明 · 細 書 Specification
2 ' 一 0—アルキルグアノシンの製造法 技 術 分 野 2'-10-Alkylguanosine production technology
本発明は、 安全で、 操作性、 実用性に優れた、 2 , 6—ジァミノプリンリボシド らの 2 ' —0—アルキルグアノシンの製造法を提供するものである。 The present invention provides a method for producing 2'-0-alkylguanosine from 2,6-diaminopurine riboside which is safe, excellent in operability and practicality.
背 景 技 術 Background technology
2 ' —0—メチルグアノシンに代表される 2 ' —〇一アルキルグアノシンの製造 法としては、 グアノシンを原料とする方法があるが、 この場合 2 ' 位水酸基のアル キル化反応が収率よく進行しない等の問題があるため、 一般的には、 2, 6—ジァ ミノプリンリボシドを原料とする方法が実施されている。 As a method for producing 2′-dialkylguanosine represented by 2′-0-methylguanosine, there is a method using guanosine as a raw material. In this case, the alkylation reaction of the 2′-hydroxyl group proceeds in good yield. In general, a method using 2,6-diaminopurine riboside as a raw material has been practiced.
この 2 , 6—ジァミノプリンリポシドから 2 ' —0—メチルグアノシンを得る方 法としては、 従来、 塩化第一スズ触媒の下、 ジァゾメタンを用いて 2 , 6—ジアミ ノプリンリボシドの 2 ' 位水酸基をメチル化後、 アデノシンデァミナーゼにより脱 ァミノ化して 2 ' —0—メチルグアノシンを得る、 という方法(Can. J. Chem, 59 : 3360(1981 )) が知られていた。 As a method for obtaining 2'-0-methylguanosine from this 2,6-diaminopurine liposide, conventionally, 2'-position of 2,6-diaminopurine riboside using diazomethane under the stannous chloride catalyst has been used. A method has been known in which a hydroxyl group is methylated and then deaminated with adenosine deaminase to obtain 2'-0-methylguanosine (Can. J. Chem, 59: 3360 (1981)).
しかし、 この方法では、 爆発性で毒性の強いジァゾ 'メタンを使用するので、 工業 的に使用し得る方法とはなりえなかった。 このため、 ジァゾメタンを使用しない方 法が種々検討され、 その結果、 上記方法の一改良法として、 塩基の存在下、 ハロゲ ン化アルキルを用いて 2, 6—ジァミノプリンリボシドの 2 ' 位水酸基をメチル化 後、 アデノシンデァミナ一ゼにより脱ァミノ化して 2 ' —0—メチルグアノシンを 得る、 という方法 (日本特許第 3 0 1 5 4 6 4号) が報告された。 However, this method uses explosive and highly toxic diazomethane, so it could not be an industrially viable method. For this reason, various methods that do not use diazomethane have been studied. As a result, as a modification of the above method, the 2′-formation of 2,6-diaminopurine riboside using an alkyl halide in the presence of a base was carried out. There has been reported a method of methylating a hydroxyl group, followed by deamination with adenosine kinase to obtain 2′-0-methylguanosine (Japanese Patent No. 3015404).
しかしながら、 上記の改良法であっても、 メチル化反応時に共存させる塩基であ る水素化ナトリウムは発火性を有し、 また、 メチル化剤として使用するヨウ化メチ ルは、 ジァゾメタンよりは毒性は低いものの、 相変わらず毒性を有するため、 上記 改良法を実施する際にはこれらの化学物質を厳密に管理しなければならない等の問 題を有していた。 However, even with the above-mentioned improved method, sodium hydride, which is a base coexisting during the methylation reaction, is ignitable, and methyl iodide used as a methylating agent is less toxic than diazomethane. Although it was low, it was still toxic and had problems such as strict control of these chemicals when implementing the above improved method.
また、 上記した従来法は、 いずれも、 ジァゾメタンやヨウ化メチルを用いたメチ
ル化反応を水を含まない有機溶媒などの非水系で行い、 アデノシンデァミナ一ゼを 用いた脱ァミノ化反応を水などの水系で行うという不連続な工程から構成されてお り、 このような不連続な工程を一連の工程として行う場合には、 各工程の取扱いを 厳密に区別し、 それを実行するための設備を整えなければならない等の問題がある ことから、 誰でも行える簡便な方法とは言えるものではなかつた。 In addition, all of the above-mentioned conventional methods use methylazomethane or methyl iodide. This process consists of a discontinuous process in which the hydrolysis reaction is carried out in a non-aqueous system such as an organic solvent containing no water, and the deamination reaction using adenosine deaminase is carried out in an aqueous system such as water. When such a discontinuous process is performed as a series of processes, there is a problem that the handling of each process must be strictly distinguished and equipment for executing the process must be prepared, so that it can be performed easily by anyone. It wasn't a simple method.
発 明 の 開示 Disclosure of the invention
本発明者らは、 上記した従来法の問題点を解決すべく鋭意研究を重ねた結果、 2 , 6—ジァミノプリンリボシドから 2 ' —0—メチルグアノシンを製造する際、 塩基 性の条件下、 メチル化剤としてリン酸トリメチルを用いることにより、 メチル化反 応を水系の溶媒中で行うことができ、 しかも 2 , 6—ジァミノプリンリボシドの 2 ' 位水酸基を選択的にメチル化し得、 最終的には、 アデノシンデァミナ一ゼによ る脱ァミノ化の後に 2 ' 一 0—メチルグアノシンを効率よく得ることができること を見いだした。 The present inventors have conducted intensive studies to solve the above-mentioned problems of the conventional method. As a result, when producing 2′-0-methylguanosine from 2,6-diaminopurine riboside, basic Under the conditions, by using trimethyl phosphate as a methylating agent, the methylation reaction can be carried out in an aqueous solvent, and the 2′-hydroxyl group of 2,6-diaminopurine riboside can be selectively formed. It was found that 2′-10-methylguanosine could be efficiently obtained after deamination by adenosine deminase.
従来、 リン酸トリメチルを用いたヌクレオシドのメチル化は、 ヌクレオシドの核 酸塩基のメチル化に主眼がおかれ、 糖部水酸基のメチル化を主題とする報告はなさ れていない。 ただし、 核酸塩基のメチル化の実験において、 比較実験としてなされ たイノシンとアデノシンの場合に、 リン酸トリメチルにより糖部水酸基のメチル化 も若干進行し、 たとえば、 リン酸トリメチルを用いてイノシンをメチル化した場合、 6 5 %の N1—メチルイノシンと 3 3 %の]^, 02 ' | 3 ' 1—ジメチルイノシンが生 成し、 リン酸トリメチルを用いてアデノシンをメチル化した場合には 3 8 %の 02 ' | 3 ' 1—メチルアデノシンと 2 4 %の N6, 02 ' , 3 ' 1—ジメチルアデノシンが 生成する、 ということが報告されていた(Bull. Chem. Soc. Jpn. , 54, 1569-1570 (1981 )) 。 このような報告からして、 リン酸トリメチルを用いて 2, 6—ジァミノ プリンリボシドをメチル化したとしても 2 ' 位水酸基が選択的にメチル化されると は到底考えられていなかったことから、 本発明者らの上記知見はまったく驚くべき ことであった。 Conventionally, methylation of nucleosides using trimethyl phosphate has focused on methylation of nucleoside nucleobases, and no report has been made on methylation of sugar hydroxyl groups. However, in the case of nucleobase methylation experiments, in the case of inosine and adenosine, which were performed as comparative experiments, methylation of the sugar hydroxyl group slightly progressed with trimethyl phosphate.For example, inosine was methylated using trimethyl phosphate. If you, 6 5% of N 1 - methyl inosine and 3 3%] ^, 0 2 '| 3' 1 - form dimethyl inosine raw, when it is methylated adenosine with trimethyl phosphate 3 of 8% 0 2... ' | 3' 1 - methyl adenosine and 2 4% N 6, 0 2 ', 3 ' 1 - dimethyl adenosine produces, has been reported that (Bull Chem Soc Jpn , 54, 1569-1570 (1981)). Based on these reports, even if 2,6-diaminopurine riboside was methylated using trimethyl phosphate, it was never thought that the 2'-hydroxyl group would be selectively methylated. The above findings of the inventors were completely surprising.
本発明者らは、 上記知見を基にして更に検討を重ね、 本発明を完成させた。 すな わち、 本発明は、 2, 6—ジァミノプリンリボシドから 2 ' — 0—アルキルグアノ シンを製造する方法であって、 溶媒として水系の溶媒を使用し、 塩基性の条件下、
2, 6 —ジァミノプリンリポシドをリン酸アルキルまたは硫酸アルキルのアルキル 化剤で処理して 2 ' —0—アルキル— 2 , 6—ジァミノプリンリボシドを生成させ、 次いでこうして生成されたものを脱ァミノ化して 2 ' — 0—アルキルグアノシンを 得ることを特徴とする 2 ' —0—アルキルグアノシンの製造法に関するものである c The present inventors have further studied based on the above findings, and completed the present invention. That is, the present invention relates to a method for producing 2′-0-alkylguanosine from 2,6-diaminopurine riboside, wherein an aqueous solvent is used as a solvent, , 2,6-Diaminopurine liposide is treated with an alkylating agent of an alkyl phosphate or an alkyl sulfate to form 2'-0-alkyl-2,6-diaminopurine riboside, which is then formed. A process for producing 2'-0-alkylguanosine, which comprises deaminating the product to obtain 2'-0-alkylguanosine c
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
原料化合物である 2, 6—ジァミノプリンリボシドは下記式 (I ) を有する公知 化合物である。 このような化合物は化学的に、 または酵素的に合成することが可能 であり、 あるいは市販品を使用してもかまわない。 特に、 酵素的に 2 , 6—ジアミ ノプリンリボシドを合成する場合には、 合成したものは単離する必要はなく、 酵素 反応液そのもの、 あるいは酵素反応液からの粗精製品をそのまま原料として使用し ても差し支えない。 The starting compound, 2,6-diaminopurine riboside, is a known compound having the following formula (I). Such a compound can be synthesized chemically or enzymatically, or a commercially available product may be used. In particular, when 2,6-diaminopurine riboside is synthesized enzymatically, it is not necessary to isolate the synthesized product, and the enzyme reaction solution itself or a crude product from the enzyme reaction solution is used directly as a raw material. No problem.
本発明方法は、 上述したように、 まず、 水系の溶媒中、 塩基性の条件下、 原料の As described above, the method of the present invention comprises the steps of: first, in a water-based solvent, under basic conditions,
2 , 6—ジァミノプリンリボシドをアルキル化剤で処理して、 下記式(II)を有する 2 7 —0—アルキル一 2, 6 —ジァミノプリンリボシドを生成させる。 2, 6-di § amino riboside is treated with an alkylating agent, 2 7 -0- alkyl one 2 having the formula (II), 6 - to produce a di § amino riboside.
(式中、 Rは炭素数 5以下の低級アルキルを意味する。 )
ここで用いるアルキル化剤としては、 リン酸アルキルまたは硫酸アルキルを使用 することができ、 具体的には、 リン酸トリメチル、 リン酸トリェチル、 リン酸トリ プロピル、 リン酸ェチルジメチルなどのリン酸トリアルキル; リン酸ジメチル、 リ ン酸ジェチルなどのリン酸ジアルキル;硫酸ジメチル、 硫酸ジェチルなどの硫酸ジ アルキルを挙げることができる。 特に、 メチル化の場合には、 リン酸トリメチルが 好適である。 (Wherein, R represents lower alkyl having 5 or less carbon atoms.) As the alkylating agent used here, an alkyl phosphate or an alkyl sulfate can be used. Specifically, trialkyl phosphates such as trimethyl phosphate, triethyl phosphate, tripropyl phosphate, and ethyl dimethyl phosphate; Dialkyl phosphates such as dimethyl phosphate and getyl phosphate; and dialkyl sulfates such as dimethyl sulfate and getyl sulfate. In particular, in the case of methylation, trimethyl phosphate is preferred.
アルキル化反応は、 水、 緩衝液などの水系の溶媒中、 塩基性の条件下、 2 , 6— ジァミノプリンリボシド 1モルに対し、 リン酸アルキルまたは硫酸アルキルを 1〜 1 0 0モル、 好ましくは 1 0〜 3 0モル使用し、 1 0〜 9 0 °C、 好ましくは 3 0〜 7 0 °Cで 1〜2 0時間程度反応させることにより実施することができる。 The alkylation reaction is carried out under basic conditions in an aqueous solvent such as water or a buffer solution, under basic conditions, with 1 to 100 mol of alkyl phosphate or alkyl sulfate per mol of 2,6-diaminopurine riboside. The reaction can be carried out preferably by using 10 to 30 moles and reacting at 10 to 90 ° C, preferably 30 to 70 ° C for about 1 to 20 hours.
このアルキル化反応は、 塩基性の条件下で行うのが肝要である。 塩基性の条件と しては、 p H l l以上、 好ましくは p H l 2〜1 3が例示される。 p Hが 1 1未満 の条件下ではアルキル化反応が遅くなり、 また、 p Hが 1 3を越える条件下ではメ チル化反応の 2 ' 位水酸基への選択性が低下するようになることから好ましくない。 なお、 上記の塩基性条件は、 反応の開始から終了まで維持または調整されるのが望 ましいが、 少なくとも反応当初の p Hを上記の塩基性条件のものに調整しておくこ とが大切である。 It is important that this alkylation reaction is performed under basic conditions. Basic conditions include, for example, pH 11 or higher, preferably pH 11 to 13. When the pH is less than 11, the alkylation reaction becomes slow, and when the pH exceeds 13, the selectivity to the 2'-hydroxyl group in the methylation reaction decreases. Not preferred. It is desirable that the above basic conditions be maintained or adjusted from the start to the end of the reaction, but it is important to adjust at least the pH at the beginning of the reaction to the basic conditions described above. It is.
このようにして生成された 2 ' —0—アルキル一 2 , 6—ジァミノプリンリボシ ドは、 必要により公知の精製法 (例:溶媒抽出法;イオン交換樹脂、 活性炭等の力 ラムクロマトグラフィー法) で精製し、 次ぎの脱ァミノ化反応に供する。 The 2'-0-alkyl-1,2,6-diaminopurine riboside thus produced can be purified by a known purification method (eg, solvent extraction method; ion exchange resin, activated carbon, etc.) if necessary. And subject it to the next deamination reaction.
脱ァミノ化反応は、 アデノシンデァミナ一ゼを用いた公知の方法で実施すること ができる。 アデノシンデアミナーゼとしては、 2 ' — 0—アルキル一 2 , 6—ジァ ミノプリンリボシドの 6位のアミノ基を脱ァミノ化できる酵素であれば動物、 微生 物などいずれの由来のものも使用することができる。 特に、 大腸菌由来の酵素は、 反応効率や価格の点で有利である。 The deamination reaction can be carried out by a known method using adenosine deaminase. As the adenosine deaminase, any enzyme derived from animals and microorganisms can be used as long as it can deaminate the amino group at the 6-position of 2'-0-alkyl-1,2,6-diaminopurine riboside. can do. In particular, E. coli-derived enzymes are advantageous in terms of reaction efficiency and price.
脱ァミノ化反応は、 使用する酵素によって変動するものの、 水または緩衝液中、 p H 6〜8の条件下、 過剰量のアデノシンデァミナーゼを使用し、 2 0〜5 0 °Cで 1〜1 0 0時間程度反応させることにより実施することができる。 Although the deamination reaction varies depending on the enzyme used, an excess amount of adenosine deaminase is used in water or a buffer at a pH of 6 to 8 and at a temperature of 20 to 50 ° C. The reaction can be carried out for about 100 hours.
反応後、 得られた 2 ' — 0—アルキルグアノシン (下記式 (I I I) の化合物) は、
公知の方法 (例:結晶化法、 溶媒抽出法、 吸着樹脂などによるクロマトグラフィ 法など) により単離精製することができる。 After the reaction, the resulting 2'-0-alkylguanosine (compound of the following formula (III)) is It can be isolated and purified by known methods (eg, crystallization method, solvent extraction method, chromatography method using an adsorption resin, etc.).
(式中、 Rは炭素数 5以下の低級アルキルを意味する。 ) 実 施 例 (In the formula, R means lower alkyl having 5 or less carbon atoms.)
以下、 実施例により、 本発明をより具体的に説明するが、 本発明がこれらに限定 されるものではないことは明らかである。 Hereinafter, the present invention will be described more specifically with reference to Examples, but it is apparent that the present invention is not limited to these.
実施例 1 : 2' —0—メチルグアノシンの合成 (その 1) Example 1: Synthesis of 2'-0-methylguanosine (Part 1)
2, 6—ジァミノプリンリボシド (5. 65 s 2 Ommo 1) をリン酸トリメ チル (40ml) と脱イオン水 (40ml) との混合液に懸濁し、 50°Cに加温し、 反応液の pHが 12. 0-12. 5になるように水酸化ナトリウムの水溶液で調整 しながら攪拌反応させた。 2,6-Diaminopurine riboside (5.65 s 2 Ommo 1) is suspended in a mixture of trimethyl phosphate (40 ml) and deionized water (40 ml), heated to 50 ° C, The reaction was carried out with stirring while adjusting with an aqueous solution of sodium hydroxide so that the pH of the reaction solution became 12.0 to 12.5.
反応開始 7時間後、 HPLCで反応液を分析した結果、 2' — 0—メチル— 2, 6—ジァミノプリンリボシド及び 3' — 0—メチル一 2, 6—ジァミノプリンリボ シドがそれそれ 41%及び 8. 5% (HPLC: UV260 nmで分析) 生成して いるのが確認された。 Seven hours after the start of the reaction, the reaction solution was analyzed by HPLC, and as a result, 2'-0-methyl-2,6-diaminopurine riboside and 3'-0-methyl-1,2,6-diaminopurine riboside However, it was confirmed that 41% and 8.5% (HPLC: analyzed by UV260 nm) were generated respectively.
反応液を脱イオン水で 40 Omlに希釈し、 塩酸で pHを 7. 6に調整し、 大腸 菌由来のアデノシンデァミナ一ゼ ( 1500単位) を添カ卩して、 37 °Cで攪拌反応 させた。 反応途中、 塩酸水溶液で pHを 7. 6に調整しながら、 88時間脱ァミノ 化反応を行った後、 反応液を 10分間煮沸し、 反応を停止した。 Dilute the reaction solution to 40 Oml with deionized water, adjust the pH to 7.6 with hydrochloric acid, add adenosine deaminase (1500 units) from E. coli, and stir at 37 ° C. It was allowed to react. During the reaction, the deamination reaction was performed for 88 hours while adjusting the pH to 7.6 with an aqueous hydrochloric acid solution, and then the reaction solution was boiled for 10 minutes to stop the reaction.
反応液をろ過し、 ろ液を吸着樹脂カラムに通した後、 吸着物を脱イオン水で溶出 し、 こうして得られた 2' —0—メチルグアノシンの溶出画分を 5 Omlまで減圧
濃縮し、 一晩冷却した。 生じた沈殿をろ取後乾燥を行い、 —0—メチルグアノ シンの結晶を 1. 72 g得た。 After filtering the reaction solution and passing the filtrate through an adsorption resin column, the adsorbate is eluted with deionized water, and the eluted fraction of 2'-0-methylguanosine thus obtained is decompressed to 5 Oml. Concentrate and cool overnight. The resulting precipitate was collected by filtration and dried to obtain 1.72 g of a crystal of —0-methylguanosine.
実施例 2 : 2' —0—メチルグアノシンの合成 (その 2) Example 2: Synthesis of 2'-0-methylguanosine (Part 2)
ゥリジン (14. 6 g, 60 mm o 1) と 2, 6—ジァミノプリン (6 g, 40 mmo 1) とを 25mMリン酸緩衝液 (pH7. 0、 1000 m 1 ) に懸濁し、 次 いでこの懸濁物にピリミジンヌクレオシドホスホリラーゼ (2 100単位) 及びプ リンヌクレオシドホスホリラーゼ (5400単位) を添カ卩し、 50°Cで 100分間 攪拌反応させた。 反応液を 10分間煮沸して反応を停止させた。 Perisine (14.6 g, 60 mmo 1) and 2,6-diaminopurine (6 g, 40 mmo 1) are suspended in 25 mM phosphate buffer (pH 7.0, 1000 ml), and then suspended. Pyrimidine nucleoside phosphorylase (2100 units) and purine nucleoside phosphorylase (5400 units) were added to the suspension, followed by stirring at 50 ° C for 100 minutes. The reaction was boiled for 10 minutes to stop the reaction.
反応終了後、 HPLCで分析したところ、 対 2, 6—ジァミノプリン当たりの 2, 6—ジァミノプリンリポシドへの転換率は 95. 7%であった。 After completion of the reaction, analysis by HPLC revealed that the conversion to 2,6-diaminopurine liposide per 9,6-diaminopurine was 95.7%.
この反応液を 20 Omlまで濃縮し、 リン酸トリメチル ( 15 Oml) を加え、 水酸化ナトリウムの水溶液で pHを 12~12. 5の範囲に調節しながら 50°Cで 7時間反応させた。 - こうして得られた反応液を HP LCで分析したところ、 2, 6—ジァミノプリン リボシドから 47%の転換率で 2' -〇-メチル - 2, 6—ジァミノプリンリボシドが 生成しているのが確認された。 The reaction solution was concentrated to 20 Oml, trimethyl phosphate (15 Oml) was added, and the mixture was reacted at 50 ° C for 7 hours while adjusting the pH to 12 to 12.5 with an aqueous solution of sodium hydroxide. -Analysis of the reaction mixture obtained by HP LC shows that 2'-〇-methyl-2,6-diaminopurine riboside is produced from 2,6-diaminopurine riboside at a conversion of 47%. Was confirmed.
この反応液を、 実施例 1の場合と同様に脱ァミノ化処理して 2' — 0—メチルグ ァノシンを得た。 This reaction solution was deaminated in the same manner as in Example 1 to obtain 2′-0-methylguanosine.
産業上の利用可能性 Industrial applicability
本発明方法は、 発火性や毒性のある薬品を使用することなく、 水系の溶媒を用い て 2, 6—ジァミノプリンリボシドから 2' —0—アルキルグアノシンを効率よく 製造することができる極めて有用性の高い方法であり、 特別な設備や作業管理も不 要であることから、 2' —0—アルキルグアノシンの大量合成法として極めて実用 的な方法である。
According to the method of the present invention, 2′-0-alkylguanosine can be efficiently produced from 2,6-diaminopurine riboside using an aqueous solvent without using any flammable or toxic chemical. Since it is an extremely useful method and does not require special equipment or work management, it is an extremely practical method for mass synthesis of 2'-0-alkylguanosine.