WO2002002862A2 - Treatment of fibrous substrates with silsesquioxanes and stainblockers - Google Patents
Treatment of fibrous substrates with silsesquioxanes and stainblockers Download PDFInfo
- Publication number
- WO2002002862A2 WO2002002862A2 PCT/US2001/018210 US0118210W WO0202862A2 WO 2002002862 A2 WO2002002862 A2 WO 2002002862A2 US 0118210 W US0118210 W US 0118210W WO 0202862 A2 WO0202862 A2 WO 0202862A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- composition
- polymers
- water
- silsesquioxane
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 62
- 238000011282 treatment Methods 0.000 title description 14
- 239000000203 mixture Substances 0.000 claims abstract description 115
- 239000000463 material Substances 0.000 claims abstract description 92
- 238000000034 method Methods 0.000 claims abstract description 66
- 150000003839 salts Chemical class 0.000 claims abstract description 37
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 34
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 239000005871 repellent Substances 0.000 claims abstract description 25
- 230000002940 repellent Effects 0.000 claims abstract description 23
- 239000000835 fiber Substances 0.000 claims abstract description 20
- 230000002378 acidificating effect Effects 0.000 claims abstract description 7
- 239000007787 solid Substances 0.000 claims description 59
- 125000003118 aryl group Chemical group 0.000 claims description 51
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 claims description 19
- 125000004432 carbon atom Chemical group C* 0.000 claims description 13
- 125000000217 alkyl group Chemical group 0.000 claims description 12
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 6
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 claims description 6
- 235000019341 magnesium sulphate Nutrition 0.000 claims description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 2
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 claims description 2
- 229910001626 barium chloride Inorganic materials 0.000 claims description 2
- 239000001110 calcium chloride Substances 0.000 claims description 2
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 2
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 2
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 claims description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 2
- 235000011152 sodium sulphate Nutrition 0.000 claims description 2
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 claims description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 claims description 2
- 229910000368 zinc sulfate Inorganic materials 0.000 claims description 2
- 229960001763 zinc sulfate Drugs 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 claims 1
- 229930195733 hydrocarbon Natural products 0.000 abstract description 36
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 34
- 239000002689 soil Substances 0.000 abstract description 15
- 229920000642 polymer Polymers 0.000 description 124
- 239000000178 monomer Substances 0.000 description 83
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 80
- 239000000839 emulsion Substances 0.000 description 46
- 238000006243 chemical reaction Methods 0.000 description 42
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 39
- 238000009833 condensation Methods 0.000 description 36
- 230000005494 condensation Effects 0.000 description 36
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 34
- 238000012360 testing method Methods 0.000 description 32
- -1 sulfonated phenol formaldehyde compound Chemical class 0.000 description 31
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 30
- 239000000243 solution Substances 0.000 description 30
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 24
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 23
- 239000002253 acid Substances 0.000 description 23
- 238000004945 emulsification Methods 0.000 description 23
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 22
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 20
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 18
- 150000001491 aromatic compounds Chemical class 0.000 description 18
- 239000007795 chemical reaction product Substances 0.000 description 18
- 229920001577 copolymer Polymers 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 16
- 229920002125 Sokalan® Polymers 0.000 description 15
- 150000001299 aldehydes Chemical class 0.000 description 13
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 12
- 229920002302 Nylon 6,6 Polymers 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 125000005395 methacrylic acid group Chemical group 0.000 description 12
- 238000003786 synthesis reaction Methods 0.000 description 12
- 239000008367 deionised water Substances 0.000 description 11
- 229910021641 deionized water Inorganic materials 0.000 description 11
- 238000005065 mining Methods 0.000 description 11
- 229920002647 polyamide Polymers 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 239000004952 Polyamide Substances 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 150000002989 phenols Chemical class 0.000 description 10
- 238000010186 staining Methods 0.000 description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 230000001012 protector Effects 0.000 description 9
- 239000004711 α-olefin Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 230000009477 glass transition Effects 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- 150000003254 radicals Chemical class 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 229920002292 Nylon 6 Polymers 0.000 description 7
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 7
- 150000007513 acids Chemical class 0.000 description 7
- 125000000129 anionic group Chemical group 0.000 description 7
- 239000012975 dibutyltin dilaurate Substances 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 150000002431 hydrogen Chemical group 0.000 description 7
- 238000002329 infrared spectrum Methods 0.000 description 7
- 239000012948 isocyanate Substances 0.000 description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 7
- 230000000379 polymerizing effect Effects 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 229910052708 sodium Inorganic materials 0.000 description 7
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 6
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 239000005058 Isophorone diisocyanate Substances 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 6
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 6
- 238000006460 hydrolysis reaction Methods 0.000 description 6
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 6
- 229920000058 polyacrylate Polymers 0.000 description 6
- 229910052700 potassium Inorganic materials 0.000 description 6
- 239000011591 potassium Substances 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- PLGACQRCZCVKGK-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-n-(2-hydroxyethyl)-n-methyloctane-1-sulfonamide Chemical compound OCCN(C)S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F PLGACQRCZCVKGK-UHFFFAOYSA-N 0.000 description 5
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 5
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 5
- 235000021355 Stearic acid Nutrition 0.000 description 5
- 238000013019 agitation Methods 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 5
- 239000004359 castor oil Substances 0.000 description 5
- 235000019438 castor oil Nutrition 0.000 description 5
- 125000002091 cationic group Chemical group 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 5
- 150000002513 isocyanates Chemical class 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 5
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 5
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 5
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 235000019198 oils Nutrition 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 150000004756 silanes Chemical class 0.000 description 5
- 239000008117 stearic acid Substances 0.000 description 5
- 238000010998 test method Methods 0.000 description 5
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 4
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 4
- 150000008064 anhydrides Chemical class 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 4
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- RGIBXDHONMXTLI-UHFFFAOYSA-N chavicol Chemical compound OC1=CC=C(CC=C)C=C1 RGIBXDHONMXTLI-UHFFFAOYSA-N 0.000 description 4
- ZQMIGQNCOMNODD-UHFFFAOYSA-N diacetyl peroxide Chemical compound CC(=O)OOC(C)=O ZQMIGQNCOMNODD-UHFFFAOYSA-N 0.000 description 4
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 239000004584 polyacrylic acid Substances 0.000 description 4
- 239000007870 radical polymerization initiator Substances 0.000 description 4
- ZMQAAUBTXCXRIC-UHFFFAOYSA-N safrole Chemical compound C=CCC1=CC=C2OCOC2=C1 ZMQAAUBTXCXRIC-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- QUWAJPZDCZDTJS-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfonylphenol Chemical compound OC1=CC=CC=C1S(=O)(=O)C1=CC=CC=C1O QUWAJPZDCZDTJS-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 239000004342 Benzoyl peroxide Substances 0.000 description 3
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 3
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 3
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 3
- 235000019400 benzoyl peroxide Nutrition 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 3
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910000000 metal hydroxide Inorganic materials 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 229920006284 nylon film Polymers 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 3
- 235000013824 polyphenols Nutrition 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 238000010025 steaming Methods 0.000 description 3
- 229940061610 sulfonated phenol Drugs 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 239000013638 trimer Substances 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 2
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- LGJCFVYMIJLQJO-UHFFFAOYSA-N 1-dodecylperoxydodecane Chemical compound CCCCCCCCCCCCOOCCCCCCCCCCCC LGJCFVYMIJLQJO-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- CHZLVSBMXZSPNN-UHFFFAOYSA-N 2,4-dimethylbenzenesulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C(C)=C1 CHZLVSBMXZSPNN-UHFFFAOYSA-N 0.000 description 2
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 2
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 2
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 2
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 2
- 239000005770 Eugenol Substances 0.000 description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- BJIOGJUNALELMI-ONEGZZNKSA-N Isoeugenol Natural products COC1=CC(\C=C\C)=CC=C1O BJIOGJUNALELMI-ONEGZZNKSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 2
- ZDWZXBJFITXZBL-UHFFFAOYSA-N S(=O)(=O)(O)C=CC1=CC=CC=C1.[Na] Chemical compound S(=O)(=O)(O)C=CC1=CC=CC=C1.[Na] ZDWZXBJFITXZBL-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 2
- SEMXFQLBQPCKNI-BQYQJAHWSA-N [4-[(e)-2-phenylethenyl]phenyl] acetate Chemical compound C1=CC(OC(=O)C)=CC=C1\C=C\C1=CC=CC=C1 SEMXFQLBQPCKNI-BQYQJAHWSA-N 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 229940091181 aconitic acid Drugs 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 150000001412 amines Chemical group 0.000 description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000011260 aqueous acid Substances 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- MVIOINXPSFUJEN-UHFFFAOYSA-N benzenesulfonic acid;hydrate Chemical compound O.OS(=O)(=O)C1=CC=CC=C1 MVIOINXPSFUJEN-UHFFFAOYSA-N 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229930016911 cinnamic acid Natural products 0.000 description 2
- 235000013985 cinnamic acid Nutrition 0.000 description 2
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 2
- BJIOGJUNALELMI-ARJAWSKDSA-N cis-isoeugenol Chemical compound COC1=CC(\C=C/C)=CC=C1O BJIOGJUNALELMI-ARJAWSKDSA-N 0.000 description 2
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 2
- 229940018557 citraconic acid Drugs 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 2
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- XXUJMEYKYHETBZ-UHFFFAOYSA-N ethyl 4-nitrophenyl ethylphosphonate Chemical compound CCOP(=O)(CC)OC1=CC=C([N+]([O-])=O)C=C1 XXUJMEYKYHETBZ-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 229960002217 eugenol Drugs 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 150000004675 formic acid derivatives Chemical class 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 2
- 239000002198 insoluble material Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 235000011147 magnesium chloride Nutrition 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- LSMAIBOZUPTNBR-UHFFFAOYSA-N phosphanium;iodide Chemical compound [PH4+].[I-] LSMAIBOZUPTNBR-UHFFFAOYSA-N 0.000 description 2
- 238000012643 polycondensation polymerization Methods 0.000 description 2
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 2
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 2
- 235000021286 stilbenes Nutrition 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 150000003457 sulfones Chemical class 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- BJIOGJUNALELMI-UHFFFAOYSA-N trans-isoeugenol Natural products COC1=CC(C=CC)=CC=C1O BJIOGJUNALELMI-UHFFFAOYSA-N 0.000 description 2
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 150000008127 vinyl sulfides Chemical class 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- 238000004383 yellowing Methods 0.000 description 2
- WHOZNOZYMBRCBL-OUKQBFOZSA-N (2E)-2-Tetradecenal Chemical compound CCCCCCCCCCC\C=C\C=O WHOZNOZYMBRCBL-OUKQBFOZSA-N 0.000 description 1
- JIRHAGAOHOYLNO-UHFFFAOYSA-N (3-cyclopentyloxy-4-methoxyphenyl)methanol Chemical compound COC1=CC=C(CO)C=C1OC1CCCC1 JIRHAGAOHOYLNO-UHFFFAOYSA-N 0.000 description 1
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 description 1
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 1
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- HIDBROSJWZYGSZ-UHFFFAOYSA-N 1-phenylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC=C1 HIDBROSJWZYGSZ-UHFFFAOYSA-N 0.000 description 1
- QXDGOMVZTYJWFJ-UHFFFAOYSA-N 2,2-dioctadecylicosyl carbamate Chemical compound C(CCCCCCCCCCCCCCCCC)C(COC(N)=O)(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC QXDGOMVZTYJWFJ-UHFFFAOYSA-N 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- AVTLBBWTUPQRAY-UHFFFAOYSA-N 2-(2-cyanobutan-2-yldiazenyl)-2-methylbutanenitrile Chemical compound CCC(C)(C#N)N=NC(C)(CC)C#N AVTLBBWTUPQRAY-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- ZOQOPXVJANRGJZ-UHFFFAOYSA-N 2-(trifluoromethyl)phenol Chemical compound OC1=CC=CC=C1C(F)(F)F ZOQOPXVJANRGJZ-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- DXPQDAHFCMBFMM-UHFFFAOYSA-N 2-benzoylbenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 DXPQDAHFCMBFMM-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 1
- SGBQUMZTGSQNAO-UHFFFAOYSA-N 2-hydroxynaphthalene-1-sulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(O)=CC=C21 SGBQUMZTGSQNAO-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- WODGMMJHSAKKNF-UHFFFAOYSA-N 2-methylnaphthalene-1-sulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(C)=CC=C21 WODGMMJHSAKKNF-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- GQTFHSAAODFMHB-UHFFFAOYSA-N 2-prop-2-enoyloxyethanesulfonic acid Chemical compound OS(=O)(=O)CCOC(=O)C=C GQTFHSAAODFMHB-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- NRAGZNCGXSWONH-UHFFFAOYSA-N 3-(3-hydroxy-2-phenylphenoxy)-2-phenylphenol Chemical compound C=1C=CC=CC=1C=1C(O)=CC=CC=1OC1=CC=CC(O)=C1C1=CC=CC=C1 NRAGZNCGXSWONH-UHFFFAOYSA-N 0.000 description 1
- ZAJAQTYSTDTMCU-UHFFFAOYSA-N 3-aminobenzenesulfonic acid Chemical compound NC1=CC=CC(S(O)(=O)=O)=C1 ZAJAQTYSTDTMCU-UHFFFAOYSA-N 0.000 description 1
- CVLHGLWXLDOELD-UHFFFAOYSA-N 4-(Propan-2-yl)benzenesulfonic acid Chemical compound CC(C)C1=CC=C(S(O)(=O)=O)C=C1 CVLHGLWXLDOELD-UHFFFAOYSA-N 0.000 description 1
- FUGYGGDSWSUORM-UHFFFAOYSA-N 4-hydroxystyrene Chemical compound OC1=CC=C(C=C)C=C1 FUGYGGDSWSUORM-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 241000270728 Alligator Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229920013683 Celanese Polymers 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- UAUDZVJPLUQNMU-UHFFFAOYSA-N Erucasaeureamid Natural products CCCCCCCCC=CCCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 241000364021 Tulsa Species 0.000 description 1
- 235000012545 Vaccinium macrocarpon Nutrition 0.000 description 1
- 235000002118 Vaccinium oxycoccus Nutrition 0.000 description 1
- 244000291414 Vaccinium oxycoccus Species 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 208000021017 Weight Gain Diseases 0.000 description 1
- ZZXDRXVIRVJQBT-UHFFFAOYSA-M Xylenesulfonate Chemical compound CC1=CC=CC(S([O-])(=O)=O)=C1C ZZXDRXVIRVJQBT-UHFFFAOYSA-M 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 229940047662 ammonium xylenesulfonate Drugs 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- WTSSRZUUXRDFPD-UHFFFAOYSA-N azane;4-ethenylbenzenesulfonic acid Chemical compound [NH4+].[O-]S(=O)(=O)C1=CC=C(C=C)C=C1 WTSSRZUUXRDFPD-UHFFFAOYSA-N 0.000 description 1
- LUAVFCBYZUMYCE-UHFFFAOYSA-N azanium;2-propan-2-ylbenzenesulfonate Chemical compound [NH4+].CC(C)C1=CC=CC=C1S([O-])(=O)=O LUAVFCBYZUMYCE-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical compound OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 229940106681 chloroacetic acid Drugs 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 235000004634 cranberry Nutrition 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- UAUDZVJPLUQNMU-KTKRTIGZSA-N erucamide Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-KTKRTIGZSA-N 0.000 description 1
- HIMSZPVHDPPXHO-UHFFFAOYSA-N ethenyl 4-methylbenzenesulfonate;sodium Chemical compound [Na].CC1=CC=C(S(=O)(=O)OC=C)C=C1 HIMSZPVHDPPXHO-UHFFFAOYSA-N 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 125000006162 fluoroaliphatic group Chemical group 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical class O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 229960002598 fumaric acid Drugs 0.000 description 1
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000004335 litholrubine BK Substances 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229940098895 maleic acid Drugs 0.000 description 1
- 229940044600 maleic anhydride Drugs 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- JAHMEIUBFPYPIM-UHFFFAOYSA-N methyl-tris(propan-2-ylperoxy)silane Chemical compound CC(C)OO[Si](C)(OOC(C)C)OOC(C)C JAHMEIUBFPYPIM-UHFFFAOYSA-N 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- HESSGHHCXGBPAJ-UHFFFAOYSA-N n-[3,5,6-trihydroxy-1-oxo-4-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexan-2-yl]acetamide Chemical compound CC(=O)NC(C=O)C(O)C(C(O)CO)OC1OC(CO)C(O)C(O)C1O HESSGHHCXGBPAJ-UHFFFAOYSA-N 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 150000004780 naphthols Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- LYTNHSCLZRMKON-UHFFFAOYSA-L oxygen(2-);zirconium(4+);diacetate Chemical compound [O-2].[Zr+4].CC([O-])=O.CC([O-])=O LYTNHSCLZRMKON-UHFFFAOYSA-L 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229940044654 phenolsulfonic acid Drugs 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- MYGBBCKCTXSGOB-UHFFFAOYSA-M potassium;2-propan-2-ylbenzenesulfonate Chemical compound [K+].CC(C)C1=CC=CC=C1S([O-])(=O)=O MYGBBCKCTXSGOB-UHFFFAOYSA-M 0.000 description 1
- GHKGUEZUGFJUEJ-UHFFFAOYSA-M potassium;4-methylbenzenesulfonate Chemical compound [K+].CC1=CC=C(S([O-])(=O)=O)C=C1 GHKGUEZUGFJUEJ-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000001044 red dye Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229940079842 sodium cumenesulfonate Drugs 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- 229940048842 sodium xylenesulfonate Drugs 0.000 description 1
- QUCDWLYKDRVKMI-UHFFFAOYSA-M sodium;3,4-dimethylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1C QUCDWLYKDRVKMI-UHFFFAOYSA-M 0.000 description 1
- XFTALRAZSCGSKN-UHFFFAOYSA-M sodium;4-ethenylbenzenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C1=CC=C(C=C)C=C1 XFTALRAZSCGSKN-UHFFFAOYSA-M 0.000 description 1
- KVCGISUBCHHTDD-UHFFFAOYSA-M sodium;4-methylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1 KVCGISUBCHHTDD-UHFFFAOYSA-M 0.000 description 1
- QEKATQBVVAZOAY-UHFFFAOYSA-M sodium;4-propan-2-ylbenzenesulfonate Chemical compound [Na+].CC(C)C1=CC=C(S([O-])(=O)=O)C=C1 QEKATQBVVAZOAY-UHFFFAOYSA-M 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229940037312 stearamide Drugs 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910001631 strontium chloride Inorganic materials 0.000 description 1
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- HIFJUMGIHIZEPX-UHFFFAOYSA-N sulfuric acid;sulfur trioxide Chemical compound O=S(=O)=O.OS(O)(=O)=O HIFJUMGIHIZEPX-UHFFFAOYSA-N 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- SWAXTRYEYUTSAP-UHFFFAOYSA-N tert-butyl ethaneperoxoate Chemical compound CC(=O)OOC(C)(C)C SWAXTRYEYUTSAP-UHFFFAOYSA-N 0.000 description 1
- 238000009988 textile finishing Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- QVLMUEOXQBUPAH-VOTSOKGWSA-N trans-stilben-4-ol Chemical compound C1=CC(O)=CC=C1\C=C\C1=CC=CC=C1 QVLMUEOXQBUPAH-VOTSOKGWSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- GNQQPTRATSISPA-UHFFFAOYSA-N triethoxy(2-ethylbutyl)silane Chemical compound CCO[Si](OCC)(OCC)CC(CC)CC GNQQPTRATSISPA-UHFFFAOYSA-N 0.000 description 1
- ALVYUZIFSCKIFP-UHFFFAOYSA-N triethoxy(2-methylpropyl)silane Chemical compound CCO[Si](CC(C)C)(OCC)OCC ALVYUZIFSCKIFP-UHFFFAOYSA-N 0.000 description 1
- DENFJSAFJTVPJR-UHFFFAOYSA-N triethoxy(ethyl)silane Chemical compound CCO[Si](CC)(OCC)OCC DENFJSAFJTVPJR-UHFFFAOYSA-N 0.000 description 1
- RFXMNCFJFSYLMT-UHFFFAOYSA-N triethyl 2-ethylbutyl silicate Chemical compound CCO[Si](OCC)(OCC)OCC(CC)CC RFXMNCFJFSYLMT-UHFFFAOYSA-N 0.000 description 1
- XYJRNCYWTVGEEG-UHFFFAOYSA-N trimethoxy(2-methylpropyl)silane Chemical compound CO[Si](OC)(OC)CC(C)C XYJRNCYWTVGEEG-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 229940071104 xylenesulfonate Drugs 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/227—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/227—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
- D06M15/233—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/263—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/39—Aldehyde resins; Ketone resins; Polyacetals
- D06M15/41—Phenol-aldehyde or phenol-ketone resins
- D06M15/412—Phenol-aldehyde or phenol-ketone resins sulfonated
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/643—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
Definitions
- This invention relates to a method for imparting soil-resistant, stain- resistant and optional water-repellent properties to fibrous substrates (such as carpet fibers) by applying an acidic aqueous treating composition containing at least one silsesquioxane, at least one stainblocker to the substrate.
- the composition may further contain a metal salt and/or a fluorochemical or hydrocarbon repellent material and/or an additional antisoiling materials such as a silicate.
- the composition may be a solution, dispersion or emulsion.
- This invention also relates to the treating composition used to impart soil resistance, stain resistance and optional water repellency to the carpet.
- This invention also relates to treated carpet made according to the method of this invention.
- U.S. Pat. No. 4,875,901 discloses a method for providing fibrous polyamide substrates with stain resistance by contacting the substrate with an aqueous solution comprising a normally solid, water-soluble, partially sulfonated novolac resin and a water-soluble polyvalent metal salt.
- U.S. Pat. No. 5,001 ,004 (Fitzgerald et al.) describes stain-resistant, polyamide textile substrates treated with compositions comprising hydrolyzed ethylenically unsaturated aromatic/maleic anhydride polymers and processes for their preparation.
- World Published Patent Application WO 98/50619 describes a method for imparting repellency, stain-resistance and soil-resistance to carpets by applying to the carpet via an immersion process an aqueous treating solution comprising a hydrocarbon material, a stainblocking material, and a salt.
- U.S. Pat. No. 5,073,442 describes a method for enhancing the soil- and/or stain-resistant characteristics of polyamide and wool fabric by applying to the fabric an aqueous solution containing sulfonated phenol formaldehyde compound, modified wax emulsion and acrylic resin.
- U.S. Pat. No. 3,493,424 (Mohrlok et al.) describes fibrous materials which are given antislip, dulling, and/or dry-soiling resistance properties by applying a colloidal suspension of a silsesquioxane, followed by drying the material.
- U.S. Pat. No. 4,351 ,736 (Steinberger et al.) describes a textile pile- stabilizing impregnating agent comprising a colloidal suspension of silicic acid and organosilsesquioxanes.
- U.S. Pat. No. 4,781 ,844 (Kortmann et al.) describes a textile finishing agent comprising an aqueous colloidal suspension of an organosilsesquioxane- containing sol and an organic polymer resin containing perfluoroalkyl groups which imparts soil resistance.
- This invention relates to a method for imparting soil-resistant, stain- resistant and optional repellent properties to fibrous polyamide substrates (such as carpet fibers) by applying an acidic aqueous treating composition containing at least one silsesquioxane and at least one stainblocker to the substrate.
- the composition may further contain metal salt and/or a fluorochemical or hydrocarbon repellent material.
- None of the treating compositions and methods described in the art discloses a method for treating a fibrous substrate using a composition comprising a silsesquioxane and a stainblocker to simultaneously achieve good antisoiling and good stain resistance properties.
- the compositions are surprisingly stable. Normally the stainblockers tend to be anionic while the silsesquioxane materials tend to be cationic; the combination of the two generally results in precipitation of one or more components and compromises the stainblocking properties of the composition.
- this invention relates to a method for imparting in-depth repellency, stain resistance and soil resistance to a fibrous substrate comprising the steps of:
- the composition further comprises a polyvalent metal salt exhausting aid and a fluorochemical repellent material having a receding contact angle to n-hexadecane of 45° or higher or a hydrocarbon repellent material having a receding contact angle to n-hexadecane of 35° or higher.
- a polyvalent metal salt exhausting aid and a fluorochemical repellent material having a receding contact angle to n-hexadecane of 45° or higher or a hydrocarbon repellent material having a receding contact angle to n-hexadecane of 35° or higher.
- divalent metal salts are described in U.S. 4,875,901 (Payet et al.).
- a fibrous substrate is first treated exhaustively by contacting substrate fibers with the aqueous treatment composition of this invention. Following this exhaustion process, the wet fibrous substrate is then heated in a water-saturated atmosphere such as a steam box for a time sufficient to affix the treating materials onto each fiber surface. The heated wet fibrous substrate may be subsequently rinsed with water and is dried in an oven at sufficient temperature to effectively activate the materials.
- a water-saturated atmosphere such as a steam box
- This invention also describes the resulting treated fibrous substrate which exhibit excellent anti-soiling, anti-staining and repellency performance.
- the fibrous substrate having had penetration of the fibers, offers significant protection again dry soiling when compared to untreated carpet as demonstrated by several cycles of "walk-on" tests, resists staining by aqueous acid staining agents such as red Kool-AidTM drink, and, with the inclusion of the hydrocarbon repellent, exhibits excellent dynamic water resistance (i.e., the treated carpet resists penetration by water-based drinks spilled from a height).
- a stainblocking material or “stainblocker” refers to a material which, when applied to a substrate, enhances the ability of the substrate to resist staining, for example, by natural or artificial colorants found in food or other household items.
- the stain resistance is accomplished without permanently and visibly changing (to the unaided eye) the color of the substrate, except for a slight yellowing of the substrate that is associated with the use of some known stainblocking materials, although it is most preferred that no permanent and visible yellowing of the substrate occur.
- the function of the exhaustive treating process is to contact the entirety of each fiber of the fibrous substrate with silsesquioxane, stainblocker and the optional materials.
- the exhaustive treating process can be any of several commonly encountered wet processing operations, including flex-nip, otting, fluidcon, KFA, puddle foamer and padding. Other application methods are envisioned, including applying the composition as part of a cleaning or detergent composition.
- the treating compositions of this invention contain silsesquioxanes.
- Useful silsesquioxanes include compounds of the formula RS ⁇ O 32 where R is an optionally substituted alkyl or aryl of up to 7 carbon atoms, and/or cocondensates of hydrosylates of tetraalkoxysilanes with organotrialkoxysilanes having RSiO 3/2 or Si ⁇ 2 units.
- Useful silsesquioxanes are described in U.S. Pat. Nos. 3,493,424, 4,351 ,736 and 4,781 ,844.
- Preferred silsesquioxanes are neutral or anionic silsesquioxanes, prior to addition to the composition.
- the treating compositions of this invention contain stainblockers.
- Useful stainblockers are typically sulfonated or carboxylated polymers, including sulfonated aromatic resins, polymers that are derived from at least one or more ( ⁇ - and/or ⁇ -substituted) acrylic acid monomers, and hydrolyzed copolymers of maleic anhydride and at least one or more ethylenically unsaturated monomers such as styrene and ⁇ -olefins.
- stainblockers are blends of at least two or more of these polymers, reaction products of at least two or more monomers from which these stainblockers may be derived, reaction products of at least one or more monomers from which the polymers may be derived and at least one of the polymers, and materials obtained by polymerizing at least one or more of the monomers in the presence of one or more of the polymers.
- Non- sulfonated phenolics such as tannic acid or phenolic resin obtained from dihydroxydiphenyl sulfone and formaldehyde may also be used.
- Suitable stainblockers for polyamide carpet are described in detail in U.S. Pat. No. 5,952,409 (Boardman et al.).
- the concentration of stainblocker should be at least 0.75% SOF (solids on fiber) and preferably is at least 2% SOF.
- the amount of stainblocker applied can be as low as 0.01 % and is normally used in that case as an emulsion stabilizer.
- a suitable repellent is defined as one which exhibits a receding contact angle to n-hexadecane of at least 35° for hydrocarbon repellents, or 45°C for fluorochemical repellents, or higher as measured by the Receding Contact Angle Test.
- a suitable repellent material is a hard, glassy, non-tacky material having a glass transition temperature ranging from about 20°C to about 130°C, as measured by the Glass Transition Temperature Test..
- the repellant material can be from any chemical class, but hydrocarbon urethanes and amides are preferred.
- the concentration of hydrocarbon material should be at least 0.01% SOF and is preferably at least 0.05% SOF.
- Metal salts may be incorporated into treating solutions having pHs greater than 1.5 to improve the exhaustion efficiency. Nearly any metal salt will suffice, such as sodium chloride, sodium bromide, sodium iodide, sodium sulfate, potassium chloride, ammonium sulfate, lithium sulfate, cesium chloride, tetramethylammonium chloride, zinc sulfate, copper sulfate, aluminum nitrate and zirconium oxyacetate.
- any metal salt such as sodium chloride, sodium bromide, sodium iodide, sodium sulfate, potassium chloride, ammonium sulfate, lithium sulfate, cesium chloride, tetramethylammonium chloride, zinc sulfate, copper sulfate, aluminum nitrate and zirconium oxyacetate.
- the metal salt be an alkaline earth divalent metal salt, e.g., a salt of magnesium, calcium, strontium or barium, such as magnesium sulfate, magnesium chloride, calcium chloride, calcium acetate, strontium chloride or barium chloride.
- the optimum divalent metal salts are described in detail in U.S. Pat. No. 4,875,901 (Payet et al.).
- the treatment composition is acidic to maximize exhaustion of materials to the fibrous substrate, preferably having a pH of from 1 to 5, more preferably a pH of from 1.5 to 3.5. Any protic acid is suitable but preferably should be an inexpensive, strong acid such as sulfuric acid, and sulfamic acid.
- Suitable fibrous substrates includes carpet, fabric, textiles and any substrate woven from fibers such as yarn or thread; carpet is the preferred form of the fibrous substrate.
- the fiber can be made from any number of thermoset or thermoplastic polymers, such as polyamide, polyester, acrylic and polyolefin; polyamide (e.g. nylon) is the preferred fiber. Where the composition imparts undesirable stiffness or a harsh hand to the fibrous substrate, softening agents such as are known in the art may be added.
- stainblocking materials may be used in the stainblocking compositions of the invention. Included among the useful materials are sulfonated aromatic polymers, polymers that are derived from at least one or more ⁇ - and/or ⁇ -substituted acrylic acid monomers, and hydrolyzed copolymers of at least one or more ethylenically unsaturated monomers and maleic anhydride.
- stainblocking materials are blends of at least two or more of these polymers, reaction products of at least two or more of the monomers from which these polymers may be derived, reaction products of at least one or more of the monomers from which the polymers may be derived and at least one or more of the polymers, and materials obtained by polymerizing at least one or more of the monomers in the presence of one or more of the polymers.
- Sulfonated aromatic polymers are a preferred stainblocking material.
- Desirable examples may comprise a condensation polymer of an aldehyde (e.g., formaldehyde or acetaldehyde) and a sulfonated aromatic compound, or a subsequently sulfonated condensation polymer of an aldehyde and an aromatic compound.
- aldehyde e.g., formaldehyde or acetaldehyde
- a sulfonated aromatic compound e.g., formaldehyde or acetaldehyde
- Various sulfonated aromatic compounds are available for use in the stainblocking compositions of the invention. However, among the most preferred materials are those which include hydroxyl functionality such as bis(hydroxy phenyl sulfone), hydroxy benzenesulfonic acid, hydroxynaphthalenesulfonic acid, sulfonated 4,4'-dihydroxydiphenylsulfone, and blends thereof.
- sulfonated aromatic polymers comprise a copolymer of an ethylenically unsaturated aromatic monomer (e.g., styrene) and a sulfonated ethylenically unsaturated aromatic monomer (e.g., styrene sulfonate).
- an ethylenically unsaturated aromatic monomer e.g., styrene
- sulfonated aromatic monomer e.g., styrene sulfonate
- Particularly preferred examples of the resulting polymers are acrylic polymers; i.e., polyacrylic acid, copolymers of acrylic acid and one or more other monomers that are copolymerizable with acrylic acid, and blends of polyacrylic acid and one or more acrylic acid copolymers.
- methacrylic polymers which includes polymethacrylic acid, copolymers of methacrylic acid and one or more other monomers that are copolymerizable with methacrylic acid, and blends of polymethacrylic acid and one or more methacrylic acid copolymers.
- a third preferred class of stainblocking materials are hydrolyzed copolymers of at least one or more ethylenically unsaturated monomers and maleic anhydride.
- the ethylenically unsaturated monomers can be alpha-olefin type monomers (e.g. 1-alkenes), alkyl vinyl ethers or, more preferably, aromatic monomers such as styrene.
- stainblocking materials may be obtained by blending together two or more polymers selected from among the different general classes of polymers described above, reacting together at least two or more monomers from which the different general classes of polymers are derived, reaction products of at least one or more of the monomers from which the polymers may be derived and at least one or more of the polymers, or by polymerizing at least one or more of the monomers in the presence of one or more of the polymers.
- one or more ⁇ - and/or ⁇ -substituted acrylic acid monomers may be polymerized together and, subsequent to the polymerization, blended with a sulfonated aromatic polymer.
- the ⁇ - and/or ⁇ -substituted acrylic acid monomers can be polymerized in the presence of a sulfonated aromatic polymer.
- a hydrolyzed copolymer of ethylenically unsaturated monomer and maleic anhydride may be combined with a sulfonated aromatic polymer, and, optionally, a polymer derived from at least one or more ⁇ - and/or ⁇ - substituted acrylic acid monomers.
- monomer is meant a polymerizable single unit (typically of low molecular weight) that provides repeating units in the ultimate polymer, as well as partially reacted materials that can still participate in a polymerization reaction so as to provide repeating units in the ultimate polymer.
- the expression “at least” recognizes, as explained below, that monomers in addition to those mentioned may participate in the polymerization.
- Sulfonated aromatic polymers useful in the invention may be obtained by condensation polymerizing an aldehyde with a sulfonated aromatic compound, the resulting polymer sometimes being referred to herein as either a sulfonated aromatic condensation polymer or as a condensation polymer.
- the resulting condensation polymer should contain a significant number of sulfonate groups.
- at least one sulfonate group is attached to at least 30% of the monomeric units of the condensation polymer, more preferably between 30% and 70% of the monomeric units.
- the resulting condensation polymer be substantially soluble in water to simplify handling and application of the stainblocking composition to a substrate at normal temperatures (about room temperature to 100° C, where "room temperature” refers to a temperature of about 20 to 25° C).
- the sulfonated aromatic polymer should have an effective sulfonic acid equivalent weight.
- an "effective sulfonic acid equivalent weight” is meant an equivalent weight that is sufficient to impart stain resistance to a substrate treated with the stainblocking composition, while rendering the stainblocking composition sufficiently water soluble or water dispersible to permit application to a substrate at normal temperatures (typically about room temperature to 100° C).
- the sulfonic acid equivalent weight is preferably about 300 to 1 ,200, more preferably, about 400 to 900.
- aldehyde that can be condensation polymerized with a sulfonated aromatic compound may be used in the invention.
- Suitable examples of such aldehydes include acetaldehyde, benzaldehyde, furfuraldehyde, and, most preferably, formaldehyde.
- Suitable sulfonated aromatic compounds for forming the condensation polymer include monomers such as benzene sulfonic acid (which, in general, may contain various combinations of alkyl, hydroxy and alkoxy substituents), toluene sulfonic acid, xylene sulfonic acid (e.g., 2,4-dimethyl benzene sulfonic acid), phenyl 4-sulfonic acid, cumene sulfonic acid, dodecylbenzene sulfonic acid, sulfonated diphenyl ether, benzaldehyde sulfonic acid, aminobenzene sulfonic acid, alkoxybenzenesulfonic acid, benzophenone sulfonic acid, sulfonated derivatives of styrene, dodecyl diphenyloxide disulfonic acid, sulfonated derivatives of naphthalene (e.g.,
- Including hydroxyl functionality in the sulfonated aromatic compound may enhance its solubility in water.
- Hydroxyl functionality may be introduced into the sulfonated aromatic compound (so as to form a sulfonated hydroxyaromatic compound) by either sulfonating a phenolic compound, or by polymerizing the aldehyde and the sulfonated aromatic compound with a hydroxyaromatic material (preferably a phenolic compound).
- Phenolic compounds useful in either approach include phenol, halogenated phenol (e.g., chlorophenol or trifluoromethylphenol), naphthol, dihydroxydiphenylsulfide, resorcinol, catechol, hydroxyarylcarboxylic acid (e.g., salicylic acid), hydroxyphenylphenyl ether, phenylphenol, alkylphenol (e.g., nonylphenol or cresol), dihydroxydiphenylsulfone, and bis(hydroxyphenyl)alkane (e.g., 2,2-bis(hydroxyphenyl)propane or 2,2,- bis(hydroxyphenyl)hexafluoropropane).
- phenol halogenated phenol
- naphthol e.g., dihydroxydiphenylsulfide
- resorcinol e.g., catechol
- hydroxyarylcarboxylic acid e.g., salicylic acid
- Resulting materials include sulfoalkylated phenol, (e.g., sulfomethylated dihydroxydiphenyl sulfone).
- Particularly preferred sulfonated hydroxyaromatic compounds include bis(hydroxyphenyl)sulfone, hydroxybenzenesulfonic acid, hydroxynapthalenesulfonic acid, and sulfonated 4,4'-dihydroxydiphenylsulfone.
- Enhanced solubility in water may also be obtained by providing the sulfonated aromatic compound as a salt based on, for example, sodium, potassium, or ammonium, such as sodium xylene sulfonate, ammonium xylene sulfonate, sodium toluene sulfonate, sodium cumene sulfonate, ammonium cumene sulfonate, potassium toluene sulfonate, potassium cumene sulfonate, and potassium xylene sulfonate.
- sodium xylene sulfonate such as sodium xylene sulfonate, ammonium xylene sulfonate, sodium toluene sulfonate, sodium cumene sulfonate, ammonium cumene sulfonate, potassium toluene sulfonate, potassium cumene sulfonate, and potassium xylene s
- condensation polymers consist essentially of repeating units of the formula
- R is the same or different in each unit, and is either hydrogen or a radical selected from the group consisting of -SO3 X,
- condensation polymers having these structures and which are water soluble have at least 40% of the repeating units containing an -SO3 X radial, and have at least 40% of the repeating units containing the group -SO2-.
- Sulfonated aromatic condensation polymers useful in the invention are described in U.S. Pat. No. 4,680,212 (Blyth et al.), U.S. Pat. No. 4,875,901 (Payet et al.), U.S. Pat. No.
- Sulfonated aromatic condensation polymers useful in the invention can be prepared by methods known to those skilled in the art. Sulfonation of phenolic compounds is described in, for example, Sulfonated and Related Reactions, E. E. Gilbert, Interscience Publishers, 1965. Methods of preparing condensation polymers of sulfonated aromatic compounds with formaldehyde are described in U.S. Pat. No.
- an aromatic compound such as phenol, naphthalene or naphthol is sulfonated, for example by reacting it with a sulfonating compound such as sulfuric acid, chlorosulfonic acid or alkaline sulfite so as to form a sulfonated aromatic compound.
- a sulfonating compound such as sulfuric acid, chlorosulfonic acid or alkaline sulfite so as to form a sulfonated aromatic compound.
- the sulfonated aromatic compound is then condensation polymerized with formaldehyde or other aldehyde, typically under acidic conditions. Mixtures of different sulfonated aromatic compounds can also be polymerized.
- one mole of sulfonated aromatic compound is reacted with 0.5 to 1.2 mole of aldehyde.
- the sulfonated aromatic condensation polymer can be subsequently reacted with a base (e.g., sodium hydroxide, potassium hydroxide, or ammonium hydroxide) so as to form a sulfonic acid salt.
- a base e.g., sodium hydroxide, potassium hydroxide, or ammonium hydroxide
- condensation polymers are typically sold as a sodium sulfonate salt.
- a sulfonated aromatic condensation polymer may be prepared by reacting an unsulfonated hydroxy aromatic compound (e.g., a phenolic compound such as phenol, naphthol, etc.) with an aldehyde such as formaldehyde and then sulfonating the resulting condensation polymer by treatment with fuming sulfuric acid.
- an unsulfonated hydroxy aromatic compound e.g., a phenolic compound such as phenol, naphthol, etc.
- an aldehyde such as formaldehyde
- Examples of useful, commercially available sulfonated aromatic condensation polymers include ErionalTM NW (Ciba-Geigy Limited; containing a naphthalene sulfonic acid polymer with formaldehyde and 4,4'- dihydroxydiphenylsulfone), ErionalTM PA (polymer of phenol sulfonic acid, formaldehyde, and 4,4' dihydroxydiphenyl sulfone from Ciba-Geigy), 3MTM brand stain release concentrate FX-369TM (3M Co.), TamolTM SN (Rohm & Haas Co.), MesitolTM NBS, Bayprotect CL or CSDTM (Bayer AG), NylofixanTM P (containing a formaldehyde condensation copolymer of 4,4'-dihydroxydiphenylsulfone and 2,4- dimethylbenzenesulfonic acid, manufactured by Sandoz Corp.), and IntratexTM N (Crompton &
- the effectiveness of a sulfonated aromatic condensation polymer in imparting stain resistance to a substrate may be improved by providing the condensation polymer in the form of a divalent metal salt.
- These salts are water soluble and are substantially free of sulfonic acid moieties (i.e., -SO3 H groups); that is, they typically contain less than 1 mole percent sulfonic acid moieties.
- the salt form of the polymer may be obtained by reacting the condensation polymer with a divalent metal oxide or hydroxide, or the divalent metal salt of a weak acid (e.g., carbonic acid, boric acid, or a carboxylic acid) so as to form an aqueous solution having a pH of at least 3.
- a weak acid e.g., carbonic acid, boric acid, or a carboxylic acid
- a sulfonated aromatic compound that is used to prepare the condensation polymer may first be converted to a salt (by using a divalent metal oxide or hydroxide, or a divalent metal salt of a weak acid) before reaction with an aldehyde to yield the salt form of the polymer.
- Suitable divalent metal oxides or hydroxides include oxides and hydroxides of calcium, magnesium and zinc.
- Divalent metal salts of weak acids include carbonates, bicarbonates, acetates, formates and borates of calcium, magnesium and zinc.
- Sulfonated aromatic condensation polymers may discolor ' with time and assume a yellow tint that can be undesirable, especially depending on the color of the substrate to which the stainblocking composition is applied. Thus, a blue substrate may acquire a greenish cast.
- One technique for reducing the tendency to change color is to remove color formers inherent in the stainblocking material. This can be accomplished by dissolving the condensation polymer in aqueous base so as to form a solution having a pH of about 8-12, acidifying the aqueous solution to a pH of about 2 to 7.5, heating the acidified material to a temperature of about 50 to 65° C.
- any acid is suitable, e.g. glacial acetic acid, dilute acetic acid, hydrochloric acid, sulfuric acid, oxalic acid, citric acid, or sulfamic acid. Such techniques are described in U.S. Pat. No. 4,833,009 (Marshall).
- acylate or etherify a portion of the free hydroxyl groups in the condensation polymer is to acylate or etherify a portion of the free hydroxyl groups in the condensation polymer.
- acylating or etherifying the free hydroxyl groups can reduce the stainblocking characteristics of the condensation polymer.
- the portion of the free hydroxyl groups that are so treated should strike a balance between a reduced tendency to yellow and effective stainblocking.
- Useful acylating agents include acetic anhydride and ethylchlorofomate (conversion of about 50% to 80% of the phenolic hydroxyl groups).
- Chloroacetic acid is a useful etherifying agent (conversion of about 40% to 60% of the phenolic hydroxyl groups).
- the acylated and etherified products can be prepared by dissolving the condensation polymer in an aqueous medium having a pH of 7 or above, preferably about 10 or 11 to 13 or 14 (the actual pH depending on the acylating or etherifying agent), and at a temperature that favors acylation or etherification.
- the water-insoluble phase can be separated from the unwanted water solution by filtering, centrifuging, decanting, etc., and then redissolved in a hydroxyl-functional material, such as ethylene glycol, 1 ,3-propylene glycol, or 1 ,3-butylene glycpl.
- a hydroxyl-functional material such as ethylene glycol, 1 ,3-propylene glycol, or 1 ,3-butylene glycpl.
- sulfonated aromatic polymers useful in the invention as stainblocking materials may comprise a copolymer of: (a) one or more ethylenically unsaturated aromatic monomers; and (b) one or more sulfonated ethylenically unsaturated aromatic monomers.
- ethylenically unsaturated aromatic monomers (a) include styrene, a- methylstyrene, 4-methyl styrene, stilbene, 4-acetoxystilbene, eugenol, isoeugenol, 4-allylphenol, safrole, and mixtures of these materials.
- the sulfonated monomers are water soluble, which can be facilitated by providing the monomer in the form of a salt, for example, salts of alkali metals (e.g., sodium) and ammonium salts.
- a salt for example, salts of alkali metals (e.g., sodium) and ammonium salts.
- alkali metals e.g., sodium
- ammonium salts e.g., sodium
- sulfonated monomers (b) may be used including those which result from sulfonating the ortho and/or para positions of the monomers used to provide ethylenically unsaturated aromatic monomer (a).
- Particular examples include sodium p-styrene sulfonate, sodium vinyl p-toluene sulfonate, ammonium p-styrene sulfonate.
- the ratio of units derived from monomer (a) to the units derived from monomer (b) is preferably about 0.1 to 10:1 , more preferably about 0.9:1.
- Materials of this type are described in International Patent Publication No. WO 92/07131 (E. I. du Pont de Nemours and Company).
- the sulfonated aromatic copolymers can be conveniently prepared by a variety of free radical-initiated polymerization reactions using, for example benzoyl peroxide or 2,2'-azobis (2- methylbutyronitrile).
- a second class of stainblocking materials useful in the invention are polymers of at least one or more ( -and/or ⁇ -substituted) acrylic acid monomers, these materials sometimes being referred to herein as ( ⁇ -and/or ⁇ -substituted) acrylic acid polymers.
- the use of the parenthetical expression "a-and/or b- substituted" indicates that substitution of the ⁇ - and ⁇ - positions of the acrylic acid monomer is independently optional. That is, both positions may be substituted, neither position may be substituted, or either one of the two positions may be substituted without the other-position being substituted.
- Organic radicals that may be used to provide R and R " 1 include aliphatic hydrocarbons (more preferably, alkyl moieties having about 1 to 20, most preferably about 1 to 4 carbon atoms such as methyl, ethyl, propyl and butyl), which, optionally, may be sulfonated or halogenated (for example, by chlorine or fluorine); and aromatic hydrocarbons (more preferably, a phenyl group), which, optionally, may be sulfonated, halogenated (for example, by chlorine or fluorine), hydroxylated (e.g., phenol or naphthol), or combinations thereof (e.g., sulfonated phenol or sulfonated naphthol).
- Halogens that may be used for R and R1 include chlorine and fluorine.
- Organic radicals that may be used to provide the X group include both aliphatic moieties (which may be linear, branched or cyclic, and preferably containing about 1 to 10 carbon atoms), or aromatic moieties, any of which may, optionally, be halogenated, sulfonated, carboxylated, hydroxylated or ethoxylated, including cationic (e.g., sodium, potassium, ammonium, and quaternary amine) salts of these materials.
- Cations that may be used to provide X include sodium, potassium, ammonium, and quaternary amine.
- Preferred monomers are defined by structures in which R1 is hydrogen, R is an alkyl group having 1 to 4 carbon atoms, phenyl, phenol, sulfonated phenol, naphthol, chlorine, or fluorine, and X is hydrogen, an alkyl group of 1 to 10 carbon atoms, sodium, potassium or ammonium.
- the most preferred monomer is methacrylic acid (R ⁇ and X are hydrogen, R is methyl).
- the ( ⁇ -and/or ⁇ -substituted) acrylic acid polymers are preferably sufficiently water-soluble or water dispersible that uniform application and penetration of the polymer into the substrate surface can be achieved at normal application temperatures (about room temperature to 100° C). However, excessive water solubility may reduce the treated substrate's resistance to staining by acid colorants, as well as the effectiveness of the stainblocking compositions after cleaning the substrate.
- the glass transition temperature of the ( ⁇ -and/or ⁇ -substituted) acrylic acid polymers can be as low as about 35° C. although higher glass transition temperatures are preferred. When polymers having high glass transition temperatures (e.g., about 90° C. or higher) are used, an additional benefit of improved soil resistance may be obtained.
- the weight average molecular weight and the number average molecular weight of the ( ⁇ -and/or ⁇ -substituted) acrylic acid polymers should be selected so as to provide satisfactory stain resistance, water solubility, viscosity, and ability to be handled in conventional stainblocking material manufacturing and application processes.
- the lower 90 weight percent of the polymer has a weight average molecular weight of about 3,000 to 250,000, and a number average molecular weight of about 500 to 50,000, more preferably about 800 to 10,000.
- a larger proportion of water-soluble comonomer is preferred for high molecular weight polymers and a larger proportion of water-insoluble comonomer is preferred for low molecular weight polymers.
- a water soluble copolymer of acrylic acid and methacrylic acid may have a weight average molecular weight of about 80,000 to 500,000, more preferably about 100,000 to 350,000, and most preferably about 130,000 to 200,000.
- the acrylic acid preferably comprises about 1 to 20 weight percent, more preferably about 5 to 15 weight percent, while the methacrylic acid correspondingly provides about 99 to 80 weight percent, more preferably, about 95 to 85 weight percent, the sum of the acrylic acid and methacrylic acid equaling 100 weight percent.
- acrylic polymers i.e., polyacrylic acid, copolymers of acrylic acid and one or more other monomers that are copolymerizable with acrylic acid, and blends of polyacrylic acid and one or more acrylic acid copolymers. These can be produced using well-known techniques for polymerizing ethylenically unsaturated monomers.
- methacrylic polymers i.e., polymethacrylic acid, copolymers of methacrylic acid and one or more other monomers that are copolymerizable with methacrylic acid, and blends of polymethacrylic acid and one or more methacrylic acid copolymers.
- the methacrylic polymers useful in the invention can also be prepared using methods well-known in the art for polymerization of ethylenically unsaturated monomers.
- Monomers useful for copolymerization with either the acrylic acid or the methacrylic acid have ethylenic unsaturation.
- Such monomers include monocarboxylic acids, polycarboxylic acids, and anhydrides of the mono- and polycarboxylic acids; substituted and unsubstituted esters and amides of carboxylic acids and anhydrides; nitriles; vinyl monomers; vinylidene monomers; monoolefinic and polyolefinic monomers; and heterocyclic monomers.
- Specific representative monomers include acrylic acid, itaconic acid, citraconic acid, aconitic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid, cinnamic acid, oleic acid, palmitic acid, vinyl sulfonic acid, vinyl phosphonic acid, and substituted or unsubstituted alkyl and cycloalkyl esters of these acids, the alkyl or cycloalkyl groups having 1 to 18 carbon atoms such as methyl, ethyl, butyl, 2- ethylhexyl, octadecyl, 2-sulfoethyl, acetoxyethyl, cyanoethyl, hydroxyethyl, b- carboxyethyl and hydroxypropyl groups.
- amides of the foregoing acids such as acrylamide, methacrylamide, methylolacrylamide, 1 ,1- dimethylsulfoethylacrylamide, acrylonitrile, and methacrylonitrile.
- Various substituted and unsubstituted aromatic and aliphatic vinyl monomers may also be used; for example, styrene, a-methylstyrene, p-hydroxystyrene, chlorostyrene, sulfostyrene, vinyl alcohol, N-vinyl pyrrolidone, vinyl acetate, vinyl chloride, vinyl ethers, vinyl sulfides, vinyl toluene, butadiene, isoprene, chloroprene, ethylene, isobutylene, and vinylidene chloride.
- sulfated natural oils such as sulfated castor oil, sulfated sperm oil, sulfated soybean oil, and sulfonated dehydrated castor oil.
- Particularly useful monomers include ethyl acrylate, butyl acrylate, itaconic acid, styrene, sodium sulfostyrene, and sulfated castor oil, either alone or in combination.
- the methacrylic polymers may be polymerized in the presence of chain transfer agents or other polymers which may incorporate into the methacrylic polymer during polymerization.
- the methacrylic acid preferably provides about 20 to 100 weight percent, more preferably about 60 to 90 weight percent, of the polymer.
- the optimum proportion of methacrylic acid in the polymer depends on the comonomer(s) used, the molecular weight of the copolymer, and the pH at which the material is applied.
- water-insoluble comonomers such as ethyl acrylate are copolymerized with methacrylic acid, they may comprise up to about 40 weight percent of the methacrylic polymer.
- the water soluble comonomers When water-soluble comonomers such as acrylic acid or sulfoethyl acrylate are copolymerized with methacrylic acid, the water soluble comonomers preferably comprise no more than 30 weight percent of the methacrylic polymer and preferably the methacrylic polymer also comprises up to about 50 weight percent water-insoluble monomer.
- acrylic polymers useful as stainblocking materials include AcrysolTM (available from Rohm and Haas Company) and CarbopolTM from B. F. Goodrich.
- methacrylic polymers generally useful in the present invention include the LeukotanTM family of materials such as LeukotanTM 970, LeukotanTM 1027, LeukotanTM 1028, and LeukotanTM QR 1083, available from Rohm and Haas Company.
- a third class of stainblocking materials useful in the invention are hydrolyzed polymers of maleic anhydride and at least one or more ethylenically unsaturated monomers.
- the unsaturated monomer may be an alpha-olefin monomer or an aromatic monomer, although the latter is preferred.
- a variety of linear and branched chain alpha-olefins may be used including alkyl vinyl ethers.
- alpha-olefins are 1-alkenes containing 4 to 12 carbon atoms, such as isobutylene, 1-butene, 1-hexene, 1-octene, 1-decene, and 1-dodecene, with isobutylene and 1-octene being preferred, and with 1-octene being most preferred.
- a portion of the alpha-olefins can be replaced by one or more other monomers, e.g., up to 50 wt.
- alkyl (C1-4) acrylates alkyl (C ⁇ -4) methacrylates, vinyl sulfides, N-vinyl pyrrolidone, acrylonitrile, acrylamide, as well as mixture of the same.
- ethylenically unsaturated aromatic monomers may be used to prepare the hydrolyzed polymers.
- the ethylenically unsaturated aromatic monomers may be represented by the general formula:
- R 1 is H-, CH3- or phenyl
- R2 is H- or CH3 -;
- R 3 is H- or CH3 O-;
- R 4 is H-, CH3 -, or acetyl and
- R 3 plus R 4 is -CH2 - O-CH2 -O-CH2 -.
- ethylenically unsaturated aromatic monomers include free radically polymerizable materials such as styrene, ⁇ -methylstyrene, 4-methyl styrene, stilbene, 4-acetoxystilbene (used to prepare a hydrolyzed polymer from maleic anhydride and 4-hydroxy-stilbene), eugenol, isoeugenol, 4-allylphenol, safrole, mixtures of these materials, and the like. Styrene is most preferred. The utility of some of these materials may be improved by increasing the amount of polymerization initiator or acylating or etherifying the phenolic hydroxy groups.
- the ratio of units derived from ethylenically unsaturated monomer to units derived from maleic anhydride is about 0.4:1 to 1.3:1 when the unsaturated monomer is an alpha-olefin, and is about 1 :1 to 2:1 when using an unsaturated aromatic monomer. In any event, a ratio of about 1 :1 is most preferred.
- Hydrolyzed polymers suitable for use in the invention may be prepared by hydrolyzing ethylenically unsaturated maleic anhydride polymers. Alkali metal hydroxides (such as potassium hydroxide, lithium hydroxide and, most often, sodium hydroxide, as well as blends of these) are suitable hydrolyzing agents. Hydrolysis can be effected in the presence of more than or less than a molar amount of the alkali metal hydroxide. The presence of an alcohol in the hydrolysis mixture should be avoided.
- Hydrolyzed polymers of at least one or more alpha-olefin monomers and maleic anhydride useful in the stainblocking compositions of the invention are described in U.S. Pat. No. 5,460,887 (Pechhold). Hydrolyzed polymers of at least one or more ethylenically unsaturated aromatic monomers and maleic anhydride useful in the stainblocking compositions of the invention are described in U.S. Pat. No. 5,001 ,004 (Fitzgerald et al.).
- stainblocking materials may be obtained: (1) by blending together at least two or more polymers selected from among the different general classes of polymers described above; (2) by reacting together at least two or more monomers from which the different general classes of polymers are derived; (3) as the reaction product of at least one or more of the monomers from which the polymers may be derived and at least one or more of the polymers; or (4) by polymerizing at least one or more of the monomers in the presence of one or more of the polymers.
- one or more ( ⁇ -and/or ⁇ -substituted) acrylic acid monomers may be polymerized together and, subsequent to the polymerization, blended with a sulfonated aromatic polymer. This permits both the carboxyl functionality from the ( ⁇ -and/or ⁇ -substituted) acrylic acid polymer and the sulfonate functionality from the sulfonated aromatic polymer to contribute to the stainblocking properties of the composition.
- Such blends comprise a sulfonated aromatic condensation polymer (e.g., the condensation polymerization product of an aldehyde such as formaldehyde or acetaldehyde, a hydroxyaromatic compound such as bis(hydroxyphenyl)sulfone, phenol or napthol, and phenylsulfonic acid), and methacrylic polymer (e.g., polymethacrylic acid or a copolymer of methacrylic acid and or more of the following monomers: ethyl acrylate, butyl acrylate, itaconic acid, styrene, sodium sulfostyrene, sulfated castor oil, and acrylic acid).
- a sulfonated aromatic condensation polymer e.g., the condensation polymerization product of an aldehyde such as formaldehyde or acetaldehyde, a hydroxyaromatic compound such as bis(hydroxyphenyl)sulfone
- the amounts of the sulfonated aromatic polymer and the ( ⁇ -and/or ⁇ - substituted) acrylic acid polymer used should be sufficient to provide the desired degree of stain resistance to the substrate.
- the substrate is nylon 6,6
- lower application levels can be used than when the substrate is nylon 6 or wool.
- the substrate is yarn heat-set under moist conditions (e.g., in an autoclave)
- generally higher application levels are required than when the yarn is heat-set under substantially dry conditions.
- the amount of sulfonated aromatic polymer is at least about 0.1% SOF, more preferably at least about 0.2% SOF, most preferably at least about 0.4% SOF when treating nylon 6,6 carpet fiber.
- amounts of sulfonated aromatic polymer in excess of about 2% SOF provide little added benefit.
- amount of ( ⁇ -and/or ⁇ -substituted) acrylic acid polymer is at least about 0.1 % SOF, more preferably at least about
- 0.2% SOF most preferably at least about 0.4% SOF when treating nylon 6,6 carpet fiber.
- amounts of ( ⁇ -and/or ⁇ -substituted) acrylic acid polymer in excess of 2% SOF provide little added benefit.
- the amount of sulfonated aromatic polymer used is at least about 0.2% SOF, more preferably at least about 0.4% SOF, based on the weight of the fiber when treating nylon 6 carpet fiber.
- the amount of ( ⁇ -and/or ⁇ -substituted) acrylic acid polymer is at least about 0.2 more, % SOF, preferably at least about 0.4% SOF when treating nylon 6 carpet fiber.
- the ( ⁇ -and/or ⁇ -substituted) acrylic acid monomer may be polymerized in the presence of the sulfonated aromatic polymer.
- a sulfonated aromatic condensation polymer e.g., the condensation polymerization product of an aldehyde such as
- a free radical polymerization initiator is added to initiate polymerization of the ( ⁇ -and/or ⁇ -substituted) acrylic acid monomer in the presence of the sulfonated aromatic polymer.
- Useful initiators include persulfates (e.g., potassium persulfate, ammonium persulfate, or sodium persulfate), peroxides (e.g., sodium peroxide, hydrogen peroxide, benzoyl peroxide, acetyl peroxide, lauryl peroxide, cumyl peroxide, t-butyl peroxide, or t-butyl hydroperoxide), azo compounds (e.g., azo-bis-isobutryonitrile), and hydrochloride salts of azo compounds.
- persulfates e.g., potassium persulfate, ammonium persulfate, or sodium persulfate
- peroxides e.g., sodium peroxide, hydrogen
- a stainblocking material may be prepared by reacting a sulfonated hydroxy aromatic compound with isocyanate, carboxylic acid, carboxylic acid " anhydride, carboxylic acid chloride, or other carboxylic acid precursor, any of which may be saturated or unsaturated.
- the ester formed by this reaction may then be reacted by itself or with an ( ⁇ -and/or ⁇ -substituted) acrylic acid, and a free radical polymerization initiator, either in the presence of or in the absence of another sulfonated aromatic polymer.
- the ester formed from the first reaction may be homopolymerized or copolymerized with an aromatic compound in an aldehyde condensation reaction.
- the resulting product can be further reacted, either by itself or with an ( ⁇ -and/or ⁇ -substituted) acrylic acid in the presence of a free radical polymerization initiator.
- a free radical polymerization initiator include persulfates (e.g., ammonium persulfate, sodium persulfate, or potassium persulfate), peroxides (e.g., sodium peroxide, hydrogen peroxide, benzoyl peroxide, acetyl peroxide, lauryl peroxide, cumyl peroxide, t- butyl peroxide, or t-butyl hydroperoxide), an azo compound (e.g., azo-bis- isobutyronitrile), and peracetate (e.g., t-butyl peracetate).
- persulfates e.g., ammonium persulfate, sodium persulfate, or potassium persulfate
- peroxides
- a part of the maleic anhydride (up to 30 weight %) can be replaced by acrylic or methacrylic acid.
- a part (preferably 1-75% by weight) of the maleic anhydride can be replaced by maleimide, N-alkyl (C-j-4) maleimides,
- N-phenyl-maleimide fumaric acid, itaconic acid, citraconic acid, aconitic acid, crotonic acid, cinnamic acid, alkyl (C-
- Particularly preferred blends comprise about 95 to 30 weight % of hydrolyzed polymer of ethylenically unsaturated aromatic monomer and maleic anhydride (more preferably, about 85 to 40 weight %), and about 5 to 70 weight % of a sulfonated aromatic condensation polymer, e.g., a sulfonated phenol- formaldehyde condensation polymer (more preferably, about 15 to 60 weight %), wherein the sum of these two components is 100 weight %.
- a sulfonated aromatic condensation polymer e.g., a sulfonated phenol- formaldehyde condensation polymer (more preferably, about 15 to 60 weight %)
- the emulsifying agent is used in an amount sufficient to provide a stable emulsion, typically about 0.1 to 8%.
- Typical fluorochemicals are produced by condensation of a fluorinated alcohol or fluorinated primary amine with a suitable anhydride or isocyanate, for example, N-ethyl perfluorooctyl-sulfonamidoethanol and toluene diisocyanate reacted in a 2:1 molar ratio.
- silsesquioxane materials can be any of the types described in U.S. Patent Nos. 4,781 ,844 (Kortmann, et al), 4,351 ,736 (Steinberger et al.), 5,073, 442 (Knowlton et al.) or 3,493,424 (Mohriok et al.). These silsesquioxanes are of the formula R-Si(OR') 3 alone or together with silanes of the formula Si(OR') 4 .
- R represents a substituted or unsubstituted hydrocarbon radical having 1 to 7 carbon atoms, substituents of which may be halogen atoms and mercapto and epoxy groups.
- R' represents an alkyl radical with 1 to 4 carbon atoms.
- Preferred silsesquioxanes are those that are neutral or anionic.
- the silsesquioxanes may be prepared by adding silanes to a mixture of water, a buffer, a surface active agent and optionally an organic solvent, while agitating the mixture under acidic or basic conditions. It is preferable to add the quantity of silane uniformly and slowly in order to achieve a narrow particle size of 200 to 500 Angstroms. The exact amount of silane that can be added depends on the substituent R and whether an anionic or cationic surface active agent is used.
- Copolymers of the silsesquioxanes in which the units can be present in block or random distribution are formed by the simultaneous hydrolysis of the silanes.
- the preferred amount of silane of the formula Si(OR') 4 added is about 2 to 50 percent, relative to the total weight of the silanes employed, prefereably 3 to 20 percent.
- silanes are useful in preparing the silsesquioxanes of the present invention: methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxyoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, 2- ethylbutyltriethoxysilane, tetraethoxysilane, and 2-ethylbutoxytriethoxysilane.
- composition may further comprise a repellent material selected from the group consisting of glassy fluorochemicals having a receding contact angle to n-hexadecane of 45° or higher and glassy hydrocarbons having a receding contact angle to n-hexadecane of 35° or higher.
- a repellent material selected from the group consisting of glassy fluorochemicals having a receding contact angle to n-hexadecane of 45° or higher and glassy hydrocarbons having a receding contact angle to n-hexadecane of 35° or higher.
- the treatments of this invention may contain certain repellent fluorochemical material and/or hydrocarbon material.
- Suitable fluorochemicals for use in the present invention should exhibit a receding contact angle to n- hexadecane of at least 45° or higher, preferably at least 65° or higher, and more preferably at least 70° or higher, as measured by the Receding Contact Angle Test described herein.
- suitable fluorochemical materials are hard, glassy, non-tacky, non-cationic materials having a glass transition temperature ranging from about 20°C to about 130°C.
- the fluorochemical material can be from any chemical class, but fluorochemical urethanes are preferred.
- the fluorochemical material preferably contains a fluoroaliphatic group, and most preferably, a perfluoroaliphatic group.
- concentration of fluorochemical material should be at least 0.03% SOF (solids on fiber) and preferably is at least 0. 1 % SOF.
- SOF solids on fiber
- FC-214-30 a fluorochemical acrylate/urethane commercially available as a 30% (wt) solids aqueous emulsion from Minnesota Mining, and Manufacturing Company, St. Paul, Minnesota.
- F-3 - Scotchgard Tm Carpet Protector FC-358 - a fluorochemical carbodiimide, commercially available as a 20% (wt) solids aqueous emulsion from Minnesota Mining and Manufacturing Company.
- F-5 - 3M Brand Protector FX-365 - a fluorochemical urethane commercially available as a 24% (wt) solids aqueous emulsion from Minnesota Mining and Manufacturing Company.
- FC-1367F a fluorochemical ester, commercially available as a 41 % (wt) solids aqueous emulsion from Minnesota Mining and Manufacturing Company.
- F-11 - Duratech T carpet treatment believed to be a fluorochemical urethane/urea, commercially available as a 30% (wt) solids aqueous emulsion from E.I. duPont de Nemours & Co., Wilmington, Delaware
- F-11 A - NRD-372 carpet treatment believed to be a fluorochemical urethane/urea, commercially available as a 27% (wt) solids aqueous emulsion from E.I. duPont de Nemours & Co.
- F-12 - Zonyl Tm 8779 carpet treatment commercially available as an I I %
- F-13 - Softech Tm 97H carpet treatment believed to be a fluoroalkyl acrylate polymer, commercially available as a 15% (wt) solids aqueous emulsion from Dyetech, Inc., Dalton, Georgia F-14 - ShawguardTm 353 fluoroalkyl acrylate copolymer - commercially available as a 13% (wt) solids aqueous emulsion from Shaw Industries, Inc.
- Emulsification 100 g of the above solid urethane was added to 250 g of methyl isobutyl ketone (MIBK), and the mixture was heated to approximately 90 oC to dissolve the urethane in the solvent.
- MIBK methyl isobutyl ketone
- Another mixture consisting of 500 g of water and 5 g of Rhodacal Tm DS-10 surfactant (commercially available from Rhone-Poulenc Corp., Cranberry, New Jersey) was heated to 70°C to dissolve the surfactant.
- the two liquids were mixed with stirring and were subjected to 12 minutes of emulsification using a Branson Sonifier TM Ultrasonic Horn 450 (commercially available from VWR Scientific).
- the solution was stripped of organic solvent on a rotary evaporator.
- the MIBK was co-distilled with a certain amount of water. When inspection revealed the there was no longer any odor of solvent, the amount of solids was measured and sufficient water was added to bring the final
- Suitable hydrocarbon materials for use in the present invention exhibit a receding contact angle to n-hexadecane of at least 35° or higher as measured by the Receding Contact Angle Test described herein. Additionally, suitable hydrocarbon materials are hard, glassy, non-tacky, non- cationic, fluorine-free materials having at least one aliphatic group and having a glass transition temperature ranging from about 20 oC to about 130°C.
- the aliphatic group is preferably a long-chain aliphatic group containing at least 10 carbon atoms, and more preferably containing between about 12 and about 24 carbon atoms.
- the hydrocarbon material can be from any chemical class, but hydrocarbon urethanes and amides are preferred.
- the concentration of hydrocarbon material should be at least 0. 1 % SOF and is preferably at least 0.2% SOF.
- Desmodur Tm N100 triisocyanate (a biuret isocyanate trimer derived from hexamethylene triisocyanate, commercially available from Mobay Corp., Pittsburgh, Pennsylvania) was added along with 500 g of methyl ethyl ketone (MEK) by funnel to a 2000 mL three-necked round bottom flask fitted with stirrer and condenser. Heat was applied to the mixture using a heat lamp and agitation was started. 500 mg of dibutyltin dilaurate was added, resulting in a slight exotherm, and the mixture was refluxed for 2.5 hrs.
- MEK methyl ethyl ketone
- the final emulsion weight percent solids was 20.0%.
- H-2 Hexadecyl urethane of Desmodur Tm N100 - Essentially the same procedure for synthesis and emulsification was used to prepare H-2 as was used to prepare H- 1 except that 272 g (1. 12 eq) of hexadecanol replaced 285 - (1.06 eq) of octadecanol. The final emulsion weight percent solids was 20.0%.
- H- 1 the same procedure for synthesis and emulsification was used to prepare H-3 as was used to prepare H- 1 except that 256 g (1.20 eq) of tetradecanol replaced 285 g (1.06 eq) of octadecanol and 244 - (1.28 eq) rather than 228 (1.12 eq) of Desmodur Tm N 100 triisocvanate was used.
- the final emulsion weight percent solids was 20.0%.
- H-4 Dodecyl urethane of Desmodur T N100 - Essentially the same procedure for synthesis and emulsification was used to prepare H-4 as was used to prepare H- 1 except that 239 g (1.28 eq) of dodecanol replaced 285 g (1.06 eq) of octadecanol and 261 g (1.37 eq) rather than 228 cy (1. 12 eq) of DesmoduFm NIOO triisocyanate was used. The final emulsion weight percent solids was 20.0%.
- H-4A Octadecyl urethane of Desmodur Tm N75 -
- H-4A Octadecyl urethane of Desmodur Tm N75 -
- 284 g ( 1. 10 eq) of Desmodur Tm N75 replaced 228 g (1. 12 eq) of Desmodur Tm N 100 triisocyanate.
- the final emulsion weight percent solids was 18.0%.
- H-5 Octadecyl urethane of isophorone diisocyanate -
- H-5 Essentially the same procedure for synthesis and emulsification was used to prepare H-5 as was used to prepare H- 1 except that 348 g (1.29 eq) rather than 285 g (1.06 eq) of octadecanol was used and 152 g (1.37 eq) of isophorone diisocyanate replaced 228 g (1. 12 eq) of Desmodur Tm NIOO triisocyanate. The final emulsion weight percent solids was 20.0%.
- H-6 Hexadecyl urethane of isophorone diisocyanate -
- H-5 was used to prepare H- 1 except that 336 g (1.39 eq) of hexadecanol replaced 285 g (1.06 eq) of octadecanol and 164 g (1.47 eq) of isophorone diisocyanate replaced 228 g (1. 12 eq) of Desmodur Tm N 100 triisocyanate.
- the final emulsion weight percent solids was 20.0%.
- the mixture was poured into shallow pans in an oven for 6 hours at 125 oC .
- the material was collected as a hard white glassy material and was emulsified as described in the preparation of Hydrocarbon Material H-1.
- reaction was heated at 125-135°C for 1.5 hours.
- the reaction was cooled to room temperature and 282g of a glassy solid was collected.
- the reaction was heated to 190°C for 1 hour. There was 67 mL of water collected in the Dean-Stark trap after 1.5 hours. Next, the reaction was cooled and allowed to stand at room temperature over the weekend. Then the reaction was heated to 2 1 O°C for one hour and then cooled. 2271 g of a white solid was collected, and its identification was confirmed an infrared and I 3C NMR spectra. The melting point was measured to be 85°C.
- H-13 - Dytek / Bis-stearamide A three necked 1000 mL flask was equipped with a Dean-Stark trap and an overhead stirrer. 284 g (1.0 mol) of stearic acid, 1.4 g of lrganoXTm 245 (commercially available from Ciba Specialty Chemicals) was added to the reaction flask. The reaction flask was purged with nitrogen for 30 minutes. Next, the flask was slowly heated to 100°C, at which point all of the stearic acid had melted. 63g (0.54 mol) of Dytek Tm A diamine (commercially available from E. 1.
- duPont de Nemours, Wilmington, Delaware was added to the reaction and the reaction was heated to 170-180°C. There was 9 mL of water collected in the Dean-Stark trap after 1.5 hours. Next, the reaction was heated to 200°C and placed under vacuum (6 mm torr) for 30 minutes. The reaction was cooled and 260 g of a white solid was collected. Product identification was confirmed by an infra red spectrum, and the melting point was 1 10°C.
- the material used in the present invention to impart oil repellency, water repellency and soil resistance to a fibrous substrate can be a hybrid of the fluorochemicals and hydrocarbons previously mentioned.
- Such materials may be, for example, the reaction product of a fluorochemical with a hydrocarbon material.
- the resulting material must be a hard, glassy, non-tacky material having a glass transition temperature ranging from about 20°C to about 130°C.
- hybrid materials is a nonexhaustive list of hybrid materials:
- FH-2 - Urethane Reaction Product of Desmodur Tm N-75 with 50% (mol) of MeFOSE and 50% (mol) of stearyl alcohol Essentially the same procedure for synthesis and emulsification was used to prepare FH-2 as was used to prepare FH-1 , except that 184 g (0.33 eq) of MeFOSE alcohol, 144 g (0.53 eq) of octadecanol, 230 g (0.89 eq) of Desmodur TM N75 triisocyanate and 443 g of MI1 BK were used. The final emulsion weight percent solids was 15.3%.
- FH-3 - Urethane Reaction Product of Desmodur N-75 with 25 % (mol) of MeFOSE and 75% (mol) of stearyl alcohol Essentially the same procedure for synthesis and emulsification was used to prepare FH-3 as was used to prepare FH- 1 , except that 92 g (0. 16 eq) of MeFOSE alcohol, 216 g (0.80 eq) of octadecanol, 257 g (0.99 eq) of DesmoduFm N75 triisocyanate and 436 g M1 BK were used. The final emulsion weight percent solids was 15.3%.
- FH-4 - Urethane Reaction Product of Desmodur N-75 with 10% (mol) of MeFOSE and 90% (mol) of stearyl alcohol Essentially the same procedure for synthesis and emulsification was used to prepare FH-4 as was used to prepare FH- 1 , except that 37 g (0.07 eq) of MeFOSE alcohol, 258 g (0.96 eq) of octadecanol, 273 g (1.05 eq) of Desmodur TM N75 triisocyanate and 432 g MEBK were used. The final emulsion weight percent solids was 15.3%.
- compositions may further contain a divalent metal salt.
- the divalent metal salts useful in the present invention include water soluble inorganic and organic salts of metals such as magnesium, barium, calcium, and zinc.
- Inorganic metal salts include chlorides, sulfates, and nitrates of these metals.
- Organic metal salts include acetates and formates of these metals.
- Preferred divalent metal salts are magnesium sulfate, magnesium chloride and magnesium acetate. Mixtures of two or more salts can also be used in this invention.
- magnesium salts are preferably used to achieve both stain resistance and oil and water repellency.
- the divalent metal salts are preferably used in an amount of at least 1 % sof, more preferably at least 1.5% solids sof, most preferably at least 2% solids. Amounts of the salt in excess of 5% sof generally do not provide any appreciable increase in stain resistance.
- the composition of this invention comprises from about 0.01 to 1.0 grams of silsesquioxane (0.000025 to 0.0025 wt %), and about 0.05 to 5 grams of stainblocker (0.0001 to 0.0125 wt.%) dissolved in 400 g of water.
- This composition may be used to exhaustively treat about 100 g of carpet.
- the composition comprises from about 0.05 to 0.5 grams of silsesquioxane, and about 0.1 to 1.0 grams of stainblocker.
- the hydrolysis reaction was allowed to continue overnight at 60°C with stirring, the resulting reaction product was filtered, then sufficient 20% aqueous H 4 OH was added to adjust the pH of the mixture to 7.
- the neutralized mixture was then stripped using a rotovap set at 50°C to produce 530 g of distillate consisting primarily of methanol with a small amount of water.
- the anionic emulsion of silsesquioxane that had formed was 14% solids and had an average particle diameter of approximately 30 nm, as measured using the Multi Angle Sizing (MAS) option on a Zeta Plus zeta potential analyzer (available from Brookhaven Instruments Corp., Holtsville, NY).
- MAS Multi Angle Sizing
- aqueous NH OH was then added to adjust the pH of the mixture to 7.
- 1200 g of the neutralized mixture was then stripped using a rotovap set at 50°C to produce 310 g of distillate consisting primarily of ethanol with a small amount of water.
- the anionic emulsion of silsesquioxane that had formed was 16.8% solids and had an average particle diameter of approximately 30 nm, as measured using the Multi Angle
- MEK was removed by placing the trays in a vacuum oven at 250°F (121°C). When the solvent had been removed the trays were cooled and the resultant solid urethane was placed into glass bottles.
- An emulsion of the urethane in water was then prepared as follows. 100 g of the above solid urethane was added to 250 g of methyl isobutyl ketone (MIBK), and the mixture was heated to approximately 90°C to dissolve the urethane in the solvent. Another mixture consisting of 500 g of water and 5 g of RHODACALTM DS-10 surfactant (sodium dodecylbenzenesulfonate, available from Rhodia, Inc., Cranbury, NJ) was heated to 70°C to dissolve the surfactant. The two liquids were mixed with stirring and were subjected to 12 minutes of emulsification using a BRANSON SONTEIERTM Ultrasonic
- UPBEAT - UPBEATTM nylon 6 carpet light cream color, color no. 45101, style 51145, having a face weight of 26 oz/yd 2 (0.93 kg/m 2 ), available from Shaw Industries,
- Simulated Flex-Nip Application Procedure The Simulated Flex-Nip Application Procedure described below was used to simulate the flex-nip operations used by carpet mills to apply stainblocking composition to carpet.
- a carpet sample measuring approximately 12 inches by 12 inches (30 cm x 30 cm), typically weighing approximately 125 g, is immersed in deionized water at room temperature until dripping wet. Water is extracted from the wet sample by spinning in a Bock Centrifugal Extractor (available from Bock Engineered Products, Inc., Toledo, OH) until the sample is damp. The damp carpet sample is then steamed for 2 minutes at atmospheric pressure, at a temperature of 90-100°C, and 100% relative humidity in an enclosed steam chamber.
- the carpet sample After steaming, the carpet sample is allowed to cool to near room temperature, and the aqueous treating composition is applied by placing the carpet sample, carpet fiber side down, in a glass tray containing the treating composition.
- the treating composition contains sufficient treating material(s) to give the desired percent solids on fiber (% SOF) and is prepared by dissolving or dispersing the treating materials in deionized water and adjusting the pH of the resulting aqueous treating solution to desired value using 10% aqueous sulfamic acid.
- the weight of the treating solution present in the glass tray is approximately 4 times the weight of the carpet sample (e.g., 400 g of treating solution for a 100 g carpet sample).
- the carpet sample absorbs the entire volume of treating solution over a 1 to 2 minute period to give a percent wet pickup of approximately 350%. Then the wet treated carpet sample is steamed a second time for 2 minutes (using the same conditions and equipment as described above), is immersed briefly in a 5-gallon bucket half full of deionized water, is spun to dampness using the centrifugal extractor, and is cured at 250oF for 25 minutes before testing.
- Water Repellency Test Treated carpet samples were evaluated for water repellency using 3M Water Repellency Test V for Floorcoverings (February 1994), available from Minnesota Mining and Manufacturing Company. In this test, treated carpet samples are challenged to penetrations by blends of deionized water and isopropyl alcohol (EPA). Each blend is assigned a rating number as shown below:
- a treated carpet sample is placed on a flat, horizontal surface and the carpet pile is hand-brushed in the direction giving the greatest lay to the yarn.
- Five small drops of water or a water/IPA mixture are gently placed at points at least two inches apart on the carpet sample. If, after observing for ten seconds at a 45° angle, four of the five drops are visible as a sphere or a hemisphere, the carpet is deemed to pass the test.
- the reported water repellency rating corresponds to the highest numbered water or water/EPA mixture for which the treated carpet sample passes the described test.
- Dynamic Water Resistance Test Dynamic water resistance was determined using the following test procedure. A treated carpet sample (15.2 cm x 15.2 cm) is inclined at an angle of 45° from horizontal and 20-25 g of deionized water is impinged onto the center of the carpet sample through a glass tube with 5 mm inside diameter positioned 45.7 cm above the test sample. The increase in weight (g) of the test sample is measured, with lower weight gains indicating better dynamic water repellency properties.
- Stain Resistance Test - Stain resistance was determined using the following test procedure.
- a treated 10 cm x 10 cm carpet sample is stained for 24 hours by contactingthe carpet sample in an aqueous solution of 0.007% (wt) of Red Dye FD&C #40 in deionized water adjusted to a pH of 2.8 - 3.2 with aqueous acid
- the treated and stained carpet sample is then immersed briefly in a 5-gallon (19 L) bucket half full of deionized water, followed by rinsing under a stream of deionized water until the wash water runs clear.
- the wet carpet sample is then extracted to dampness using a Bock
- the degree of staining of the carpet sample is determined numerically by using a 310 CHROMA METERTM compact tristimulus color analyzer (available from Minolta,.
- the color analyzer measures red stain color autochromatically on the red-green color coordinate as a "delta a" ( ⁇ a) value as compared to the color of an unstained and untreated carpet sample. Measurements reported in the tables below are given to one place following the decimal point and represent the average of 3 measurements, unless stated otherwise. A greater ⁇ a value indicates a greater amount of staining from the red dye. ⁇ a values typically vary from 0 (no staining) to 50 (severe staining).
- the treated samples are removed and the amount of soil present on a given sample is determined using colorometric measurements, making the assumption that the amount of soil on a given sample is directly proportional to the difference in color between the unsoiled sample and the corresponding sample after soiling.
- the three CIE L*a*b* color coordinates of the unsoiled and subsequently soiled samples are measured using a 310 CHROMA METERTM color analyzer with a D65 illumination source.
- the color difference value, ⁇ E is calculated using the equation shown below:
- ⁇ E [( ⁇ L*) 2 + ( ⁇ a*) 2 + ( ⁇ b*) 2 ]
- Receding Contact Angle Test The Receding Contact Angle Test provides a quick and precise prediction of the anti-soiling potential of fluorochemical repellent or hydrocarbon repellent candidates. Using this test procedure, receding contact angle values measured with n-hexadecane have correlated well with anti-soiling values measured from actual foot traffic using the "Walk-On" Soiling Test.
- the repellent candidate is applied to nylon film as a solution, emulsion, or suspension (typically at about 3% solids) via dip-coating.
- the nylon film is prepared as follows. Nylon film is cut into 85 mm x 13 mm rectangular strips. Each strip is cleaned by dipping into methyl alcohol, wiping with a KEMWEPETM wipe (commercially available from Kimberly Clark Corp., Boswell, GA), taking care not to touch the strip's surface, and allowing the strip to dry for 15 minutes. Then, using a small binder clip to hold one end of the strip, the strip is immersed in the treating solution, and the strip is then withdrawn slowly and smoothly from the solution.
- KEMWEPETM wipe commercially available from Kimberly Clark Corp., Boswell, GA
- the coated film strip is tilted to allow any solution run-off to accumulate at the corner of the strip, and a KHvfWIPETM tissue is touched to the corner to pull away the solution buildup.
- the coated film strip is allowed to air dry in a protected location for a minimum of 30 minutes and then is cured for 10 minutes at 121°C.
- a drop of /2-hexadecane is applied to the strip and the receding contact angle of the drop of is measured using a CAHN Dynamic Contact Angle Analyzer, Model DCA 322 (a Wilhelmy balance apparatus equipped with a computer for control and data processing, commercially available from ATI, Madison, WI).
- the CAHN Dynamic Contact Angle Analyzer is calibrated using a 500 mg weight.
- An alligator clip is fastened to a piece of coated film strip about 30 mm long, and the clip and film piece are hung from the stirrup of the balance.
- a 30 mL glass beaker containing approximately 25 mL of «-hexadecane is placed under the balance stirrup, and the beaker is positioned so that the coated film strip is centered over the beaker and its contents but not touching the walls of the beaker.
- the platform supporting the beaker is carefully raised until the surface of «-hexadecane is 2-3 mm from the lower edge of the film strip.
- Example 8-10 treating solutions having ratios of SSQO silsesquioxane to TODU hydrocarbon repellent varying from 1:2 to 2:1 were applied to TRANSITION IETM nylon 6,6 ca ⁇ et.
- Comparative Example CIO a treating solution containing only SSQO silsesquioxane was applied to the nylon 6,6 ca ⁇ et.
- Comparative Example Cl 1 no treatment was applied to the nylon 6,6 ca ⁇ et.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001275264A AU2001275264A1 (en) | 2000-06-30 | 2001-06-06 | Treatment of fibrous substrates with silsesquioxanes and stainblockers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US60766700A | 2000-06-30 | 2000-06-30 | |
US09/607,667 | 2000-06-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002002862A2 true WO2002002862A2 (en) | 2002-01-10 |
WO2002002862A3 WO2002002862A3 (en) | 2002-05-23 |
Family
ID=24433201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/018210 WO2002002862A2 (en) | 2000-06-30 | 2001-06-06 | Treatment of fibrous substrates with silsesquioxanes and stainblockers |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2001275264A1 (en) |
WO (1) | WO2002002862A2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004070105A1 (en) * | 2003-01-28 | 2004-08-19 | 3M Innovative Properties Company | Fluorochemical urethane composition for treatment of fibrous substrates |
JP2006503196A (en) * | 2002-10-16 | 2006-01-26 | ショー インダストリーズ グループ,インク. | Fiber, carpet yarn and carpet processing methods to increase water repellency |
WO2006108240A1 (en) * | 2005-04-14 | 2006-10-19 | Feltex Australia Pty Ltd | Method of treating carpet |
US7320956B2 (en) | 2004-04-01 | 2008-01-22 | 3M Innovative Properties Company | Aqueous cleaning/treatment composition for fibrous substrates |
AU2014203168B2 (en) * | 2007-05-18 | 2016-04-21 | Invista Technologies S.A R.L. | Method and composition for treating fibrous substrates |
WO2020111019A1 (en) * | 2018-11-27 | 2020-06-04 | 東レ株式会社 | Carpet |
CN112980021A (en) * | 2021-03-29 | 2021-06-18 | 哈尔滨工业大学 | Synthesis method of POSS-based reversible thermochromic membrane material |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3677810A (en) * | 1970-09-03 | 1972-07-18 | Dow Corning | Silicone-acrylate soil release treatment for organic textiles |
DE3307420A1 (en) * | 1983-03-03 | 1984-09-13 | Bayer Ag, 5090 Leverkusen | TEXTILE EQUIPMENT |
CA1327856C (en) * | 1989-09-05 | 1994-03-15 | Barry R. Knowlton | Method of enhancing the soil- and stain-resistance characteristics of polyamide and wool fabrics, the fabrics so treated, and treating composition |
US6225403B1 (en) * | 1999-02-03 | 2001-05-01 | Barry R. Knowlton | Method and composition for treating fibrous substrates to impart oil, water and dry soil repellency |
-
2001
- 2001-06-06 AU AU2001275264A patent/AU2001275264A1/en not_active Abandoned
- 2001-06-06 WO PCT/US2001/018210 patent/WO2002002862A2/en active Application Filing
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006503196A (en) * | 2002-10-16 | 2006-01-26 | ショー インダストリーズ グループ,インク. | Fiber, carpet yarn and carpet processing methods to increase water repellency |
EP1551568A4 (en) * | 2002-10-16 | 2008-04-16 | Shaw Ind Group Inc | Method of treating fibers, carpet yarns and carpets to enhance repellency |
WO2004070105A1 (en) * | 2003-01-28 | 2004-08-19 | 3M Innovative Properties Company | Fluorochemical urethane composition for treatment of fibrous substrates |
US7320956B2 (en) | 2004-04-01 | 2008-01-22 | 3M Innovative Properties Company | Aqueous cleaning/treatment composition for fibrous substrates |
WO2006108240A1 (en) * | 2005-04-14 | 2006-10-19 | Feltex Australia Pty Ltd | Method of treating carpet |
AU2014203168B2 (en) * | 2007-05-18 | 2016-04-21 | Invista Technologies S.A R.L. | Method and composition for treating fibrous substrates |
WO2020111019A1 (en) * | 2018-11-27 | 2020-06-04 | 東レ株式会社 | Carpet |
CN113038856A (en) * | 2018-11-27 | 2021-06-25 | 东丽株式会社 | Carpet |
JPWO2020111019A1 (en) * | 2018-11-27 | 2021-10-21 | 東レ株式会社 | carpet |
EP3888503A4 (en) * | 2018-11-27 | 2022-08-31 | Toray Industries, Inc. | CARPET |
JP7439766B2 (en) | 2018-11-27 | 2024-02-28 | 東レ株式会社 | carpet |
US12258706B2 (en) | 2018-11-27 | 2025-03-25 | Toray Industries, Inc. | Carpet |
CN112980021A (en) * | 2021-03-29 | 2021-06-18 | 哈尔滨工业大学 | Synthesis method of POSS-based reversible thermochromic membrane material |
CN112980021B (en) * | 2021-03-29 | 2022-04-12 | 哈尔滨工业大学 | Synthesis method of POSS-based reversible thermochromic membrane material |
Also Published As
Publication number | Publication date |
---|---|
AU2001275264A1 (en) | 2002-01-14 |
WO2002002862A3 (en) | 2002-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6736857B2 (en) | Method for imparting soil and stain resistance to carpet | |
US6613862B2 (en) | Treatment of fibrous substrates to impart repellency, stain resistance, and soil resistance | |
US7320956B2 (en) | Aqueous cleaning/treatment composition for fibrous substrates | |
US5714082A (en) | Aqueous anti-soiling composition | |
US5310828A (en) | Superior stain resistant compositions | |
EP0851948B1 (en) | Partial fluoroesters or thioesters of maleic acid polymers and their use as soil and stain resists | |
CA2287494C (en) | Treatment of fibrous substrates to impart repellency, stain resistance, and soil resistance | |
EP1091986B1 (en) | Fluorine-containing maleic acid terpolymer soil and stain resists | |
CA1340028C (en) | Stain-resistant agents for textiles | |
US6468587B2 (en) | Treatment of fibrous substrates with acidic silsesquioxanes emulsions | |
WO2002002862A2 (en) | Treatment of fibrous substrates with silsesquioxanes and stainblockers | |
EP0861345B1 (en) | Treatment of polyamide, silk or wool materials with partial fluoroesters or fluorothioesters of maleic acid polymers and sulfonated aromatic condensates | |
WO1997028304A1 (en) | Compositions and methods for imparting stain resistance and stain resistant articles | |
MXPA99009885A (en) | Treatment of fibrous substrates to impart repellency, stain resistance, and soil resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |