[go: up one dir, main page]

WO2002002402A1 - Procede et dispositif de compensation de la deformation thermique du bras de stabilisation par gradient de pesanteur d'un satellite - Google Patents

Procede et dispositif de compensation de la deformation thermique du bras de stabilisation par gradient de pesanteur d'un satellite Download PDF

Info

Publication number
WO2002002402A1
WO2002002402A1 PCT/US2001/020834 US0120834W WO0202402A1 WO 2002002402 A1 WO2002002402 A1 WO 2002002402A1 US 0120834 W US0120834 W US 0120834W WO 0202402 A1 WO0202402 A1 WO 0202402A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
panel
gravity gradient
sunlight
boom
Prior art date
Application number
PCT/US2001/020834
Other languages
English (en)
Inventor
Gordon L. Collyer
Original Assignee
Honeywell International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc. filed Critical Honeywell International Inc.
Priority to AU2001276847A priority Critical patent/AU2001276847A1/en
Publication of WO2002002402A1 publication Critical patent/WO2002002402A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/34Guiding or controlling apparatus, e.g. for attitude control using gravity gradient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays

Definitions

  • This invention relates to satellites, in particular, satellites using gravity gradient booms for nadir pointing.
  • Gravity gradient booms are used in satellites as shown in Fig. 1 for nadir pointing, to point directly down at the earth at all times.
  • the gravity gradient boom eliminates most of the attitude control apparatus typically found on an actively controlled three axis satellite. Absent an atmosphere at orbit, the boom can be an extremely thin rod extending tens of meters to a tip mass. The effect of this boom is to move the center of mass of the satellite system to a location between the tip mass and the satellite. The force of gravity is less at the tip mass than at the satellite and the resulting restoring torque around the center of mass points brings the satellite to the nadir position. In actuality, there are distortions in this arrangement caused by the effect of sunlight heating on the gravity boom.
  • the side of the boom that is exposed to the side is considerably warmer than the shaded, opposite side, producing differential thermal distortion that bends or bows the boom as shown in Fig. 3.
  • the bowed boom points the satellite away from the nadir position, producing pointing errors that can alter satellite's mission.
  • An object of the present invention is to overcome the effect of that thermal distortion so that the satellite remains at its nadir position.
  • the force of sunlight is used to apply restoring torque to rotate the satellite to back to the nadir position when the distortion takes place.
  • a panel such as a solar panel
  • a control system senses the magnitude of the boom distortion, or the error in the nadir position, and controls the area of the solar panel exposed to sunlight (the restoring torque) in order to return the satellite to the nadir position.
  • the power to run the controller electronics and panel motors can be provided from the solar panels, simplifying the interface and connections to the satellite.
  • Another feature because the total tip mass can be computed to include the mass of the panels and electronics, satellite weight and boom thickness does not have to change.
  • a compensation system according to the invention can be easily installed on state of the art nadir pointing satellites with gravity gradient booms.
  • FIG. 1 shows a prior art gravity gradient satellite in orbit.
  • Fig. 2 shows a gravity gradient satellite embodying the present invention.
  • Fig. 3 shows the satellite in Fig. 2 with the solar panels closed and thermal distortion of the gravity gradient boom.
  • Fig. 4 shows the satellite in Fig. 2 with the solar panels opened to overcome the effect from the thermal distortion.
  • a satellite 10 and a gravity gradient boom 12 are connected and the satellite moves in the direction of velocity vector 14.
  • Sunlight strikes the satellite 10, its normal solar panels 10a and the boom 12 from direction 16.
  • adjustable solar panels 18 and a control unit 20 that can be assumed to contain motors to move the panels 188 between the closed positions (solid lines) and the open positions (dotted lines).
  • the gravity gradient between the tip mass and the satellite provides a restoring torque to locate the satellite at the nadir position, ignoring the effect of boom bending from thermal heating from the sunlight, which is shown in Fig 3 with butterfly solar panels 18 folded or closed.
  • the sunlight on the right side of the boom 12 heats that side more than the shaded side, the thermal differential bending of the boom. Because the mass properties (specifically the principal axes of inertia) which cause the gravity gradient torque are dominated by the tip mass at the end of the boom, the principal axis will tend to stay aligned with the vertical. This results in the satellite pivoting to the left, away from the nadir position.
  • the solar panels 18 are opened, receiving sunlight. The solar force on the panels 18 rotates the complete satellite system , restoring the satellite to the nadir position.
  • the panel 18 surface area can be adjusted or varied to provide the correct torque by opening and closing the panels 18.
  • the control 18 can be coupled with attitude sensors in the satellite (not shown) so that the panel area is adjusted as a function of attitude error until the error is minimal at the nadir position.
  • the control 18 may also be open loop, for instance using a sun sensor to measure the suns intensity and integrate that value to track the boom heating and vary the panel area proportionally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Sustainable Development (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

La présente invention concerne un satellite (10) dont le pointage nadiral utilise un bras de stabilisation par gradient de pesanteur (12). Des panneaux solaires (18) montés sur ce bras de stabilisation par gradient de pesanteur se servent de la lumière solaire pour ramener par rotation le satellite en position nadirale dès que la lumière solaire provoque un fléchissement du bras de stabilisation par gradient de pesanteur.
PCT/US2001/020834 2000-06-29 2001-06-29 Procede et dispositif de compensation de la deformation thermique du bras de stabilisation par gradient de pesanteur d'un satellite WO2002002402A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001276847A AU2001276847A1 (en) 2000-06-29 2001-06-29 Method and device for compensating for thermal deformation of a gravity gradientboom on a satellite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US60711100A 2000-06-29 2000-06-29
US09,607,111 2000-06-29

Publications (1)

Publication Number Publication Date
WO2002002402A1 true WO2002002402A1 (fr) 2002-01-10

Family

ID=24430865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/020834 WO2002002402A1 (fr) 2000-06-29 2001-06-29 Procede et dispositif de compensation de la deformation thermique du bras de stabilisation par gradient de pesanteur d'un satellite

Country Status (2)

Country Link
AU (1) AU2001276847A1 (fr)
WO (1) WO2002002402A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3032183A1 (fr) * 2015-02-03 2016-08-05 Airbus Defence & Space Sas Systeme d'aerofreinage pour desorbitation de satellite
FR3032182A1 (fr) * 2015-02-03 2016-08-05 Airbus Defence & Space Sas Systeme de desorbitation de satellite
CN111060077A (zh) * 2019-12-20 2020-04-24 彭耿 基于稀疏控制点的遥感卫星图像定位方法
CN113798478A (zh) * 2021-08-02 2021-12-17 东方电气集团东方汽轮机有限公司 一种减小熔模铸造透平叶片热等静压变形的工装及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3145948A (en) * 1962-07-09 1964-08-25 Richard B Kershner Satellite rotation by radiation pressure
US3243143A (en) * 1962-11-27 1966-03-29 Gen Electric Doubly stabilized satellite
EP0578176A1 (fr) * 1992-07-06 1994-01-12 Hughes Aircraft Company Méthode et dispositif pour l'équilibrage de couple d'un satellite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3145948A (en) * 1962-07-09 1964-08-25 Richard B Kershner Satellite rotation by radiation pressure
US3243143A (en) * 1962-11-27 1966-03-29 Gen Electric Doubly stabilized satellite
EP0578176A1 (fr) * 1992-07-06 1994-01-12 Hughes Aircraft Company Méthode et dispositif pour l'équilibrage de couple d'un satellite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HERZL G G: "Pointing Error in Passively Stabilized Spacecraft Caused by Thermal Bending", JOURNAL OF SPACECRAFT AND ROCKETS, vol. 2, no. 3, May 1965 (1965-05-01) - June 1965 (1965-06-01), pages 416 - 418, XP001024771 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3032183A1 (fr) * 2015-02-03 2016-08-05 Airbus Defence & Space Sas Systeme d'aerofreinage pour desorbitation de satellite
FR3032182A1 (fr) * 2015-02-03 2016-08-05 Airbus Defence & Space Sas Systeme de desorbitation de satellite
WO2016124591A1 (fr) 2015-02-03 2016-08-11 Airbus Defence And Space Sas Système d'aérofreinage pour désorbitation de satellite
WO2016124593A1 (fr) * 2015-02-03 2016-08-11 Airbus Defence And Space Sas Système de désorbitation de satellite
JP2018504325A (ja) * 2015-02-03 2018-02-15 アリアネグループ・エスアーエス 空力制動衛星軌道離脱システム
CN108349595A (zh) * 2015-02-03 2018-07-31 阿丽亚娜集团简化股份公司 用于卫星离轨的大气制动系统
US10723490B2 (en) 2015-02-03 2020-07-28 Arianegroup Sas Satellite deorbiting system
US10954006B2 (en) 2015-02-03 2021-03-23 Ariane Group Sas Aerobraking satellite deorbiting system
CN108349595B (zh) * 2015-02-03 2021-11-23 阿丽亚娜集团简化股份公司 用于卫星离轨的大气制动系统
CN111060077A (zh) * 2019-12-20 2020-04-24 彭耿 基于稀疏控制点的遥感卫星图像定位方法
CN113798478A (zh) * 2021-08-02 2021-12-17 东方电气集团东方汽轮机有限公司 一种减小熔模铸造透平叶片热等静压变形的工装及方法

Also Published As

Publication number Publication date
AU2001276847A1 (en) 2002-01-14

Similar Documents

Publication Publication Date Title
JP2959696B2 (ja) 衛星トルク平衡方法および装置
US6293502B1 (en) System and method for enhanced solar array pointing in sun-nadir steering
JP2542094B2 (ja) 衛星制御システム
US4226502A (en) Self-contained solar tracking device
US4102326A (en) Central receiver solar collector using mechanically linked mirrors
US6003817A (en) Actively controlled thermal panel and method therefor
US4262867A (en) Apparatus for modifying position and attitude of a spacecraft
JPS5871300A (ja) 人工衛星の回転軸を制御するための装置
US5906339A (en) Multiple axis solar sailing
WO2002002402A1 (fr) Procede et dispositif de compensation de la deformation thermique du bras de stabilisation par gradient de pesanteur d'un satellite
US4909460A (en) Device and method for aiming a space probe toward a celestial body
CN106842911A (zh) 一种二维指向镜成像跟踪的图像伺服控制方法
US3206141A (en) Space vehicle attitude control
GB2182624A (en) Pivot actuated nutation damping system for a dual-spin spacecraft
USRE30960E (en) Central receiver solar collector using mechanically linked mirrors
Lawrence et al. Solar sailing trajectory control for Sub-L1 stationkeeping
Khoroshylov et al. Dynamics and attitude control of space-based synthetic aperture radar
CN109760854A (zh) 一种体积可控的充气天线
US5996942A (en) Autonomous solar torque management
JPH082499A (ja) 光学的衛星姿勢制御システム
CN116300417B (zh) 一种大型分布式空间望远镜主次镜编队控制方法
CA2323030A1 (fr) Compensation des chocs thermiques sur un panneau solaire a l'aide du dispositif de commande de sa position
Quine et al. Scanning the Earth's limb from a high-altitude balloon: the development and flight of a new balloon-based pointing system
Somov Feedback linearization and VLF-techniques on the synthesis of spacecraft's gyromoment attitude control systems
Fourakis et al. Low-profile heliostat design for solar central receiver systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP