to protrude from the laser diode mounting member 8, as shown in FIG. 13, the fixing member mounting member 5 is located below the fixing member 6 located closest to the laser diode 1. By forming the reinforcing portion 20, vibration of the fixed member mounting member 5 in the Y direction in the figure can be suppressed.
すなわち、 レーザダイォード搭載部材 8に上記補強部 2 0を形成する .と、 たとえ固定部材搭載部材 5に前記 Y方向の振動が加えられたとして も、 この振動の支点を固定部材 6より もレーザダイォード 1から遠い側 にすることができる。 このことにより、 レーザダイオード 1 と第 1の光 ファイバ 4との光結合効率低下を抑制することができる。 That is, when the reinforcing portion 20 is formed on the laser diode mounting member 8, even if the Y-direction vibration is applied to the fixing member mounting member 5, the fulcrum of this vibration is more laser-induced than the fixing member 6. Can be far from Diode 1. As a result, it is possible to suppress a decrease in optical coupling efficiency between the laser diode 1 and the first optical fiber 4.
また、 上記補強部 2 0を形成し、 レーザダイオード搭載部材 8を第 1 の光ファイバ 4の長手方向に長く形成することにより、 レーザダイォー ド搭載部材 8 と固定部材搭載部材 5 の接触面積を広く取ることができる 。 そのため、 両者を機械的に強固に固定できる。 なお、 前記補強部 2 0 の下面はサーモモジュール 2 5に接触していないために、 補強部 2 0が サーモモジュール 2 5の撓みの影響を受けることはない。 Further, by forming the reinforcing portion 20 and forming the laser diode mounting member 8 long in the longitudinal direction of the first optical fiber 4, the contact area between the laser diode mounting member 8 and the fixing member mounting member 5 is increased. be able to . Therefore, both can be firmly fixed mechanically. Since the lower surface of the reinforcing portion 20 is not in contact with the thermo module 25, the reinforcing portion 20 is not affected by the bending of the thermo module 25.
また、 補強部 2 0の形状は特に限定されるものでなく、 他の形状と し てもよい。 例えば第 1 3図に示すように直方体形状と してもよいし、 同 図の斜線 Aに示すようなテーパ面を有する構成と してもよい。 なお、 固 定部材搭載部材 5をレーザダイォード搭載部材 8よ り も突出させて形成 する場合に、 捕強部 2 0は設けなくてもよい。 ただし、 上記のように補 強部 2 0を形成することによる利点があるので、 補強部 2 0を設けるこ とがより好ましい。
さらに、 上記各実施例では、 レーザダイオード 1に最も近い側に位置 する固定部材 6は図 5に示したような挟持部 2 8を備えた一体部品によ り形成したが、 固定部材 6の構成は特に限定されるものでなく他の構成 でもよい。 ただし、 固定部材 6を上記各実施例のように構成すると、 ベ ース 2の X方向の橈みを抑制することができる。 Further, the shape of the reinforcing portion 20 is not particularly limited, and may be another shape. For example, it may have a rectangular parallelepiped shape as shown in FIG. 13 or may have a configuration having a tapered surface as shown by oblique line A in FIG. When the fixing member mounting member 5 is formed so as to protrude from the laser diode mounting member 8, the capturing portion 20 may not be provided. However, since there is an advantage by forming the reinforcing portion 20 as described above, it is more preferable to provide the reinforcing portion 20. Further, in each of the above embodiments, the fixing member 6 located closest to the laser diode 1 is formed as an integrated component having the holding portion 28 as shown in FIG. 5, but the structure of the fixing member 6 Is not particularly limited, and may have another configuration. However, when the fixing member 6 is configured as in each of the above embodiments, the radius of the base 2 in the X direction can be suppressed.
さらに、 上記の実施例では、 レーザダイオード搭載部材 8 とパッケ一 ジ 2 7の底板 2 6を同一材質と して線膨張係数を同一としたが、 レーザ ダイォード搭載部材 8 とパッケージ 2 7の底板 2 6の線膨張係数が略同 一であれば異なる材質のものとしてもよレ、。 また、 レーザダイオード搭 载部材 8 とパッケージ 2 7の底板 2 6の線膨張係数は略同一であること が望ましいが、 互いに異なるものと してもよい。 Further, in the above embodiment, the laser diode mounting member 8 and the bottom plate 26 of the package 27 are made of the same material to have the same linear expansion coefficient, but the laser diode mounting member 8 and the bottom plate 2 of the package 27 are the same. As long as the coefficient of linear expansion of 6 is substantially the same, different materials may be used. It is preferable that the linear expansion coefficients of the laser diode mounting member 8 and the bottom plate 26 of the package 27 be substantially the same, but they may be different from each other.
さらに、 上記実施例ではリ一ド端子 6 0をパッケージ 2 7の側壁から 外側に突出形成したが、 リ一ド端子 6 0をパッケージ 2 7の側壁から下 側に伸設形成してもよい。 リード端子 6 0の配設形態や形状おょぴパッ ケージ 2 7の形状等は任意に設計されるものである。 Further, in the above embodiment, the lead terminal 60 is formed to protrude outward from the side wall of the package 27, but the lead terminal 60 may be formed to extend downward from the side wall of the package 27. The arrangement form and shape of the lead terminals 60 and the shape of the package 27 are arbitrarily designed.
さらに、 上記例では、 各実施例の半導体レーザモジュールをラマンァ ンプに適用する例を述べたが、 本発明の半導体レーザモジュールは、 ラ マンアンプ用の励起光源と してのみならず、 ラマンアンプ以外のアンプ の励起光源や、 信号光光源等、 光通信用と して様々な光源に適用される ものである。 Furthermore, in the above example, the example in which the semiconductor laser module of each embodiment is applied to a Raman amplifier has been described. However, the semiconductor laser module of the present invention is not only used as an excitation light source for a Raman amplifier, but also used for other than a Raman amplifier. It is applied to various light sources for optical communication, such as an excitation light source for an amplifier and a signal light source.
産業上の利用可能性 Industrial applicability
以上のように、 本発明に係る半導体レーザモジュールおよびその半導 体レーザモジュールを用いたラマンアンプは、 温度変化の影響を抑制し て安定したレーザ出力を得る、 光通信等に用いるのに適している。
As described above, the semiconductor laser module and the Raman amplifier using the semiconductor laser module according to the present invention are suitable for use in optical communication and the like, which obtain a stable laser output while suppressing the influence of temperature change. I have.
Claims
1 . 以下のように構成される半導体レーザモジュール; 1. A semiconductor laser module configured as follows:
ベース ; Base;
前記ベース上に搭載されたレーザダイオード ; 前記ベース上に搭載され、 前記レーザダイォードに光結合さ れる第 1の光ファイバ ; A laser diode mounted on the base; a first optical fiber mounted on the base and optically coupled to the laser diode;
前記ベース上に搭載され、 前記第 1の光ファイバの長手方向 に間隔を介して複数配置された固定部材 ; A plurality of fixing members mounted on the base and arranged at intervals in the longitudinal direction of the first optical fiber;
前記レーザダイオー ドの他端側に対向配置され該レーザダイ ォードの他端側から出射される光を受光して伝送する第 2の光ファイバ ここで、 前記第 1 の光ファイバはその先端側を前記レーザダ ィオー ドの一端側に向けて配置されており, A second optical fiber disposed opposite to the other end of the laser diode to receive and transmit light emitted from the other end of the laser diode; wherein the first optical fiber has It is arranged toward one end of the laser diode,
前記第 1の光ファイバは設定波長の光を反射する回折格子を 有して前記レーザダイォードの一端側から出射される光のうち前記設定 波長の光を前記レーザダイオードに帰還させる構成と成し, The first optical fiber has a diffraction grating that reflects light having a set wavelength, and the light having the set wavelength among the lights emitted from one end of the laser diode is fed back to the laser diode. ,
前記第 1の光ファイバは光ファイバ長手方向に間隔を介した 複数点位置で固定部材により前記ベースに固定されている。 The first optical fiber is fixed to the base by a fixing member at a plurality of points at intervals in the longitudinal direction of the optical fiber.
2 . 第 1の光ファイバの長手方向に間隔を介した複数点位置にそ れぞれ設けられた固定部材のうち、 レーザダイォードに最も近い側に位 置する固定部材は、 前記第 1の光ファイバを両側部がわから挟持する挟 持部を備えた一体部品により形成されている、 請求の範囲第 1項記載の 半導体レーザモジュール。 2. Among the fixing members provided at a plurality of positions at intervals in the longitudinal direction of the first optical fiber, the fixing member located on the side closest to the laser diode is the first member. 2. The semiconductor laser module according to claim 1, wherein the semiconductor laser module is formed as an integrated component having a holding portion for holding the optical fiber from both sides.
3 . 以下のように構成される半導体レーザモジュール; 3. A semiconductor laser module configured as follows:
パッケージ ;
前記パッケージ内に収容されたベース ; Package; A base housed in the package;
前記ベース上に搭載されたレーザダイォード ; A laser diode mounted on the base;
前記ベース上に搭載され、 ファイバ先端側を前記レーザダイ ォードの一端側に向けて配置されて、 前記レーザダイォ一ドに光結合さ れる第 1の光ファイバ ; A first optical fiber mounted on the base, arranged with the fiber tip side toward one end of the laser diode, and optically coupled to the laser diode;
前記ベース上に搭載され、 前記第 1 の光ファイバをベースに 固定する固定部材 ; A fixing member mounted on the base, for fixing the first optical fiber to the base;
前記レーザダイォードの他端側に対向配置され、 前記レーザ ダイォードの他端側から出射される光を受光して伝送する第 2の光ファ ィパ ; A second optical fiber disposed opposite to the other end of the laser diode, for receiving and transmitting light emitted from the other end of the laser diode;
前記パッケージの底板上に配置され前記ベースを搭載してい るサーモモジユーノレ ; A thermocouple mounted on the bottom plate of the package and mounting the base;
ここで、 前記第 1の光ファイバは設定波長の光を反射する回 折格子を有して前記レーザダイォードの一端側から出射される光のうち 前記設定波長の光を前記レーザダイォードに帰還させる構成と成し, 前記サーモモジュールは、 前記ベースを搭載するベース側板 材と、 前記パッケージの底板上に載置される底板側板材と、 これら板材 間に挟持固定されるペルチェ素子とを有し, Here, the first optical fiber has a diffraction grating that reflects light of a set wavelength, and returns the light of the set wavelength among the lights emitted from one end side of the laser diode to the laser diode. The thermo module comprises: a base side plate on which the base is mounted; a bottom plate side plate placed on the bottom plate of the package; and a Peltier element sandwiched and fixed between these plate members. ,
前記ベースは、 前記サーモモジュールの上面に接触して載置 固定されて前記レーザダイォードを搭載するレーザダイォード搭載部材 と、 該レーザダイォード搭載部材に結合されて前記固定部材を搭载する 固定部材搭載部材とを有して構成され, A laser diode mounting member mounted and fixed in contact with an upper surface of the thermo module and mounting the laser diode; a fixing member coupled to the laser diode mounting member and mounting the fixing member; And a mounting member.
前記レーザダイォード搭載部材は前記固定部材搭載部材の線 膨張係数と前記サーモモジュールのベース側板材の線膨張係数との間の 範囲内の線膨張係数を有する材質により形成されている。 The laser diode mounting member is formed of a material having a linear expansion coefficient in a range between a linear expansion coefficient of the fixed member mounting member and a linear expansion coefficient of a base side plate of the thermomodule.
4 . 以下のよ うに構成される半導体レーザモジュール ;
ノ^ツケ■ ~ジ ; 4. A semiconductor laser module configured as follows: ノ ^ ツ ケ ■ ~ ジ ;
前記パッケージ内に収容されたベース ; A base housed in the package;
前記ベース上に搭載されたレーザダイォード ; A laser diode mounted on the base;
前記ベース上に搭載され、 ファイバ先端側を前記レーザダイ ォードの一端側に向けて配置されて、 前記レーザダイォードに光結合さ れる第 1の光ファイバ ; A first optical fiber mounted on the base, arranged with the fiber tip side toward one end of the laser diode, and optically coupled to the laser diode;
前記ベース上に搭載され、 前記第 1の光ファイバをベースに 固定する固定部材 ; A fixing member mounted on the base, for fixing the first optical fiber to the base;
前記レーザダイォードの他端側に対向配置され、 前記レーザ ダイォードの他端側から出射される光を受光して伝送する第 2の光ファ ィバ ; A second optical fiber disposed opposite to the other end of the laser diode, for receiving and transmitting light emitted from the other end of the laser diode;
前記パッケージの底板上に配置され前記ベースを搭載してい るサーモモジユ ーノレ ; A thermoelectric unit mounted on the base plate of the package and mounting the base;
ここで、 前記第 1の光ファイバは設定波長の光を反射する回 折格子を有して前記レーザダイォードの一端側から出射される光のうち 前記設定波長の光を前記レーザダイオードに帰還させる構成と成し, 前記ベースは、 前記サーモモジュールの上面に接触して載置 固定されて前記レーザダイォードを搭載するレーザダイォード搭載部材 と、 該レーザダイォード搭載部材に結合されて前記固定部材を搭載する 固定部材搭載部材とを有して構成され, Here, the first optical fiber has a diffraction grating that reflects light of a set wavelength, and feeds back the light of the set wavelength to the laser diode among lights emitted from one end of the laser diode. A laser diode mounting member mounted and fixed in contact with an upper surface of the thermo module and mounting the laser diode; and the fixing member coupled to the laser diode mounting member. And a fixing member mounting member for mounting the
前記パッケージの底板は前記ベースのレーザダイオード塔載 部材と実質的に同一の線膨張係数を有する材質で形成されている。 The bottom plate of the package is formed of a material having substantially the same coefficient of linear expansion as the laser diode mounting member of the base.
5 . 以下のように構成される半導体レーザモジュール ; 5. A semiconductor laser module configured as follows;
ノ ッケージ; Knockage;
前記パッケージ内に収容されたベース ; A base housed in the package;
前記ベース上に搭載されたレーザダイォード ;
前記ベース上に搭載され、 フアイバ先端側を前記レーザダイ ォードの一端側に向けて配置されて、 前記レーザダイォードに光結合さ れる第 1の光ファイバ ; A laser diode mounted on the base; A first optical fiber mounted on the base, arranged with the fiber tip end toward one end of the laser diode, and optically coupled to the laser diode;
前記ベース上に搭載され、 前記第 1の光ファイバを両側部が わから挟持してベースに固定する固定部材; A fixing member mounted on the base, for fixing the first optical fiber to the base while holding the first optical fiber from both sides;
前記レーザダイォ"ドの他端側に対向配置され、 前記レーザ ダイォードの他端側から出射される光を受光して伝送する第 2の光ファ ィバ ; A second optical fiber disposed opposite to the other end of the laser diode to receive and transmit light emitted from the other end of the laser diode;
前記パッケージの底板上に配置され前記ベースを搭載してい るサーモモジユ ーノレ ; A thermoelectric unit mounted on the base plate of the package and mounting the base;
こ こで、 前記第 1の光ファイバは設定波長の光を反射する回 折格子を有して前記レーザダイォードの一端側から出射される光のうち 前記設定波長の光を前記レーザダイォードに帰還させる構成と成し, 前記ベースには、 前記固定部材を搭載する固定部材塔載部が 形成され, Here, the first optical fiber has a diffraction grating that reflects light of a set wavelength, and the light of the set wavelength among the lights emitted from one end of the laser diode is transmitted to the laser diode. The base is provided with a fixed member tower mounting portion for mounting the fixed member on the base.
前記固定部材搭載部と前記固定部材とは第 1 のレーザ溶接部 でレーザ溶接され, The fixing member mounting portion and the fixing member are laser-welded at a first laser welding portion.
前記第 1 の光ファイバ側と前記固定部材とは第 2 のレーザ溶 接部でレーザ溶接され, The first optical fiber side and the fixing member are laser-welded at a second laser-welded portion,
前記第 1 のレーザ溶接部と、 前記第 2のレーザ溶接部とは、 前記パッケージ底板に対し垂直な方向の高さが実質的に同じ高さである The first laser welded portion and the second laser welded portion have substantially the same height in a direction perpendicular to the package bottom plate.
6 . 固定部材は複数設けられ, 6. A plurality of fixing members are provided,
この複数の固定部材は、 互いに光フアイパ長手方向に間隔を 介した複数点位置で第 1の光ファイバをベースに固定している、 請求の 範囲第 3項記載の半導体レーザモジュール。
4. The semiconductor laser module according to claim 3, wherein the plurality of fixing members fix the first optical fiber to the base at a plurality of positions spaced from each other in a longitudinal direction of the optical fiber.
7 . 固定部材は複数設けられ, 7. A plurality of fixing members are provided,
この複数の固定部材は、 互いに光フアイパ長手方向に間隔を 介した複数点位置で第 1の光ファイバをベースに固定している、 請求の 範囲第 4項記載の半導体レーザモジュール。 5. The semiconductor laser module according to claim 4, wherein the plurality of fixing members fix the first optical fiber to the base at a plurality of positions spaced from each other in a longitudinal direction of the optical fiber.
8 . 固定部材は複数設けられ, 8. A plurality of fixing members are provided.
この複数の固定部材は、 互いに光フアイバ長手方向に間隔を 介した複数点位置で第 1の光ファイバをベースに固定している、 請求の 範囲第 5項記載の半導体レーザモジュール。 6. The semiconductor laser module according to claim 5, wherein the plurality of fixing members fix the first optical fiber to the base at a plurality of positions spaced from each other in a longitudinal direction of the optical fiber.
9 . 以下のように構成される半導体レーザモジュール ; 9. A semiconductor laser module configured as follows:
ベース ; Base;
前記ベース上に搭載されたレーザダイォード ; 前記ベース上に搭載され、 フアイパ先端側を前記レーザダイ ォードの一端側に向けて配置されて、 前記レーザダイォードに光結合さ れる第 1の光ファイバ ; A laser diode mounted on the base; a first optical fiber mounted on the base, arranged with a fiber tip end side toward one end of the laser diode, and optically coupled to the laser diode;
前記ベース上に搭載され、 前記第 1 の光ファイバをベースに 固定する固定部材 ; A fixing member mounted on the base, for fixing the first optical fiber to the base;
前記レーザダイォードの他端側に対向配置され、 前記レーザ ダイォードの他端側から出射される光を受光して伝送する第 2の光ファ ィパ ; A second optical fiber disposed opposite to the other end of the laser diode, for receiving and transmitting light emitted from the other end of the laser diode;
前記ベースを搭載しているサーモモジュール ; ここで、 前記第 1の光ファイバは設定波長の光を反射する回 折格子を有して前記レーザダイォードの一端側から出射される光のうち 前記設定波長の光を前記レーザダイォードに帰還させる構成と成し, 前記ベースの少なく とも一部には前記第 1 の光ファイバの側 部の片側又は両側の位置に、 前記第 1の光ファイバの長手方向に沿って A thermo module on which the base is mounted; wherein the first optical fiber has a diffraction grating that reflects light having a set wavelength, and the first optical fiber is set out of light emitted from one end of the laser diode. A wavelength of light is fed back to the laser diode, and at least a part of the base is positioned at one or both sides of the side of the first optical fiber; Along the direction
、 前記ベースの撓みを防止する撓み防止手段が設けられている。
A bending preventing means for preventing bending of the base is provided.
1 0 . 橈み防止手段は、 レーザダイオードの一端側のレーザ光出射 端面と第 1の光ファイバにおけるレーザ光の受光端を結ぶ軸線部の側部 の片側又は両側に設けられている、 請求の範囲第 9項記載の半導体レー ザモジュール。 10. The radius preventing means is provided on one or both sides of an axis portion connecting a laser light emitting end face on one end side of the laser diode and a light receiving end of the laser light in the first optical fiber. A semiconductor laser module according to claim 9, wherein
1 1 . 固定部材は複数設けられて互いに第 1の光ファイバの長手方 向に間隔を介した位置で第 1の光ファイバを支持してベースに固定する 態様と成しており, 11. A plurality of fixing members are provided to support the first optical fiber at positions spaced from each other in the longitudinal direction of the first optical fiber and to fix the first optical fiber to the base.
撓み防止手段はレーザダイォードに最も近い側に位置する固定部 材の側部の片側又は両側に設けられている、 請求の範囲第 9項記載の半 導体レーザモジユーノレ。 10. The semiconductor laser module according to claim 9, wherein the deflection preventing means is provided on one or both sides of a side of the fixing member located closest to the laser diode.
1 2 . ベースは固定部材を搭载する固定部材搭载部材と、 レーザダ ィォードを搭載すると共にサーモモジュール側に接触するレーザダイォ 一ド搭載部材とを有して構成され, 12. The base is configured to include a fixing member mounting member for mounting the fixing member, and a laser diode mounting member for mounting the laser diode and contacting the thermomodule side.
前記固定部材搭載部材と撓み防止手段は一体部材により形成さ れている、 請求の範囲第 9項記載の半導体レーザモジュール。 10. The semiconductor laser module according to claim 9, wherein said fixing member mounting member and said deflection preventing means are formed by an integral member.
1 3 . 橈み防止手段は、 固定部材搭載部材の底部から少なく とも上 側に立設して、 第 1の光ファイバの長手方向に形成した壁部である、 請 求の範囲第 9項記載の半導体レーザモジュール。 13. The claim range of claim 9, wherein the radius prevention means is a wall formed in the longitudinal direction of the first optical fiber, the wall being formed at least above the bottom of the fixing member mounting member and formed in the longitudinal direction of the first optical fiber. Semiconductor laser module.
1 4 . ベースの固定部材搭載部材と、 固定部材と、 撓み防止手段と のうちの少なく とも一つは F e— N i 一 C o合金で形成されている、 請 求の範囲第 3項記載の半導体レーザモジュール。 Claim 4. Claim 3 of claim 3, wherein at least one of the fixing member mounting member of the base, the fixing member, and the deflection preventing means is formed of a Fe—Ni—Co alloy. Semiconductor laser module.
1 5 . 以下のよ うに構成される半導体レーザモジュール ; 15 5. Semiconductor laser module configured as follows;
ベース ; Base;
前記ベース上に搭載されたレーザダイォード ; 前記ベース上に搭載され、 フアイパ先端側を前記レーザダイ ォードの一端側に向けて配置されて、 前記レーザダイォードに光結合さ
れる第 1の光ファイノく ; A laser diode mounted on the base; a laser diode mounted on the base, with a tip end of the fiber facing toward one end of the laser diode, and optically coupled to the laser diode; The first optical phoenix
前記ベース上に搭載され、 前記第 1 の光ファイバを前記レー ザダイォードに近い位置とそれより もレーザダイォードから遠い位置で ベースに固定する固定部材; A fixing member mounted on the base and fixing the first optical fiber to the base at a position near the laser diode and at a position farther from the laser diode than the laser diode;
前記レーザダイォードの他端側に対向配置され、 前記レーザ ダイォードの他端側から出射される光を受光して伝送する第 2の光ファ ィバ ; A second optical fiber disposed opposite to the other end of the laser diode, for receiving and transmitting light emitted from the other end of the laser diode;
前記ベースを搭載しているサーモモジュール ; こ こで、 前記第 1の光ファイバは設定波長の光を反射する回 折格子を有して前記レーザダイォードの一端側から出射される光のうち 前記設定波長の光を前記レーザダイォードに帰還させる構成と成し, 前記第 1 の光ファイバと前記レーザダイォードとが調心され た状態で、 前記第 1 の光ファイバは前記レーザダイォードに近い側と遠 い側のそれぞれの箇所において固定部材により両側から挟持固定されて おり, A thermo module on which the base is mounted; wherein the first optical fiber has a diffraction grating for reflecting light of a set wavelength, and the light emitted from one end of the laser diode is The light having a set wavelength is fed back to the laser diode, and the first optical fiber is close to the laser diode when the first optical fiber and the laser diode are aligned. It is clamped and fixed from both sides by fixing members at each of the side and the far side.
前記レーザダイォードから遠い側の位置を固定する固定部材 は対の固定部品からなり, The fixing member for fixing the position far from the laser diode comprises a pair of fixing parts.
この対の固定部品は第 1の光フアイパを両側から挟んだ状態 で前記ベースに固定されており、 The fixed parts of this pair are fixed to the base with the first optical fiber sandwiched from both sides,
前記各固定部品と第 1の光ファイバ側とがレーザ溶接固定さ れている。 Each of the fixed components and the first optical fiber side are fixed by laser welding.
1 6 . レーザダイォードから遠い側の第 1の光ファィバの固定部に は、 第 1 の光ファイバ側と間隔を介してガイ ド部がベース上に設けられ 該ガイ ド部にガイ ドされた固定部品が第 1 の光ファイバの両側部 がわに配置されて前記ガイ ド部に固定されている、 請求の範囲第 1 5項
記載の半導体レーザモジュール。 16. A guide section is provided on the base at a fixed portion of the first optical fiber farther from the laser diode with an interval from the first optical fiber side, and is guided by the guide section. 16. The fixing device according to claim 15, wherein the fixed component is fixed to the guide portion with both sides of the first optical fiber arranged side by side. The semiconductor laser module according to the above.
1 7 . ベースは、 サーモモジュール上に接触して搭載された部分か らさらにサ一モモジュールの上面を第 1の光ファイバの長さ方向に越え て突き出す部分を有している、 請求の範囲第 1項記載の半導体レーザモ シユーノレ。 17. The base has a portion that protrudes beyond the portion mounted in contact with the thermomodule beyond the upper surface of the thermomodule in the longitudinal direction of the first optical fiber. 2. The semiconductor laser device according to claim 1.
1 8 . ベースは、 サーモモジュールの上面に接触して載置固定され てレーザダイォードを搭載するレーザダイォード搭載部材と、 該レーザ ダイォード搭載部材に結合されて前記固定部材を搭載する固定部材搭載 部材とを有して構成され, 18. The base is mounted on the base of the thermo-module so as to be in contact with and fixed to the laser diode, and has a laser diode mounting member mounted thereon, and a fixing member mounted on the laser diode mounting member and mounting the fixing member. And a member,
サーモモジュールの上面から突き出している部分は、 固定部材 搭載部材と成している、 請求の範囲第 1 7項記載の半導体レーザモジュ —ノレ。 The semiconductor laser module according to claim 17, wherein a portion protruding from an upper surface of the thermomodule serves as a fixing member mounting member.
1 9 . レーザダイオード搭载部材はレーザダイオードに最も近い側 に位置する固定部材を機械的に補強する捕強部を有しており、 該補強部 の下面はサーモモジュールに対して非接触面と成している、 請求の範囲 第 1 8項記載の半導体レーザモジュール。 19. The laser diode mounting member has a force-retaining portion for mechanically reinforcing the fixing member located on the side closest to the laser diode, and the lower surface of the reinforcing portion is formed as a non-contact surface with respect to the thermo module. The semiconductor laser module according to claim 18, wherein:
2 0 . レーザダイオードから遠い側の第 1の光ファイバの後端面は 前記第 1の光フアイバの光軸に対して斜めに形成されている、 請求の範 囲第 1項記載の半導体レーザモジュール。 20. The semiconductor laser module according to claim 1, wherein a rear end face of the first optical fiber farther from the laser diode is formed obliquely with respect to an optical axis of the first optical fiber.
2 1 . 第 2の光ファイバと該第 2の光ファイバに対向するレーザダ ィォード端面との間に、 前記レーザダイォードから出射される光を第 2 の光ファイバの先端側に集光する集光レンズが設けられている、 請求の 範囲第 1項記載の半導体レーザモジュール。 21. A condenser for condensing light emitted from the laser diode to the tip side of the second optical fiber between the second optical fiber and a laser diode end face facing the second optical fiber. The semiconductor laser module according to claim 1, further comprising a lens.
2 2 . 第 2 の光ファイバに対向するレーザダイオード端面と集光レ ンズとの間にコリメートレンズが設けられている、 請求の範囲第 2 1項 記載の半導体レーザモジュール。
22. The semiconductor laser module according to claim 21, wherein a collimating lens is provided between a laser diode end face facing the second optical fiber and a condenser lens.
2 3 . 第 2の光ファイバに対向するレーザダイォード端面と集光レ ンズとの間に、 該集光レンズと間隔を介してコリメ一トレンズが設けら れており, 該コリメートレンズと前記集光レンズとの間にアイ ソ レータ が設けられている、 請求の範囲第 2 1項記載の半導体レーザモジュール 23. A collimating lens is provided between the laser diode end face facing the second optical fiber and the converging lens with an interval between the converging lens and the collimating lens. 21. The semiconductor laser module according to claim 21, wherein an isolator is provided between the semiconductor laser module and the optical lens.
2 4 . 集光レンズの入射側に光透過板が設けられており, 該光透過 板を前記集光レンズの光軸に対して斜めに配設した、 請求の範囲第 2 1 項記載の半導体レーザモジュール。 24. The semiconductor according to claim 21, wherein a light transmitting plate is provided on an incident side of the condenser lens, and the light transmitting plate is disposed obliquely with respect to an optical axis of the condenser lens. Laser module.
2 5 . 第 2の光フアイバの先端側にはファィパレンズが形成されて おり, 該ファィパレンズの先端側と レーザダイォードのレーザ光出射端 面とが対向配置されている、 請求の範囲第 1項記載の半導体レーザモジ ュ ' ~ノレ。 25. The fiber lens according to claim 1, wherein a fiber lens is formed on a tip side of the second optical fiber, and a tip side of the fiber lens and a laser light emitting end face of the laser diode are arranged to face each other. Semiconductor laser module
2 6 . 請求の範囲第 1項記載の半導体レーザモジュールを励起光源 と して用いたラマンアンプ。 26. A Raman amplifier using the semiconductor laser module according to claim 1 as an excitation light source.
2 7 . 請求の範囲第 3項記載の半導体レーザモジュールを励起光源 と して用いたラマンアンプ。 27. A Raman amplifier using the semiconductor laser module according to claim 3 as an excitation light source.
2 8 . 請求の範囲第 4項記載の半導体レーザモジュールを励起光源 と して用いたラマンアンプ。 28. A Raman amplifier using the semiconductor laser module according to claim 4 as an excitation light source.
2 9 . 請求の範囲第 5項記載の半導体レーザモジュールを励起光源 と して用いたラマンアンプ。 29. A Raman amplifier using the semiconductor laser module according to claim 5 as an excitation light source.
3 0 . 請求の範囲第 9項記載の半導体レーザモジュールを励起光源 として用いたラマンアンプ。 30. A Raman amplifier using the semiconductor laser module according to claim 9 as an excitation light source.
3 1 . 請求の範囲第 1 5項記載の半導体レーザモジュールを励起光 源と して用いたラマンアンプ。
31. A Raman amplifier using the semiconductor laser module according to claim 15 as an excitation light source.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000339342A JP2002148489A (en) | 2000-11-07 | 2000-11-07 | Semiconductor laser module and raman amplifier using the semiconductor laser module |
JP2000-339342 | 2000-11-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002039154A1 true WO2002039154A1 (en) | 2002-05-16 |
Family
ID=18814425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/009741 WO2002039154A1 (en) | 2000-11-07 | 2001-11-07 | Semiconductor laser module, and raman amplifier using the semiconductor laser module |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2002148489A (en) |
WO (1) | WO2002039154A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005159104A (en) * | 2003-11-27 | 2005-06-16 | Sony Corp | Laser system |
WO2010109701A1 (en) * | 2009-03-26 | 2010-09-30 | 古河電気工業株式会社 | Semiconductor laser module and suppressing member |
JP2009267386A (en) * | 2008-03-31 | 2009-11-12 | Furukawa Electric Co Ltd:The | Semiconductor laser module and suppression member |
JP5385674B2 (en) * | 2009-04-28 | 2014-01-08 | ファイベスト株式会社 | Laser module |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6471193A (en) * | 1987-09-11 | 1989-03-16 | Japan Aviation Electron | Laser diode module |
JPH0593820A (en) * | 1991-10-01 | 1993-04-16 | Fujitsu Ltd | Coupling structure between optical waveguide and optical fiber |
JPH06318762A (en) * | 1993-05-10 | 1994-11-15 | Sumitomo Electric Ind Ltd | Semiconductor laser module |
JPH10213722A (en) * | 1997-01-30 | 1998-08-11 | Nec Corp | Semiconductor laser module |
JPH11160581A (en) * | 1997-11-26 | 1999-06-18 | Furukawa Electric Co Ltd:The | Optical semiconductor module |
JP2000208869A (en) * | 1999-01-08 | 2000-07-28 | Sumitomo Electric Ind Ltd | Light emitting element module |
JP2000216474A (en) * | 1998-11-19 | 2000-08-04 | Furukawa Electric Co Ltd:The | Semiconductor laser module and its driving method |
-
2000
- 2000-11-07 JP JP2000339342A patent/JP2002148489A/en active Pending
-
2001
- 2001-11-07 WO PCT/JP2001/009741 patent/WO2002039154A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6471193A (en) * | 1987-09-11 | 1989-03-16 | Japan Aviation Electron | Laser diode module |
JPH0593820A (en) * | 1991-10-01 | 1993-04-16 | Fujitsu Ltd | Coupling structure between optical waveguide and optical fiber |
JPH06318762A (en) * | 1993-05-10 | 1994-11-15 | Sumitomo Electric Ind Ltd | Semiconductor laser module |
JPH10213722A (en) * | 1997-01-30 | 1998-08-11 | Nec Corp | Semiconductor laser module |
JPH11160581A (en) * | 1997-11-26 | 1999-06-18 | Furukawa Electric Co Ltd:The | Optical semiconductor module |
JP2000216474A (en) * | 1998-11-19 | 2000-08-04 | Furukawa Electric Co Ltd:The | Semiconductor laser module and its driving method |
JP2000208869A (en) * | 1999-01-08 | 2000-07-28 | Sumitomo Electric Ind Ltd | Light emitting element module |
Non-Patent Citations (1)
Title |
---|
Hiroyuki NAKATANI et al., "Fiber Grating Naizou-gata 1480nm-tai Reiki Laser Module", 2000nen Denshi Joho Tsuushin Gakkai Sougou Taikai Kouen Ronbunshuu, Electronics 1, 07 March, 2000 (07.03-00), page 367 * |
Also Published As
Publication number | Publication date |
---|---|
JP2002148489A (en) | 2002-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6720582B2 (en) | Semiconductor laser diode module | |
US6792008B2 (en) | Tracking error suppression and method of reducing tracking error | |
JP6739154B2 (en) | Optical module | |
JP2002131585A (en) | Semiconductor laser module and raman amplifier using the module | |
JP4639578B2 (en) | Semiconductor laser module and manufacturing method thereof | |
US8687663B2 (en) | Laser device | |
JP2003262766A (en) | Optical coupler | |
JP3518491B2 (en) | Optical coupling device | |
US6792012B2 (en) | Laser pump module with reduced tracking error | |
US20050196112A1 (en) | Transmitting optical subassembly capable of monitoring the front beam of the semiconductor laser diode | |
JP2012042819A (en) | Laser diode module and laser source | |
WO2002039154A1 (en) | Semiconductor laser module, and raman amplifier using the semiconductor laser module | |
JP3925690B2 (en) | Semiconductor laser module | |
JP2000098190A (en) | Semiconductor laser unit, semiconductor laser module and solid-state laser device | |
JP2006267237A (en) | Laser device and its assembling method and its attachment structure | |
EP1160600A1 (en) | Semiconductor laser diode module | |
US20020094590A1 (en) | Method for manufacturing semiconductor laser module, semiconductor laser module and Raman amplifier | |
JP3956515B2 (en) | Fiber grating optical module alignment method | |
WO2018117251A1 (en) | Semiconductor laser module and production method for semiconductor laser module | |
JP2001291927A (en) | Semiconductor laser module | |
JP5063300B2 (en) | Laser module | |
JP2012023325A (en) | Light emitting module | |
EP1750152A2 (en) | Laser module with intensity tracking error supression | |
JP2010014894A (en) | Light emitting apparatus | |
JP2010152074A (en) | Optical waveguide, optical apparatus and optical transmission apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA US |