WO2001076395A1 - Method and device for freezing food - Google Patents
Method and device for freezing food Download PDFInfo
- Publication number
- WO2001076395A1 WO2001076395A1 PCT/JP2001/003049 JP0103049W WO0176395A1 WO 2001076395 A1 WO2001076395 A1 WO 2001076395A1 JP 0103049 W JP0103049 W JP 0103049W WO 0176395 A1 WO0176395 A1 WO 0176395A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- freezing
- antifreeze
- food
- frozen
- electric field
- Prior art date
Links
- 238000007710 freezing Methods 0.000 title claims abstract description 51
- 230000008014 freezing Effects 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 36
- 235000013305 food Nutrition 0.000 title claims abstract description 31
- 230000002528 anti-freeze Effects 0.000 claims abstract description 40
- 230000005684 electric field Effects 0.000 claims abstract description 31
- 235000013611 frozen food Nutrition 0.000 claims abstract description 15
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 230000003028 elevating effect Effects 0.000 claims abstract description 3
- 238000009434 installation Methods 0.000 claims abstract description 3
- 238000005057 refrigeration Methods 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims 1
- 238000009413 insulation Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000013078 crystal Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000010257 thawing Methods 0.000 description 8
- 244000195452 Wasabia japonica Species 0.000 description 7
- 235000000760 Wasabia japonica Nutrition 0.000 description 7
- 235000015278 beef Nutrition 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 239000012267 brine Substances 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000012212 insulator Substances 0.000 description 6
- -1 polyethylene Polymers 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 6
- 241000251468 Actinopterygii Species 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000000796 flavoring agent Substances 0.000 description 4
- 235000019634 flavors Nutrition 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 235000013330 chicken meat Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 238000009428 plumbing Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000238424 Crustacea Species 0.000 description 1
- YBHQCJILTOVLHD-YVMONPNESA-N Mirin Chemical compound S1C(N)=NC(=O)\C1=C\C1=CC=C(O)C=C1 YBHQCJILTOVLHD-YVMONPNESA-N 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 235000019615 sensations Nutrition 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000013555 soy sauce Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
- A23B2/00—Preservation of foods or foodstuffs, in general
- A23B2/80—Freezing; Subsequent thawing; Cooling
- A23B2/805—Materials not being transported through or in the apparatus with or without shaping, e.g. in the form of powders, granules or flakes
- A23B2/8055—Materials not being transported through or in the apparatus with or without shaping, e.g. in the form of powders, granules or flakes with packages or with shaping in the form of blocks or portions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D13/00—Stationary devices, e.g. cold-rooms
- F25D13/06—Stationary devices, e.g. cold-rooms with conveyors carrying articles to be cooled through the cooling space
- F25D13/065—Articles being submerged in liquid coolant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/006—General constructional features for mounting refrigerating machinery components
Definitions
- the present invention relates to a food freezing method and a food freezing device used in the method.
- the dielectric freeze method in which a magnetic field is applied to the air while freezing, does not become ice crystals even when the water content of the food is 0 to -5 ° C, and the water freezes at the same time as the starch and protein of the food material.
- the conventional freezing method has the advantages and disadvantages that are still satisfactory. Absent.
- an object of the present invention is to provide a high-quality frozen food that is the same as before freezing even after thawing.
- the present invention provides a manufacturing method and a manufacturing apparatus capable of mass-producing high-quality frozen food by supplementing the disadvantages of the brine refrigeration method and the high-potential electric field refrigeration method by applying a high-potential electric field to antifreeze. It can be provided. That is, the method of the present invention is characterized in that, in the prine freezing method in which an object to be frozen is immersed in antifreeze and frozen, an electric field is applied to the antifreeze to perform freezing.
- the present invention provides the advantages of each of the above-described prine refrigeration and dielectric freezer refrigeration. This is because the high potential electric field in the solution can be applied more uniformly than in air, and the high potential electric field can be applied to the pipeline in a large solution pipeline.
- a potential electric field can be applied, and a large amount of frozen products can be processed.
- the time required for freezing to pass through the maximum ice crystal formation zone (11 to 15 ° C), which is important for food quality, can be reduced by about 20% compared to the conventional pline freezing method.
- wasabi, wasabi, milt of fish, etc. which had weak tissue (cells), which was difficult with the conventional freezing method. After thawing, there was almost no decrease in freshness, and the flavor, texture, color tone, etc. were reduced. No food with little drip was obtained, making it possible to produce frozen food.
- Foods to be subjected to the freezing method of the present invention include marine products such as fish, shellfish, seaweed, crustaceans, fish eggs, livestock products such as cattle, pigs, chickens, eggs, agricultural products such as root vegetables and fruits, and These cooked products include food in general.
- An apparatus comprises: a freezer containing an antifreeze maintained at a low temperature; an antifreeze driving unit provided in the freezer and driven by an electric motor to stir or circulate the internal antifreeze; A frozen object lifting / lowering unit provided to support food and immersed in antifreeze in the freezer and driven by an electric motor; and a refrigerator driven by an electric motor for cooling the antifreeze.
- a high-potential electric field generating means is provided to apply an electric field to the antifreeze, the whole apparatus is electrically insulated and supported on an installation floor, and each of the electric motors is mounted. It is characterized in that it is electrically insulated and supported by the section and outputs the output power through an electrically insulating belt.
- the entire device is insulated and supported on the floor on which the device is installed, it is possible to apply an electric field from the high potential generating means to the antifreeze in the freezer without any trouble (
- the electric motor which is the driving source of each unit that mechanically drives the device, is insulated from the mounting unit and the driving force is transmitted through the insulating belt, the electric motor is used.
- the high potential electric field generation means There is no influence of the high potential electric field generation means on the side, and each operation part operates reliably. Therefore, the method of the present invention can be performed.
- a high-potential electric field generating means a high-frequency electric potential generator (Japanese Patent Publication No. 38-610), which was invented by Mr. Kubo, is suitable.
- the brine solution to be used may be calcium chloride, ethylene glycol, propylene glycol, an alcohol solution, or a mixture thereof, and a 50-68% ethyl alcohol aqueous solution may be used. It is preferable to use it after cooling to ⁇ 57 ° C, and it is suitable for freezing food.
- the high potential generated by the high potential electric field generating means employed in the present invention may be AC or DC.
- the frequency is not particularly limited, but may be higher than 50 or 60 Hz.
- Any high potential or magnetism may be used as long as the ion binding force of water molecules in the object is not weakened.
- FIG. 1 shows a schematic configuration of an embodiment of the device of the present invention, in which (a) is a partially longitudinal front view, (b) is a side view, and (c) is a plan view.
- FIG. 2 is a graph showing the difference in the maximum ice crystal formation zone transit time between Example 1 and Comparative Example 1.
- An embodiment of the method of the present invention is to form an electric field applied with a high potential of 5 to 100 kv in antifreeze cooled to ⁇ 20 to ⁇ 50 ° C. and to form an electric field in a container made of polyethylene or the like. Frozen food is immersed for 10 to 60 minutes to obtain frozen food.
- the refrigeration system used in this method is as shown in Fig. 1.
- the food refrigerating apparatus 1 shown in FIG. 1 includes a freezer 2, an antifreeze driving unit 3, a frozen object elevating unit 4, a refrigerator 5, and a high-potential electric field generating unit 6.
- the freezer 2 has a heat insulating structure using a heat insulating material, and stores the antifreeze 7 therein, and the net shelf 9 supporting the article to be frozen 8 descends from the opening opening upward and is immersed in the antifreeze 2. It has become to be.
- This freezer 2 is supported on the floor 7 via insulators 34.
- the antifreeze driving unit 3 immerses the shaft 11 with the propeller 10 in the antifreeze 7 and rotates the propeller 10 to stir the antifreeze so that the whole becomes a uniform temperature or circulates.
- the antifreeze liquid 2 is in good contact with the heat absorbing portion 1 2 of the refrigerator 5 and is sufficiently cooled, and the low temperature antifreeze liquid is effectively contacted with the frozen product 8 in the net shelf 9 to be uniformly cooled. It is to make sure.
- the rotary drive of the propeller shaft 11 is an electric motor 13, and the electric motor 13 is mounted via an insulating insulator 14, and the rotation output is output via an insulating belt 15, for example, via a rubber belt. You. Thus, the motor 13 is completely electrically insulated from the rest of the food freezer 1.
- the to-be-frozen material lifting / lowering unit 4 drives the net shelf 9 up and down, and supports the net shelf 9 on a net shelf supporting part 16.
- the net shelf supporting part 16 is set up on the edge of the freezer 2. It can be moved up and down by being guided by two guide posts 17, and a rotating screw shaft 18 provided between the posts 17, 17 in parallel with this and a screw It is designed to be driven up and down by a female screw portion 19 provided in the joining net shelf support portion 16.
- the rotation of the screw shaft 18 is performed by an electric motor 20.
- This motor 20 is also attached via the insulator 21 in the same manner as described above, and outputs via the insulating belt 22.
- the compressor part 23 is installed at an appropriate position beside the freezer 2
- a heat absorbing part (freezing coil) 12 is installed at the bottom of the freezer 2
- the compressor part 23 and the heat absorbing part 1 2 Is connected by a refrigerant passage 25, and a compressor outside the freezer and a portion related to the compressor are supported on a floor surface 27 via an insulator 26.
- a motor 28 for driving the compressor is also separately supported on the floor via an insulator 29, and is output via an insulating belt 30.
- the high-potential electric field generating means 6 uses the above-described high-frequency potential generating device, which is supported on the floor surface 27 via the insulating insulator 31, one of the secondary terminals is insulated and sealed, and the other is Is brought into contact with the antifreeze 7 in the freezer 2 via the electrode 33 connected to the conducting wire 32.
- the refrigerator 5 and the antifreeze driving unit 3 are operated in advance to lower the antifreeze 7 in the freezer 2 to a predetermined temperature or less, and the frozen product 8 is placed on the net shelf 9 to be frozen.
- the object to be frozen 8 can be frozen in a high-potential electric field by operating the object lifting / lowering section 4 to immerse the article in the antifreeze 7 and raising the net shelf after a predetermined time.
- Fatty raw beef cut to a thickness of 80 mm, length and width 80 mm It was stored in a polyethylene bag, evacuated and sealed, and then frozen according to the method of the present invention.
- the antifreeze 7 was cooled to ⁇ 35 to ⁇ 38 ° C in advance using a 55% ethyl alcohol aqueous solution (150 liters), and the cooled antifreeze was added to the cooled antifreeze by a high-potential electric field generator 6 at 10 kV.
- An electric potential was applied to crush the beef.
- the temperature course of the beef during immersion was measured using a temperature sensor, and the results are shown by curve A in Fig. 2.
- Fig. 2 shows a curve obtained by freezing the same beef and measuring the elapsed temperature under the same conditions except that the high-potential electric field generating means 6 was not operated, that is, without applying the electric field, as Comparative Example 1. Shown by B.
- the passage time in the maximum ice crystal formation zone (11 to 15 ° C.) is 7.5 minutes in Example 1 and 9.5 minutes in Comparative Example 1. Is about 20% shorter. The reason is that the application of a high-potential electric field causes the water in the beef to vibrate, reducing the size of the water and reducing the energy load.
- Example 1 The frozen beef of Example 1 and Comparative Example 1 was preserved at ⁇ 30 ° C. for one month, spontaneously thawed and tasted. As a result, the beef of Example 1 had good freshness and flavor. Comparative Example 1 was slightly inferior to that of Example 1. Although no significant difference was observed, the color after thawing was judged to be closer to the color before freezing in Example 1 than in Comparative Example 1 in the photographic judgment, and almost completely distinguished from Example 1 before freezing. It was not enough.
- Example 3 according to the method of the present invention, Comparative Example 4 using the dielectric freeze method using cold air for comparison, and Comparative Example 5 using a general freezer freezing.
- the dielectric freeze method used an ABI Tomin rack-type freezer, and it took about 2 hours for the temperature of the frozen product to reach -25 ° C.
- Each of the obtained frozen products was stored at ⁇ 30 ° C.
- Example 3 is good.
- Example 3 when each sample was thawed and placed on a filter paper and the amount of liquid falling was examined as a drip, it was hardly recognized in Example 3 and Comparative Example 4, but was reliably obtained in Comparative Example 5. Also, the tactile crispness was best in Example 3, followed by Comparative Example 4 which was slightly weaker, and Comparative Example 5 was insufficient.
- Example 4 by the method of the present invention
- Comparative Example 6 by the solution brine method without applying a high-voltage electric field for comparison
- Comparative Example 7 by freezer freezing.
- a 50% aqueous solution of ethyl alcohol was used as the antifreeze in the freezing of Example 4 and Comparative Example 6.
- the obtained frozen product was stored at ⁇ 30 ° C., subjected to natural thawing 60 days later, and subjected to a taste test.
- the results are shown in Table 3.
- the values in the table are the sum of the scores of the evaluations by the seven general panelists.
- the evaluation scores are 3 for good, 2 for normal, and 1 for bad.
- the tactile sensation is expressed in words, if the crab is good, it has elasticity, crab flavor, juicyness, etc., but if it is bad, it has elasticity. Rather than paper, etc., and the figures in the table reflect these. Table 3 clearly shows that Example 4 is superior. Table 3
- Raw wasabi was placed in a polyethylene bag and sealed to form a sample.Frozen treatment using this sample was performed in the same manner as in Example 4 except that a high voltage electric field was applied for comparison with Example 5 according to the method of the present invention.
- Comparative Example 8 using the solution plumbing method
- Comparative Example 9 using the freezer. The frozen product was naturally thawed after storage at ⁇ 30 ° C. for 60 days, and a taste-related test was performed.
- the raw wasabi was so soft that it could not be rubbed off with a grater, but in Example 5 it could be rubbed down with a grater in the same way as hard, unfrozen fresh raw wasabi.
- Example 5 the scent of wasabi appears only after being rubbed down, but in Comparative Examples 8 and 9, the scent is strong when thawed. From these results, it is recognized that the tissue (cells) of Example 5 was not destroyed, and that of Comparative Examples 8 and 9 were clearly destroyed. Thus, in Examples 1 to 5, clearly better results were obtained even in comparison with the conventional brine refrigerating method.
- the frozen food had weak tissue or a high moisture content, and the conditions were severe in that the tissue was likely to be destroyed by freezing, and favorable results were not obtained in the past. It is. The reason why such good results can be obtained is that the time required to pass through the maximum ice crystal formation band measured in Example 1 and Comparative Example 1 was shorter in Example 1 than in the high potential electric field. Examples 2 to 5 by giving Even so, the time required to pass through the maximum ice crystal formation zone is shortened. Industrial applicability
- the invention described in claim 1 can produce frozen food with good freshness, excellent touch and color tone, and with little drip, and good freezing of food with high moisture and weak tissue (cells). Processing can be performed, and an effect that a large amount of processing can be performed is achieved.
- the invention described in claim 2 has the effect of enabling the method invention described in claim 1.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Freezing, Cooling And Drying Of Foods (AREA)
Abstract
Description
明 細 書 Specification
食品の冷凍方法及び冷凍装置 Food freezing method and freezing device
技術分野 Technical field
本発明は、 食品のプライン冷凍方法とその方法に使用する食品冷凍装置 に関する。 The present invention relates to a food freezing method and a food freezing device used in the method.
背景技術 Background art
食品の冷凍方法は、 一般的には冷凍庫内で冷気を接触させる方法がよく 知られているが、 冷気流が十分に接触し難いところ、 例えば、 適当に配列 した食品の奥側、 側面、 底部などに冷凍むらが生じやすく、 また熱伝導率 が低いために被凍結食品の最大氷結晶生成帯 (― 1〜一 5 °C) を通過する 時間が長くなり、 食品の組織 (細胞) 内の水が氷晶となり、 成長して組織 破壊を起こし、 解凍時にドリップとなって、 品質劣化の主原因となる。 従 つて凍結による食品劣化を防ぐには最大氷結晶生成帯を短時間に通過する ことが重要となる。 As a method of freezing food, it is generally well-known that cold air is brought into contact with the inside of a freezer.However, where cold air flow does not sufficiently come into contact, for example, the back, side, and bottom of appropriately arranged foods. The frozen food tends to have uneven freezing, and its low thermal conductivity increases the time it takes to pass through the maximum ice crystal formation zone (-1 to 15 ° C) of the food to be frozen. Water becomes ice crystals, grows, causes tissue destruction, and drips when thawing, leading to quality deterioration. Therefore, to prevent food deterioration due to freezing, it is important to pass through the maximum ice crystal formation zone in a short time.
それゆえに、 空気急速冷凍法や、 液体窒素、 液体二酸化炭素による冷凍 方法が提案されている。 また、 塩水、 塩化カルシウム水溶液、 プロピレン グリコールやアルコ一ル液等の凍結温度が低いことを利用して、 被凍結食 品を直接これらの泠媒に浸漬するプライン冷凍法が実用化されている。 こ の方法の最大の利点はブライン液の熱伝導率が空気のそれより一桁大きい ため、 凍結速度が速く、 冷凍食品の品質劣化の主原因である最大氷結晶生 成帯 (― 1〜一 5 °C) を通過する時間が短くなる利点があることである。 Therefore, a rapid air freezing method and a freezing method using liquid nitrogen and liquid carbon dioxide have been proposed. In addition, utilizing the low freezing temperature of salt water, calcium chloride aqueous solution, propylene glycol, alcohol solution, and the like, a pline freezing method has been put to practical use in which food to be frozen is directly immersed in these solvents. The biggest advantage of this method is that since the thermal conductivity of brine solution is one order of magnitude higher than that of air, the freezing speed is high and the maximum ice crystal formation zone, which is the main cause of quality deterioration of frozen foods (-1 to 1) (5 ° C).
しかし水分の多い食品や、 組織 (細胞) の弱い、 わさび、 鶏肝、 魚の白 子等や赤身と脂身のように凍結温度差のある食品の冷凍には、 解凍時の形 くずれや、 組織破壊によるドリップが発生し、 風味、 歯ざわりや舌触りに 係る食感等の品質を低下させる問題がある。 最近になって、 冷気中 (冷凍庫) に特殊な磁場を作り、 食品内部に弱い 電流を発生させることで食品中の水の分子を磁場共鳴現象で振動させ、 水 分子を氷点下になっても氷晶しない誘電フリーザ一方法 (大和田哲男 「建 築設備と配管工事」 11 号 1 9 9 8 ) により、 食品素材の澱粉、 蛋白質等 と同時に水分を冷凍させることにより、 解凍時のドリップを少なくして、 鮮度のよい冷凍食品を閧発する試みがなされている。 However, freezing foods with a high moisture content, foods with weak tissues (cells), wasabi, chicken liver, milt of fish, etc., or those with a freezing temperature difference such as lean and fat, may lose their shape during thawing or destroy tissue. This causes a problem of deterioration in quality such as texture, texture, texture and the like. Recently, a special magnetic field has been created in the cold air (freezer) to generate a weak current inside the food, causing water molecules in the food to vibrate due to the magnetic field resonance phenomenon. By using a dielectric freezer that does not crystallize (Tetsuo Owada, “Building Equipment and Plumbing” No. 11, 1989), drip during thawing can be reduced by freezing water at the same time as starch and protein in food materials. Attempts have been made to produce fresh frozen foods.
空気中に磁場を付与しながら冷凍する誘電フリーズ法は、 食品中の水分 が 0〜― 5 °Cでも氷晶とならず、 食品素材の澱粉、 蛋白質等と同時に水分 が凍結することになり、 組織中の水が最初に氷晶塊とならないのでドリッ プが生じない利点がある。 しかしながら、 冷気中における磁場を大きい庫 内に均一且つ安定した形を作り出すことは困難で、 大容積を必要とする大 量生産には不向きである。 また、 ブライン液中での磁場を付与した冷凍方 法は試みられてはいなかった。 The dielectric freeze method, in which a magnetic field is applied to the air while freezing, does not become ice crystals even when the water content of the food is 0 to -5 ° C, and the water freezes at the same time as the starch and protein of the food material. There is an advantage that no dripping occurs because the water in the tissue does not become ice crystals at first. However, it is difficult to create a uniform and stable shape of the magnetic field in cold air in a large chamber, which is not suitable for mass production that requires a large volume. No refrigeration method using a magnetic field in brine has been attempted.
以上のように従来の凍結方法では、 鮮度がよくて、 食感、 色調や風味に 優れ、解凍時にトリップの少ない冷凍食品が望まれているにもかかわらず、 一長一短でいまだ満足すべき解決方法はない。 As described above, despite the demand for frozen foods with good freshness, excellent texture, color tone and flavor, and few trips when thawing, the conventional freezing method has the advantages and disadvantages that are still satisfactory. Absent.
そこで、 本発明の目的は、 解凍後も凍結前と変わらない高品質の冷凍食 品を提供しょうとするものである。 Therefore, an object of the present invention is to provide a high-quality frozen food that is the same as before freezing even after thawing.
発明の開示 Disclosure of the invention
本発明を概説すれば、 不凍液中に高電位の電場を付与することにより、 ブライン冷凍方法と高電位電場冷凍法の欠点を補完し、 高品質の冷凍食品 の量産可能な製造方法及び製造装置を提供できるものである。 すなわち、 本発明の方法は、 不凍液中に被冷凍物を浸潰して冷凍するプライン冷凍方 法において、その不凍液中に電場を付与して冷凍を行うことを特徴とする。 本発明は、 前述したプライン冷凍法、 誘電フリーザ冷凍法の各々の利点 を生かしながら、 又両者の欠点を排除することによるものであり、 溶液中 における高電位電場は空気中におけるよりも均一に付与が可能であり、 大 きな溶液のプライン収容槽内のプラインに高電位電場を付与することが可 能となり、 大量の凍結品を処理することができる。 そして、 冷凍において 食品の品質に重要な最大氷結晶生成帯 (一 1〜一 5 °C) を通過する時間も 従来のプライン冷凍方法に比較して約 2 0 %短縮できる。 その結果、 鮮度 のよい、 食感、 色調に優れ、 解凍時にドリップの少ない冷凍食品を製造で きる。 しかも、 従来の冷凍法では困難とされていた組織 (細胞) の弱い、 わさび、 魚の白子等に適用して、 解凍後に、 鮮度の低下が殆どなく、 風味 や食感や色調等が低下していない、 ドリップの少ないものが得られ、 冷凍 食品化することが可能となった。本発明の冷凍方法の対象となる食品には、 魚、 貝、 海藻、 甲殻類、 魚卵等の水産物、 牛、 豚、 鶏、 卵等の畜産物、 根 菜類、 果物等の農産物、 及びこれらの調理加工品であり、 食品全般が含ま れる。 In general, the present invention provides a manufacturing method and a manufacturing apparatus capable of mass-producing high-quality frozen food by supplementing the disadvantages of the brine refrigeration method and the high-potential electric field refrigeration method by applying a high-potential electric field to antifreeze. It can be provided. That is, the method of the present invention is characterized in that, in the prine freezing method in which an object to be frozen is immersed in antifreeze and frozen, an electric field is applied to the antifreeze to perform freezing. The present invention provides the advantages of each of the above-described prine refrigeration and dielectric freezer refrigeration. This is because the high potential electric field in the solution can be applied more uniformly than in air, and the high potential electric field can be applied to the pipeline in a large solution pipeline. A potential electric field can be applied, and a large amount of frozen products can be processed. In addition, the time required for freezing to pass through the maximum ice crystal formation zone (11 to 15 ° C), which is important for food quality, can be reduced by about 20% compared to the conventional pline freezing method. As a result, it is possible to produce frozen foods with good freshness, excellent texture and color tone, and with little drip when thawed. Furthermore, it is applied to wasabi, wasabi, milt of fish, etc., which had weak tissue (cells), which was difficult with the conventional freezing method. After thawing, there was almost no decrease in freshness, and the flavor, texture, color tone, etc. were reduced. No food with little drip was obtained, making it possible to produce frozen food. Foods to be subjected to the freezing method of the present invention include marine products such as fish, shellfish, seaweed, crustaceans, fish eggs, livestock products such as cattle, pigs, chickens, eggs, agricultural products such as root vegetables and fruits, and These cooked products include food in general.
本発明の装置は、 低温に維持される不凍液を収容した冷凍槽と、 その冷 凍槽に設けられ内部の不凍液を攪拌もしくは循環させるように電気モー夕 で駆動される不凍液駆動部と、 被冷凍食品を支持して前記冷凍槽内の不凍 液中に浸漬するように設けられ電気モー夕で駆動される被冷凍物昇降部と、 不凍液冷却用の電気モー夕で駆動される冷凍機とを備えた食品の冷凍装置 において、 前記不凍液に電場を与えるように高電位電場発生手段を設け、 装置全体を設置床面に対して電気的に絶縁支持し、 且つ各々の前記電気モ —夕を取付部に電気的に絶縁支持すると共にモ一夕出力を電気絶縁ベルト を介して出力する構成としたことを特徴とする。 An apparatus according to the present invention comprises: a freezer containing an antifreeze maintained at a low temperature; an antifreeze driving unit provided in the freezer and driven by an electric motor to stir or circulate the internal antifreeze; A frozen object lifting / lowering unit provided to support food and immersed in antifreeze in the freezer and driven by an electric motor; and a refrigerator driven by an electric motor for cooling the antifreeze. In the food freezing apparatus provided, a high-potential electric field generating means is provided to apply an electric field to the antifreeze, the whole apparatus is electrically insulated and supported on an installation floor, and each of the electric motors is mounted. It is characterized in that it is electrically insulated and supported by the section and outputs the output power through an electrically insulating belt.
装置全体が装置を設置する床面に対して絶縁支持されているので、 高電 位発生手段から冷凍槽内の不凍液に支障なく電場を付与することができる ( また、 装置の機械的な駆動を行う各部の駆動源である電気モー夕をその取 付部に対して絶縁支持し且つ絶縁ベルトを介して駆動力の伝達を行うよう にしたから、電気モー夕側に高電位電場発生手段の影響が及ぶことはなく、 各動作部分は確実に動作する。 従って、 前記本発明の方法を実施できる。 高電位電場発生手段としては、久保要氏の発明した高周波電位発生装置(特 公昭 3 8— 6 1 0 6号) が適当で、 実験によれば、 5〜 1 0 0 k vの電位 を発生できるものがよく、 変圧器の二次側端子の一方を絶縁封鎖し、 他方 をプライン液に接続する。 高電位電場発生手段は出力端子の一方を絶縁封 鎖する点がボイントであり、電流は殆ど流れない。使用するプライン液は、 塩化カルシウム、 エチレングリコール、 プロピレングリコ一ル、 アルコ一 ル溶液、 又はこれらを混合したものであればよいが、 5 0〜6 8 %のェチ ルアルコール水溶液を— 3 5〜― 5 7 °Cに冷却して用いるのがよく、 食品 の冷凍に適している。 Since the entire device is insulated and supported on the floor on which the device is installed, it is possible to apply an electric field from the high potential generating means to the antifreeze in the freezer without any trouble ( In addition, since the electric motor, which is the driving source of each unit that mechanically drives the device, is insulated from the mounting unit and the driving force is transmitted through the insulating belt, the electric motor is used. There is no influence of the high potential electric field generation means on the side, and each operation part operates reliably. Therefore, the method of the present invention can be performed. As a high-potential electric field generating means, a high-frequency electric potential generator (Japanese Patent Publication No. 38-610), which was invented by Mr. Kubo, is suitable. One of the secondary terminals of the transformer is insulated and sealed, and the other is connected to the pipeline. The point of the high potential electric field generating means is that one of the output terminals is insulated and sealed, and the current hardly flows. The brine solution to be used may be calcium chloride, ethylene glycol, propylene glycol, an alcohol solution, or a mixture thereof, and a 50-68% ethyl alcohol aqueous solution may be used. It is preferable to use it after cooling to ~ 57 ° C, and it is suitable for freezing food.
なお、 本発明で採用する高電位電場発生手段によって発生される高電位 は、 交流でも直流でもよい。 交流の場合には、 とくに周波数は限定されな いが、 5 0または 6 0ヘルツからさらに高い周波数としてもよく、 要は、 被冷凍物が最大氷結晶生成帯を通過する際に、 該被冷凍物内の水分子のィ オン結合力が弱まらないようにすることができれば、 どのような高電位で もよく、 あるいは磁気であっても良い。 図面の簡単な説明 The high potential generated by the high potential electric field generating means employed in the present invention may be AC or DC. In the case of alternating current, the frequency is not particularly limited, but may be higher than 50 or 60 Hz. In short, when the frozen object passes through the maximum ice crystal formation zone, Any high potential or magnetism may be used as long as the ion binding force of water molecules in the object is not weakened. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の装置の一実施形態の概略構成を示し、 (a ) は部分縦 断正面図、 (b ) は側面図、 (c ) は平面図である。 FIG. 1 shows a schematic configuration of an embodiment of the device of the present invention, in which (a) is a partially longitudinal front view, (b) is a side view, and (c) is a plan view.
図 2は、 実施例 1と比較例 1の最大氷結晶生成帯通過時間の差異を示す グラフである。 発明を実施するための最良の形態 FIG. 2 is a graph showing the difference in the maximum ice crystal formation zone transit time between Example 1 and Comparative Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の方法の実施の形態は、 —2 0〜― 5 0 °Cに冷却した不凍液中に 5〜 1 0 0 k vの高電位を付与した電場をつくりこれにポリエチレン等の 容器に入れた被冷凍食品を 1 0〜6 0分間浸潰して冷凍食品とする。また、 この方法に使用する冷凍装置は図 1に示すようなものを使用する。 An embodiment of the method of the present invention is to form an electric field applied with a high potential of 5 to 100 kv in antifreeze cooled to −20 to −50 ° C. and to form an electric field in a container made of polyethylene or the like. Frozen food is immersed for 10 to 60 minutes to obtain frozen food. The refrigeration system used in this method is as shown in Fig. 1.
図 1に示す食品の冷凍装置 1は、 冷凍槽 2と、 不凍液駆動部 3と、 被冷 凍物昇降部 4と、 冷凍機 5と、 高電位電場発生手段 6とを備えている。 冷凍槽 2は、 断熱材を用いた断熱構造のものであり、 内部に不凍液 7を 収容し、 上方に開口した開口部から被凍結品 8を支持した網棚 9が下降し て不凍液 2中に浸漬されるようになつている。 この冷凍槽 2は絶縁碍子 3 4を介して床面 7に支持されている。 The food refrigerating apparatus 1 shown in FIG. 1 includes a freezer 2, an antifreeze driving unit 3, a frozen object elevating unit 4, a refrigerator 5, and a high-potential electric field generating unit 6. The freezer 2 has a heat insulating structure using a heat insulating material, and stores the antifreeze 7 therein, and the net shelf 9 supporting the article to be frozen 8 descends from the opening opening upward and is immersed in the antifreeze 2. It has become to be. This freezer 2 is supported on the floor 7 via insulators 34.
不凍液駆動部 3は、 前記不凍液 7中にプロペラ 1 0付きシャフ ト 1 1を 浸漬し、 プロペラ 1 0を回転させて不凍液を攪拌して全体が均一な温度と なるようにし、 もしくは循環させて、 冷凍機 5の吸熱部 1 2に不凍液 2が 良好に接触して十分に冷却されるように、 また前記網棚 9内の被凍結品 8 に低温の不凍液が有効に接触して均一に冷却されるようにするためのもの である。 プロペラシャフト 1 1の回転駆動は電気モー夕 1 3であり、 その 電気モー夕 1 3は絶縁用碍子 1 4を介して取付けられ、 回転出力は絶縁べ ルト 1 5、 例えばゴムベルトを介して出力される。 従ってモー夕 1 3は食 品冷凍装置 1の他の部分から電気的に完全に絶縁されている。 The antifreeze driving unit 3 immerses the shaft 11 with the propeller 10 in the antifreeze 7 and rotates the propeller 10 to stir the antifreeze so that the whole becomes a uniform temperature or circulates. The antifreeze liquid 2 is in good contact with the heat absorbing portion 1 2 of the refrigerator 5 and is sufficiently cooled, and the low temperature antifreeze liquid is effectively contacted with the frozen product 8 in the net shelf 9 to be uniformly cooled. It is to make sure. The rotary drive of the propeller shaft 11 is an electric motor 13, and the electric motor 13 is mounted via an insulating insulator 14, and the rotation output is output via an insulating belt 15, for example, via a rubber belt. You. Thus, the motor 13 is completely electrically insulated from the rest of the food freezer 1.
被冷凍物昇降部 4は、 前記網棚 9を昇降駆動するもので、 前記網棚 9を 網棚支持部 1 6に支持しており、 その網棚支持部 1 6は、 冷凍槽 2の縁に 立てられた 2本のガイ ド支柱 1 7によって案内されて昇降可能であり、 支 柱 1 7、 1 7の間にこれと平行して設けた回転するねじ軸 1 8とこれに螺 合し網棚支持部 1 6に設けた雌ねじ部 1 9によって上下に駆動されるよう になっている。 ねじ軸 1 8の回転は電気モー夕 2 0によって行われる。 こ のモー夕 2 0も前記と同様に碍子 2 1を介して取付けられ、 絶縁ベルト 2 2を介して出力する。 The to-be-frozen material lifting / lowering unit 4 drives the net shelf 9 up and down, and supports the net shelf 9 on a net shelf supporting part 16. The net shelf supporting part 16 is set up on the edge of the freezer 2. It can be moved up and down by being guided by two guide posts 17, and a rotating screw shaft 18 provided between the posts 17, 17 in parallel with this and a screw It is designed to be driven up and down by a female screw portion 19 provided in the joining net shelf support portion 16. The rotation of the screw shaft 18 is performed by an electric motor 20. This motor 20 is also attached via the insulator 21 in the same manner as described above, and outputs via the insulating belt 22.
冷凍機 5は、コンプレッサ部分 2 3が冷凍槽 2の側方の適所に設置され、 吸熱部 (冷凍コイル) 1 2が冷凍槽 2内の底部に設置され、 コンプレッサ 部分 2 3と吸熱部 1 2との間を冷媒通路 2 5で連結してあり、 冷凍槽外に あるコンプレッサとこれに関連した部分とが碍子 2 6を介して床面 2 7に 支持されている。 又コンプレッサを駆動するモ一夕 2 8も別個に床面に碍 子 2 9を介して支持され、 絶縁ベルト 3 0を介して出力するようになって いる。 In the refrigerator 5, the compressor part 23 is installed at an appropriate position beside the freezer 2, a heat absorbing part (freezing coil) 12 is installed at the bottom of the freezer 2, and the compressor part 23 and the heat absorbing part 1 2 Is connected by a refrigerant passage 25, and a compressor outside the freezer and a portion related to the compressor are supported on a floor surface 27 via an insulator 26. Further, a motor 28 for driving the compressor is also separately supported on the floor via an insulator 29, and is output via an insulating belt 30.
高電位電場発生手段 6は、 前述した高周波電位発生装置を用いてあり、 その装置を絶縁用碍子 3 1を介して床面 2 7に支持し、 二次側端子の一方 を絶縁封鎖し、 他方を導線 3 2に接続した電極 3 3を介して冷凍槽 2内の 不凍液 7に接触させてある。 The high-potential electric field generating means 6 uses the above-described high-frequency potential generating device, which is supported on the floor surface 27 via the insulating insulator 31, one of the secondary terminals is insulated and sealed, and the other is Is brought into contact with the antifreeze 7 in the freezer 2 via the electrode 33 connected to the conducting wire 32.
この冷凍装置は、 予め冷凍機 5及び不凍液駆動部 3を動作させて冷凍槽 2内の不凍液 7を所定温度以下に低下させておいて、 網棚 9に被冷凍品 8 を載置し、 被冷凍物昇降部 4を動作させて不凍液 7中に浸潰させ、 所定時 間後に網棚を上昇させることにより、 被冷凍品 8を高電位電場で凍結させ ることができる。 In this refrigerating apparatus, the refrigerator 5 and the antifreeze driving unit 3 are operated in advance to lower the antifreeze 7 in the freezer 2 to a predetermined temperature or less, and the frozen product 8 is placed on the net shelf 9 to be frozen. The object to be frozen 8 can be frozen in a high-potential electric field by operating the object lifting / lowering section 4 to immerse the article in the antifreeze 7 and raising the net shelf after a predetermined time.
以下に本発明の方法の実施例を説明するが、 本発明はこれらの実施例に 限定されるものではない。 Examples of the method of the present invention will be described below, but the present invention is not limited to these examples.
[実施例 1 ] [Example 1]
厚さ 8 0 mm、 縦、 横 8 0 mmに切った脂肪分の多い巿販生牛肉を、 ポ リエチレン袋に収容し、 空気を抜いて密閉後、 本発明の方法に従って冷凍 した。不凍液 7は 5 5 %エチルアルコール水溶液 1 5 0リツトルを使用し、 予め— 3 5〜― 3 8 °Cまで冷却しておき、 この冷却された不凍液に高電位 電場発生手段 6により 1 0 k vの電位を与えて、 前記牛肉を浸潰した。 浸 漬中の牛肉中心部の温度経過を温度センサを用いて測定し、 その結果を図 2に曲線 Aで示す。 また、 図 2には比較例 1として高電位電場発生手段 6 を動作させない、 つまり電場を与えない状態で他は同じ条件で、 同様な牛 肉を凍結させてその経過温度を測定したものを曲線 Bで示す。 Fatty raw beef cut to a thickness of 80 mm, length and width 80 mm, It was stored in a polyethylene bag, evacuated and sealed, and then frozen according to the method of the present invention. The antifreeze 7 was cooled to −35 to −38 ° C in advance using a 55% ethyl alcohol aqueous solution (150 liters), and the cooled antifreeze was added to the cooled antifreeze by a high-potential electric field generator 6 at 10 kV. An electric potential was applied to crush the beef. The temperature course of the beef during immersion was measured using a temperature sensor, and the results are shown by curve A in Fig. 2. Fig. 2 shows a curve obtained by freezing the same beef and measuring the elapsed temperature under the same conditions except that the high-potential electric field generating means 6 was not operated, that is, without applying the electric field, as Comparative Example 1. Shown by B.
図 2から最大氷結晶生成帯 (一 1〜一 5 °C ) の通過時間は、 実施例 1が 7 . 5分に対して、 比較例 1が 9 . 5分であり、 実施例 1の方が約 2 0 % 短い。 この理由としては、 高電位電場を付与することにより、 牛肉中の水 分が振動して、 その水のクラス夕一が小さくなり、 エネルギー負荷が軽減 されるものと考えられる。 As shown in FIG. 2, the passage time in the maximum ice crystal formation zone (11 to 15 ° C.) is 7.5 minutes in Example 1 and 9.5 minutes in Comparative Example 1. Is about 20% shorter. The reason is that the application of a high-potential electric field causes the water in the beef to vibrate, reducing the size of the water and reducing the energy load.
この実施例 1、 比較例 1の冷凍牛肉は— 3 0 °Cで 1箇月間保存後、 自然解 凍して食味した結果、 実施例 1のものは鮮度、 風味が良好であり、 比較例 1のものは実施例 1のものと比べるとやや劣るものであった。 あまり大き な差異は認められないものの、 解凍後の色は、 写真判定では、 凍結前の色 に対して実施例 1の方が比較例 1よりも近く、 実施例 1と凍結前とは殆ど 区別がつかない程度であった。 The frozen beef of Example 1 and Comparative Example 1 was preserved at −30 ° C. for one month, spontaneously thawed and tasted. As a result, the beef of Example 1 had good freshness and flavor. Comparative Example 1 Was slightly inferior to that of Example 1. Although no significant difference was observed, the color after thawing was judged to be closer to the color before freezing in Example 1 than in Comparative Example 1 in the photographic judgment, and almost completely distinguished from Example 1 before freezing. It was not enough.
[実施例 2 ] [Example 2]
朝堀りした竹の子の皮を剥ぎ、 身の部分を前記と同様ポリエチレンの袋 に収容しサンプルとした。 冷凍においては、 電場を与えて実施例 1と同じ 条件で凍結したものを実施例 2、 及び電場を与えないで前記比較例 1と同 じ条件で凍結したものを比較例 2とし、 一般の冷凍庫凍結したものを比較 例 3とした。 凍結後同じ一 3 0 °Cの冷凍庫に 1 0日間保管後、 冷水解凍し て、 その食味を評価した。 その結果を表 1に示す。 表中の数値は、 一般パ ネル 8名による評価の点数を合計した値で、 評価の点数は、 良好が 3点、 普通が 2点、 悪いが 1点である。 表 1の結果から実施例 2のものが良好で あることが明らかに認められる。 表 1 The bamboo shoots excavated in the morning were peeled, and the body was stored in a polyethylene bag in the same manner as described above to obtain a sample. In the freezing, an ordinary freezer was used, which was frozen under the same conditions as in Example 1 with an electric field applied, and Example 2 and that frozen under the same conditions as in Comparative Example 1 without applying an electric field was Comparative Example 2. Compare frozen ones Example 3 was used. After freezing, they were stored in the same freezer at 130 ° C for 10 days, then thawed with cold water, and their taste was evaluated. The results are shown in Table 1. The values in the table are the sum of the evaluation scores from eight general panelists. The evaluation scores are 3 for good, 2 for normal, and 1 for bad. From the results in Table 1, it is clearly recognized that the example 2 is good. table 1
[実施例 3 ] [Example 3]
水 2力ヅプ、 酒 1 Z 2力ップ、 みりん大さじ 6、 砂糖大さじ 2、 醤油大 さじ 1 / 2力ヅプを煮立てて、 魚の白子約 6 0 0 gを入れて煮汁が約 1 2になるまで中火で煮る。この白子の煮付けをポリエチレンの容器に入れ、 密閉して冷凍処理のサンプルとする。 このサンプルを用いた冷凍処理は、 本発明の方法による実施例 3と、 比較のための冷気による誘電フリーズ法 による比較例 4、一般の冷凍庫凍結による比較例 5の 3種類とした。なお、 誘電フリ一ズ法は A B I社のとうみんラック式フリ一ザを使用し、 冷凍品 温度が— 2 5 °Cになるまでに約 2時間を要した。 得られた各々の凍結品を — 3 0 °Cで 7日間保管後、 流水解凍して食味テストを行った。 その結果を 表 2に示す。 表中の数値は、 一般パネル 7名による評価の点数を合計した 値で、 評価の点数は、 良好が 3点、 普通が 2点、 悪いが 1点である。 表 2 の結果から、 実施例 3のものが良好であることが明らかにみとめられる。 表 2 2 cups of water, 1 cup of sake, 2 tablespoons of mirin, 6 tablespoons of sugar, 2 tablespoons of sugar, 1 1/2 tablespoon of soy sauce. Boil the cups, put about 600 g of fish milt, and boil about 1 2 Cook over medium heat until This boiled milt is placed in a polyethylene container, sealed and used as a sample for freezing. There were three types of freezing treatment using this sample: Example 3 according to the method of the present invention, Comparative Example 4 using the dielectric freeze method using cold air for comparison, and Comparative Example 5 using a general freezer freezing. The dielectric freeze method used an ABI Tomin rack-type freezer, and it took about 2 hours for the temperature of the frozen product to reach -25 ° C. Each of the obtained frozen products was stored at −30 ° C. for 7 days, thawed with running water, and subjected to a taste test. The results are shown in Table 2. The values in the table are the sum of the scores of the evaluations by the seven general panelists. The evaluation scores are 3 for good, 2 for normal, and 1 for bad. From the results in Table 2, it can be clearly seen that Example 3 is good. Table 2
また、 別に、 各サンプルを解凍後にろ紙に載せ落下する液量をドリップ とみなして調べたところ、 実施例 3、 比較例 4には殆ど認められず、 比較 例 5では確実に求められた。 また、 触感としてのぷりぷり感は、 実施例 3 が最もよく、 次に比較例 4がやや弱く、 比較例 5では不足していると認め られ、 明確に順位をつけることができた。 Separately, when each sample was thawed and placed on a filter paper and the amount of liquid falling was examined as a drip, it was hardly recognized in Example 3 and Comparative Example 4, but was reliably obtained in Comparative Example 5. Also, the tactile crispness was best in Example 3, followed by Comparative Example 4 which was slightly weaker, and Comparative Example 5 was insufficient.
[実施例 4 ] [Example 4]
ずわい蟹を釜後ゆで後、 脚部の肉を取り出して、 ポリエチレン袋に入れ 密閉してサンプルとした。 このサンプルを用いた冷凍処理は、 本発明の方 法による実施例 4と、 比較のための高電圧電場を付与しない溶液ブライン 法による比較例 6 , 冷凍庫凍結による比較例 7の 3種類とした。 実施例 4 及び比較例 6の冷凍における不凍液はいずれもエチルアルコール 5 0 %水 溶液を用いた。 得られた凍結品を— 3 0 °Cで保管し、 6 0日後に自然解凍 処理し、 食味テストを行った。 その結果を表 3に示す。 表中の数値は、 一 般パネル 7名による評価の点数を合計した値で、 評価の点数は、 良好が 3 点、 普通が 2点、 悪いが 1点である。 また、 触感を言葉で表現したときは、 かにの場合良好なものでは、 弾力性がある、 かにの風味がある、 ジュ一シ 一さがある等であるが、 悪いものでは、 弾力がなく、 紙を嚙むようなもの 等であり、 表中の数値はこれらを反映したものである。 表 3から実施例 4 が優れていることが明確にみとめられる。 表 3 After boiling the crab, the meat of the legs was taken out, placed in a polyethylene bag and sealed to make a sample. There were three types of freezing treatment using this sample: Example 4 by the method of the present invention, Comparative Example 6 by the solution brine method without applying a high-voltage electric field for comparison, and Comparative Example 7 by freezer freezing. As the antifreeze in the freezing of Example 4 and Comparative Example 6, a 50% aqueous solution of ethyl alcohol was used. The obtained frozen product was stored at −30 ° C., subjected to natural thawing 60 days later, and subjected to a taste test. The results are shown in Table 3. The values in the table are the sum of the scores of the evaluations by the seven general panelists. The evaluation scores are 3 for good, 2 for normal, and 1 for bad. In addition, when the tactile sensation is expressed in words, if the crab is good, it has elasticity, crab flavor, juicyness, etc., but if it is bad, it has elasticity. Rather than paper, etc., and the figures in the table reflect these. Table 3 clearly shows that Example 4 is superior. Table 3
[実施例 5 ] [Example 5]
生わさびをポリエチレン袋に入れ密封してサンプルとし、 このサンプル を用いた冷凍処理は、 実施例 4の場合と同様に、 本発明の方法による実施 例 5と、 比較のための高電圧電場を付与しない溶液プライン法による比較 例 8、 冷凍庫凍結による比較例 9の 3種類とした。 冷凍品を— 3 0 °Cで 6 0日保管後に自然解凍して食味関連テストを行った。 その結果、 比較例 8 及び比較例 9では生わさびが柔らかくておろし金で摩り下ろすことができ ないが、 実施例 5では固く、 冷凍しない新鮮な生わさびと同様におろし金 ですり下ろすことができた。 また、 実施例 5ではすり下ろして初めてわさ びの香りが出てくるが、 比較例 8及び比較例 9では解凍時に香りが強い。 これらのことから、 組織(細胞) が、 実施例 5のものは破壊されておらず、 比較例 8及び比較例 9のものは明らかに破壊されていると認められる。 このように実施例 1〜5は、 従来のプライン冷凍法と比べても明らかに よい結果が得られている。 そして、 実施例 2〜 5はその冷凍食品が、 組織 の弱いもの、 あるいは水分の多いものであり、 冷凍により組織破壊が起こ りやすい点で条件が厳しく、 従来は好ましい結果が得られなかったもので ある。 このように良い結果が得られる理由は、 実施例 1と比較例 1におい て測定したときの最大氷結晶生成帯を通過する時間が実施例 1の方が短く なっていたと同様に、 高電位電場を与えることにより実施例 2〜 5におい ても最大氷結晶生成帯を通過する時間が短くなつているからである。 産業上の利用可能性 Raw wasabi was placed in a polyethylene bag and sealed to form a sample.Frozen treatment using this sample was performed in the same manner as in Example 4 except that a high voltage electric field was applied for comparison with Example 5 according to the method of the present invention. There were three types, Comparative Example 8 using the solution plumbing method and Comparative Example 9 using the freezer. The frozen product was naturally thawed after storage at −30 ° C. for 60 days, and a taste-related test was performed. As a result, in Example 8 and Comparative Example 9, the raw wasabi was so soft that it could not be rubbed off with a grater, but in Example 5 it could be rubbed down with a grater in the same way as hard, unfrozen fresh raw wasabi. In Example 5, the scent of wasabi appears only after being rubbed down, but in Comparative Examples 8 and 9, the scent is strong when thawed. From these results, it is recognized that the tissue (cells) of Example 5 was not destroyed, and that of Comparative Examples 8 and 9 were clearly destroyed. Thus, in Examples 1 to 5, clearly better results were obtained even in comparison with the conventional brine refrigerating method. In Examples 2 to 5, the frozen food had weak tissue or a high moisture content, and the conditions were severe in that the tissue was likely to be destroyed by freezing, and favorable results were not obtained in the past. It is. The reason why such good results can be obtained is that the time required to pass through the maximum ice crystal formation band measured in Example 1 and Comparative Example 1 was shorter in Example 1 than in the high potential electric field. Examples 2 to 5 by giving Even so, the time required to pass through the maximum ice crystal formation zone is shortened. Industrial applicability
請求の範囲第 1項に記載した発明は、 鮮度のよい、 触感、 色調に優れ、 ドリップの少ない冷凍食品とすることができ、 また水分の多い、 組織 (細 胞) の弱い食品の良好な冷凍処理をすることができ、 大量の処理をするこ とができる効果を奏する。 The invention described in claim 1 can produce frozen food with good freshness, excellent touch and color tone, and with little drip, and good freezing of food with high moisture and weak tissue (cells). Processing can be performed, and an effect that a large amount of processing can be performed is achieved.
請求の範囲第 2項に記載した発明は、 第 1項に記載の方法の発明を実施 可能にする効果を奏する。 The invention described in claim 2 has the effect of enabling the method invention described in claim 1.
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU46867/01A AU4686701A (en) | 2000-04-10 | 2001-04-09 | Method and device for freezing food |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-108139 | 2000-04-10 | ||
JP2000108139A JP3639499B2 (en) | 2000-04-10 | 2000-04-10 | Food refrigeration equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001076395A1 true WO2001076395A1 (en) | 2001-10-18 |
Family
ID=18621037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/003049 WO2001076395A1 (en) | 2000-04-10 | 2001-04-09 | Method and device for freezing food |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3639499B2 (en) |
AU (1) | AU4686701A (en) |
WO (1) | WO2001076395A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108870829A (en) * | 2018-08-20 | 2018-11-23 | 长虹美菱股份有限公司 | A kind of freeze preservation device and control method |
CN113951312A (en) * | 2021-10-25 | 2022-01-21 | 大连海旭水产食品有限公司 | Freezing processing equipment for fresh-keeping aquatic products |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003336952A (en) * | 2002-05-17 | 2003-11-28 | Glocal:Kk | Refrigerating equipment |
JP2003343960A (en) * | 2002-05-29 | 2003-12-03 | Glocal:Kk | Refrigerator |
KR20040007039A (en) * | 2002-07-16 | 2004-01-24 | 엘지전자 주식회사 | Kim-chi receptacle elevator for kim-chi refrigerator |
JP2004069131A (en) * | 2002-08-05 | 2004-03-04 | Glocal:Kk | Freezing method |
JP4619843B2 (en) * | 2005-03-24 | 2011-01-26 | 有限会社モリタフードテクノ | Frozen food and method for producing the same |
JP2008011767A (en) * | 2006-07-05 | 2008-01-24 | Yamasa Wakiguchi Suisan:Kk | Method for producing 'saku' of frozen tuna |
KR100775649B1 (en) | 2006-08-08 | 2007-11-13 | 김윤민 | Immersion type quick freezer provided with a freezer and refrigerant exchanger and a quick freezing method using the same |
JP4988617B2 (en) * | 2008-02-01 | 2012-08-01 | 杉野 哲也 | Brine composition for frozen food and method for producing frozen food |
JP2017026197A (en) * | 2015-07-21 | 2017-02-02 | 克己 酒井 | Food freezing device |
JP6765812B2 (en) * | 2015-12-28 | 2020-10-07 | 貴徳 後藤 | Freezing device |
JP6787724B2 (en) * | 2016-08-19 | 2020-11-18 | フリーズ食品開発株式会社 | Cooling device, cooling program and manufacturing method of frozen products to be cooled |
US11499774B2 (en) | 2017-09-08 | 2022-11-15 | Mavitec Tornearia E Manutencao Ltda—Me | Rapid cooling device |
JP2020008263A (en) * | 2018-07-12 | 2020-01-16 | フリーズ食品開発株式会社 | Cooling apparatus, cooling program, and manufacturing method of frozen product of object to be frozen |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59151834A (en) * | 1983-02-17 | 1984-08-30 | Taiji Kudo | Method for freezing green vegetable, meat, fish, shellfish and algae |
JPS6070028A (en) * | 1983-09-26 | 1985-04-20 | Masao Yoshizawa | Method for refrigerating and freezing edible meat, fish and shellfish |
JPS6156062A (en) * | 1984-08-23 | 1986-03-20 | Taiji Kudo | Device for keeping freshness of edible meat, marine fish and shellfish, vegetable and fruit, and processed food of them |
JPH06189674A (en) * | 1992-12-25 | 1994-07-12 | Yoshida Reidanbou Kogyosho:Kk | Method for treating food and its apparatus |
JPH06257924A (en) * | 1993-03-01 | 1994-09-16 | Matsushita Refrig Co Ltd | Refrigerator |
JPH07265028A (en) * | 1994-03-30 | 1995-10-17 | Toppan Printing Co Ltd | Sterilization method |
-
2000
- 2000-04-10 JP JP2000108139A patent/JP3639499B2/en not_active Expired - Fee Related
-
2001
- 2001-04-09 WO PCT/JP2001/003049 patent/WO2001076395A1/en active Search and Examination
- 2001-04-09 AU AU46867/01A patent/AU4686701A/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59151834A (en) * | 1983-02-17 | 1984-08-30 | Taiji Kudo | Method for freezing green vegetable, meat, fish, shellfish and algae |
JPS6070028A (en) * | 1983-09-26 | 1985-04-20 | Masao Yoshizawa | Method for refrigerating and freezing edible meat, fish and shellfish |
JPS6156062A (en) * | 1984-08-23 | 1986-03-20 | Taiji Kudo | Device for keeping freshness of edible meat, marine fish and shellfish, vegetable and fruit, and processed food of them |
JPH06189674A (en) * | 1992-12-25 | 1994-07-12 | Yoshida Reidanbou Kogyosho:Kk | Method for treating food and its apparatus |
JPH06257924A (en) * | 1993-03-01 | 1994-09-16 | Matsushita Refrig Co Ltd | Refrigerator |
JPH07265028A (en) * | 1994-03-30 | 1995-10-17 | Toppan Printing Co Ltd | Sterilization method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108870829A (en) * | 2018-08-20 | 2018-11-23 | 长虹美菱股份有限公司 | A kind of freeze preservation device and control method |
CN113951312A (en) * | 2021-10-25 | 2022-01-21 | 大连海旭水产食品有限公司 | Freezing processing equipment for fresh-keeping aquatic products |
CN113951312B (en) * | 2021-10-25 | 2024-04-05 | 大连海旭水产食品有限公司 | Fresh-keeping aquatic product freezing processing equipment |
Also Published As
Publication number | Publication date |
---|---|
JP3639499B2 (en) | 2005-04-20 |
JP2001292753A (en) | 2001-10-23 |
AU4686701A (en) | 2001-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3639499B2 (en) | Food refrigeration equipment | |
US8381537B2 (en) | Brine composition for frozen food and method for producing frozen food | |
US8899069B2 (en) | Food preserving method and its device | |
CN103168826B (en) | Method for improving brine salting-process frozen fish fillets through variable-power ultrasonic wave | |
JP4640990B2 (en) | freezer | |
JP5805375B2 (en) | Quick freezing equipment | |
CN115553329A (en) | Method for improving water retention capacity of large yellow croaker during frozen storage | |
CN109601600A (en) | A kind of freezing method of mackerel and trevally fillets | |
JP2007053969A (en) | Method for producing frozen food | |
CN116195618B (en) | Phosphorus-free frozen storage water-retaining agent for tilapia fillets, and preparation method and application thereof | |
JP4896849B2 (en) | Food and production method thereof | |
JP6095149B2 (en) | How to store food | |
CN111096354A (en) | A method of high-frequency ultrasonic thawing raw tuna | |
CN1224321C (en) | Freezing method and device for food | |
RU2246879C2 (en) | Method for producing of canned food from fish liver | |
CN115568494A (en) | Method for delaying lipid oxidation of large yellow croaker during frozen storage | |
JPS59151834A (en) | Method for freezing green vegetable, meat, fish, shellfish and algae | |
CN107048229B (en) | A method for improving the antifreeze performance of dumpling meat filling by ultrasonic treatment | |
TWI228976B (en) | Heat-treated shrimp and method for producing heat-treated shrimp | |
JP3562802B2 (en) | Production method of heat-treated shrimp | |
CN119563702A (en) | Freeze-drying process and freeze-drying equipment for mixed food | |
CN110558498A (en) | Processing method of pre-prepared steamed fish with rice flour | |
WO1996041542A2 (en) | Treating organic tissue | |
CN119279004A (en) | A method for thawing beef brisket using multi-frequency ultrasound | |
CN120360138A (en) | Thawing method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA FI NO US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) |