WO2001088021A1 - Process for producing acrylic polymer - Google Patents
Process for producing acrylic polymer Download PDFInfo
- Publication number
- WO2001088021A1 WO2001088021A1 PCT/JP2001/004153 JP0104153W WO0188021A1 WO 2001088021 A1 WO2001088021 A1 WO 2001088021A1 JP 0104153 W JP0104153 W JP 0104153W WO 0188021 A1 WO0188021 A1 WO 0188021A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- temperature
- latex
- dryer
- acrylic polymer
- Prior art date
Links
- 229920000058 polyacrylate Polymers 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title abstract description 24
- 239000000843 powder Substances 0.000 claims abstract description 93
- 239000004816 latex Substances 0.000 claims abstract description 61
- 229920000126 latex Polymers 0.000 claims abstract description 61
- 238000001035 drying Methods 0.000 claims abstract description 28
- 238000007720 emulsion polymerization reaction Methods 0.000 claims abstract description 18
- 239000007921 spray Substances 0.000 claims abstract description 15
- 229920000642 polymer Polymers 0.000 claims description 25
- -1 acryl Chemical group 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 16
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 239000011347 resin Substances 0.000 abstract description 17
- 229920005989 resin Polymers 0.000 abstract description 17
- 238000004898 kneading Methods 0.000 abstract description 7
- 238000005507 spraying Methods 0.000 abstract description 7
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 239000002245 particle Substances 0.000 description 24
- 239000007789 gas Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 10
- 238000001694 spray drying Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229920000178 Acrylic resin Polymers 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 6
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 239000003607 modifier Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 241000251468 Actinopterygii Species 0.000 description 4
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- YAJYJWXEWKRTPO-UHFFFAOYSA-N 2,3,3,4,4,5-hexamethylhexane-2-thiol Chemical compound CC(C)C(C)(C)C(C)(C)C(C)(C)S YAJYJWXEWKRTPO-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- VDYWHVQKENANGY-UHFFFAOYSA-N 1,3-Butyleneglycol dimethacrylate Chemical compound CC(=C)C(=O)OC(C)CCOC(=O)C(C)=C VDYWHVQKENANGY-UHFFFAOYSA-N 0.000 description 1
- SZVMZLJAAGWNPG-UHFFFAOYSA-N 1-tert-butylperoxyoctane Chemical compound CCCCCCCCOOC(C)(C)C SZVMZLJAAGWNPG-UHFFFAOYSA-N 0.000 description 1
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000004609 Impact Modifier Substances 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-ONCXSQPRSA-N abietic acid Chemical compound C([C@@H]12)CC(C(C)C)=CC1=CC[C@@H]1[C@]2(C)CCC[C@@]1(C)C(O)=O RSWGJHLUYNHPMX-ONCXSQPRSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- SPTHWAJJMLCAQF-UHFFFAOYSA-M ctk4f8481 Chemical compound [O-]O.CC(C)C1=CC=CC=C1C(C)C SPTHWAJJMLCAQF-UHFFFAOYSA-M 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000010556 emulsion polymerization method Methods 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- XWGJFPHUCFXLBL-UHFFFAOYSA-M rongalite Chemical compound [Na+].OCS([O-])=O XWGJFPHUCFXLBL-UHFFFAOYSA-M 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- JNXDCMUUZNIWPQ-UHFFFAOYSA-N trioctyl benzene-1,2,4-tricarboxylate Chemical compound CCCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCC)C(C(=O)OCCCCCCCC)=C1 JNXDCMUUZNIWPQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
- C08J3/122—Pulverisation by spraying
Definitions
- the present invention relates to a method for producing an acryl-based polymer powder from an emulsion-polymerized latex containing an acryl-based polymer as a main component.
- the present invention relates to a method for producing an acryl-based polymer capable of obtaining a powder having good redispersibility when melt-kneaded with a resin.
- Acrylic polymers used as modifiers for various plastic products such as vinyl chloride resins are generally produced by emulsion polymerization.
- the acryl-based polymer after the emulsion polymerization is finally melt-kneaded with other resins and used as a powder from the emulsion-polymerized latex (hereinafter simply referred to as latex) after the emulsion polymerization.
- latex emulsion-polymerized latex
- the powder characteristics of (1) above are such that the smaller the particle size of the powder and the coarser the structure of the powder, On the contrary, the redispersibility of the above (2) becomes better as the particle size of the powder is smaller and the structure of the powder is coarser.
- the outlet temperature of a dryer is determined by changing the glass transition temperature of a polymer (hereinafter referred to as Tg). The method is described based on
- the powder structure cannot be controlled accurately because recent acrylic polymer powders require various performances as modifiers. Therefore, it is considered that the structure is often a multilayer structure, and the T g of such a multilayer structure cannot be generally specified.
- An object of the present invention is to provide a method for producing an acryl polymer which is obtained by spray-drying an emulsion polymerization latex containing an acrylic polymer as a main component to obtain an acrylic polymer powder.
- Excellent powder properties such as heat resistance, excellent redispersibility during melt-kneading with other resins, low generation of fish eyes,
- the purpose is to set the operating conditions of the dryer from which powder suitable as a stick resin modifier is obtained.
- the present inventors have conducted intensive studies, focusing on the fact that the powder characteristics and redispersibility of an acrylic polymer are greatly affected by the particle size of the powder and the structure of the polymer constituting the powder.
- the latex is sprayed into the dryer using a spray nozzle to control the particle size of the droplets to be sprayed, and the temperature inside the dryer, particularly the temperature near the outlet of the dryer, is controlled to the minimum latex composition.
- MFT film temperature
- an emulsion polymerization latex containing an acrylic polymer as a main component is sprayed into a drier, and a drying gas is sent from an inlet of the drier to obtain the latex. Drying an acrylic polymer powder to obtain an acrylic polymer powder, and collecting the powder from an outlet of the dryer.
- the temperature of the drying gas near the dryer inlet was set to less than 200 ° C., and the temperature of the drying gas near the dryer outlet was added to the minimum film forming temperature of the emulsion polymerization latex by 30 ° C. The temperature is lower than the temperature.
- the dryer includes a spray nozzle for spraying at least a latex obtained by emulsion polymerization into a container, an inlet for introducing a drying gas for drying the sprayed latex, a drying gas and after drying. And an outlet portion serving as an outlet for powder.
- the spray nozzle is provided at the upper part of the dryer, the inlet part is provided at the upper part of the dryer so that a drying gas is applied to the sprayed latex, and the outlet part is provided at the lower part of the dryer. It is preferable to use a type in which the working gas flows from the upper part of the dryer to the lower part.
- the overall shape of such a dryer is not particularly limited, and its capacity is There is no particular limitation, and any one can be used, from a small-scale one used in a laboratory to a large-scale one used industrially.
- a pressure nozzle capable of applying a pressure of 0.1 to 20 MPa to the latex and ejecting the latex from the nozzle at a high speed to atomize the latex is preferably used.
- a pressurizing swirl nozzle that applies a swirl flow to the latex to be sprayed and ejects it is preferable.
- the particle size of the obtained powder can be adjusted by adjusting the spray pressure when atomizing the latex, so that the desired particle performance can be obtained.
- the latex can be sprayed.
- the range of the particle diameter at which the desired powder performance can be obtained depends on the structure of the polymer and the like, and is appropriately adjusted according to the structure of the polymer, the MFT of the latex, and the like. According to such a method, a powder having a large particle diameter can be obtained as compared with the spraying method using a rotating disk as in the conventional example.
- the temperature of the drying gas near the inlet of the dryer (hereinafter referred to as the inlet temperature) is lower than 200 ° C, preferably lower than 190 ° C. At 200 ° C. or higher, the fusion of the surface portion of the obtained powder proceeds, redispersibility at the time of melt-kneading is reduced, and the amount of generated fish is increased.
- the lower limit of the inlet temperature is not particularly limited, but is appropriately set so that the temperature in the vicinity of the outlet of the dryer described later falls within a predetermined temperature range, and is preferably 140 ° C. or more. If the above inlet temperature is lower than 140 ° C., the air volume of the drying gas will increase extremely.
- the gas temperature near the outlet of the dryer (hereinafter referred to as the outlet temperature) is lower than the temperature obtained by adding 30 to the MFT of the latex.
- the temperature is lower than the temperature obtained by adding 20 ° C to MFT.
- the latex MFT is the lowest temperature at which a transparent continuous film can be formed when a film is formed from latex, and is a value representative of the Tg of the latex particle surface.
- MFT correlates with the adhesive force of the latex polymer / particle surface layer, which is a determinant of the powder structure, and serves as an index indicating the adhesive force.
- the polymer structure of the powder can be controlled, that is, characteristics such as fluidity and redispersibility of the powder can be controlled. Further, even when the polymer has a multilayer structure, the powder properties and redispersibility of the powder can be similarly controlled.
- the outlet temperature of the dryer is set to a temperature lower than the temperature obtained by adding 30 ° C to the MFT, even when a plurality of latexes having different compositions are dried to obtain a powder, the powder characteristics and redispersibility are good Powder can be obtained.
- the lower limit of the gas temperature at the outlet of the dryer is not particularly limited, but is preferably higher than 50 ° C. When the temperature is lower than 50 ° C, drying of the powder may be insufficient.
- a heating device or a cooling device is provided at both ends of a horizontally installed aluminum plate as necessary, so that the aluminum plate has a temperature gradient.
- the latex is spread uniformly and thinly on the aluminum plate having the temperature gradient, and dried. Then, the lowest temperature at which the latex forms a transparent continuous film is measured, and this is defined as the MFT.
- the preferred particle size of the powder obtained by drying under the conditions described above cannot be determined unconditionally because it depends on the polymer structure of the powder.
- particles with low Tg (or MFT) generally have essentially poor powder performance, so it is necessary to set the particle size larger than those with high glass transition temperature (or MFT).
- MFT glass transition temperature
- it is preferably between 60 and 300 m, more preferably between 100 and 200 / m. If the particle diameter is less than 60 zm, the handling properties, flowability and blocking resistance of the powder will be reduced due to the increase in fine powder, etc.If it exceeds 300 xm, it will be classified when mixed with resin powder such as vinyl chloride resin. It becomes difficult to mix uniformly.
- the emulsion polymerization latex containing an acrylic polymer as a main component used in the above production method is not particularly limited, but preferably has an MFT of 20 ° C or more. More preferably, the MFT is above 50 ° C. If MFT is below 20 ° C, dry The temperature at the dryer outlet is 50 ° C or less, resulting in insufficient drying.
- Such latexes include, specifically, methyl acrylate, ethyl acrylate, butyl acrylate, propyl acrylate, 2-ethylhexyl acrylate, aryl acrylate, glycidyl acrylate, methyl methacrylate, Using one or more acrylic monomers such as ethyl methacrylate, butyl methacrylate, propyl methacrylate, 2-ethylhexyl methacrylate, aryl methacrylate, glycidyl methacrylate, acrylamide, acrylonitrile, etc. Is obtained by copolymerization, seed polymerization, or graft polymerization.
- acrylic monomers it is also possible to use a small amount of monomers such as styrene, para-methylstyrene, 1,3-butadiene, biel acetate, vinylpyridine, etc. which can be used for emulsion polymerization. It is preferable to contain 50% by mass or more of the acryl-based monomer.
- cross-linking agent such as divinylbenzene, 1,3-butylenedimethacrylate, arylmethacrylate, and glycidyl methacrylate
- chain transfer agent such as mercaptans and terpenes.
- the polymerization initiator used in the emulsion polymerization of the acryl-based polymer is not particularly limited, but water-soluble persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate, diisopropylbenzene hydroperoxide, P- Mentane Hydrate Peroxide, cumine hydroperoxide, redox-based initiators containing organic peroxides as one component, such as t-butyl octyl peroxide, can be used.Used for emulsion polymerization of the above acryl-based polymers.
- the emulsifier is not particularly limited, but one or more alkali metal salts of higher fatty acids such as disproportionated rosin acid, oleic acid, and stearic acid, and alkali metal salts of sulfonic acids such as dodecylbenzenesulfonic acid are combined. Can be used.
- emulsion polymerization method and emulsion polymerization conditions for the latex used in the above-mentioned production method there is no particular limitation on the emulsion polymerization method and emulsion polymerization conditions for the latex used in the above-mentioned production method, and the method can be carried out by conventionally known methods and conditions.
- the above latex may be used alone, or may be a mixture of a plurality of latexes. Also, in order to prevent oxidation in the dryer, a suitable antioxidant or additive can be added to the latex to be sprayed and spray dried.
- inorganic fillers such as silica, talc, calcium carbonate, etc., polyacrylate, polyvinyl alcohol, polyacrylamide, etc. Can be added and spray dried.
- the emulsion polymerization latex is sprayed by the spray nozzle into the dryer whose temperature is adjusted as described above, and this is dried and collected from the outlet. Thereby, an acryl-based polymer powder having desired powder performance can be obtained.
- the spray-drying apparatus, method, conditions, etc. are not particularly limited except for the range of the gas temperature at the inlet and outlet of the dryer and the spray method.
- Air is preferred as the drying gas because of its low cost, but it is also possible to use an inert gas or a mixture of air and an inert gas.
- the latex is sprayed using the spray nozzle, and the temperature in the dryer is controlled based on the MFT of the latex.
- the structure of the acrylic polymer can be controlled according to the composition of the acrylic polymer (polymer), and a powder with excellent powder performance can be obtained.
- the powder has excellent handling properties in handling powder, fluidity, powder properties such as blocking resistance, and dispersibility when melt-kneaded with another resin such as a vinyl chloride resin.
- An acrylic polymer powder with less generation of fish eyes can be produced.
- Dryer Table 1 shows the outlet temperature, dryer inlet temperature, and evaluation results.
- the MFT of the above latex was measured using a minimum film formation temperature measuring device (manufactured by Takabayashi Rika Co., Ltd.).
- the measurement temperature conditions at this time were 20 ° C on the low temperature side and 180 ° C on the high temperature side.
- the MFT of the latex was 85.
- the latex was introduced into a dryer and spray-dried.
- the dryer used was one with an inner diameter of 3.5 m for the straight body, a height of 4 m for the straight body, and a height of 2.8 m for the cone.
- the spraying device was a pressurizing nozzle (spray pressure 2.4 Mpa ) Was used. Air was used as the drying gas.
- Table 1 shows the latex supply speed, heated gas air flow, dryer inlet temperature, and outlet temperature.
- Table 1 shows the latex feed rate, heated gas flow rate, dryer inlet temperature, and outlet temperature.
- Example 3 was carried out in the same manner as in Example 3, except that a dryer of a rotating disk spray system (rotation speed: 15000 rpm) was used.
- the average particle diameter was 50 m, but the fine powder and coarse powder increased and the fluidity decreased.
- an acrylic polymer having excellent powder properties such as handling properties, fluidity, and blocking resistance, excellent redispersibility at the time of melt-kneading, and having a low fisheye generation amount. Powder can be obtained.
- Acrylic polymer powders with such excellent powder properties include impact modifiers such as vinyl chloride resin, polystyrene, polycarbonate, ABS resin, acrylic resin, and other various plastics. It can be suitably used as a processability improver.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
A process for producing a powder which is excellent in powder properties such as handleability, flowability, and antiblocking property, has excellent redispersibility during melt-kneading together with other resin(s), and is reduced in fish-eye generation. The process comprises spraying an emulsion polymerization latex containing an acrylic polymer as the main component in a drying chamber, simultaneously introducing a drying gas thereinto through an inlet of the drying chamber to dry the latex and thereby form a powder of the acrylic polymer, and collecting the powder through an outlet of the drying chamber. In this process, the spraying of the latex is conducted with a spray nozzle, the temperature of the gas around the inlet of the drying chamber is regulated to below 200°C, and the temperature of the gas around the outlet of the drying chamber is regulated to a temperature lower than the temperature higher by 30°C than the minimum film-forming temperature of the emulsion polymerization latex. Thus, a powder having excellent performances is obtained.
Description
ァクリル系重合体の製造方法 技術分野 Method for producing acryl-based polymer
本発明は、 アクリル系重合体を主成分とする乳化重合ラテックスから、 ァクリ ル系重合体の粉体を製造する方法に関し、 詳しくは、 流動性などの粉体特性が良 好で、 かつ他の樹脂と溶融混練する際の再分散性が良好な粉体が得られるァクリ ル系重合体の製造方法に関する。 The present invention relates to a method for producing an acryl-based polymer powder from an emulsion-polymerized latex containing an acryl-based polymer as a main component. The present invention relates to a method for producing an acryl-based polymer capable of obtaining a powder having good redispersibility when melt-kneaded with a resin.
本出願は日本国への特許出願 (特願 2 0 0 0 - 1 4 9 0 6 9 ) に基づくもので あり、 当該日本出願の記載内容は本明細書の一部として取り込まれるものとする This application is based on a patent application to Japan (Japanese Patent Application No. 2000-149900), and the contents of the Japanese application are incorporated as a part of this specification.
背景技術 Background art
塩化ビニル樹脂等の各種プラスチック製品の改質剤として用いられるアクリル 系重合体は、 一般に、 乳化重合により製造される。 そして、 乳化重合後のァクリ ル系重合体は、 最終的に他の樹脂と溶融混練して用いられるために、 乳化重合後 の乳化重合ラテックス (以下、 単にラテックスとする) から粉体として回収され る。 Acrylic polymers used as modifiers for various plastic products such as vinyl chloride resins are generally produced by emulsion polymerization. The acryl-based polymer after the emulsion polymerization is finally melt-kneaded with other resins and used as a powder from the emulsion-polymerized latex (hereinafter simply referred to as latex) after the emulsion polymerization. You.
このようなラテックスからアクリル系重合体 (ポリマー) を粉体で回収する方 法として、 ラテックスを直接熱風中に噴霧して乾燥する噴霧乾燥法がある。 そして、 このようにして得られた上記アクリル系重合体の粉体 (以下、 単に粉 体とする場合がある) には、 改質剤として用いるために、 次のような粉体性能が 要求される。 As a method for recovering an acrylic polymer (polymer) as a powder from such a latex, there is a spray drying method in which the latex is directly sprayed into hot air and dried. The acrylic polymer powder obtained in this manner (hereinafter sometimes simply referred to as powder) must have the following powder performance in order to be used as a modifier. You.
( 1 ) 粉体取り扱い時のハンド'リング性、 流動性、 耐ブロッキング性が優れるこ と。 (以下、 これらの特性を粉体特性とする。) (1) Excellent handling, fluidity, and blocking resistance when handling powder. (Hereinafter, these characteristics are referred to as powder characteristics.)
( 2 ) 塩化ビニル樹脂等の他の樹脂と溶融混練した際の分散性 (以下、 再分散性 とする) に優れ、 改質剤の未分散物に起因する魚の目状の欠陥 (以下、 フイツシ ュアイとする) の発生が少ないこと。 (2) Excellent dispersibility when melt-kneaded with other resins such as vinyl chloride resin (hereinafter referred to as redispersibility), and fish-eye-like defects (hereinafter fisheye) caused by undispersed modifier. ) Is low.
上記 (1 ) の粉体特性は、 粉体の粒子径が小さい程、 また粉体の構造が粗な程
悪化するのに対し、 上記 (2 ) の再分散性については、 逆に粉体の粒子径が小さ い程、 また粉体の構造が粗な程良好となる。 The powder characteristics of (1) above are such that the smaller the particle size of the powder and the coarser the structure of the powder, On the contrary, the redispersibility of the above (2) becomes better as the particle size of the powder is smaller and the structure of the powder is coarser.
したがって、 このような相反する要求を満足する粉体を得るためには、 乾燥器 の運転条件を制御することが必要となる。 Therefore, it is necessary to control the operating conditions of the dryer in order to obtain powder that satisfies such conflicting requirements.
例えば、 特開平 8 _ 1 6 9 9 1 4号公報においては、 開始剤と後接触反応した ラテックスを噴霧乾燥する方法において、 乾燥器の出口温度を、 ポリマーのガラ ス転移温度 (以下 T gとする) を基準に設定する方法が記載されている。 For example, in Japanese Patent Application Laid-Open No. 8-169914, in a method of spray-drying latex that has been post-contact reacted with an initiator, the outlet temperature of a dryer is determined by changing the glass transition temperature of a polymer (hereinafter referred to as Tg). The method is described based on
しかしながら、 この方法においては、 ラテックスの噴霧方法として回転ディス クを使用しているため、 得られる粉体の粒子径が小さく、 流動性に劣るという問 題があった。 また、 この回転ディスクを用いて粒子径の大きな粉体を回収しょう とすると、 微粉、 粗粉が増加し粒度分布が極端に広くなり易く、 その結果粉体性 能の低下を招くことがあった。 However, in this method, since a rotating disk is used as a method of spraying latex, there is a problem that the obtained powder has a small particle size and is inferior in fluidity. In addition, if powder with a large particle diameter is to be recovered using this rotating disk, fine powder and coarse powder increase, and the particle size distribution tends to become extremely wide, resulting in a decrease in powder performance. .
また、 乾燥器の出口温度をポリマーの T gを基準として設定しているため、 粉 体の正確な粉体構造の制御ができず、 その結果、 粉体特性および再分散性を良好 にできないという問題があった。 これは、 粒子の平均的な T g (見掛けの T g ) を用いた場合においても同様であった。 In addition, since the outlet temperature of the dryer is set based on the Tg of the polymer, accurate control of the powder structure of the powder cannot be performed, and as a result, the powder characteristics and redispersibility cannot be improved. There was a problem. This was also the case when the average T g of the particles (apparent T g) was used.
このように T gを基準として出口温度を設定すると、 粉体構造を正確に制御で きない理由は、 最近のアクリル系重合体粉体には、 改質剤として多様な性能が要 求されるため、 その構造は多層構造であるものが多く、 そして、 このような多層 構造体の T gは一般に特定できないためであると考えられる。 If the outlet temperature is set on the basis of Tg, the powder structure cannot be controlled accurately because recent acrylic polymer powders require various performances as modifiers. Therefore, it is considered that the structure is often a multilayer structure, and the T g of such a multilayer structure cannot be generally specified.
このように、 上記 (1 ) の粉体特性および (2 ) の再分散性の両特性が優れた 粉体を得るのは難しく、 このような性能の粉体が得られる乾燥器の運転条件は、 未だ報告されていない。 発明の開示 As described above, it is difficult to obtain a powder excellent in both of the above-mentioned powder characteristics (1) and redispersibility (2). , Not yet reported. Disclosure of the invention
本発明の目的は、 アクリル系重合体を主成分とする乳化重合ラテックスを噴霧 乾燥してアクリル系重合体粉体を得るァクリル系重合体の製造方法において、 八 ンドリング性、 流動性、 耐プロッキング性などの粉体特性に優れ、 かつ他の樹脂 との溶融混練時の再分散性に優れ、 フィッシュアイの発生量が少なく、 各種ブラ
スチック樹脂の改質剤として好適な粉体が得られる乾燥器の運転条件を設定する ことである。 An object of the present invention is to provide a method for producing an acryl polymer which is obtained by spray-drying an emulsion polymerization latex containing an acrylic polymer as a main component to obtain an acrylic polymer powder. Excellent powder properties such as heat resistance, excellent redispersibility during melt-kneading with other resins, low generation of fish eyes, The purpose is to set the operating conditions of the dryer from which powder suitable as a stick resin modifier is obtained.
本発明者らは、 アクリル系重合体の粉体特性および再分散性は、 粉体の粒子径 および粉体を構成するポリマ一構造に大きく影響されることに着目し、 鋭意検討 した。 その結果、 乾燥器内へのラテックスの噴霧をスプレーノズルで行って噴霧 する液滴の粒径を制御すると共に、 乾燥器内の温度、 特に乾燥器の出口付近の温 度を、 ラテックスの最低成膜温度 (以下、 M F Tとする) を基準に設定すること により、 得られるアクリル系重合体の粉体特性と、 再分散性がともに向上するこ とを見出し本発明を完成した。 The present inventors have conducted intensive studies, focusing on the fact that the powder characteristics and redispersibility of an acrylic polymer are greatly affected by the particle size of the powder and the structure of the polymer constituting the powder. As a result, the latex is sprayed into the dryer using a spray nozzle to control the particle size of the droplets to be sprayed, and the temperature inside the dryer, particularly the temperature near the outlet of the dryer, is controlled to the minimum latex composition. By setting the film temperature (hereinafter referred to as MFT) as a reference, it was found that both the powder characteristics and redispersibility of the obtained acrylic polymer were improved, and the present invention was completed.
即ち、 本発明のアクリル系重合体の製造方法は、 アクリル系重合体を主成分と する乳化重合ラテックスを乾燥器内に噴霧するとともに、 乾燥器の入口部から乾 燥用気体を送り込み、 前記ラテックスを乾燥させてアクリル系重合体の粉体を得 て、 この粉体を乾燥器の出口部より回収する工程を有するアクリル系重合体の製 造方法において、 上記ラテックスの噴霧をスプレーノズルにより行い、 前記乾燥 器入口部付近の乾燥用気体温度を 2 0 0 °C未満とし、 かつ乾燥器出口部付近の乾 燥用気体温度を、 上記乳化重合ラテックスの最低成膜温度に 3 0 °Cを加えた温度 未満とすることを特徴とする。 発明を実施するための最良の形態 That is, in the method for producing an acrylic polymer of the present invention, an emulsion polymerization latex containing an acrylic polymer as a main component is sprayed into a drier, and a drying gas is sent from an inlet of the drier to obtain the latex. Drying an acrylic polymer powder to obtain an acrylic polymer powder, and collecting the powder from an outlet of the dryer. The temperature of the drying gas near the dryer inlet was set to less than 200 ° C., and the temperature of the drying gas near the dryer outlet was added to the minimum film forming temperature of the emulsion polymerization latex by 30 ° C. The temperature is lower than the temperature. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
まず、 本発明に用いられる乾燥器について説明する。 この乾燥器は、 少なくと も乳化重合により得られたラテックスを容器内に噴霧導入するスプレーノズルと 、 噴霧されたラテックスを乾燥させる乾燥用気体を導入する入口部と、 乾燥用気 体および乾燥後の粉体の排出口となる出口部とを備えたものである。 また、 上記 スプレーノズルは乾燥器上部に設けられ、 上記入口部は噴霧されたラテックスに 乾燥用気体があたるように乾燥器上部に設けられ、 上記出口部は乾燥器下部に設 けられて、 乾燥用気体が乾燥器の上部から下部に下降しつつ流れる形態のものを 用いることが好ましい。 First, the dryer used in the present invention will be described. The dryer includes a spray nozzle for spraying at least a latex obtained by emulsion polymerization into a container, an inlet for introducing a drying gas for drying the sprayed latex, a drying gas and after drying. And an outlet portion serving as an outlet for powder. In addition, the spray nozzle is provided at the upper part of the dryer, the inlet part is provided at the upper part of the dryer so that a drying gas is applied to the sprayed latex, and the outlet part is provided at the lower part of the dryer. It is preferable to use a type in which the working gas flows from the upper part of the dryer to the lower part.
また、 このような乾燥器の全体形状は特に限定されるものではなく、 その容量
も特に制限がなく、 実験室で使用するような小規模なスケールのものから、 工業 的に使用するような大規模なスケールのものまでいずれも使用することができる 上記スプレーノズルとしては、 噴霧するラテックスに 0 . l〜2 0 MP aの圧 力をかけ、 ラテックスをノズルから高速で噴出させて微粒化できる圧力ノズルな どが好ましく用いられる。 特に、 噴霧するラテックスに旋回流を与えて噴出させ る加圧旋回ノズルが好ましい。 The overall shape of such a dryer is not particularly limited, and its capacity is There is no particular limitation, and any one can be used, from a small-scale one used in a laboratory to a large-scale one used industrially. A pressure nozzle capable of applying a pressure of 0.1 to 20 MPa to the latex and ejecting the latex from the nozzle at a high speed to atomize the latex is preferably used. In particular, a pressurizing swirl nozzle that applies a swirl flow to the latex to be sprayed and ejects it is preferable.
このスプレーノズルにおいては、 ラテックス を微粒化する際の噴霧圧力を調 整することによって、 得られる粉体の粒子径を調整することができ、 所望の粉体 性能が得られる粒子径となるように、 ラテックスを噴霧できる。 所望の粉体性能 が得られる粒子径の範囲は、 後述するようにそのポリマーの構造などにもよるた め、 そのポリマーの構造、 ラテックスの M F T等に応じて適宜調整される。 またこのような方法によれば、 従来例のような回転ディスクを用いた噴霧方式 に比較して大きな粒子径の粉体を得ることができる。 In this spray nozzle, the particle size of the obtained powder can be adjusted by adjusting the spray pressure when atomizing the latex, so that the desired particle performance can be obtained. The latex can be sprayed. As will be described later, the range of the particle diameter at which the desired powder performance can be obtained depends on the structure of the polymer and the like, and is appropriately adjusted according to the structure of the polymer, the MFT of the latex, and the like. According to such a method, a powder having a large particle diameter can be obtained as compared with the spraying method using a rotating disk as in the conventional example.
上記乾燥器の入口部付近の乾燥用気体温度 (以下、 入口温度とする) は、 2 0 0 °C未満であり、 好ましくは 1 9 0 °C以下である。 2 0 0 °C以上では、 得られる 粉体の表面部分の融着が進行し、 溶融混練時の再分散性が低下し、 フィッシュァ ィ発生量の増加を招く。 The temperature of the drying gas near the inlet of the dryer (hereinafter referred to as the inlet temperature) is lower than 200 ° C, preferably lower than 190 ° C. At 200 ° C. or higher, the fusion of the surface portion of the obtained powder proceeds, redispersibility at the time of melt-kneading is reduced, and the amount of generated fish is increased.
また、上記入口温度の下限は特に制限されないが、後述する乾燥器出口部付近の 温度が所定の温度範囲内となるように適宜設定され、 好ましくは 1 4 0 °C以上で ある。 上記入口温度が 1 4 0 °C未満であると、 乾燥用気体の風量が極端に増加し てしまう。 The lower limit of the inlet temperature is not particularly limited, but is appropriately set so that the temperature in the vicinity of the outlet of the dryer described later falls within a predetermined temperature range, and is preferably 140 ° C. or more. If the above inlet temperature is lower than 140 ° C., the air volume of the drying gas will increase extremely.
上記乾燥器の出口部付近の気体温度 (以下、 出口温度とする) は、 上記ラテツ クスの MF Tに 3 0でを加えた温度未満である。 好ましくは M F Tに 2 0 °Cを加 えた温度未満とする。 The gas temperature near the outlet of the dryer (hereinafter referred to as the outlet temperature) is lower than the temperature obtained by adding 30 to the MFT of the latex. Preferably, the temperature is lower than the temperature obtained by adding 20 ° C to MFT.
ここで、 ラテックスの M F Tとは、 ラテックスからフィルムを成膜する際、 透 明な連続フィルムを形成可能な最低温度のことであり、 ラテックス粒子表面の T gを代表する値である。 また、 MF Tは粉体構造の決定因子であるラテックスの ポリマ一粒子表層の付着力に相関し、 前記付着力を示す指標ともなる。
このように、 M F Tを基準とした温度設定をすることで粉体のポリマー構造を 制御できる、 すなわち粉体の流動性および再分散性などの特性を制御できる。 ま た、 ポリマーが多層構造であっても、 同様に粉体の粉体特性および再分散性を制 御できる。 Here, the latex MFT is the lowest temperature at which a transparent continuous film can be formed when a film is formed from latex, and is a value representative of the Tg of the latex particle surface. MFT correlates with the adhesive force of the latex polymer / particle surface layer, which is a determinant of the powder structure, and serves as an index indicating the adhesive force. As described above, by setting the temperature based on the MFT, the polymer structure of the powder can be controlled, that is, characteristics such as fluidity and redispersibility of the powder can be controlled. Further, even when the polymer has a multilayer structure, the powder properties and redispersibility of the powder can be similarly controlled.
よって、 乾燥器の出口温度を MFTに 30°Cを加えた温度未満とすれば、 組成 の異なる複数のラテックスを乾燥させて粉体を得る場合においても、 粉体特性及 び再分散性の良好な粉体を得ることができる。 Therefore, if the outlet temperature of the dryer is set to a temperature lower than the temperature obtained by adding 30 ° C to the MFT, even when a plurality of latexes having different compositions are dried to obtain a powder, the powder characteristics and redispersibility are good Powder can be obtained.
上記温度が、 ラテックスの MFTに 30°Cを加えた温度以上である場合、 粉体 の表面部分の Hi着が進行して粉体の溶融混練時の再分散性が低下するため、 フィ ッシュアィ発生の増加を招く。 If the above temperature is equal to or higher than the temperature obtained by adding 30 ° C to the MFT of the latex, Hi-adhesion of the surface of the powder proceeds and the re-dispersibility during melt-kneading of the powder decreases, resulting in fishy generation. Increase.
また、 乾燥器出口の気体温度の下限は、 特に制限しないが 50°Cより高いこと が好ましい。 50°C以下であると、 粉末の乾燥が不十分となる場合がある。 上記ラテックスの MFTの測定方法としては、 まず、 水平に設置したアルミ二 ゥム製板の両端に、 加熱装置や冷却装置を必要に応じて設け、 アルミニウム製板 に温度勾配を持たせる。 次に、 前記温度勾配を持たせたアルミニウム製板の上に ラテックスを均一に薄く広げ乾燥させる。 そして、 ラテックスが透明な連続フィ ルムを形成する最低の温度を測定し、 これを MFTとする。 The lower limit of the gas temperature at the outlet of the dryer is not particularly limited, but is preferably higher than 50 ° C. When the temperature is lower than 50 ° C, drying of the powder may be insufficient. As a method of measuring the MFT of the latex, first, a heating device or a cooling device is provided at both ends of a horizontally installed aluminum plate as necessary, so that the aluminum plate has a temperature gradient. Next, the latex is spread uniformly and thinly on the aluminum plate having the temperature gradient, and dried. Then, the lowest temperature at which the latex forms a transparent continuous film is measured, and this is defined as the MFT.
以上説明したような条件で乾燥させて得られる粉体の好ましい粒子径は、 粉体 のポリマー構造などにも依存するために一概には言えない。 例えば、 一般に Tg (もしくは MFT) が低いものは本質的に粉体性能が悪いため、 ガラス転移温度 (もしくは M F T ) が高いものに比較して粒子径を大きめに設定する必要がある 。 しかしながら、 好ましくは、 60〜300 mで、 より好ましくは 100〜2 00 / mとされる。 粒子径が 60 zm未満では、 微粉の増加などにより、 粉体の ハンドリング性、 流動性、 耐ブロッキング性の低下を招き、 300 xmを超える と、 塩化ビニル樹脂などの樹脂粉末と混合する際、 分級し易くなり均一に混合で きなくなる。 The preferred particle size of the powder obtained by drying under the conditions described above cannot be determined unconditionally because it depends on the polymer structure of the powder. For example, particles with low Tg (or MFT) generally have essentially poor powder performance, so it is necessary to set the particle size larger than those with high glass transition temperature (or MFT). However, it is preferably between 60 and 300 m, more preferably between 100 and 200 / m. If the particle diameter is less than 60 zm, the handling properties, flowability and blocking resistance of the powder will be reduced due to the increase in fine powder, etc.If it exceeds 300 xm, it will be classified when mixed with resin powder such as vinyl chloride resin. It becomes difficult to mix uniformly.
上記製造方法おいて用いられるアクリル系重合体を主成分とする乳化重合ラテ ックスは、 特に制限されないが、 MFTが 20°C以上のものが好ましい。 より好 ましくは MFTが 50°C以上のものである。 MFTが 20°Cより低い場合は、 乾
燥器出口温度が 5 0 °C以下となり乾燥不十分となる。 The emulsion polymerization latex containing an acrylic polymer as a main component used in the above production method is not particularly limited, but preferably has an MFT of 20 ° C or more. More preferably, the MFT is above 50 ° C. If MFT is below 20 ° C, dry The temperature at the dryer outlet is 50 ° C or less, resulting in insufficient drying.
このようなラテックスは、 具体的に、 メチルァクリレート、 ェチルァクリレー ト、 ブチルァクリレート、 プロピルァクリレート、 2—ェチルへキシルァクリレ ート、 ァリルァクリレート、 グリシジルァクリレート、 メチルメタクリレート、 ェチルメタクリレート、 ブチルメタクリレート、 プロピルメタクリレート、 2 - ェチルへキシルメタクリレート、 ァリルメタクリレート、 グリシジルメタクリレ —ト、 アクリルアミド、 アクリロニトリルなどのアクリル系単量体を、 1種又は 2種以上使用して、 これらを共重合、 シード重合、 またはグラフト重合し複合化 したものである。 また、 上記アクリル系単量体以外の単量体として、 スチレン、 ひ -メチルスチレン、 1, 3 ブタジエン、 酢酸ビエル、 ビニルピリジン等乳化重合 に使用できる単量体を少量組み合わせて使用することも可能である力 ァクリル 系単量体を 5 0質量%以上含むことが好ましい。 Such latexes include, specifically, methyl acrylate, ethyl acrylate, butyl acrylate, propyl acrylate, 2-ethylhexyl acrylate, aryl acrylate, glycidyl acrylate, methyl methacrylate, Using one or more acrylic monomers such as ethyl methacrylate, butyl methacrylate, propyl methacrylate, 2-ethylhexyl methacrylate, aryl methacrylate, glycidyl methacrylate, acrylamide, acrylonitrile, etc. Is obtained by copolymerization, seed polymerization, or graft polymerization. In addition, as monomers other than the above-mentioned acrylic monomers, it is also possible to use a small amount of monomers such as styrene, para-methylstyrene, 1,3-butadiene, biel acetate, vinylpyridine, etc. which can be used for emulsion polymerization. It is preferable to contain 50% by mass or more of the acryl-based monomer.
その他、 ジビニルベンゼン、 1 , 3 プチレンジメタクリレート、ァリルメ夕クリ レート、グリシジルメタクリレートなどの架橋剤、 メルカブタン類、 テレペン類 といった連鎖移動剤を併せて使用することも可能である。 In addition, it is also possible to use a cross-linking agent such as divinylbenzene, 1,3-butylenedimethacrylate, arylmethacrylate, and glycidyl methacrylate, and a chain transfer agent such as mercaptans and terpenes.
上記ァクリル系重合体の乳化重合に使用する重合開始剤としては、 特に限定さ れないが、 過硫酸カリウム、 過硫酸ナトリウム、 過硫酸アンモニゥムなどの水溶 性過硫酸、 ジイソプロピルベンゼンヒドロパーオキサイド、 P-メンタンハイド口 パーォキサイド、 キュメインハイドロパーォキサイド、 t -プチル八ィドロパ一 ォキサイドなどの有機過酸過物を一成分としたレドックス系開始剤を使用できる 上記ァクリル系重合体の乳化重合に使用する乳化剤としては、 特に限定されな いが不均化ロジン酸、 ォレイン酸、 ステアリン酸などの高級脂肪酸のアルカリ金 属塩、 ドデシルベンゼンスルホン酸などのスルホン酸アルカリ金属塩を 1種又は 2種以上組み合わせて使用できる。 The polymerization initiator used in the emulsion polymerization of the acryl-based polymer is not particularly limited, but water-soluble persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate, diisopropylbenzene hydroperoxide, P- Mentane Hydrate Peroxide, cumine hydroperoxide, redox-based initiators containing organic peroxides as one component, such as t-butyl octyl peroxide, can be used.Used for emulsion polymerization of the above acryl-based polymers. The emulsifier is not particularly limited, but one or more alkali metal salts of higher fatty acids such as disproportionated rosin acid, oleic acid, and stearic acid, and alkali metal salts of sulfonic acids such as dodecylbenzenesulfonic acid are combined. Can be used.
上記製造方法に使用されるラテックスの乳化重合方法や乳化重合条件に特に制 限はなく、 従来公知の方法や条件で実施できる。 There is no particular limitation on the emulsion polymerization method and emulsion polymerization conditions for the latex used in the above-mentioned production method, and the method can be carried out by conventionally known methods and conditions.
また、 上記ラテックスは単独でも良いが、 複数のラテックスの混合物であって も良い。
また、 乾燥器内での酸化防止のため、 噴霧するラテックスに適当な酸化防止剤 や添加剤等を加え、 噴霧乾燥することもできる。 The above latex may be used alone, or may be a mixture of a plurality of latexes. Also, in order to prevent oxidation in the dryer, a suitable antioxidant or additive can be added to the latex to be sprayed and spray dried.
更には、 得られるアクリル系重合体粉体の耐ブロッキング性、 嵩比重等の粉体 性能を向上させるため、 シリカ、 タルク、 炭酸カルシウム、 などの無機質充填剤 やポリアクリレート、 ポリビニルアルコール、 ポリアクリルアミド等を添加して 噴霧乾燥することもできる。 Furthermore, in order to improve the powder performance such as blocking resistance and bulk specific gravity of the obtained acrylic polymer powder, inorganic fillers such as silica, talc, calcium carbonate, etc., polyacrylate, polyvinyl alcohol, polyacrylamide, etc. Can be added and spray dried.
本発明のアクリル系重合体の製造方法においては、 上記のように温度調整され た乾燥器内に、 上記スプレーノズルにより上記乳化重合ラテックスを噴霧し、 こ れを乾燥して出口部分から回収することにより、 所望の粉体性能を有するァクリ ル系重合体の粉体を得ることができる。 In the method for producing an acrylic polymer according to the present invention, the emulsion polymerization latex is sprayed by the spray nozzle into the dryer whose temperature is adjusted as described above, and this is dried and collected from the outlet. Thereby, an acryl-based polymer powder having desired powder performance can be obtained.
なお、 本発明においては、 噴霧方式、 乾燥器入口、 出口の気体温度の範囲を規 定した以外は噴霧乾燥装置、 方法、 条件などは特に制限されない。 また、 乾燥用 気体としては、 低コストであることから空気が好ましいが、 不活性ガスや、 空気 と不活性ガスを混合して使用することも可能である。 In the present invention, the spray-drying apparatus, method, conditions, etc. are not particularly limited except for the range of the gas temperature at the inlet and outlet of the dryer and the spray method. Air is preferred as the drying gas because of its low cost, but it is also possible to use an inert gas or a mixture of air and an inert gas.
このように本発明のアクリル系重合体の製造方法においては、 ラテックスをス プレーノズルを用いて噴霧するとともに、 ラテックスの M F Tを基準として乾燥 器内の温度を制御しているので、 粒子径を適切に制御できるとともに、 アクリル 系重合体 (ポリマー) の組成に応じてそのポリマー構造も制御でき、 優れた粉体 性能の粉体が得られる。 As described above, in the method for producing an acrylic polymer of the present invention, the latex is sprayed using the spray nozzle, and the temperature in the dryer is controlled based on the MFT of the latex. And the structure of the acrylic polymer can be controlled according to the composition of the acrylic polymer (polymer), and a powder with excellent powder performance can be obtained.
すなわち、 本発明によれば、 粉体取り扱い時のハンドリング性、 流動性、 耐ブ 口ッキング性等の粉体特性、 および塩化ビニル樹脂等の他の樹脂と溶融混練した 際の分散性に優れ、 フィッシュアイの発生が少ないアクリル系重合体粉末を製造 することができる。 実施例 That is, according to the present invention, the powder has excellent handling properties in handling powder, fluidity, powder properties such as blocking resistance, and dispersibility when melt-kneaded with another resin such as a vinyl chloride resin. An acrylic polymer powder with less generation of fish eyes can be produced. Example
以下、 実施例にもとづき本発明を説明する。 なお、 実施例、 比較例中の部数は 特にことわりがない限り質量部を表すものである。 Hereinafter, the present invention will be described based on examples. In addition, the number of parts in Examples and Comparative Examples represents parts by mass unless otherwise specified.
アクリル系樹脂組成物の合成を行い、 得られたラテックスの最低成膜温度 (M F T) を測定後、 噴霧乾燥し粉体を回収して、 各種物性の評価を行った。 乾燥器
出口温度、 乾燥器入口温度、 評価結果をあわせて表 1に示す。 After synthesizing the acrylic resin composition and measuring the minimum film formation temperature (MFT) of the obtained latex, the powder was collected by spray drying and evaluated for various physical properties. Dryer Table 1 shows the outlet temperature, dryer inlet temperature, and evaluation results.
(実施例 1、 2及び比較例 1、 2 、 3) (Examples 1, 2 and Comparative Examples 1, 2, 3)
(1) · アクリル系樹脂組成物の合成 (1) Synthesis of acrylic resin composition
反応器内に、 メチルメ夕クリレー卜 85部、 ブチルメタクリレート 15部、 t e r t—ドデシルメル力プ夕ン 0. 003部、 アルケニルコハク酸カリウム 1. 5部、 脱イオン水 190部を仕込み、 窒素置換を行った後、 攪拌しながら昇温を 開始した。 その後、 反応器内の温度が 40 に到達した時点で過硫酸カリウム 2 . 0部、 脱イオン水 10部の混合物を反応器内に投入し重合を開始し、 200分 保持した後、 得られたラテックスを反応器内より取り出した。 85 parts of methyl methyl acrylate, 15 parts of butyl methacrylate, 0.003 parts of tert-dodecylmer sulfide, 1.5 parts of potassium alkenyl succinate, and 190 parts of deionized water were charged into the reactor and purged with nitrogen. After that, the temperature was raised while stirring. Thereafter, when the temperature in the reactor reached 40, a mixture of 2.0 parts of potassium persulfate and 10 parts of deionized water was charged into the reactor, polymerization was started, and after 200 minutes, the obtained mixture was obtained. The latex was taken out of the reactor.
(2) M FTの測定 (2) MFT measurement
最低成膜温度測定装置 (高林理化 (株) 製) を使用して、 上記ラテックスの M FTを測定した。 The MFT of the above latex was measured using a minimum film formation temperature measuring device (manufactured by Takabayashi Rika Co., Ltd.).
このときの測定温度条件を、 低温側 20°C、 高温側 180°Cとした。 The measurement temperature conditions at this time were 20 ° C on the low temperature side and 180 ° C on the high temperature side.
測定の結果、 ラテックスの M F Tは 85でであった。 As a result of measurement, the MFT of the latex was 85.
(3) 噴霧乾燥 (3) Spray drying
上記ラテックスを乾燥器に導入し噴霧乾燥した。 このときの乾燥器としては 、 直胴部内径 3. 5m、 直胴部高さ 4m、 コーン部高さ 2. 8mのものを用い、 噴霧装置としては、 加圧ノズル (噴霧圧力 2. 4Mp a) を用いた。 また、 乾 燥用気体としては空気を使用した。 The latex was introduced into a dryer and spray-dried. At this time, the dryer used was one with an inner diameter of 3.5 m for the straight body, a height of 4 m for the straight body, and a height of 2.8 m for the cone. The spraying device was a pressurizing nozzle (spray pressure 2.4 Mpa ) Was used. Air was used as the drying gas.
このときのラテックス供給速度、 加熱ガス送風量、 乾燥器入口温度、 出口温度 を表 1に示す。 Table 1 shows the latex supply speed, heated gas air flow, dryer inlet temperature, and outlet temperature.
(4) 各種物性評価 (4) Evaluation of various physical properties
[粉末平均粒子径] [Powder average particle size]
日本工業規格 ( J I S 第 40号) によって規定されている粒度分布評価機器 を用い、 質量基準のメジアン径 (中位径、 通常 D5。と表記される。) を測定した 。 (積算質量分布曲線の 50 %にあたる粒子径) Using a particle size distribution evaluation device being defined by the Japanese Industrial Standards (JIS No. 40), was measured median size of the mass (median diameter is denoted usually D 5. A.). (Particle size equivalent to 50% of the cumulative mass distribution curve)
[粉体流動性] [Powder fluidity]
J I S-K- 6721で用いられるかさ比重測定器に粉末を 50 g r入れ、 ダ
ンパーを外した際の流動状態を目視で観察し、 次の 5段階に分けて評価した。 ◎· · ·極めて良好 Put 50 gr of powder into the bulk density meter used in JI SK-6721, The flow state when the damper was removed was visually observed and evaluated in the following five stages. ◎
〇· · ·かなり良好 ····· Good
△ . . .良好 △ ... good
X · · ·不良 X · · · bad
[フィッシュアイ評価] [Fish eye evaluation]
以下に示す配合からなる樹脂を、 8インチロール (150°C) を使用し 4分間 溶融混練した後、 上記で得られたアクリル樹脂粉末を 2. 0部添カ卩し、 更に 5分 間溶融混練して板状の樹脂を切り取り、 フィッシュアィ評価用試片を作製した。 その後、 作製した試片中に含まれる単位面積当たりのフィッシュアイの発生 ί 個 Z16 cm2) を樹脂の後部から光をあてて目視により評価した。 After melt-kneading a resin having the following composition using an 8-inch roll (150 ° C) for 4 minutes, add 2.0 parts of the acrylic resin powder obtained above, and melt for 5 minutes. After kneading, the plate-like resin was cut out to prepare a fishy evaluation test piece. Thereafter, the number of fish eyes per unit area (Z16 cm 2 ) contained in the prepared specimen was evaluated visually by irradiating light from the rear of the resin.
塩化ビニル樹脂 (n=l 300) L 00部 トリメリット酸トリオクチル Vinyl chloride resin (n = l 300) L 00 part Trioctyl trimellitate
(花王石鹼 (株) 製 商品名 T一 80) 80部 B a— Zn型安定剤 (Product name: T-80, manufactured by Kao Stone Co., Ltd.) 80 parts Ba-Zn type stabilizer
(日産フエ口 (株) 製 商品名 丁1^ー45) 1.0咅 15 エポキシ化大豆油 (Nissan Hueguchi Co., Ltd. Product name: 1 ^ -45) 1.0 咅 15 Epoxidized soybean oil
(東京ファイン (株) 製 商品名 NF— 3000) 5.0部 酸化チタン (石原産業 (株) 製 商品名 R— 830) 2.0部 カーボンブラック 0. 1部 (Tokyo Fine Co., Ltd. product name NF-3000) 5.0 parts Titanium oxide (Ishihara Sangyo Co., Ltd. product name R-830) 2.0 parts Carbon black 0.1 part
(実施例 3. 4 比較例 4) (Example 3.4 Comparative Example 4)
(1) アクリル系樹脂組成物の合成 (1) Synthesis of acrylic resin composition
反応器内に、 メチルメタクリレート 46部、 プチルァクリレート 9部、 t e r t—ドデシルメルカブタン 0. 01部、 アルケニルコハク酸カリウム 1. 0部、 脱イオン水 190部を仕込み、 窒素置換を行った後、 攪拌しながら昇温を開始し 、 反応器内の温度が、 40°Cに到達した時点で過硫酸カリウム 2. 0部、 脱ィォ ン水 10部の混合物を反応器内に投入し重合を開始した。 その後、 120分保持 した後、 メチルメ夕クリレート 37部、 プチルァクリレート 8き!^の混合物を 60
分かけて反応器内に仕込み 100分保持した後反応器内より取り出した。 After charging 46 parts of methyl methacrylate, 9 parts of butyl acrylate, 0.01 parts of tert-dodecyl mercaptan, 1.0 parts of potassium alkenyl succinate, and 190 parts of deionized water into the reactor, and after purging with nitrogen, Then, the temperature was increased while stirring, and when the temperature in the reactor reached 40 ° C, a mixture of 2.0 parts of potassium persulfate and 10 parts of deionized water was charged into the reactor and polymerized. Started. After holding for 120 minutes, a mixture of 37 parts of methyl methyl acrylate and 8 parts of butyl acrylate! The mixture was charged into the reactor over a period of 100 minutes, held for 100 minutes, and then taken out of the reactor.
(2) M FTの測定 (2) MFT measurement
実施例 1と同様の方法で行った。 測定の結果、 ラテックスの MFTは 72°Cで あった。 The procedure was performed in the same manner as in Example 1. As a result of the measurement, the MFT of the latex was 72 ° C.
(3) 噴霧乾燥 (3) Spray drying
実施例 1と同様の方法で行った。 ラテックス供給速度、 加熱ガス送風量、 乾燥 器入口温度、 出口温度を表 1に示す。 The procedure was performed in the same manner as in Example 1. Table 1 shows the latex feed rate, heated gas flow rate, dryer inlet temperature, and outlet temperature.
(4) 各種物性評価 (4) Evaluation of various physical properties
実施例 1と同様の方法で行った。 The procedure was performed in the same manner as in Example 1.
(実施例 5、 6 比較例 5) (Examples 5, 6 Comparative Example 5)
(1) アクリル系樹脂組成物の合成 (1) Synthesis of acrylic resin composition
反応器内に、 ポリォキシエヂレンアルキルエーテルホスファイト 1 · 5部、 水 酸化カリウム 0. 01部、 脱イオン水 200部を仕込み、 窒素置換を行った後、 メチルメタクリレート 25部、 キュメインハイドロバ一オキサイド 0. 003部 を攪拌しながら添カロし昇温を開始した。 その後、 反応器内の温度が、 50°Cに到 達した時点でナ卜リゥムホルムアルデヒドスルホキシレート 0. 3部、 脱イオン 水 10部の混合物を反応器内に投入し重合を開始し、 100分保持した。 その後 、 スチレン 30部、 プチルァクリレート 25部、 t e r t -ドデシルメルカブ夕 ン 1. 0部、 キュメインハイドロパーォキサイド 0. 003部の混合物を 100 分かけて反応器内に仕込み 120分保持した。 その後、 メチルメタクリレ一ト 2 0部、 キュメインハイォドロパーオキサイド 0. 003部の混合物を 60分かけ て反応器内に仕込み 100分保持した後反応器内より取り出した。 Into the reactor were charged 1.5 parts of polyoxydylene alkyl ether phosphite, 0.01 parts of potassium hydroxide, and 200 parts of deionized water, and after purging with nitrogen, 25 parts of methyl methacrylate and Cumene Hydro. 0.0003 parts of the peroxide was added to the mixture while stirring, and the temperature was raised. Then, when the temperature in the reactor reached 50 ° C, a mixture of 0.3 parts of sodium formaldehyde sulfoxylate and 10 parts of deionized water was charged into the reactor to start polymerization, Hold for 100 minutes. Thereafter, a mixture of 30 parts of styrene, 25 parts of butyl acrylate, 1.0 part of tert-dodecyl mercaptan, and 0.003 part of cumine hydroperoxide was charged into the reactor over 100 minutes and 120 minutes. Held. Thereafter, a mixture of 20 parts of methyl methacrylate and 0.003 part of cumine hydroperoxide was charged into the reactor over 60 minutes, held for 100 minutes, and then taken out of the reactor.
(2) M FTの測定 (2) MFT measurement
実施例 1と同様の方法で行つた。 測定の結果、 ラテックスの M F Tは 62 で あった。 The procedure was performed in the same manner as in Example 1. As a result of measurement, the MFT of the latex was 62.
(3) 噴霧乾燥 (3) Spray drying
実施例 1と同様の方法で行った。 ラテックス供給速度、 加熱ガス送風量、 乾燥 器入口温度、 出口温度を表 1に示す。
(4) 各種物性評価 The procedure was performed in the same manner as in Example 1. Table 1 shows the latex feed rate, heated gas flow rate, dryer inlet temperature, and outlet temperature. (4) Evaluation of various physical properties
実施例 1と同様の方法で行った。 The procedure was performed in the same manner as in Example 1.
(比較例 6) (Comparative Example 6)
回転ディスク噴霧方式 (回転数 15000 r pm) の乾燥器を用いた以外は、 実施例 3と同様の方法で行なった。 Example 3 was carried out in the same manner as in Example 3, except that a dryer of a rotating disk spray system (rotation speed: 15000 rpm) was used.
結果、 平均粒子径は 50 mであったが、 微粉、 粗粉が増加し流動性が低下す ることが確認された。 As a result, it was confirmed that the average particle diameter was 50 m, but the fine powder and coarse powder increased and the fluidity decreased.
(比較例 7 ) (Comparative Example 7)
回転ディスク方式により粒子径 100 /im程度の粉を得るため、 回転数 650 0 r pmにした以外は比較例 4と同様の方法を行なった。 結果、 未乾燥の液滴が 壁面に付着し、 噴霧したラテックスを全量乾燥粉体として回収できなかった。
The same method as in Comparative Example 4 was performed except that the number of revolutions was set to 6500 rpm in order to obtain powder having a particle diameter of about 100 / im by the rotating disk method. As a result, undried droplets adhered to the wall surface, and the entire amount of the sprayed latex could not be recovered as a dry powder.
これらの結果から、 実施例 1〜6においては、 流動性および再分散性の高い粉 体が得られることがわかる。 これに比較して、 乾燥器内の温度を本発明の規定す る範囲外とした比較例 1〜 5においては、 粉体の再分散性に劣ることがわかる。 また、 回転ディスクにより噴霧を行った比較例 6においては、 粉体の流動性に劣 り、 また、 同様に回転ディスクを用い、 '粒子径を大きく設定した比較例 7におい ては、 粉体を回収することができなかった。 . 産業上の利用可能性 From these results, it can be seen that in Examples 1 to 6, a powder having high fluidity and high redispersibility can be obtained. In comparison, in Comparative Examples 1 to 5 in which the temperature in the dryer was outside the range specified by the present invention, it was found that the redispersibility of the powder was inferior. Further, in Comparative Example 6 in which spraying was performed using a rotating disk, the fluidity of the powder was poor, and in Comparative Example 7 in which a rotating disk was used and the particle diameter was set to be large, the powder was removed. Could not be recovered. . Industrial Applicability
以上説明したように本発明によれば、 ハンドリング性、 流動性、 耐ブロッキン グ性などの粉体特性に優れ、 かつ溶融混練時の再分散性に優れ、 フィッシュアイ 発生量が少ないアクリル系重合体の粉体を得ることができる。 As described above, according to the present invention, an acrylic polymer having excellent powder properties such as handling properties, fluidity, and blocking resistance, excellent redispersibility at the time of melt-kneading, and having a low fisheye generation amount. Powder can be obtained.
このような粉体特性に優れたアクリル系重合体粉体は、 塩化ビニル樹脂、 ポリ スチレン、 ポリカーボネート、 AB S樹脂、 アクリル樹脂、 その他各種ェンジ二 ァプラスチックなどの耐衝撃改質剤、 滑剤等の加工性改良剤として、 好適に用い ることができる。 Acrylic polymer powders with such excellent powder properties include impact modifiers such as vinyl chloride resin, polystyrene, polycarbonate, ABS resin, acrylic resin, and other various plastics. It can be suitably used as a processability improver.
本発明は、 その精神または主要な特徴から逸脱することなく、 他のいろいろな 形で実施することができる。 そのため、 前述の実施例はあらゆる点で単なる例示 にすぎず、 限定的に解釈してはならない。 本発明の範囲は、 特許請求の範囲によ つて示すものであって、 明細書本文には、 なんら拘束されない。 さらに、 特許請 求の範囲の均等範囲に属する変形や変更は、 すべて本発明の範囲内のものである
The present invention may be embodied in various other forms without departing from its spirit or essential characteristics. Therefore, the above-described embodiment is merely an example in every respect and should not be construed as limiting. The scope of the present invention is defined by the appended claims, and is not restricted by the specification. Further, all modifications and changes belonging to the equivalent scope of the patent claim are within the scope of the present invention.
Claims
1 . アクリル系重合体を主成分とす'る乳化重合ラテックスを、 乾燥器内に噴霧 するとともに、 乾燥器の入口部から乾燥用気体を送り込み、 前記ラテックスを乾 燥させてアクリル系重合体の粉体を得て、 この粉体を乾燥器の出口部より回収す る工程を有するアクリル系重合体の製造方法において、 1. Spray an emulsion polymerization latex containing an acrylic polymer as a main component into a dryer, and send a drying gas from the inlet of the dryer to dry the latex and dry the acrylic polymer. A method for producing an acrylic polymer, comprising the steps of obtaining a powder and recovering the powder from an outlet of a dryer.
上記ラテックスの噴霧をスプレーノズルにより行い、 前記乾燥器入口部付近の 乾燥用気体温度を 2 0 0 °C未満とし、 かつ乾燥器出口部付近の乾燥用気体温度を 、 上記乳化重合ラテックスの最低成膜温度に 3 0 °Cを加えた温度未満とすること を特徴とするァクリル系重合体の製造方法。 The latex is sprayed by a spray nozzle, the temperature of the drying gas near the dryer inlet is set to less than 200 ° C, and the temperature of the drying gas near the dryer outlet is set to the minimum composition of the emulsion polymerization latex. A method for producing an acryl-based polymer, wherein the temperature is lower than a temperature obtained by adding 30 ° C. to a film temperature.
2 . 前記乾燥器入口部付近の乾燥用気体温度が 1 9 0 以下であることを特徴 とする請求項 1に記載のアクリル系重合体の製造方法。 2. The method for producing an acrylic polymer according to claim 1, wherein the temperature of the drying gas near the entrance of the dryer is 190 or less.
3 . 前記乾燥器入口部付近の乾燥用気体温度が 1 4 0〜1 9 0 であることを 特徴とする請求項 2に記載のァクリル系重合体の製造方法。 3. The method for producing an acryl-based polymer according to claim 2, wherein the temperature of the drying gas near the entrance of the dryer is 140 to 190.
4 . 前記乾燥器出口部付近の乾燥用気体温度が、 上記乳化重合ラテックスの最 低成膜温度に 2 0 °Cを加えた温度未満であることを特徴とする請求項 1に記載の アクリル系重合体の製造方法。 ' 4. The acrylic system according to claim 1, wherein the temperature of the drying gas near the outlet of the dryer is lower than a temperature obtained by adding 20 ° C to the minimum film forming temperature of the emulsion polymerization latex. A method for producing a polymer. '
5. 前記ラテックスの最低成膜温度が、 2 0 °C以上であることを特徴とする 請求項 1に記載のァクリル系重合体の製造方法。 5. The method for producing an acryl-based polymer according to claim 1, wherein a minimum film forming temperature of the latex is 20 ° C or more.
6 . 前記ラテックスの最低成膜温度が、 5 0 °C以上であることを特徴とする 請求項 5に記載のァクリル系重合体の製造方法。
6. The method for producing an acryl-based polymer according to claim 5, wherein a minimum film forming temperature of the latex is 50 ° C or more.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-149069 | 2000-05-19 | ||
JP2000149069A JP2001329067A (en) | 2000-05-19 | 2000-05-19 | Manufacturing method of acrylic polymer |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001088021A1 true WO2001088021A1 (en) | 2001-11-22 |
Family
ID=18654983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/004153 WO2001088021A1 (en) | 2000-05-19 | 2001-05-18 | Process for producing acrylic polymer |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2001329067A (en) |
CN (1) | CN100341924C (en) |
WO (1) | WO2001088021A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005078013A1 (en) * | 2004-02-16 | 2005-08-25 | Mitsubishi Rayon Co., Ltd. | Modifier for resin and resin composition using the same and formed article |
CN1311006C (en) * | 2002-10-18 | 2007-04-18 | 三菱丽阳株式会社 | Spraying drier for polymer latex and powder recovering method |
CN100357006C (en) * | 2002-11-29 | 2007-12-26 | 三菱丽阳株式会社 | Process for reclaiming polymer |
US20120219694A1 (en) * | 2011-02-28 | 2012-08-30 | Basf Se | Production Of Pulverulent Coating Compositions For Stable Protective Coatings For Pharmaceutical Dosage Forms |
WO2012116941A1 (en) * | 2011-02-28 | 2012-09-07 | Basf Se | Producing powdery coating agents for stable protective coatings for pharmaceutical dosage forms |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1235948C (en) * | 2001-05-17 | 2006-01-11 | 三菱丽阳株式会社 | Method for mfg. polymer particles |
JP4964466B2 (en) * | 2003-09-26 | 2012-06-27 | 三井化学株式会社 | Spherical composite composition and method for producing spherical composite composition |
KR101306804B1 (en) * | 2008-11-18 | 2013-09-10 | 에스케이플래닛 주식회사 | A electronic paper particle and method for manufacturing thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816558A (en) * | 1987-02-02 | 1989-03-28 | Rohm Gmbh | Method for making redispersible synthetic resin powders |
JPH01275637A (en) * | 1988-03-08 | 1989-11-06 | Roehm Gmbh | Production of spray dry powdery polymer |
JPH04145131A (en) * | 1990-10-04 | 1992-05-19 | Japan Synthetic Rubber Co Ltd | Production of hollow polymer particle |
JPH0718086A (en) * | 1993-06-18 | 1995-01-20 | Basf Ag | Auxiliary and method for spray-drying aqueous polymer dispersion, polymer powder, synthetic resin plaster, mineral binder, and dried synthetic resin plaster compound |
JPH08134224A (en) * | 1994-11-15 | 1996-05-28 | Mitsubishi Rayon Co Ltd | Redispersible resin |
JPH08231729A (en) * | 1995-02-22 | 1996-09-10 | Mitsubishi Rayon Co Ltd | Production of re-dispersible resin and same obtained by it |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0159947B1 (en) * | 1991-03-12 | 1998-11-16 | 마사아키 오카와라 | The droplet diameter control method in a fountain type pressurized two-fluid nozzle apparatus, the spray dryer apparatus formed by incorporating it, and a pressurized two-fluid body |
CN1035238C (en) * | 1992-08-20 | 1997-06-25 | 大川原化工机株式会社 | Spray drying granulation device |
-
2000
- 2000-05-19 JP JP2000149069A patent/JP2001329067A/en active Pending
-
2001
- 2001-05-18 CN CNB018096816A patent/CN100341924C/en not_active Expired - Lifetime
- 2001-05-18 WO PCT/JP2001/004153 patent/WO2001088021A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816558A (en) * | 1987-02-02 | 1989-03-28 | Rohm Gmbh | Method for making redispersible synthetic resin powders |
JPH01275637A (en) * | 1988-03-08 | 1989-11-06 | Roehm Gmbh | Production of spray dry powdery polymer |
JPH04145131A (en) * | 1990-10-04 | 1992-05-19 | Japan Synthetic Rubber Co Ltd | Production of hollow polymer particle |
JPH0718086A (en) * | 1993-06-18 | 1995-01-20 | Basf Ag | Auxiliary and method for spray-drying aqueous polymer dispersion, polymer powder, synthetic resin plaster, mineral binder, and dried synthetic resin plaster compound |
JPH08134224A (en) * | 1994-11-15 | 1996-05-28 | Mitsubishi Rayon Co Ltd | Redispersible resin |
JPH08231729A (en) * | 1995-02-22 | 1996-09-10 | Mitsubishi Rayon Co Ltd | Production of re-dispersible resin and same obtained by it |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1311006C (en) * | 2002-10-18 | 2007-04-18 | 三菱丽阳株式会社 | Spraying drier for polymer latex and powder recovering method |
CN100357006C (en) * | 2002-11-29 | 2007-12-26 | 三菱丽阳株式会社 | Process for reclaiming polymer |
WO2005078013A1 (en) * | 2004-02-16 | 2005-08-25 | Mitsubishi Rayon Co., Ltd. | Modifier for resin and resin composition using the same and formed article |
US9206310B2 (en) | 2004-02-16 | 2015-12-08 | Mitsubishi Rayon Co., Ltd. | Modifier for resin and resin composition using the same and formed article |
US20120219694A1 (en) * | 2011-02-28 | 2012-08-30 | Basf Se | Production Of Pulverulent Coating Compositions For Stable Protective Coatings For Pharmaceutical Dosage Forms |
WO2012116941A1 (en) * | 2011-02-28 | 2012-09-07 | Basf Se | Producing powdery coating agents for stable protective coatings for pharmaceutical dosage forms |
US8865250B2 (en) * | 2011-02-28 | 2014-10-21 | Basf Se | Production of pulverulent coating compositions for stable protective coatings for pharmaceutical dosage forms |
Also Published As
Publication number | Publication date |
---|---|
CN1429244A (en) | 2003-07-09 |
CN100341924C (en) | 2007-10-10 |
JP2001329067A (en) | 2001-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5914429B2 (en) | How to use hollow sphere polymer | |
CN100427543C (en) | Acrylic polymer powder, acrylic sol, and molding | |
WO2001088021A1 (en) | Process for producing acrylic polymer | |
JP5207221B2 (en) | Production method of polymer particles, polymer particles, matting agent, resin composition, coating composition, molded product, and coating film | |
KR101886395B1 (en) | New and stable aqueous hybrid binder | |
JP2002146197A (en) | Powdery impact modifier composition | |
KR101672587B1 (en) | Acrylic copolymer latex, preparation method thereof, and vinyl chloride resin composition comprising the same | |
JPH035405B2 (en) | ||
TW200304446A (en) | Multimodal polymer particle composition and uses thereof | |
JP4083029B2 (en) | Acrylic polymer powder, acrylic sol and molded product | |
JP6735534B2 (en) | Composite rubber-based graft copolymer-containing powder, composite rubber-based graft copolymer-containing solidified product, thermoplastic resin composition, and method for producing molded article thereof | |
JP6874154B2 (en) | Vinyl chloride resin latex composition and its manufacturing method | |
JP4080899B2 (en) | Acrylic polymer powder, acrylic sol and molded product | |
JPH11292978A (en) | Method for producing resin powder and resin powder | |
JP4629315B2 (en) | Acrylic polymer powder, acrylic sol and molded product | |
JP2556453B2 (en) | Method for producing hollow polymer particles | |
JP4094434B2 (en) | Method for producing polymer particles | |
JP5953182B2 (en) | Alkali-soluble resin and viscosity modifier using the same | |
JP4033656B2 (en) | Matting agent for paint and paint composition using the same | |
JP7511633B2 (en) | Method for producing vinyl chloride-acrylic copolymer latex | |
JP7511634B2 (en) | Method for producing vinyl chloride-vinyl acetate copolymer latex | |
JP4398080B2 (en) | Paint composition | |
JP6953867B2 (en) | Composite rubber polymer, graft copolymer and thermoplastic resin composition | |
JP2004224846A (en) | Acrylic polymer powder, acrylic sol and molded product | |
JP3875794B2 (en) | Method for producing polymer fine particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 018096816 Country of ref document: CN |
|
122 | Ep: pct application non-entry in european phase |